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To eyes, sparkling with life

Zeus, who leads onward mortals to be wise,
Appoints that suffering masterfully teach.

Aeschylus, Agamemnon (176-177)
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Abstract

Patient-Derived Xenografts (PDXs) are preclinical models extensively used
to characterize tumor biology and response to treatments. The relevance of
PDXs as models depends on their ability to recapitulate the human tumor
of origin. Several independent studies reported that PDXs retain the mor-
phological, pharmacological and genomic features of their originating tumors
during engraftment and propagation. On the contrary, a recent study, fo-
cused on the characterization of Copy Number Alteration (CNA) alterations,
reported systematic divergence of PDX profiles compared to patient tumor
samples (PT), supposedly originating from selective pressures imposed by
the mouse host. However, the limited number of matched PT/PDX samples
analyzed combined with the small cohort size per tumor type highlighted the
need for a larger scale and more systematic analysis.

To systematically explore CNA dynamics during PDX engraftment and prop-
agations, in a joint international effort of the EurOPDX and PDXNet con-
sortia, we exhaustively analyzed CNA profiles of 1451 PDX and PT samples
from 509 PDX models. Overall, we observed strong concordance between
matched PT-PDX and PDX-PDX pairs, and no apparent downward trend
over tumor engraftment and passaging. Nonetheless, some PDX models dis-
played CNA profile variations. However, it was unclear whether such changes
arose from selective pressure imposed by the mouse host or spontaneous tu-
mor evolution and intratumor heterogeneity. Hence, here, we focused on two
large colorectal and breast cancer series, composed of 87 and 43 matched
triplets of PT, PDX at early passage (PDX-early) and PDX at later passage
(PDX-late), respectively. For both tumor types, we assembled genomic data
from matched PT, PDX-early, and PDX-late cohorts. And, we estimated
CNA recurrence by GISTIC separately for each cohort. We assumed that
if mouse-specific selective pressure was occurring, recurrent changes in the
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CNA profile would emerge in the PDX early cohort compared to the PT
cohort and further increase in the PDX late cohort. However, GISTIC CNA
profiles of the PT, PDX-early, and PDX-late cohorts were virtually indistin-
guishable, with minor changes, not functionally related. The GISTIC profiles
of our cohorts recapitulated at large those generated by the TCGA for col-
orectal and breast cancer. Therefore, we were confident that our results were
not affected by the lack of representativeness of CNA lesions per tumor type.

In summary, our analyses excluded a systematic mouse-driven genetic selec-
tion during PDX engraftment and propagation, supporting the assumption
of a high degree of molecular fidelity of PDX models compared to patient
tumor samples. Consequently, PDX models can be reliably implemented for
anticancer drug testing.

10



Chapter 1

Introduction

One of the main advantages of PDXs is the possibility of studying the behav-
ior of human cancer cells in a natural microenvironment, where they interact
with the stromal components contributed by the murine host, typically ab-
sent in other experimental models, such as cancer cell lines, or tumor derived
organoids.1,2 However, as any patient-derived cancer model is interrogated to
make decisions on how best to treat cancer patients and to explore the biol-
ogy of human cancers, it is crucial to assess that PDXs faithfully recapitulate
the genomic features of the originating human tumors.

1.1 Cancer as an evolutionary process

Cancer refers to a collection of more than 100 diseases that can develop almost
everywhere in the human body.3 In 2018, cancer accounted for an estimated
9.6 million deaths, proving as a leading cause of death worldwide.4 Although
each cancer type and, even, each patient’s cancer has its distinct features,
all cancers arise when some of the body’s cells start to abnormally growing,
generating a mass of cells named tumor, potentially invading surrounding
tissues and spreading into distant body sites.5
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1.1.1 Genomic instability triggers the conversion of
normal cells into tumor cells

Tumor initiation and proliferation is a multi-step process, in which normal
human cells gradually become malignant through the successive acquisition
of genetic alterations in key regulatory genes.6

During malignant transformation, cancer cells start growing out of control
and becoming invasive, uncaring about the maintenance of tissue functions
and stability. More specifically, as tissue growth is regulated both by the rate
of cell division and cell death or apoptosis, the uncontrolled growth, peculiar
to cancer cells, is in many cancer types a result of higher cell proliferation
and a reduced cell death rate than in normal cells.

As mentioned above, abnormal growth in malignant cells is a consequence
of specifically mutated genes. In detail, these genes can be divided into
three groups according to their role in tumor formation: oncogenes, tumor
suppressor genes, and DNA repair genes.

DNA repair genes are involved in the normal repair of DNA damage. Hence,
they play an essential role in the maintenance of genome integrity. Loss
of their function causes genomic instability which increases the frequency of
mutations in oncogenes and tumor suppressor genes7.
Oncogenes activate mutations such as amplification, small mutations, or
translocations and, since mutations in these genes are usually dominant, only
one allele of the gene needs to be affected to cause that cells divide out of
control.
On the other hand, tumor suppressor genes protect the normal cells from
turning into cancer cells. Therefore, a loss of their function determines ma-
lignant transformation. Importantly, to lose their tumor-suppressing activity,
both alleles usually have to be inactivated.

1.1.2 Selection of the fittest : the clonal evolution
model

We described the key features of cancer cells versus normal cells and the
mechanisms that can lead to tumor formation. Now we clarify why tumor
initiation and progression is defined as a multi-step evolutionary process.

In this respect, P. Nowell, in 1976, proposed that most tumors arise from
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a single normal cell affected by a genetic change, which provides it with
a selective growth advantage over surrounding normal cells. Then, during
tumor proliferation, as a result of genetic instability, tumor cells acquire
new genetic alterations in the expanding population. Nonetheless, the
majority of these genetic variants have no phenotypic advantages; thus they
are eliminated. However, sporadically, a variant becomes the founder of a
new predominant subpopulation of cells, since it has an additional selective
advantage to the original cancer cells as well as to normal cells. As a result,
over time, cancer cells undergo an evolutionary process in which increasingly
aggressive subpopulations of cells are sequentially selected.8,9

Notably, this hypothesis has been demonstrated by the discovery of in-
tratumor subclonal heterogeneity and clonal selection in multiple cancer
types.10–15

1.1.3 The tumor evolution paradigm
Studies in microbial experimental evolution have brought insights that the
cancer evolution is quite similar to the evolution of asexual microorganisms.16

Therefore, as well as occurs for every evolutionary system, even cancer evo-
lution should be regulated by the dynamic interplay of the same three fun-
damental processes (Fig. 1.1):

• the mutation process, i.e. the random generation of inheritable new
variations in the population;

• the genetic drift, which changes the frequency of genotypes in the
population due to random birth and death events;

• the Darwinian selection, which changes the frequency of genotypes
in the population, based on their relative fitness advantage.

Note that the acquisition of inheritable alterations and genetic drift are both
stochastic processes continuously occurring. Instead, the Darwinian selection
is a deterministic force that depends on the environmental context.

Thus, mutations increase heterogeneity, while drift and selection generally
reduce heterogeneity. Indeed genetic drift and selection processes modify the
frequency of alleles in a population, rendering some larger or even dominant,
and others to go extinct.
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Figure 1.1: Mutation, Selection, and Drift are the three basic pro-
cesses shaping cancer evolution. Interdependencies and spatial and tem-
poral variability of mutation, selection, and drift produce additional levels
of complexity (middle section), which together influence cancer evolution
(center) 17.
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1.1.3.1 Mutation (stochastic)

The mutation process is essential for evolution, as the variations introduced
by mutational forces are the substrate on which selection can act. Typically,
mutation may shape the cancer genome in highly different ways. In detail,
inheritable somatic variations encompass multiple genetic alterations such as
point mutations, insertions or deletions of base pairs, and larger structural
variations17,18.

Any cell has a baseline mutation rate, however, elevated mutation rates
are hallmarks of cancer cells. Respectively, different genomic regions may
have variable mutation rates depending on the DNA replication timing and
chromatin accessibility.19–21 Specifically, mutation frequencies are higher in
late DNA replication timing regions and inaccessible heterochromatin-like
domains.

Point mutations are single-base-pair changes that can modify the protein-
coding region, making it not functional, as happens in the case of tumor-
suppressive mutations, or altering its function, as occurs for oncogenic mu-
tations. Instead, INsertions and DELetions of base pairs, generally called
INDELs, are slightly larger changes, which can lead to similar consequences.
Moreover, even larger structural variations, which include whole-genome dou-
bling, chromosomal loss or gains, and translocations, often affect the cancer
genome.22

1.1.3.2 Genetic drift (stochastic)

Genetic drift is the change in the frequency of an allele in a population
caused by random birth and death events. In detail, each cell in a can-
cer subclone has a specific probability of dying due to random factors, and
sometimes all cells of a subclone die, although this subclone holds highly
beneficial mutations. Notably, the impact of drift is bigger in smaller pop-
ulations and is more relevant after population bottlenecks. Therefore, as a
result of drift, even the expansion of a clone with high fitness is not pre-
dictable with certainty, unless the abundance of this clone overcomes a cer-
tain amount such that it eludes possible extinction via drift. Moreover, ex-
perimental data demonstrated that drift affects cancer initiation more than
cancer progression.23,24
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1.1.3.3 Selection (deterministic)

When a cell acquires a new mutation able to enhance its ability to survive
and to reproduce in certain environmental conditions, eluding potential ex-
tinction through drift, this cell gradually increases in the amount within the
population.

In many cancer types, were identified different intratumoral subclones, car-
rying distinct driver mutations, showing different phenotypes, and growing
with branched phylogenies.10,12,25–27 As a consequence, the presence of dif-
ferent subclones within the same tumor can potentially result in competi-
tion among these multiple subclonal populations. Hence, the fitness of each
subclone within the tumor depends on the fitness of the other competing
subclones.28 Therefore, beneficial mutations escaping the extinction via drift
can still be eliminated by competing subclones. Thus, in this scenario, pre-
dicting evolutionary outcomes becomes more challenging.

However, subclonal competition is arguably limited to nearby subclones be-
cause of spatial constraints typical of solid tumors. Consequently, the 3D spa-
tial structures of the solid tumors may enhance the formation and preserva-
tion of subclonal heterogeneity and drive the system towards a more stochas-
tic behavior. As a result, solid tumors may be considered ecological systems
composed of multiple small and localized subpopulations, each competing
only with neighboring subpopulations.17

1.1.3.4 Intra-tumor heterogeneity fuels tumor evolution

As referred above, the interaction between the mutational, the genetic drift,
and the selection processes lead to tumor masses composed of highly diverse
populations of cells. Remarkably, this spatial and temporal heterogeneity
within a tumor, briefly named intra-tumor heterogeneity (ITH), has been
experimentally observed in many studies, across multiple tumor types, as
extensively reported.29

From an evolutionary perspective, the diversity present in a population pro-
motes its evolvability. In this respect, consider two scenarios: in the first
set, the tumor includes all identical cells (homogeneous tumor), while, in the
other set, it comprises highly phenotypically diverse cells (heterogeneous tu-
mor). Suppose, then, that the tumor undergoes new selective pressures. In
the case of a homogeneous tumor, all tumor cells adapt to the new condition,
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as nothing happens, or they become extinct. On the contrary, in the case of
a heterogeneous tumor, the cell population likely encompasses cells sensitive
to the new pressure, that will die, and also subclone resistant to the pressure,
that will survive and keep to grow to the point of becoming dominant in the
tumor. Consequently, more heterogeneous tumors are more likely to evolve
and generate metastases and/or a clone resistant to therapy29 (Fig. 1.2).

