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CHAOTIC PHENOMENA FOR GENERALISED N-CENTRE PROBLEMS

STEFANO BARANZINI AND GIAN MARCO CANNEORI

Abstract. We study a class of singular dynamical systems which generalise the classical N-centre
problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface.
We investigate the existence of topological conjugation with the archetypal chaotic dynamical system,
the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic
solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers
of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any
collision regularisation. For any sufficiently large value of the energy, we prove that the generalised N-
centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature
is negative, we construct chaotic invariant subsets.
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1. Introduction and main results

The Euclidean N -centre problem has been the object of extensive investigations, starting from the
pioneering papers [24, 8, 21, 10, 25] which emphasised the intricate nature of this problem. In the most
classical setting, the singularity set is made of N heavy poles c1, . . . , cN in the configuration space Rd

(here d = 2, 3), with associated masses m1, . . . ,mN > 0. For a test particle x(t) ∈ Rd, the equation of
motion reads

ẍ(t) = −
N∑

j=1

mj(x(t) − cj)

|x(t)− cj |α+2
,

which can be also written as ẍ = −∇V(x), where

(1) V(x) = −
N∑

j=1

mj

α|x − cj |α
,

with α ≥ 1. The main focus of this paper is the analysis of complex and chaotic behaviours for a class
of 2D dynamical systems driven by singular homogeneous potentials. We study some generalised N -
centre problems, whose most relevant instances include the motion of a test particle on a Riemannian
surface (M, g), gravitating under the attraction of N fixed heavy bodies. In analogy with the classical
Keplerian gravitational laws with flat metric g, the particle is subjected to an attractive force depending
on the Riemannian distance induced by g.

As a consequence of the presence of singularities, the flow associated to the motion equation for the
generalized N -centre problems is not complete. Indeed, the point particle x(t) may cross a centre cj
in finite time and usually we refer to this phenomenon as a collision. Another common feature of the
generalized N -centre problems (and (1)) is how the homogeneity degree α drastically affects the orbits
structure, already when N = 1 (see [15, 14]). We say that the singularities of V are Newtonian when
α = 1, weak force when α ∈ (1, 2) and strong force when α ≥ 2.

As a further indicator of complexity of these systems, note that, except for the classical completely
integrable cases N = 1 (the Kepler problem) or N = 2 (the 2 centre problem, solved by Euler
and Jacobi), the analytic integrability of (1) is destroyed as the number of non-linear interactions
between the particle and the centres increases (see [8]). This fact, together with the relevant number
of applications in Celestial Mechanics, has fostered many different approaches to investigate the rise of
chaotic behaviours. In particular, topological methods relying on global regularisation of collisions and
classical perturbative approaches have brought to light chaotic invariant subsets of the phase space for
the flat N -centre problem, as discussed at the end of this section.

1.1. Problem setting. In this paper we consider a family of singular dynamical systems – the gen-
eralised N -centre problem – defined on an orientable and complete Riemannian surface (M, g). The
metric g provides a natural way of measuring the length of regular curves onM and a natural distance
function dg(p, q) for any p, q ∈M . Let us introduce the N -centre problem on the surface M . Consider

C .
= {c1, . . . , cN} ⊂M , the set of centres, and let M̂

.
=M \ C be the configuration surface. We wish to

define a potential energy V on M̂ depending on the reciprocal Riemannian distance dg(·, cj). Recalling
the classical Euclidean potential defined in (1), a natural way to introduce one on (M̂, g) could be the
following:

(2) Ṽ (q) = −
N∑

j=1

mj

αjdg(q, cj)αj
,

where αj ∈ [1, 2) and m1, . . . ,mN ∈ R+ stand for the masses associated to each centre. However, such

a function Ṽ may fail to be differentiable in M̂ if, for instance, M is compact or the curvature of g
is positive somewhere in M . Indeed, if we fix q ∈ M , the distance function p 7→ dg(p, q) is smooth
only as long as there is a unique minimiser of ℓ joining p and q. We are thus brought to consider
potentials V which behave as (2) only locally around the singularities. More formally, we will assume
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that V ∈ C 2(M̂) and that there exists r > 0 such that, in every metric ball Br(cj), the potential V
has the form

(3) V (q) ∼ − mj

αjdg(q, cj)αj
+Wj(q),

whereWj is a smooth function in Br(cj) (cf [9]). This means that, close to every centre cj, the particle
q is under the attraction of a perturbed −αj-homogeneous potential, with αj ∈ [1, 2). In addition, we
require the function V to be bounded away from the centres

sup
q∈M\

⋃
Br(cj)

|V (q)| < +∞.

The N -centre problem in M̂ is then the following Lagrangian system, defined on the tangent bundle

(4)
D

dt
u̇ = −∇V (u),

where the gradient ∇ and the covariant derivative D
dt are defined by the Riemannian metric g. The

associated Lagrangian function reads

L(u, u̇) =
1

2
|u̇|2g − V (u).

Formally, we say that u : J → M̂ is a classical solution of (4) if u(t) solves (4) for any t ∈ J . Note
that, from the Hamiltonian viewpoint, any classical solution u of (4) verifies the following conservation
of energy law:

(5)
1

2
|u̇(t)|2g + V (u(t)) = h, ∀ t ∈ J,

and thus it makes sense to study (4) in fixed energy levels. For the purposes of this paper, we will
consider only energy levels h above a certain threshold, namely:

(6) h > sup
M

V.

This is the natural extension to (M, g) of the positive energy N -centre problem on R2 with standard
flat metric ge (see [24, 8, 21, 12]).

Remark 1.1. So far, we have made no assumptions on the compactness of M and the non-compact
case is also an object of our study. However, in this case, some control on the metric g is needed. To
be precise, we will assume that, together with M , an embedding ψ : M → R

3 is given, and that the
Riemannian metric g can be controlled with the pull-back of the Euclidean metric through ψ, which
we have already denoted by ge. Namely, we will assume that there exist constants Λ, λ > 0 such that:

(7) λg ≤ ge ≤ Λg.

The purpose of this paper is twofold: as a first result we provide infinitely many distinct collision-
less periodic orbits for (4) with constant positive energy satisfying (6) and prescribed homotopy class.
Then, we relate this result with the presence of invariant subsets of the phase space on which the
first return map acts in a (possibly) chaotic way. More precisely, we construct a topological semi-
conjugation (which in some cases is actually a conjugation) with the paradigmatic chaotic dynamical
system: the Bernoulli shift on bi-infinite sequences.

1.2. Infinitely many periodic orbits. At first we provide some multiplicity results for periodic
solutions of the generalised N -centre problem. We say that two periodic solutions γ1 and γ2 of (4)
(defined respectively on [0, Ti]) are geometrically distinct if their supports do not coincide, namely
γ1([0, T1]) 6= γ2([0, T2]). In particular, non homotopic loops are geometrically distinct.

Our first main result (Theorem 5.2) states that there are infinitely many periodic trajectories belong-
ing to suitable homotopy classes which, according to Definition 2.10, we call admissible. An application
of Theorem 5.2 yields the following illustrative statement which generalises for instance [12, Theorems
1.2 and 1.3].
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Theorem 1.2. In every energy level h satisfying (6), there are infinitely many geometrically distinct,
periodic and classical solutions to equation (4) in each of the following cases:

• (M, g) = (R2, ge), where ge stands for the Euclidean metric and N ≥ 3;
• (M, g) = (S2, g) and N ≥ 5;
• M has genus greater than or equal to 1 and N ≥ 1.

For the proof, we opt for a variational argument, in which solutions are obtained as critical points
of a suitable functional. We introduce the so-called Maupertuis functional, defined as

Mh(γ)
.
=

∫ 1

0

|γ̇(t)|2g
∫ 1

0

[h− V (γ(t))] dt,

where | · |g is the norm induced by g on the tangent bundle (rigorous definitions are given in Section 3).
Non-constant critical points of Mh are collision-less solutions of (4) at energy h (Maupertuis principle,
see [4]). Let us mention another useful characterization of critical points of Mh: minimisers of the
Maupertuis functional are re-parametrised minimising geodesics of the so-called Jacobi-Maupertuis
metric

gJ(v, v)
.
= (h− V (x))g(v, v), x ∈ TxM,

which is conformal to the ambient metric g whenever h satisfies (5).
The first step in the proof of Theorem 1.2 is to minimise Mh over those closed H1 paths which

belong to suitable homotopy classes (see Section 3). To exclude possible collisions, a blow-up analysis
and a refinement of the classical obstacle technique for singular problems (see [30, 29]) is developed

in Section 4. Not every homotopy class on M̂ matches our purposes, especially when more than one
centre is Newtonian. In Definition 2.10, we give a notion of admissible classes which extends the one
introduced in [12, 31] and we prove that infinitely many admissible classes, which contain collision-less
periodic minimisers, exist in any of the situations listed in Theorem 5.2.

The existence proof of minimisers can be replicated for any lower semi-continuous functional on
a weakly closed set. In this sense, it is reasonable to consider potentials of the form (2) which may
correspond to continuous, but non-differentiable functionals Mh. In this case, the dynamical system
(4) has additional singularities on the cut locus of dg(·, cj), which have to be treated separately. This
is addressed in Section 7, under some additional regularity assumptions on dg(., cj). In Theorem 7.1
we construct periodic C 1 weak solutions of (4) with prescribed energy h in infinitely many homotopy
classes.

1.3. Invariant chaotic subsets, conjugation, symbolic dynamics. In this work we will use the
following definition of a chaotic dynamical system:

Definition 1.3 (Devaney [13]). If (X, d) is a metric space, we say that a continuous map f : X → X
is chaotic if

• periodic points are dense in X ;
• f is transitive;
• f has sensitive dependence on initial conditions.

