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Introduction

When we teach, we do something for students and for us. This fact is
well beyond any question. What we do for us in not the focus of this
work, what we do for students and how we do it is something we
will deeply discuss in the framework of physics teaching. To be more
precise this doctoral thesis is the result of three years of Research
in Modern Physics Education, the physics related to the two major
breakthroughs of the twentieth century: Relativity and Quantum
Mechanics. The research was carried out working at the same time at
three different levels:

1. Designing teaching approaches to introduce physics concepts. At
this level, the main concerns were

• the definition of the teaching pathway,

• reflections on the choice of the best mathematical approach,

• the continuity (when possible) with the approaches used in
earlier years introducing classical physics concepts,

2. Research new experimental and practical activities in order to en-
gage students in the learning process and build thought-provoking
environments. At this stage, a matter of great concern was

• the low cost of the experimental apparatus,

• the intelligibility of the framework,

• the use of devices and materials already present at school or of
easy availability.

3. The test of the educational approaches and methods with groups
of students and groups of teachers in order to have a feedback on
their effectiveness. The testing stage was performed with courses
(both for teachers and students) with a final survey in order to
collect statistical data and impressions. A second level test was
conducted asking teachers to adopt our approaches or methods in
their classrooms. A survey on their experience was then carried
out.
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Why Physics Education Research in Modern Physics

New Curriculum and the lack of educational good practices

The MIUR (Ministry of University and Research) decree 7 October
2010 n.211 introduces in the Italian scientific high-school physics
curriculum new topics 1. The ordinance adds to the usual curricu- 1 October 7 2010 MIUR, Decree n.211.

Indicazioni nazionali riguardanti gli
obiettivi specifici di apprendimento. 2010

lum selected aspects of Special Relativity and Quantum Mechanics,
placing these subjects in the last year of the secondary school. As a
consequence Italian physics teachers, used to deal with the physics
up to the Maxwell Theory, found themselves suddenly in front of
a huge challenge. The situation was made even worse by the high
percentage of physics teachers having a degree in mathematics and
not in physics. Two more aspects have to be considered. The first is
that both Special Relativity and Quantum Mechanics are very del-
icate theories, in the sense that their physical interpretation is not
easy at all, also for physicists. The second is the lack in teaching and
educational good practices suitable for the introduction of modern
physics at secondary school level. All these factors have generated
and still generate an unpleasant state of anxiety and discomfort in a
lot of teachers.

Modern Physics: a communication channel between Secondary Schools
and Universities

Almost every field of the present-day physics research has a deep
connection with Special Relativity and Quantum Mechanics. Since
both the theories are in the scientific high-school’s curriculum they
are good candidates to play a fundamental role in the building of a
bridge between schools and the academic environment. One goal the
Italian educational system has to achieve is to shape, on the basis of
this common ground, a productive exchange of knowledge among
the two actors. In later sections we will discuss in more detail about
this topic, also proposing a possible method to carry out the task.

How to teach Modern Physics: New Pedagogical Directions in the
Italian Secondary School

Teaching Physics in Italy. Considerations.

The common approach to the teaching of Physics in the Italian sec-
ondary school is teacher centred, based on the instructor’s presen-
tation of ideas. This naturally leads to a general low engagement
condition of the students. However, low engagement is not the only
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drawback of this method: listening to something presented by others
do not activate deep reasoning and deep conceptual understanding.

Another issue we have to consider is related to the five years cur-
riculum required for the final exam. A lot of teachers feel a certain
stress due to the number of topics they have to cover. The complete-
ness of the curriculum becomes one of the main concerns of the
teacher over all the five years, and, as a consequence, the learning
process of the classroom becomes a secondary issue. A better equi-
librium between development of the curriculum and systematic
monitoring of the student reasoning should be reached.

New directions

The keyword to address both the problems above mentioned is
“Interaction". More interaction is required between the learner and
the subject we teach, more interaction is also desirable among teacher
and students. Hereafter the three strategies we suggest to consider.

Interaction Learner-Subject: Inquiry Based Science Education

Basically, to improve the engagement and the quality of the un-
derstanding we need to replace some traditional instruction with
learner-centred methods 2. According to the US National Science 2 M. Kryjevskaia et al. Assessing the

flexibility of research-based instructional
strategies: Implementing Tutorials in
Introductory Physics in the lecture environ-
ment. American Journal of Physics, 82,
238-250, 2014

Education Standards 3, the best way we have is the Inquiry Based

3 National Research Council. National
Science Education Standards. The National
Academies Press, 1996, Washington DC,
https://doi.org/10.17226/4962

Science Education (IBSE)4. Essentially with the IBSE approach knowl-

4

edge is not delivered by the instructor, but is built, under the tutoring
of a teacher, by student reasoning, carrying out some active investi-
gation. The interaction between Physics and students becomes the
core of the learning scenario; students perceive higher engagement,
higher development of reasoning skills and start a building process
of autonomous thinking. In order to design a learning environment
suitable for this kind of interactions the teacher is required having a
certain amount of creativity. He needs to identify simple experiments
in order to make the situation easily reproducible by a large percent-
age of students and to connect the experiment to a well designed
tutorial or pedagogical sequence (Fig. 1).

Figure 1: Example of IBSE activity:
the entire classroom is working on a
science problem; each student has a
cheap experimental apparatus in order
to perform investigations.

Interaction Teacher-Learner: Continuous Monitoring of the Student Un-
derstanding and Reasoning

When teachers work in a classroom they spend a considerable part
of their energy in analysing students’ facial expression and body
posture. In Italy, we are talking about data coming from 20, 25 pupils.
Even though this kind of monitoring is fundamental for a lot of
reasons, it does not offers a neat representation of the classroom
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understanding. Nowadays, however, teachers have the possibility to
monitor almost in real-time the reasoning of the classroom and to
build, during the learning process, check points where to rapidly sur-
vey student’s opinions and adjusting accordingly their didactic. This
can be done in a lot of different ways, ranging from the traditional
quick test to the more effective Google Forms method, offering an
instantaneous overview of the whole classroom understanding. To
act in this way educators are asked to be flexible and to master the
topic they are dealing with.

Going Three-Dimensional in Physics Teaching

Usually textbooks give a bi-dimensional view of Physics. As a conse-
quence, the teacher’s activity moves over two parameters: the amount
of time he will lecture and the amount of exercises he will present
to students. Fixing these two parameters he will also define the re-
gion in which the understanding of the student will be set. The main
concern in this scenario is to create a contact between theory and
exercise (Fig. 2).

Figure 2: Bi-Dimensional Physics
Teaching.

While this approach offers to the teacher a protected harbour
where to move, an unpleasant side effect arises: a self-referential loop
is created giving low freedom to the learner thinking. In the mind of
the learner a wrong model takes root: Physics as a fixed and closed
structure, where everything works as we would wish. This picture of
Physics is misleading and, in a sense, boring. Everybody analysing
experimental data knows that the core of Physics is the conceptual
work to explain what we measure with the theories we have. In order
to reach a good understanding of a theory we have to use it as an
interpretative gauge for experimental data. This opens the door to a
three-dimensional teaching of physics (3DTP), see Figure 3.

Figure 3: Moving along a new direction,
toward the Three-Dimensional Physics
Teaching.

Recent studies in Physics Education show the possibility to intro-
duce secondary school students to the analysis of selected data sets
coming from the Physics Research environment5, 6. An example,

5 Grazzi Stefano and the EEE Collabora-
tion. EEE Project - Students from all parts
of peninsula collaborate to study cosmic
rays. Proceedings of Science, 2017

6 IPPOG (International Parti-
cle Physics Outreach Group).
International Masterclasses.
https://www.physicsmasterclasses.org/

connecting Special Relativity to the analysis of data from accelera-
tors experiments will be presented in detail in this thesis. What is
important to highlight is that when the theory becomes an interpre-
tative tool of experimental data a deeper understanding of Physics
arises, students have the opportunity to see how a scientific result is
obtained and also to achieve small discoveries based on their own in-
vestigation. 3DTP is thus an innovative tool that could be considered
to strengthen the interaction Physics-Students, of course the design of
an educational tool of this kind needs a lot of work an thinking
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Physics Education Research as the Teachers Continuing Training
Starting Point

The European Commission for Education and Training asks for in-
service teacher’s continuing professional development7. Fundamentally 7 Francesca Caena. Quality in Teachers’

continuing professional development.
European Commission, 2011

this requirement is a consequence of the strong correlation between
how much time teachers spend in training and the students out-
comes8 and of the focus of the European Council on high quality 8 Angrist Lavy. Does teacher training

affects pupils learning? Evidence from
matched comparisons in Jerusalem public
schools. Journal of Labor Economics,
Vol.19, No.2, 2001; and Kain Rivkin,
Hanushek. Teachers, schools and academic
achievement. Econometrica (The
Econometric Society), Vol. 73, No. 2,
2005

teaching as key pre-requisite for high quality education and training9.

9 Darling-Hammond et al. Does Teacher
Preparation Matter? Evidence about
Teacher Certification, Teach for America,
and Teacher Effectiveness. Education
Policy Analysis Archives,Vol. 13, No. 42,
2005; Rockoff. The Impact of Individual
Teachers on Student Achievement: Evidence
from Panel Data. The American Economic
Review, Vol. 94, No. 2, 2004; and Council
Resolution 2008/C 319/08 of 21.11.08.
Official Journal of the European Union,
2008

The Italian government is basically aligned with the European policy:
continuous training is mandatory for all the Italian teachers (Law
number 107-July 2015, “La Buona Scuola"). However, continuous
training needs to be based on a strong effort in physics education
research. A lot of work has to be carried out both in the promotion of
modern pedagogy methods and in the research of new approaches to
introduce physics concepts. A crucial factor will be the building of a
strong connection between physics education researchers and train-
ing proposal for Italian high-school teachers. The need for this bridge
is evident if we consider the huge distance separating secondary
school teachers from journals and international meetings of physics
education and from the current physics education research. Since
the beginning of my research in physics education at the University
of Torino, this was one the main goals of my work. The secondary
school teaching expertise, that comes from my background (I’m a
mathematics and physics teacher with 18 years of experience) and the
opportunity to work in an academic environment have acted as ideal
attitudes to establish a contact between the two worlds. The continu-
ous relationship with secondary school teachers, kept alive offering
training courses, and the brainstorming with them about new ideas
were fundamental tools for the calibration of my "research apparatus".
On the other hand, being in contact with other researchers all over
the world have opened to my mind new perspectives and horizons.





Teaching Special Relativity

What is done in the Italian high-school

Usually Special Relativity is introduced in Italian high-schools re-
lying on the derivation of the time dilation and lengths contraction
effects[references of three textbooks] and on the consequences related
to these facts. Looking through some Italian textbooks we can high-
light some common aspect, getting in return a general overview of
the teaching method.

• Usually the Lorentz transforms are presented but not derived.

• The constant c appears in the relativistic formulas of almost all
text-books; mapping c into 1 seems to be something almost every
textbook is scared about.

• the relativistic momentum, when presented, is generally intro-
duced without giving deep explanations about its origin.

• The fundamental role and the physical meaning of invariants,
especially of the invariant mass, is barely present when not men-
tioned at all.

A survey conducted over 35 high-schools teacher spread over the
Italian territory reveals interesting features of the "Italian Style" in the
teaching of the Einsteinian theory.

The time dedicated to the teaching of this subject in the scientific
high-school amounts, on average, to 10 hours with a standard de-
viation of about 8 hours10 (Table 1, Figure 4). Special Relativity is 10 Estimates from the gaussian fit of the

collected data (Fig. 4).planned to be taught in the fifth year, the last year of the high-school.
The 88.6 % of the surveyed teachers introduce this subject in the fifth
year, only the remaining 11.4 % introduces the theory gradually, be-
ginning from earlier years. This gives a good margin of improvement,
since, as will be discussed later, the road towards Special Relativity
should be built slowly, finding out approaches that naturally extend
classical definitions. In this sense the route needs to be prepared:
teachers may plan in advance a set of actions, both in the physics and
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How many hours do you lecture to introduce
Special Relativity to your students
(excluding the assessment time)?

14.3 % 0 to 4 hours
17.1 % 4 to 8 hours
25.7 % 8 to 12 hours
22.9 % 12 to 16 hours
11.4 % 16 to 20 hours
8.6 % 20 to 24 hours

Table 1: Amount of time dedicated to
the teaching of Special Relativity in the
Italian scientific high-school.

Figure 4: The amount of time dedicated
to the teaching of Special Relativity.
The histogram is fitted with a Gaussian
with a mean value of 10.2 hours and a
standard deviation of 7.7 hours.

mathematics curriculum, to be taken since the third year. This atti-
tude gives the opportunity to save a certain amount of time that we
will have the opportunity to spend when introducing the Einstein’s
theory in the fifth year.

The 74.3 % of the teachers introduces the relativistic momentum,
but the 79.4 % of the 35 interviewed teachers admits that in textbooks
the relativistic momentum is presented with no deep explanation
about its derivation and origin. Here we are in presence of an evident
educational lack. Roughly speaking, or the relativistic momentum
is out of reach of secondary school students or further educational
research is needed in order to design new ways to introduce it. In
our opinion this fact is of primary importance, since the relativistic
relation between momentum, mass and energy is at the core of all the
current physics research, being something that students and, more
generally, citizens need to understand. All the issues of the presented
survey will be addressed in the following sections of this chapter
dedicated to the teaching of Special Relativity.

Special Relativity. With c = 1.

There are a lot of different approaches to teach Special Relativity
at secondary school level. In this section we will present a method
which differs from the traditional one adopted in the Italian text-
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books.
Beginning with the derivation of the time dilation effect, we will

introduce the space-time plane of an observer and we will learn how
to draw in it the time and space axes of other observers. Adopting
natural units (c = 1) we will define the four-position vector (t,~x)
from which we will derive the four-velocity vector in a way inspired
to the Rob Salgado work. At this point the invariant quantity t2 − x2

is presented and its physical meaning is given, a very important
step since in the majority of the Italian textbooks invariants are not
introduced nor discussed. Invariants offer the opportunity to discover
how distances are measured in the relativistic space-time, therefore
the Minkowski distance is introduced. Another important feature of
our approach is that the Lorentz transforms are derived in a simple
and really short way, only based on the time dilation effect. These
transforms tell us how space and time coordinates change when
we move our point of view from one inertial observer to another
one. A very powerful interpretation of the Lorentz transform is
given, in analogy with usual rotation in the Euclidean plane they
are presented as rotations in the Minkowski space-time, with the
only difference that the former rotation leaves the Euclidean distance
unchanged, while the latter the Minkowski distance. Looking at the
Lorentz transforms as rotations immediately gives us the opportunity
to understand how all the four vectors are transformed when we
change the observer. If an Euclidean rotation is performed not only
a (x, y) vector undergoes the transform, but also the velocities will
change components according to the same transform. This also
happens in the Minkowski’s space-time, thus we automatically
learn that also the four-momentum (which is strictly related to four-
velocity) transforms according to the same transforms of the space-
time vectors. Another new aspect of the teaching method we are
proposing is the presence of a part devoted to the relativistic dynamics,
i.e. to the four momentum, the energy, mass, momentum relativistic
relation and the relativistic concept of mass of a system of particles.
This topics deserve their space and time in the teaching plan of
teacher. They open wide and beautiful horizons toward the current
research in nuclear physics and particle physics. It is something we
owe students in order to provide them the required tools to look at
the world of the scientific research with critical thinking.

A set of interactive applications as well as the theoretical intro-
duction of all the main concepts are offered to the teacher in order
to accomplish this task. A set of tutorials fostering the students’
autonomous building of knowledge and an enquiry based science
education (IBSE) method are proposed as well. Students will have the
opportunity to investigate, understand and discover relativistic con-
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cepts following a sequence of questions and problems in the tutorials
and working in the framework of the interactive applications.

Time dilation

As before mentioned our approach to the teaching of Special Rel-
ativity begins more or less as in the traditional way with the time
dilation effect. We derive this relativistic phenomenon using the
constant speed of light postulate, a statement supported by a lot of
experimental evidences:

The speed of light has the same value for all the inertial ob-
servers.

We can consider two observers, O and O′: O, at rest with respect to
the ground, O′, moving rightwards at constant speed v with respect
to O. Now we can imagine O holding an apparatus composed by a
photon gun directed upwards and an horizontal mirror, L meters
above the gun, which reflects photons back to O (Figure ...).

We have two Observers:

1. O is an observer at REST with respect to the clock.

2. O′ is an observer NOT AT REST with respect to the clock.

We focus our attention on the time of flight of the photon, the time
to go back and forth from the gun to the gun again. For O, which
sees the photon going up and down along the vertical direction and
covering a distance 2L the time of flight is:

t =
2L
c

(1)

Completely different the scenario perceived by O′, in his reference
system (RS) he will see the clock moving at a speed v leftwards. The
back and forth tracks of the photon will be no more vertical, they will
appear to him as hypotenuses of right triangles with horizontal legs
equal to half the way travelled by the clock during the time of flight t′

of the photon. In this case the total distance covered by the photon is:

2

√
L2 +

v2 t′ 2

4
(2)

Since the speed of light is constant for all the observers, this distance
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has to be equal to ct′,

2

√
L2 +

v2 t′ 2

4
= ct′ (3)

From this equation we can derive the relation between the two time
lapses, t and t′, of the two observers:

4(L2 +
v2t′ 2

4
) = c2t′ 2, 4L2 = t′ 2(c2 − v2) (4)

t′ =
1√

1− v2

c2

· 2L
c

(5)

t′ = γ(v) · t (6)

with:
γ(v) =

1√
1− v2

c2

(7)

Proper time and time dilation

We may notice that the time interval t has two properties:

• since γ is by definition bigger than 1, t is the shortest time dura-
tion of the observed phenomenon;

• is the time measured by the observer AT REST with the clock.

The time of such an observer is called proper time and is indicated
with the letter τ. Relation [6] becomes:

t′ = γ(v) · τ (8)

Any observer NOT AT REST with the clock will measure
longer time intervals according to the velocity of the clock
with respect to him.

Time goes faster for the observer who is NOT AT REST with
the clock.

This explains why, if we observe a particle with a certain lifetime
moving at nearly the speed of light, its lifetime appears to us so
much longer (while for the particle itself nothing changes!).

A maximum velocity?

Since the factor γ(v) approaches an infinite value as the speed ap-
proaches the speed of light, we may conclude that for an observer
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not at rest with a so fast moving clock, a finite period of the clock
would correspond to a infinite time interval. Now we have two pieces
of information, both suggesting that the speed of light is a limit
speed. From a mathematical point of view, the first one is given by
the domain of the function γ(v), defined in the range ]− 1, 1[.

This means that inside this theory the unit speed can not be
reached.

The second comes from the physical meaning of time dilation
when the speed of a clock approaches the speed of light: if compared
with the time of the clock, the time of all the observers not at rest
with it would flow infinitely fast.

Setting c=1

From now on we will assign the value 1 to the speed of light. In this
way the β, which is v/c, becomes equal to v/1 = v and even if we
will write v we will consider it a dimensionless parameter since is the
ratio among two speeds. Furthermore, if we consider 1 as a speed
limit, v will range in [0, 1[, 1 being the speed of light which is not
reachable in this theory (remember the domain of the Lorentz factor).

World Lines

In Special Relativity the line describing how the position of a body
varies in time is called world line (WL). In figure (5) we have plotted
three different WLs in t, x space-time plane.

Figure 5: Different WLs.

The dotted line, at 45 degrees, represents the WL of a photon, the
other straight line is the WL of a body moving at constant speed
lower than the speed of light. The curve line is the WL of a system
moving not at constant speed but always being slower that light. We
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have to accept that time in Special Relativity is associated to the verti-
cal axis, while the position x is represented along the horizontal one.
Furthermore we have to accept that a point in space-time is expressed
by (t, x), with time in the first position and x in the second.

The time axes of different inertial observers

By definition, every observer is at rest in his own space-time ref-
erence system (RS), always being in the origin of his space axis.
However, since time flows, his position in space-time will also move
along the time axis (Fig. 6).

Figure 6: The position in space-time of
the "owner" of the Reference System.

In space-time the time axis represents the WL of the observer.

Now we consider another observer, O′, moving at speed v with
respect to O. His time will flow differently if compared to the time
of O, therefore his time axis will be denoted by a different letter: t′.
Again, his WL in his RS will be represented by his time axis (red line
in figure 7).

The WL of O′, the red line, if represented in the RS of O becomes
inclined (Fig. 8): we have discovered how to represent the time axis
of O′ in the space-time of O.

This is an important result that gives us the opportunity to draw
the time axes of different observers in the same RS.

The space axes of different inertial observers

Once chosen a RS, we can now draw the time axis of any observer,
this will help us to draw the corresponding space axis. According to
the light speed invariance postulate, the speed of light is the same
for all the inertial observers. Since the speed of light is always 1, in
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Figure 7: The World line of the observer
O’ in his own Reference System.

Figure 8: The WL of O’ represented in
the Reference System of O.
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every RS the space interval travelled by a photon must be equal to
the required time interval so that their ratio always gives 1. In other
words the WL of a photon has to be the line of symmetry of the time
and space axes. Hence, once drawn the time axis of an observer, the
space axis will be symmetrically disposed with respect to the photon
WL (Fig. 9 and 10). Now we know how to draw both the time axis
and the position axis of any observer in a certain RS.

Figure 9: The space axis is symmetri-
cally disposed with respect to the WL
of a photon.

Figure 10: The symmetry guarantees
that the speed of light is 1 in any RS.

Four vectors notation

Although we will mostly work in two dimensions, t and x, space-
time has four: a time dimension plus three spatial coordinates, ~x.
Therefore, in order to define a point in space-time we will use this
notation:

(t,~x) (9)

A point in space-time is an event. In order to define it 4 coordi-
nates are needed, therefore the event (9) can also be thought of as
a vector with 4 components. In Special Relativity an event corre-
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sponds to a 4-vector, more specifically it corresponds to the so called

4-position vector which we label with the symbol
4
x.

Here we have to be clear about units.

The components of the 4-position are not homogeneous form this
point of view, the first has time units, the other three have spatial
units. In order to avoid this problem in Special Relativity the tem-
poral component is multiplied by c, the speed of light. Therefore,
actually, the 4-position is:

4
x = (ct,~x) , (10)

however, since c = 1, we will always write

4
x = (t,~x) . (11)

Also the space-time plane has to adhere to this choice. The time
axis will become ct, which is the distance travelled by light in t
seconds. But, again, being c equal to 1, it will not appear. The first
component is the temporal component and will be denoted by x0, the
remaining three are the spatial components and will be denoted by
x1, x2, x3.

For educational purposes, we will maintain the
4
x notation

even if working in two dimensions (one temporal and one
spatial component).

From now on the speed of light c will be hidden in our formulas
and in our space-time planes, we will learn how to manage this
situation and in return this will greatly simplify our mathematical
expressions. Side notes all along this text will help the reader to
become familiar with this practice.

The theory of Special Relativity revolves around these 4 four
vectors, as we will discuss in detail later, there are deep reasons
to consider them as fundamental quantities. Here we give some
anticipation: they are strictly connected to physical quantities, called
invariants, that do not depend on the inertial observer. Furthermore
they are very useful to introduce the relativistic concepts of Energy
and Momentum.
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Space-time explorers: the 4-velocity

But what more often torments
me is the suspicion that this
border does not exist, that this
kingdom stretches limitlessly,
and that despite the extent of
my advances, I shall never be
able to reach the end.

— Dino Buzzati, The Seven
Messengers

Now we are going to explore the space-time from two different
points of view11. We will consider a space-time plane (t, x) at rest 11 This section is devoted to the deriva-

tion of the relativistic 4-velocity and is
strongly inspired by the Rob Salgado
work

with an observer and we will recruit a lot of messengers asking them
to move along this plane with different speeds and to stop when
their clock reads 1 second12. The "owner" of the space-time plane, the 12 R B Salgado. Spacetime Trigonometry

and Analytic Geometry I: The Trilogy of
the Surveyors. AAPT Topical Confer-
ence: Teaching General Relativity to
Undergraduates, Syracuse, NY, 2006

one at rest with it, will move along the vertical time axis, the others
will move along world lines with different slopes according to their
speed.

When they stop, they are asked to measure their temporal and
spatial coordinate in the (t, x) RS.

This is a crucial point: we are investigating the (t, x) space-
time plane, thus we are interested in measuring coordinates
in this RS. Messengers have to report the coordinates of their
stopping point with respect to the t and x axes, not in with
respect to their personal RS!

We will use Galilean and Relativistic explorers to perform the same
task and we start with the Galilean surveyors. In Galileo Physics all
the observers measure the same time, so all of them come to a stop at
the same temporal coordinate in the (t, x) plane: t = 1s. Concerning
the spatial coordinate, they report different positions according to
their speed: x = v · 1s. Therefore the set of stopping points will
form the horizontal line t = 1 (Fig. 11) and, in general, the final
four-position of the messengers will be:

4
xGal. = (1s, 1s · v) . (12)

We can go further and imagine how would the Galilean messen-
gers act in order to derive a 4-velocity from the "4-position" vector
(12).

They know that velocity is displacement divided by time. So they
divide the four-position by the time they planned to travel: 1 s. In
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Figure 11: The dot represents the
stopping point of a generic observer
moving at a speed v.

this way they get a quite good 4-velocity vector:

4
vGal. = (1, v) . (13)

The first component is dimensionless, the second is the velocity of
the messenger. The 4-vector is tangent to the space-time diagram
(the WL) of the surveyor, which is a crucial requirement for a velocity
vector!

It is time for the Relativistic explorers to come into play. They are
asked to accomplish exactly the same task of the Galileans. However
now things change, they will experience time dilation effects. The
messengers are like the particle of the example we made in the time
dilation section: they are moving clocks in the (t, x) RS, so if their
clock reads 1s, a longer time has elapsed for the owner of the (t, x)
RS who sees them as clocks in motion. The 1 second interval of the
surveyors will result in a time t = γ(v) · 1s. The spatial coordinate of
the stopping point will be the product between the travel time and
the speed of the messenger : x = γ · 1s · v . In general, the stopping
4-position will be (Fig. 12):

4
x = (γ · 1, γ · 1 · v). (14)

Remember that the speed of light 1 is present but not written in
the first component, so that the units of this component are position
units.

Now the Relativistic explorers have the chance to learn from his-
tory and derive the 4-velocity in the same way their ancestors, the
Galilean surveyors, did before. They divide the 4-position by the
time elapsed for every messenger, the time shared by all of them: 1 s.
What they get is this vector:

4
v = (γ, γv) (15)
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Figure 12: The Stopping position of a
generic relativistic traveller lays on the
line shown in this plot.

Indeed this is a velocity 4-vector, both components have velocity units
(actually the first one is γ multiplied by the speed of light 1)13. The 13 Dismissing natural units the 4-velocity

would be (γc, γv).ratio between its components gives the speed of the messenger:

γv
γ

= v (16)

thus, again, the vector is tangent to the WL of the surveyor. This
4-vector is the relativistic 4-velocity. The observer that sees a body (a
messenger in our example) moving in his RS will ascribe to it this
4-velocity. As we will soon discover, the result we have obtained
represents a sort of gate that connects us with the relativistic dynam-
ics, opening the doors of the surprising relativistic relation between
energy, mass and momentum.

The first relativistic invariant

In the previous section we had two different points of view. An
observer A was the owner of the RS in which we were representing
the travel of the explorers. He was the observer seeing others moving.
Observers of type B were the explorers moving with different speeds
v with respect to A. We have seen that 1 second of the observers B
corresponds to γ(v)·1 seconds for A. Now we want to make explicit
what is happening before our eyes.

We have a well defined event E:

E = the space-time position where the explorer B, travelling at
speed v, stops after 1s of his own clock.

However different observers, A and B, ascribe to the same event
different space-time coordinates. For B the event has coordinates
(1, 0) (his clock reads 1 second and in his frame he is always in
the origin of his x-axis). For A the coordinates are (γ(v), γ(v) · v)
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(the clock of A reads a longer time and the distance travelled is the
product of elapsed time and speed).

Observer B coordinates: E = (1, 0)
Observer A coordinates: E = (γ, γ · v)

This is a fact: in Special Relativity space and time coordinates
have no absolute physical meaning, they depend on the observer.
This is why the word Relativity is part of the name of this theory.
But we cannot stop here, we must take one step further. Even if the
coordinates differ from one observer to another there is something
all the observer agree on: the difference among the square of time
coordinate and the square of the space coordinate of an event!

The quantity t2 − x2 has the same value for all the inertial
observers.

This is something we can easily prove. For A we have:

tA
2 − xA

2 = γ2 − γ2v2 = γ2(1− v2) = 1 , (17)

for B:
tB

2 − xB
2 = t2

B = 1 . (18)

We have found an invariant quantity, something which is the same
for all the inertial observers. In addition this number has a precise
physical meaning: it is the time squared of the clock which is at rest
with the physical phenomenon we are considering, is the square
proper time τ2:

t2 − x2 = τ2 . (19)

In our example we were considering a moving observer who stops
after one second of his clock and the event was his stopping point
in space-time. All the infinite inertial observers will ascribe to that
event different space-time coordinates but all of them will agree on
the value of t2 − x2 which will give them the square time read by the
clock of the observer whose motion we are studying14. 14 Should we decide not to work in

natural units c = 1, the invariant would
become (ct)2 − x2 = c2τ2.

If we are considering a physical system moving in our space-
time RS and this system according to us has coordinates (t, x),
any other inertial observer will ascribe to it different coordi-
nates. However all the observers will agree on the value of
the invariant t2 − x2 which is related to the proper time of the
physical system under study.



25

This is a key point in the theory of Special Relativity, something
we cannot neglect if we aim to give a reasonable introduction to the
modern conception of space and time. Einstein was not saying that
everything is relative, on the contrary he has proved the existence of
something which has absolute physical meaning. The philosophical
implications of his theory have to consider this crucial aspect of the
theory. A huge number of students (age from 17 to 18) study both
physics and philosophy, we hope these considerations to become part
of a deeper discussion among students and teachers belonging to
different branches of knowledge.

Distances in space-time

So far (Fig. 13) we have seen that the WL of the moving observer B
represents his time axis tB and we know he ascribes a time 1 to the
event E. Thus the segment OE possesses a double meaning,

Figure 13: The segment OE represents
the time the observer B ascribes to the
event E.

• represents the elapsed time in the RS of B, which is 1.

• is the distance of the point E from the origin of the space-time
plane of A.

Here comes the surprise! Evaluating the length OE with the coordi-
nates (γ, γv) and the Pythagoras’s Theorem we would not reach the
value 1. In order to consistently close the loop we must accept that
distances in the plane of A are measured according to a modified
rule, a Pythagoras’s theorem with a minus instead of a plus:

OE2 = t2 − x2 (20)

which we know (17) gives exactly 1!
We have reached another important point, in Special Relativ-

ity distances in space-time are measured with a sort of modified
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Pythagoras’ Theorem: the sum of squares is substituted by the differ-
ence. The physical meaning of this length is a time squared. The time
required to the cover the segment OE of the WL, measured in the
RS of the observer moving along the segment. The new distance15 15 Also if t2 − x2 is the squared distance,

for brevity we will call it the distance.among points in space-time is called the Minkowski’s distance16.
16 We have considered the distance of
a point E from the origin of the space-
time plane. But our conclusions are
valid also for distances among two
generic points, the only difference being
using ∆x and ∆t instead of x and t.

Minkowski Distance from the Origin = t2 − x2

The curve t2 − x2 = 1 is an hyperbola and represents all the points
whose Minkowski’s distance from the origin is equal to 1. Being
at equal distance from a point, in the Euclidean geometry means
circumference. In the Minkowski’s geometry the same concept leads
to an hyperbola. The length of the segment connecting each point of
the hyperbola with the origin represents 1 second for the observer
who is moving along the segment.

Length contraction

The length of a ruler is measured by an observer O who sees the
ruler passing in front of him with speed v (Fig. 14).

Figure 14: Length of a ruler passing in
front of an observer.

O waits for the two ends of the ruler to pass in front of him and
measures the time interval between these two events (Fig. 14). From
this time interval he will compute the length of the ruler simply
multiplying it by the speed of the ruler. The end number 1 is in front
of him in t = 0, so the event E1 is (t = 0, x = 0). According to his
clock the end number 2 passes after τ seconds, so E2 is (τ, 0). The
two events take place exactly where the observer O is, in other words
they lay on his WL, so the time separation he measures is a proper
time (this justifies the choice of the symbol τ). For him the length of
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the ruler is:

L = τ · v . (21)

e Now we imagine a second observer sitting on the ruler, for
example on the end number 1. He will measure with his clock the
time separation between the same two events E1 and E2.

Figure 15: The observer sitting on the
ruler.