Figure 1.2: Intratumor heterogeneity promotes tumor evolution. A
homogeneous tumor (A) is eradicated under a selective pressure, whereas a
heterogeneous tumor (B) survives, although a selective pressure is imposed,
as it more likely contains a resistant clone, that repopulates the tumor 29.

1.1.4 Implications of intra-tumor heterogeneity
The intra-tumor heterogeneity observed in cancer poses challenges to clinical
diagnoses and therapeutic decisions Specifically, as cancer is a disease that
can affect multiple organs or tissues in the body through metastatic lesions,
the intra-tumor heterogeneity phenomenon should be considered compared
to both primary tumors and metastases. Therefore, to provide a comprehen-
sive assessment of the molecular features of the disease of a cancer patient,
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tumor specimens from multiple spatially distinct regions of the same tumor,
collected at different time points and from both primary tumors and metas-
tases, if any, are needed. Accordingly, given these overall considerations,
modern oncology aims to accurately determine and efficiently control the
heterogeneity within tumors, to translate these insights into personalized-
therapeutic strategies.

1.1.4.1 Genetic discrepancies between primary tumors and metas-
tasis and between distinct metastatic lesions

Metastasis arises when one or more clones from a primary tumor form a
new tumor in a distant site, in other organs or tissues of the body. There-
fore, a population bottleneck occurs during the seeding of metastasis. As a
consequence, the genetic heterogeneity of metastasis can decrease to the rel-
ative primary tumors.30 In this respect, many studies have reported reduced
heterogeneity or monoclonality in metastases, in multiple tumor types.31–33

Nevertheless, more than one clone may also seed metastasis.33–35 Thus, in a
minority of cases, increased heterogeneity in metastases compared to matched
primary tumors has been also shown.36 As a result, genetic discrepancies be-
tween primary tumors and metastasis are direct consequences of extensively
reported intratumor heterogeneity.37,38

It has been also observed that distinct metastasis types display different
heterogeneity levels. Specifically, if inter-metastatic diversity reflects the di-
versity of primary tumor, this would indicate that many if not all subclones
present in the primary tumor have similar metastatic potential. Conversely,
evidence of homogeneous metastases would suggest that they are formed by
a single clone provided with superior metastatic ability.
Concerning human colorectal cancer, considerably different inter- and intra-
lesion heterogeneity has been observed for lymph node and distant organ
metastases.39 In detail, it has been reported that distant metastases tend
to be genetically similar to each other. Conversely, lymph node metastases
exhibit high levels of inter-lesion diversity. Moreover, metastases in lymph
nodes display higher levels of intra-lesion heterogeneity compared to those in
distant organs. Therefore, altogether, these pieces of evidence demonstrate
that a reduced number of primary tumor clones seed distant metastases in
respect to lymph node metastases. As many cells from the primary tumor
seem to be able of migrating to and growing in lymph nodes, weaker selection
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acts in correspondence of lymph nodes. In contrast, as distant metastases
are typically composed of homogeneous cellular groups, a stricter evolution-
ary bottleneck is present in this case. Hence, it is clear that the evolutionary
forces shaping the seeding of lymph nodes and distant metastases are funda-
mentally different.

1.1.4.2 The importance of ITH in clinical diagnosis and therapeu-
tic responses

Understanding ITH is particularly relevant since genetic diversity within tu-
mors complicates definitive clinical diagnosis and causes targeted therapy
failure and resistance. Indeed, in presence of spatial intratumor heterogene-
ity, a targeted biopsy is not representative of the whole tumor. Hence, also
clinical decision-making based on a biopsy including the dominant clone in a
given sample might not be sufficiently accurate to eradicate the tumor mass.
As even minor subpopulations of tumor cells could generate resistance to
treatment, to decipher and assess the extent of heterogeneity within tumors,
many studies performed genetic analysis of multi-region samplings revealing
the genomic architecture, subclonal diversification, and evolution of multiple
tumor types.12,26,27,40

Moreover, as, in principle, primary tumors and relative metastases may dis-
play genetic divergence even because of ITH, accurate treatment decision-
making should assess biological features of both primary tumors and any
metastases to evaluate the clinical relevance of potential discrepancies.37 In
this respect, different studies recommend the acquisition of biopsy of both
primary tumors and metastases, demonstrating that substantial discordance
in receptor status between primary tumor and metastases of breast and col-
orectal cancer could occur41–46.

1.2 Uniqueness of PDXs over cancer models
Most of our understanding of the molecular basis of cancer results from the
study of model systems derived from human tumor specimens. Therefore, it
is fundamental that such model systems, termed patient-derived cancer mod-
els, on which cancer research depends, are representative of the originating
tumors.

For many decades, cell lines derived from patients’ samples and then modi-
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fied to grow in artificial culture conditions have been essential tools in basic
and preclinical cancer research, both cultured in vitro or grown as xenografts.
However, although these model systems have proven to be particularly use-
ful for deciphering cancer cell biology, in many cases, they have also shown
limitations in accurately recapitulating the original tumor. Specifically, in
several cases, cell lines have turned out to be inappropriate for biomarker
discovery, drug screening, and therapeutic preclinical testing.50 Therefore,
many efforts have been made to find preclinical models able to more accu-
rately predict the clinical outcome. This deal of energy has resulted in the
generation of patient-derived cancer models, established either by engrafting
fresh tumor tissues in experimental animals, e.g., patient-derived xenograft
models (PDXs), or deriving 3D structures from human cancer tissues, i.e.,
organoids, or growing tumor cells in vitro 2D tissue culture conditions for a
limited period.47

Among these categories of preclinical models, those providing the possibility
of studying the growth of cancer cells in a more natural microenvironment,
have been proven particularly relevant.47 They includes the so called patient-
derived xenografts (PDXs). Specifically, PDXs are obtained by direct implan-
tation of fresh, surgically derived, clinical tumor samples in immunodeficient
mice. Upon engraftment and adaptation to the murine host, PDX tumors
are then grown and propagated across multiple generations of mice, a process
called passage, to generate cohorts of PDX samples derived from the same
patient tumor (Fig. 1.3). Unlike cancer cell lines, PDX models are estab-
lished by the engraftment of intact tissue. Hence, the tumor architecture
and the relative proportion of cancer and stromal cells are both maintained,
enhancing the capability of PDXs in representing the human tumor of origin.
Moreover, tumor samples can be transplanted subcutaneously or orthotopi-
cally to better recapitulate the microenvironmental interactions occurring
within patients, depending on the original tumor type.47 As a result, PDX
models have been successfully derived from multiple solid or hematologic
primary and metastatic tumors, emerging as a platform which provides a
unique opportunity for investigating tumor biology and therapeutic response
and resistance.48,49

It is largely accepted that the growth and spreading of solid tumors can be
affected by the vascular, mesenchymal, and immune cells surrounding and
feeding it and collectively constituting the so-called tumor microenvironment
or tumor stroma. Therefore, as cancer cells of PDXs preserve their ability
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Figure 1.3: Engraftment and propagation of PDXs. The patient-
derived tumour is engrafted into an immunodeficient mouse and propagated
in multiple generation of mice. At each passage, PDX-derived tumour sam-
ples can be collected to develop a tissue biobank for molecular profiles and
ex vivo experiments 2.
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to interact with stromal cells, PDXs are an excellent experimental model
to characterize tumor-stroma interactions, a possibility that is completely
lacking in in vitro models.

Moreover, PDX models represent a virtually unlimited source of tissue avail-
ability for generating a living tissue biobank, as tumor tissue growth in the
mouse host can be extracted and then cryopreserved. Hence, they are used to
perform experiments and molecular profiles to identify associations between
genotypes and drug response.

1.2.1 Powerful models of drug response and resistance
Concerning in vitro derivatives, specific protocols for cell isolation and
derivation of 2D and 3D cultures from various tumor types have been
developed. Remarkably, the genotype-driven responses of these in vitro
models have been recapitulated in vivo in matched PDXs.56,57 Therefore,
2D models are still largely used for high-throughput screenings thanks to
their simplicity and low cost, although they usually display a low capacity
of proliferating in culture. On the other hand, three-dimensional cultures
better resemble the physical features and the architecture of the original
tumors, but they lack the stromal component unlike PDXs.58

For these reasons, nowadays, PDXs models are widely interrogated to
elucidate drug sensibility and resistance that are observed in human tumors.
In this respect, large-scale pharmacogenomic in vivo screens performed on
more than 1000 PDX models from different tissues shown the value of these
preclinical models in terms of reproducibility and clinical translatability
to identify associations between genotypes and treatment response and
resistance.51–53 Alternatively, PDX samples can be employed as avatars of
the patient to test multiple treatments.54,55 Thus, only the most effective
drug is administered to the patient, revealing that PDXs can play a relevant
role also in personalized medicine.

Nonetheless, since all patient-derived experimental models have their
strengths and weaknesses, the best strategy to address many scientific
questions may be to use them in a complementary rather than in an
alternative way.
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1.2.2 Challenges and opportunities
Certainly, PDXs have played a key role in bringing advancement in cancer re-
search. However, also PDXs, like any model system, present some limitations.
Indeed, currently, PDX models are established by transplanting human tu-
mor tissue into immunodeficient mice to prevent that the xenotransplants
would be rejected by the immune system of the host.59 Nevertheless, it is
now clear that immune cells are virtually present in every neoplastic lesion,
from subtle infiltrations to gross inflammations, and that the immune system
has a relevant role in tumor evolution.60

In this respect, multiple pieces of evidence indicate that an inflammatory
microenvironment is an essential component of all tumors and that immune-
inflammatory cells can actively promote tumor progression, stimulating
angiogenesis, cancer cell proliferation, and invasiveness.61 Coupled with
its protumorigenic effects, inflammatory conditions also influence the host
immune response to tumors. Thus, inflammation can be also used in cancer
immunotherapy62 and to increase the response to chemotherapy.63

As a result of inflammation, the tumor microenvironment consist of innate
immune cells, adaptive immune cells in addition to the cancer cells and their
surrounding stroma components. These different cells communicate with
each other, controlling and shaping tumor growth. Specifically, the expres-
sion of multiple immune mediators and modulators as well as the abundance
and activation state of different cell types in the tumor microenvironment
determine whether tumor-promoting inflammation or antitumor immunity
will dominate.64,65

As a consequence, the absence of the immune system components in PDXs
hinders the possibility of employing these models for studying the roles of
the immune system in tumor development and in immune-based therapy
response.66–68 Moreover, the lack of the constraints imposed by the human
immune system may explain the observations that, at the molecular level,
serially transplanted PDX tumors are more aggressive than parental tumors
and are more similar to metastatic or recurrent tumors.59,69,70

Interestingly, some issues affecting PDX models may be resolved through
the use of other model systems, called genetically engineered mouse models
(GEMMs) of cancer.
GEMMs are mainly generated by manipulating a single gene or a handful
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of genes of interest to lead a tumorigenic response. On a hand, in contrast
to models based on cancer cell inoculation or tumor tissue implanta-
tion, GEMMs develop de novo tumors in a natural immune‐proficient
microenvironment.71 On the other hand, similarly to PDXs models, it
has been demonstrated that GEMMs closely mimic the histopathological,
molecular, and clinical features of the originating human tumors, supporting
their adequacy as models of human cancers.72,73 Since GEMMs reliably
capture both tumor cell-intrinsic and cell-extrinsic factors driving de
novo tumor initiation and progression toward metastatic disease, these
models have proven to be essential for preclinical research. Specifically,
in the last decades, GEMMs have successfully been employed to validate
candidate cancer genes and drug targets, assess therapy efficacy, study the
contribution of the tumor microenvironment, and unravel the mechanisms
of drug resistance.71

Consequently, these cancer models are valuable tools to elucidate the role of
individual genes and their mutated counterparts in tumorigenesis, as well
as the cooperation of individual mutations in tumor development, and to
model known cancer predisposition syndromes.74

Conversely, PDX models allow to study tumor progression on large size
cohorts of tumors and to develop novel combinatorial treatment strategies,
increasing anti-cancer drugs efficacy. Furthermore, xenografts have a high
degree of predictability and rapidity of tumor formation, which makes them
easy to use74.