For a continuous dynamical system, a straightforward verification of these three properties is usually
highly difficult and mostly unfeasible. This is where the tool of conjugation becomes very useful. As
a matter of fact, there is a prototypical dynamical system which easily verifies the above definition
of chaos, the so-called Bernoulli shift. It is a discrete dynamical system, which acts on bi-infinite
sequences of symbols, chosen in a finite set. Let S = {s1, . . . , sn} be a finite set endowed with the
usual discrete metric ρ(sk, sj) = δkj , where δkj stands for the classical Kronecker delta. We define the
set of bi-infinite sequences in S as

SZ .
= {(sk)k∈Z : sk ∈ S},

and we endow SZ with the following distance:

(8) d1((sk), (tk))
.
=
∑

k∈Z

ρ(sk, tk)

4|k|
,
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so that (SZ, d1) is a metric space. The Bernoulli shift is then the discrete dynamical system (SZ, σ),
where the map σ acts in the following way

(9)
σ : SZ −→ SZ

(sk) 7→ σ((sk))
.
= (sk+1),

which means that the whole sequence (sk) is shifted on the right. It is well-known that the Bernoulli
shift is a chaotic map (for a proof see [13, 20]), but it can also be used to prove that other dynamical
systems (X, f) possess invariant subsets on which the restriction of the map f is chaotic.

Definition 1.4. Let X,Y be two metric spaces. A map g : Y → Y is topologically semi-conjugate to
a map f : X → X if there exists a continuous and surjective map π : X → Y such that g ◦ π = π ◦ f .
In addition, if π is a homeomorphism, we say that the maps f and g are topologically conjugated.

Definition 1.5. Let S be a finite set, Σ be a metric space and R : Σ → Σ be a continuous map.
We say that the dynamical system (Σ,R) admits a symbolic dynamics with set of symbols S if there
exists a R-invariant subset Π of Σ such that the map R|Π is semi-conjugated to the Bernoulli shift
map σ. Furthermore, if the map R|Π is conjugated to σ, we say that (Σ,R) admits a chaotic symbolic
dynamics.

Our first result on this direction is the following:

Theorem 1.6. The N -centre problem on R2 displays a symbolic dynamics on every energy level
satisfying (6) for N ≥ 3.

The proof is given in Section 6 and the main idea behind this construction is to encode all information
about a given homotopy class into a proper sequence of intersection numbers. This approach traces
back to the seminal works of [27, 17] for geodesics flow on negatively curved surfaces. Let us remark
that the symbolic dynamics we build is collision-less, i.e., all admissible sequences are realised by non
collision solutions. Compared to the results given in [9], our construction is completely explicit and
elementary. Moreover, let us recall that it is known that the presence of a semi-conjugation with a
chaotic map is enough to conclude that our dynamical system possesses positive topological entropy
(see [20, Proposition 3.1.6]).

Notice that Theorem 1.6 is local in nature. Starting from a surface (M, g), whenever we can prove
the existence of a closed solution of (4) which bounds at least three centres, our construction provides
an invariant compact subset topologically semi-conjugated to the Bernoulli shift. This, for instance,
allows us to prove an analogous statement for the sphere S2 with at least 5 centres, as discussed in
Section 6. A similar construction can be carried out on any surface of genus greater than or equal to
1 with at least one singularity (we refer in particular to Subsection 6.1.2).

At last, we present the most relevant application of Theorems 1.2 and 1.6. Under some suitable
assumptions on the curvature of g, we prove that our dynamical system is conjugated to the Bernoulli
shift. The proof relies strongly on the uniqueness of minimisers of Mh in each homotopy class. This is
strictly related to the sign of the scalar curvature of the Jacobi-Maupertuis metric gJ (see in particular
Theorem 6.7).

Theorem 1.7. The following holds:

• If M = R2, N ≥ 3 and ge is the Euclidean metric, then the N -centre problem on (R2, ge)
admits a chaotic symbolic dynamics on any energy level h as in (6).

• Let (M, g) be such that g has negative curvature and assume that N ≥ 3 when M = R2;
then, there exists h∗ = h∗(M, g, V ) > supM V for which the N -centre problem on (M, g) has a
chaotic symbolic dynamics on any energy level h > h∗.

As a consequence of the topological conjugation, in all the situations identified by this result, the
N -centre problem has a chaotic first return map acting on an invariant subset of the energy shell. It
is important to notice that, when M = R2 is endowed with a non negatively curved metric, we can
consider potentials of the form (2), for there exist no conjugate points nor closed geodesics. Moreover,
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we notice that our arguments are flexible enough to extend also Theorem 1.7 to the case of a surface
with genus g ≥ 1 and N ≥ 1 centres.

There are several important contributions in the literature which are strictly related to our results.
For instance, in [9, 24] (and in [10] for the spatial case) several collisions regularisation schemes have
been proposed, yielding positive topological entropy and existence of invariant chaotic subsets. A deep
study of high energy scattering phenomena for Newtonian potentials have been carried out in [21] and
in [25] for the tridimensional case.

A significant difference between the aforementioned results and ours is that we make use of vari-
ational methods alone, we build a symbolic dynamic using non collision orbits and describe chaotic
behaviours for these singular systems without employing any regularisation argument. Almost all the
arguments presented here naturally extend to more singular situations in which regularization is not
possible at all, for instance due to the presence of anisotropy in the asymptotic expansion of the poten-
tial (see for instance [6]). Indeed, one of the advantages of our arguments is that we work directly with
the homotopy classes of the punctured surfaces, without using any compactification procedure. More-
over, our results considerably extend the ones presented in [12], on which a different and preliminary
construction of a semi-conjugation is illustrated in the case (M, g) = (R2, ge).

It is also interesting to compare our results to the classical ones for complete compact manifolds.
The study of the geodesic flow on higher genus surfaces has attracted a lot of interest in the past
century, starting from the seminal works of Morse, Hedlund, Hopf and many others. The main reason
behind these investigations is a subtle interplay between topological and dynamical properties of the
geodesic flow. The configuration spaces we consider display a similar topological complexity, but lack
the regularity and compactness properties of closed manifolds. Nevertheless, many of the phenomena
arising in the classical case persist. For instance, it is known that the geodesic of flow on any higher
genus surface has positive topological entropy ([19]). Moreover, the geodesic flow on negatively curved
surfaces is the prototypical example of Anosov flows (see [5, 22]): it possesses periodic dense orbits,
which are hyperbolic, and it is ergodic.

1.4. Outline of the paper. The structure of the paper is the following. In Section 2 we recall
some basic facts about loops on surfaces and their intersections properties. In Section 3 we present
the variational framework and prove some elementary properties of Maupertuis minimisers. Section 4
contains all the basic information about the obstacle technique and its adaptation to the non Euclidean
setting. Section 5 contains the proof of Theorem 1.2 and its more general version (Theorem 5.2).
Section 6 is devoted to the construction of symbolic dynamics and to the proofs of semi-conjugation
and conjugation (see Theorem 6.6 and 6.7). Finally, in Section 7 we consider non regular potentials of
the form (2).

2. Topological framework and admissible loops

In this section we recall some basic definitions and results about the geometrical self-intersection
index, in order to fix our notation and to introduce a notion of admissible classes of loops.

A curve or path on the configuration surface M̂ is a continuous map γ : [0, 1] → M̂ . If γ(0) = γ(1),

we refer to γ as a closed curve or a loop, which can also be seen as a continuous map from S1 into M̂ ,
if S1 denotes the oriented unit circle.

Roughly speaking, two loops are equivalent if they can be deformed continuously one into another,
as it is made rigorous in the following:

Definition 2.1. Given two loops γ, τ : S1 → M̂ , we say that γ and τ are homotopic, and we write

γ ∼ τ , if there is a continuous map h : [0, 1]× S1 → M̂ such that

• h(0, t) = γ(t);
• h(1, t) = τ(t),

for all t ∈ S1.
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We say that a loop is contractible if it is homotopically trivial, i.e., if it is homotopic to a constant

loop. If γ, τ : [0, 1] → M̂ are continuous paths with the same endpoints, we say that γ and τ are

homotopic (or homotopic rel boundary) if there exists h : [0, 1]× [0, 1] → M̂ such that

• γ(0) = h(s, 0) = τ(0);
• γ(1) = h(s, 1) = τ(1);
• h(0, t) = γ(t);
• h(1, t) = τ(t),

for any t ∈ [0, 1].

Definition 2.2. Let q ∈ M̂ and denote by π1(M̂, q) the set of homotopy equivalence classes of loops

with base point q. We call π1(M̂, q) the fundamental group of M̂ based at q.

Definition 2.3 (Concatenation of paths). Given two paths γ : [a, b] →M and τ : [b, c] →M such that
γ(b) = τ(b), we define their concatenation as the path γ#τ : [a, c] →M .

2.1. Intersection indices and minimal position loops. In this paragraph we briefly recall the
notion of geometric self-intersection number for homotopy classes as well as the definition of taut loop
that is required in the next sections. Our basic reference is [16] and references therein.

Given two closed curves in M̂ , there are two natural ways to count the number of intersection
points between them: signed and unsigned. Unless otherwise specified, we will mainly refer to unsigned
intersections.