However his point of view is different, he will see O moving at
speed −v towards him and he will measure the time taken by the
observer O to "run" along the ruler. As we have learned by time
dilation he is not at rest with the clock of O so his time will flow
faster. The dilated interval will be γτ, therefore for him the length L′

of the ruler will be bigger than L:

L′ = γτ · v . (22)

In figure 16 are represented the WLs of the two ends of the ruler
in the RS of the observer O. The WL of the end number 1 is also the
WL of the observer sitting on the ruler, hence it represents its time
axis t′. The two events are on the time axis of O, so his time interval
is a proper time interval τ. The corresponding time measured by O′

is marked with the red dot on his time axis.
We may conclude that

an observer who sees a moving ruler will ascribe to it a
smaller length, L, with respect to the length L′ ascribed by an
observer at rest with the ruler itself.

L =
L′

γ
(23)
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Figure 16: World Lines of the ends of
the ruler in the RS of O.

Who is afraid of the Lorentz transforms?

In this section we present a fast way to derive the Lorentz transforms
basing our reasoning on what we learned so far. We will start having
a look to the Galilean transforms between two different inertial
observers, these transforms will inspire us in defining a general form
for the relativistic one. Then, just using what we know about time
dilation, we will evaluate the parameters of the general relativistic
transforms we are looking for. At the end we will test our equations
to see if they respect the light speed invariance postulate. If yes, we
will accept them.

Here we have Galilean equations connecting space-time coordi-
nates of two inertial observes (O and O′ which is moving at speed v
with respect to O):

x′ = x− vt
t′ = t

(24)

Is a set of linear equations involving both time and space coordinates.
Now we assume that the relativistic transforms are also linear. One
reason to adopt this assumption is that we would like the relativistic
transforms to be a more general case of the Galilean one for some
values of the parameters. Therefore we are looking for transforms
like these:

x′ = Ax + Bt
t′ = Cx + Dt

(25)

In order to find the correct values of the four parameters A, B, C, D,
we will consider two physical situations that, to some extent, we
already know how to handle .

1. In the RS of O we consider a led in x = 0 blinking every τ seconds.
We focus on the blink event (τ, 0) (Fig. 17, top plot). Now we
substitute the event coordinates in the generic transforms and see
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what are the corresponding coordinates for the observer O′.

x′ = A · 0 + Bτ → x′ = Bτ

t′ = C · 0 + Dτ → t′ = Dτ
(26)

From the second equation and our knowledge about time dilation
we immediately see that D = γ . Dividing both sides of the first
equation by t′ and considering that x′/t′ is −v, the speed of the
led from the O′ point of view, we get

x′
t′ = B τ

t′ →
−v = Bγ−1 (27)

Thus B = −γv .

2. Now we move in the RS of O′ and consider the same led in x′ = 0,
blinking every τ seconds according to his clock. Again we deal
with the event (τ, 0) and see what are the coordinates t, x for
the other observer (Fig. 17, bottom plot). Same technique: we
substitute the coordinates t′, x′ of the event in our equations.

0 = Ax− γvt
τ = Cx + γt

(28)

From the first equation we discover that A = γ . Dividing the
second one by t we have

1
γ
= Cv + γ (29)

Since 1/γ− γ = −γv2, C = −γv .

Figure 17: The two situations consid-
ered to derive the Lorentz Transforms.

We have the relativistic equations to transform the space-time coordi-
nates of one inertial observer to the coordinates of any other inertial
observer. In their beauty:

x′ = γ(x− vt)
t′ = γ(t− vx)

(30)
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Considering that in natural units β = v we can also write them in
the following way:

x′ = γ(x− βt)
t′ = γ(t− βx)

(31)

We can almost hear your protests for the physical units that seem
not to be correct. Do not worry about that, they are correct. In a
following chapter we will face this issue once and for all.

Lorentz Transforms: units considerations

Both the Lorentz transforms we have written (30) and (31) are correct
from the point of view of the units. Everything is fine thanks to
the hidden speed of light, which is 1, and, for this reason, does not
appear. Performing the same calculation we did before writing ct
instead of t, and v2/c2 inside each γ factor we would detect where
the speed of light has to be. However repeating the evaluation with c
and c2 flying from one side to another is not particularly uplifting. So
we can also just apply some dimensional common sense to discover
that equations (30) if not expressed in natural units would become:

x′ = γ(x− vt)
t′ = γ(t− v

c2 x)
(32)

while equations (31) would be:

x′ = γ(x− βct)
t′ = γ(ct− βx)

(33)

We checked for you, believe us. Save energies for the physical mean-
ing of this beautiful theory.

Testing the Lorentz Transforms

We want to be sure that the transforms wee have derived are a good
set of equations for Special Relativity. We want they to respect the
light speed invariance postulate. Doing this test is quite easy. We just
consider the equation of the WL of a photon in the RS of an observer
O. The WL is represented by x = t, now we see how it transforms in
the RS of another inertial observer O′ moving with any speed v with
respect to O. Therefore, in the transforms (31) we substitute x with t.
This is what we get:

x′ = γ(t− βt)
t′ = γ(t− βt)

(34)
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The ratio between the two equations gives

x′

t′
= 1 (35)

So we can conclude that the equation of the WL of the same photon
in the new RS is x′ = t′, meaning that the photon still moves with
the same speed 1. For us is enough, these equation represent the
fundamental equations of the Special Relativity. They are the Lorentz
Transforms.

We apply the Lorentz Transforms every time we want to move
from one inertial observer to another. The fundamental quan-
tity to perform this change of coordinates is the speed v the
second observer is moving with respect to the first.

Lorentz Transforms and Rotations in the Minkowski’s space-time

Lorentz Transforms switch our point of view from one inertial ob-
server to another one moving at speed v with respect to the first.
We already know that when this action is performed the space-time
coordinates of the events change, while the distance t2 − x2 remains
the same for the two observers. In this sense Lorentz transforms act
in the same way rotations act in the Euclidean plane (x, y)!

Rotations in the Euclidean space (x, y):
Coordinates (x, y) change
Distances D2 = x2 + y2 are invariants

Lorentz transforms in the Minkowski (t, x)
Coordinates (t, x) change
Distances D2 = t2 − x2 are invariants

A point that is 1 from the origin in the Euclidean plane will re-
main 1 from the origin after a rotation: it will change coordinates
while remaining on the unit circumference x2 + y2 = 1. The same
happens for the Lorentz transforms in the Minkowski space-time: an
event 1 from the origin will change coordinates while remaining on
the hyperbola t2 − x2 = 1.

The coordinates of a point on the Euclidean unit circumference
are (cos θ, sin θ) and rotations are performed by means of coefficients
related to these coordinates. To rotate a point (x, y) counterclockwise
of an angle θ we have to apply these transforms:

x′ = x · cos θ − y · sin θ

y′ = x · sin θ + y · cos θ
(36)
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The coordinates of a point on the unit hyperbola in the Minkowski
plane are (cosh Φ, sinh Φ) 17. Therefore we may expect that some- 17 Remember the fundamental relation

for the hyperbolic functions: cosh2Φ−
sinh2Φ = 1.

thing similar should apply to the Lorentz transforms. This is a sort of
prediction, we are driven to think that the coefficients of the Lorentz
Transforms (31) (i.e., γ and −γβ) should be expressed by means of
the hyperbolic trigonometric functions cosh Φ, sinh Φ. This is exactly
what happens! In fact it is not difficult to prove that

(γ)2 − (γβ)2 = 1 (37)

exactly as (cosh Φ)2 − (sinh Φ)2 = 1. As expected, we can establish a
connection between the coefficients of the Lorentz Transform and the
hyperbolic functions18: 18 It is important to have in mind the

relation

cosh Φ =
1√

1− tanh2Φ
(38)

which helps in noticing the connection
between γ and the hyperbolic cosine.

γ = cosh φ

γβ = sinh φ

β = tanh φ

(39)

These considerations do not only show an intrinsic mathematical
elegance and beauty of the theory, but also play a key role in shaping
our way of thinking. We try to clarify the new point of view in the
following scheme.

A Lorentz transform involves a change from one inertial ob-
server to another one.

A rotation changes the coordinates of any point, or any vector,
without modifying its distance from the origin, or its length.

A Lorentz transform is a rotation in the Minkowski’s space-time.

It is important to point out that a rotation changes the components
of any vector according to the same coefficients. In other words any
vector is rotated applying the set of equations (36). This is a very
trivial observation if we are considering the Euclidean plane, but,
based on our experience, becomes somehow not straightforward in
the Minkowski’s space. So we are going to explicitly state that the
same is true for the Lorentz transforms. They act on any vector in

the same way, not only on the four position
4
x. The four-velocity

4
v,

for example, transforms in the same way the four-position does. If
we call the first component of the four velocity v0 and the second v1

these components transform in the usual Lorentz way:

v′0 = γ(v0 − βv1)

v′1 = γ(v1 − βv0).
(40)
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Another crucial aspect concerns the modulus of the four-vectors. In
the Euclidean space given a generic vector~a = (ax, ay) its square
modulus is obtained with the Pythagoras theorem:

a2 = a2
x + a2

y (41)

In the Minkowski’s space-time a generic four-vector
4
a = (at, ax) has

a first component which we call the temporal component, a second
component which we call the spatial component and its square
modulus is given by the modified Pythagoras theorem:

a2 = a2
t − a2

x . (42)

The components of a four-vector have no absolute physical
meaning, they Lorentz transform when we change the iner-
tial observer. The only quantities with an absolute physical
meaning are the Minkowski’s lengths of the vectors!

We already know what the length of the four-position represents,
in the section dedicated to the relativistic dynamics we will learn
something unexpected about the modulus of a vector very close to
the four-velocity: the four-momentum.

Relativistic Dynamics

Survey about the teaching of the four-momentum in the Italian upper sec-
ondary school

Time dilation and lengths contraction are fascinating and funda-
mental aspects of Special Relativity, however it is our opinion that
there are other important parts of the theory. In order to give an
overall view of Special Relativity two more key concepts have to be
discussed in some detail: Invariant quantities and the physics be-

hind the four-momentum . Interestingly, a lot of Italian high-school
textbooks focus all their efforts in the first part of the theory (time
dilation, length contraction, speed addition formula) coming with
little energy and few ideas to the second one. In this section we
will present the results of a survey about the teaching of the four-
momentum in the Italian secondary school conducted on 35 teachers
spread over the Italian territory.

Teaching Special Relativity is mandatory in the last year (student’s
age 18-19) of the Italian scientific Lyceum (upper secondary school
specialised in science studies). From the survey it emerges that
on average teachers dedicate 10 hours to the teaching of Special
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Relativity (Fig. 18) with a standard deviation of about 8 hours (Fig.
4).

Figure 18: The question: How many
hours do you spend to teach Special
Relativity? (excluding the time for the
assessment).

It is also clear that that nearly 89% of the teachers do not distribute
the teaching of the modern concept of space-time over the last three
years of high-school. They teach Special Relativity in "one shot, 10

hours, nearly one month of school (Fig, 19).

Figure 19: The question: In which
school year do you introduce Special
Relativity?. Possible answers: 3rd year|
4th year| 5th year (last year of high-
school)| gradually from the 3rd to the
4th| gradually from the 4th to the 5th|
gradually from the 3rd to the 5th.

When asked specifically about the teaching of the relativistic
momentum, 74.3% of the teachers answer that they introduce it to
their students (Fig. 20).

Figure 20: The question: Do you intro-
duce to your students the relativistic
momentum? Answers: Blue-yes, Red-
No.

However the 79.4% admits that there is no clear explanation about
the relativistic four-momentum, which is a given quantity whose
origins are somewhat obscure. In the previous section dedicated to
the 4-velocity we have taken a decisive step towards the definition of
the 4-momentum. In the following one we will introduce it and start
to analyse its physical meaning. As we will clearly understand going
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Figure 21: The question: Analysing
some textbooks we noticed that the
mathematical expression of the rela-
tivistic momentum is not derived. Do
you agree with this? Answers: Blue-yes,
Red-No.

on with the reading of this chapter, the 4-momentum is a fundamental
quantity to grasp a lot of fundamental ideas behind the current
research in physics. Here we provide a short list of key concepts
that cannot be well understood without having the meaning of the
4-momentum well in mind.

• How is it possible to produce heavy particles from collisions of
light particles.

• Modern interpretation of interactions (force carriers or messenger
particles).

• Why some interaction channels among particles become possible
only when a certain energy threshold is exceeded.

• The concept of resonance in particle physics and the understand-
ing of the beautiful plot from CMS (Compact Muon Solenoid
experiment, CERN) (Fig. 22).

Figure 22: Di-muon mass from proton-
proton collisions in LHC (CMS Experi-
ment).

All the items of this list will be addressed and deeply discussed in
the following sections and chapters. Furthermore on line resources,
materials and interactive application will be presented and given to
the teacher as a support for the teaching.
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The 4-momentum

Once we have defined a 4-velocity in space-time the way to the 4-
momentum is straight. Again we can act according to the analogy
with the Galilean physics: simply multiply the 4-velocity by the
mass of a particle. Special Relativity is an extension of Galilean
physics, same attitudes and behaviours: in the Galilean space-time

we multiply
4
vGal. to obtain the 4-momentum, the same we do in the

relativistic world. Therefore the relativistic 4-momentum is19: 19
4
p = (mγc, mγv).

4
p = (mγ, mγv) . (43)

The meaning of the time component p0 and of the spatial component
p1 of this 4-vector is still not clear, however we can start considering
that again they depend on the observer. Since the γ factor affects
both of them, they depend on the speed v the particle is moving with
respect to the observer. Now we can list a number of general aspects
we already know about this new 4-vector.

1. We know how it transforms under a change of inertial observer,
i.e. under a Lorentz transform. We know we are performing a
rotation and that all the 4-vectors in the Minkowski space-time
will rotate in the same way:

p′0 = γ(p0 − βp1)

p′1 = γ(p1 − βp0).
(44)

2. We know how to evaluate its length and that its square modulus
has an absolute physical meaning:

4
p 2 = p2

0 − p2
1 (45)

Thus, first of all, we are going to evaluate the square modulus of the
4-momentum.

4
p 2 = m2 · (γ2 − (γv)2)

and for the relation (37)
4
p 2 = m2 .

(46)

20,21This is remarkable: 20 Actually there is another way to reach
the same result taking full advantage
of the invariance of the modulus. We
can evaluate

4
p 2 in whatever reference

system we choose, the best is the one at
rest with respect to the particle, in this
way v = 0, γ = 1 and as a consequence
the result is m2.
21 In usual units:

4
p 2 = m2c2.

The square modulus of the 4-momentum is the square mass of
the physical system:

4
p 2 = m2 . (47)

This means that in Special Relativity the mass m of a system
is an invariant ! It does not depend on the observer and, since
the velocity of the system depends on the observer, it does not
depend on the velocity of the system!
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In other words, do not think that the mass is a function of the
speed. We will come back to this in a later section.

m IS NOT m(v) . (48)

Another important aspect is that the relation (47) connects a
kinetic quantity like the momentum to the mass.

The time component of the 4-momentum

In order to understand the physical meaning of the time component
p0 = m√

1−v2 we have to do some mathematics. We have an uncomfort-

able (1− v2)−1/2 and we want to transform it in some more friendly
mathematical expression. While this operation is quite easy using
derivatives, we will follow a way involving mathematical skills as low
as possible.

Math Box

We begin noticing that

(1− x)2 = 1− 2x + x2

(1− x)3 = 1− 3x + 3x2 + x3

. . .
(49)

This sequence of identities can be generalised in this way:

(1− x)n = 1− nx +

+ (higher order terms in x)
(50)

Our γ = (1− v2)−1/2 factor belongs to the category of the functions
f (x) = (1− x)n, we just have to declare the following correspondences:
x → v2 and n→ −1/2. Therefore we apply the rule (50):

p0 = m
(

1 +
1
2

v2 + (high v2)
)

(51)

and we write p0 as follow

p0 = m +
(1

2
mv2 + m · high(v2)

)
. (52)

We have to say that each term on the right hand side has momentum
units, thus being an energy divided by a speed. In fact if we point
out the presence of the speed of light, the terms on the right hand
side would be mc + c · ( 1

2 m v2

c2 + . . . ). From the (52) we can reach three
conclusions:
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1. The terms in parentheses have the units of an energy divided by c
and depend on v, thus they represent the relativistic kinetic energy T
(of course divided by c).

2. Also the first term must be an energy divided by c, a form of
energy coming from the mass!

3. p0 is a sum of energies divided by c, thus from now on we will
represent it with this symbol: E/c.

However, as physicists do, we work in natural units, so instead of
E/c, T/c or mc we will write E, T, m thus writing the (52) in a very
simple form:

E = m + T . (53)

Summarising22: 22 p0 = E
c

E
c = mc + T

c or
E = mc2 + T.

The time component of the 4-momentum is

p0 = E (54)

E is the relativistic energy of a system.

E = m + T (55)

T is the relativistic kinetic energy. For low speeds T becomes the
classical kinetic energy.

The "restyled" version of the 4-momentum and the Energy Relation

We are quite close to the "restyled" version of the 4-momentum. We
know that the first component is E; the second component mγv
is called the relativistic momentum and denoted with the symbol p.
Therefore we have:

Old fashion:
4
p = (mγ, mγv)

Restyled version:
4
p = (E, p). (56)

Furthermore, the invariant square modulus of
4
p is m2 and we have

the fundamental energy relation in Relativity:

m2 = E2 − p2

or better,
E2 = m2 + p2 (57)
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Mass and momentum in Relativity can be considered as different
form of energy, the sum of their squares adds up to the total square
energy of the system! Part of the energy comes from matter, part
from a kinetic quantity: the momentum.

Both the components of the 4-momentum (E, p) represent en-
ergy forms which depend on the observer. In this sense energy and
momentum have no absolute physical value.

The only form of energy with absolute connotations a system
has at its disposal is the mass m.

There is the question of units. If energy is expressed in eV, the
momentum has to be expressed in eV/c and the mass in eV/c2. But
both nuclear and particle physics physicists work in natural units
(c = 1) thus energies, masses and momenta are measured in eV (Fig.
23) and the energy relation is the (57) instead of E2 = m2c4 + p2c2.

Figure 23: From The Review of Particle
Physics of the Particle Data Group.

The geometrical interpretation of the Energy Relation

The relativistic energy relation lends itself to an immediate geometri-
cal and visual interpretation which may be a useful tool for teacher
and can work in parallel with the usual algebraic approach (and in
some circumstances can even substitute it).

The equation (55) gives us the chance to build a segment with
length E and divide it in two parts: one with length T and the other
with length m. (Fig. 24 left).

We can now build two squares, one over the segment E, whose
area represents the term E2 of equation (57) and one over the seg-
ment m, whose area represents the term m2 (Fig. 24 right). With a
compass we draw a semicircle with diameter equal to E and a circle
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Figure 24: First stage of the geometrical
model of the energy relation.

with radius m (Fig. 25). From their point of intersection we trace a
chord of the semicircle with length m (Fig. 26).

Figure 25: Drawing the two circles.

The inscribed triangle is a right triangle and for it the Pythagoras’
theorem E2 = m2 + p2 will surely hold! Therefore the purple segment
in figure 26 represents the modulus of the momentum p.

Figure 26: The Energy Square.

The on-line Application for the Energy Relation, and how it works.

We will call the geometrical approach to the energy relation the
Energy Square method (ES). This method was implemented in a
Geogebra23 application (ESa) and published on web site. The site 23 Markus Hohenwarter et al. Geogebra.

https://www.geogebra.org/name is PhE24 (which stands for Physics Education), it was built to
24 Lorenzo Galante. PhE.
https://sites.google.com/view/physedu/test some of the educational tools developed during our research.

Figure 27 shows how the ESa looks like.
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Figure 27: The Energy Square applica-
tion (ESa).

Moving the two sliders students can change the mass and the
energy of the system they want to simulate. The geometric construc-
tion follows in real time the choices of the user, showing the areas
representing m2, E2. The difference between this two areas is easy
to visualise and represents p2. In the next section we will give some
ideas about how to use this educational tool in a classroom.

How to use the ESa in a classroom

The ESa may be used as a learning environment where to make
students become familiar with the new relativistic vision of energy.
But, and this is probably the most interesting feature, it can also be
a useful tool to activate inquiry processes in the learning scenario.
With the ESa students can explore the relativistic energy relation,
discover hidden meanings and reach interesting results by their own .
Here we give some examples, a list of activities and explorations that
can be proposed to a classroom.

TUTORIAL on the Energy Relation

• Becoming familiar with E, T, m, p.

1. With the ESa simulate a proton (m ∼ 0.9 GeV) with energy
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E = 9 GeV. In the geometric representation you get identify the
area corresponding to E2, m2 and p2. Assess the significance of
the area m2 and p2 with respect to E2.

2. You have a monatomic Helium gas at room temperature, eval-
uate the kinetic energy of one He nucleus and convert it in eV.
Now try to show that the momentum of the nucleus is negli-
gible if compared to the momentum of a pion colliding with
p = 217 MeV25. 25 Momentum units should be MeV/c,

in natural units we can write MeV.
• The ratio p/E.

1. The domain of the ratio p/E. Working with the ESa define the
domain of the ratio p/E.

2. Increasing mass. Starting from the configuration of a proton with
E = 9 GeV move the mass slider up to the maximum allowed
value. Observe what happens while you move the slider and
reflect on what is going on. What happens when the mass
reaches the maximum allowed value? The particle has changed?
What is its speed?

3. Decreasing mass. Starting with the same proton of the previous
activity, move the mass slider towards zero. Observe what
happens while you move the slider. Which particle do you have
when you reach zero? What is the speed in natural units of
the particle you got? What is the value of the ratio P/E for a
massless particle?

4. The physical meaning of the ratio p/E. On the basis of the previ-
ous considerations could you give a physical meaning to the
ratio p/E

• From the geometric model to the break-up with classical physics.

1. In your opinion is there a substantial difference among a situ-
ation in which the mass approaches zero and one in which the
mass is fixed and finite while the energy E approaches infinity?

2. On the basis of your answer to the previous question, what is
the speed of a particle with finite mass and infinite energy?

3. Would you expect such a result from the classical physics laws?

We would emphasise that in the activity about the ratio p/E stu-
dents can discover its physical meaning (which is β or v in natural
units) also if they are not aware of the mathematical expression of
the 4-momentum (mγ, mγv). This means that there is the possibil-
ity to introduce the relativistic dynamics starting from the energy
relation (without deriving it) and working with the ESa. While this
educational approach falls short for the lack of completeness and



43

full derivation of all the quantities, it is extremely agile and can lead
students to understand the basic of the relativistic dynamics and
also to analyse particle interaction events. In this sense it could be
a good strategy for a teacher who wants to introduce some particle
physics concepts while having to face strong time limits. The agile
approach was used and tested during the 30 hours course Painuc
in the Classroom designed to introduce students, aged from 16 to
18, to the analysis of nuclear collisions of pions against Helium nu-
clei. The focus of the course was not the theory of Special Relativity,
even if some relativistic concept was necessary in order to have the
minimum "knowledge kit" to conduct the analysis.

The mass of a system of two particles

Suppose we have two particles. We have seen that a 4-vector (E,~p)
may be associated to each one of them. So the particle 1 has energy
E1 and momentum ~p1 and the particle 2 energy E2 and momentum
~p2. They may be considered as a system with a total energy given by
the sum of the energies and a total momentum given by the vectorial
sum of the two momenta:

Etot = E1 + E2

~ptot = ~p1 + ~p2
(58)

Therefore just like a single particle may be described by a 4-momentum
a system is defined by

(Etot, ~ptot) . (59)

As always, both the energy component and the momentum will
depend on the observer, but the difference among the square of the
components (E2 -~p2) will be an invariant. As we know this invariant
represents the energy of the system that does not depend on the
observer. We will call it the mass of the system: the energy of the
system having an absolute connotation.

m2 = E 2
tot − ~p 2

tot (60)

In the following sections this mass will be discussed in some detail
with two different educational approaches. A more usual method
that proceeds through the mathematical analysis of this quantity and
a method based on an environment in which student, guided by a
tutorial, can explore the concept and reach important results with
their own reasoning. We will start presenting the second method,
which is the more interesting from the educational point of view.
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Investigating the mass of a system of particles with the application ESa2

In order to build an environment where to explore the mass of a
system of two particles an interactive Geogebra application called
ESa2 was designed (Fig. 28).

Figure 28: The ESa2 application.

ESa2 is available on the site PhE26. The table below shows what 26 Lorenzo Galante. PhE.
https://sites.google.com/view/physedu/the ESa2 application can do.

POSITION on the DISPLAY FUNCTION

Top Left (blue box) Defines m1 and p1 of the 1st particle
Shows the Particle 1 Energy Squares

Top Centre (purple box) Defines m2 and p2 of the 2nd particle
Shows the Particle 2 Energy Squares

Top Right (unit box) Defines Energy Units
Top Right (grey box) Defines the angle between ~p1 and ~p2

Shows the vectors ~p1 ,~p2 ,~ptot

Bottom Left Shows the single particle mass square
Bottom Centre Shows the mass m1 + m2 (orange square)
Bottom Centre Shows the system mass (black square)
Bottom Centre Shows the total energy (green square)
Bottom Right (grey box) Shows ptot, Etot and system mass

In this section we present a tutorial, partly based on the ESa2,
proposed to a classroom of 20 students. It will show the educational
path we have asked our students to follow. In the next section we
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will describe in some details how the teacher could use the tutorial in
order to give to entire classroom a common and correct knowledge.
The aims of the activities were:

• Present the Esa2 application.

• Become familiar with the mass of a system of particles.

• Learn how to evaluate the mass of a system of particles.

• Understand that for a system of particles energy coming from the
momentum is transferred to the mass of the system.

• Become familiar with the centre of mass reference system as the RS
in which ~ptot = 0.

Students were given a tutorial and were asked to work in small
groups (2 ore 3 students). The tutorial guided them through a series
of situations pushing them to explore fundamental topics related to
the mass of a system of two particles. A certain amount of time was
assigned for every step of the tutorial, then a plenary session was su-
pervised by the instructor in order to collect the main results coming
from the groups and to define a common and verified knowledge.

TUTORIAL on the Mass of a System of 2 particles

1. The mass of two electrons.

We start considering a system composed by two electrons (m ∼
0.5 MeV) having a momentum of 5 MeV and 1 MeV respectively.
For now the angle between the two momenta is not important, we
fix it to 180 degrees.

(a) Become familiar with the ESa2 application. Open the Esa2 appli-
cation and define your energy units in the unit box. With the
keyboard or using the sliders define masses and momenta of
the two particles, then set the angle between the momenta. Esa2

evaluates the total energy Etot of the system (adds the energies
of the two electrons) and the total momentum ~ptot (shown as a
green vector, vectorial sum of the two momenta). Then it evalu-
ates the mass of the system according to Special Relativity rules:√

E 2
tot − ~p 2

tot. In the bottom part of the application you will
see a green square whose edge is Etot = E1 + E2. Inside the Etot

square there is a black square, whose edge is the two-particle
system mass, and an orange one representing the simple sum
m1 + m2 of the two masses.

(b) Think about the relativistic mass of the two electrons and
compare it with the sum of the two electron masses.
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(c) Try to evaluate by your self the system mass of the two elec-
trons. (Hint: you are working in natural units, so you can ex-
press m, p and E in MeV). Compare your result with the value
given by ESa2.

2. Where does the mass come from?

The previous step made us think about the value of the system
mass which is bigger if compared to the sum of the masses of the
particles composing the system itself. We may remember that the
system mass represents the system energy that does not depend
on the observer. The question is: where does the energy that
increases the system mass come from?

3. How can we use this aspect of Special Relativity?

We may ask how we can take advantage of this beautiful aspect of
nature. We can create systems with a mass bigger than the sum
of the masses of the parts "stealing" momentum from the particles
of the system itself. How would you act with the two electrons to
create something 4.7 times more massive than them?

4. The Higgs and LHC

One of the main tasks of LHC was the detection of the Higgs
boson. Search in the Internet for the mass of the Higgs boson. Sim-
ulate with ESa2 the collision between two LHC protons: consider
the momentum of both equal to 1TeV, the direction is opposite.
(mass of the proton ∼ 1 GeV). (Hint: use TeV units and insert the
proton mass with the keyboard: 0.001 TeV). There is a chance to
create particles like the Higgs in the p-p collisions of LHC?

5. At the core of the energy of a system

Figure 29:

The geometric situation of the two electrons of the task number
1 is shown in figure 29. We have already stated that Etot is not a
quantity that plays a role at the core of the energetic issue: it not
an invariant. On the contrary the energetic core is represented
by the mass of the system which is the same for every observer.
Also the term ptot, represented in figure 29 by the ’L’ shaped green
region depends on the observer. In your opinion does an observer
for whom the term ptot is zero exist?

6. The Centre of Mass in particle interactions

Consider an interaction among two particles, 1 and 2, which gives
as output two particles, 3 and 4. Is the Centre of Mass of the two
bodies 1 and 2 (before the interaction) the same as the Centre of
Mass of the bodies 3 and 4?
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7. Mass of a system in particle interactions

Consider the same interaction described before, (1, 2)→ (3, 4). Is
the mass of the system (1, 2) the same as the mass of (3, 4)?

8. Photons mass

With the application Esa2 verify that the mass of a system com-
posed by two photons is not zero! We can have mass from mass-
less particles.

9. The importance of the angle

With the application ESa2 explore the role played by the angle be-
tween the momenta of the two particles in defining the mass of the
system. Can your conclusions help in understanding why physi-
cists build colliders designed to generate "head-on" collisions?

Comments on the system’s mass tutorial

1. The mass of two electrons.

In this activity a reflection on the mass of a two electron system
is proposed. As shown in figure 29 students learn that the mass
of the system can be bigger than the sum of the masses of the two
particles. The teacher has the opportunity to underline the impor-
tance of the mass which represents the only invariant expression
of the energy of the system. At this point there is the possibility to
introduce the term energetic ’ core’:

We can call the mass of a system the energetic ’core’ of the
system. It is the only energetic term with an absolute physi-
cal meaning. The energetic ’core’ of a system may be bigger
than the sum of the ’cores’ of the single particles!

2. Where does the mass come from?

The answer is: from the momenta p1 and p2 of the particles com-
posing the system. If we put two particles together two bodies
there is the possibility to ’transfer’ energy from the momentum
component to the mass. No doubts about this: energy is given by
mass and momentum, if the system has more mass then expected
the extra amount comes from the momentum drawer!

3. How can we use this aspect of Special Relativity?

To bring out mass from the two electron system we need to make
them interact. For example, with a collision. Something similar
was done for a long time at CERN with the LEP (Large Electron
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Positron collider), but in this case collision was among electrons
and positrons. In this way the weak bosons W and Z, with masses
around 80, 90 GeV, were detected. The starting point was two
particles with a 0.5 MeV mass.

WHY ACCELERATORS - 1

One reason why physicists build accelerators is the
creation of higher mass products.

Making high momentum particles collide we can get colli-
sion products with higher mass extracting energy from the
momentum. How much higher? At most equal to te mass

of the system: m =
√

E2
tot − p2

tot, which, as we have seen, is
bigger than m1 + m2.
We have to say that this is not the only goal. Studying
structures at smaller spatial scales is another fundamental
task of the accelerators based experiments. However to
understand this we need to wait for a later section and to
put together Special Relativity and Quantum Mechanics.
The topic will be addressed in a later section.

4. The Higgs and LHC

The discovery of the Higgs boson was one the major task of LHC.
In fact the 125 GeV of the Higgs’ mass are well below the 2 TeV of
the mass of the system composed by the two LHC protons (each
one with a momentum of 1 TeV). However we have to consider
that in p-p collision a lot of fast particles are produced and each
of them carries away momentum and mass. That is why to have
a chance to produce an Higgs we need to exceed the mass of the
boson of nearly one order of magnitude. Since one possible decay
channel for the Higgs particle is the two γs decay, one way to
discover the Higgs is looking for events with photon pairs whose
mass is the Higgs mass (30)

A beautiful plot that may be considered the manifesto for the
production of heavier particles is shown in figure 22. The plot
comes from the CMS experiment (Compact Muon Solenoid), one
of the main LHC experiments. In the preliminary test stage CMS
has detected the main particles detected in decades of research.
The plot is the result of p-p collision with a mass of 7 TeV, CMS
made a selection of all the event with the production of muons
and anti-muons and measured their momenta. The mass of the
system muon, anti-muon was then evaluated for all the possible
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Figure 30: The two photons system
(two dotted and straight yellow tracks)
whose mass amounts to the Higgs mass.
This is a candidate Higgs boson event
from collisions between protons in the
LHC. [CERN for the ATLAS and CMS
Collaborations]

combinations and histogrammed in this plot. The peaks come
from the muon anti-muon pairs produced in the decay of a neutral
particle. From collision p-p all the neutral particles up to the Z
boson were produced. Everything was made with two particles
each one having a mass of 1 GeV. This plot is a wonderful proof of
the validity of the Special Relativity and in particular of the mass
of a system.