An other strength of PDX models is that they can be generated also with a
limited quantity of biological material. Nonetheless, when the studied tumor
type is particularly heterogeneous, this procedure of PDX derivation may
be confounding. Indeed, in such a case, a single biopsy, and correspond-
ingly the derived PDX, could not be representative of the heterogeneity of
the patient’s tumor.75,76 Therefore, owing to spatial genetic variability, pa-
tient tumor and derived PDXs may display distinct responses to the same
treatment. Nevertheless, the sampling population bottleneck that occurred
during PDX establishment rather than the intrinsic weakness of the model
in recapitulating the tumor of origin would be responsible for this divergence
in drug response between patients and PDXs.
Thus, to reduce this phenomenon, it is recommended to carry on standardized
preclinical designs. Moreover, the disgregation and mixing of heterogeneous
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tumor masses before implantation could increase the heterogeneity of clones’
representation in xenografts. However, the cost is the loss of the original
tumor architecture.

1.2.3 Genetic fidelity of PDXs
Despite few studies have reported possible population bottleneck during PDX
engraftment of breast cancer,77,78 a large growing body of literature has doc-
umented that PDX models mostly preserve the clonal architecture of the
original human tumor and recapitulate the transcriptomic, epigenomic, and
histological landscapes of the patient tumor (Fig. 1.4).79–81 Importantly, in
PDXs of breast cancer reporting genetic variations compared to the original
tumor, it has been noted that the genetic changes identified after engraftment
do not affect known breast cancer oncogenic drivers.78 Therefore, this result
suggests that evolution, occurring in PDXs upon engraftment, is essentially
neutral and that the representation of relevant genes is preserved.

Furthermore, in support of the robustness of these preclinical models, it has
been reported that the mechanisms of resistance detected in PDXs mirror
those found in their original patient tumors and that tumors clinically dis-
playing resistance resulted also refractory to treatment in PDXs.75,82 Hence,
these studies demonstrated that PDX models can predict clinical outcomes
with accuracy.

1.2.4 Mouse-driven selective pressures or genetic drift
in PDXs?

Although conservation of the genomic landscape during PDX engraftment
and passaging has been extensively reported in the literature, recent studies
highlighted the possibility that human tumors grown in a murine microenvi-
ronment undergo a mouse-driven selection, which may affect their reliability
as models of human cancer.83–85

In this respect, these studies have characterized Copy Number Alteration
(CNA) dynamics in PDXs and have reported that a median of ~10% of the
genome is differentially altered between human tumors and PDXs.83,85 More-
over, on one hand, according to previous evidence in PDXs from breast can-
cer, they have suggested that most of the genomic divergence observed in
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Figure 1.4: Subclones selection in PDX models. A, xenografted tumors
retained the histopathologic characteristics of original samples. C, genetic
concordance between xenografts and their original counterparts87.
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individual PDX models compared to the relative patient tumors is the result
of population bottleneck of subclones present at a reduced frequency in the
original tumors, occurring during PDX engraftment (Fig. 1.5). Thus, once
again, intratumor heterogeneity played a crucial role in determining genetic
differences between patient tumors and derived PDXs.

Figure 1.5: Subclones selection in PDX models. Gene expression
moving-average plots for normal brain tissue (gray), a GBM PDX model
at P1 (pink) and a GBM PDX model at P3 (red). Trisomy 7 disappears,
monosomy 10 is retained, monosomy 11 emerges within two in vivo passages
83.

On the other hand, they have found that, in five cancer types, 12 arm-level
genetic events, recurrently observed in TCGA samples, are lost when the
tumors are transplanted into mice (Fig. 1.6). As a consequence, they have
claimed that the selective pressures occurring in mouse hosts are different
compared to those of humans, questioning the robustness of PDXs as models
of human cancers. Therefore, if PDXs undergo a mouse-specific tumor evolu-
tion, their capacity of faithfully recapitulating patient treatment response is
strongly impacted. Noteworthy, several limitations affect the experimental
design of this work. Specifically, unmatched patient tumor and PDX sample
cohorts and small size PDX cohorts per tumor type were available in this
study. Moreover, most of their copy number profiles were inferred on RNA
rather than DNA data and it is known that gene expression data allow low-
resolution CNA estimates only.86 Therefore, further investigations inferred
on a larger scale, more systematic and DNA-based analysis are needed, to
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Figure 1.6: Recurrent arm-level TCGA CNAs tend to disappear
throughout PDX passaging. Bar plots represent the difference between
the fraction with gain and the fraction with loss for 12 recurrent TCGA
arm-level CNAs 83.

discern whether genetic variations between human tumors and PDXs are the
result of mouse-driven selective pressures or simply neutral evolution and
genetic drift.
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Chapter 2

Project aim and plan

This thesis aims to provide a systematic assessment of genetic changes
likely occurring during the establishment and propagation of patient-derived
xenograft (PDX) cancer models.
In details, my project is focused on three main aims:

1. to evaluate the genetic stability of PDX models from PTs through late-
passage PDXs

2. to investigate whether the mouse host imposes selective pressures dur-
ing PDX engraftment and propagation, affecting the accuracy of PDXs
in modeling human cancer

3. to compare PDX-associated genetic evolution to what patients experi-
enced naturally in their tumors

To achieve these objectives, we assembled a large size and international col-
lection of PDX models and matched patient tumors, in collaboration with
the EurOPDX and PDXNet Consortia, and we estimated their CNA profiles.
The combined PDX data include 1,451 unique samples, comprise 509 PDX
models, represent 16 tumor types and encompass samples profiled with mul-
tiple genomic platforms.
On a hand, our collection includes 324 models with matched PDX samples
and corresponding patient tumors. On the other hand, it encompasses 328
models with multiple PDX samples assayed at either different passages (rang-
ing from P0-P21) or different lineages of propagation into distinct mice.

We took advantage of this dataset :
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• to benchmark CNA profiles inferred from DNA and RNA-based plat-
forms;

• to elucidate potential copy number evolution driven by the mouse host
in PDXs derived from different tumor types;

• to investigate possible recurrent CNA changes occurring in PDXs in
specific tumor types;

• to compare PDX-specific evolution with the levels of copy number vari-
ation in multi-region samples of PTs.

Accordingly, we firstly evaluated copy number alteration (CNA) changes dur-
ing engraftment and passaging, in a large collection of more than 500 PDX
models, comparing both DNA and RNA-based approaches across a variety
of tumor types.
Then, to understand whether the potential CNA changes observed between
patient tumors and PDXs result from spontaneous tumor evolution and
intratumor heterogeneity or mouse-driven selective pressures, we searched
for recurrent genetic shifts progressively arising in PDXs. Indeed, whether
the mouse host imposed specific selective pressures, genomic changes should
emerge, systematically and reproducibly, during the establishment and prop-
agation of PDXs.

30



Chapter 3

Materials and Methods

3.1 Experimental details for sample collec-
tion, PDX engraftment and passaging,
and array or sequencing

3.1.1 EurOPDX colorectal cancer (EurOPDX CRC)
The copy number stability of colorectal cancer was studied based not directly
on primary tumors, but rather on metastasis located in the liver. There-
fore, as discussed in (1.1.4), the intra-tumor heterogeneity of liver metastatic
colorectal cancer may not recapitulate that of the relative primary tumor.
However, as we aim to evaluate the genetic robustness of PDXs, the absolute
requirement is having matched PDX samples and patient tumors, irrespec-
tive of the primary or metastatic origin.
Liver-metastatic colorectal cancer samples were obtained from surgical re-
section of liver metastases at the Candiolo Cancer Institute, the Mauriziano
Umberto I Hospital, and the San Giovanni Battista Hospital. Informed con-
sent for research use was obtained from all patients at the enrolling institu-
tion before tissue banking, and study approval was obtained from the ethics
committees of the three centers.

Tissue from hepatic metastasectomy in affected individuals was fragmented
and either frozen or prepared for implantation as described previously.87,88

Non-obese diabetic/severe combined immunodeficient (NOD/SCID) female
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mice (4–6 weeks old) were used for tumor implantation.

Whole-genome sequencing was conducted as follows: DNA was extracted us-
ing Maxwell RSC Blood DNA kit (Promega AS1400) from colorectal cancer
liver metastasis and corresponding tumor grafts at different passages. Ge-
nomic DNA was fragmented and used for Illumina TruSeq library construc-
tion (Illumina) according to the manufacturer’s instructions. Libraries were
then purified with Qiagen MinElute column purification kit and eluted in 17
µl of 70°C EB to obtain 15 µl of DNA library. The libraries were sequenced
on HiSeq4000 (Illumina) with single-end reads of 51bp at low coverage (~0.1x
genome coverage on average).

3.1.2 EurOPDX breast cancer (EurOPDX BRCA)
Human breast tumors were obtained from surgical resections at the Nether-
lands Cancer Institute (NKI), Institut Curie (IC), and Vall d’Hebron Insti-
tute of Oncology (VHIO). Engraftment was conducted with different proce-
dures at each center.

NKI: Small tumor fragments (2mm diameter) were implanted into the 4th
mammary fat pad of 8-week-old Swiss female nude mice. Mice were checked
for tumor appearance once a week and supplemented with estrogen if the
tumor was ER-positive. After palpable tumor detection, tumor size was mea-
sured twice a week. When tumors reached a size of 700-1000 mm3, animals
were sacrificed and tumors were explanted and subdivided into fragments for
serial transplantation as described above, or for frozen vital storage in liquid
nitrogen.