Definition 2.4. For two loops γ and τ in M̂ , their number of intersections is

|γ ∩ τ | .
= {(t, t′) : t, t′ ∈ S

1 and γ(t) = τ(t′)}| ∈ N ∪ {+∞}.
The number of self-intersections of τ is given by

|τ | .
=

1

2

∣∣{(t, t′) : t 6= t′ ∈ S
1 and τ(t) = τ(t′)}

∣∣ ∈ N ∪ {+∞}.

Remark 2.5. Notice that the factor 1/2 appearing in Definition 2.4 comes from the identification
of (t, t′) with (t′, t). Moreover, the number of intersections or self-intersections is always finite if the
curves are in general position, i.e., their intersections are always transversal.

Definition 2.6. The geometric intersection number between two homotopy classes [τ ] and [γ] of simple

closed curves in a surface M̂ is defined to be the minimal number of intersection points between a
representative curve in the class [τ ] and a representative curve in the class [γ]:

i([τ ], [γ])
.
= min{|τ ′ ∩ γ′| : τ ′ ∈ [τ ], γ′ ∈ [γ]}.

The geometric self-intersection number i([τ ]) is defined to be the minimal number of self-intersection
points over all closed curves in the class [τ ]:

i([τ ])
.
= min{|τ ′| : τ ′ ∈ [τ ]}.

Given two loops τ and γ, we say that they are in minimal position if they realise the intersection
number of their homotopy class. Similarly, a loop τ is in minimal position (or taut) if it realises the
self-intersection number of its homotopy class.

If a loop τ is not in minimal position it is usually said that it exceeds the number of self-intersections.
It is straightforward to check that the minimum in the definition of intersection number above is always
achieved by curves that intersect transversally.

However, unlike what happens for the signed intersection number, i([τ ]) cannot be computed directly
using any representative in general position. Thanks to some results from [16], which we will recall
below, it is possible to compute i([τ ]) starting from any representative in general position and using
just a finite set of moves. To state the result we need, we recall the following definitions (see Figure 1
for some examples).

Definition 2.7. Let γ : S1 → M̂ be a loop.
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a)

b)

c)
d)

Figure 1. The striped areas of this picture represent the regions bounded by some
examples of singular 1-gons and 2-gons. In picture a) we have an innermost singular
1-gon, while the ones showed in b) and c) are not innermost. In d) we can see a
singular 2-gon in the case M = T2.

• We say that γ has a singular 1-gon if there exists a sub-arc [a, b] ⊂ S
1 such that γ(a) = γ(b)

and γ|[a,b] is contractible.
• We say that γ has a singular 2-gon if there exist two disjoint sub-arcs [a, b], [c, d] ⊂ S1 such
that γ(a) = γ(c) , γ(b) = γ(d) and γ|[a,b]∪[c,d] is contractible.

The next result contains some necessary conditions for a loop to be taut in its homotopy class.

Theorem 2.8. ([16, Theorem 4.2]) Let γ : S1 → M̂ be a general position loop. If γ is not taut, then
γ has a singular 1-gon or a singular 2-gon.

Definition 2.9. A loop γ is called simple if it has no self-intersections. A sub-loop of γ is said to be
innermost if it is simple.

In a similar fashion, a singular 1-gon (resp. 2-gon) is innermost if, regarded as a loop, it does not
contain a singular 1-gon or 2-gon.

By the well-known Jordan curve theorem in R2, any simple curve γ divides the plane in exactly
two connected components: one is bounded and contractible, while the other is unbounded and not
contractible. If M is an orientable surface, this is no longer true in general. However, if a simple loop
γ is contractible and M 6= S

2, γ divides M in exactly two components, one of which is contractible
and the other is not. If M = S2, γ divides it into two disks.

These last remarks are crucial for our purposes, since we need to refine the possible choices for a
homotopy class to work in. Indeed, facing the problem of avoiding collisions, we need to require some
nice behaviours inside the homotopy class. A rigorous notion of admissible class of loops is given in
the next definition and concludes this section. Some remarkable examples are depicted in Figures 2
and 3.

Definition 2.10. Given a non trivial homotopy class [τ ] ∈ π1(M̂), let γ be a taut representative in
[τ ]. We say that [τ ] is admissible if γ satisfies one of the following:

• if M ∼ S2, then any innermost and contractible (in M) sub-loop γ̃ of γ contains at least two
centres in both the bounded components of M \ γ̃;

• if M 6∼ S2, then any innermost and contractible (in M) sub-loop γ̃ of γ contains at least two
centres in the contractible component of M \ γ̃.

Moreover, if M is non compact, we require that there exists a compact subset K ⊆ M such that any
representative γ of [τ ] satisfies γ ∩K 6= ∅.

In the next sections, we are going to stress how is it possible to find periodic solutions of the N -
centres problem on M . Then, it will be clear that the admissibility notion introduced in the previous
definition is translated into a topological constraint which we impose on such trajectories to avoid
collisions with the centres.
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a)

d)

b)

c) e)

Figure 2. In this picture we see some examples of admissible homotopy classes of
loops on M . Pictures a) and b) show that when M = T2 it is enough to have just one
centre to define an admissible class. In c) and e) we have two examples of admissible
classes when M = R2, while in picture d) we see that at least 4 centres are required
to put this definition in the context of a two-dimensional sphere.

a) b)

Figure 3. An example of non admissible class in the case M = S2. It is not difficult
to check that the loops in a) and b) are in the same homotopy class. The one in b)
has a sub-loop which encloses a unique centre.

Remark 2.11. The requirement that γ ∩K 6= ∅ for all γ ∈ [τ ] will be needed in Section 3 to prove
the coercivity of the Maupertuis functional. Intuitively, this means that we are excluding those curves
that can be continuously deformed into one of the ends of the manifold M . It is worth stressing that
this is not a purely topological issue. Indeed, the condition of Definition 2.10 ensures the coercivity of
the Maupertuis functional in many situations, but it is not necessary in general (consider for instance
the plane R2 and a cylinder C). An example of this phenomenon is given in Figure 4.

3. The variational framework

This paper relies on some variational techniques which succeed in the task of producing periodic
solutions to our problem of study. For this reason, the present section is devoted to fix the abstract
variational setting and to recall some basic properties of the Maupertuis functional. In particular,
we are going to state a variational principle which guarantees that critical points of this functional
actually corresponds to trajectories which solve the N -centre problem.

3.1. The Maupertuis functional on surfaces. As a first step, to introduce a topology in our loops
space, we consider an embedding of our orientable surface M in R3. With a slight abuse of notation,
we identify M with its image under this embedding.
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a) b)

Figure 4. In this picture, two topologically indistinguishable situations are shown.
On the right, we have a standard cylinder, while on the left two planes are bridged.
Both surfaces are endowed with the metric induced by R3. In a), following the original
argument of Gordon (see [15]), one can show that the Maupertuis functional in the
depicted homotopy class is coercive. This fails in b), since one can have representatives
with arbitrary large L2 norm and bounded length.

Given J = [t0, t1] ⊂ R we define

(10) H .
=
{
γ ∈ H1(J ;R3) : γ(t) ∈M, ∀ t ∈ [t0, t1]

}
,

which is a Banach manifold modelled on the Sobolev space H1(J ;R2). If g is a Riemannian metric on
M (not necessarily the one induced by the ambient space), the tangent space of the manifold H can
be endowed with the scalar product

〈ξ, η〉1 =

∫

J

≠
D

dt
ξ(t),

D

dt
η(t)

∑

g

dt+

∫

J

〈ξ(t), η(t)〉g dt.

When the surface M is compact, all the metrics g induce equivalent scalar products. If M is non
compact, however, this is no longer true. The assumption given in (7) ensures precisely that this is
the case.

We denote by “H the subset of H made of those paths which do not intersect the singular set C. In
particular, “H is an open dense submanifold of H: its weak H1-closure is exactly H. The boundary ∂“H
is given by all those paths whose preimage of the singular set C is not empty. The following result is
well-known.

Lemma 3.1. ([23, Proposition 2.4.1]) Let M be a smooth manifold and J = [t0, t1]. The evaluation
map

ev : H −→M ×M

γ 7−→ ev(γ)
.
= (γ(t0), γ(t1))

is a submersion. As a consequence, if N ⊂ M ×M is a submanifold of codimension k, ev−1(N) is a
submanifold of H of codimension k.

For the special case of N = {p, q} we get the (closed) submanifold of all H1 paths starting at the
point p and ending at the point q. For N = ∆, the diagonal ofM×M , we get the space of parametrised
loops in M .

In analogy with the introduction notation, we will often use M̂ =M \C to denote the configuration

surface (without the centres). Moreover, given N ⊆M ×M , “N denotes N ∩
Ä
M̂ × M̂

ä
. We set

“HN
.
= ev−1(“N)

which is a k-codimensional submanifold of “H and HN its H1 closure. Looking for periodic solutions,
we are interested in the case N = ∆. Since we want to work with loops in a fixed homotopy class, we
introduce the following definition.
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Definition 3.2. For any [τ ] ∈ π1(M̂) we set

“H∆(τ)
.
= {γ ∈ “H∆ : γ ∈ [τ ]}

and H∆(τ) its weak H
1 closure.

For any fixed energy level h satisfying (6), let us consider the Maupertuis functional

(11) Mh : H → R ∪ {+∞} defined by Mh(γ) =

∫

J

|γ̇(t)|2g dt ·
∫

J

[h− V (γ(t))] dt,

and, if γ belongs to a positive level of Mh, we set

(12) ω2 .
=

∫
J
[h− V (γ(t))] dt
1
2

∫
J
|γ̇(t)|2g dt

and Jω
.
=

ï
t0
ω
,
t1
ω

ò
.