5. At the core of the energy of a system

The Centre of Mass reference system is defined as the RS in which
the total momentum ptot is zero. This RS is very important in
Special Relativity because in this reference frame the total energy
Etot is the mass of the system thus representing the energetic ’core’
of the system itself. The laboratory system of a collider, as LHC for
example, is the Centre of Mass reference system.

6. The Centre of Mass in particle interactions

Before or after an interaction the Centre of Mass reference system
does not change. It is a direct consequence of the momentum
conservation law: if ~ptot = 0 before the collision, it will also be
zero after. The momenta ~p3 and ~p4 are different from those of the
particles 1 and 2, but they still add up to zero.

If we are in the RS of the Centre of Mass before a colli-
sion we still are in the RS of the Centre of Mass after the
collisions.

7. Mass of a system in particle interactions

The mass of a system of is conserved in particle interactions. We
know that the total momentum and the total energy are conserved,
as a consequence also the mass (which is derived from both these
quantities) will be conserved.
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The Mass of a system is conserved in collisions.

The mass of a system from a theoretical point of view

As we have already seen the 4-momentum of a system composed by
many bodies is:

4
p = (Etot = E1 + E2 + ... , ~ptot = ~p1 + ~p2 + ...) (61)

Now we want to investigate from a mathematical point of view
the meaning of its invariant modulus, which, as we already know, is
the mass of the system. We can imagine a collision of two particles
(named 1 and 2) that produces two other particles (3 and 4) in the
final state. Since the value of 61 does not depend on the RS choice, it
is convenient to choose the Centre of Mass frame where ~ptot = 0:

|4p| =
√

E2
tot − 0 =

√
m2

1 + p2
1cm +

√
m2

2 + p2
2cm (62)

From the conservation laws of energy and momentum we have that
also the mass of the system has to be conserved so the quantity (62)
has to be equal to

|4p| =
√

m2
3 + p2

3cm +
√

m2
4 + p2

4cm (63)

KEY POINT!

|4p| is a conserved quantity: its value before the collision is
equal to its value after the collision.

From these two equations we can recap and understand the mean-

ing of the absolute quantity |4p|:

1. It is an energy

2. It is an invariant, independent from the reference frame.

3. It is the mass of the system.

4. If the particles in the final state are produced at rest then |4p| =
m3 + m4. Thus |4p| represents the maximum energy of the system
that can be completely converted in masses of the final products.

5. We have used the expression ’maximum energy’ because if the
products are not at rest then part of this energy goes in kinetic
energy (momenta)
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6. Thanks to the two momenta p1, p2 the value of |4p|, the system
mass, is bigger than the sum of the masses of the single parts of
the system (62). This means that the momentum of the particles
can be converted in mass of the reaction product. That is why
colliders exist.

When a particle decays, it is at rest in its CM frame, so the invari-
ant mass of the products is the mass of the decaying particle itself.
This can help in understanding the beauty of the CMS plot (Fig. 22)
commented in one of the previous sections.

A terminological issue

We have often used the term Mass of the System, that represents the
Relativistic concept of mass (63), eg the highest mass of a particle that
could be produced by the system in case it is produced at rest. From
now on we will simply use the term Mass. This choice represents and
requires from the learner an higher level of understanding, a sort of
mutation in the way the concept is conceived.

The Mass and the GZK cut-off

Relativistic Dynamics is not only applied to particle physics. Here
we give an example of how to use relativistic concepts to explain a
fundamental aspect of Cosmic Ray physics. Cosmic Rays (CR) are
particles, almost protons, originated by astrophysical sources like
stars, supernovae, active galaxy nuclei, that impact our atmosphere
with a wide spectrum of energies. The flux of CRs as a function of
energy is shown in figure 31. In this section we are interested in

Figure 31: Cosmic ray Flux. (credit:
HAP / A. Chantelauze)

a specific feature of this plot: the so called GZK cutoff, that is the
sudden drop in the flux at energies exceeding 1020eV. The most
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accepted explanation for this experimental evidence comes from
three scientists, Greisen, Zatepin and Kuzmin, whose initials (GZK)
give the name to physical phenomenon. Their idea is based on the
interaction of protons (which constitute the majority of the CRs) with
the photons of the Cosmic Background Radiation (CBR):

p + γCBR → ... (64)

The energy of the photon is fixed by the CBR temperature (T ∼ 2.7 K)
and can be calculated considering the value of the Boltzmann con-
stant (K= 8.617 eV K−1). The energy of the proton is a variable. When
the energy of the proton exceed a certain threshold, the mass of the
system (p, γCBR) reaches the value of the mass of an excited state of
the proton: the so called ∆ resonance (1232) which immediately decays
in a neutral pion and a proton. In other words when the energy of
the proton exceeds a certain value this channel of reaction activates:

p + γCBR → ∆(1232)
∆(1232) → π0 + p

(65)

This possibility breaks down the flux of protons at energies exceeding
the activation threshold, in fact those protons will have the chance to
interact with the CBR photons thus splitting their energy among the
two final products: the π0 and the p.

A Geogebra27 interactive application called GZKa was designed 27 Markus Hohenwarter et al. Geogebra.
https://www.geogebra.org/in order to introduce students to this phenomenon. Figure 32 shows

the GZKa. With this application students have the opportunity to
get in contact with the GZK cutoff also testing their understanding
of the new concept of mass. The application works on the basis of
numerical values given by the user. The Table further on summarises
the actions and the numerical values required from the user in order
to carry out the exploration: they can discover by themselves the
value of the threshold.

The application, accordingly to the position of the proton’s energy
slider, returns in the green box the value of the mass of the (p, γCBR)

system. A red vertical bar moves along the horizontal axis of the
plot in the lower part of the application, representing the mass of the
system. As the mass of the system increases the bar moves toward
the right along the energy axis of the plot. In this way the user can
directly discover when the GZK reaction is activated.
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Figure 32: The GZKa application.

Position on the Display User Action

Top Left proton mass
(first two blue lines ) mp = a · 10b

user have to insert a, b

Top Left proton energy
(blue slider) Ep = 10c

user have to insert c

Top Right mass of the photon
(first green line) user have to insert 0

Top Right photon energy
(2nd and 3rd green lines) Eγ = d ∗ 10e

user have to insert d, e

Middle Angle between p and γ

(red slider) user have to choose among
three angles (0, 90, 180)





A Learning Environment for the 3D Teaching of Special
Relativity

We should have textbooks
showing practical applications
of the Theory of Special
Relativity.
— Anonymous Italian physics
teacher, From a Survey on the

teaching of SR

It is our believe that the best way to understand a theory is to
use it to interpret data coming from an experiment. If we do not
try to design educational approaches or environments in which the
contact between theory and experiment occurs right in front of the
student’s eyes, we loose a great opportunity to teach Physics in a
proper way. Students are both the citizens of the present and of the
future, they deserve a better understanding of science as well as of
the scientific methods adopted by the current research. The all society
needs young people to acquire cognitive skills and tools in order to
give them the chance to build a personal and critical opinion about
the choices and the applications deriving from the scientific research.
Creating a place where students can analyse experimental data
using their theoretical knowledge is what we call three-dimensional
Teaching of Physics (3DTP) (pag. 8).

In the previous chapter we presented an innovative approach to
the teaching of Special Relativity, in this section we present ParPLE
(Particle Physics Learning Environment), our efforts to build a learn-
ing environment where students can use Special Relativity as a tool
to understand how data from particle collisions are handled by physi-
cists. In this way they can directly taste the flavour of the physics
research in particle physics. ParPLE is a mixed learning environment.
With ’mixed’ we mean that a list of activities belonging to different
categories can be carried out inside ParPLE.

ParPLE gives students and teachers the opportunity to perform the
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following tasks:

1. Access data from a real particle physics experiment (PAINUC28), 28 N. Angelov et al. Two prong π - 4He
interactions at 106 MeV. Eur.Phys. J. A 34,
255269, 2007

directly analyse them using a C++ Root template and a small
introductory course on Root.

2. Find interactive applications where to explore Physics concepts
useful to understand and to analyse particle interactions29. 29 The applications designed to better

understand relativistic concept were
deeply discussed in the previous
chapter.

3. Analyse collisions through interactive applications on selected
pictures of emblematic events.

4. Perform on your desk low cost experiments that will introduce
you to the physics of particle collisions.

All the activities proposed inside ParPLE are designed to promote
active learning processes and to stimulate inquiry skills. According
to the available time the teacher will have the opportunity to choose
the level of freedom for the students. In ParPLE he will find the pos-
sibility to arise questions and problems that student will investigate
by their own using the tools available in the environment (student
centred approach) as well as the opportunity to directly guide stu-
dents along different paths to make them understand fundamental
concepts of Special Relativity and particle physics (teacher centred
approach). All the levels between this two extreme approaches will
be available.

The ParPLE environment

The ParPLE environment consists of a series of activities that provide
to the teacher educational paths along Special Relativity and Particle
Physics. In this chapter we will describe all the activities following
a logical scheme. However, as in any self-respecting environment,
the teacher will have the opportunity to move in it with complete
freedom, changing the ordering according to his preferences, using
only parts of what is available and even designing new activities
based on ParPLE. In the next chapter, dedicated to the test of these
educational methodologies, we will give two practical examples of
how ParPLe was used by two Italian teachers as well as examples of
how the author of this work used ParPLE in courses for teachers and
students.

The Gravitational Accelerator

The first step we have to move is to make collisions in more than
one dimension crystal clear to students, in order to achieve this goal
we need a collision maker, we need to bring an accelerator into the
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classroom. This seems to be a "mission impossible" but with a bit
of creativity we can do it at the incredible cost of nearly 0.02 e. Of
course, we will use the gravitational field instead of the electric one,
and two euro cent coins will be our colliding particles. We will call
the accelerating apparatus GA (Gravitational Accelerator).

How to Build a GA.

Figure 33: The Gravitational Accelera-
tor.

The equipment consists of a carton box nearly 15 cm high, two A4

sheet of paper and two 1 euro cent coins. Figure 33 shows how
to assemble the apparatus. One of the sheets, folded in two along
its long edge, is placed on the box and acts as a slide offering to
the experimenter always the same potential drop. The second A4

sheet of paper is the surface over which the coin glides after the
gravitational fall. The coin falls along the paper slide starting from
an at rest condition: the apparatus is a "gravitational accelerator"
(GA) providing a mono-chromatic beam of coins. Two masses
at the bottom of the slide (two rubbers, for example) secure the
slide position so as to maintain the same configuration during the
experimental phase.

Collisions with the GA.

Figure 34: Collisions among coins with
the GA.

The GA is a useful tool to carry out experiments on collisions
with different values of the impact parameter. Basically what we
have to do is to place a second coin on the A4 surface waiting for
a collision with the accelerated one (Fig. 34). After the collision
the two coins will come to a stop, therefore as we will discuss
soon, we will have the opportunity to draw their tracks and,
from the length of their trajectories, to determine some kinematic
parameter.

Momentum conservation law with the GA. Theoretical considerations.
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Analysing collisions generated with the GA we can quantitatively
investigate the momentum conservation law in two dimensions.
This is a very important step to be moved before entering the
realm of particles collisions, since conservation laws hold also in
particle physics. Furthermore, as we will see later in the direct
analysis of one PAINUC event, the discovery of a missing momen-
tum in an interaction among particles can lead us to the research
for an undetected particle.

What we need is a way to measure the velocities of the coins one
instant before and one instant after the impact. To find this way we
may notice that a constant force F decelerates the coins while they
slide over the horizontal A4 surface. F acts until the coins come to
a stop, so the following relations hold:

FL =
1
2
·m v2 (66)

v =

√
2 F L

m
(67)

where L is the length of the track of the coin form the point of
impact to the stopping point. We thus have a direct proportionality
between the velocity v of the coins at the beginning of their ride
over the horizontal surface and the square root of the length of the
track L.

v ∝
√

L (68)

A simple and wonderful result, since from the track of a coin we
can extract both the direction and the magnitude of a vector which
is proportional to the velocity of the coin.

Now we can go back to the momentum conservation law and see
how it applies to the collisions provided by the GA. The sliding
coin will start from an at rest condition at the top of the slide.
The collision will be among twin coins (1 euro cent coins) so the
masses will fade away from the conservation relation (eq. 69):

~v1 in +~v2 in = ~v1 f in +~v2 f in (69)

In this scenario we can verify the conservation law simply measur-
ing three velocities (the target coin is initially at rest). Therefore, in
order to test the law we have to check the validity of equation (70).

~v1 in = ~v1 f in +~v2 f in (70)

Since from the lengths of the tracks we can derive a vector propor-
tional to the velocity of a coin we have the chance to evaluate the
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three vectors proportional to the three velocities in equation (70)
and we can discover the momentum conservation law measuring
collision among coins accelerated with the GA. This is something
that should be experienced by students before entering in the
world of particles interactions. The experimental procedure is
given in the following paragraph.

Momentum conservation law with the GA. Experimental strategy.
In this section we present a step by step procedure in order to
carry out the experiment on the momentum conservation law.

– Fix the starting position of the sliding coin (see dashed circle on
top of the slide), draw a line to be sure that the final edge of the
slide will always be in the same position. Add small weights on
top of the box in order to avoid undesired changes in position
of the apparatus.

– Determine the direction of the incident coin (without collision).

– Choose the position of the target coin.
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– Determine the position of the incident coin at the instant of
impact.

– Confirm the initial direction of the incident coin and determine
its final position in a no collision scenario.

– Perform the collision. Put the target coin in the previously
decided impact position and let the incident coin fall from its
starting position.



61

– Remove the A4 sheet and measure the three lengths of the
tracks.

– Draw the vectors proportional to the three momenta.

– Verify the conservation law.
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Figure 35 shows a typical experimental result. Carrying out enquires

Figure 35: Typical experimental result
for the conservation law with the GA.

on collisions performed with the GA students get a clear collision
model to refer to. The exchange of momentum between colliding
coins, the importance of the impact parameter as well as the momen-
tum conservation law will literally pass under their eyes and through
their hands. This a fundamental step before entering the realm of
particle interactions.

The PAINUC experiment gives data to Schools

Now we introduce data analysis in ParPLE since, according to the
3DTP approach, we want to create a direct contact between students
and data from real particle physics experiments.
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Therefore from now we will talk about how students can work
on pictures (e.g. Fig. 36) or directly on numerical data from real
collisions among pions and Helium nuclei (π , 4He). Here we briefly
present the main aspect of the experiment from which data are
gathered, in the following sections the two different approaches to
the analysis (with pictures or numerical data) are deeply described.

Figure 36: A typical (π , 4 He) collision
in the PAINUC experiment.

Data come from the PAINUC experiment which is a collaboration
between the Dubna Joint Institure for Nuclear Research and the INFN-
Torino.

The experimental apparatus of PAINUC is designed to investigate
nuclear matter30 through collisions between low energy pions ad 30 A system of interacting nucleons

(protons ad neutrons).a fixed target given by Helium nuclei. The primary experiment
components are:

1. A monochromatic pion beam.

2. A chamber in which tracks leaved by ionising particles are de-
tected (Streamer Chamber).

Figure 37: The chamber containing the
He gas and the pion beam directed
towards the chamber itself.

As shown in figure 37, a charged pion beam is directed towards the
Streamer Chamber filled with Helium gas at atmospheric pressure
and room temperature. The Helium gas performs a double task:
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• Detection Task. Allows the detection of the charged particle tracks:
a charged particle passing through the gas ionise the Helium thus
leaving in the chamber an ionisation track. The ionisation line is
then converted in a picture of the particle track.

• Target Task. The Helium nuclei also act as the nuclear target (2
protons + 2 neutrons) for the pion beam.

A charged pion travelling in the Helium gas ionise the gas along its
trajectory but, sometimes, a collision with a nucleus can also occur.
Since the goal of the PAINUC experiment is the study of the nuclear
matter, these interactions with the nucleus are of great interest. As
we can see in figure 36, a collision will deflect the pion (scattering
process) also making the nucleus recoil. The ionisation process op-
erated by the pion along its path only serves to take a picture of its
trajectory so generating a track. In figure we can recognise the in-
coming pion track (coming from the right side), the scattered pion
and the recoiling Helium tracks. An event like this one is called a
two prong31 collision.Figure 38 shows a sketch of the apparatus with 31 Two tracks in the final state are

present.the pion beam entering the Streamer Chamber. The beam direction
is deflected in the chamber by a uniform magnetic field which is
perpendicular to the plane of the figure. The horizontal rods named
C6, C7 are scintillators, tiles of plastic material exhibiting emission
of photons when struck by a ionising particle. These scintillators are
placed on the side of the beam to give an alert in case are crossed by
a scattered pion: if this happens a nuclear collision have occurred and
the photographic device takes a picture of the event. The signal from
the scintillators is called trigger signal.

Figure 38: The pion beam enters the
Streamer Chamber (octagonal shape)
filled with Helium at atmospheric
pressure. The beam is deviated by a
uniform magnetic field perpendicular
to the plane of the image.

Data Analysis form pictures of PAINUC events.

A set of activities to analyse pictures from the PAINUC experiment
is presented. Students will learn how to measure the momentum
of a particle, how to check the conservation of the momentum in a
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collision and even how the detection of a missing momentum can
lead to the discovery of a reaction channel.

Particle momentum in a uniform magnetic field

A charged particle moving in a constant and uniform magnetic
field ~B perpendicular to its velocity follows a curved trajectory. The
curvature radius, evaluated applying the Lorentz Force equation, is
given by the relation

r =
p

qB
(71)

where q is the electric charge and p the momentum. This is evident if
we observe a picture of a PAINUC event, like the one in figure 36.

Inside the chamber the particles move nearly at constant speed
and the magnetic field, perpendicular to the plane of the image, is
approximately uniform so the radius may be considered constant. In
the application MFCMa (Magnetic Fields, Charge and Momentum
application) (Fig. 39) students can even derive equation (71) changing
the values of q, p, B and writing down the value of the radius of the
trajectory. Looking at the figure 36 we may notice that the direction

Figure 39: The MFCMa application
to explore the relation among the
radius of the track, the momentum, the
magnetic field and the charge of the
particle. Moving the end points of the
slit, students can also discover how to
build a monochromatic beam.

of rotation depends on the sign of the charge. Negative pions rotate
counterclockwise, the positive nucleus follows a clockwise track.

Figure 40: A three prong event in the
PAINUC experiment.

In figure 40 a three prong (π−, 4He) collision is shown; analysing
the direction of rotation of the tracks students may be challenged in
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discovering the identity of the involved particles.

Measuring the momentum of the particle.

So far students should be familiar with collisions at least in two
dimensions, now it is time for them to explore how the momentum
of a particle is measured. This is a crucial advance in their knowledge
about particle physics, since the momentum represents a key quantity
in collisions.

Basically if we have information about the track of the particle
moving in a magnetic field we can evaluate its momentum using the
relation:

p = rqB (72)

where r is the radius of the track, q the electric charge of the particle
and B the magnetic field32. Since The PAINUC experiments provides 32 Equation (72) comes from the expres-

sions of the magnetic force F = q~v ∧ ~B
and of the centripetal force.

a beautiful series of pictures of collision events we had the oppor-
tunity to build an interactive application allowing students to act
like a physicist. The application, again developed in the Geogebra
framework, is called Measuring Momentum application (MMa), it
works on a PAINUC event image and gives the opportunity to fit,
with three different circles, the three tracks. In return MMa gives
the value of the radii in arbitrary units then converted in meters by
the user. For each circle students can drag a point (for example the

Figure 41: The MMa application.

point M for the orange circle in figure 41) in order to find the best fit
of the track. Once all the circles are defined, in the upper part of the
application and in arbitrary units (geogebra units, gGU) the radii are
given. Since the segment CD shown in the lower part of the image
has a known length both in meters and in geogebra units (0.60 m,
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9.754 gCU), radii can be converted in meters and from the value of
the magnetic field (written in the upper right corner of the image) the
momentum p can be evaluated. Some useful tip to get reliable values
of the radii is given in the box at the end of this paragraph.

We are using Tesla, meters and Coulomb, so, at first, we express
momenta in the International System of Units (SI) then we convert to
eV. The conversion process is explained in the following box.

Conversion to eV

In the International System of Units (SI) the units of the mo-
mentum ~p = m~v are:

kg ·m · s−1. (73)

Considering that the kinetic energy, which is expressed in J, is
proportional to mv2 we can also state that

kg ·m · s−1 =
J

ms−1 . (74)

Thus, no surprise if we express the units of momenta as a ratio
between energy and velocity.

p→ Energy
Velocity

(75)

Now we simply have to convert J in eV and ms−1 in units of
the speed of light c:

J → eV

ms−1 → units of c .

Now
1 J =

1
1.6
· 1019 eV (76)

and, since in the natural units we are adopting c = 1,

1 ms−1 =
1

3 · 108 (77)

Hence

J
ms−1 =

1
1.6
· 1019 eV · 3 · 108 = 1.875 · 1027 eV . (78)

So, multiplying momenta expressed in SI units by 1.875 · 1027

we get momenta expressed in eV.
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Useful tips to use The MMa

1. The radius is really sensitive to small changes in the posi-
tion of the point. So we suggest to be careful and do your
best to pass through the dark grey ionisation spots shown
in the picture below (Figure 1).

2. The huge spot in the red circle is not part of the track
(Figure 1).

Fig. 1

In order to get a reliable value of the track radius follow this
procedure:

1. Place the point M beyond the end point of the track to have
full visibility of the track itself (Figure 2).

2. Find two values of the radius and then evaluate the aver-
age. Evaluate the first one starting with the point M at one
side of the track and stopping as soon as you are satisfied
of the fit. Do not exceed the ’satisfactory’ position. To get
the second radius start with the point M at the other side of
the track and again be careful to immediately stop as soon
as you think the best fit is met (Figure 2, 3).

3. Evaluate the mean value of the two radii and use it to find
the momentum of the particle.

4. The part of the event image in the square box (Figure 2) is
the side surface of the chamber, do not consider it during
the fitting process.

Fig. 2, 3
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Momentum distribution of the pion beam

The distribution of the momenta of the incoming pions is given in the
plot below. The mean value is 217 MeV and the standard deviation is
∼ 19 MeV. Thus, performing your analysis on the proposed events,
you should expect an initial pion momentum in that range.

Pion beam Momentum Distribution

p [MeV]

Figure 42: The momentum distribution
of the pion beam.

Evaluating the speed of the particles

Once momenta are evaluated student can discover the speed, or the
β, of the particles involved in the collision. Two main ways to get the
speed:

1. Evaluate the Energy of the particle using the Einstein relation
E2 = m2 + p2 then evaluate the p/E ratio.

2. Use the p = mγv formula to evaluate the gamma and from the
gamma go to the speed.

Here an example using the first method:

p = 220 MeV , mπ = 139 MeV ,

E =
√

m2 + p2 = 260 MeV ,

p
E = 0.85 .

The pion with a 220 MeV momentum is travelling at 85% of the

speed of light.

Special Relativity and Quantum Mechanics get together party

In ParPLE we can also discover how joining the two main theories
of the 20th century, Special Relativity and Quantum Mechanics, we
can introduce one of the main actors of modern physics: the force
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carrier. As we will learn in the following sections the experimental
data available in ParPLE give the opportunity to test some features of
the collisions which are strictly related to them.

When two particles interact they exchange momentum. We can
consider a GA collision among coins (Fig. 43) to define the trans-
ferred momentum and even ask students to measure it.

Figure 43: Transferred Momentum in a
GA collision among coins.

The transferred momentum ~p Tr is the difference among the initial
and final momentum of one of the bodies involved in the collision:

~p Tr = ~p I − ~p F . (79)

The same relation holds in particle interactions like those we study
in ParPLE (Fig. ??). Of course, in addition to the momentum two
particles also exchange energy, therefore we can say that both energy
E Tr and momentum ~p Tr are transferred from one particle to the other.
Now, according to Special Relativity energy and momentum form the
4-momentum vector (~p Tr , E Tr) and this 4-vector defines a system (or
a particle if we prefer) which is the responsible for the energy and
momentum transfer. This particle is the force carrier.

We want to show that

the force carrier plays a key role in determining the spatial
scales of an interaction.

With "spatial scales of interaction" we mean the order of magni-
tude of the spatial region involved in the interaction, for example
the whole atom (10−10m), the nucleus (10−13m to 10−14m) or the sin-
gle nucleon (10−15m = 1 f m = 1 Fermi) might be involved in the
collision when a pion interacts with Helium.

To understand the role of the force carrier we need to move two
steps: the first one concerns the Heisenberg Uncertainty principle, the
second one the distribution in momentum of a system.
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1
st Step. The Heisenberg Principle

Quantum systems are distributed in space (x) and in mo-
mentum (p). In the figure below we have an example of
a spatial distribution of a system in the x domain. On the
vertical axis the "Intensity" of the system in the considered
domain is represented. For a sound it could be the volume,
for a body the mass density, etc. Two important parame-

ters are shown: the mean value
−
x and the dispersion ∆x.

The Heisenberg Principle states that for a quantum system the
product of the two dispersions is constant:

∆x · ∆p ∼ h̄ (80)

This means that the more the system is dispersed in momen-
tum, the less is dispersed in space (and vice versa).
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2
nd Step. Dispersions and distributions

Furthermore we can state that if a system is distributed in the
momentum p (see figures below), the bigger is the mean value

of the momentum
−
p the bigger is the dispersion ∆p.

We can give some physical examples in order to convince that
this statement is true.

1. The Maxwell distribution. We can consider a star and the
distribution of the momenta of the proton gas. If the Star
collapses the temperature increases as well as the mean
value of the momentum and the dispersion of the dis-
tribution. The total number of protons involved in the
distribution (the area under the plot) is conserved so the
distribution has to become broader.

2. The Fermi distribution. The distribution of energies of a
system consisting of many identical particles that obey the
"Pauli exclusion principle" is called the Fermi distribution.
If we increase the temperature of the system the mean
energy of the fermions increases as well as the dispersion.
This is evident considering the plot below
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If we join together this two facts we can understand the role of
the force carrier in determining the spatial scales of an interaction. If
we appeal to the 2nd Step we might conclude that the bigger is the
transferred momentum ~p Tr, which is the momentum of the force
carrier, the bigger the dispersion in momentum ∆p of the carrier
itself. From the Heisenberg Principle we know that the bigger the
dispersion in momentum of the carrier the smaller its dispersion in
space!

Therefore high momentum transfer implies small spatial scales of
the interaction.

The bigger is the transferred momentum, the less the force
carrier is dispersed in space. As a consequence, the smaller
are the scales of interaction.

The scales of interaction are thus determined by ~p Tr and we can
understand why only by merging together both Special Relativity
and Quantum Mechanics.

Math Box

How to evaluate the scales of interaction.

We assume that the order of magnitude of the momentum
~p Tr and of the dispersion in momentum ∆p of the carrier are
the same. This seems to be a reasonable assumption (look
at the Maxwell Boltzmann distribution, for example). Then
we can apply the Heisenberg relation to evaluate the spatial
dispersion of the carrier. Here we give an example:

suppose that the transferred momentum is

p Tr = 1MeV,

∆p ∼ 1MeV,

∆x ∼ h̄
∆p = h̄ c

∆p c ,

We know that:

h̄ c ∼ 200MeV f m,

Thus

∆x ∼ 200MeV f m
1MeV ∼ 10−13m.

This is the spatial dispersion of the force carrier which is also
the scale of the interaction.

A second reason why physicists build increasingly powerful
accelerators can be given exactly at this point.
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WHY ACCELERATORS - 2

More powerful accelerators give to the colliding parti-
cles higher momentum. Therefore they have a bigger
chance to transfer higher momentum and, as a con-
sequence, to interact at smaller scales. In this way
scientists have the opportunity to investigate matter at
smaller and smaller scales.

Acting like a physicist: analysis of a PAINUC event

Up to this point a lot of tools and knowledge has been given to
learners. In ParPLE they had the chance to explore and investigate a
lot of concepts, now it is time to take the field, act like a real physicist
and perform the analysis of a selected PAINUC event.

The event we are going to face is the one shown in figure 44;
as usual a negative pion coming from the left impinges with an
Helium nucleus. From the direction of the rotations we can say that
the pion in back scattered, while the nucleus recoils forward. The

Figure 44: The PAINUC event we
propose to analyse.

visual framework in which the analysis will be carried out is the
Geogebra application EAa (Event Analysis application) shown in
figure 45. As the MMa application, EAa offers the opportunity to
fit the three trajectories with three different circles and return the
radii of the tracks. But now we know how to evaluate the momentum
therefore we can go deeper in the analysis. Once the momenta are
evaluated by the user they have to be inserted in the white fields
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Figure 45: The Event Analysis frame-
work EAa.

on the top-right corner. They have to be expressed in 108 eV: so if
we get a momentum of 126 MeV we have to input the number 1.26.
If asked, by checking the appropriate boxes, the application shows
the momentum vectors, which are tangent to the trajectories in the
interaction vertex and have a modulus defined by the user. The
application draws (Fig. 46):

• The Total initial momentum, [Blu vector], which is the the momen-
tum of the incoming pion alone, since the Helium nucleus before
the collision may be considered at rest (the order of magnitude of
the Helium kinetic energy at room temperature is KT ∼ 10−2 eV,
K ∼ 9 · 10−5eV K−1 and T ∼ 300 K).

• The Recoiling Helium momentum, [Green vector].

• The Scattered pion momentum, [Orange vector].

• The Total final momentum, [Red vector], which is the sum of the
Helium and scattered pion momenta.

• The Missing momentum, [Black vector], which is the difference
between the two total momenta (Initial-Final).
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Figure 46: The momentum vectors
drawn by EAa. The vectors and the
trajectories shown in this image are
drawn just to give an overview of the
possibilities offered by the application:
they are intentionally not reliable.

An example of analysis

In this box we show the analysis carried out by a
secondary school student during a summer course.

As pointed out before, students were asked to determine the

radii as the average of two measures.

As we can see from the picture in the box, nearly 200 MeV of
momentum are missing. We are at a crossroads, we can say that in
particle physics the linear momentum is not conserved or we can try
to explain the missing quantity in some other way. Probably the best
choice is to try finding a way to save the conservation law. Therefore
we have to start our enquiry.



77

The missing momentum can be ascribed to an undetected particle.
Undetected means that no track was left in the chamber and, since
the track is related to a ionisation, we may guess that the hypothetical
particle is neutral. Now we can start the hunt.

Hunting the mysterious particle.

We can start making the list of the neutral particles beginning
from the lightest one:

1. π0, m ∼ 135 MeV (pion)

2. k0, m ∼ 498 MeV (Kaon)

3. n, m ∼ 940 MeV (Neutron)

The question is whether one of these particles may have been
produced in the interaction (π, 4He). If yes, we have to find
which one. In situations like this, a good thing to do is to eval-
uate the mass of the initial system. We need Special Relativity
to perform this calculation, so at this point the Einstein Theory
is acting as an analysis tool. We can get the mass with the
ESa2, for example inserting these values expressed in GeV (the
application needs not-zero momenta, thus for the Helium in
the initial state we just have to input a negligible momentum):

π−, m = 0.139, p = 0.218;

4He, m = 3.727, p = 0.001;

It turns out that the mass of the system before the interaction
is: m = 3.99 GeV . Previously, as a comment to equation (63),
we said that the mass of a system is the maximum energy that
can be completely converted in masses of the final products.
As already pointed out this energy is completely converted
in mass only if the products are at rest and, in this case, it
reduces to the sum of the final product masses. So we can add
up the masses of the detected final products (scattered π and
recoiling 4He) and see what part of the 3.99 GeV is left for the
additional neutral particle we are looking for:

(3.727 + 0.139)GeV = 3.866 GeV

The detected products almost cover all the energy that could
be converted in final mass. We only have 0.124 GeV left, which
are not enough even to produce the lightest of the neutral
particles (the π0).
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This is the current scenario:

1. We are assuming that a neutral particle has stolen momen-
tum from the interaction scene.

2. Special Relativity tells us that even the lightest of the
neutral particles can not be produced.

The mystery thickens! Who is the murderer?

A new reaction channel

Since no neutral particle may be produced in the collision
we apparently come to a standstill. However we have a way
out. Although we are led to conclude that no neutral particle
was created from the initial mass, we may argue that the mur-
derer was already present on the crime scene, even before the
interaction occurred.
After all in the Helium nucleus we have two neutral particles:
the neutrons! Therefore probably during the collision one neu-
tron of the nucleus was knocked out! We thus have a possible
solution to our mystery. We have discovered a new possible
reaction channel:

π− + 4He→ 3He + n + π− (81)

This is a neutron knock out channel. In particle physics when
the products are others than the reagents, the collision is
called inelastic. So the neutron knock out reaction is an inelas-
tic collision. It turns out that other channels of interactions
might be the proton knock out channel, the elastic channel
and the radiative channel (in which a photon is emitted):

• π− + 4He→ 3H + p + π− (proton knock out)

• π− + 4He→ 4He + π− (elastic)

• π− + 4He→ 4He + γ + π− (radiative)

But how can we be sure that our thesis is correct?
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Testing our thesis

We can perform two nice tests in order to verify the neutron
knock out thesis.