IC: Breast cancer fragments were obtained from patients at the time of
surgery, with informed written patient consent. Fragments of 30 to 60 mm3
were grafted into the interscapular fat pad of 8 to 12-week-old female Swiss
nude mice. Mice were supplemented with estrogen. Xenografts appeared at
the graft site 2 to 8 months after grafting. When tumors were close to 1500
mm3, they were subsequently transplanted from mouse to mouse and stocked
frozen in DMSO-fetal calf serum (FCS) solution or frozen dried in nitrogen.
Fragment fixed tissues in phosphate-buffered saline (PBS) 10% formol for
histologic studies were also stored. The experimental protocol and animal
housing were under institutional guidelines as proposed by the French Ethics
Committee (Agreement B75-05-18, France).
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VHIO: Fresh tumor samples from patients with breast cancer were collected
for implantation following an institutional IRB-approved protocol and the
associated informed consent, or by the National Research Ethics Service,
Cambridgeshire 2 REC (REC reference number: 08/H0308/178). Experi-
ments were conducted following the European Union’s animal care directive
(2010/63/EU) and were approved by the Ethical Committee of Animal Ex-
perimentation of the Vall d’Hebron Research Institute. Surgical or biopsy
specimens from primary tumors or metastatic lesions were immediately im-
planted in mice. Fragments of 30 to 60 mm3 were implanted into the mam-
mary fat pad (surgery samples) or the lower flank (metastatic samples) of a
6-week-old female athymic HsdCpb: NMRI-Foxn1nu mice (Harlan Laborato-
ries). Animals were continuously supplemented with estradiol. Upon growth
of the engrafted tumors, the model was perpetuated by serial transplantation
onto the lower flank. Tumor growth was measured with a caliper bi-weekly.
In all experiments, mouse weight was recorded twice weekly. When tumors
reached 1500 mm3, mice were euthanized and tumors were explanted.

Whole-genome sequencing was conducted as follows: genomic DNA was ex-
tracted from breast cancers and corresponding PDXs using (i) QIAamp DNA
Mini Kit s(50) (#51304, Qiagen) (IC) or (ii) according to Laird PW’s proto-
col16 (NKI and VHIO). The amount of double-stranded DNA in the genomic
DNA samples was quantified by using the Qubit® dsDNA HS Assay Kit (In-
vitrogen, cat no Q32851). Up to 2000 ng of double-stranded genomic DNA
were fragmented by Covaris shearing to obtain fragment sizes of 160-180bp.
Samples were purified using 1.6X Agencourt AMPure XP PCR Purification
beads according to the manufacturer’s instructions (Beckman Coulter, cat
no A63881). The sheared DNA samples were quantified and qualified on
a BioAnalyzer system using the DNA7500 assay kit (Agilent Technologies
cat no. 5067-1506). With an input of a maximum of 1 µg sheared DNA,
library preparation for Illumina sequencing was performed using the KAPA
HTP Library Preparation Kit (KAPA Biosystems, KK8234). During library
enrichment, 4-6 PCR cycles were used to obtain enough yield for sequencing.
After library preparation, the libraries were cleaned up using 1X AMPure XP
beads. All DNA libraries were analyzed on the GX Caliper (a PerkinElmer
company) using the HT DNA High Sensitivity LabChip, for determining the
molarity. Up to two pools of 24, uniquely indexed samples and one pool of
81 uniquely indexed samples were mixed by equimolar pooling in a final con-
centration of 10nM, and subjected to sequencing on an Illumina HiSeq2500
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machine in a total of 12 lanes of a single read 65bp run at low coverage (~0.4x
genome coverage on average), according to manufacturer’s instructions.

3.1.3 Seoul National University-Jackson Laboratory
(SNU-JAX)

Gastric cancer tissues paired with normal gastric tissues and blood samples
were obtained from individuals who underwent gastrectomies at the Hospital
of Seoul National University from 2014 to 2016. All samples were obtained
with informed consent at the Hospital of Seoul National University.

Gastric cancer samples were divided into several small pieces (2mm x 2mm)
and used to generate PDX models and for genomic analysis. Mice were cared
for according to guidelines of the Institutional Animal Care and Use Commit-
tee of the Seoul National University. For PDX models, surgically resected
tissues were minced into pieces approximately ~2 mm in size and injected
into the subcutaneous area in the flanks of 6-week-old NOD/SCID/IL-2 𝛾-
receptor null female mice. When a tumor reached >700~1000 mm3, the
mouse was sacrificed, and tumor tissues were stored. Tumor tissues were di-
vided and stored for several purposes: (1) Tumor tissues were cryopreserved
in liquid nitrogen and stored at -80 °C for generating next passage PDXs. (2)
Tumor tissues were frozen in liquid nitrogen for genomic analysis.

Whole-exome sequencing was conducted as follows: Genomic DNA was ex-
tracted from blood and tissues using DNeasy blood and tissue kit (QIAGEN)
and checked for purity, concentration, and integrity by OD260/280 ratio us-
ing NanoDrop Instruments and agarose gel electrophoresis. DNA was sheared
by fragmentation by Bioruptor and purified using Agencourt AMPure XP
beads. DNA samples were then tested for size distribution and concentra-
tion using an Agilent Bioanalyzer 2100. Standard protocols were utilized for
adaptor ligation, indexing, high-fidelity PCR amplification. Subsequently,
exome enrichment was performed by hybrid capture with the All Exon v5
capture library. Capture libraries were amplified, pooled, and submitted to
the commercial sequencing company (Macrogen) for 100bp paired-end, mul-
tiplex sequencing on a HiSeq 2000 sequencing system. Average coverage for
normal samples was 62.67x (38.97 min – 108.77 max) and was 102.35x for
tumor samples (36.02 min – 150.49 max).

RNA-Sequencing data was generated as follows: RNA was extracted from
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tissues using the RNeasy Mini Kit the TruSeq RNA Sample Preparation
v2 Kit (Illumina, San Diego, CA) according to the manufacturer’s protocol.
Libraries were submitted to the commercial sequencing company (Macrogen)
for 100bp paired-end, multiplex sequencing on a HiSeq 2000 sequencer.

3.1.4 Shanghai Institute for Biological Sciences (SIBS)
Gene expression and copy number data, generated by the Affymetrix Human
Genome U133 Plus 2.0 Array and Affymetrix Human SNP 6.0 platforms re-
spectively, of hepatocellular carcinoma (HCC) PDX models, were retrieved
from the Gene Expression Omnibus (GEO) accession ID GSE90653.89 Ex-
pression microarray data generated by the Affymetrix Human Genome U133
Plus 2.0 Array for normal liver were downloaded from the GEO and Array-
Express: GSE3526,90 GSE3300691 and E-MTAB-1503-3.92

3.2 Copy number alteration (CNA) estima-
tion methods

3.2.1 SNP array
For Affymetrix Human SNP 6.0 arrays, PennCNV-Affy and Affymetrix
Power Tools93 were used to extract the B-allele frequency (BAF) and Log
R Ratio (LRR) from the CEL files. Due to the absence of paired-normal
samples, the allele-specific signal intensity for each PDX tumor was nor-
malized relative to 300 randomly selected sex-matched Affymetrix Human
SNP 6.0 array CEL files obtained from the International HapMap project.94

For Illumina Infinium Omni2.5Exome-8 SNP arrays (v1.3 and v1.4 kit), the
Illumina GenomeStudio software was used to extract the B-allele frequency
(BAF) and Log R Ratio (LRR) from the signal intensity of each probe.
The single sample mode of the Illumina GenomeStudio was used, which
normalizes the signal intensities of the probes with an Illumina in-house
dataset. The single tumor version of ASCAT95 (v2.4.3 for JAX SNP
data, v2.5.1 for SIBS SNP data) was used for GC correction, predictions
of the heterozygous germline SNPs based on the SNP array platform,
and estimation of ploidy, tumor content, and allele-specific copy number
segments. The resultant copy number segments were annotated with log2
ratio of total copy number relative to predicted ploidy from ASCAT.
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3.2.2 Low-pass whole-genome sequencing (WGS) data
Whole-genome sequence reads from EurOPDX CRC liver metastasis and cor-
responding tumor grafts at different passages were mapped to the reference
human genome (GRCh37) using Burrows-Wheeler Aligner96 (BWA) v0.7.12.
SAMTools97 v0.1.18 was used to convert SAM files into BAM files and Picard
v1.43 to remove PCR duplicates (http://broadinstitute.github.io/picard/).
Raw copy number profiles for each sample were estimated by QDNAseq98 R
package v1.20 by dividing the human reference genome in non-overlapping
50 kb windows and counting the number of reads in each bin. Bins in prob-
lematic regions were removed.99 Read counts were corrected for GC con-
tent and mappability by a LOESS regression, median-normalized, and log2-
transformed. Values below –1000 in each chromosome were floored to the
first value greater than –1000 in the same chromosome. Raw log2 ratio val-
ues were then segmented using the ASCAT95 algorithm implemented in the
ASCAT R package v2.0.7.

Whole-genome sequence reads from EurOPDX BRCA tumors and corre-
sponding tumor grafts at different passages were mapped to the reference
human genome (GRCh38) and mouse genome (GRCm38/mm10, Ensembl 76)
using Burrows-Wheeler Aligner (BWA) v0.7.15. Subsequently, mouse reads
were excluded with XenofilteR.100 Raw copy number profiles were estimated
for each sample by dividing the human reference genome in non-overlapping
20 kb windows and counting the number of reads in each bin. Only reads
with at least mapping quality 37 were considered. Bins within problematic
regions (i.e. multi mapper regions) were excluded. Downstream analysis to
estimate copy number was conducted as described above.

3.2.3 Whole-exome sequencing (WES) data
All the samples were subjected to quality control (filtering and trimming of
poor-quality reads and bases) using an in-house QC script with the cut-off
that half of the read length should be �20 in base quality at the Phred scale.
We further removed the known adaptors using cut-adapt101 v1.15 11 at -m
36. Afterward, we aligned the reads to the human genome (GRCh38.p5)
using bwakit96 v0.7.15. Engrafted tumor samples were subjected to the
additional step of mouse read removal using Xenome102 v1.0.0, with default
parameters. The alignment was converted to BAM format using Picard
SortSam v2.8.1 (https://broadinstitute.github.io/picard/), and dupli-
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cates were removed by Picard MarkDuplicates utility. BaseRecalibrator
from the Genome Analysis Tool Kit103,104 (GATK) v4.0.5.1 was used to
adjust the quality of raw reads. Training files for the base quality scale
recalibration were Mills_and_1000G_gold_standard.indels.hg38.vcf.gz,
Homo_sapiens_assembly38.known_indels.vcf.gz, and dbSNP v151. Mean
target coverage was determined for each sample by Picard CollectHsMetrics.
Aligned bams were subset to target region by GATK and SAMTools97

v0.1.18 was used to generate the pileup for each sample. Pileup data were
used for CNA estimation as calculated with Sequenza105 v2.1.2. Both tumor
and normal data, that utilized the same capture array, were used as input.
pileup2seqz and GC-windows (-w 50) modules from sequenza-utils.py utility
were used to create the native seqz format file for Sequenza and compute
the average GC content in sliding windows from hg38 genome, respectively.
Finally, we ran the three Sequenza modules with these modified parameters
(sequenza.extract: assembly = “hg38”, sequenza.fit: chromosome.list = 1:23,
and sequenza.results: chromosome.list = 1:23) to estimate the segments
of copy number gains/losses. Finally, segments lacking read counts, in
which �50% of the segment with zero read coverage, were removed. A
reference implementation of this workflow is developed and deployed in the
cancer genomics cloud at SevenBridges (https://cgc.sbgenomics.com/p
ublic/apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-workflow/,
https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/pdx-
wes-cnv-xenome-tumor-normal-workflow/).