It is well-known that the functional Mh is differentiable over “H. Moreover, as a direct consequence of

Lemma 3.1, if “N ⊂ M̂ × M̂ is a k-codimensional submanifold, then the restriction of the Maupertuis
functional to this set is differentiable as well. Moreover, up to reparametrisation, its critical points are
solutions of the fixed energy problem (4)-(5). More precisely, the following result holds true:

Proposition 3.3 (Maupertuis principle). Let γ ∈ “H be a non-constant critical point of Mh at a
positive level. Then γ is a classical solution of





ω2D

dt
γ′(t) = −∇V (γ(t)) t ∈ J

1

2
|γ′(t)|2g +

V (γ(t))

ω2
=

h

ω2
t ∈ J

,

with boundary conditions



(γ(t0), γ(t1)) ∈ N

DvL(γ(t0), γ
′(t0))[ξ0] = DvL(γ(t1), γ

′(t1))[ξ1] ∀ (ξ0, ξ1) ∈ Tγ(t0),γ(t1)N

where DvL(x, v) is the covariant derivative of the Lagrangian L with respect to v.
In the same way, the function ψ defined by ψ(t)

.
= γ(ωt) is a classical solution of





D

dt
ψ′(t) = −∇V (ψ(t)) t ∈ Jω

1

2
|ψ′(t)|2g + V (ψ(t)) = h t ∈ Jω

,

with boundary conditions
{(
ψ(t0/ω), ψ(t1/ω)

)
∈ N

DvL(ψ(t0/ω), ψ
′(t0/ω))[ξ0] = DvL(ψ(t1/ω), ψ

′(t1/ω))[ξ1] ∀ (ξ0, ξ1) ∈ Tψ(t0/ω),ψ(t1/ω)N

Proof. The proof follows from a slight modification of the one given in [4, Theorem 4.1]. �

Remark 3.4. Unfortunately, the manifold “HN is not the right choice to employ direct variational
methods, since it is not weakly closed. Naturally, we can overcome this problem by working in its weak
H1 closure HN and find minimisers of Mh. However, the price to pay is that some ad hoc arguments
have to be developed in order to get rid of those minimisers which interact with the singular set C.
In particular, any loop γ ∈ H∆(τ) which does not collide with any of the centre is an interior point
of H∆(τ). Thus any such point is a true critical point of Mh and thus satisfies the conditions of
Proposition 3.3.

We recall some useful properties of the Maupertuis functional and we put them in the context of
the minimising space H∆(τ). As a general remark, it is straightforward to check that Mh

i) is invariant with respect to affine time rescaling,
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ii) is not additive with respect to concatenation, meaning that

Mh(γ1#γ2) 6= Mh(γ1) +Mh(γ2).

Even so, the lack of additivity of the Maupertuis functional is partially recovered by exploiting the
following two properties.

Lemma 3.5. The Maupertuis functional Mh is super-additive: if γ ∈ H∆(τ) and [a, b] ⊂ J , then

Mh(γ) ≥ Mh(γ|[a,b]) +Mh(γ|J\[a,b]).
Moreover, if γ is a minimiser of Mh in H∆(τ), then the path γ|[a,b] is a minimiser in the space

H(γ(a),γ(b))(τ) = {η ∈ H : η(a) = γ(a), η(b) = γ(b), η#γ|J\[a,b] ∈ H∆(τ)}.
Proof. The first assertion follows directly from the definition of Mh. To see that, set γ1 = γ|J1 and
γ2 = γ|J2 , for J1 = [a, b] and J2 = J \ [a, b], and define

Ki
.
=

1

2

∫

Ji

|γ̇i(t)|2gdt, Ui =

∫

Ji

h− V (γi(t))dt.

With a slight abuse of notation on Mh, we have

Mh(γ) = (K1 +K2)(U1 + U2) = K1U1 +K2U2 +K1U2 +K2U1 ≥ Mh(γ1) +Mh(γ2),

since the terms Ui ≥ 0.
Now, assume by contradiction that γ is a minimiser in H∆(τ) but γ1 is not a minimiser in

H(γ(a),γ(b))(τ). Take v in the same space with Mh(v) <Mh(γ1) and define Kv and Uv as the kinetic
and potential integrals of v, as before. By time-rescaling invariance, we can assume that K1 = Kv and
the inequality on Mh turns then into U1 > Uv. At this point, if we set γ̃ = v#γ2 we have:

Mh(γ) = KvU1 +K2U2 +KvU2 +K2U1 > KvUv +K2U2 +KvU2 +K2Uv = Mh(γ̃),

which is clearly against the minimality of γ in H∆(τ). �

3.2. Existence of minimisers. As a starting point, by means of direct methods in the calculus of
variations, we prove the existence of a minimiser of the Maupertuis functional, possibly interacting
with the singularity set C. We work in H∆(τ), which is a weakly closed subset of H1(J,R3). Whenever
we will use the symbols ‖ · ‖2 and ‖ · ‖H1 we will mean the norms with respect to the ambient Sobolev
space, while | · | stands for the Euclidean norm in R3. The proof is based on this preliminary result.

Lemma 3.6. Assume that τ is an admissible homotopy class as in Definition 2.10. Then, the func-
tional Mh is coercive and weakly lower semi-continuous on H∆(τ).

Proof. We first prove coercivity. Take (γn) ⊆ H∆(τ) such that ‖γn‖H1 → +∞; if ‖γ̇n‖2 → +∞ we
are done, since by (6) and (7) we have

Mh(γn) ≥
1

2Λ
‖γ̇n‖22

∫

J

[h− V (γn)] ≥ C1‖γ̇n‖22,

for some C1 > 0.
Now assume that ‖γn‖2 → +∞ and, without loss of generality, that every γn is defined on the

same interval [0, 1]. Clearly, if the surface M is compact, we have nothing to prove since ‖γn‖2 goes
to infinity if and only if ‖γ̇n‖2 does so. If M is non-compact, recalling Definition 2.10, without loss of
generality we can assume that τ is such that there exists a compact subsetK ofM for whichK∩γn 6= ∅
for any n. Recall that, for fixed s ∈ [0, 1], the distance between γn(s) and K is defined as

dg(γn(s),K) = min
p∈K

dg(γ(s), p).

Since K is compact, the minimum is obtained and there exists p∗ ∈ K (depending on s) such that

dg(γn(s),K) = dg(γn(s), p
∗).

Moreover dg(γn(s), p
∗) ≥ λ|γn(s)− p∗| for any s (where λ is given in (7)) and thus:

max
s∈[0,1]

dg(γn(s),K) ≥ λ max
s∈[0,1]

|γ(s)− p∗| ≥ λ|‖γn‖∞ − |p∗|| ≥ λ|‖γn‖2 − |p∗||



CHAOTIC PHENOMENA FOR GENERALISED N-CENTRE PROBLEMS 13

On the other hand, there exists tn ∈ γ−1
n K and thus dg(γn(s),K) ≤ dg(γn(s), γn(tn)). Moreover:

dg(γn(s), γn(tn)) ≤ ℓ(γn|[s,tn]) ≤
∫ 1

0

|γ̇n|g ≤ CMh(γn).

Combining the two inequalities we get the desired conclusion.
Concerning the weakly lower semi-continuity, the product of two positive R−valued lower semi-

continuous functions is a lower semi-continuous function. In principle Mh is R̄-valued. However,
the admissibility of the homotopy class τ guarantees that ‖γ̇n‖22 ≥ C > 0 uniformly. Similarly, the
potential part is uniformly bounded from below and lower semi-continuous. This is enough to conclude
the proof. �

As a direct consequence, we have the following result:

Proposition 3.7. Assume that τ is an admissible homotopy class as in Definition 2.10. For every h
satisfying (6), the functional Mh attains its minimum on H∆(τ).

3.3. Properties of the minimisers. In this section we collect some qualitative properties of min-
imisers of the Maupertuis functional. First of all, we deal with points in the boundary of H∆(τ).

Proposition 3.8 (Collisions are isolated). Assume that γ ∈ H∆(τ) is a minimiser of the Maupertuis
functional (11) and has collisions. Then, the set

Ic = {t ∈ J : γ(t) = cj , j ∈ {1, . . . , N}}
is a finite set.

Proof. Assume by contradiction that |Ic| = ∞. Since Mh(γ) < +∞, Ic has measure zero and does
not contain any proper subinterval. Pick a strictly monotone sequence (tn) ⊆ N contained in Ic and
label the corresponding collisions by cn. As a consequence of (7), (6) and since Mh is finite on γ, we
see that ∑

n

dg(cn, cn+1) ≤
∑

n

∫ tn+1

tn

|γ̇|2g ≤
∫

J

|γ̇|2g ≤ CMh(γ) < +∞,

and so the sequence (cn) is definitively constant.
Since γ is uniformly continuous, any accumulation point of Ic has a neighbourhood which contains

only collisions with a fixed centre.
Arguing similarly and applying Proposition 3.5, we see that if s0 is an accumulation point of Ic and

(sn) a strictly increasing sequence converging to it, we have that:
∑

n

Mh(γ|[sn,sn+1]) ≤ Mh(γ) which implies Mh(γ|[sn,sn+1]) → 0.