1st check : scales of interaction.
If we had a neutron knock out it is reasonable to think that
the scale of interaction were of the order of magnitude of the
neutron dimensions.

looking at the analysis result (see image below) we can easily
estimate the order of magnitude of the transferred momentum
pTr, i.e. the momentum of the force carrier. It is evident that
the difference between the incoming pion and the scattered
pion momenta (Blu and Orange vectors) has the same order of
magnitude of the missing momentum (Black vector), thus

pTr ∼ 102MeV . (82)

We can now compute the spatial scales of the interaction
occurred in our event:

∆x ∼ 200MeV f m
100MeV

∼ 10−15m (83)

which are the typical spatial dimensions of a nucleon! The
first check confirms our thesis.

2nd check : Energy conservation.
We can verify the energy conservation in the reaction (81)
assuming that the missing momentum is carried away by the
neutron:

[mπ− = 139 MeV, m4He = 3727 MeV, m3He = 2808 MeV, mn =

940 MeV]

ETot In = Eπ In + E4He =
√

m2
π + p2

π + m4He = 3994 MeV

ETot Fin = Eπ Fin + E3He + En =
√

m2
π + p2

π +
√

m2
3He + p3He +√

m2
n + p2

n = 4022 MeV

We have energy conservation within the 0.7% !
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Data Analysis from PAINUC numerical data.

In ParPLE teachers and students also have the opportunity to per-
form a deeper data analysis on a set of nearly 1500 (π, 4He) events.
The analysis is quite different from what was presented in the pre-
vious chapter, less visual more abstract, but it allows to move a step
further in the understanding of what a physicist has to do in order to
extract a scientific result from a dataset.

Figure 47: ROOT.

The analysis framework is ROOT which is the analysis envi-
ronment developed at CERN and used by particle physicists. The
Schools aiming to perform this analysis have to install ROOT on a
certain number of computers, then they are given the dataset and
are guided through the analysis by a on-line course published on the
Internet site PhE.

Figure 48: The On-Line Course (in
Italian) that guides through the ROOT
analysis of a set of 1500 events from the
PAINUC experiment.

The dataset concerns nearly 1500 (π, 4He) collisions with only
two particles in the final configuration: the scattered pion and the
recoiling Helium nucleus (two prong events, see Fig. 48). Student
have access to a number of physical variables shown in the list of
figure 49. Basically students will use the three components of the
momenta of the particles involved in the collision. These variables are
labelled momx, momy, momz, while the modulus of the momentum
is represented by the variable mom. The course is divided in 10

parts and includes video tutorials , pdf tutorials for the student and
for the teacher, interactive applications. In order to minimise the
coding skills needed to perform the analysis in ROOT (C++ coding
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Figure 49: List of the variables stored in
the PAINUC dataset.

is required), schools are given a C++ template with blank parts they
have to fill in order to carry out the analysis. In this way students
only have to deal with commands related to the physics involved
and with the initialisation and filling of one or two dimensional
histograms. A set of four video tutorials (Fig. 50) introduces to the
ROOT framework and to the needed coding skills. In Italy we have

Figure 50: A video tutorial designed to
give students the needed coding skills.

three schools which have the data set and ROOT installed on a Linux
operative system. The course was used both for the training of in-
service teachers and for in-depth courses for students.

In this chapter the 10 sections of the course are individually pre-
sented.

Part1 - Mono-chromatic Beams.

In this section the concept of mono-chromatic particle beam is intro-
duced. Students are asked to build the GA (pag. ??) and to measure
the distribution of the track lengths of 20 coins (Fig. 52). In this way
they discover that the lengths are distributed even if they expect all
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Figure 51: The template to carry out the
analysis and the blank parts that have
to be filled by students.

the coins to have the same speed at the end of the slide. They are also
asked to evaluate the standard deviation of the lengths distribution.
The activity is propaedeutic to the next part of the course in which
students will perform their first analysis with ROOT plotting the
histogram of the momentum distribution of the 1500 incoming pions
from the PAINUC dataset. The incoming pions are supposed to form
a monochromatic beam of particles since each pion is produced in
the same way the others are, nevertheless their momentum is dis-
persed around a mean value. The GA performs exactly the same: all
the coins are accelerated with the same potential drop, starting from
the same position and nevertheless the track lengths are distributed.
Students learn that in physics we can never assume a variable to have
a precise and fixed value.

Figure 52: The Length distribution of
the mono-chromatic beam of 1 ecent
coins according to the measurements
carried out by a student.
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Part2 - Momentum distribution of the PAINUC pion beam.

Students are asked to carry out their first data analysis with ROOT.
The aim is to plot the distribution of the momenta of the incoming
pions. A set of short videos provides all the information needed to
plot the histogram.

The beam momentum distribution is shown in figure 53, from

the analysis we learn that the mean value is
−
p = 217 MeV and the

standard deviation is σ = 19 MeV.

Figure 53: The incoming pion momen-
tum distribution.

Figure 54: Students at work with their
ROOT template aiming to plot the
momentum distribution of the pion
beam.

Part3 - Familiar with collisions in 2D.

In order to carry out the analysis of the collisions between pions and
Helium nuclei, student have to become familiar with collision in
more than one dimension. This part is completely devoted to a deep
investigation of two-dimensional collision among coins accelerated
with the GA. At this stage is very important that student enquire into
the conservation of linear momentum being aware of the vectorial
nature of the law. This part has been deeply discussed in a previous
section of this chapter.
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Figure 55: Students enquiring into the
momentum conservation law with the
GA.

Part4 - Momentum Conservation at sub-nuclear level?

In this part of the course students are asked to test the momentum
conservation law in the (π, 4He) collisions.

It is probably the first time students have the chance to check
if the laws of classical physics hold at nuclear and sub-nuclear
level.

Basically they have to move a step further into the analysis of
the PAINUC dataset. They have to build a second histogram of
the modulus of the total final momentum and compare it with the
distribution of the modulus of the total initial momentum. The total
final momentum is the vectorial sum of the momenta of the scattered
particles (π and recoiling 4He).

This point of the activity is a beautiful check point to see if the
vectorial nature of the momentum conservation law is well
understood.

The total initial momentum is the vectorial sum of the incoming
pion and of the Helium nucleus of the gas at room temperature.
The order of magnitude of the momentum of the Helium at room
temperature may be evaluated from the kinetic energy T:

T ∼ k ·Absolute Temp. with K = 8.6 10−5eV K−1 (84)

Since the mass of the nucleus is m4He ∼ 3.7GeV and T ∼ 10−2eV, the
relativistic relation E = T + m suggests that the energy of the nucleus
is given by the mass with a negligible contribution from the kinetic
energy. If we consider the relation (E2 = m2 + p2), we may conclude
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that p ∼ 0. Therefore the total initial momentum is given only by the
incoming pion momentum.

The result of the analysis is plotted in the following two figures:

Figure 56: Distribution of the modulus
of the total initial momentum (Top).
Distribution of the modulus of the total
final momentum (Bottom).

Figure 57: The double gaussian fit of
the distribution of the modulus of the
final momentum shows very well the
two population of events.

We are just comparing the moduli of the total momenta, but this
is enough to discover that something is going wrong. Looking at
the plot of the total final momentum we can notice the presence of
two population of events, one almost centred around the initial total
momentum (217 MeV) and one, centred at ∼ 100 MeV, showing less
momentum in the final state! The final distribution may be fitted
with a double gaussian function, the result (Fig. 57) clarifies very
well the presence of the two distributions: the red one showing a
missing momentum and the blue one in which conservation seems to
be respected.

In a huge set of events the momentum conservation law seems
not to be verified, we may conclude that the law does not hold at
sub-nuclear level or we may decide to look for an undetected particle
carrying away the missing momentum. In order to carry out this
research student need a basic knowledge about relativistic dynamics.
This essential kit is given in the part 5 of the course.
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Part5 - Essential Relativistic Dynamics.

Before going deeper into the analysis of the PAINUC data, students
need to become familiar with some essential concepts in relativistic
dynamics. In this section of the course they are introduced to the
following list of relativistic relations.

The four-momentum ((E, ~p).

Energy, mass, momentum relation (E2 = m2 + p2).

The relativistic kinetic energy T (E = T + m).

The meaning of the ratio p
E = v.

The meaning of mass in relativity (single particle).

An educational approach to teach these topics is given in the
previous chapter about the teaching of Special Relativity, in the
section devoted to the relativistic dynamics.

Part6 - Energy losses in the Helium gas.

An undetected particle in the PAINUC experiment is a particle that
leaves no ionisation track in the chamber. Therefore some basic
information about the ionisation processes in particle physics are
given.

• The ionisation process is an electromagnetic effect. In order to
ionise matter particles need an electromagnetic interaction with
the medium.

• Neutral particles are non ionising particles, therefore they will not
leave a track in the PAINUC detector.

• Energy losses due to a ionisation process are often measured and
expressed in term of the quantity dE

dx , the amount of energy lost
per unit length travelled in the medium.

• The mass depth η represents the mass per unit area of the number
of nucleons the particle will interact with travelling a certain
distance in the medium. It is expressed in g · cm−2. We can imagine
a cylinder of some material, travelled along its length by a particle:
η will be proportional to the mass density ρ and to the length L of
the cylinder.

η = ρL (85)

• The energy loss per unit length of a pion in different materials is
shown in figure 58. The PAINUC detector is filled with Helium
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Figure 58: Energy loss per unit length
of a pion in different materials.

gas at atmospheric pressure, from the plot we learn that a pion
with a momentum of 200 MeV looses 2 MeV per g/cm2. Therefore
we can evaluate how much energy an incoming PAINUC pion
will loose in the chamber which is ∼ 1 m long (remember that the
incoming pions have a mean momentum of 217 MeV). The first
thing we have to do is to evaluate the mass depth of the chamber,
assuming that the density of the gas will be 0.2 g/m3:

η ∼ 0.2 · 103 g
m3 · 1 m ∼ 10−2 g

cm2 (86)

For the incoming pion the PAINUC chamber is equivalent to
10−2g/cm2, thus, on average, pions will loose 0.02 MeV of mo-
mentum. This amount is negligible if compared to the average
momentum of the beam (∼ 217 MeV).

• Each curve shown in figure 58 has a minimum; the region around
that minimum is called minimum ionising region.

• Experimental plots of the energy loss by ionisation of some
charged particle as a function of the momentum is shown in
figure 59. It is important to compare the energy loss of a proton
and of a pion, which is much higher for the proton. This is due to
the dependence of dE/dx on the square of the mass (the mass of a
proton is nearly 10 times bigger). In the minimum ionising region
the ionisation curves may be approximated with this relation:

dE
dx

∝
Z2m2

p2 . (87)
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Figure 59: Experimental plots of the
energy loss by ionisation of different
charged particles as a function of the
momentum.

Where Z is the atomic number, i.e the charge of the particle, m the
mass and p the momentum.

Figure 60: Absorption length of a
photon in various materials.

• The absorption length of a photon travelling in various materials
is shown in figure 60. To have a rough idea of the absorption
length in Helium we can assume that the plot for the Helium gas
should be placed somewhere between the plot of the Hydrogen
and Carbon. Therefore for a photon with and energy bigger than
10 MeV the order of magnitude of the absorption length will be
∼ 10 g/cm2. Considering that the mass depth of the PAINUC
chamber is 10−2 g/cm2, we would need 103 chambers in order to
have one absorption length, i.e to reduce an hypothetical photon
beam of a factor 1/e (∼ 37%). As a conclusion we may assume that
even such photons would go through the detector without leaving
a track.
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Part7 - Discovery of the first unexpected channel of reaction

Previous similar experiments at the same energies were blind to new
reaction channels [33] the only resulting channel was the elastic one: 33 Ivan Gnesi. Pion Induced Reactions in

the Delta Resonance Energy Region. PhD
Thesis University of Torino, 2010

π + 4He → π + 4He , (88)

a two prong reaction with only a scattered pion and a recoiling nu-
cleus in the final state. This means that the resolution in measuring
the momentum of the particles was not enough to allow the detec-
tion of a missing momentum. However we have detected a missing
momentum and it is our duty to discover the responsible missing
particle.

From the considerations on the energy losses of particles travel-
ling in a medium (see part 6) we know that there are two possible
candidates: a neutral particle or a photon. We can begin looking for
emitted photons. In part 5 students learned that Special Relativity
is a useful tool to identify a particle, now it is up to them to try. The
classroom may be divided in groups and may be asked to find a
strategy to discover the undetected particle. For the students the
challenge is to use concepts previously learned to solve the problem
themselves. Here we present a possible strategy. From Special Rela-
tivity we know that the ratio p/E is a great tool to identify photons,
if the ratio is 1 the particle is travelling at the speed of light hence
being a photon34. If we evaluate the missing momentum ~pmis. and 34 Or a massive particle with a p >>

m. However, at the energies of the
PAINUC experiment, pion beam
with p ∼ 217MeV, we are not in this
situation!

the missing energy Emis. we can check if the missing particle is a
photon by computing the ratio between the modulus of the missing
momentum and the missing energy.

~pmis. = ~pπ IN − (~pπ OUT + ~p4 He)

Emis. = Eπ IN − (Eπ OUT + E4 He).
(89)

The result of this analysis is shown in figure 61. The plot shows
values of the ratio p/E bigger than 1

35 and even negative values. 35 Meaning that the missing particle is
faster than light.This fact will be surprising for students however is something usual

for particle physicists. It is a common error propagation effect. All
the plotted quantities are evaluated on the basis of the curvature of
the tracks, of the magnetic field in the chamber and so on; errors in
each one of this quantities determine further errors in what we are
computing. This is a very important lesson student have to learn.
How to escape to this problem will be addressed later, now we have
to accept that
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Figure 61: The distribution of the p/E
missing for all the analysed events.

In every particle physics experiment the computed quan-
tities are affected by an error propagation effect. Thus one
important and challenging task physicist have to face in every
experiment is to understand how to interpret what they plot
taking into account the error propagation.

Once accepted this fact, we move on in our analysis and we notice
that there is a region of our histogram in which we have a number
of events with values of the ratio p/E is distributed around 1. These
events are candidates for a new reaction channel in which an unde-
tected photon (p/E = 1) is emitted:

Radiative reaction channel

π + 4He → π + 4He + γ .
(90)

This is a huge result that can be achieved by students. However, in
order to proof our thesis and to show without any doubt that we
have discovered a channel with the emission of a photon a lot of
further actions have to be taken. Actions that, at the moment, we
believe to be well beyond the aim of this work. Nevertheless we can
make clear what was done in the PAINUC experiment or what is
usually done in every particle physics experiment. The keyword to
face this issue is Monte Carlo. In the following part of this section
we will give some explanation about it. The plot shown in figure
62 is a superposition of three analysis. The black triangles show
the distribution of pmis./Emis. from the experimental data, the same
build by students and presented in figure 62. The blue line is the
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Figure 62: The Monte Carlo analysis
of the PAINUC collaboration. On
the horizontal axis is represented the
pmis./Emis..

pmis./Emis. obtained from a computer simulation of elastic events,
i.e. events without any other particle produced in the final state
(π +4 He → π +4 H). The red line is the pmis./Emis. obtained from
a computer simulation of events in which a photon is emitted in
addition (π +4 He → π +4 H + γ). The red and the blue plot are
Monte Carlo simulation: data obtained by a computer program.
The program was written to generate momenta of the particles
involved in the selected reaction (for example the one with a photon
emission) conserving momentum and energy, but also introducing
a random error in each momentum simulating exactly the random
error introduced by the PAINUC experimental apparatus. If the
Monte Carlo simulation is well designed physicists can use this
plots to see what values of pmis./Emis. they have to expect from the
PAINUC apparatus for each simulated channel. Therefore the blue
plot has to be interpreted in this way:

According to the Monte Carlo simulation, that also simulate
the error generated by the PAINUC apparatus, we have to
expect for the elastic processes a distribution of the pmis./Emis.

like the one drawn in blue.

And the red one in this:

According to the Monte Carlo simulation, that also simulate
the error generated by the PAINUC apparatus, we have to ex-
pect for the radiative processes a distribution of the pmis./Emis.

like the one drawn in red.

Given these results we are now confident that in the highlighted re-
gion of the experimental pmis./Emis. distribution we have both elastic
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Figure 63: The region of the histogram
in which we have both elastic and
radiative processes.

and radiative processes (Fig. 63). The last thing to do is to find a way
to separate them. One possibility is related to the coplanarity of the
momenta. If no photon is emitted the momentum of the incoming
pion (pπi in Fig. 64) and the two momenta of the scattered pion and
recoiling nucleus have to be coplanar. In a radiative reaction this
property is no more required (Fig. 65). The ROOT template allows
an easy check for the coplanarity of the three momenta: in case of
coplanarity the quantity ~pπi · (~pπ f ∧~pHe f ) is zero.

Figure 64: If no photon is emitted the
incoming pion momentum has to lie
in the plane of the momenta of the
scattered pion and of the nucleus.

Figure 65: If a photon is emitted the in-
coming pion momentum generally does
not lie in the plane of the momenta of
the scattered pion and of the nucleus.
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Part8 - Relativistic mass of a system of particles

This part of the course is dedicated to the relativistic mass of a sys-
tem of particles. This topic is essential to carry out the last analysis
which will lead to the discovery of another unexpected channel of
reaction. Again, in the previous chapter dedicated to the teaching of
Special Relativity how to introduce this topic is addressed.

Part 9 - A second unexpected channel of reaction

If we plot the distribution of the modulus of the missing momentum
(Fig. 66) we discover a population of events in which the missing
momentum reaches high values of 200 - 300 MeV (Fig. 67). We can

.

Figure 66: The distribution of the
modulus of the missing momentum (89)

ask what kind of particle can take away such a high momentum.
We have just discovered the radiative channel which involves an
undetected γ, thus the first question we can try to answer to is:
"Can the photon be the responsible for a 200-300 MeV of missing
momentum?". We can answer this question working on the energy

Figure 67: The population of events
with a missing momentum distributed
around 200 - 300 MeV.

budget of the system: the mass. With the application ESa2 (see page
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77) or even by hand we can evaluate the mass of the initial system:
the Helium nucleus almost at rest plus the incoming pion. It turns
out to be:

m = 3990 MeV . (91)

We have learned that the mass of a system is an invariant quantity
that does not depend on the choice of the Reference System and is
best evaluated in the Center of Mass reference system (CM) (see page
50) where it simply becomes the total energy Etot. Therefore the mass
of the final system, in the CM, is:

m f in = pγ +
√

m2
pi + ~p 2

π cm +
√

m2
4He + ~p 2

4He cm . (92)

We also know that the mass of a system is conserved, it is the
same before and after the interaction, therefore for the radiative
process to be possible m f in should not exceed the initial value of 3990

MeV. But we are assuming that the photon is carrying away 200-300

MeV hence

m f in = (200− 300) MeV + (≥ 139) MeV + (≥ 3727) MeV (93)

which gives a lower limit for the final mass of 4066 MeV. We have
thus proved that

No radiative process can explain the set of events with the
missing momentum distribution shown in blue in figure 67.

In the part dedicated to the energy losses of particles travelling in
a medium (part-6 of the course) we learned that both photons with
certain energies and neutral particles do not to leave tracks in the
PAINUC chamber. We have excluded the possibility of a photon emis-
sion, thus we have to consider the production of a neutral particle in
the final state. The search for the neutral particle which is carrying
away momentum in these events was deeply discussed in a previous
section (pages 77-79) therefore will not be repeated here.

We just say that the final result will be the discovery of a second
unexpected channel of reaction in which a neutron of the nucleus
itself is knocked out:

π + 4He→ 3He + n + π (94)

a so called neutron knock out channel.



Test of the methodologies for the teaching of Special Rela-
tivity

I find very useful to share
ideas with physics education
researchers with an experience
in secondary school teaching.
Only if you have this kind of
experience you can be aware
of certain aspects of the school
life.
— Anonymous Italian physics

teacher

In order to test the tools and the methodologies developed in
ParPLE for the teaching of Special Relativity and Particle Physics a
number of courses were taught both for students and teachers. In
some of these occasions feedback data were collected. This chapter
reports data collected in this stage of the research, the list of the
courses is given in the following table (Tab. 2).

Italian Teacher Programme CERN
PAINUC in the classroom Liceo Majorana
Summer Physics Campus Bardonecchia
Gamma Factor of the PAINUC particles Andria
Momentum Conservation in particle Physics Piacenza
17

th Ippog Meeting GSI Helmholtz Center

Table 2: List of the ParPLE based
courses.

CERN Italian Teacher Programme

A set of methodologies to introduce secondary school students to
particle physics concepts was presented during the Italian Teacher
Programme (ITP) in March 2019. All the methodologies, presented to
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34 Italian secondary school teachers, were developed in the ParPLE
environment. The list of the issues addressed during the talk is given
in the following table (Tab. 3). All these topics were presented and
deeply discussed in the previous chapter "ParPLE".

Topic Educational environment

2D Collisions The GA environment
Momentum from the tracks The MMa application
Momentum conservation in The EAa application
particle collisions
The Energy, mass, momentum The ESa application
relativistic relation

Table 3: List of the ParPLE based
courses.

The feedback of the 34 Italian teachers gathered by the ITP organ-
isers was encouraging and in general very good. It is shown in the
figures below and is also translated in English.

Feedback of 34 Italian Physics teachers - In Italian.
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Feedback of 34 Italian Physics teachers - In Italian.
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Feedback of 34 Italian Physics teachers - In English.

Content

A. Interesting: 34 (100%)

B. Not interesting: 0 (0%)

I would keep this presentation in the ITP programme

A. Yes: 33 (97%)

B. No: 1 (3%)

I would keep colleagues talks in the ITP programme

A. Yes: 34 (100%)

B. No: 0 (0%)

Would I do these activities in my classroom?

A. Yes: 29 (85%)

B. No: 5 (15%)

Explain why. Give reasons to the answer to the previous
question.

1. Because it is a very interesting programme.

2. It is easy to be used and brings closer to new topics.

3. I consider the sharing of ideas with other teachers fun-
damental, in particular in this talk beautiful tools were
presented (modern physics data analysis at students level!)

4. I believe these tools can be used in the classroom, they are
suitable for an active learning. I was looking for these kind
of tools.

5. I will try them for sure, because I also believe that the
active involvement in the learning process is the only way.

6. Very interesting and fascinating both for students and
teachers.

7. It is a good channel to help students to appreciate this
topics.

8. At least in part, I found very interesting the opportunity to
analyse experimental data in a relatively simple way, even
without a laboratory for modern physics. I would like to
see further examples in which modern physics is applied to
real data.
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Feedback of 34 Italian Physics teachers - In English.

9. I found a lot of topics and practical activities suitable for
the students.

10. Because I do not have the required skills. However I can
involve other skilled teachers.

11. I believe that these applications could be tested in a class-
room.

12. I will adopt the proposed methodology, which I believe to
be innovative and interesting. I will also extend it to other
subjects.

13. Some parts may be used in the classroom, others, un-
fortunately, would need too much time therefore are not
compatible with the curriculum.

14. Easy method involving skills from different areas.

15. To try new educational approaches that I think would be
effective.

16. I find very useful to share ideas with physics education re-
searchers with an experience in secondary school teaching.
Only if you have this kind of experience you can be aware
of certain aspects of the school life.

17. Yes, simple experiments with data collection.

18. It brings students closer to the experimental physics

19. Great educational tool.

20. Lack of computers for the students.

21. Innovative educational approach.

22. Innovative educational proposals, useful to motivate
students.

23. I will try to engage students with these proposals.

24. In addition to theoretical lessons it is very useful to have
practical activities for the classroom. Best practises both
enrich our methodology and foster brainstorming among
colleagues.
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PAINUC in the classroom

PAINUC in the classroom is a 30 hours course for secondary school
students, taught to 16 Italian students of the "Liceo Majorana" in
Moncalieri in October - November 2018. One of the primary goals
was to reduce the gap between school and the world of the scientific
research. Students were guided through a data analysis of a number
(∼ 1500) of particle collisions from a real experiment (PAINUC
experiment). In this journey Special Relativity was the magnifying
lens required to understand and interpret what was emerging from
the analysis.

The analysis framework of this course is ROOT, an environment
developed at CERN for the research in accelerator physics. The class
introduces innovative educational aspects at several levels:

Figure 68: Teacher in front of a class-
room.

Figure 69: The student at the centre of
the learning process.

• Educational
The class is designed to foster active learning processes. Both
the teacher and student roles are reconsidered. The learner is
moved towards the centre of the learning scenario while the
teacher becomes a sort of tutor, who builds the environment where
students will have the chance to shape their own knowledge. The
instructor is no more in front of the classroom, is at the student’s
side, acting like someone to talk to and to share ideas with.

• Teaching of physics
The course leads to a deeper understanding of the Special Relativ-
ity. The Einstein’s theory becomes a tool to analyse and interpret
experimental data from real particle physics experiment. The
theory gets out of the textbook while entering the realm of ex-
perimental data from collision of relativistic particles. Form the
encounter of theory and data a better understanding of the the-
ory itself arises: a significant example of 3D teaching of Physics
(3DTP).

• Scientific method awareness
A key aspect of the teaching of physics for the citizens of the
future is to make them become aware of the difficulties of the
scientific research. Science is not a dogma, i.e., according to the
Oxford English Dictionary, "a set of principles laid down by an
authority as incontrovertibly true". Science has its intrinsic hurdles,
difficulties and uncertainties. Common aspects of Science are
discussions and shared interpretations. With "PAINUC in the
classroom" students will get closer to the scientific approach to
experimental data, they will be asked to get a scientific result
from the dataset working with exactly the same tools adopted by
particle physicists.
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In "PAINUC in the classroom" students work in groups with
a tablet, a personal computer in which ROOT is installed, a C++
template to carry out the analysis and a web site (PhE36) where a set 36 Lorenzo Galante. PhE.

https://sites.google.com/view/physedu/of video tutorials and written tutorial challenge them in a series of
activities and enquiries.

Figure 70: from left to right: a tablet
showing the web site PhE, the PC
where ROOT is installed, a tablet
showing one the written tutorials.

Results and conclusions reached by each group are collected in
plenary discussions chaired by the instructor. Teacher lectures are
very few in number and very short (nearly 15 minutes). The student
learning is constantly monitored both via the plenary discussions
and Google Forms which give real-time information about how
the learning process evolves. This aspects will be discussed and
presented in a later chapter.

PAINUC in the classroom - Final test results

A final test (Google Form) was delivered to the participant in order
to evaluate the effectiveness of the course. Here we show and briefly
comment the results.

1. What is an invariant quantity in Special Relativity?
14 correct answers out of 16: 87.5% correct.

2. For an observer a particle has 6 MeV of energy and 5.91 MeV of
momentum. In general would these values be the same for an
observer moving with respect to him?
12 correct answers out of 16: 75% correct.

3. A proton (m ∼ 1 GeV) has an energy of 6 GeV. What is its kinetic
energy?

81% of correct answers.

4. Referring to the previous question, what is its momentum?
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93.8% of correct answers.

5. Consider an head-on collision among two electrons at 1 TeV
and compare it with a collision of an electron at 1 TeV with an
electron at rest. In which case the mass of the system composed
by the two electrons is bigger?

Blue = Fixed target collision; Red = The mass is the same; Orange
= Head-on collision.
62.5% of correct answers.

6. The momentum of a pion is 217 MeV and its mass 139 MeV.
Evaluate its speed and briefly explain the method you adopted.
12 correct answers out of 16: 75% correct.

7. A photon with an energy of 3 GeV interacts with a proton of 0.1
GeV of momentum. Assuming a collision angle of 180 degrees,
evaluate the mass of the system.
9 correct answers out of 16: 56.2% correct.

8. From 1 to 5, how much did you feel able to understand a topic
about particle physics before the course?
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9. From 1 to 5, how much do you feel able to understand a topic
about particle physics now that the course is over

PAINUC in the classroom - Students feedback

The students were asked to fill a Google Form expressing an opinion
about the class. This is what was reported in the original language.
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The translation of the students’ opinions is given hereafter.

The course have been really exciting. The opportunity to be im-
mersed in a completely new and partially unknown world has
been inspiring and amusing, exciting and a continuing source of
adrenaline. Being guided in our growth path helped us in develop-
ing our thought and in formulating new ideas (wrong, sometimes
extremely wrong) but always useful to stimulate the growth of
everyone.

Illuminating.

Very interesting, gives the opportunity to build a different percep-
tion of physics than what is taught during the school time. Very
funny!

Very interesting and full of ideas, maybe a bit "disappointing"
the part devoted to the analysis of data. From my point of view I
would have enlarged and deepened that part.

highly instructive from the physics and scientific point of view, it
also helped to increase my curiosity towards the realm of Relativ-
ity and particles physics.

It has been very interesting.

It has been a very interesting course, even if sometimes the theoret-
ical parts were long and boring.

It has been a light and easy to understand course in some days
more than in others. Interesting and surely engaging for those
who are passionate about the subject.

Interesting but also complex, I often had difficulties in understand-
ing.
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I have appreciated the course for its clarity and simplicity and for
the ability to arouse interest.

The subject was interesting and was dealt in such a way that it was
never heavy.

Definitely more interesting than I expected, unfortunately unclear
in some points tackled in a hurry or in some point where my prior
knowledge was not appropriate.

The topics were very interesting. Addressing this subjects may
definitely help in understanding our interest for physics.

I really have appreciated the course, especially the data analysis.
This sort of "laboratory" helped me in a better understanding of
the subject. Even if someone never had coding experiences, this
was not an impediment thanks to the basis given at the beginning
of the course.

It has been very interesting, funny and surprisingly fairly easy to
understand.

Interesting, the course showed me some intriguing aspects of
physics which were unknown, while others were already known.

"Particles Collisions among Special Relativity and Quantum Me-
chanics": Summer Physics Campus in Bardonecchia

On July 2019 a summer course was held in Bardonecchia for 40

students coming from different Italian schools. The age of the stu-
dents ranged from 16 to 19 (from the third year of high school to the
fifth). The course consisted of 4 sessions, each 2 hours long. It was a
beautiful occasion to test the educational methodologies with an "en-
larged" classroom (we can assume Italian classrooms to be composed
by 30 students). The test was thus performed in more challenging
conditions than usual.

The course was a series of short lectures alternated with experi-
mental and investigation activities. Students were actively engaged
in

• performing experiments with the Gravitational Accelerator (GA)
verifying the momentum conservation law in two-dimension;

• investigating with the ESa application the relativistic energy
relation

• investigating with the ESa2 application the mass of a system of
two particles
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• learning how to measure the momentum of a particle from its
track and in measuring it with the interactive applications MFCMa
and MMa.

• performing the analysis of an inelastic pion - Helium collision
with the EAa application, discovering the missing momentum and
the related missing particle.

They were lectured on the following topics:

• Overview of the PAINUC experiment

• How to build the GA

• The relation among the track of a coin and the velocity of the coin
itself

• The four-momentum and the energy relation

• The four-momentum of a system of particles and the mass of a
system

• The transferred momentum in an interaction and the force carrier

• The relation between the force carrier and the spatial scales of
interaction

• The relation between momentum, radius of a track, charge and
magnetic field.

The feedback of the students during the course was very good.
Students asked a lot of questions, when asked to work by their own
on some activity they were really focused on the goal they has to
reach (Fig. 71), many of them talked with the teacher even during the
coffee breaks, some of them explicitly expressed their appreciation
for the things they were doing and learning.

At the end of the campus students were asked by the organiser
to answer the question: "Did you find the course engaging and
interesting?". The results emerging from the 37 answers is shown in
figure 72 and confirm the extremely good impressions of the teacher.

Assessment of the performance of two interactive applications.
The work of 40 students gave the precious opportunity to col-

lect some statistics on how the interactive applications designed to
measure momentum from the curvature perform in a classroom
environment. Two applications were tested: MMa (a sort of training
framework in which students learn how to measure momentum and
how to express it in eV units) and EAa (in which student analyse one
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Figure 71: A picture portraying the
students of the campus performing
collisions with coins with the GA. They
are pretty focused on the goal they have
to reach.

Figure 72: The students’ assessment of
the course.
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Figure 73: Students working on the
analysis of the inelastic π, 4 He collision
in the framework of the EAa applica-
tion. Notice the notebook the student
is consulting in order to evaluate the
momentum.