3.2.4 RNA-sequencing (RNA-seq) and gene expression
microarray (EXPARR) data

For SNU-JAX RNA-Seq data, simultaneous read alignment was performed
to both the mouse (mm10) and the human genome (GRCh38.p5) and
only human-specific reads were used for the expression quantification.
Moreover, to be able to compare the mRNA expression values between
samples independently of the dataset origin, the Transcripts Per Million
(TPM) normalization method was carried on using RNA-Seq by Expectation
Maximization106 (RSEM) with ensemble GTF reference GRCh38.92.
For gene expression microarray data for SIBS HCC and normal liver samples
from GEO and ArrayExpress databases were profiled as follows. After initial
quality control and outlier removal, CEL files were normalized according
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to the RMA algorithm and probesets were annotated according to the
Affymetrix annotation file for HG-U133 Plus 2, released on 2016-03-15 build
36.

For expression-based copy number inference, we referred to the previous pro-
tocols of e-karyotyping and CGH-Explorer for both RNA-seq and gene ex-
pression array data.86,107–109

In detail, for each cancer type, expression values of the tumor and correspond-
ing normal samples were merged in a single table, and gene identifiers were
annotated with chromosomal nucleotide positions. Then multiple criteria for
data cleaning were implemented. At first, genes located on sex chromosomes
were excluded. Then genes with expression values below 1 TPM (RNAseq) or
probeset log2-values below 6 (microarray) in more than 20% of the analyzed
dataset were removed. At this point, the remaining gene expression values
below the thresholds were respectively raised to 1 TPM or log2-value of 6.
Furthermore, in the case of multiple transcripts (RNA-seq) or probesets (mi-
croarray) per gene, the one with the highest median value across the entire
dataset was selected. Finally, the sum of squares of the expression values
relative to their median expression across all samples was calculated for each
gene, and the 10% most highly variable genes were removed.
To produce relative copy number values, for each gene, the median log2 ex-
pression value in normal samples was subtracted from the log2 expression
value in each tumor sample and subsequently input in CGH-explorer. In-
stead, for tumor-only datasets, the median log2 expression value in the same
set of tumor samples was subtracted. At this stage, the preprocessed relative
expression profiles of each sample were individually analyzed using CGH-
Explorer.109

Specifically, as part of the CGH-Explorer program, the Piecewise Constant
Fitting (PCF) algorithm was applied to convert gene-level into segment-level
copy number values. At last, parameters previously reported were used in
the CGH-Explorer program to carry on copy number calling:83 least allowed
deviation = 0.25; least allowed aberration size = 30; winsorize at quantile =
0.001; penalty = 12; threshold = 0.01.
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3.3 Filtering and gene annotation of copy
number segments

Copy number (CN) segments with log2 copy number ratio estimated from the
various platforms were processed in the following steps. Segments <1kb were
filtered based on the definition of CNA.110 Also, SNP array segments had to
be covered by >10 probes, with an average probe density of 1 probe per 5kb.
The copy number segments were then probes, with an average probe density
of 1 probe per 5kb. The copy number segments were then re-center copy
number segments. Median-centered copy number segments were visualized
using IGV111 v2.4.13 and GenVisR112 v1.16.1. Median-centered copy number
values of genes were calculated by intersecting the genome coordinates of copy
number segments with the genome coordinates of genes (Ensembl Genes 93
for human genome assembly GRCh38, Ensembl Genes 96 for human genome
assembly GRCh37). In the case where a gene overlaps multiple segments, the
most conservative (lowest) estimate of copy number was used to represent
the copy number of the entire intact gene.

3.4 Correlation of CNA profiles
The similarity of two CNA profiles is quantified by the Pearson correlation
coefficient of log2(CN ratio) of 100kb-windows binned from segments or genes
between 2 samples. Using correlation avoided the issue of making copy num-
ber gain and loss calls based on thresholds. Median-centering of each CNA
profile approximates normalization by the sample ploidy. One caveat of
our approach, however, is that it cannot distinguish genome-wide multipli-
cation of ploidy between samples, as the correlation statistic is invariant to
such genome-wide transformations. As such we cannot assess whether ploidy
changes occur between samples of a given model.

3.5 Comparison of CNA profiles between dif-
ferent platforms

The copy number segments of each pair of samples were intersected and
binned into 100kb-windows using Bedtools. Then the Pearson correlation
coefficient was calculated for the log2(CN ratio) of the windows.
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3.6 Association of mutations with copy num-
ber correlations

For WGS data, we collected the mutational status (wild-type or mutated)
of TP53, BRCA1, and BRCA2 per model where available, which may or
may not be obtained from the same tumor samples used in this study. For
WGS data, mutations were obtained from the whole-exome or targeted panel
sequencing113 (unpublished data), and high-quality and likely functional mu-
tations were retained. For each sample pair with copy number correlations,
the mutational status was available on a per model basis. BRCA is labeled
as mutated when either BRCA1 or BRCA2 is mutated.

3.7 Annotation with gene sets with known
cancer or treatment-related functions

Copy number genes were annotated by various gene sets with cancer of
treatment-related functions gathered from various databases and publica-
tions. 1. Genes in 10 oncogenic signaling pathways curated by TCGA and
genes found to be frequently altered in different cancer types114. 2. Genes
with gain in copy number or expression, or loss in copy number or expression
that conferred therapeutic sensitivity, resistance or increase/decrease in drug
response from the JAX Clinical Knowledgebase115 (JAX-CKB) based on lit-
erature curation (https://ckbhome.jax.org/, as of 06-18-2019) 3. Genes with
evidence of promoting oncogenic transformation by amplification or deletion
from the Cancer Gene Census116 (COSMIC v89). 4. Significantly amplified
or deleted genes in TCGA cohorts of breast cancer,117 colorectal cancer,118

lung adenocarcinoma,119 and lung squamous cell carcinoma120 by GISTIC
analysis.

3.8 GISTIC analysis of WGS data
The GISTIC121 algorithm (GISTIC 2 v6.15.28) was applied on the segmented
profiles using the GISTIC GenePattern module (https://cloud.genepattern.
org/), with default parameters and genome reference files Human_Hg19.mat
for EuroPDX CRC data and hg38.UCSC.add_miR.160920.refgene.mat for
EuroPDX BRCA data. For each dataset, GISTIC provides separate results
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(including segments, G-scores, and FDR q-values) separately for recurrent
amplifications and recurrent deletions. Deletion G-scores were assigned neg-
ative values for visualization. We observed that the G-Score range was sys-
tematically lower in PT cohorts, which is likely the result of the dilution of
CNA by normal stromal DNA. In contrast, human stromal DNA in PDX
samples was lower or negligible. To account for this difference in gene-level
G-scores, PDXs at early and late passages were scaled to PT gene-level G-
score values using global linear regression, separately for amplification and
deletion outputs.

3.9 Gene set enrichment analysis (GSEA) of
WGS data

To assess the biological functions associated with the recurrent alterations
detected by the GISTIC analysis, we performed GSEAPreranked analysis122

on gene-level GISTIC G-score profiles, for both amplifications and deletions.
In particular, we applied the algorithm with 1000 permutations on various
gene set collections from the Molecular Signatures Database123,124 (MSigDB):
H (Hallmark), C2 (Curated: CGP chemical and genetic perturbations, CP
canonical pathways), C5 (Gene Ontology: BP biological process, MF molec-
ular function, CC cellular component) and C6 (Oncogenic Signatures) com-
posed of 50, 4762, 5917 and 189 gene sets respectively. We also included
gene sets with known cancer or treatment-related functions described in an
earlier section. We noted that multiple genes with contiguous chromosomal
locations, typically in recurrent amplicons, generated spurious enrichment for
gene sets that consists of multiple genes of adjacent positions, while very few
or none of them had a significant GISTIC G-score. To avoid this confound-
ing issue, we only considered the “leading edge genes”, i.e. those genes with
increasing Normalized Enrichment Score (NES) up to its maximum value
that contribute to the GSEA significance for a given gene set. The leading-
edge subset can be interpreted as the core that accounts for the gene set’s
enrichment signal (http://software.broadinstitute.org/gsea). We included
a requirement that the leading edge genes passing the GISTIC G-score sig-
nificant thresholds based on GISTIC q-value 0.25 make up at least 20% of
the gene set. This 20% threshold was chosen as the minimum threshold at
which gene sets assembled from TCGA-generated lists of genes with recur-
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rent CNA in CRC or BRCA were identified as significant in GSEA. Finally,
gene sets with a NES greater than 1.5 and an FDR q-value of less than 0.05,
which passed the leading-edge criteria, were considered significantly enriched
in genes affected by recurrent CNAs.
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Chapter 4

Results

4.1 Catalog of copy number alterations
(CNAs) in PDXs

To ensure a comprehensive and systematic analysis of Copy Number Alter-
ations in PDXs, we assembled the CNA profiles of 1451 unique samples:

• 324 patient tumor (PT)
• 1127 PDX samples.

Notably, this collection included 509 PDX models and covered 16 broad
tumor types. Moreover, it was collected by the contribution of the EurOPDX,
the PDXNET Consortium and by other published datasets.125,126

Notably, each model of the assembled PDX data encompasses matched sam-
ples. In detail, 324 PDX models include their corresponding patient tumors.
Instead, 328 PDX models include multiple PDX samples assayed at either
different passages (ranging from P0-P21) or different lineages of propagation
in mice (Fig. 4.1a).

We estimated copy number measurements on both DNA and RNA data ob-
tained by five data types :

• single nucleotide polymorphism (SNP) array
• whole-exome sequencing (WES)
• low-pass whole-genome sequencing (WGS)

43



Figure 4.1: PDX datasets used for copy number profiling across 16
tumor types. a, Numbers of PDX models for each tumor type, with models
including matched PT samples or multiple PDX samples. b, Distributions of
datasets by passage number and assay platform for PTs and PDX samples,
by tumor type 145.
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• RNA sequencing (RNA-seq)
• gene expression (GEP) array.

To provide a benchmark of CNAs inferred from different genomic platforms,
we assembled a dataset with matched measurements across multiple plat-
forms (Fig. 4.1b). Precisely, we combined:

• 8 patient tumor samples with matched WES and SNP array data;
• 27 patient tumor and 27 PDX samples with matched WES and RNA-

seq data;
• 2 patient tumor and 33 PDX samples with matched SNP and GEP

array data.

4.2 A benchmark of copy number profiles in-
ferred on DNA and RNA data

We took advantage of our dataset with matched measurements across multi-
ple platforms, to assess the accuracy of CNA profiles estimated on DNA and
RNA data.