Moreover, the image of the curves γ|[sn,sn+1] is arbitrarily close to the collision centre. Recall that
since γ is a minimiser, we must have that Mh(γ|[sn,sn+1]) are definitely all equal (and thus all equal to
0) since we can exchange the segments γ|[sn,sn+1]. Thus γ is constant in a neighbourhood of s0, which
contradicts Mh(γ) < +∞. �

Remark 3.9 (Lagrange-Jacobi inequality). Usually, Proposition 3.8 is proved using the convexity
of the function dg(cj , γ(t))

2 along collision solutions (see for instance [29, Lemma 4.25] for the case
M = R2). In particular, it applies also to critical points. The proof given above has a different flavour
and does not rely on the explicit form of the potential, just on the structure of the variations space
and on minimality. In any case, a version of the classical Lagrange-Jacobi inequality can be easily
proved in this context too. To lighten the notation, assume that γ collides with a centre c and that
the homogeneity degree of V close to c is α. By direct computation one gets:

1

2

d2

dt2
dg(c, γ(t))

2 = g(X, γ̇)2 + dg(c, γ)

Å
g

Å
D

dt
X, γ̇

ã
+ g

Å
X,

D

dt
γ̇

ãã

= g (X, γ̇)
2
+ dg(c, γ)

Å
g

Å
D

dt
X, γ̇

ã
− g (X,∇V (γ))

ã
,
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where X stands for the velocity of the unit speed geodesic joining c and γ(t). Let us consider the

term g

Å
D

dt
X, γ̇

ã
. Since integral curves of X are geodesics, we have that ∇XX = 0. We can extend

X to a orthonormal frame {X,Y } on a small annulus around c. It follows that k = g(∇YX,Y ) is
the mean curvature of the Riemannian balls around c. Close to c, we have the asymptotic relation
k(p) ∼ dg(c, p)

−1 +O(dg(c, p)). It follows that:

D

dt
X = g(γ̇, Y )∇YX |γ = g(γ̇, Y )k(γ)Y |γ ,

from which we see that:

dg(c, γ)g

Å
D

dt
X, γ̇

ã
= dg(c, γ) k(γ) g(Y, γ̇)

2 ∼ g(Y, γ̇)2.

Now, recalling the definition of the potential V (see (3)), close to c we can write V as a singular plus
a regular part U as follows:

V (γ(t)) = − mi

αdg(c, γ(t))α
+ U(γ(t)).

Computing the gradient of V and substituting in the equation above, it yields:

(13)

1

2

d2

dt2
dg(c, γ(t))

2 = g(γ̇, X)2 − mi

dg(c, γ(t))α
+ dg(c, γ(t))

(
k(γ) g(Y, γ̇)2 + g(∇U(γ(t)), X)

)

= |γ̇(t)|2g −
mi

dg(c, γ(t))α
+ o(1) =

2− α

α

mi

dg(c, γ(t))α
+O(1),

where, in the last equality, we have used the conservation of energy (5). This shows that d2

dt2 dg(c, γ(t))
blows up to +∞ as γ(t) approaches c, providing strict convexity.

It is well known that outside the collision set Ic, minimisers of the Maupertuis functional (11) are
C 2 and satisfy a non linear system of ODEs. The following proposition holds as an application of
Proposition 3.3.

Proposition 3.10 (Regularity outside the collision set). Assume that γ is a minimiser of (11).

For every subinterval I ⊆ J \ Ic, the restriction γ|I belongs to C 2(I, M̂). Moreover, it is a re-
parametrisation of a solution of the following system:

(14)
Dη̇

dt
= −∇V (η), η(t) = γ(ωt),

where the parameter ω > 0 is determined as in (12).

Note that (14) is a Lagrangian system. Thus the associated Lagrangian 1
2 |η̇| − V (η) is locally

constant on J \ Ic. It is known that the total energy is conserved through collisions too, as the
following shows.

Proposition 3.11 (Conservation of energy through collisions). Assume that γ is a minimiser of (11)
on H∆(τ). Then, we have that

1

2
|γ̇(t)|2g + V (γ(t)) = h, for a.e. t ∈ J.

Proof. Even if γ may be on the boundary of H∆(τ), we can still exploit extremality of γ with respect

to time reparametrisations. Take ϕ ∈ C∞
c (J̊) and define the function fλ(t) = t+ λϕ(t). It is easy to

see that if |λ| is sufficiently small, say λ ∈ [−δ, δ], then fλ is a change of variable on the interval J .
Now, let us define the loop

γλ(t) = γ(fλ(t)) = γ(t+ λϕ(t)).



CHAOTIC PHENOMENA FOR GENERALISED N-CENTRE PROBLEMS 15

It clearly belongs to the space H∆(τ) and thus Mh(γ) ≤ Mh(γλ), for every λ ∈ [−δ, δ]. Defining the
new variable s = fλ(t) = t+ λϕ(t), we can write

Mh(γλ) =
1

2

∫

J

∣∣∣∣
d

dt
γλ(t)

∣∣∣∣
2

g

dt

∫

J

[h− V (γλ(t))] dt

=
1

2

∫

J

|γ̇(s)|2g(1 + λϕ̇(f−1
λ (s))) ds

∫

J

h− V (γ(s))

1 + λϕ̇(f−1
λ (s))

ds.

On the other hand, we can write the time variable t as an implicit function of s in this way

t(s) = f−1
λ (s) = s− λϕ(f−1

λ (s));

moreover, we can provide the following estimate

|f−1
λ (s)− s| = |s− λϕ(f−1

λ (s))− s| ≤ |λ|‖ϕ‖∞ → 0+, as λ→ 0

so that f−1
λ (s) uniformly converge to s in J as λ → 0. For this reason, the minimality condition can

be written as follows

0 =
d

dλ
Mh(γλ)

∣∣∣
λ=0

=
1

2

∫

J

|γ̇(s)|2gϕ̇(s) ds
∫

J

[h− V (γ(s))] ds− 1

2

∫

J

|γ̇(s)|2g ds
∫

J

[h− V (γ(s))] ϕ̇(s) ds

=

∫

J

ß
1

2

Å∫

J

[h− V (γ(s))] ds

ã
|γ̇(s)|2g −

Å
1

2

∫

J

|γ̇(s)|2g ds
ã
[h− V (γ(s))]

™
ϕ̇(s) ds.

Since the previous holds for any ϕ ∈ C∞
c (J̊), we have that there exists k ∈ R such that

1

2

Å∫

J

[h− V (γ(s))] ds

ã
|γ̇(s)|2g −

Å
1

2

∫

J

|γ̇(s)|2g ds
ã
[h− V (γ(s))] = k, for a.e. s ∈ J.

Recalling the expression (12) of ω2, dividing both sides by 1
2

∫
J
|γ̇(s)|2g ds we obtain

ω2

2
|γ̇(s)|2g − h+ V (γ(s)) = k;

note that here we have used the fact that the minimum is attained at a positive level and we have
used the same constant k. Integrating both sides in J , we obtain that

ω2 =

∫
J
[h+ k − V (γ(s))] ds

1
2

∫
J
|γ̇(s)|2g ds

and definition (12) gives k = 0. �

Another important feature of minimisers of the Maupertuis functional on H∆(τ) is that they tend to
be taut, meaning that they tend to minimise the number of self-intersections in their homotopy class.
Intuitively, there can be no 1−gon or 2−gon in the regular portion of a minimiser (recall Definition

2.7). However, much more attention should be paid when the minimisers lie on the boundary of “H∆(τ)
and have some collisions with the centres. For such singular curves the word taut does not make much
sense. However, the number of self-intersections of these singular minimisers can be reduced by strongly
exploiting the minimality of Mh(γ) and employing some careful surgical procedures.

Proposition 3.12. Suppose that γ is a minimiser of (11) on H∆(τ). Then:

i) γ has no singular 1-gon in M̂ ;

ii) γ has no singular 2-gon in M̂ ;

iii) γ has no singular 1-gon in M̂ ∪ {cj} for any j;

iv) γ has no 2−gon colliding with just one centre, i.e., no singular 2−gon in M̂ ∪ {cj} for any j;
v) all isolated self-intersections are transversal.
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cj

γ|[a,b]

γ|[a,b]

cj

γ|[a,b]
cj

a) b) c)

Figure 5. Picture a) shows the 1-gon described in point i) of Proposition 3.12, while
pictures b) and c) depict two examples of the behaviour excluded by point iii), namely
when γ(a) 6= cj and γ(a) = cj .

c

cj

γ|[a,b]

γ|[c,d]

γ| [a,b]

γ|[c,d]

a)

b)

Figure 6. An example of the 2-gon excluded by iv) of Proposition 3.12 is shown in
picture a), while b) shows the 2-gons treated in ii).

Proof. Property i) follows from super-additivity of the Maupertuis functional. In fact, if [a, b] ⊂ J
is an interval such that γ(a) = γ(b) and γ|[a,b] is null-homotopic, the loop η

.
= γ|J\(a,b)/(a∼b) is still

continuous and in the same homotopy class as γ. However, Mh(γ) >Mh(η).
To see ii) we use regularity. Suppose that we can find two intervals [a, b] and [c, d] such that, for

instance, γ(a) = γ(c), γ(b) = γ(d) and γ|[a,b]#γ|−1
[c,d] is null-homotopic. Then we can obtain a curve η

exchanging γ|[a,b] and γ|[c,d]. This curve has the same Maupertuis value as γ, but it is no longer C
2

and thus it cannot be a minimiser (see Proposition 3.10).
The argument for iii) is very similar to case ii). Assume first that there exists [a, b] as in i) and

γ(a) 6= cj , but γ|[a,b] is null-homotopic in R \ C ∪ {cj}. Then, if we run twice the portion between γ(a)

and cj , we end up with another minimiser which is not C 2. The case in which γ(a) = cj follows from
super-additivity as in i) (see Figure 5). Indeed, if we remove the sub-loop γ|[a,b] from γ, we obtain
a curve still lying in the boundary of H∆(τ), but on which the Maupertuis functional takes a lower
value.