Figure 74: Part of the classroom at work
on the analysis of the inelastic event.
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Figure 75: All the students portrayed
in this picture are actively at work on
the analysis and immersed in the EAa
framework. Notice their napes, every
teacher knows this is the classwork
postural configuration. The difference
is that in a classwork scenario students
are working for a mark, here they
are working for the sake of personal
knowledge.

interesting two prong event from the PAINUC experiment, measure
the momenta of the three particle involved, look for the conservation
of momentum and discover a missing momentum). A very important
information for the teacher willing to use these tools in his classes
is what result he might expect from his students. From the data
collected during this course we can report the following results.

1. MMa Application.

Students were supposed to work in groups of three with the MMa
application (image above) which deals with a particular "training"
event from the PAINUC experiment. They were instructed to
evaluate the radius using the method presented in the previous
chapter in the box "Useful tips to use the MMa".
The average momentum of the incoming pion was:
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< pin >= 240 MeV

with a standard deviation:
σ = 23 MeV.

The average momentum of the scattered pion was:
< pout >= 174 MeV

with a standard deviation:
σ = 28 MeV.

The average momentum of the recoiling Helium was:
< p4 He >= 251 MeV

with a standard deviation:
σ = 33 MeV.

2. EAa Application

Student were asked to evaluate, if any, the missing momentum in
this interaction. The average result was:
< pmiss >= 229 MeV

with a standard deviation:
σ = 14 MeV.

Two teachers bring ParPLE into the classroom

Two Italian physics teachers tested some of the ParPLE activities.
The first one is Ugo Morra, a teacher of the Liceo "Nuzzi" in Andria
(Puglia), the second one is Carlo Colombini, who teaches in the
Liceo "Respighi" in Piacenza. Their work and considerations are very
important and precious for the future development of the ParPLE
environment. In this section we report what they have done and how
they used ParPLE in their educational path.
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What was done at Liceo "Nuzzi"

Measuring the Lorentz γ(v) factor of the PAINUC particles.

Number of students involved: 18

Class duration: 2h
Age of the students: 18

The class was taught during normal morning working time.

The entire activity was focused on one peculiar event of the
PAINUC experiment, shown in the figure below. A negative
pion enters the Helium chamber from the left. The collision
with the helium nucleus takes place at the red vertex from
which 3 particles come out: the scattered pion, and two posi-
tive particles, whose charge sign is recognised by the direction
of rotation. The two positive systems are a proton and what
remains from a 4He nucleus which has lost one proton: a
Tritium nucleus 3H. As we may notice from the event image
the scattered pion decays very soon, according to the most
likely decay channel, in a negative particle (a muon) and an
anti-neutrino :

π− → µ− +
−
νµ .
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Students were asked to import the image in Geogebra and to
fit the tracks with circles in order to evaluate the radius of the
trajectory in Geogebra units. The radius was then converted
in meters from the real dimension of the chamber. From the
radius and the intensity of the magnetic field ~B, perpendicular
to the plane of the picture, students could evaluate the mo-
mentum p. Eventually form p = mγv they could evaluate the
speed and the Lorentz γ factor. For example, from the ratio
p
E we get the speed in natural units, then it is easy to evaluate
the Lorentz factor.

[Comments of the teacher:
While teaching this class i was gratified and surprised because
students were very active.

Students were very involved in the activity, looking at the rotation
direction they had to understand by their own the sign of the charge,
furthermore they had to find a way to convert in meters the arbitrary
units of the radii.]

What was done at Liceo "Respighi"

Momentum conservation in particle physics.

Number of students involved: 5

Class duration: 8h
Age of the students: 18

The class was an extracurricular activity.

The course was divided in 4 sessions (2 hours each), 5 stu-
dents with a strong interest in physics coming from different
classes were involved. The class was based on the on-line
course available in ParPLE, therefore some tutorials from the
PhE website were used. A summary of the course, commented
by the teacher (comments in square brackets), is given below.
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• 1st session.

General description of the PAINUC experiment. [Teacher
Comment. It was very important to give students a general
overview, since the world of experimental particle physics was
very distant from what they were used to.]

Connection between curvature of the track, magnetic field,
electric charge and momentum. [The MFCMa Geogebra
application from ParPLE was used (figure below).]

Measure of the momentum from the radius of curvature.
[The MMa Geogebra application from ParPLE was used (figure
below).]

• 2nd session.

(Tutorials 4a, 4b - Part 4 of the on-line course on the PhE
site). Students ran a ROOT programme without writing any
line, using a pre-filled template to plot the distribution of
the modulus of the total initial momentum and of the total
final momentum of the PAINUC dataset (∼ 1500 events).
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[Students were really engaged in this part of the class. The ac-
tivity was interesting for them, it seems to be a good activity to
me. I’ve appreciated to work in a Linux environment, but I would
like to know more about this operative system. I have used a file
with an already written code, one student was very interested in
coding aspects, but I had no time to go deep in this direction. The
analysis of the histograms was very challenging; were the plots
built by students, probably it would have been even better.]

• 3rd session.

(Tutorial 5c - Part 5 of the on-line course on the PhE site).
The essential kit of relativistic kinematics was given (the
four-momentum (E,~p), the relativistic energy relation
E2 = m2 + p2, the kinetic energy T and invariants were
introuced).

(Tutorial 5d). Students carried out by themselves an en-
quiry on the relation E2 = m2 + p2 working with the ESa
application.

[Even if all the student had already addressed Special Relativity
in curricular school time, no one got deep into the Energy, mass,
momentum relation. Furthermore no one was aware of relativistic
invariants. From this point of view the Energy Square activity
was appreciated. The discussion about the results of the enquiry
was carried out under the supervision of the teacher. As a teacher
I had some problems during this phase of the class. Probably
teacher should need some deeper training on these concepts before
addressing this part.]
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• 4th session.

[Due to the lack of time this part was carried out in a hurry.]

(Tutorial 6d - Part 6 of the on-line course on the PhE site).
Basic information on ionisation processes were discussed.

(Tutorial 8a – Part 8 of the on-line course on the PhE site).
The mass of a system of two particles was introduced.

(Tutorial 9b - Part 9 of the on-line course on the PhE site).
Students are engaged in the finding of the missing particle
(the neutron knock-out reaction channel is discovered).

Final teacher comments.
Even if I have only partially carried out the on-line course,
I believe that its educational potential is very big. I was sur-
prised that 5 excellent students coming from different classes
had studied Special Relativity especially by means of mechani-
cal exercises for example on time dilation. This activity gives
a deeper perspective and definitely engages them. Here some
reflections about my personal experience:

1. Students have appreciated that data were from a real exper-
iment researcher have worked and still are working on. Just
this fact have flushed away the sensation of abstractness
they feel studying physics in the usual curriculum.

2. This activity allows the study of Special Relativity in a live
context.

3. It offers good interdisciplinary connections really appre-
ciated by young students, for example with Information
Technology.
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1. Geogebra application like the Energetic Square application
(ESa) and the one devoted to the momentum measurement
(MMa) were appreciated as well. Also the application
MFCMa (Magnetic Field Charge and Momentum applica-
tion) was useful, some student told me that only using this
interactive applications they have really understood the
role of the magnetic field and of the charge on the particle
trajectory.

2. A support would be useful both for teachers and for the
most curious students. The questions asked in the enquiry
activity 5d are really interesting but I’m not sure to have
been a good tutor during the discussion. I would appreciate
group of discussions with other teachers.

3. The momentum conservation law gets out from the usual
problems with colliding carts and gets a central role.

4. There is the opportunity to work with Inquiry Based Sci-
ence Education methodologies. Students are invited to
investigate and build their own knowledge working in a
challenging environment, while the teacher acts like a tutor.
However in order to offer this possibility to students the
teacher has to become familiar with this topics first.

5. Students are asked to work a lot on these activities, but I
have noticed that this required a huge effort to them. The
educational methodology was different from the usual
one, they were asked to change the role they were used
to play. From the physics made of formulas to a research
activity; students need time and the teacher should not take
anything for granted, even in the apparently easy tasks.

The two teachers were asked to fill a form about their feelings
during the class. Here we report their answers.
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The 17th IPPOG Meeting at GSI Helmholtz Centre

In June 2019 we were ivited at the 17
th meeting of the International

Particle Physics Outreach Group (IPPOG) to present the ParPLE
environment. In that occasion we collected some feedback from
the opinions of some of the organiser of the meeting and some
IPPOG members who appreciated the possibility to build a low
cost "particle" accelerator (the GA) on which student can study two-
dimensional collisions and conservation of momentum as well as the
interactive applications designed to introduce relativistic concepts
and to analyse collision events from real experiments.



Teaching Quantum Mechanics

What is done in the Italian scientific Lyceum

In Italian textbooks Quantum Mechanics is generally presented
according to the following sequence of topics:

• Black body radiation and Planck Hypothesis.

• Photons and Photoelectric effect.

• The Compton effect.

• The Bohr’s Hydrogen atom.

• The de Broglie Hypothesis.

• The Heisenberg Principle.

Inquiry based activities to engage students in active collection of
evidences, in autonomous drawing of conclusions and question
formulation are almost completely absent. As a consequence the
study of the subject is at high risk of being something students learn
with a low level of understanding. The analogy with acoustic is
barely used. Low-cost experiments, which would be useful to lead
students toward a better understanding of fundamental concepts, are
not proposed to the teacher.

This trend can be changed introducing some modifications in
the pedagogical approach. In this chapter we propose and discuss a
possible way to introduce Quantum Mechanics following a path that
differs significantly from what is done in textbooks. A great effort is
done in designing experimental and practical activities devoted to a
better understanding of the key-concepts of the theory.

Some mathematical details are given, surely moving one step
beyond what should be taught to students. This is done to give the
teacher the opportunity to reach a general and global understanding
of Quantum Mechanics, at least at introductory level. We strongly
believe that starting from this work the teacher will be able to find
and design his personal way for the teaching of such a beautiful part
of Physics.
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The Schrödinger equation

At the basis of Quantum Mechanics stands the Schrödinger equation.
A good introduction to Quantum Mechanics at secondary school

level does not necessarily include this equation. However here we ex-
plore the possibility to present it to high-school students, without de-
riving it, using the mathematical knowledge covered by the Scientific
Lyceum curriculum. As we will see this will allow us to gather some
useful information about Quantum theory . The questions are:

1. Is it possible to introduce the Schrödinger equation and
gather from it information on the Quantum Theory only
working with the mathematical tools covered by the Italian
Scientific Lyceum curriculum?

2. Is it worth it?

In this section we inquire into the first question also drawing
some conclusion about the second. Anyway we would like to point
out that, even if we may conclude that is better not to present the
Schrödinger equation, this walk along this topic probably represents
a useful set of information for the teacher who is going to teach
Quantum Mechanics at secondary school level. It is our believe that
the knowledge of the teacher, if possible, has to go beyond what is
actually taught in the classroom.

The needed mathematical background

In this paragraph we report the list of the needed mathematical tools
students should have in order to understand what is presented in this
chapter.

• Functions

• Derivatives

• Complex numbers and their exponential form

• Integrals

• Familiarity with periodic functions like sin(kx−ωt), meaning of k
(spatial frequency) and ω (angular frequency)

Notes on the Schrödinger’s equation origins

Following this line of reasoning we begin with some consideration
about how this equation was derived. Schrödinger was inspired
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by the existing connection between Physical Optics and Geometric
Optics. In the first theory the wavelike nature of light is a first rank
issue while in the second light moves along ray paths and the typical
wave behaviours may be neglected. It is proved that Geometric Optic
is the limiting case of Physical Optics as the wavelength approaches
zero (λ → 0)37. An easy way to understand this is considering 37 Which means λ small with respect to

the interaction, or spatial scale under
study.

the mathematical results we get when we introduce interference
or diffraction at secondary school level. All the position y of the
maximums and minimums of the patterns of light intensity after a
single or multiple slit are proportional to the wavelength:

y ∝ λ (95)

Therefore, if λ → 0 all the light intensity gets concentrated in a
single spot (at y = 0) as we shall expect from a light ray. This is is
something we might decide to highlight to students when we teach
physical optics, it could come in handy when introducing Quantum
Mechanics. The rigorous proof of this fact is a little bit more tricky
and basically it consists of finding the solution for the d’Alembert
wave equation in which the speed v of the wave is expressed by
means of the refractive index n = c

v which is supposed to be a slow
varying function of the position in space n = n(~r). Then an approx-
imation is carried out assuming the wavelength smaller than the
typical dimension over which the refractive index changes signifi-
cantly. Acting in this way one finds the eikonal equation which states
that lights travels along rays which may be curved if the refractive
index is not constant38. 38 H Goldstein. Classical Mechanics.

Addison-Wesley, 1965The Schröinger idea was that a similar situation could have oc-
curred also for the classical mechanics which could have been a
limiting case, as λ→ 0, of a wave mechanics yet to be discovered (Fig.
76). There was even another important clue supporting this way of
thinking. The motion of a particle moving in a potential field V may
be described in the Hamilton- Jacobi formalism with an equation
which is substantially the same of the eikonal equation. Therefore
there was also a bridge among Geometric Optics and Classical Me-
chanics. This is a quite technical consideration, that we may just use
to understand what was known to a physicist of the first decades of
the twentieth century. If we depict the situation as in figure 76, we
can clearly notice the presence of a void tile asking for the discovery
of a wave equation for a new wave mechanics.

We should add that in the same period the problem of the discrete
spectrum of the Hydrogen atom was not explained by classic physics
and that de Broglie was suggesting to interpret the quantisation of
the Hydrogen energy levels by means of a wavelength λ associated
to a particle. Therefore we may understand that there was a kind of
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Figure 76: The knowledge situation
in the first decades of the twentieth
century.pressure pushing the research towards the discovery of a theory to be

placed on the missing tile of the scenario depicted before.

Bohr and de Broglie in a nutshell

As reminded in the previous section Schrödinger’s work was not sus-
pended on a vacuum, he was given a lot of guidance from the work
of many physicists. We want to mention two important contributions
regarding the unsolved problem of the atomic model: the Bohr idea
to impose the quantisation of the angular momentum (1913)39 and 39 N Bohr. On the Constitution of Atoms

and Molecules, Part I. Philosophical
Magazine. 26 (151): 1-24. (1913)

the de Broglie idea to associate a wavelength to a massive system like
the electron (1923)40. Two where the unanswered questions about the

40 L de Broglie. Ondes et quanta. Comptes
rendus de l’Academie des Sciences, vol.
177, pp. 507-510 (1923)

atomic model:

Figure 77: The discrete atomic spectrum
of the Hydrogen atom.

• According to the Rutherford model the electron’s orbits around
the nucleus should vary with continuity, thus suggesting a contin-
uous emission spectrum coming from the atom itself. [This was
in disagreement with the discrete nature of the observed atomic
spectra (Fig. 77).]

• The accelerated motion of a charged particle around the nucleus
would produce an electromagnetic radiation thus causing a contin-
uous energy loss and, as a consequence, the atom instability.

The Bohr’s quantisation rule was solving the problem of the discrete
energy spectrum of the Hydrogen atom while still leaving unsolved
the instability issue. He discovered that asking the angular momen-
tum of the electron orbiting around the proton to be equal to integer
multiples of h̄ he was able to derive the correct formula for the dis-
crete energy levels of the Hydrogen atom. We can see how it works,
imposing the rule for the angular momentum L and reminding us the
momentum expression for a circular orbit:

L = nh̄ , L = mvr (96)
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From these relations we find that the only allowed speeds are

vn =
nh̄
mr

. (97)

Equating the Coulomb and the centripetal force we relate the speed
to the orbit radius, so having the chance to derive the radii of the
allowed orbits:

mv2
n

r = K e2

r2
n

rn = n2 h̄2

me2K .

(98)

We can get the de Broglie proposal in a complete non-historical way,
just looking at the Bohr quantisation rule (96) and simply multiplying
both members of the equation by 2π:

2πpnrn = nh

2πrn = n h
pn

= nλn .
(99)

in the second equation of the array (110) we are saying that for the
nth energy level we have an orbit whose length is n times the nth
wavelength. The French physicist derived his famous wavelength rea-
soning in a very different way. Just as a matter of curiosity his note
on the Comptes Rendus de L’Academie starts with a relativistic con-
sideration: the author associates a frequency to a particle according
to the Einstein relation. The first equation of the paper is:

mc2 = hν0 . (100)

For those interested in understanding the de Broglie’s initial concep-
tion of his waves we suggest the work of Lochak41. 41 G Lochak. De Broglie’s Initial Conception

of De Broglie Waves. In: Diner S., Fargue
D., Lochak G., Selleri F. (eds) The Wave-
Particle Dualism. Fundamental Theories
of Physics (A New International
Book Series on The Fundamental
Theories of Physics: Their Clarification,
Development and Application), vol 3.
Springer)

Having discussed the origin of the Schrödinger equation and hav-
ing considered two among the main aspects of the atomic research of
the first two decades of the twentieth century we have a brief descrip-
tion of the historical scenario surrounding Schrödinger at the time
he became challenged in the research for the equation of a new wave
mechanics.

The equation

In 1926 Schrödinger published 42,43 two papers in which he pre- 42 E Schrödinger. Quantisierung als
Eigenwertproblem (Erste Mitteilung). Ann.
d. Physik 79 (1926) 361, a
43 E Schrödinger. Quantisierung als
Eigenwertproblem (Zweite Mitteilung).
Ann. d. Physik 79 (1926) 489, b

sented an equation leading in a natural way to a discrete energy
spectrum for the Hydrogen atom problem. The first paper begins
with these words:

"In this paper I wish to consider, first the simple case of the hydrogen
atom (non-relativistic and unperturbed), and show that the customary
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quantum conditions can be replaced by another postulate, in which the
notion of ’whole numbers’, merely as such, is not introduced. Rather when
integralness does appear, it arises in the same natural way as it does in
the case of the node-numbers of a vibrating string. The new conception is
capable of generalisation, and strikes, I believe, very deeply at the true nature
of the quantum rules. The usual form of the latter is connected with the
Hamilton-Jacobi differential equation, [...]".

The derivation of the equation is quite technical and even if we
believe it is worth a deep study we will not enter in it. We may just
say, in a very general and coarse way, that Schrödinger started from
the Hamilton-Jacobi equation introducing in it the de Broglie relation.
In a sense climbing upwards from classical mechanics and using the
de Broglie relation as a foothold (Fig. 76). From the same words of
the author we can appreciate the strength of its new proposal: the
quantisation of the physical quantities is not imposed any more, it
naturally descends from the solution of the equation in the same
way it happens for the vibrating string equation. Today, the equation
proposed by Schrödinger looks like this:

ih̄
∂Ψ
∂t

= − h̄2

2m
∂2Ψ
∂x2 + VΨ , (101)

where V is the potential of the problem we are dealing with. In his
paper after deriving it he solved it for the Hydrogen potential ∝ e2

r ,
reaching the right expression for the Hydrogen energy levels. Ψ is
the wave function, the solution of the equation and it depends on the
position x and the time t of the system we are dealing with. In the
eraly years of quantum mechanics the physical meaning of the wave
function was not clear at all for the entire physicist’s community.
According to the the current accepted interpretation (the Copenhagen
Interpretation) its square modulus is a probability density dP/dx,
meaning that the probability to find the system at a given time in the
interval between x and x+dx may be evaluated in this way

dP
dx
· dx = |Ψ(x, t)|2 · dx. (102)

The probability to find the quantum system somewhere along the
x axis is

∫ +∞

−∞
|Ψ(x, t)|2 · dx , (103)

and, of course has to be equal to 1.
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It is therefore clear that we are mainly interested in the
|Ψ(x, t)|2 quantity that gives us the idea of how the system at
a given time is distributed over space.

From now on we will deal with the Schrödinger equation for a
free system (V = 0) in one spatial dimension and we will have the
chance to gather a lot of information working on it with the typical
mathematical tools of the last year of Scientific Lyceum.

The free system equation

For a physical system moving freely in one dimension the equation
becomes:

ih̄
∂Ψ
∂t

= − h̄2

2m
∂2Ψ
∂x2 (104)

We can easily recognise that this is a partial differential equation
which is linear and homogeneous. It is linear because the unknown,
the Ψ, and its derivatives appear only with a power of one, it is
homogeneous because the constant term is zero.

Solutions of the free system equation

If we substitute the wave function

Ψ(x, t) = ei(kx−ωt) (105)

in the equation (104) we discover that it may be considered a
solution as long as we accept that

h̄ω =
h̄2k2

2m
. (106)

The equation that solved "in a natural way" the Hydrogen atom prob-
lem is asking a tribute. The first member of the request (106) is h̄ω,
something physicists were already familiar with, since it is how they
were used to write the energy E of a photon. The second member is
the kinetic energy p2/2m since, from the de Broglie relation we know
that p = h̄k (p = h

λ , k = 2π
λ ). Therefore the Schrödinger equation

is asking to express the energy of a massive system with the same
expression used for a photon. Physicists accepted this request.

Of course there are differences between a photon and a massive
system. From Special relativity (c=1) we know that for a photon
E=p, thus h̄ω = p. For a massive particle we are saying something
different: h̄ω = p2/2m.

We now have in our hands a solution of the free system equa-
tion, but before moving one step further let us discuss what does it
represent. The next section is devoted to this issue.
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What does ei(kx−ωt) mean?

Figure 78: .

The wave function (105) may be represented as a vector in the com-
plex plane (Fig. 78) with a phase α = kx−ωt which depends both on
position and time.

At every time t we can imagine one vector like the one depicted
in figure 78 associated to each point of the x axis. Each one of these
vectors will have a different phase (will be rotated with respect to
the previous one) since x varies moving from one vector to the next.
The length over which a complete rotation of the vector occurs is
defined by the wave number k = 2π/λ, which fixes the value of
the wavelength. Thus if, like in figure 79, we take a picture of our Ψ
at a certain time t we will see a lot of arrows doing a complete 2π

rotation along one wavelength λ .

Figure 79: Rotation of the wave function
as we move along the x-axis.

Figure 80: The wave function ei(kx−ωt)

along the x-axis at a fixed time t.

Fixing the time t, we see a set of infinite vectors along the
x-axis, each one rotated with respect with the previous. A
complete rotation occurs after a wavelength λ determined by
the wave number k (Fig. 79 and 80).

Now let us fix the x while leaving the time t free to flow (Fig. 81).
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We are now focused on a single point of the x axis and, again, we
see a vector who changes its phase (rotates) according to the ωt term.
The time over which a complete rotation occurs is determined by the
angular frequency ω = 2π/T, which fixes the period (Fig. 81).

Figure 81: Rotation of the wave function
along one time period T.

Fixing the position x, we are focused on one single vector
which rotates around the axis with angular speed ω. A com-
plete rotation occurs after a period T determined by ω (Fig.
81).

In conclusion each vector is rotating with the same ω around
the x axis and each vector is a little out of phase with respect to
the previous one so that in one λ the initial orientation is restored.
Therefore the situation is not static as we may think looking at figure
80 which is only one frame of a dynamic scenario. The vectors that
are oriented upwards will rotate down and vice versa giving a net
effect of a propagation along the x axis (Fig. 82) a sort of "ola" like
the one people do in a stadium. If we focus on two consecutive
humps, for example of the first plot of figure 82, we may say that,
due to "time-rotation", in one period T both the humps will leave
their initial position moving to the right. After one complete period
of time since the vector will have completed the rotation two humps
will appear exactly where they initially were. The net effect is that
each hump gradually moves to the right occupying the position of
the hump next to it. This also means that in T seconds the "ola" has
travelled exactly one wavelength. From this we may conclude that the
speed of propagation is

v =
ω

k
(107)

The wave function (105) is the so called plane wave, finally we have
an idea of what it represents. We can start doing some consideration
about its physical meaning.
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Figure 82: Each plot corresponds to an
instant slightly later than the previous
one. Propagation may be noticed.

Physical meaning of the plane wave Ψ

We have seen that the wave function

Ψ(x, t) = ei(kx−ωt) (108)

is a solution of the Schrödinger equation for a free system and we
have also discussed its mathematical meaning. Now we want to deal
with the physical interpretation of such a solution; what kind of
system does this function represent?

First of all we have to remind that the physics lies in the square
modulus |Ψ(x, t)|2 of the wave function, which, in our case, is

|ei(kx−ωt)|2 = 1 . (109)

Here we encounter the first problem: this wave function gives a
finite and constant probability density over all the space. The system
this solution is describing has a flat probability distribution, can be
everywhere in space. Of course this is something we do not like at
all. We could also say that with such a probability density there is no
way to make the integral (103) equal to 1, which is a crucial request
for any probability density function.

Moreover there is a second issue that we have to consider. We
would expect the wave function to propagate with the speed of the
system p/m, but, as already pointed out, the propagation of this
wave function occurs at a speed ω/k which is p/2m (remember
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equation 106) :

h̄ω = h̄2k2

2m

ω
k = h̄k

2m

ω
k = p

2m .

(110)

A plane wave Ψ has two problems:

1. Leads to a flat probability density, meaning that the par-
ticle is equally likely to be anywhere (space localisation
problem).

2. Propagates with a speed equal to p/2m which is different
from the speed of the system.

In the next section we will address a special feature of the Schrödinger
equation that will give us the possibility to solve both issues.

Superposition Principle and acceptable solutions

We have seen that a plane wave has at least two problems that lead
us to discard it as a suitable candidate for representing a physi-
cal system. Now we want to discuss a mathematical aspect of the
Schrödinger equation that allows us to solve both problems.

From the already observed linearity and homogeneity of the
Schrödinger equation (notice that these features still hold for the
complete equation (101)) we may prove a very important fact: given
any set of solutions for the equation, any linear combination of the
elements of this set still is a solution. This is called the superposition
principle. To prove this we may consider the equation as a differential
operator, S, which acts on the wave function, so that we may write
the Schrödinger equation in this way:
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Math Box - The Superposition Principle

SΨ = 0

where S = ih̄ ∂
∂t +

h̄2

2m
∂2

∂x2

(111)

If an operator is linear this relation holds:

S(a Ψ + b Φ) = a SΨ + b SΦ . (112)

For example, high-school students know that the derivative is
a linear operator, since:

d
dx

(a f (x) + b g(x)) = a
d

dx
f (x) + b

d
dx

g(x) . (113)

Now it is easy to prove that if we know two solutions of the
equation Ψ1 and Ψ2, due to the linearity and homogeneity any
linear combination of them still is a solution. Since they are
solutions we have:

SΨ1 = 0 , SΨ2 = 0 . (114)

On the other hand linearity and homogeneity guarantee that:

S(a Ψ1 + b Ψ2) = a SΨ1 + b SΨ2 = 0 . (115)

Equation (115) proves that the linear combination still is
solution.

The superposition principle is what we need, if plane a wave is
not an acceptable solution maybe a superposition of plane waves
may solve at least the problem of the localisation in space. Students
might already know, from what they have learned in acoustics, that
the superposition of two sinusoidal functions may give rise to beats, a
first example of waves which become localised in an infinite series of
lumps. Consequently we are not acting completely blindly, we have
a clue that suggests us to superimpose plane waves. Furthermore the
mathematical model we are using (the equation) allows us to follows
this guide line. Thus we are going to analyse in some detail what is
a superposition of plane waves with a wave number (a momentum)
dispersed around a central value k0:

Ψ(x, t) =
∫ k0+∆k

k0−∆k
ei(kx−ωt)dk . (116)

In order to manage this integral we have to do some mathematics
which, in a simplified version, is schematically expressed in the
Mathematical Box below.
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Math Box - The integral

The main features of the integral (116) may be reached in two
separate steps.

• 1st Step.

The first step consists of understanding the shape of the
function

∫ +∆k
−∆k ei kxdk which is a sum over a certain interval

of plane waves with different values of k. This integral is
a simplified form of the original integral, but in it we have
the essentials of what happens when we superimpose plane
waves (in a sense it could be interpreted as the complete
integral (116) evaluated at a well defined time: t = 0).

We know that ei kx = cos(kx) + i · sin(kx) and we may no-
tice that since the sine is an odd function it will gave zero
contribution to the integral, which then becomes:∫ +∆k

−∆k
cos(kx) dk . (117)

The primitive function of cos(kx) is sin(kx)
x , thus

∫ +∆k

−∆k
cos(kx) dk = 2 · sin(∆k x)

x
(118)

The resulting function of x is the so called sinc function and
its shape is shown in the figure below.
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The problem of the space localisation is then solved,
we have understood that the wave function result-
ing from the (116) will be a sinc function which is
significant only in a well localised space region.

• 2nd Step.

The second step consists of dealing with the propagation
modalities of the wave function (116). We will address the
problem in a smart way getting the right answer with few
calculations. The sinc function has a huge peak that we
will call the maximum. The maximum is given by the wave
planes with different k that do not tend to interfere destruc-
tively. Actually this happens where the phase φ = (kx−ωt)
does not change significantly with k; in other words where

dφ

dk
= 0 =⇒ x− dω

dk
t = 0 . (119)

So we have discovered that the position of the maximum,
and hence all the sinc function representing the inte-
gral, propagates along the axis according to the equation
x = dω

dt t. A uniform motion is then associated to the wave
function and the speed turns out to be dω

dk .

Now we assume the amplitude of the integration interval
[k0 − ∆k, k0 + ∆k] to be small so that we may approximate
the function ω(k) with the tangent line in k0:

ω(k) = ω(k0) +
dω

dk

∣∣∣∣
0
· (k− k0) (120)

As a consequence the propagation speed of the wave func-

tion (116)) turns out to be dω
dk

∣∣∣
0
= h̄k0/m = p0/m .



133

The idea used to find the propagation speed was taken from the
Bohm’s book on quantum mechanics44. 44 D Bohm. Quantum Theory. Dover

Publications, Inc. (1989)

Surprisingly also the second problem, related to the
propagation speed, is solved. If we define a wave
function as a superposition of plane waves we have a
probability density propagating with the speed p0/m.

The Heisenberg Principle almost for free

Our discussion about a physical solution of the Schrödinger equation
led us very close to the Uncertainty Principle. So we will introduce it
here for the first time in a naive way, coming back to it later when we
will also propose an educational environment where, via an acoustic
analogy, students will have the opportunity to investigate it and
better understand its physical meaning.

We have talked a lot of the wave function

Ψ(x, t) =
∫ k0+∆k

k0−∆k
ei(kx−ωt)dk . (121)

which may be considered a good solution for the free system equa-
tion. We have seen that it is distributed in momentum45 and we can 45 Since the wave number k is strictly

related to the momentum p (p = h̄k),
for simplicity, we will refer to the wave
number as a momentum.

evaluate the dispersion as being ∆k. With our calculations we have
directly experienced that it is the dispersion in momentum that origi-
nates the distribution in space of the system (that is to say where the
sinc function is significantly important). We can easily evaluate the
dispersion ∆x of the space distribution of the system by finding the
first zero of the sinc function (Fig. 83, equation 118):

Figure 83: Space distribution of the
wave function solution of the free
Schrödinger equation. The dispersion
∆x may be evaluated through the
distance of the two zeros shown in the
plot.

∆k · x = π =⇒ x = π/∆k = ∆x . (122)
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We have the evidence that the product of the two dispersions is
constant

∆x · ∆k = π , (123)

the more the system is dispersed in momentum the less is dispersed
in space. Remembering that k = p/h̄ we can write equation (123) in
this way:

∆x · ∆p =
h
2

. (124)

Energy and operators in the Schrödinger equation

We can interpret the Schrödinger equation (101) as an equality be-
tween operators acting on the wave function Ψ:

(
ih̄

∂

∂t

)
Ψ =

(
− h̄2

2m
∂2

∂x2 + V
)

Ψ , (125)

We focus on the operator at the right-hand side of the equation:

− h̄2

2m
∂2

∂x2 + V . (126)

It is the sum of a spatial second derivative and a potential term that
simply multiplies the wave-function. For dimensional reasons both
terms are energies (the proof is in the Math Box).

Math Box - Units of the space derivative operator

h̄ is E · t =⇒ dimensions are J · s

∂
∂x is 1

l =⇒ dimensions are 1
m

therefore the dimensions of − h̄2

2m
∂2

∂x2 are J2 s2

kg m2 = J.

It is straightforward to see that the time derivative operator on the
left-hand side,

ih̄
∂

∂t
, (127)

has energy units too.
Thus we have proved the connection between the Schrödinger

equation operators and energy. Now we may notice a strong similar-
ity between the operator (126) and the expression for the total energy
of a system:

E =
h̄2k2

2m
+ V . (128)

This consideration can lead us to this idea: associate to p2 = h̄2k2 the
operator −h̄2∂2/∂x2 . Therefore we will say that the operator (126)
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will represent the total energy operator! Since the operator on the
left-hand side of the (125) is substantially equated to the one on the
right-hand side, it has to represent the total energy of a system too.
We will call ih̄ ∂/∂t the Hamiltonian operator H.