It has been reported that copy number calling could be noisy for several data
types.127,128 In this respect, in our dataset, we observed that quantitative
comparisons between CNA profiles are sensitive to:

1. the thresholds and baselines used to define gains and losses;
2. the dynamic range of copy number values from each platform;
3. the differential impacts of normal cell contamination for different mea-

surements.

Therefore, to control for such systematic biases, we assessed the similarity
between two CNA profiles by the Pearson correlation of their log2(CN ratio)
values across the genome in 100-kb windows. Moreover, we identified regions
with discrepant copy number as those with outlier values from the linear
regression model.
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Table 4.1: Resolution and dynamic range of CN segments from SNP arrays
and WES.

Median/Mean segment size (Mb) Range of log2(CN)
SNP 1.49/4.05 [-8.62,2.84]
WES 4.70/14.6 [-3.04,1.85]

4.2.1 CNAs consistency of CNAs from WES and SNP
array data

On one hand, SNP arrays are largely accepted for CNA profiles
estimation.129,130 On the other hand, WES data are reported to have
more uncertainty.105,131 Therefore, we validated our CNA estimates based
on WES against those based on SNP array for matched samples.

We observed that copy number segments from SNP arrays had higher res-
olution and broader dynamic range than those estimated from WES (Fig.
4.2a-b and Table 4.1). Interestingly, the differences in resolution and dy-
namic range across these two platforms were statistically significant (P <
2.2 x 10-16). Notably, the difference in resolution and dynamic range was
apparent in the linear regressions between platforms (Fig. 4.3a).

These observations were consistent with the broad factors affecting CNA
estimates across platforms such as :

• the positional distribution of sequencing loci
• the sequencing depth of WES
• the superior removal of normal cell contamination by SNP array CNA

analysis workflows using SNP allele frequencies.95

However, despite of SNP arrays superiority in copy number inference, we ob-
served strong agreement between SNP arrays and WES for matched samples
assayed on both platforms (Fig. 4.4). Notably, Pearson correlation coeffi-
cients of matched samples were significantly higher than those of unmatched
samples (range: 0.913 – 0.957 for matched samples, 0.0366 – 0.354 for un-
matched samples, p = 1.02e-06) except for two samples that lacked CNA
aberrations and were removed (Fig. 4.2c and Fig. 4.5).

Furthermore, the discordant copy number regions largely correspond to small
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Figure 4.2: Comparisons of resolution and accuracy for CNAs esti-
mated using DNA and expression-based methods across different
measurement platforms. Copy Number Alterations (CNAs) analysis of
profiles inferred on different platforms. Pairwise comparisons of the distribu-
tions of CNA segment sizes estimated (a) and log2(copy number ratio) values
(b). c, Distributions of Pearson correlation coefficients of median-centered
log2(copy number ratio) values in 100-kb windows from CNA segments be-
tween pairs of samples. d, Examples of matched CNA profiles 145.
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Figure 4.3: Difference in range in the copy number values of matched
CNA profiles estimated from SNP array and WES. a, Pearson corre-
lation and linear regression of the log2(CN ratio) of 100kb-windows binned
from copy number segments of CNA profiles. Outliers of the linear regres-
sion (red points) are identified by studentized residuals > 3 and < -3. b,
Comparison of segment sizes between the combined outlier and non-outliers
in (a) 145. 48



focal events (average size 1.53 Mb) detectable by SNP arrays but missed by
WES (Fig. 4.3b). Hence, CNA profiling by WES was reliable in most regions
in this small dataset.

Figure 4.4: Benchmark of CNA inferences based on SNP vs WES.
CNA profiles for matched patient tumor samples estimated from SNP array
and WES for SNP vs WES benchmarking.

4.2.2 Low accuracy for gene expression-derived CNA
profiles

We also assessed the suitability of gene expression for copy number quantifi-
cation. Therefore, we adapted the e-karyotyping methods used in Ben-David
et al. 83,86,108 for RNA-seq and gene expression array data.

We applied e-karyotyping to our datasets with matched samples profiled on
SNP and GEP array or WES and RNA-seq platforms.

Concerning RNA-based data, for each tumor type, we centered the expression
values on the median expression of normal or tumor RNA samples, when
normal profiles were not available.
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Figure 4.5: Similarity of matched CNA profiles inferred on SNP
array and WES. Heatmap representing the Pearson correlation coefficients
of the log2(CNratio) of 100kb-windows binned from copy number segments
of CNA profiles between matched samples estimated from SNP array and
WES.

We observed that copy number segments centered using normal expression
were of higher resolution and broader dynamic range compared to those in-
ferred by calibration with tumor samples (Table 4.2). Interestingly, these
results were consistent for both RNA-seq and gene expression arrays plat-
forms.

Moreover, we noticed that alternative expression calibrations determine high
variability in CNA inferences, especially for regions frequently called gains
or losses in specific tumor types, as identified by GISTIC analysis in other

Table 4.2: Resolution and dynamic range of CN segments from RNA-seq and
GEP-array centered on NORM and TUM median expression.

Median/Mean segment size (Mb) Range of log2(CN)
RNASEQ NORM 36.0/51.9 [-2.07,2.17]
RNASEQ TUM 48.2/65.3 [-1.79,1.81]
EXPARR NORM 62.0/72.4 [-1.40,1.89]
EXPARR TUM 80.1/85.2 [-1.13,1.59]
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Table 4.3: Resolution and dynamic range of CN segments from DNA and
RNA based methods.

Median/Mean segment size (Mb) Range of log2(CN)
WES 3.45/14.0 [-6.00,5.33]
RNASEQ NORM 36.0/51.9 [-2.07,2.17]
SNP 1.73/5.18 [-9.19,4.65]
EXPARR NORM 62.0/72.4 [-1.40,1.89]

studies.132–134 Specifically, when the median expression level accounts for the
aneuploid state at a given locus, aberrations are missed in the samples of in-
terest, if calibration with tumor samples is implemented. In this respect, we
observed that chromosomes 8q and 13 were almost exclusively identified as
gains, and chromosomes 21 and 22 were almost exclusively as losses in the gas-
tric cancer RNA-Seq dataset when normal samples were used for calibration.
Similarly, we called exclusive gains in chromosomes 7q and 20 and losses in
chromosomes 4q31-35, 8p,16q, and 21 using normal samples for calibration
for the hepatocellular carcinoma expression array dataset. However, using
the calibration based on tumor samples, these regions resulted erroneously
called with approximately equal frequencies of gains and losses compared to
previous reports (Fig. 4.6).132–134 Therefore, these observations indicate that
RNA-based CNA profiles calibrated by tumor samples are problematic.

We then compared RNA-based copy number profiles to those inferred on
DNA data.

Gene expression based copy number segments had segmental resolution an
order of magnitude worse than the DNA-based methods (Table 4.3). Fur-
thermore, the range of detectable copy number values was also superior for
DNA-based methods (Table 4.3).

In addition, we reported lack of correlation between the expression-based and
DNA-based methods (range: 0.0541-0.942 for WES vs RNASEQ (NORM);
0.00517-0.921 for SNP vs EXPARR (NORM)) (Fig. 4.2c, 4.7a, 4.8a). More-
over, CNA estimates after tumor-based expression normalization resulted
in further discordance with DNA-based copy number results (range: –0.182-
0.929, P = 0.0468 for WES 202 vs RNASEQ (TUM); –0.0274-0.847, P = 2.20
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Figure 4.6: High variability in CNA inferences calibrated on normal
vs tumoral samples. Frequencies of copy number gains (log2(CN ratio)
> 0.1) and losses (log2(CN ratio) < –0.1) estimated from RNA-Seq and
gene expression array normalized by median expression of normal samples
of the same tumor type (RNASEQ NORM, EXPARR NORM) or median
expression of same set of patient tumors (RNASEQ TUM, EXPARR TUM).
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x 10-6 for SNP vs EXPARR (TUM)) (Fig. 4.2c, 4.7b, 4.8b). Representative
examples illustrating the superior resolution and accuracy from DNA-based
estimates are given in Fig. 4.2d.

We have shown that copy number profiles inferred on DNA data have higher
resolution and broader dynamic range than those estimated on RNA plat-
forms. Hence, DNA-based CNA profiles are generally more reliable than
those RNA-based. Moreover, concerning CNA profiles based on RNA, we
have observed that calibrating the expression on normal or, alternatively, on
tumor tissue expression levels, strongly impacts the accuracy of copy num-
ber calling. Thus, if copy number estimates based on gene expression data
would be the only one available, it is important to be aware that they are
gross quantification of copy number values and that they may be highly sen-
sitive to the procedure implemented for signal calibration.
Therefore, for the reasons mentioned, we decide to evaluate the genetic ro-
bustness of PDX models separately for DNA and RNA data.

4.3 Concordance of PDXs with patient tu-
mors and during passaging

To track the similarity of CNA profiles during engraftment and passaging,
we calculated the Pearson correlation of gene-level copy number for samples
measured on the same platform.

We considered only pairs of either patient tumor-PDX (PT-PDX) or PDX-
PDX derived from the same PDX model, yielding 501 PT-PDX and 1257
PDX-PDX pairs.

Firstly, we carried on similarity analysis of the PT-PDX pairs to quantify
the extent of CNA conservation in PDXs relative to their originating tumors.
Then, we performed a similarity analysis of the PDX-PDX pairs to evaluate
the amount of copy number changes occurring during PDX expansion and
passaging. Moreover, we adopted a pan-cancer approach, since we were inter-
ested in elucidating potential tumor type-independent copy number evolution
in PDXs driven by the mouse host.

For all DNA-based platforms, we reported high similarity between matched
PT-PDX and PDX-PDX pairs. Interestingly, the similarity scores of PT-
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Figure 4.7: Similarity of matched CNA profiles inferred on WES
and RNA-seq differentiating calibrations of gene expression data
on normal and tumoral samples. Heatmap representing the Pearson
correlation coefficients of the log2(CN ratio) of 100kb-windows binned from
copy number segments of CNA profiles between matched samples estimated
from WES and RNA-Seq, (a) normalized by median expression of normal
samples of the same tumor type WES vs RNASEQ (NORM) or (b) median
expression of same set of patient tumors WES vs RNASEQ (TUM).
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Figure 4.8: Similarity of matched CNA profiles inferred on SNP ar-
ray and gene expression microarray differentiating calibrations of
gene expression data on normal and tumoral samples. Heatmap
representing the Pearson correlation coefficients of the log2(CN ratio) of
100kb-windows binned from copy number segments of CNA profiles between
matched samples estimated from SNP array and gene expression microarray,
(a) normalized by the median expression of normal samples of the same tu-
mor type SNP vs EXPARR (NORM) or (b) median expression of same set
of patient tumors SNP vs EXPARR (TUM).
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PDX and PDX-PDX pairs derived from the same PDX models were sig-
nificantly higher than those of PT-PDX and PDX-PDX pairs achieved from
different models from the same tumor type and center(p < 2.2e-16)(Fig. 4.9a-
c).