Point iv) is again a matter of regularity. Switching between two possible branches gives a non C 2

minimiser exactly as in the previous point (see Figure 6).
Point v) is obvious given Proposition 3.10. In fact, by uniqueness for Cauchy problems, if position

and velocity coincide at some instant, we must be dealing with two pieces of the same trajectory.
Conservation of energy implies that the norm of the velocity is a function of the position and initial
condition alone. Thus, if γ self intersects, the velocities cannot be multiples unless they coincide or
are opposite, and in this latter case we are dealing with a time inversion. �
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γ|[a,b]

γ|[a,b]

γ(a)

γ(a)

cj1

cj2cj3

cj1

cj2

cj3

η

η

Figure 7. The situation described in point i) of Proposition 3.13. Since γ collides
with the centres cj1 , cj2 and cj3 , the curve η keeps trace of the homotopy class of γ.
In the first case the point γ(a) coincides with one centre, while in the other not.

We can extend points iii) and iv) of the previous proposition also to those minimisers which collide
with more then one centre. However, in this case, we have to keep track of the homotopy class τ we
are starting in.

Proposition 3.13. Suppose that γ is a minimiser of (11) on H∆(τ). Then:

i) there is no interval [a, b] ⊆ J and no subset of centres C′ such that
• γ(a) = γ(b),
• C′ ⊆ γ([a, b]),

• there exists a null homotopic curve η in M̂ ∪ C′ ∪ {γ(a)} with the property that

γ|J\[a,b]#η ∈ H∆(τ).

ii) there are no intervals [a, b], [c, d] ⊂ J , with b < c, and no subset of centres C′ such that:
• γ(a) = γ(c) and γ(b) = γ(d) and at least one between these two points is not a centre,
• C′ ⊆ γ([a, b]) ∪ γ([c, d]),
• there exists a curve η in M̂ ∪ {γ(a), γ(b)} joining γ(a) and γ(b), with the property that

γ|J∩(−∞,a]#η#γ|[b,c]#η#γ|J∩[d,+∞) ∈ H∆(τ).

iii) if in point ii) above γ(a) and γ(b) are both centres, we can build a minimiser γ̃ in H∆(τ) which
coincides with γ on J \ ([a, b] ∪ [c, d]) and such that γ̃([a, b]) = γ̃([c, d]) = γ([a, b]).

Proof. The proof is completely analogous to the one of Proposition 3.12. The assumptions guarantee
that performing the same type of surgeries as before does not change the property of belonging to the

boundary of “H∆(τ). Point i) follows from super-additivity, point ii) from regularity and minimality
and fro point iii) minimality is enough: the Maupertuis functional must coincide on γ|[a,b] and γ|[c,d]
(see also Figures 7-8). �

4. Colliding trajectories, geodesics and obstacles

In this section we introduce the main variational tools to exclude collisions: the obstacle problem
and the blow-up analysis of collision solutions. The main idea is to study the qualitative properties of
near collision solutions, going gradually closer to a singularity. More precisely, the proof of Theorem 1.2
heavily relies on the properties of a suitable sequence of geodesics with obstacle, which approximates
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γ|[c,d]

γ|[a,b]

ηcj1

cj2

cj3

cj1

cj2

cj3

γ(a)

γ(b)

γ(a)

γ(b)

γ| [a,b]

γ| [c,d
]

η

Figure 8. The pathological situations described in points ii) and iii) of Proposition 3.13.

a collision solution in a small neighbourhood of a centre. After a rescaling, we identify the limit as a
zero energy solution of a Kepler problem and we exploit some of its known properties.

4.1. The obstacle problem on surfaces. Assume that γ is a minimiser of the Maupertuis functional
(11) on H∆(τ) and that there exist a time t̄ ∈ J and a centre c such that γ(t̄) = c. Proposition 3.8
guarantees that such a collision instant is isolated and so we can switch to a local analysis of the
minimiser. In particular, we can find a subinterval [a, b] ⊂ J such that

• t̄ ∈ [a, b] and Ic ∩ [a, b] = {t̄};
• the function I(t) = dg(γ(t), c)

2 is strictly convex in [a, b], attaining its minimum in t̄ (see
Remark 3.9).

We call p = γ(a) and q = γ(b) and, without loss of generality, we assume that p, q ∈ ∂Br(c) for some
r > 0, where Br(c) is a metric ball with respect to dg. The main idea here is to pass from a global
analysis of the loop γ to a local analysis of the path γ|[a,b], which is entirely contained in Br(c). For
this reason, from now on we will lighten the notation on the homogeneity degrees αj which appear in
the definition of V (see (3)), and we write

V (q) ∼ − mj

αdg(q, c)α
+ U(q),

for a smooth function U , whenever q ∈ Br(c). Indeed, since γ is continuous, we can also suppose that

dg(γ(t), ck) ≥ C > 2r, for any t ∈ [a, b], ck 6= c and some C > 0,

so that we can focus our efforts on a unique singularity c. A first important property required on
γ|[a,b] is that it minimises the Maupertuis functional among all those paths which, concatenated with
γ|J\[a,b], belong to the space H∆(τ). Recalling the definition (10) of the Banach manifold H, with a
slight abuse of notation on the interval J , we introduce the space of paths

K̂ = {η ∈ H : η(t) ∈ Br(c) \ {c}, ∀ t ∈ [a, b], η(a) = p, η(b) = q}
and its weak H1-closure K. Thanks to Lemma 3.5, γ|[a,b] is a minimiser of Mh in the space

K(τ) = {η ∈ K : η#γ|J\[a,b] ∈ H∆(τ)}.
Following [29], for ε > 0 we introduce the function

d(ε) = min

ß
Mh(η) : η ∈ K(τ), min

t∈[a,b]
dg(η(t), c) = ε

™
,
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which is well-defined because the space
ß
η ∈ K(τ) : min

t∈[a,b]
dg(η(t), c) = ε

™

is weakly closed in H1.

Lemma 4.1. The value d(0) is achieved by γ|[a,b] and the function d(ε) is continuous in ε = 0.

Proof. The first part of this lemma is again a consequence of Lemma 3.5, while the continuity follows
from a slight modification of [30, Lemma 17], once similar asymptotic estimates are provided (see also
the proof of Proposition 4.5). Indeed, using exponential coordinates around c, it is possible to describe
the asymptotic behaviour of a collision solution as a small perturbation of the Euclidean case described
in [30]. �

For 0 < ε1 < ε2 define the space

Kε1,ε2(τ) =
ß
η ∈ K(τ) : min

t∈[a,b]
dg(η(t), c) ∈ [ε1, ε2]

™
,

which is weakly closed in H1 too and so Mh admits a minimiser therein. For this reason, the following
set of paths is well defined too:

K̃ε1,ε2(τ) =
®
η ∈ Kε1,ε2(τ) : Mh(η) = min

Kε1,ε2 (τ)
Mh, min

t∈[a,b]
dg(η(t), c) < ε2

´
.

Since we have assumed that γ collides in c, it is reasonable to expect that the previous set of paths is
definitely non-empty. This is the content of the next result.

Lemma 4.2. Assume that γ collides with c. Then, for any ε > 0, there exist 0 < ε1 < ε2 < ε such
that

K̃ε1,ε2(τ) 6= ∅.
Proof. The proof goes exactly as in [12, Lemma 5.3]. �

As a consequence of the previous lemma, we can find two sequences of positive numbers (εn), (ε̄n)
such that

0 < εn < ε̄n, εn, ε̄n → 0+,

and a sequence of paths (ηn) ⊂ K(τ) such that

ηn ∈ K̃εn,ε̄n(τ), Mh(ηn) = d(εn), ∀n ∈ N.

In particular, since by Lemma 4.1 the function d is continuous at 0, we see that

lim
n→+∞

Mh(ηn) = Mh(γ|[a,b]).

Since the paths ηn are minimisers of a geodesic with obstacle problem (or geodesics on a surface
with boundary problem, see for instance [2, 3]), they share some nice regularity properties which are
summarised in the following result.

Proposition 4.3 (Regularity of obstacle minimisers). For any n ∈ N:

i) ηn ∈ C 1(a, b);
ii) ηn is of class C 2 on any sub-interval of [a, b] \ Tn .

= η−1
n (∂Bεn(c)) and solves the following

second order system:

ω2
n

Dη̇n
dt

= −∇V (ηn), ω2
n =

∫ b
a [h− V (ηn)]

1
2

∫ b
a
|η̇n|2g

;

iii) the total energy of ηn(t) is constant on [a, b]. In particular:

ω2
n

2
|η̇n(t)|2g + V (ηn(t)) = h, ∀t ∈ [a, b];
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iv) the set Tn = η−1
n (∂Bεn(c)) is an interval;

v) using exponential coordinates centred at c, we can write ηn(t) = expc(rn(t)e
iϑn(t)). The angular

part ϑn(t) is strictly monotone and C 2 on Tn.

Proof. Point i) follows from [2, Theorem 1]. Point ii) is basically a Maupertuis principle and thus
follows by direct differentiation of the Maupertuis functional. Point iii) is a consequence of the same
argument used in Proposition 3.11. Point iv) can be proved using a version of (13) for ηn. Indeed,
using point iii) one has

1

2

d2

dt2
dg(c, ηn(t))

2 = g(X, η̇n(t))
2 − mi

ω2
ndg(c, ηn(t))

α
+ dg(c, ηn(t))(k(ηn)g(Y, η̇n)

2 + g(∇U(ηn(t)), X))

on any interval contained in [a, b]\Tn. Notice that, by the coercivity of Mh, ω
2
n is a bounded sequence

(see also [29, Lemma 4.30]). It follows that d2

dt2 dg(c, ηn(t))
2 can be uniformly bounded from below on

[a, b] for all n sufficiently large, in a small ball centred at c. This implies that dg(c, ηn(t))
2 are definitely

convex near the obstacle, thus if there exist two instants t1 < t2 such that dg(c, ηn(ti)) = εn, then the
same holds for all intermediate times.