We have found a set of rules to write the correct Schrödinger
equation for a system:

1. Write the Hamiltonian of the system (the total energy),

H =
p2

2m
+ V. (129)

2. Associate operators to the Hamiltonian and to the kinetic energy:

H → ih̄ ∂
∂t

p2 → −h̄2 ∂2

∂x2 .
(130)

3. Substitute the operators in the equation (129) and apply it to the
wave-function Ψ.

This procedure leads to the correct equation!

Systems with constant total Energy

When the total energy is a constant E, the operator (126) acts on the
wave-function like a multiplicative constant. Therefore, if we succeed
in solving the equation

(
− h̄2

2m
∂2

∂x2 + V
)

Ψ = E Ψ , (131)

we find the all the possible wave-functions representing the system
with definite energy values and we also find the spectrum of the
allowed energies. Of course the outcomes strongly depend on the
potential V which defines the physical situation we are dealing with.

The equation (131) is called the stationary Schrödinger equation.

Solving the stationary Schrödinger equation for a given pten-
tial V we find:

1. The set of the allowed energies of the system (The Energy
Spectrum).

2. The wave-functions representing the system in each of the
allowed constant energies. These wave-functions give us the
probability density distribution in space of the system!
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In the next sections we will deal with the simplest potential prob-
lem we can afford and we will find the solutions of the stationary
Schrödinger equation. Furthermore we will discover that a simple
experiment carried out at a coffee bar can lead us, by acoustic anal-
ogy, to the exact solutions. The example will be of great help in
understanding the essential features of quantum systems bounded
in a potential well. Moreover it will provide to the teacher a way to
present such features in a relatively simple way.

System in a infinite potential well

We consider a system with mass m, bounded in a potential well V(x)
which is zero in the interval ]− a,+a[ and infinite elsewhere (Fig. 84).

Figure 84: The infinite potential well.

Since the well is infinitely deep the system has no chance to be found
outside, thus the outside solutions of the quantum problem are:

Ψ(x) = 0, x > | a | (132)

To discover the energy spectrum and the probability distribution
of the system inside the well we write and try to solve the stationary
wave equation. Since inside the well the potential is zero the equation
becomes:

− h̄2

2m
∂2Ψ
∂x2 = E Ψ , (133)

which we may rewrite in this way:

∂2Ψ
∂x2 = −k2 Ψ , (134)

where k =
√

2mE
h̄2 . Equation (134) substantially asks for wave-

functions whose second derivative with respect to x is the opposite
of the wave-function itself. The solutions are therefore well known
at secondary school level46 and are related to the trigonometric func- 46 Here we are considering the fifth

year of Scientific Lyceum for the Italian
educational system.
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tions sin(kx) and cos(kx), which are separately solutions of the (134).
Therefore, as we have learned previously, the general solution will be
a linear combination of them47: 47 A possible pathway the teacher could

choose to adopt in order to simplify a
bit the mathematical scenario consists
of saying that the solution is sin(kx).
This choice leads to the correct allowed
wavelengths and to an energy spectrum
which differs from the exact one by a
constant factor 1/4. Some details are
lost but the core of the physics remains
intact.

Ψ(x) = A sin(kx) + B cos(kx). (135)

Now we have to ask for the continuity of the solution, in other
words we have to impose that at the boundaries (in ±a) the wave-
function (135) has to connect with the null wave-functions just out-
side the well:

Ψ(−a) = −A sin(ka) + B cos(ka) = 0 (136)

Ψ(a) = A sin(ka) + B cos(ka) = 0

Since we are asking at the same time the sum and the difference of
the same quantities to be null, we may conclude that both have to be
zero48: 48 We neglect the case A = B = 0 which

would mean Ψ = 0 and hence absence
of the physical system.A sin(ka) = 0 ∩ B cos(ka) = 0 . (137)

The conditions are respected if

c
B = 0 , ka = nπ = 2n π/2 , n = 1, 2, ...

∪
A = 0 , ka = (2n + 1)π/2 , n = 0, 1, 2, ...

(138)
Merging together the two cases49 we have the allowed values for k 49 In the first case n starts from 1 since

n = 0 would give k = 0 and hence a
null wave-function.

inside the potential well:

k = kn = n
π

2a
, (139)

with n = 1, 2, ... . The energy of the particle inside the well (V(x) =
0) is only kinetic, thus we have derived the energy spectrum of the
bounded system which turns out to be a discrete spectrum, i.e. a
quantized spectrum:

En =
h̄2k2

n
2m

=
h̄2π2

8ma2 · n
2 . (140)

Moreover we have discovered the wave functions ΨE of the states
with constant energy E. They are given by the equation (135) evalu-
ated within the conditions (138).

We have derived a result in the physical scenario of a very simple
potential V(x), however it turns out that the quantization of the
energy spectrum is a very general feature concerning every bounded
quantum system.
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Every quantum system bounded in any potential well exhibits
the quantization of the Energy levels.

Therefore we may also explain why the energetic spectrum of the
Hydrogen atom is quantized. In this situation the potential well is the
Coulomb potential (Fig. 85).

Figure 85: The Coulomb potential well
for the Hydrogen atom.

It is also clear that

The discretization of the spectrum is originated by the im-
posed boundary conditions.

Eventually, you will have notice that

The mathematical concept behind the quantization of the
energy spectrum of a quantum system is exactly the same we
face in problems like acoustic waves trapped among the ends
of a vibrating string or of a pipe.

The infinite square potential well in a nutshell

For the sake of clarity we summarise the main features related to the
quantum problem we have encountered in the previous section.

• Schrödinger Stationary equation:

∂2Ψ
∂x2 = −k2 Ψ

• The stationary equation is a differential equation in the
variable x, the solutions are functions of x, Ψ(x).

• The solutions of the stationary equation, ΨE(x), represent
states with defined and constant energy E
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• Quantization derives from the boundary conditions im-
posed by the presence of the potential well which confines
the system in a finite region of space.

• Wave numbers are quantized:

kn =
nπ

2a
=⇒ kn ∝ n

• Wavelengths are quantized:

λn ∝
1
n

• Energies are quantized:

En =
h̄2π2

8ma2 · n
2 =⇒ En ∝ n2

• Frequencies are quantized: energy is proportional to ω

(E = h̄ω) hence frequencies are quantized as well, with a
proportionality to n2.

• We just state, without proving it, that the wave-function
Ψ(x, t) is given by the product of the solution of the station-
ary equation Ψ(x) and the exponential factor eiωt = ei E

h̄ t,
where E is the energy of the stationary state:

Ψ(x, t) = ΨEn(x) · ei En
h̄ t (141)

Infinite potential well, vibrating strings and pipes

From the educational point of view it is of fundamental importance
to notice that the stationary Schrödinger equation of the infinite
potential well (134) is the same equation we encounter with the
problem of a vibrating string fixed at both ends or, if we prefer, of
a pipe opened at both ends. In these cases we have the d’Alembert
equation:

∂2y
∂x2 −

1
c2

∂2y
∂t2 = 0 , (142)

where y(x, t), for example, represents the vertical displacement
of a point of the string in position x (Fig. 86). In the case of the
open ended pipe y(x, t) may be the pressure displacement, i.e. the
deviation from the atmospheric pressure along the pipe.

We look for harmonic solutions50, for example: 50 We assume that each point of the
string will oscillates with a given
angular frequency ω, so that the
time dependence of the solution will
be given by the factor cos(ωt). The
general solution will simply be a linear
combination of harmonic solutions.

y(x, t) = y(x) · cos(ωt) . (143)
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Figure 86: Vibrating string fixed at both
ends.

Since the second derivative of cos(ωt) with respect to time is
−ω2 cos(ωt), the equation reduces to

∂2y
∂x2 = −ω2

c2 y (144)

and finally, since for an acoustic wave k = ω/c, to

∂2y
∂x2 = −k2 y (145)

which is formally identical to the quantum equation (134)! This cir-
cumstances lead to a mathematical and an educational consequence:

1. For the vibrating string or open ended pipe we expect a
quantized energetic spectrum and the same dependence
from n2 we found in the quantum problem (140).

2. Students have the opportunity to gather a deep understand-
ing of the quantisation of the energy levels investigating a
vibrating string or an open ended pipe.

In this section we will prove the first statement, taking for granted
the theory of vibrating strings or pipes. The next section will address
how to move from experiments on a pipe to the quantisation of the
energy levels for a bounded system.
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Math Box - Vibrating String Basics

The basic set of equations describing the vibration modes of a
string fixed at both ends are:

y(x; t) = A · sin(kx) · cos(ωt) (146)

L = n · λ

2
→ n = 1, 2, ... . (147)

νn = n · c
2L

= f0 · n → n = 1, 2, ... . (148)

The first one describes the shapes of the vibrating modes. The
factor sin(ωt) tells us that every point of the string oscillates
up and down with the "frequency" ω. The sin(kx) factor deter-
mines the amplitude of the oscillation at each point, giving the
well known shapes to the vibrating modes (remember that k
defines the wavelength λ).
The second equation is originated by the boundary conditions,
asking for the string to be fixed at both ends. A whole number
of half wavelengths has to be exactly contained between the
two ends. This rule determines the quantization of k and, as a
consequence, of the angular frequency ω and of the frequency
ν, see equation (148).

Math Box - The Energy Spectrum of a Vibrating String

We prove that the energy spectrum of a vibrating string de-
pends on n2, exactly as it happens for a quantum system
trapped in a infinite square potential well.
The length of the string may be divided in a finite number
of parts each one with a mass ∆m. If we focus on the cen-
tral point of one of these parts, we fix the x and the first
two factors in the equation (146) behave as constants. The
third factor represents the motion of an harmonic oscillator:
y(t) = cos(ωt).
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Thus the total energy of that part is:

∆e =
1
2

∆mv2 +
1
2

kel.y2 (149)

Where kel. is the elastic stiffness of the oscillator. Evaluating
the velocity of the point from the law of motion y(t) ad recall-
ing that for the harmonic motion we have ω2 = kel.

∆m , we may
express the total energy as

∆e =
1
2

∆mω2sin2(ωt) +
1
2

∆mω2cos2(ωt) =
1
2

∆mω2 . (150)

For a vibrating string the allowed angular frequencies are

ωn =
cπ

L
· n , (151)

therefore the energy spectrum turns out to be quantized:

∆en =
c2π2∆m

2L2 · n2 . (152)

Equation (188) represent the quantized energy of a single part
of the string, however integrating ∆en over all the length of the
string, the n2 dependence of the total energy En remains (see
Appendix for the detailed calculation).

We can therefore write a summary of the main features concerning
vibrating strings or open ended pipes which closely resembles what
we wrote for the quantum system trapped in an infinite square
potential:

• The d’Alembert equation for a vibrating string (or open
ended pipe) is:

∂2y
∂x2 = −k2 y

• This equation is a differential equation in the variable x,
therefore the solutions are functions of x: y(x).

• The solutions yE(x), represent states with defined and
constant energy E

yE(x) = sin(kx)
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• Quantization derives from the boundary conditions im-
posed by the presence of conditions that confine the system
in a finite region of space (clamped ends of the strings,
sudden open endings of the pipe, both causing backward
reflections).

• Wave numbers are quantized:

kn ∝ n

• Wavelengths are quantized:

λn =
2L
n

=⇒ λn ∝
1
n

• Frequencies are quantized

fn =
c

2L
· n =⇒ fn ∝ n

• Energies are quantized:

En ∝ n2

• The solutions (x, t) is given by the product of the solution
of the d’Alembert equation for harmonic oscillations and
the factor cos(ωt):

y(x, t) = yEn(x) · cos(ωnt) = sin(knx) · cos(ωnt)

A coffee with Schrödinger: introducing a quantum concept at the coffee
bar.

As previously mentioned, the strong similarity between a quantum
system (system in an infinite square potential) and a classical system
(vibrating string or open ended pipe) gives to the teacher a great
opportunity to introduce with an inquiry activity one of the major
aspects of quantum mechanics: the quantization of the energy levels.

The Educational Idea

Working at a coffee bar with a straw (open ended pipe) stu-
dents can carry out, without the need of a Physics Lab, a lot
of investigations understanding the origin of the quantiza-
tion, measuring the quantized frequency spectrum and even
discovering its proportionality to n.
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The Learning Environment would be:

1. Informal.

2. Based on autonomous inquiries of groups of students (In-
quiry Based Science Education - IBSE - at a level of freedom
chosen by the teacher).

3. Creative (students would be asked to design several aspects
of their own experiment).

Two possible way to start the activity with a classroom.

• (During the curricular school-time)

Start the lesson inside the classroom and, after a short intro-
duction, surprise students inviting them to the canteen.

• (As an homework assignment)

Ask students to form groups of two or three, and to meet
in the afternoon in a coffee bar where to carry out the
investigation.

We would like to point out that, at least in the Italian educational
system, an homework like the one mentioned in the box above
strongly differs from what the typical home assignment is. As al-
ready pointed out in the introduction to this work, generally the
teaching of physics is based on lessons devoted to the introduction of
a theoretical concept followed by a list of exercises designed to make
students familiar with the topic. What we are suggesting proposing
the experiment at a coffee bar is another example of 3DTP51. A good 51

3-Dimensional Teaching of Physics
(see Thesis Introduction).opportunity to create a contact among students, physics and data

from a real experiment. This kind of activities are of great impor-
tance in the teaching of physics. Carrying out the required tasks
student will face a lot of practical issues which are very common
for every physicist, but that almost never appear in a teaching only
based on the textbook. Just to mention one, student will unavoid-
ably encounter the problem of the background noise generated by the
environment in which they will carry out their measurements.

In the following box we will give a general description of the
experiment with the straw52. 52 L Galante et al. Acoustic with a bic pen.

La Fisica nella Scuola - AIF, XLVI, 2:
54-58, 2013
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Description of the experiment

Needed material:

• a couple of straws with different lengths (for example L1 ∼
15, 0 cm, L2 ∼ 5, 0 cm)

• One mobile (or one PC) with a sound recorder app.

• Free spectrum analyser software (we suggest, and we have
used, Praat a free software for persona computers).

Blow gently over the opening of the long straw and record the
sound with the mobile. The air column in the straw acts like
the string closed at both ends: at each opening the pressure
disturbance will be reflected backward. In the recorded sound
we will find the main vibrating modes of the air column. In
order to measure the quantized frequencies spectrum

νn = n · c
2L = f0 · n → n = 1, 2, ...

we can perform a Fourier analysis with a free software, for
example Praat. In the following figure the sound in the time
domain (black upper plot) and the spectrogram (gray-scale
lower plot) is shown for the long straw (L = 15.4 cm). In the
spectrogram the frequency is represented along the vertical
axis in Hz, along the horizontal axis we have the time dura-
tion of the sound. Clicking somewhere on the spectrogram we
get in return the corresponding y coordinate: the frequency.
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We have therefore the opportunity to clearly detect the quan-
tization of the frequencies and even to measure the spectrum.
In the plot below the first four frequencies of the spectrum
are plotted as a function of n. It is evident that the expected
relation fn = f0 n with n = 1, 2, ... is respected.

If we perform the same experiment with the short straw we
still get a quantized frequency spectrum (see image below),
but this time the distance among equally spaced frequencies is
bigger.
Students have the opportunity to see that, if L → ∞, the dis-
tance among consecutive levels fades away: from a discrete
spectrum we move to a continuum.

∆ f = fn − fn−1 = c
2L ,

Something that was expected, since for an infinite pipe the
system is no more spatially bounded.
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What can be learned form the straw experiment

In the following lines we summarise what students may learn from
this experiment an how to use it to introduce the quantisation.

1. The physical system we are working with is an air column inside a
pipe (the straw) opened at both ends.

2. Blowing on one open end of the pipe we put energy in the system.

3. (Experimental result). Frequencies are quantized ( f ∝ n) exactly as
they are in a vibrating string fixed at both ends.

4. This means that the ends of an open ended pipe act like mirrors as
the fixed ends of a clamped string.

5. When we put energy in the system, it stores53 energy in a number 53 We use the verb "store" because the
continuous reflection of the pertur-
bations confine the energy inside the
pipe.

of vibrational modes, each one with a well defined frequency
which are simultaneously present in the system (superposition is
at work!)54 54 Each mode is a possible solution

of the equation modelling the phys-
ical scenario. The equation is the
d’Alembert equation which is linear
and homogeneous thus allowing linear
combinations of any set of solutions.

6. (Frequency quantization in the pipe). It is important to stress
that the vibrational modes in a pipe arise from two facts: the
continuous reflection of the waves at the ends of the pipe and the
boundary conditions asking for the solution to be zero at both
the open ends. The superposition of the reflected waves moving
back and forth can give the cancellation at the boundaries. The
quantization rule is

L = n
λ

2
. (153)

We can quickly prove this fact writing the equation of the pressure
wave inside the pipe, that is the sum of a wave with a certain k (for
example propagating leftwards) and of the corresponding reflected
one:

y(x, t) = sin(kx−ωt)− sin(−kx−ωt) . (154)

The reflected wave is represented by the second term, since it is
symmetric to the incoming wave with respect to the x-axis we have
to put a minus in front of it. The argument of the sine function is
arranged so that the propagation is rightwards. The expression
(154) may be rearranged as follows:

sin(kx−ωt) + sin(kx + ωt) =
sin(kx) · cos(ωt)− cos(kx) · sin(ωt)+

+sin(kx) · cos(ωt) + cos(kx) · sin(ωt) =

= 2 · sin(kx) · cos(ωt) .

(155)
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Imposing the boundary conditions y(0, t) = 0, y(L, t) = 0 we
have:

k = n
π

L
, =⇒ L = n

λ

2
. (156)

7. (First contact with the quantum problem). Since the stationary
Schrödinger equation for the quantum problem is formally identi-
cal to the equation for the pipe, we may expect the same situation
to arise in the quantum scenario. The infinite potential well will
force the wave-function Ψ(x) to be null outside the boundaries
hence, for continuity, also null at the boundaries! In straight anal-
ogy with the pipe or the string we may argue a quantization of
wave-lengths to occur:

2a = n · λ

2
=⇒ k =

π

2a
· n .

8. (Second contact with the quantum problem). The quantum system
is free inside the infinite square well, thus its energy is E = h̄2k2

2m .
Thus from the quantization of the wave number We have the
quantized spectrum of the quantum system:

En =
h̄2π2

8ma2 · n
2 .

9. (Energy levels in a pipe). The energies of the vibrational modes
of a pipe are quantised as well. As shown in equation (150), math-
ematical box at page 141, energies depend on ω2 and ω ∝ n.
Therefore again from the quantization of the wave number we
have the energy quantization En ∝ n2.

10. (Conclusions). Both the open ended pipe and the quantum sys-
tem in an infinite square well involve a system confined in a finite
spatial region. Therefore in both cases the boundary conditions
imply the same wave number quantization (∝ n) which in turn
produces a discrete energy spectrum proportional to n2.

Before leaving this section, one notice:

• If we want to compare the measured value of the fundamental
frequency f0 with the theoretical one c/2L, we have to consider
the end corrections due to the open ends of the pipe. The length
L of the straw has to be increased adding 0.6 ∗ R (where R is the
radius of the pipe) for each open end. Therefore in our case we
have to add 2 · 0.6R to the actual lenght of the straw. This means
that even a sudden open end of a pipe is not an ideal mirror, it
does not perfectly reflects the incoming wave backwards. It is like
the reflection occurs in a point slightly outside the pipe.
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The wave-function of the infinite square potential

Referring to the general solution of the equation for the infinite
square potential well (135) and to the conditions imposed at the
boundaries (138) we can find the analytical expression of the two
wave-functions corresponding to the the first two energy levels:

n = 1 k1 = π
2a =⇒ A = 0 =⇒

Ψ1(x) = B cos( π
2a x).

n = 2 k2 = π
a =⇒ B = 0 =⇒

Ψ2(x) = A sin(π
a x).

(157)

If we plot them (Fig. 87) we recognise they correspond to the first
two vibrational modes of the pressure inside a pipe or of a vibrating
string. However in quantum mechanics we are interested in the

Figure 87: The wave-functions of the
infinite potential square corresponding
to the first two energy levels.

square modulus of the wave-functions, hence we focus our attention
on figure 88.

Even if not proved, we have pointed out that the complete solution
of a stationary quantum problem is the product of the solution (x) of
the stationary equation and an exponential factor which express the
time dependence of the wave-function (141).

Ψ(x, t) = Ψ(x) · eiEt/h̄ (158)

When we compute the square modulus, since the modulus of the
exponential factor is 1, the time dependence fades away. Therefore
we must draw our attention to this aspect:
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The square modulus |Ψ(x, t)|2 of any stationary state does not
depend on time. In other words, nothing oscillates at all.
This remark should stimulate some reflections about the term
"wave" used to define the mechanics of quantum systems.

Figure 88: The square modulus of the
wave-functions for the first two energy
levels.

This is something that differs from what happens to standing
waves in pipes or strings (Fig. 89). Considering a pipe, the "shape"of
the pressure along it is given by the sin(knx) factor (bold red lines),
but each point oscillates up and down with the frequency of the
vibrational mode according to the harmonic factor cos(ωnt). The
oscillation is produced by the continuous superposition of waves trav-
elling back and forth due to reflections at the ends. This is something
not occurring in the quantum scenario.

On the meaning of the wave-functions in the infinite well

We give a closer look to the |Ψ(x, t)|2 of the infinite square potential
(Fig. 90). For example we may examine the wave function corre-
sponding to the first energy level E1 (upper plot). Moreover we
imagine a charged particle, say an electron, to be trapped in the well.
The Copenhagen interpretation for the wave-function reads the |Ψ1|2
as the density probability to find the electron in whatever region
inside the well. According to this point of view the area in figure 90

is the probability to find it in the region between x1 and x2. From
this we may argue that there are chances to find the system almost
everywhere inside the box. Of course, the system would be most
likely to be found in the middle region, while the chances to meet it
near the borders would be nearly zero. However sometimes the elec-
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Figure 89: Standing waves in a pipe.
Here we have an oscillation.

Figure 90: This area represents the prob-
ability to find the system somewhere in
the region [x1, x2].
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tron will be in a certain position, other times in another. This point
of view naturally leads us to think that the electron will experience
accelerations (an electron with constant speed would certainly escape
that limited region). Taking in mind that an accelerated charge emits
electromagnetic radiation, thus loosing part of its energy, we come
to the conclusion that this kind of interpretation leaves some open
question. Just to make an example, the Hydrogen atom is the typical
quantum system affected by this problematic situation.

According to the Copenhagen interpretation, an electron in an
infinite potential well should accelerate, hence loosing part of
its energy by electromagnetic radiation. This fact conflicts with
the idea of stationary states, i.e. states with well defined and
constant energy.

The overall picture

Let us draw a picture of what we have learned up to now.

Figure 91: Scheme and flow of the
events.

1. Our starting point was the Schrödinger equation whose great
achievement was the explanation of the Hydrogen discrete Spec-
trum [arrow n.1].

2. The discussion about the meaning of the Ψ(x, t) led to the ax-
iomatic interpretation of a function whose square modulus repre-
sents the probability density distribution to find a system some-
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where in space at given time (Copenhagen Interpretation) [arrow
n.2].

3. Solving the Schrödinger stationary equation for a bound state
problem (for example the infinite square potential well) we find
solutions that lead us to constant energy states for charged sys-
tems localised in finite space regions. This generates unanswered
questions about the physical possibility for these states to exist
(energy loss due to radiation would be present) [arrow n.3].

What we would expect at this point is to move back to the interpre-
tation that led to this situation [arrow n.4] and reconsider it, maybe
with new reflections and ideas [arrow n.5].

An opportunity to switch on some critical thinking

When we teach is very comfortable to present things as if they were
perfectly understood and established. This is a sort of mask we some-
times wear for a lot of reasons. It prevents unpleasant questions, it is
energy saving since it does not require further thoughts and reflec-
tions, it strengthen our role giving a crystal image of what we teach
and, in return, of ourselves. On the other side, in a lot of physics
situations and theories we carry out approximations, we chose to
adhere to accepted interpretations. In addition sometimes we repeat
what is most commonly written in books without considering any
more the possibility to carefully examine the meaning of what we are
saying. This is a typical human behaviour.

Exactly for this reason it is important point out that such approach
to the teaching risks to be less productive. Preventing ourselves, and
hence our students, from a critical analysis of what we teach we
originate a closed-loop transfer of knowledge. We teach something
and students repeat what we teach. In this process both teachers and
students play a passive role and, what is worst, innovation is put in
danger both in the educational and the scientific field.

Quantum mechanics is a theory that probably more than others is
affected by this problem. Is not by chance that we are often told:

"We cannot understand it."

"It is almost impossible to understand it, but it works."

Two commonly accepted statements providing formidable shields
to everyone involved in the teaching of this theory. For this reason
we believe that Quantum Mechanics offers a good opportunity to
open discussions about its interpretation. We have already pointed
out some problematic aspect of the theory, thus giving some food for
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thought. Along this chapter, devoted to the Quantum theory, we will
identify other features that might be seriously considered and that
might move our minds to some reflections.

Suggesting an interpretation for the wave-function

So far we have explored the Schrödinger equation in the framework
of the Copenhagen interpretation and we have discussed a bit about
the pros and cons. Now we propose a possible way to interpret the
wave-function. We start with a summary of the general situation in
the Copenhagen mindset, then we will discuss a possible change in
the way of thinking.

The Copenhagen framework

• Usually we start writing the Hamiltonian which defines the
problem we are dealing with,

H = − h̄2

2m
∂2

∂x2 + V . (159)

• Then we solve the stationary Schrödinger equation,

HΨ = EΨ . (160)

• Eventually we find the solutions: the set of the wave-
functions Ψ, one for each energy level of the spectrum.

• From the wave-functions we derive the square modulus
|Ψ|2.

• The |Ψ|2 gives us the spatial probability distribution.

In the previous sections we have seen how the Copenhagen inter-
pretation leads to a puzzling situation in which a charged system in
a state with constant energy should accelerate. As already pointed
out this situation is something that we should try to avoid, some-
thing that could bring us to look for different interpretations of the
wave-function.

If we assume that |Ψ|2 is the spatial distribution of the sys-
tem itself, representing a quantum system as a whole, the prob-
lem related to the energy loss due to radiation disappears. The
"electron in a potential well" becomes a new physical system which
is distributed in space as described by the square modulus of the
wave-functions. We no longer have something that can be found
in a different region of the well each time we look for it. We have
a new system distributed in space. A system that rises from the



155

Hamiltonian (159) of the problem. Solving the stationary Schrödinger
equation (for brevity we should say "solving the Hamiltonian"55) we 55 This expressions underlines the

fundamental role played by the Hamil-
tonian H in determining the solutions
of the equations, thus determining the
spatial distribution of the system.

discover how this system is distributed in space. As already stated,
the system is no longer an electron, is an electron in a potential well,
a charge that interacts in a field. The Hamiltonian equation does no
longer describe the particle, but a new state formed by the interac-
tion with the field, moreover it does not say much about this new
system, it does not tell us what it is. It only tells us about how it is
distributed over space56. 56 For those who already know about

Quantum Mechanics it also tells us
about how it is distributed in momen-
tum. This aspect well be addressed
later.

The scenario that emerges from this interpretation of the wave-
function leads us to think that

• Quantum systems are "solutions of the Hamiltonian H".

• The square modulus of the solutions (|Ψ|2) tells us how the
system distributed in space.

• For each Hamiltonian we may have a number of differ-
ent solutions, one for each energy level of the spectrum
(Fig. 88). Technically speaking each solution is a different
eigenstate of the Hamiltonian.

• If the system is given a suitable amount of energy the next
eigenstate can be produced.

• Our mathematical model of the system (the Hamiltonian)
does not give information about what the system is, it only
says how it is distributed in space (and in momentum)
and what are the allowed energies for the system (energy
spectrum).

We can apply this new framework to the Hydrogen atom. In this
case the well is the Coulomb potential and the Hamiltonian we put
in the Schrödinger equation involves two interacting particles: the
proton and the electron. The solutions of the stationary equation no
longer represent either the proton or the electron. They are giving us
some information about a new system the eigenstate of the Hamilto-
nian. The solutions are not saying what this eigenstate is, however
they are informing us about the spatial distribution of the system.

Within this new interpretation the problem of the constant en-
ergy states vanishes. The system is there, described by a |Ψn(t)|2
which tells us how the system is distributed over the space at time t.
Accelerating particles are no more considered!
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Was it worth it?

With this paragraph we conclude the section dedicated to the
Schrödinger equation. At the beginning we asked if it was possi-
ble, in principle, to introduce it using the mathematical knowledge
covered by the Scientific Lyceum. We believe that our work moves
one step toward a positive answer, even though we recognise that the
involved mathematics is at the supremum of what can be actually
done and understood in a classroom. Anyway we want to add two
considerations about this topic:

1. A powerful opportunity for the teacher in order to move the
classroom towards a deeper understanding is strictly correlated
to the planning of the educational path. We are talking of the
possibility to pave the way to quantum concepts planning a set of
earlier interventions both in the Mathematics and Physics domains.
In other words the teacher might anticipate a number of topics
that might be useful later, when tackling quantum mechanics. We
even suggest to reveal to students the aim of these interventions
with statements like "...this fact will be very important when
we will deal with quantum mechanics ... since will give us the
opportunity to ..." or "..this mathematical aspect has to be clear
since we will use it to model a wave that propagates ...". This
attitude will help students to feel the presence of an educational
programme. Moreover it will, at least partially, answer to the usual
question "why should we study this?".

We give some example to make this concept clear:

• Deal with geometric transformations (dilations and translations)
and their relation with the plot of a function, spend some
time to explain the connection between the graph of f (x) and
f (ax + b). Then we can substitute b with a time dependent
term, therefore introducing time dependent translations, i.e. the
propagation of a wave. This skill is extremely useful in a lot of
situations encountered in this section.

• Dedicate some time to discuss and listen to acoustic beats. This
can be done in the physics curriculum (in acoustic or in the
part devoted to the physics of waves) or in the mathematics
curriculum when dealing with trigonometric functions. We
should stress that superimposing two pure tones we can cancel
the signal at some instants. Later, in the last year, we would
have the opportunity to come back to the beats and extend what
was carried out with two tones: we can solve the integral (118)
and discuss its meaning in the framework of the superposition
of pure tones.
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• Introduce complex numbers and their exponential form.

2. Among all the topics addressed in this section the teacher has the
chance to select small parts and design his own path.

Quantum mechanics in Action

Action is a quantity of great importance in Quantum Mechanics.
The order of magnitude of the action of a system may predict if the
system behaviour will be affected by quantum mechanics or not.
In this paragraph we will show a way to introduce it at secondary
school level ( method inspired by the work of Cleon Teunissen 57) 57 Cleon Teunissen. Least Action Visual-

ized. http://www.cleonis.nl/and we will discuss briefly why the action determines the transition
from classical to quantum mechanics.

Integrals for breakfast

The action is an integral of a function over time, however in order to
grasp its physical meaning, students do not necessarily need a deep
knowledge about integration. For us the integral of a function will
be the area of the region bounded by the graph of f (t) and the t-axis.
We will work with second degree polynomials, therefore we just need
to know how to evaluate areas bounded by parabolas. Students can
learn how to perform such calculations in a very "sweet" way. We can
invite them to carry out the following activity.

• While having breakfast draw a square on the napkin (assuming its
side has one unit length). Inside the square draw the parabola y =

t2 as shown in figure (92). An approximated plot for the parabola
will be enough for our purposes. We just have to consider the
stationary point in (0, 0) and the passage of the curve through
three other points.

Figure 92: At breakfast draw this square
on the napkin.

• Take some brown sugar and spread it uniformly over the square.

• Take a picture and count the number n of grains in the area
bounded by the parabola and the total number N of the grains
inside the square.

In this way students may find that the ratio n
N ∼

1
3 , thus discov-

ering that the area of the parabola from t = 0 to t is one third of the
area of the rectangle in which the arc is inscribed. From now on they
will know how to evaluate the following integral, representing the
area shown in figure (93).

A =
∫ t

0
t2 dt =

1
3

t · t2 . (161)
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Figure 93: The area we need to evalu-
ate.

Action definition

The action is the integral over time of the difference between the
kinetic and potential energy of a body:

S =
∫ t2

t1

(T −V)dt . (162)

Both the kinetic energy T and the potential energy V of a body vary
over time while the body is in motion, thus T−V is a function of time
and we can evaluate the bounded area represented by the integral
(162).

The principle of Least Action

We want to show that if we evaluate the action integral (162) along
the predicted Newtonian trajectory we get a minimum value. We
will do it by means of an example, dealing with free fall in a uniform
gravitational field.
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Math Box - Least Action in action

We consider a body launched upwards, at time t = −1s, with
initial speed v0 = 2 m/s . We assume the gravitational field to
be g = 2 m/s2 (numbers are chosen in order to have simple
calculations).