Figure 4.9: Comparisons of CNAs from PTs with early and late
PDX passages. a-c, Distributions of Pearson correlation coefficients of
gene-based copy number, estimated by SNP array (a), WES (b) and WGS
(c) between: PT–PDX and PDX–PDX samples of the same model; and pair
of samples of different models from a common tumor type and contributing
center. d-f, Distributions of Pearson correlation coefficients of gene-based
copy number, estimated by SNP array (d), WES (e) and WGS (f) among PT
and PDX passages of the same model, relative to PT (top) and P0 (bottom)
are shown.145.

For SNP array data, the difference in the correlation values between PT-PDX
and PDX-PDX pairs was not significant (median correlation = 0.950 for PT–
PDX and 0.964 for PDX–PDX; P>0.05). Conversely, there were small but
statistically significant shifts of WES (PT–PDX = 0.874; PDX–PDX = 0.936;
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P = 2.31×10−16) and WGS data (PT–PDX = 0.914; PDX–PDX = 0.931;
P = 0.000299).

We compared the spectrum of copy number alteration values assumed by PT
and PDX sample profiles. We observed that PT samples had a narrower
CNA range than their derived PDXs, whatever platform used. However, this
behavior was particularly apparent for CNA profiles based on WES and WGS
(median ratios for PT/PDX and PDX/PDX, respectively=0.832 and 0.982
(P=0.000120) for SNP, 0.626 and 0.996 (P<2.2×10−16) for WES and 0.667
and 1.00 (P<2.2×10−16) for WGS). We expected that stromal DNA in PT
samples dilutes the CNA signal. On the other hand, human stromal DNA
is reduced in PDXs, because replaced by the murine counterpart. Moreover,
WES and WGS platforms have higher uncertainties than SNP array data in
estimating stromal DNA contributions. Hence, technical limitations, rather
than biological variations between PT and PDXs, more reliably explain the
slightly significant differences in the correlation values between PT-PDX and
PDX-PDX matched pairs inferred on WES and WGS data.

Finally, we performed a similarity analysis between matched PT-PDX and
PDX-PDX pairs using RNA-based data. We reported that expression-based
CNA profiles could overestimate copy number changes during engraftment
and passages (Fig. 4.10, 4.11). Notably, the similarity scores of matched
pairs of PT-PDX and PDX-PDX tended to be systematically lower in gene-
expression based CN profiles than in those estimated from DNA data in the
SIBS hepatocellular carcinoma (HCC) dataset (Fig. 4.12).

4.3.1 PDX samples at late passages maintain CNA
profiles similar to early passages

Next, we investigated whether any systematic evolution of copy number pro-
files occurred during PDX engraftment and passaging. We hypothesized that
systematic mouse environment-driven evolution, if present, should reduce the
correlations between the copy number profiles of matched PT and PDX or
matched PDX pairs. Moreover, such reduction should be systematically ob-
servable at each subsequent passage in the mouse.

We observed no apparent effect during PDX passaging of CN profiles esti-
mated on SNP, WES, and WGS platforms (Fig. 4.9d-f and 4.13).
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Figure 4.10: CNA profiles of samples from SIBS hepatocellular car-
cinoma (HCC) dataset. Copy number profiles are inferred on SNP array
and gene expression array normalized by the median expression of normal
liver tissue samples and of tumor samples of the same dataset.
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Figure 4.11: CNA profiles of samples from SNU-JAX gastric cancer
dataset. Copy number profiles are inferred on WES and RNA-Seq normal-
ized by the median expression of normal gastric tissue samples from the same
patients and of tumor samples of the same dataset.

59



Figure 4.12: Similarity of matched pairs of PT-PDX and PDX-PDX
in gene-expression vs DNA based CNA profiles. Scatter plots to com-
pare the Pearson correlation coefficients of gene-based copy number using
SNP array, gene expression array normalized using median expression of nor-
mal(RNASEQ/EXPARR NORM) and tumor (RNASEQ/EXPARR TUM)
samples. P-values were computed by Wilcoxon signed-rank test.

The SNP data showed no significant difference between passages (Fig.4.9d).
However, PDX models having very late passages exhibited a minor significant
decrease in correlation compared to models with earlier passages (P < 8.98 x
10-5). Notably, this decrease in correlation indicated that some copy number
changes could occur over long-term passaging (Fig. 4.13). Nonetheless, even
at these late passages, the correlations to early passage PDXs remained high
(median = 0.896). On the other hand, more variability in the correlation
values could be observable for WES and WGS data (Fig. 4.9e-f and 4.13).
However, the lack of a downward trend over passaging was also apparent in
these sets of samples.

4.3.2 Lack of association between mutations in genome
stability-related genes and PDX copy number
stability

We explored whether the stability of copy number during engraftment and
passaging is affected by mutations in genes known to impact genome stability.
Specifically, as our larger size cohorts are given by CRC and BRCA derived
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Figure 4.13: Comparisons of CNAs relative to PDX samples at pas-
sages P1 or later. Distribution of Pearson correlation coefficients of gene-
based copy number, estimated by (a) SNP array, (b) WES, (c) WGS, between
different combinations of patient tumor and PDX passages of the same model
145.
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PDX models, we investigated whether the observed copy number instability
is associated with the genetic mutations related to genetic instability and
most frequently detected in CRC and BRCA tumor types, e. g. TP53 and
BRCA.135–138

Hence, we compared the copy number correlations in models with wildtype
versus mutated TP53 or BRCA, where available. However, we did not observe
any consistent decrease in correlation associated with the mutational status
of TP53 or BRCA (Fig. 4.14). Therefore, this indicated that mutations
in such genes did not lead to copy number changes increased during PDX
engraftment and passaging.

Figure 4.14: Comparison of matched pairs of PT-PDX and PDX-
PDX CNA profiles according to different mutational status. Distri-
bution of Pearson correlation coefficients of gene-based copy number for mu-
tational status (WT: wildtype, MUT: mutant) of TP53 or BRCA1/BRCA2
of the samples or models for each correlation pair for, (c) and (d) SNP array
and (e) and (f) WGS.
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4.4 Spatial heterogeneity: a relevant source
of genetic evolution in PDX models

We next compared the similarity between engrafted PDXs of the same model
with the same passage number. Specifically, we defined PDX samples with
the same lineage as those differing only by consecutive serial passages. For
JAX SNP array and PDMR WES datasets, we defined samples with dif-
ferent lineages as those obtained by dividing and propagating a tumor into
multiple mice (Fig. 4.15a). Instead, for the EurOPDX CRC and BRCA
WGS datasets, we defined PDX samples with different lineages as they orig-
inated from distinct patient tumor fragments. Interestingly, we observed a
lower correlation between PDX samples from different lineages compared to
within a lineage (Fig. 4.15a-b, P = 0.0233 for SNP, P = 0.00119 for WES,
P = 0.000232 for WGS), despite a majority of these pairwise comparisons
exhibiting high correlation (>0.9).

Figure 4.15: Genetic divergence of PDX samples from different lin-
eages compared to within a lineage. a, Scheme of lineage splitting
during passaging and expansion of tumors into multiple mice. b, Pearson
correlation distributions for PDX sample pairs of different lineages and sam-
ple pairs within the same lineage, for (from left to right): JAX SNP array,
PDMR WES and EuroPDX WGS datasets 145.

This indication suggested that lineage-splitting could be responsible for devi-
ations in CNAs between samples. Therefore, copy number evolution during
passaging mainly arises from evolved spatial heterogeneity.139
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4.4.1 CNA evolution across PDXs is comparable to
variation in multi-region samples

We then compared the CNA evolution occurring in PDXs with the levels of
copy number variations in the multi-region samplings of non-small-cell lung
cancer from the TRACERx Consortium.140 Therefore, we performed anal-
ogous CNA correlation analyses between multi-region pairs. Interestingly,
differences in correlation (P > 0.05) between multi-region patient and lung
cancer PT-PDX pairs were not significant. The PDX-PDX pairs showed
significantly better correlation than the multi-region pairs (P < 0.05, Fig.
4.16), across all lung cancer subtypes. Moreover, the correlations among
intra-patient samples were lower median compared with those associated
with CNA evolution during engraftment (PT-PDX) (Fig. 4.17). Nonethe-
less, the difference across variations in patient tumors versus PDX evolution
was not statistically significant (Fig. 4.17), suggesting that CNA evolution
across PDXs is no greater than variation in patient multiregion samples.

Figure 4.16: Similarity of multi-region patient and lung cancer PT-
PDX pairs. Distributions of Pearson correlation coefficients of gene-based
copy number for lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC) and other lung cancer subtypes, comparing different datasets.
From left to right on the x-axis, these include: multiregion tumor samples
of the same patient from TRACERx (n = 92 PTs; n = 295 multiregion sam-
ples); PT–PDX samples of the same model; and PDX–PDX samples of the
same model 145. P-values were computed by two-sided Wilcoxon rank-sum
test (P > 0.05).
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Figure 4.17: Genetic variations in patient primary, relapse and
metastasis samples vs PT-PDX pairs. Distributions of Pearson correla-
tion coefficients of gene-based copy number between intra-patient PT pairs
(n = 14; primary, relapse or metastasis) from the same patient (n = 5) and
corresponding PT–PDX pairs (derived from the same model; a different PT
sample from the same patient generates a different model) for the same set of
patients. P-values were computed by two-sided Wilcoxon rank-sum test (P
> 0.05). For all box and violin plots, the numbers of pairwise comparisons
are indicated in the x-axis labels. In all box plots the center line represents
the median, the box limits are the upper and lower quantiles, the whiskers
extend to 1.5× the interquartile range and the dots represent all data points.
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4.5 Absence of mouse-specific evolution in
PDX models

Finally, we investigated whether recurrent CNA changes occur in PDXs in
a tumor-type specific fashion. To this aim, we analyzed further the WGS-
based CNA profiles of large metastatic colorectal (CRC) and breast cancer
(BRCA) series. These datasets were respectively composed of 87 and 43
matched triplets of the patient tumor (PT), the PDX at early passage (PDX-
early), and the PDX at later passage (PDX-late).

We carried out GISTIC analysis to identify recurrent CNAs by evaluating the
frequency and amplitude of observed events.141 In detail, GISTIC was applied
separately for each PT, PDX-early (P0-P1 for CRC, P0-P2 for BRCA), and
PDX-late (P2-P7 for CRC, P3-P9 for BRCA) cohorts of CRC and BRCA.
As expected, CRCs and BRCAs generated different patterns of significant
CNAs, with each similar to the GISTIC patterns in their respective TCGA
series (Fig. 4.18). However, within each tumor type, the GISTIC profiles of
the PT, PDX-early, and PDX-late cohorts were virtually indistinguishable
(Fig. 4.19, 4.18), demonstrating no gross genomic alteration systematically
acquired or lost in PDXs.

4.5.1 Absence of CNA shifts in 130 WGS patient tu-
mor, early passage PDX and late passage PDX
triplets

To perform an high-resolution analysis of recurrent genomic alterations, we
carried out a gene-level analysis. Therefore, we attributed the GISTIC score
(G-score) of the respective segment to each gene (Supplementary Table 7).