Point v) follows easily from the conservation of energy. In fact, introducing exponential coordinates
on the obstacle and using iv), we have:

η̇n(t) = ϑ̇n(t)εn dεneiϑn expc(ie
iϑn(t)),

2(h− V (ηn(t))

ω2
n

= |dεneiϑn expc(ie
iϑn(t))|2gϑ̇n(t)2ε2n.

One easily deduces monotonicity of ϑn(t) from the last formula. Set Yt = dεneiϑn expc(ie
iϑn(t)),

differentiating the energy identity yields an equation for ϑn(t):

(15) ϑ̈n(t) = − 1

|Yt|g

Å
g

Å∇V (ηn(t))

ω2
nεn

+ ϑ̇n(t)DtYt,
Yt

|Yt|g

ãã
.

�

4.2. Blow-up analysis. In the previous section we introduced the obstacle technique and we provided
a sequence of curves ηn(t) on [a, b] and a sequence of radii εn converging to zero, which satisfy:

i) ηn(a) = p ∈ ∂Br(c), and ηn(b) = q ∈ ∂Br(c),
ii) η−1

n (∂Bεn(c)) = Tn
.
= [t−n , t

+
n ].

Now, we want to investigate the behaviour of ηn as the parameter εn goes to zero. In the flat case,
we would define a blow-up sequence of the form ε−1

n (ηn(ε
ν
nt)− c) + c for a suitable value of ν. In this

way we would map an open ball around c to larger and larger balls contained in R2 and the obstacle
∂Bεn(c) to an euclidean sphere of radius 1. Since we are working on a surface M , we have to slightly
modify the argument using exponential coordinates centred at c. In any case, the rate ν depends on
the time spent by ηn on the obstacle, i.e., on the quantity t+n − t−n . The next lemma gives an estimate
for this quantity.

Lemma 4.4. Let [t−n , t
+
n ] be the interval on which ηn(t) lies on the obstacle. There exists a positive

constant C1 such that:

0 ≤ t+n − t−n ≤ C1ε
α+2
2

n .

Proof. We use the same notation as in the proof of Proposition 4.3, referring to the proof of point v).
Assuming that ϑn is strictly increasing, when t ∈ [t−n , t

+
n ] and εn → 0+ we have:

(16) ϑ̇n(t) =

 
2(h− V (ηn(t))

ω2
nε

2
n|Yt|2g

=

√
1

εα+2
n

Ç
2mj

αω2
n|Yt|2g

+ o(εαn)

å
.

Moreover, using the fundamental theorem of calculus:

ϑn(t
+
n )− ϑn(t

−
n ) = ε

−α+2
2

n

∫ t+n

t−n

 
2mj

αω2
n|Yt|2g

+ o(εαn) ≥ Cnε
−α+2

2
n (t+n − t−n ).
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Notice that Cn > 0 is uniformly bounded in n and that the angular variation of θn is bounded by
2πk, k ∈ N. The number k depends solely on the prescribed homotopy class [τ ] and can be estimated
a priori. �

We now define the following family of continuous functions on R with values in (TcM, g) ∼ (R2, ge):

un(s) =





ε−1
n exp−1

c (p) if s < ε
−α+2

2
n (a− t+n+t−n

2 )

ε−1
n

(
exp−1

c ηn(ε
α+2
2

n s+
t+n+t−n

2 )
)

elsewhere

ε−1
n exp−1

c (q) if s > ε
−α+2

2
n (b− t+n+t−n

2 )

.

Proposition 4.5 (Uniform convergence on compacts of un). There exists a subsequence of the sequence
un which converges to a limit u in the C 1 norm, on any compact subset of R.

There exists s0 ≥ 0 such that the limit u ∈ C
2(R\{±s0}). Moreover, on R\ [−s0, s0], u is a solution

of an α−Kepler problem centred at 0, which has constant velocity on the boundary of a ball of radius
1, for any s ∈ [−s0, s0].

Furthermore, up to subsequences, set ω2 = limn ω
2
n. For all s ∈ R, u has zero energy and constant

angular momentum equal to 2m
αω2 .

Proof. The first step of the proof is to write the differential equation satisfied by un(s) on growing
intervals centred at 0. Recall that t±n are defined as the extrema of the interval on which ηn lies on
the obstacle, a metric ball of radius εn. Set

sn = ε
−α+2

2
n

t+n − t−n
2

;

notice that, for s ∈ [−sn, sn], un(s) lies on the unit sphere and satisfies a different motion equation

than on [−sn, sn]c. If we put t(s) = ε
α+2
2

n s+
t+n+t−n

2 , the velocity of un(s) reads:

(17) u̇n(s) = ε
α
2
n dηn(t) exp

−1
c η̇n(t(s)) ⇐⇒ η̇n(t(s)) = ε

−α
2

n d expc u̇n(s).

We now compute the second derivative of un(s) differentiating the above equation in local coordinates.

Let us denote by Γ(·, ·) the operator D
dt − d2

dt2 , i.e., the part of the covariant derivative involving the
curvature. We have:

(18)

ün(s) = ε
α
2
n
d

ds
(dηn(t(s)) exp

−1
c )η̇n(t(s)) + εα+1

n dηn(t(s)) exp
−1
c η̈n(t(s))

= εα+1
n

(
d2ηn exp−1

c (η̇n, η̇n) + dηn exp−1
c η̈n

)

= εn
Ä
d2expc(εnun)

exp−1
c (d expc u̇n, d expc u̇n)− Γ(d expc u̇n, d expc u̇n)

ä

+ εα+1
n dηn exp−1

c

Å
Dη̇n
dt

ã
.

Now, using point iii) of Proposition 4.3, we specialise this formula to the case when s is outside the
interval [−sn, sn]. Recall that the potential splits as a sum of a singular and regular part, namely:

(19)
Dη̇n
dt

= −∇V (ηn)

ω2
n

=
mjX

ω2
ndg(c, ηn)

α+1
+∇U(ηn),

whereX stands for the dual of the differential of dg(c, ηn) and coincides with the direction of the unique
unit-speed radial geodesic connecting c and ηn. Now, by definition of un, we can rewrite dg(c, ηn) in
terms of the Euclidean norm |un|, namely:

dg(c, ηn) = dg(c, expc(εnun)) = εn|un|.
Plugging (19) into (18) and collecting all the higher order terms in εn, we obtain the following perturbed
Kepler problem equation for un:

(20) ün(s) = − miun(s)

ω2
n|un(s)|α+2

+O(εn).
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To get an equation for un on [−sn, sn], we introduce polar coordinates as in Proposition 4.3. Since
ηn in this case takes values on the boundary of the ball Bεn(c), we can express un as un(s) = eiϑn(t(s)).
Explicit differentiation yields:

ün(s) = εα+2
n

Ä
ϑ̈n(t(s))ie

iϑn(t(s)) − ϑ̇2n(t(s))e
iϑn(t(s))

ä
.

Reasoning as above, we want to single out the leading order term in εn. We start considering the
second order derivative ϑ̈n. Setting Yt = dεneiϑn(t) expc(ie

iϑn(t)) and using (15), we obtain:

εα+2
n ϑ̈n(t(s)) = − εα+2

n

|Yt(s)|g

Ç
g

Ç
∇V (ηn(t(s)))

ω2
nεn

+ ϑ̇n(t(s))Dt(s)Yt(s),
Yt(s)

|Yt(s)|g

åå
.

We have already expanded ∇V (ηn(t)) in (19). Notice that, by Gauss Lemma, X and Yt are always
orthogonal. Thus, the only contribution of ∇V that survives is the one coming from the regular part
of V which, however, is of order εα+2

n .
Let us consider the term |Yt|−2

g g(DtYt, Yt). A straightforward computation using the explicit ex-
pression of Yt shows that:

g

Å
DtYt
|Yt|g

,
Yt

|Yt|g

ã
=

1

|Yt|g
d

dt
|Yt|g,

d

dt
|Yt|g = 2ϑ̇n(t)

î
g
Ä
Yt, εnd

2
un

expc(ie
iϑn(t), ieiϑn(t))− dun

expc(e
iϑn(t))

äó
.

Again, notice that Yt is orthogonal to dun
expc(e

iϑn(t)) and that |Yt|g → 1 as εn → 0. Plugging the

above equation in the expression for εα+2
n ϑ̈n and using (16) we find that εα+2

n ϑ̈n = O(εn).

To get an asymptotic estimate for ϑ̇n on the obstacle we use again (16), from which it is clear that

ϑ̇n ∼
√

2mj

αω2
n
ε
−α+2

2
n . Thus, the counterpart of (20) on the obstacle reads:

(21) ün(s) = − 2mi

αω2
n

un(s) +O(εn).