The motion equation is:

x(t) = −t2 + 1 (163)

The plot of the Newtonian trajectory in space-time is shown
in the image below. We generate a family of still parabolic
trajectories around the Newtonian one:

x(t) = (1 + ε) (−t2 + 1) ∈ [−1, 1] (164)

and we compute the action integral along them:

S =
∫ 1

−1
(T −V)dt . (165)



160

Both T and V change over time between t = −1 and t = 1. We
thus evaluate the area bounded by these curves and then we
subtract the results:

S =
∫ 1

−1
Tdt −

∫ 1

−1
Vdt = ST − SV . (166)

Since v = −2 (1 + ε) t and T = 1
2 mv2,

ST =
∫ 1

−1
2(1 + ε)2t2dt = 2(1 + ε)2 ·

∫ 1

−1
t2dt . (167)

On the other hand v = mgx = 2x, therefore

SV = 2(1 + ε)
∫ 1

−1
(−t2 + 1)dt . (168)

Both integrals can be solved looking at the plots below.

ST =
4
3
(1 + ε)2 , SV =

8
3
(1 + ε) . (169)

Evaluating ST − SV we get:

S(ε) ∝ (1 + ε)(ε− 1) (170)

hence we see that the Newtonian trajectory in spacetime
(ε = 0) is the one that minimise S! This is a general property,
that may be proved to hold for every system in a far more
rigorous way.
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Action units

The dimensions of the action are energy multiplied by time.

Action→ Energy · Time (171)

It turns out that the action of a system 58 is related to the product of 58 A Cuppari, G Rinaudo, O Robutti,
and P Violino. Gradual introduction of
some aspects of quantum mechanics in a
high school curriculum. IOP Publishing,
Physics Education, 1997, vol. 32, n. 5,
302-308

its spatial dimensions L (the spatial range covered by the system) and
its momentum dimensions p (the momentum range). For example
for a vibrating system (mass-spring system) L is the amplitude of
the spatial oscillation, p the amplitude of the momentum oscillation
(p varies from a minimum to a maximum value). Therefore we can
also reach a rough estimate of the action of a system by simply
multiplying these two quantities.

Action ∼ p · L (172)

So the order of magnitude of the action of a system may e repre-
sented by the area covered in the phase space x, p. Dimensionally
speaking it can be easily verified that the relation (172) is true. On the
other hand, if we want to test it mathematically we would need to
solve some integrals.

Quantum systems and Action

As we have discussed previously, Classic Mechanics may be consid-
ered a limiting case of Quantum Mechanics as λ → 0, in analogy
with the relation between Physical Optics and Geometric Optics. If
we consider the De Broglie equation p = h/λ, we discover that

λ→ 0 =⇒ p→ ∞
hence S → ∞ .

(173)

So we may conclude that if the action of a system is big Classic
Mechanics may be a good theory to deal with. On the other hand,
for small values of the action Quantum Mechanics is needed. In
conclusion we may ask students to evaluate the action of typical
classical system (a mass-spring system) and a typical quantum
system (the Hydrogen atom).
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Math Box - Action of a classical and of a quantum system

The Action of a mass-spring system

Frequency ∼ 1 Hz , Period ∼ 1 s, L ∼ 0.5 m, m ∼ 0.1 kg.

S ∼ pL = mv L (174)

In one period the mass covers 2L = 1m, hence v = 1 m/s.

S ∼ 0.05 J s (175)

The Action of the Hydrogen atom

The evaluation of the action for the Hydrogen atom is quite
easy if we take in mind the Bohr’s quantisation rule (96)
L = nh̄.
According to the (172) the angular momentum L is a direct
estimate of the action, thus the action is of the order of magni-
tude of the Planck constant:

S ∼ 10−35 J s (176)

The quantization of the electromagnetic radiation: light is made of
photons

In this section we will show how to introduce the concept of photons
to secondary school students by means of a quite simple experiment
requiring only a white sheet of paper and a digital camera. The
idea relies on the simple consideration that if light is composed
of particles, when it strikes the pixels of a digital sensor it should
present the typical statistical properties of grains spread over a
square grid. Moreover the number of photons (grains) recorded on
each pixel (square of the grid) should follow the Poisson distribution.
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The simple idea is that if we succeed in showing this fact
taking digital pictures, we also succeed in convincing students
that light comes in packets we call photons.

Spreading a number of points on a square grid we will count a
number of them in each cell. The counts distribution may be simu-
lated and histogrammed, as shown in figure 94, by means of a C++
code or may be derived by direct experimentation, simply spreading
salt (or brown sugar) grains over a square grid. The Poisson distribu-

Figure 94: C++ Simulation for the
random distribution of points on a 5x5

square grid.tion P(n) gives the probability to have n counts in a cell of the grid.
The distribution depends on a single parameter: the mean value of
the counts, λ.

P(n) =
λn

n!
e−λ . (177)

In the simulation presented in figure 94 we have 80 points ran-
domly distributed over the 5x5 grid, the mean value for the counts is
nearly 3. Just to be clear, the second column of the green histogram
tells us that in 4 out of 25 cases a we had 1 point in a cell. The curve
that fits the histogram is the Poisson function multiplied by a nor-
malisation factor ("Norm" in the histogram box). As we can easily
verify, both with reiterated simulations or direct experimentation, the
standard deviation σ is the square root of the mean value λ:

σ =
√

λ . (178)



164

Figure 95: The Poisson distribution and
its standard deviation.

If we consider the points on the grid as photons "falling" on the
pixel matrix of the sensor of a digital camera we may establish a
correspondence among the mean value of the counts on each cell and
the signal recorded on each pixel. On the other hand the standard
deviation σ will correspond to the signal fluctuations.

λ → SIGNAL
σ → FLUCTUATION

The ratio between the standard deviation and the mean value
specifies the relative importance of the fluctuation over the signal. If
we compare figures 96, 97, showing two simulations with different
values of the signal (3 for the first one, 80 for the second one), we
can discover that fluctuations are mostly important for low signal
situations. A fact that is confirmed by the ratio σ/λ which becomes
smaller and smaller as the signal increases:

σ

λ
=

Noise
Signal

=
1√
N

(179)

This means that Poissonian Fluctuations are more easily
resolved in a Low Signal scenario.

This is a useful tip for the design of our simple experiment.
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Figure 96: Low Signal simulation, 80

points spread over the 5x5 grid.

Figure 97: High Signal simulation, 2000

points spread over the 5x5 grid..
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The experiment with the digital camera

In order to show that light impinges on the sensor matrix as a shower
of photons, we take a series of pictures of a white sheet of paper
gradually reducing the time exposure59. Therefore moving from a 59 Maintaining fixed all the other camera

settings.high signal to a low signal scenario. If we manage to measure the
signal λ and the noise σ, we have the opportunity to check if, in
the low luminosity images, the relation among these quantities is
Poissonian. The figure below (Fig. 98) shows three pictures of the
white sheet taken with different shutter speeds (from the picture n.
1 with the highest signal to the darkest one, picture n. 3). For each

Figure 98: The plot of the relation
among the standard deviation of the
intensity distribution and the mean
value.

picture we consider a box (see the yellow one inside picture n. 2) and
we evaluate the distribution of the signal intensities for all the pixels
of the box. These operation may be carried out by a free software,
Image-J 60. The resulting distribution (see top-left part in Fig. 98) 60 ImageJ. ImageJ, open source im-

age processing program designed for
scientific multidimensional images.
https://imagej.net/Welcome

returns the mean value of the signal of the pixels in the box (λ) and
the standard deviation (σ).

Collecting such values for a dozen of pictures we build the plot
showing some points of the function σ(λ). These data may be fitted
with a power law (y = a · xb). The data collected in our experiment,
carried out with a Canon 350D camera, show a proportionality
between the standard deviation and the square root of the signal
(b ∼ 0.5) (178 ),
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Figure 99: The plot showing the ’fluc-
tuation’ (the standard deviation) as
a function of the ’signal’ (the mean
value).

thus proving the Poissonian distribution of the photons on the
pixels of the sensor!

We may notice that the proportionality factor is not one, a fact that
has a quite technical explanation we are not going to develop here.
We just say that the camera does not directly counts the number of
photons impinging the sensor. The photons collected by a pixel (Nph)
ere converted in electrons stored in a potential well, these electrons
generate a voltage then transformed in a digital number (NADU).
Eventually the number of photons Nph is related to NADU by a factor
given by the quantum efficiency Q (the ratio between the number
of photons collected on a pixel and the number of electrons stored)
multiplied by the gain g (the ratio between the number of electrons
and NADU). The proportionality factor arising from the data analysis
(a ∼ 0.35) is the product Qg.

The Close Encounter approach to the Heisenberg Principle

The Uncertainty Principle is one of the milestones marking the break-
up with former theories describing reality at macroscopic level. Its
physical meaning has been deeply discussed and currently various
approaches have not yet come to a common description. Here we
propose an inquiry based approach to the principle, based on the
acoustic analysis of a musical theme form the Steven Spielberg’s
movie "Close Encounters". The ’Close Encounters’ approach61 intro- 61 L Galante et al. Close Encounters with

Heisenberg: uncertainty in the secondary
school. Physics Education - ( IOP
Publishing ), vol. 54, n.1., 2018

duces the principle as an intrinsic property of a quantum system, as
something that holds regardless of any measurement process. Fur-
thermore, it gives the possibility to carry out a discussion about the
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physical meaning of the Principle itself.
The interested teacher may be introduced to ’Close Encounters’

method on the site "PHE - Teaching Quantum Mechanics" in the section
devoted to this topic (Fig. 100). In the site the educational path is
divided in three steps. The site guides the teacher (or the entire class-
room) providing tutorials, videos, a series of inquiry and practical
activities and forms. The site structure and, therefore, the educational
method will be described in the following sections.

Close Encounters - Step 1

To fully grasp the physical meaning of the Heisenberg Uncertainty
Principle (UP) we firstly need to become familiar with three key
concepts:

1. What is a Distribution.

2. What is the Dispersion of a distribution.

3. The possibility to represent a physical system in different Do-
mains62. 62 We might symbolise these concepts

with a triple ’D’: DDD.

Figure 100: The section Teaching Quan-
tum Mechanics of the PhE Site devoted
to the ’Close Encounters’ approach

Step 1 is entirely dedicated to this task. The goal may be achieved
carrying out simple experiments with sounds, thus providing the
classroom with an inquiry environment where they can carry out
their own explorations and draw their own conclusions. In the
following boxes we will show what is done on the site.
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Pure tones in the Frequency Domain

Clicking on a link of the site students may listen to a pure
tone ( f = 1000Hz), a sinusoidal sound with a well defined
frequency f .

They are asked to explore the sound in the frequency domain,
with a Spectrum Analyser installed on their mobile phones.
Two free applications are suggested: Android Spectrum An-
alyzer PRO (for Android devices) and SpectrumView Free
(for Apple devices). Some basic explanation about Spectrum
Analysers is given, then their exploration guided by an on-line
form starts. The questions are:

• What Frequency plot do you expect from the analysis of a
pure tone?

• Run your analyser and zoom the frequency axis between
0 Hz and 2000 Hz. Play the pure tone. When the spectrum
of the sound appears, pause the application in order to
freeze the frequency plot on your display (see figure below).
What is the frequency of the pure tone you were playing?

With this activity the teacher has the opportunity to discuss
the possibility to represent a sound both in the time and in
the frequency domains. Furthermore, comparing the expected
frequency plot for a pure tone with the measured one, a
preliminary discussion about distributions may be started.

Once the frequency distribution of a sound has been experienced,
students face a section of the site in which distributions in the fre-
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quency domain are presented in some more detail.

Distributions and Dispersions

Sounds are composed by a complex of frequencies. Each
sound has a different distribution in f . The shape of the distri-
bution tells us what frequencies are composing the sound and
their importance, the intensity I( f ).

An important feature is the dispersion of the distribution.
Without moving into mathematical details we can say that
the dispersion is the length of the frequency range in which
the distribution is significantly high. Dispersions may be
represented by the symbol ∆ f .

The dispersion gives an idea of the spread of the distribution
along the x-axis. Generally physical systems are dispersed in
many different domains. A sound may be dispersed in time,
t, or in frequency, f . A body may be dispersed in space. For
example think to a string fixed at both ends. It is made of
many parts distributed along one spatial dimension. If the
string vibrates, its parts have different speeds, zero at the ends,
maximum at the centre (if the first vibrational mode is active).
Therefore the system is distributed even in the speed domain,
v.
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A gas at temperature T is distributed in the speeds of the
molecules (Maxwell distribution) and, for example, this is
extremely important for the fusion processes in the Sun.

Rough estimation of the dispersion

In case of peaked shapes of the distribution, a rough calcula-
tion of the dispersion may be achieved evaluating the distance
along the x-axis (Hz in our case) between the peak and a point
x dB below. If we want to compare dispersions of different dis-
tributions we may use this method, always keeping in mind
that the amount of decibels (x dB) has to be the same for every
distribution we want to analyse.

The same system may thus be described in different domains.
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Two different domains

A sound perceived by our ear may be represented as a func-
tion of time: a pressure changing over time. We have con-
sidered a pure tone that may be represented by a sinusoidal
function over time: the pressure at our ear varies up and
down with a sinusoidal trend.

But the same sound may also be represented as a function
of frequency. We have seen how an ideal pure tone should
be represented in the frequency domain as well as the fre-
quency plot of a real pure tone generated by the speakers of
our computer.
An ideal pure tone may be represented in the frequency do-
main as a function G( f ): a very sharp peak at the frequency
f .

A real pure tone generated by the speakers of the computer is
represented in the frequency domain as a function G(f) which
is a distribution of frequencies peaked around the frequency f.
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Therefore we have two different variables (t and f ) and two
different functions: g(t) and G( f ).
g(t) and G( f ) represent the same physical system (a sound in
our case) in two different domains.
Since both functions describe the same system, it is not diffi-
cult to understand that they are connected to each other. The
mathematical calculation allowing to transform g(t) in the
corresponding G( f ) is called Fourier Transform (FT).

Close Encounters - Step 2

Now we are ready to move towards the discovery on an uncertainty
relation in acoustics. Students are asked to work with the five tones
theme from the Steven Spielberg’s movie "Close Encounters of the
third kind", the theme used by humans to establish a communication
channel with the alien spaceship. For our purposes we have recorded
a motif with the same five notes, each one with a different time
duration.

The Close Encounters’ theme Analysis

Each of the five pure tones has been modulated in time with
a Gaussian function and mathematically synthesised with the
software Mathematica. Five modulations, each with a different
standard deviation, in order to have a set of five differently
dispersed sounds.

(The sine curve modulated by a gaussian function)
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(The theme as a function of time)

Evaluating the spectrum of the motif and measuring for each
note the frequency and the time dispersions, ∆ f and ∆t, we
get a set of five data pairs showing the uncertainty relation
∆ f · ∆t = const. . In the following lines we will show how to
carry out the analysis.

(The Spectrum of the theme)

We suggest to carry out the analysis of the five-note tonal phrase
with the free software Praat63. 63 Boersma P and Weenink D.

Praat: doing phonetics by computer.
http://www.praat.org/, 2018
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Praat allows to analyse sounds both in the time and frequency
domain. The available tools for the time analysis allow to mea-
sure the five time dispersions ∆t of each note. In the figure
below we zoomed in a single note and estimated the disper-
sion ∆t by measuring the time distance between the top of the
intensity profile and the point 20 dB under the top level. We
acted on the intensity line (lower plot in figure) expressed in
dB. A Click on any point of the plot returns the intensity level
(in dB) and the corresponding time value (in seconds).

In a similar way we zoomed in a single spectrum peak and
measured the frequency dispersion ∆ f as the frequency dis-
tance between the the top of the spectrum and the point 20 dB
below.

This process, repeated five times, gives the data table 4, show-
ing the constant value of the dispersions product. Data was
also fitted with a one parameter function xy = k; the resulting
plot shows a good agreement of the data set with the mathe-
matical model (the parameter value in this case is k = 0.365).
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∆t ∆ f ∆t · ∆ f
(s) (Hz)

0.11 3.4 0.37

0.16 2.2 0.35

0.22 1.7 0.37

0.27 1.3 0.35

0.32 1.1 0.35

Table 4: The data set.

On the website a set of three short videos directly explains how to
analyse the musical motif with the software Praat.

Close Encounters - Step 3

So far students should be aware that, at least in acoustics,

Uncertainty Relations involve dispersions of a system in two
different domains.

This is a crucial consideration that we want to extend to the
Heisenberg Uncertainty Principle. In this section we show how,
according to our educational approach. We report what is proposed
on the website.

From the Uncertainty Relations in acoustics to the Heisenberg
Principle

We have worked in the time and frequency domains. Two
quantities that have a specific relation: an amount of time T
automatically gives a frequency f = 1/T.

Now we may ask if there are other similar variables, related
in the same way. For example, we can work with a space
variable, like x. From now on we will move from the time-
frequency domain to a new domain involving space, x, instead
of t.
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Working in space, by analogy, fill the following Form.

The form should stimulate students to discover that two vari-
ables corresponding to the pair (t, f ) exist: x and 1/λ. In 1/λ

the classroom may recognise a quantity proportional to the
wave number k.

k =
2π

λ
(180)

Hence from now on we will consider the pair (x, k).

From the mathematical point of view there is no difference be-
tween working with (t, f ) or with (x, k), the relations among
the variables are exactly the same. So we expect an Uncer-
tainty relation to hold also in the new domain:

∆k ∆x = const. (181)

We have come to an Uncertainty Relation (181) between the pair
of variables (x, k). This relation tells us that the more a system is
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dispersed in space the less is dispersed in the other variable.
Now we want to better understand what k represents. We have

to say that in 1927 was carried out an experiment showing that the
momentum p of electrons could be expressed through a wavelength
λ64. The relation being: 64 Davisson C J and Germer L H.

Reflection of electrons by a crystal of nickel.
Proceedings of the National Academy
of Sciences of the United States of
America. 14 (4): 317322, 1928

p =
h
λ

. (182)

The experiment was performed sending an electron beam against a
Nickel crystal and observing diffraction patterns generated by the
scattered electrons.

According to this relation p is proportional to k:

p ∝ h k . (183)

It can be proved that the wave function describing a quantum
system in space is related to the wave function in momentum
by the Fourier Transforms exactly as it happens in acoustics
with sounds in time and frequency. This is strictly related to
the fundamental equations of quantum mechanics and acous-
tics (the Schrödinger and the D’Alembert equations), both
linear and homogeneous, thus supporting the superposition
principle (see page 129). This fact allows us to extend the un-
certainty relation we discovered in acoustic to the Heisenberg
UP for quantum systems. Therefore, since ∆k = ∆p

k , eventually
we have:

∆p ∆x ∝ h . (184)

Dispersion not Precision

The introduction of the UP with the "Close Encounter" method offers
the possibility to engage critical thinking. In our opinion this is a
crucial point in the learning process of young students, in order
to avoid a blind belief in what is taught and written on textbooks.
In the proposed approach the deltas ( ∆t , ∆ f ) are dispersions of
the physical system instead of measurement uncertainties. We can
consider each note of the musical theme as a system spread over
time exactly as we consider a ball as a system dispersed in space.
Undoubtedly it is not difficult to understand that the measurement
uncertainty δx in defining the position of the ball is not related with
its spatial dispersion ∆x. To be clear, we know that in order to define
the position of the system we can choose a reference point P and
measure it with a certain precision δx, conceptually different from the
dispersion ∆x (Fig. 101).
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Figure 101: The measurement un-
certainty (δx) is different from the
dispersion of the system (∆x).

In the "Close Encounter" approach we have a situation similar to
the one described in figure 101, just transposed in time. It is impor-
tant to point out that

we are not dealing at all with measurement uncertainties but
with dispersions of a unique system in two different domains.

The dispersion ∆ f of each sound has a meaning very close to
the spatial dispersion of the ball: each sound may be considered as
composed of many harmonics with frequencies spanning a range
∆ f . All these aspects are then mapped to the quantum context via
the analogy that is based on the fact that both in acoustics and in
quantum mechanics the Fourier Transform connects the functions
describing the system in two different domains.

We thus arrive to a meaning of the Heisenberg’s Principle which
differs from the following statement that is often written:

It is impossible to measure at the same time and with the
desired precision the position and the momentum of a particle.
These uncertainties are related by an inverse proportionality.

Our proposal rather leads to this statement:

A quantum system has a dispersion in position that is in-
versely proportional to the dispersion in momentum.

This is the true nature of the UP. The principle involves the prod-
uct of the standard deviations (i.e. dispersions) of two wave functions
in two "non-commuting" variables. The section "Bound states and the
Uncertainty Principle" in the Appendix is devoted to show this in a
simple case of a quantum system whose spatial dispersion is given by
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a Gaussian function.

The UP and how it is taught in the Italian Secondary School

As we have already stated the Heisenberg UP does not involves pre-
cision and disturbance of a measurement 65,66. It concerns with an 65 Robertson H P. The Uncertainty

Principle. Phys. Rev. 34, 163, 1929

66 Mahler D H Hayat A Soudagar Y
Rozema L A, Darabi A and Stein-
berg A M. Violation of Heisenberg’s
measurement-disturbance relationship by
weak measurements. Phys. Lett. Rev. 109,
100404, 2012

intrinsic property of a quantum system, it holds regardless of any
measurement on the system. Therefore we think that any effort to
introduce it involving a measuring processes to define the position
of a particle (for example the detection of a scattered photon) should
be avoided. Some authors 67, although choosing the measurement

67 Valentzas A and Halkia K. The
’Heisenberg’s Microscope’ as an example
of using thought experiments in teaching
physics theories to students of the upper
secondary school. Res Sci Educ 41:525539,
2011

approach, highlight the fact that also an ideal measuring device
(sending a single photon on the system), would cause a disturbance
on the measured system. Even if this approach does not involve any-
more the imperfection of the apparatus, it is still linking the UP to a
measurement process, thus losing the possibility to reach the deep
root of the principle itself. The UP is also often addressed through
the analysis of the single slit experiment. This approach gives the
valuable possibility to engage students in hands-on activities per-
forming a simple and low-cost experiment with a laser. However, the
strategy does not fulfil the expected needs. Again we lose the chance
to introduce the principle as a quantum intrinsic aspect. The slit ex-
periment shows properties arising from the interaction of the particle
and the slit, beyond any doubt, is a scattering process. The formu-
lation of the Heisenberg’s Principle that we can achieve working on
the electron diffraction pattern is a consequence of an interaction
rather than an intrinsic property of the electron. Thus, at least, it
should be pointed out that the obtained relation is not referring to
the particle but to the system < electron + slit >. In a sense the slit
experiment is again a measuring process. Common assertions such
as "the spatial uncertainty ∆x of the electron passing the slit is given
by the slit width" sound bizarre. Students should accept that the ∆x
of the electron changes sharply when passing the slit, thus figuring a
sudden change in the spatial dimensions of the electron, without any
given explanation.

Figure 102) gives a good idea of how the topic is addressed at least
in three different textbooks among the mainly adopted in the Italian
secondary school.

Classroom Test of the Close Encounter approach

The Close Encounter approach to the Uncertainty Principle was
tested in one class of the classical Lyceum "Cavour" in Torino. A
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Figure 102: How the UP is usually
presented in the Italian textbook.

school whose educational curriculum is mainly devoted to classical
studies: philosophy, Latin, Greek and Literature. Physics is taught in
the last three years of the five years curriculum (2 hours per week, 66

hours per year). In the last year students are introduced to electro-
magnetism and the basic principles of modern physics.

The course was a 6 hours programme, divided in three meetings
(one per week in April - May 2019). The class was guided through
all the steps previously described and was engaged in all the inquiry
based activities. The PhE site was the framework in which students
were supposed to move in order to understand the Heisenberg
Principle. Therefore the course was held in a computer lab so that
each group (formed by 2 students) had the opportunity to work
directly on the dedicated site.

The lecturing delivered by the instructor was limited to short intro-
ductions of the activities and to short introductions of key concepts.
The instructor also collected the results obtained by students dur-
ing their investigations. Students achievements and understanding
was monitored through Google Forms filled by the participants and
through plenary discussions. It was instructor’s task and concern
to collect the main ideas, to stimulate discussions and, if possible,
to convey the entire class to a common interpretation. The course
was held by an external instructor, the physics teacher of the class
followed the course with his pupils. Both the physics teacher and
the students were asked to answer few questions about the course
in order to have a feedback about the adopted educational approach.
Two surveys were prepared, one for learners and one for an expert
in the teaching of physics: the physics teacher. Here we report the
results of both surveys in original language and in English.
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Students’ Feedback - In Italian.
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Students’ Feedback - In English.

• You have attended a course on the Heisenberg Principle,
what have you gained from this experience?

– It has been an enriching experience, that has opened new
perspectives in the study of physics.

– First of all a deep knowledge about the topic. The desire
to always go deeper, even on less attractive topics. What
have surprised me is the clear way in which this things
have been fixed in my mind. Even though I have not
reviewed them (as usually happens with other subjects)
I would be able to clearly expose them (it never happens
to me).

– Indeed, the most interesting aspect was the methodology
adopted by the instructor, an undogmatic approach. I
had difficulties in being critical, since we were dealing
little known topics. However the experience was surely
innovative and original.

– Something about Quantum Physics

– I have seen that physics is closer to us than we think. I
have discovered the beauty of learning by inquiry.

– To understand what the Heisenberg Principle is

– It made me understand that mankind still has a lot to
discover from nature.

– My hate for physics

– It has stimulated curiosity about physics

– I have gained new knowledge and a new approach to
physics

– I have learned something about the Heisenberg Principle,
but not so significantly.
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• In some stages of the course you were directly engaged in
measurement activities and data analysis. Sometimes you
were asked to reach your own conclusions. How do you
estimate this kind of approach?

– Very interesting and innovative, since it increases the
students’ autonomy.

– Very interesting mainly because I felt myself part of the
process, it was not the usual frontal lecture. We reached
theoretical conclusions working on experimental mea-
surements. This is the job of a self-respecting physicist.

– The data analysis and the plots interpretation allowed
us to draw conclusions. This made me understand that
physics is not far from reality as we might think reading
books.

– Useful

– These are very interesting activities; they stimulate to
get in the game to learn. However they are difficult to be
implemented, since each students has a different pace.

– Useful for a better learning and for the autonomous
reasoning.

– The activity was useful for mastering the topic.

– Positive

– Interesting and useful

– Very good

• Did you manage to understand the essential aspects of the
course?

– 54.5% of the students understood among 80% and 100%

– 27.3% of the students understood among 60% and 80%

– 9.1% of the students understood among 40% and 60%

– 9.1% of the students understood among 20% and 40%
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• Something has changed in your relationship with physics?

– Physics is not my favourite subject, however this course
helped me in rethink my feelings and in appreciating
it. The reason is that I have discovered that it is not an
abstract discipline.

– This course helped me in remembering that physics
deals with our real world, for example it explains acous-
tic phenomena always present in our life. It is as if
physics had become closer to our life. Something that
our teacher always remembers us, since we often tend to
look for abstract rules.

– Not so much

– No, however I have discovered that a lot of differ-
ent methods to approach physics exist. Nothing has
changed.

– No, it confirmed that physics is something not for me.

– My curiosity has increased.

– Yes, it helped me in understanding that we have to go
beyond what is written on textbooks, we have to go
deeper.

– No.

• What is the feature of the course you liked most?

– The activity of data analysis.

– The commitment of the teacher, which was able to ex-
plain in an easy way such a difficult topic. He was really
interested in teaching both the content and the stimulus
to activate our critical thinking.

– Even if we were free to collect data we were guided and
helped in our reasoning.

– The practical activities.

– The opportunity to draw conclusions by my own.

– Get the theory from practical activities.
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• What did you least liked ?

– The course was too short.

– I had difficulties in working with the spectrum analyser.

– The claim that everyone should be interested in quantum
mechanics.

• Do you have something to suggest about how to present the
course to young students?

– I believe the method is useful, probably I would avoid
the first two hours of the Saturday morning.

– It probably was too short. It would have been nice to
move even deeper in this topics, since I was really inter-
ested in the subject.

– Do more meetings.



Teaching General Relativity

The modern theory of gravity is the General Relativity proposed
by Albert Einstein in 1915. As we will discuss, his idea to explain
gravitation deeply leans on geometric concepts. In this booklet we
will explore this fascinating theory through a series of stages. In each
one we will have the chance to build an hand-on model and to carry
out explorations on it. This will help us to visualise and understand
the main important concepts of this beautiful theory.

This is the result of a work experience in spring 2019 with the
group of Ute Kraus and Corvin Zahn at the University of Hildesheim
in Germany. They have developed an original approach to the teach-
ing of General Relativity68,69 based on the Regge Calculus70. My 68 U Kraus C Zahn. Sector models—A

toolkit for teaching general relativity: I.
Curved spaces and spacetimes. European
Journal of Physics, vol. 35, n. 5., 2014

69 U Kraus C Zahn. Sector models—a
toolkit for teaching general relativity: II.
Geodesics. The European Journal of
Physics, vol. 40, n. 1., 2019

70 T Regge. General Relativity without
Coordinates. Nuovo Cimento, XIX, 3, 559.,
1961

work in collaboration with them was to design and write a short
booklet to present their educational method to high-schools both in
Italy and Germany.

Curvature in 2D

In this section we will learn what the curvature of a surface is and
how to recognise it in all the surfaces that surround us. Later, going
forward on our journey to General Relativity, we will also learn how
to measure it.

We can start building a very common surface: the sphere. What
we need is to print the image in figure (103), cut the three shapes,
and join together six edges with six pieces of adhesive tape (Fig. 104).
Before joining the edges we recommend to fold the faces along the
horizontal lines. What we will get (Fig. 105) is a spherical cap. To be
more precise we will have in our hands an approximating surface: a
spherical cap approximated by 9 flat sectors. Thus:

2D Surfaces may be represented by approximating surfaces.

To explore the curvature of the sphere we will adopt a Flattening
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Figure 103: Print this image to build a
spherical cap.

Figure 104: Six pieces of adhesive tape
and some folding to build the surface.

Figure 105: A spherical cap (left) and its
approximating surface (right).

Technique: we will flatten the spherical cap on a plane. In order not to
damage the paper model, we need to cut some edges in advance (Fig.
106). Now we can flatten the approximating surface on the desk. As a
result the surface tears, leaving empty spaces among the separated
edges.

Should we repeat the same process with a flat surface, for example
a sheet of paper, nothing would happen when forcing it to stick to
the desk. We have thus discovered that, when flattened, surfaces may
behave in different ways: if they are flat they adhere perfectly to the
plane of the desk, if they are like a sphere they tear.
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Figure 106: Cut the red edges to flatten
the approximating surface on a plane.
The surface will tear (bottom-right).

The Flattening technique is a tool to distinguish between flat
and sphere-like surfaces.

We will now explore another surface. Print the the image in figure
107 and join the six edges: you will have in your hands an approximat-
ing surface of the saddle (Fig. 108). How will it behave if flattened?

Figure 107: Print this image to build a
saddle.

Cut the edges shown in the figure and flatten the surface. What we
see differs again from how flat surfaces behave, but it also differs
from the sphere. We do not have empty regions among the separated
edges, on the contrary, we have overlapping sections.

We have discovered a third type of surface: the saddle-like surface.
We can distinguish among this surfaces with the flattening technique,
but the revealed feature is what mathematicians call the Curvature.
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Figure 108: A Flattened saddle will
overlap.

• Surfaces that once flattened perfectly adhere to the plane
are zero curvature surfaces

(K = 0).

• Surfaces that tear are positive curvature surfaces

(K > 0).

• Surfaces that overlap are negative curvature surfaces

(K < 0).

A number, the curvature K, can distinguish among the three types
of 2D surfaces. We have a well defined technique to evaluate the sign
of this number, later we will learn how to assign a value to it.

Inhabitants of their own space

So far we have seen three different kinds of surfaces (the flat one,
the sphere, the saddle) and we have built approximating surfaces of
some of them. We should now be able to recognise them looking at
the great variety of surfaces embedded in the space around us. How-
ever looking at embedded surfaces is going to become unsuitable, as
soon as we will move from 2D to 3D objects. Dealing with the theory
of gravity we will be interested in considering the 3D space around a
Black Hole and we would have the nasty surprise that is not possible
to embed a 3D curved space in our flat space: we should need extra
dimensions! This is something we can guess with an analogy at lower
dimensions: if we were inhabitants of a flat world we would have no
problem to embed a flat object in our space (Fig. 109), but no chance
to do the same with a curved surface like the sphere (Fig. 110).
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Figure 109: A flat surface can be
embedded on a plane.

Figure 110: A sphere, a curved surface,
can not be embedded in a flat world.
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In the same way

we can not embed 3D curved spaces in our 3D flat world. As a
consequence we can not see, draw and even imagine them.