In both the CRC and BRCA cohorts, gene-level G-scores of the PTs highly
correlated with the respective PDX-early and PDX-late cohorts (Fig. 4.19b-
c). Moreover, PT versus PDX correlations was comparable to PDX-early
versus PDX-late correlations. To search for progressive shifts, we compared
the change in G-score (ΔG): (i) from tumor to PDX-early and (ii) from
PDX-early to PDX-late. Correlations in these two ΔG values, as shown in
the bottom-right panels of Fig. 4.19b and c, was absent or even slightly
negative. Moreover, not a single gene had both ΔG concordant and passing
the respective GISTIC threshold for significance (see Supplementary Table
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Figure 4.18: GISTIC analysis of recurrent CNAs in TCGA primary
tumors and EurOPDX collections of PTs and derived PDXs, at
early and late passages, of (a) colorectal cancer and (b) breast
cancer. For each GISTIC plot the top axis reports the G-score and the
bottom axis the q-value 145. Red line plots: amplifications, blue line plots:
deletions.
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Figure 4.19: Absence of mouse-driven recurrent CNAs during en-
graftment and propagation of CRC and BRCA PDXs. a, Bar charts
representing genome-wide G-scores for amplifications and deletions in each
of the three cohorts of CRC (left; 87 triplets) and BRCA (right; 43 triplets):
PT, PDX-early (P0–P1 for CRC; P0–P2 for BRCA) and PDX-late (P2–P7
for CRC; P3–P9 for BRCA). b,c, Scatter plots comparing gene-level G-scores
between each of the three cohorts for CRC (b) and BRCA (c). The bottom-
right panels of b and c show scatter plots comparing ΔG values from PT to
PDX-early and from PDX-early to PDX-late. d,e, Scatter plots comparing
GSEA NESs for gene sets between each of the three cohorts for CRC (d) and
BRCA (e). The bottom-right panels of d and e show scatter plots compar-
ing ΔNES from PT to PDX-early and from PDX-early to PDX-late. Gray
data points represent all gene sets, whereas red data points represent gene
sets significantly enriched in at least one of the three cohorts (that is, PT,
PDX-early or PDX-late) 145.

68



8). Nonetheless, small segments of recurrent copy number gain or loss could
be missed by this analysis due to the bin size imposed by the WGS coverage.
However, overall, these results confirmed the absence of systematic CNA
shifts in PDXs even under high resolution, gene-level analysis.

4.5.2 Lack of CNA-based functional shifts in triplets
We then considered the possibility of systematic copy number evolution at
the pathway level in these triplets. In this regard, we performed Gene Set
Enrichment Analysis (GSEA)143 using G-scores to rank genes in each cohort.
Multiple gene sets displayed significant enrichment in individual cohorts.
Notably, these significant enrichments were consistent with the known recur-
rence of cancer CNAs at driver genes.

To avoid spurious apparent enrichment for sets of genes with adjacent chro-
mosomal location, we implemented an additional filter based on G-score sig-
nificance. Thus, after applying the Normalized Enrichment Score (NES),
FDR q-value, and G-score filters, 49 gene sets were significant in at least one
of the three CRC cohorts, and 89 gene sets in at least one of the three BRCA
cohorts. Importantly, control gene sets composed of GISTIC hits identified
in TCGA CRC and BRCA datasets were all significant. Therefore, our WGS
cohorts properly recapitulated the major CNA features of these two cancer
types. Moreover, differences associated with PDX engraftment and passage
were negligible.

For both CRC and BRCA, the NES profiles for the ~8000 gene sets of PTs
highly correlated with the respective PDX-early and PDX-late cohorts (Fig.
4.19d-e). Furthermore, PT versus PDX correlations was comparable to PDX-
early versus PDX-late correlations. To search for progressive shifts, we calcu-
lated for each significant gene set ΔNES values between PT and PDX-early,
as well as between early and late PDX. Similarly to what was observed for
the ΔG-scores, as shown in the bottom-right panels of Fig. 4.19d and e,
correlations were absent or at most slightly negative, confirming the absence
of systematic CNA-based functional shifts in PDXs.
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Chapter 5

Discussion

During the last decades, multiple model systems derived from patient tumors
have been developed. Both in vitro and in vivo models have provided their
contribution to study cancer biology and investigate drug responses, despite
the intrinsic limitations affecting each of these systems.
Patient-derived xenografts (PDXs) are in vivo preclinical models generated
by directly transplanting fragments of human tumors into immunodeficient
mice. Therefore, the uniqueness of PDXs is the possibility of studying hu-
man cancer cells in a natural microenvironment, where they interact with
the stromal components contributed by the murine host.1,2 Nonetheless, the
absence of the immune system components in PDXs hinders the possibility
of employing these models for studying the roles of the immune system in
tumor development and in immune-based therapy response.66–68

The importance of any cancer model relies on its ability to recapitulate the
tumor of origin. Hence, regarding PDXs, they are considered robust model
systems, provided that the murine microenvironment does not affect their
biology and, potentially, their tumor evolution trajectories.
Indeed, cancer is an evolutionary process, in which, as expected, genomic
alterations may emerge or disappear from patient tumors to PDXs. Thus, in
this context, our goal is to discern whether potential genomics changes from
patient tumors to PDXs are the result of a selective pressure imposed by
the mouse host or a neutral tumor evolution as those occurring in patients.
In presence of genetic drift and spatial heterogeneity, PDXs would mimic
tumor evolution of patient tumors, confirming their suitability as models of
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human cancers. Conversely, if the murine microenvironment would impose
selective pressures, this would affect the entire reliability of the model sys-
tem. Precisely, whether the mouse host would induce selective pressures
affecting tumor evolution of PDXs, genetic changes would arise, systemati-
cally and progressively, from patient tumors to PDXs, during engraftment
and propagation, impacting their reliability as human cancer models.

To this aim, we collected data which include the copy number profiles of
matched patient tumor and PDXs, and we tracked the genomic stability of
PDXs from the patient to long-term passages in the mice. In this respect, as
tumor purity could affect the reliability of copy number events calls, we de-
cided to avoid copy number calling. Thus, we assessed the similarity among
the profiles of patient tumors and matched PDXs computing the pairwise
correlation of their copy number ratio values.
Overall, this analysis showed strong concordance between matched PT-PDX
and PDX-PDX pairs, and no apparent downward trend over tumor engraft-
ment and passaging. We did observe larger deviations between PT–PDX
than in PDX–PDX comparisons. However, this was probably due to the di-
lution of the PT signal by human stromal cells.
Some PDX models displayed CNA profile variations, but it was unclear
whether such changes were the result of selective pressure imposed by the
mouse host or of neutral tumor evolution and intratumor heterogeneity.
Hence, to clarify the contribution of intratumor heterogeneity to the ob-
served deviations in CNAs among pairs, we compared the similarity between
PDXs derived from the same patient tumor sample versus those from dis-
tinct fragments of the same original tumor. Notably, we found that the
splitting of tumors into fragments during PDX propagation was responsible
for differences between PDX samples. Hence, spatial evolution within tumors
seemed to produce variations among samples more than time or number of
passage in the mouse. Moreover, we observed that the copy number shifts
between PT and PDX were no more than the variations among multi-region
tumor samplings. Importantly, this result corroborated the finding that spa-
tial heterogeneity is a relevant source of genetic evolution in PDXs. Then,
to investigate whether any selective pressures are imposed by the mouse mi-
croenvironment in individual tumor types, we focused on two large colorectal
and breast cancer series, composed of 87 and 43 matched triplets of PT, PDX
at early passage (PDX-early) and PDX at later passage (PDX-late), respec-
tively. As a result, in this context, for both of these tumor types, genomic
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data were assembled from matched PT, PDX-early, and PDX-late cohorts.
Therefore, we performed an analysis of recurrent CNA events by GISTIC,
separately for each cohort. Specifically, we assumed that if mouse-specific
selective pressure was occurring, recurrent changes in the CNA profile would
emerge in the PDX early cohort compared to the PT cohort and further in-
crease in the PDX late cohort. However, we found that GISTIC CNA profiles
of the PT, PDX-early, and PDX-late cohorts were virtually indistinguishable,
with minor not functionally related changes only. Moreover, as the GISTIC
profiles of our cohorts recapitulated at large those generated by the TCGA
for colorectal and breast cancer, these results were not affected by the lack
of representativeness of CNA lesions per tumor type.

Thus, on a hand, our analyses, excluding a systematic mouse-driven genetic
selection during PDX engraftment and propagation, reinforced the finding
that PDXs are prominent preclinical models, as they recapitulated the ge-
nomic landscapes of their original human tumors. On the other hand, our
study challenged recent literature highlighting the possibility that PDXs
undergo a mouse-induced copy number evolution.83 In detail, the disagree-
ment between our work and previous reports of copy number divergence in
PDXs83,85 strongly depends on the hypothesis tested for verifying the ab-
sence of mouse-driven selection in PDXs and on the methods and data types
used for defining copy number profiles and discordance among pair of sam-
ples. These studies just reported that the percentage of altered genome varies
from PT to PDXs. However, shifts in copy number values are expected dur-
ing the evolution of tumor tissues. Therefore, a priori, the copy number
changes reported between patient tumors and PDXs could simply be the
result of population bottleneck during PDX engraftment and/or neutral evo-
lution of tumors. Moreover, these reports almost exclusively estimated the
copy number shifts from GEP array data, which, as we have shown, have
low resolution and robustness. Furthermore, they called copy number gains
and losses events and then measured the discordance among PT and PDX
samples. Nevertheless, copy number events calling is still challenging with-
out very high-depth sequencing data. Therefore, our results are not in real
contradiction with recent reports, questioning the genomic fidelity of PDXs.

Our work, which has been published on Nature Genetics at the beginning
of this year in collaboration with the PDXNET Consortium & EurOPDX
Consortium teams,145 reinforces the finding the PDXs are robust models of
the genetic evolution of human tumors. Indeed, our in-depth tracking of
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CNAs throughout PDX engraftment and passaging confirmed that tumors
engrafted and passaged in PDX models maintain a high degree of molecular
fidelity to the original PTs, thus verifying their suitability for preclinical
drug testing.

Nonetheless, despite the volume and comprehensiveness of our CNA dataset,
we do not rule out that future studies, hopefully including thousands of
PDX models composed of matched patient tumors and PDX samples, might
elucidate that, in some subpopulations of cancer types, the murine microen-
vironment might impact the tumor evolution of PDXs.
Moreover, it is reasonable that large amounts of higher-depth sequencing
data will be available in the future. As a consequence, it will be possible
to investigate subclonal dynamics of cancer cell populations with high accu-
racy, which, in turn, will lead to better clarify the contribution of spatial
heterogeneity in the genomic differences between patient tumors and PDXs.

Overall, we do not exclude the PDXs will evolve in individual trajectories
over time as a consequence of unavoidable evolutionary bottleneck occur-
ring during PDX establishment and of spontaneous tumor evolution. Thus,
for therapeutic dosing studies, we recommend confirming the existence of
expected molecular targets and obtaining sequence characterizations in the
cohorts used for testing as close to the time of the treatment study as is
practical.
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