Luckily we have an opportunity to bypass the problem. Again,
an example at lower dimensions will help us. A saddle is a curved
surface that can not be hosted in a flat world (Fig.111), however a flat
being has the chance to perceive its curvature. Let’s see how.

1. We can build an approximating surface of the saddle.

2. The approximating surface can be flattened, so becoming a Sector
Model of the curved surface.

3. The Sector Model can be embedded in the flat world.

4. The flat being can discover the overlapping and the curvature of
the surface. Sadly he will never be able to see the saddle, draw it
or even imagine it.

Figure 111: With Sector Models any
curved surface can be perceived by a 2D
being.

This is true, in general, for any 2D surface.

With the Sector Model of a 2D curved surface we can discover
its curvature working on a plane.

A Sector Model is the flattened version of the approximating
surface (Fig. 112).
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Figure 112: A Sector Model of a Saddle.
To flatten the approximating surface
we take from it each flat sector and we
dispose it on a plane.

We will call this method Sector Model Approach. It will be crucial
for us when we will try to have an idea of the space surrounding a
gravitational source. At that point we will have the same problem of
the being of figure (111).

As three-dimensional being, we will be forbidden to embed a
curved 3D space in our 3D flat world.

Our only chance? Come up with a workaround. The same we
adopted for the flat being. Here we present the general idea, in
the following chapters we will use it and details will be deeply
discussed.

1. We build an approximating space of the curved 3D space by means
of polyhedra (before they were polygons) joined together sharing
faces (polygons were sharing edges).

2. The approximating space can be "flattened", so becoming a Sector
Model of the curved 3D space. To flatten it we just have to take
each polyhedron apart and dispose it in our flat space, as shown in
figure (112), in a 2D example.

3. The Sector Model can be embedded in our 3D flat world.

4. Joining the faces of the polyhedra, the flat 3D being can find out
the tearing or overlapping of the Sector Model and therefore the
curvature of the space.
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Figure 113: With a Sector Model of a
curved 3D space we can find out its
curvature.

3D Flat space

In the previous section we have repeatedly used terms like "3D flat
world" or "our flat space". Without going in deep details we would
like to give some explanation of the concept behind. The task is not
that easy since, as already stated, we are unable to imagine a curved
3D space. However we will tell what distinguish a flat 3D space from
a curved one. On a 3D flat space, for example, parallel lines always
maintain the same distance. This is not going to happen on curved
spaces: accordingly to their curvature parallel lines will become
closer and closer or more and more distant.

Further explorations

Sometimes exercises may be transformed in further investigations.
In this paragraph we give some example of small explorations that
could be carried out by students.

1. An inhabitant of an outer world measures the sectors shown in
figure (114), what can you say about the curvature of his world?
[The colours of the edges tells you how to join the edges]

2. Determine the curvature of a cylinder

Figure 114: Sector reported by the
inhabitant of an outer world.
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Curvature with Sector Models

What is the space around a Black Hole like? We can try to answer
to this question using Sector Models. We will start a trip through
curvature of 3D spaces. At the end of this fascinating journey we will
find the Einstein field equation, which is there ...waiting for us.

Curvature in 2D

In principle, finding the curvature of a surface at a point P with
Sector Models is quite simple. Working just on a small region of the
surface, we can follow this "Curvature Hunter" procedure:

1. Go to the surface and draw a grid of polygons sharing the vertex
P and completely surrounding it (Fig. 115).

2. Take measures of the lengths of the edges of the polygons.

3. Go back home and, according to the measures, reproduce the
polygons on scale on a flat surface (this step corresponds to the
building of a Sector Model of the surface around P).

4. On a flat surface dispose the sectors around the common vertex P
and try to join their edges.

5. Look for tearing or overlapping.

Figure 115: The Curvature Hunter
Procedure. Reach the surface and bring
back home measures to build a Sector
Model of the surface.

If the polygons do not cover the whole angle around P (tearing)
the curvature K is positive, if they cover more than the full angle
(overlapping), K is negative. If neither one of those things happens
the surface is flat.

2D to 3D extension

We have to keep in mind that our goal is to analyse the three-
dimensional space around a Black-Hole. So we are interested in
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extending to 3D the Curvature Hunter procedure we have outlined for
2D surfaces. In a way we have to wear special "3D glasses" in order
to properly modify the 2D process. Looking at 2D objects with these
lenses we will see the corresponding 3D geometrical entity (Fig. 116).

A vertex will look like an edge, and edge like a face, a face like
a block. With this in mind we can now extend the Curvature Hunter
procedure.

Figure 116: The "3D glasses" connect
a 2D object into its corresponding 3D
object.

• A VERTEX corresponds to an EDGE,

• An EDGE to a FACE

• A FACE to a BLOCK.

Curvature in 3D

Now let’s look at the 2D Curvature Hunter procedure with our new
"3D glasses". It changes a bit, but the logical basis remains the same.

With 2D surfaces we were used to select a vertex P and surround
it with a number of polygons. In a 3D space the vertex becomes an
edge as well as a polygon a block, thus we need to select an edge L
and to draw around it a grid of blocks completely surrounding it (Fig.
117 shows this procedure in our space).

Like before, is time to take measures of our grid of blocks in order
to build a 3D Sector Model of that region of 3D space, meaning that
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Figure 117: An edge L in a 3D Flat
space, surrounded by blocks.

we want reproduce the blocks on scale in our 3D flat space. Once the
Sector Model is ready, in a our flat 3D space we have to dispose the
blocks along the common edge L trying to join their faces. Eventually,
look for empty spaces among the faces (Fig. 118), in analogy with
the tearing of 2D surfaces, or for blocks that penetrate one inside the
other (Fig.119), in analogy with the overlapping.

Figure 118: Tearing Blocks.

Figure 119: Overlapping Blocks.

In the first eventuality the curvature of the investigated 3D space is
positive, in the second negative.
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However, if we take a moment and focus our attention on the
edge L, some questions come up. In three dimensions an edge can
be oriented along the three fundamental directions: x, y, z. Therefore,
to evaluate the 3D curvature we have to choose three different edges,
Lx, Ly, Lz originating from the same point (Fig. 120) and for each one
we have to carry out our procedure.

Figure 120: The three directions along
which we can choose the edge.

Almost naturally we have discovered that

the 3D curvature is no more a number, is a mathematical
quantity with three components!

The Black Hole geometry

The Black-Hole Sector Model

We now have a basic idea about how to detect the curvature of a
3D space, it is time to put into practice our knowledge. It is time to
consider a Black Hole (BH)!

First we have to build a Sector Model of the space around it, thus
we have to send there a messenger. He is asked to stay far from the
horizon of the BH, to "build" a grid of blocks around three edges
like those shown in figure 120 and to take measures of the grid (Fig.
121). With his measures we can reproduce the BH blocks on scale and

Figure 121: Building a grid of blocks
around a BH.
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dispose them in our flat 3D space, exactly as shown in figure 122.

Figure 122: The Sector Model of the
space around a BH.

To reproduce these blocks print the cut-out sheet (Fig. 123) and
assemble eight blocks.

Figure 123: The cut-out sheet to assem-
ble the blocks.

The BH blocks. A closer look

Figure 124 defines the main directions of the blocks. Once you have
this blocks in your hands the first thing that you may notice is that
they cannot be arranged in order to fill our space without gaps: this
is the first clue that the space around a BH is not flat. However, with
a BH of the appropriate mass in the centre of the model, the blocks,
the way they are, would fit without gaps.
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Figure 124: The main directions of the
blocks.

The BH curvature

Now we want to detect the three components of the curvature. As
discussed before we have to work along three different edges orig-
inating from the same point, the radial (Fig. 125), the longitudinal
(Fig. 126) and, eventually, the latitudinal one (Fig. 127).

Figure 125: The radial edge.

Figure 126: The longitudinal edge.

Figure 127: The latitudinal edge.

To find the curvature along the radial direction we have to dispose
the four blocks 1, 2, 5, 6, along the common edge (oriented in the
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radial direction) trying to join their faces. Figure (128) shows the
result of this attempt, the common radial edge is perpendicular to the
page and is highlighted by the red dot. The blocks do not completely
fill the space around the edge.

Figure 128: Along the radial direction
the space is not completely filled.

The first component of the curvature around a BH is positive.
K1 > 0.

Considering the longitudinal direction, we try to dispose the four
blocks 1, 5, 4, 8, along the common edge. But what we find is that
is impossible. In order to do that the blocks should penetrate one
inside the other. What we can do is shown in figure (129): we may
join the faces of three out of four blocks, sliding the last one along the
face it should share until it touches the block in front of it. The angle
shown in figure is equal to the "overlapping" angle, if it was possible
to penetrate the block. In conclusion the blocks fill more space than
they have available.

Figure 129: Along the longitudinal
direction we have an overlapping.

The second curvature component around a BH is negative.
K2 < 0.
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Similar situation if we align four blocks (1, 2, 3, 4) along the latitu-
dinal edge (114).

Figure 130: Along the latitudinal
direction we find an overlapping.

The third curvature component around a BH is negative.
K3 < 0.

We have learned how to reveal the curvature of a 3D space. Basi-
cally we have defined blocks disposed around a common edge in the
curved 3D space and reproduced them on scale in our flat space. This
procedure led us to discover that 3D curvature is no more a number,
but a mathematical quantity defined by components.

Geometry and gravitation

We started to unveil the space geometry around a BH, which is an
incredible result if we consider how we obtained it, simply working
with paper blocks. But what is even more surprising is that we now
have the opportunity to grasp the essence of General Relativity. We
have enough elements to establish a connection among Gravity and
Geometry.

Physical effects of the negative curvature around a BH

So far we have worked with eight blocks representing the curved
space around a BH, figure 131 involves a bigger number of blocks
and layers so giving a more complete description. Now we can
clearly see that both the green and blue faces of our blocks form
planes: we will call them Equatorial Planes. Figures 129 and 130 tell us
what happens on regions of these surfaces. The overlapping blocks
resemble quite closely the situation we have with the overlapping
sectors of a saddle. In this sense we will say that
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Figure 131: The sector model of a BH.

the negative curvature components k2 and k3 are the curva-
tures of the green and blue equatorial planes.

Now we have all the pieces we need to understand the basic idea
of the General Relativity, it is just a matter of putting them together.

1. Paper model of a Saddle

Building a paper model of a negative curvature surface is a matter
of few minutes. With two sheet of paper and two strips of adhe-
sive tape we can quickly build a saddle (Fig. 132). Cut the angle

Figure 132: Paper model of a saddle.

ε from the sheet A and cut a bigger angle ρ from B. Then, with
the help of the tape, substitute ε with ρ. What you get is a saddle.
Having the foresight to draw two parallel segments, one on ρ and
one on the sheet A, we have a saddle with two parallel lines. We
will use this segments later, now it is important to notice that the
red regions of our model are flat. As we have learned in the previ-
ous chapter, if we flatten them on a plane they will perfectly stick
to it. However there is a region that does not adhere to a plane:
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the part that contains the vertex of the angle ρ. Around the vertex
we have deliberately inserted a bigger angle with respect to the
angle which is up to a flat surface. Flattening this zone will result
in an overlapping (try it!).

Our paper model has negative curvature in a region concen-
trated around the vertex, elsewhere it is flat!

2. Straight Lines on Negative Curvature Surfaces.

We want to study how parallel straight lines behave on a nega-
tive curvature surface. What we have to do is to extend the two
parallel segments we have previously traced. We need to make
sure that our extended lines are straight, which means they do not
deviate either to the right or to the left. To fulfil this requirement
we will use a ruler that will flatten the surface along the line we
want to extend (Fig. 133).

Figure 133: The rule flattens the paper
model so that we can extend the line.

The result is shown in figure (134). Line 1 lies on a flat region of
our model and is separated from line 2 by the negative curvature
region. We may conclude that:

Figure 134: The two lines separated by
a negative curvature region.
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Straight lines initially parallel, if separated by regions with
negative curvature, diverge!

3. Straight Lines on the BH Equatorial Planes

The green plane around a BH is a surface with negative curva-
ture, and we have just learned something about these surfaces!
Therefore, why not repeat the same experiment we made on the
saddle?

We draw a straight line on a flat region of the plane (line 1, Fig.
135), where the BH effects are negligible. Then we move closer to
our gravitational source, ready to draw line 2, that starts parallel to
line 1 and is straight. But, wait a moment, they are initially parallel
straight lines separated by a negative curvature region so they
must diverge. As shown in figure we are obliged to draw a line
that changes direction around the BH.

Figure 135: Line 1 is a straight line far
away from the BH. Line 2 is a straight
line initially parallel to line 1 and closer
to the BH.

It is extremely important at this point to be as clear as possible
about how to consider line 2.

First, line 2 it is a straight line (does not deviate either to right or
to the left).

Second, if we compare the directions of line 2 far before and far
after the BH (thus in flat regions) we can notice a deflection.

In this sense, we can say:

Straight lines traced on any equatorial plane around a BH
are bent around the BH.

The word "bend" could lead to think that the line is not straight,
but this is not true. The line is a straight line of a curved space!
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The word "bend" has to be interpreted as explicitly pointed out in
the second consideration about line 2. You will probably hear or
read a lot about bending of light from a gravitational source, gravita-
tional lensing or light deflection. We do not intend to demonise this
expressions that we are also going to use, we just want to be sure
you know what do they mean.

4. Newtonian Gravity

Why planets are kept in their orbits? Newton’s idea was that mas-
sive bodies attract each other with a force. This force determines
the gravitational bending of the trajectories of massive bodies (Fig.
136). We are talking about the Newton’s law of universal Gravita-
tion, that for centuries has explained the motion of celestial bodies
in the heavens.

In the Newtonian theory of Gravity the bending of the
trajectory of a massive body is explained by means of an
attractive Force.

Figure 136: The Gravitational Force.

5. Geometry and Gravitation

Two similar situations, coming from different domains, capture
our attention. One belongs to the domain of Geometry, the other
to the Newtonian Theory of Gravity.

• From Geometry we have straight lines changing direction near a
BH.

• From Newton’s Theory of Gravity we have the bending of the
trajectories of massive bodies near a gravitational source.

We have the opportunity to transform Gravity from a force ex-
change theory to a pure geometrical theory. We can state that all
the bodies near a BH move along the straight lines of the curved
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3D space. The gravitational bending of the trajectories remains, the
force acting on the bodies vanishes. This is a beautiful and elegant
result, which removes a problem of the Newton’s theory and also
formulate an unexpected prediction. The issue about the Newto-
nian point of view is the so called action at a distance problem. In
few words, it is not clear how two bodies separated by a vacuum
can act on each other. Conceiving the theory from a geometrical
perspective, the force is no more needed and the problem is solved.
Gravity becomes a matter of the spatial environment in which
a body happen to move. A mass curves the surrounding space,
particles move along the straight lines of the curved space.

The unexpected prediction concerns light. Photons are massless
particles, therefore from a Newtonian point of view their trajecto-
ries should not be affected by gravitational forces which directly
depend on mass. However, the geometrical nature of Gravity can
be extended also to photons. There is no reason for the photons
to behave differently from any other particle. The prediction is
astonishing: light should be deflected by Gravity!

We have reached one of the main concepts of General Relativity:

It is the geometry that tells matter and light how to move.

However, we need to say that in our discussion we have com-
pletely neglected time. Nearly ten years before his theory of
General Relativity, Einstein showed that time and space are two
physical quantities extremely correlated. He did this in the the-
ory of Special Relativity, where the natural environment for the
description of particles motion is space-time. So, actually

It is space-time geometry that tells matter and light how to
move.

In other words, we would need to take into account a four dimen-
sional space, adding one temporal direction to the three spatial
directions, thus having to consider curvature components related
to time.

How a Black Hole looks like

April the 10th 2019, the Event Horizon Telescope (EHT) Collaboration
presents its first results: an image of the supermassive BH in galaxy
M87. We take the leap to ask ourselves how a BH looks like. To
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answer this question we will apply what we have just learned about
light travels in a curved space.

Figure 137 shows three different regions that surround a BH, let’s
have a look together.

Figure 137: Three regions surrounding
a BH.

The inner one (dark grey) is a zone from which neither matter nor
light can escape, its surface is called Event Horizon. A photon emitted
by the observer along the black line would follow a straight line in
the curved space leading it directly to the Event Horizon. If we trace
the trajectory backwards (see arrow on the black track) we can argue
that no light from the BH is expected to reach the observer along that
line. The second circle represents the Photon Orbit sphere: photons
can move along this surface without getting closer or away from the
BH. However, this orbit is unstable. A slight perturbation towards
the BH will put the photon on his way towards the Event Horizon.
The red line is the path of a photon emitted by the observer that
enters and remains in the photon orbit. A path slightly above escapes
the BH (see the blue line for example), a track slightly below ends
its journey in the BH. Reversing the direction and moving towards
the observer we can conclude that light coming from above the red
line may reach the observer, light below will never be detected: the
red track separates regions that can send light to the observer from
regions that cannot. Therefore, the angle between two diametrically
opposite red lines (Fig. 138) defines a black region surrounding the
BH. This region is called the Shadow of the BH.

The Shadow of a BH is black region, bigger than the Horizon,
surrounding the BH.

A disc of matter spiralling towards the BH forms the so called
Accretion Disc. This is the way a BH increases its mass over time. The
accretion disc of a BH emits light at different wavelengths, giving us
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Figure 138: The shadow of a BH.

the possibility to detect it with appropriate telescopes.
In Figure 139 we see how photons coming from two points of

the accretion disc can reach the observer. They are moving along
an equatorial plane of the BH, their path is affected by the negative
curvature we have already discussed. From the observer point of
view, the points A and B are behind the BH, anyhow he will see
them! The small box in figure 139 and figure 140 finally show how a
BH would look like for an observer who looks at it from an edge-on
line of sight.

Figure 139: The path of two photons
coming from the accretion disc behind
the BH. In the box, how the observer
sees the BH.

Figure 141 shows the Event Horizon Telescope picture of the BH
in the centre of galaxy M87. The black region is the Shadow of the
BH, the surrounding glow is the accretion disc. As you may guess, in
this case, the line of sight of the Earth is not edge-on to the accretion
disc, this fact explains why we do not see a bar crossing the shadow.
The accretion disc is only 17 degrees tilted with respect to the line
of sight of our telescopes. However this small angle introduces an
asymmetry in the velocities of the spiralling gas: the lower part has a
velocity component directed towards us, the upper part a component
receding from us. Thus for a relativistic effect called Doppler Beaming
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the lower part appears more brighter than the upper one.

Figure 140: Artist impression of the
accretion disc of a BH. The Black region
is the shadow of the BH.

Figure 141: The Event Horizon Tele-
scope picture of the BH in the centre of
galaxy M87.

Einstein’s Field equations

Einstein Field Equations (EFE) connect curvature components in a
point of space-time to the energy density content at that point. We
would like to express this concept writing a very general and only
symbolic equation:

R(t,~x) = T(t,~x) (185)

Where R represents a quantity related to the curvature at a point and
T a quantity expressing the energy density content at the same point.
As we have already learned Curvature has components and so does
T. In fact there are different ways to store energy in a certain volume,
each way forms a different component of T. One component of T
is related to the mass content in a volume, in this case the T compo-
nent is the mass density ρ. Another is given by the pressure, which
directly is an energy density. Since both R and T have components
actually equation (185) is a set of equations, one for each type of com-
ponent. Solving this set of equations, we can theoretically discover
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how space-time is curved around (but also inside) a gravitational
source. Given an energy density distribution in space (matter, pres-
sure, ...) we can derive the curvature. Therefore equation (185) is the
mathematical relation behind the famous Wheeler’s statement:

"Matter tells space how to curve".

In this section we will deal with the equation which involves the
mass density at a point in space-time. The equation is written below,
for us it will be the representative of the EFE71. 71 C = 8πG

c2 , c is the speed of light, G is
the gravitational constant.

k1 + k2 + k3 = C · ρ . (186)

The sum of the three spatial components of the curvature is pro-
portional to the mass density. This means, for example, that outside
our BH where we have a vacuum (ρ = 0) the sum of the curvatures
adds to zero, a situation which is perfectly compatible with the re-
sult we got with the sector models of the BH. Even if the blocks were
built with paper it was clear that k1 was positive, while k2 and k3

were both negative. Furthermore, since the curvature components
are proportional to the deficit angle δ shown in figures 128, 129, 130,
we have a bigger k1 value (bigger δ, if compared with the other two)
which is cancelled by two smaller negative contributions (k2 and k3).
In conclusion, in the space around a BH:

1. Wee are in a region in which there is no matter, ρ = 0.

2. The three spatial curvature components ki are not null (k1 >

0, k2 < 0, k3 < 0).

3. The sum of the three spatial curvature components is zero (∑ ki =

0).

Someone might ask what is the difference between the situation
we have around a BH and a scenario in which we have no gravita-
tional source at all and we are in a complete vacuum. Indeed, also in
a complete vacuum ρ would be zero and, since the EFE still hold, we
would have ∑ ki = 0.

The answer to this question is that in the latter case the three
components of the curvature would be zero (ki = 0, i = 1, 2, 3),
there would be no curvature at all. Instead outside a source the
components would only add to zero, being individually not null!

In Newtonian Gravity the situation is similar, we have the Poisson
equation 72 that connects the spatial derivatives of the gravitational 72 For the derivation of this equation see

Math Box - 1.field ~C to the mass density ρ:

(
dCx

dx
+

dCy

dy
+

dCz

dz
) ∝ ρ (187)
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Therefore even in the classical theory outside a gravitational
source ρ is zero, the three derivatives add to zero, while the field
components and their derivatives are individually not null.

Since in certain conditions the equations of General Relativity
have to reduce to the classical equations of gravity, we have that
our Einstein Equation (186) will reduce to the Poisson equation.
Therefore we have a strong clue suggesting that the curvature terms
ki are strictly related to the derivatives of the gravitational field! This
definitely explains why outside a source the curvature components
are present even if they add up to zero.

Math Box - 1. The Poisson Equation

Consider a gravitational field ~C whose components along the
x direction are shown in blue in the figure: C1 is the compo-
nent on the surface 1, C2 on the surface 2. The vector ~n is the
unit vector perpendicular to the surfaces. We want to evaluate
the total flux along the two surfaces S.

Φtot = Φ1 + Φ2 = −C1 · S + C2 · S

C1 and C2 in general are slightly different. If ∆x is small
enough, we can write:

C2 = C1 +
dCx
dx · ∆x ,

so the total flux becomes:

Φtot = −C1 · S + C1 · S + dCx
dx · ∆x · S = dCx

dx · ∆V .

If we extend our computation to the complete surface of the
cube we have:

Φtot = ( dCx
dx +

dCy
dy + dCz

dz )∆V .
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Now we apply the Gauss Theorem:

Φtot ∝ ∆m

( dCx
dx +

dCy
dy + dCz

dz )∆V ∝ ∆m ⇒ ( dCx
dx +

dCy
dy + dCz

dz ) ∝ ρ .

The spatial derivatives of the gravitational field ~C are
connected to the mass density ρ.
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Energy spectrum of a vibrating string

To prove that the energy spectrum of a vibrating string is quantized
we have to integrate over all the string length the expression repre-
senting the energy of a single part:

∆en =
c2π2∆mB2

2L2 · n2 . (188)

In order to perform this calculation we have to substitute ∆m with
the product ρ · dx, where ρ is the linear mass density of the string. We
also have to remember that x, the variable of integration, is hidden in
the constant B, which is:

B = A sin(kx) . (189)

Since the wavelength is quantized λn = 2L/n, the wave number is
quantized too kn = π

L n. For the sake of simplicity we will neglect
some of the constant factors in (188), therefore moving from discrete
to continuous (number of the parts→ ∞) the integral we have to
solve is:

En =
∫ L

0
den ∝ n2ρ

∫ L

0
sin2(n

π

L
x) · dx . (190)

We can carry out the variable substitution

nπ

L
x = z → dx =

L
nπ

dz , (191)

so that the integral becomes:

n2ρL
nπ

∫ nπ

0
sin2(z) · dz =

n2ρL
nπ

∣∣∣nπ

0
(z− sin z · cos z) = (192)

=
n2ρL
nπ

· nπ = n2ρL .

The Energy of the vibrating string is therefore quantized and the
dependence from n2 is the same we have for the spectrum of the
quantum system in a infinite square well:

En =
A2c2π2

2L2 m · n2 . (193)
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The Delta Function

A delta function δ(k′ − k) is a function that is zero everywhere except
in one point k = k′, where it has an infinite value. We can define it
with this integral

1
2π

∫ +∞

−∞
ei(k′−k)xdx = δ(k′ − k) . (194)

Here we will show why the expression (??) is a delta. First of all
we notice that the exponential inside the integral is a unit vector in
the complex plane, its phase being α = (k′ − k)x (Fig. 142).

Figure 142: A vector in the complex
plane and its exponential notation.

If k′ 6= k the the phase will vary uniformly with x and the integral
will be sum of unit vectors each one with the phase just a bit bigger
than the previous one. So, displacing vectors head to tail, is easy to
understand that the sum will be zero (Fig. 143). Else, if k′ = k the
phase will be zero, each vector will be laying along the x axis and the
sum will diverge to ∞.

Figure 143: Head to tail sum of unit
vectors with uniformly varying phase.

Delta function area

We want to show that the area under the delta function is 1. The
delta can be thought of as the derivative of a step function: δ(k′ − k) =
Dk′ [θ(k′)].

Hence the area of the delta becomes:

AREA =
∫ +∞

−∞
δ(k′ − k)dk′ =

∫ +∞

−∞
Dk′ [θ(k

′)]dk′ = θ(k′)
∣∣∣+∞

−∞
=

= θ(+∞)− θ(−∞) = 1 . (195)

That’s why the delta is also called a distribution.
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Figure 144: Delta function as derivative
of a step function.

Three ways to introduce the gaussian integral

We suggest three way to introduce the gaussian integral,

∫ +∞

−∞
e−x2

dx , (196)

to high-school students. The first goes through a Monte Carlo sim-
ulation, easy to do with a spreadsheet. The basic idea is to fill with
random points a rectangle, well visible in the image (fig.145), and to
count the spots inside the gaussian area and those inside the rectan-
gle: the ratio of these two numbers is proportional to the ratio of the
areas. The simulation, done with 570 points and repeated 5 times,
gives an average estimate of the integral of 1.77, very close to

√
π, the

exact value. Another possibility is based on the evaluation of the area
of the triangle OAB shown in figure 146. One edge is the tangent line
in the inflection point of the gaussian function. This method leads
to a value of 1.72. The last approach follows the Poisson idea. It is a
very nice way to get the exact value of the integral.
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Figure 145: Montecarlo simulation to
estimate the guassian integral (rectangle
dimensions: 6x1).

Figure 146: The triangle tangent to
the gaussian function in its inflection
points.

The Fourier Transform in Quantum Mechanics

We have seen that if a plane wave with momentum k is a solution of
the free particle equation, then any linear combination of plane waves
with different values of k will also be a solution. A fact that may be
expressed with this statement:

Ψ(x) =
1√
2π

∫ +∞

−∞
A(k)eikxdk . (197)

The factor A(k) represents the amplitude of each plane wave in-
volved in the sum. Higher values of A(k) mean higher contributions
of that plane wave to the wave functions73 73 The term 1√

2π
is part of the plane

wave definition ϕk = 1√
2π

eikx . It comes
from the normalising conditions.

The situation is similar to the one we have with vectors:

~a = a1~d1 + a2~d2 + a3~d3 + ... (198)

A vector can be expressed as sum of components along different
directions. The A(k) is akin to the value of the component ai, the
plane wave eikx is the "direction" ~di of the specific component.
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We have no problem in understanding that each component ai

is the projection of the vector along the ith direction, i.e. the inner
product between the vector~a and W~diW

ai =~a · ~di. (199)

We can act in a similar way for the "components" A(k) of the wave
function. We may say that A(k) is the projection of Ψ along the plane
wave with momentum k: the inner product. In this case the inner
product is expressed in this way:

(ϕk, Ψ) = projecion of Ψ along ϕk (200)

Where the exact mathematical definition of this symbols is:

(ϕk, Ψ) =
∫ +∞

−∞
ϕ∗k ·Ψ dx =

1√
2π

∫ +∞

−∞
Ψ · e−ikx dx. (201)

It looks difficult, but we will be soon convinced that there is
a reason for this. We already know that (ϕk, Ψ) should be A(k),
therefore we may evaluate it and see if it leads to the correct result:

(ϕk, Ψ) = projection of Ψ on ϕk

=
1

2π

∫ +∞

−∞
e−ikx

( ∫ +∞

−∞
A(k′)eik′xdk′

)
dx

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
A(k′)ei(k′−k)xdxdk′ .

(202)

The integral over x in the expression (202) is a delta function (see
page 218) thus the expression becomes

1
2π

∫ +∞

−∞
ei(k′−k)xdx = δ(k′ − k) (203)

and we have

(ϕk, Ψ) =
∫ +∞

−∞
A(k′)δ(k′ − k)dk′ = A(k). (204)

A result we may explain taking in mind the shape of the delta
function and the value of the area beneath. In conclusion, equation
(204) shows that the proper way to define the inner product in quan-
tum mechanics is given by relation (201).

We have thus derived two important equations:
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Ψ(x) =
1√
2π

∫ +∞

−∞
A(k) · eikxdk . (205)

and

A(k) =
1√
2π

∫ +∞

−∞
Ψ(x) · e−ikxdx . (206)

Meaning that:

We can associate to a quantum system two wave functions,
Ψ(x) that defines the system in the spatial domain and A(k),
that defines the system in the momenta domain.

Therefore we have two equivalent ways to describe our system.
We may choose to work in the spatial domain or in the momentum
domain, furthermore we have a well defined process to move from
one domain to the other and vice versa: equations (205) and (206).
They are known as the Fourier Transform equations. As we have
seen, the Heisenberg Uncertainty principle is strictly correlated to
this situation: the spatial wave functions Ψ(x) and the momentum
wave functions A(k) are connected by a Fourier Transform.

Bound states and the Uncertainty Principle

To move a little more into a concrete physical situation, in this section
we will consider a system free to move along a straight line and
whose spatial wave function is a Gaussian function (one dimensional
problem). As we will discuss later, something similar happens when
a particle is in a bound state.

Ψ(x) = Ne−
x2

a2 . (207)

We will perform some initial calculations splitting them in subsec-
tions.

Normalisation of Ψ.

First of all the area under the the density function has to be 1, this
requirement will define N:

(Ψ, Ψ) = 1 = |N|2
∫ +∞

−∞
e−

2x2

a2 dx

= |N|2 a√
2

∫ +∞

−∞
e−z2

dz = |N|2 a√
2

√
π .

(208)
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To solve the integral we made the following substitution and used
the formula in the footnote74 74

∫ +∞
−∞ e−z2

dz =
√

π. In a previous
section of this Appendix you may find
three way to introduce this integral to
high-school students.

√
2x
a

= z

dx =
a√
2

dz .
(209)

In order for Ψ to be a "good" wave function we have to impose

N = 4
√

2
a2π

.

Figure 147: Gaussian probability
density function in the positions space.

The Fourier Transform of Ψ: A(k).

We have learned that we can shift from the x to k domain with a
Fourier transform. In order to find how the momenta of the system
are distributed, A(K) we are going to evaluate the Fourier transform
of the Ψ .

A(k) =
1√
2π

∫ +∞

−∞
Ψ(x) · e−ikxdx

=
N√
2π

∫ +∞

−∞
e−(

x2

a2 +ikx)dx
(210)

To solve this integral we have to transform the exponent in a
square of a binomial:

A(k) =
N√
2π

∫ +∞

−∞
e−(

x
a +

ika
2 )2

e−
k2a2

4 dx . (211)

Making the substitution

x
a
+

ika
2

= z

dx = adz
(212)

The integral becomes

A(k) =
Na√
2π

e−
k2a2

4

∫ +∞

−∞
e−z2

dz

=
Na√
2π

e−
k2a2

4
√

π ,
(213)

considering the value of the normalising factor N we have:

A(k) = 4

√
a2

2π
· e−

k2a2
4 . (214)
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Ψ(x) = 4

√
2

a2π
· e−

x2

a2 . (215)

If we look at the same time at the Ψ(x) and A(k) we will reach an
important result:

the wave function A(k) associated to a gaussian Ψ(x) is still a
gaussian function with standard deviation inversely proportional to
the one belonging to Ψ(x).

σx ∝ a σk ∝
1
a

(216)

Clearly, this is also valid for the square modulus. Avoiding further
calculations, we can say that the product of the standard deviations
in the two domains is constant:

σx · σk = constant . (217)

Again we find that any confined quantum system undergoes the UP:
the more is dispersed in space the less in momentum.

Figure 148: Wave functions in the two
domains for a "Gaussian" bounded
system.
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