Now, we want to show the existence of a converging subsequence of un. We do this by a straightfor-
ward application of Ascoli-Arzelà theorem. We have to show that (un) is bounded and equi-continuous.
To do so, we give a uniform bound on the velocities u̇n using the conservation of energy for ηn (see
iii) in Proposition 4.3). From (17) and (7), we have:

2(h− V (ηn))

ω2
n

= |η̇n|2g = ε−αn |d expc u̇n|2g ≥ ε−αn λ|u̇n|2,

for some λ > 0. Notice that the quantity εαn
2(h−V (ηn))

λω2
n

is uniformly bounded in n since the sequence

(ηn) lives in an annulus of inner radius εn. It follows that:

|un(s)| =
®
1 if s ∈ [−sn, sn],
|
∫ s
±sn

u̇n(x)dx| ≤ C|s∓ sn| otherwise

This settles equi-boundedness, once a compact interval is fixed. Similarly, the uniform bound on u̇n
implies equi-continuity of un, again by the fundamental theorem of calculus. Notice that the estimates
on u̇n hold everywhere since, from point iv) of Proposition 4.3, the energy is always conserved. Thus,
(un) admits a subsequence converging uniformly on any compact interval.

Now we apply again Ascoli-Arzelà theorem to (u̇n). We have already seen that (u̇n) is bounded
in the C

0 topology. To ensure equi-continuity, it is sufficient to use (20) and (21) to get a uniform
bound on ün(s). This is possible since the above equations express the second derivative ün in term
of continuous functions on a bounded domain, un and u̇n, which we already know to be uniformly
bounded in n.

At this point, choosing intervals [−k, k] for k ∈ N, we can build a subsequence of (un) converging to
a function v in C 1-norm on compact intervals. Looking at the definition of sn at the beginning of this
proof, up to subsequences we can assume that sn → s0 ≥ 0. Iterating the application of Ascoli-Arzelà
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given in the previous steps, we get that the limit v is actually C 2 (or C k, if that is the regularity of
(ηn)) on R \ {−s0, s0}.

Moreover, (20) implies that v is a classical solution of an α−Kepler problem on R \ [−s0, s0]. It
is well known that α−Kepler problems are integrable and first integrals are the total energy and the
angular momentum. We now compute these quantities for the limit v and prove that they are actually
conserved, even on [−s0, s0], where v moves with constant angular speed on the ball of radius 1.

Consider the energy first. Since un solves a perturbed α−Kepler problem, we can define:

hn(s) =
1

2
|u̇n(s)|2 −

mi

αω2
n|un(s)|α

,

which converges to the corresponding quantity h for v for all s ∈ R \ [−s0, s0]

h(s) =
1

2
|v̇(s)|2 − mi

αω2|v(s)|α .

On the other hand, using the conservation of energy for ηn, we see that hn(s) = O(εn) and thus
converges to 0. We have already pointed out that, thanks to (21), un is almost a circular motion of

constant angular velocity ±
»

2mi

αω2
n
for s ∈ [−sn, sn] and thus h(s) = 0 for all s ∈ R. The proof of the

conservation of the angular momentum is completely analogous. �

From the proposition just proved we can deduce the following lemma. The proof is completely
analogous to the one in [29, Section 4.4].

Lemma 4.6 (Total angular variation). The total angular variation of u = limn un is grater or equal
than 2π

2−α . Equality can hold if and only if s0 = 0 and u touches the boundary of the ball in just one

point. In particular, if α > 1 the sequence (ηn) is definitely non simple.

5. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2, which concerns the existence of infinitely many
collision-less and periodic solutions. Actually, we will first prove a more technical result, and the proof
of Theorem 1.2 will follow as a consequence. In particular, we will see that we are able to avoid
collisions with the centres in many situations, except for some particular homotopy classes when we
are dealing with Newtonian centres (αj = 1). In this case, some peculiar collision solutions in which
the particle bounces back and front between two centres may arise. We give a rigorous definition of
these generalised solutions in the following

Definition 5.1. We say that u : J → M is a collision-reflection solution of the motion and energy
equations (4)-(5) if:

• u collides with two different centres cj , ck;
• u solves (4) outside collision instants;
• u has constant energy h;
• u reflects after any collision instant t̄ ∈ J , namely:

u(t̄− t) = u(t̄+ t), for any t ∈ J.

Theorem 5.2. Recalling the definition of the potential V given in (2), we have two results:

i) Assume that there exists at most one element j ∈ {1, . . . , N} such that αj = 1 (so αk > 1
whenever k 6= j) and that [τ ] is an admissible class as in Definition 2.10. Then, any minimiser
of the Maupertuis functional (11) in the space H∆(τ) is collision-less.

ii) Assume that there exist at least two distinct elements j, k ∈ {1, . . . , N} such that αj = αk = 1
and [τ ] is an admissible class as in Definition 2.10. Then, either there is a collision-less
minimiser of the Maupertuis functional (11) in the space H∆(τ), or there exists a collision-
reflection solution as in Definition 5.1. In this latter case, the minimiser γ parametrises an arc
joining two centres. In particular, this can happen if and only if there exists a representative
ξ of [τ ] which is contained in a disk bounding the two Newtonian centres cj and ck.



24 STEFANO BARANZINI AND GIAN MARCO CANNEORI

To prove this theorem, we will assume as in Section 4 that a minimiser γ of (11) in H∆(τ) has a
collision with a centre c at time t̄. As before, take a sufficiently small metric ball Br(c) around the
collision centre and let [a, b] be the connected component of γ−1Br(c) containing t̄; call p = γ(a) and
q = γ(b). Unless γ|[a,t̄) is a re-parametrisation of γ|(t̄,b], we can always assume that p 6= q. Indeed, we
already know by point iii) of Proposition 3.12 that there can be no singular 1−gons, even having a
centre on the image of γ. Assume that α ∈ [1, 2) is the homogeneity degree of V in Br(c) (see (2)).
The separated study of the cases α > 1 and α = 1 as presented in the statement of Theorem 5.2 will
be deepened later. Again, as in Section 4, we will suppose that the following conditions hold true:

i) dg(cj , ck) > 2r for all j 6= k;
ii) if γ(t) ∈ Br(cj) for some j, then γ has a collision with cj before leaving the ball Br(cj).

From the discussion of the previous section (see in particular Proposition 4.5 and Lemma 4.6), we
know that there is a sequence of functions (ηn) defined on [a, b] and a sequence εn → 0+ such that:

i) ηn(a) = p, ηn(b) = q, ηn([a, b]) ⊆ Br(c) \ B̊εn(c) and γ|J\[a,b]#η ∈ H∆(τ);
ii) Mh(ηn) → Mh(γ|[a,b]);
iii) ηn ⇀ η in the H1 topology and η is a collision solution;
iv) ηn are C 1 and definitely non simple.

The last property turns out to be crucial. It is not compatible with our admissibility condition on
the homotopy class τ given in Definition 2.10. The fact that ηn is not simple suggests that the curve
γ|J\[a,b]#ηn should not be taut. However, if we want to count the number of self intersections properly,
we have to be sure that γ|J\[a,b]#ηn is contained in M \ C and it is in general position. To do so,
it is enough to first perturb γ in a neighbourhood of every collision centre preserving the homotopy
class constraint (except for the collision at time t̄, which has already been dealt with defining ηn) and
then replace any arc which is run twice with two transversal arcs. A detailed construction in the case
M = R

2 can be found in [12], however the argument is standard and local, so it will be omitted. A
visual explanation is give in b) and c) of Figure 9. We will denote by γ̃n a curve in general position
obtained form γ|J\[a,b]#ηn, applying the procedure just described.

p

q

p

q

b)

a)

c)

Figure 9. In a) the arc ζn on the obstacle is replaced by ζ̃n. In b) and c) the
desingularization process described is illustrated.

Let us introduce a little bit of notation. For any n ∈ N, we want to split ηn into three pieces, which we
call η1n, η

2
n and ζn. We know by Proposition 4.3 that the time spent on the obstacle η−1

n (∂Bεn(c)) = Tn
is an interval, so we put Tn = [t1n, t

2
n]. We define:

• ζn as the portion of ηn on the obstacle ∂Bεn(c), namely ζn
.
= ηn|Tn

= ηn|[t1n,t2n];
• η1n as the portion of ηn before entering the obstacle, η1n = ηn|[a,t1n];
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• η2n as the portion of ηn after visiting the obstacle, η2n = ηn|[t2n,b].
Notice that in general ζn may have non transversal self-intersections, i.e., it may run over the obstacle
multiple times, but this is not an issue. Indeed, we can replace ζn with a curve ζ̃n contained in an
annulus of outer radius εn and inner radius smaller than εn as depicted in a) of Figure 9. This is made
in order to ensure that γ̃n is in general position.

Lemma 5.3. For n sufficiently large, we have that:

i) η1n and η2n are simple curves;
ii) if η1n intersects η2n, the intersection is transversal;
iii) ηn cannot have neither singular 1−gon or 2−gon;
iv) ζn is monotone on the obstacle;
v) γ̃n is not taut.

Proof. The proofs of i) − iii) are straightforward adjustments of Proposition 3.12. Point iv) follows
from the blow-up analysis provided in Proposition 4.5. Point v) holds since γ̃n belongs to an admissible
homotopy class and thus there can be no innermost sub-loop enclosing just one centre. �

Proof of Theorem 5.2. To reach a contradiction, we show that if [τ ] is admissible then the sequence
ηn is made of simple curves. The proof we are going to present now essentially consists in excluding
all the possible ways in which ηn can self-intersect.

Thanks to Lemma 5.3, we know that self-intersections can occur in two instances alone: if η1n meets

η2n or if ζn (or ζ̃n) self-intersects.
Assume first that ζn has some self-intersections. We know by the blow-up analysis (see point v) of

Proposition 4.3 and equation (16)) that the angular velocity of ηn on the obstacle is never vanishing.

Thus, we can assume that ζ̃n is a path winding around c several times in the same direction, having
transversal intersections. Pick a point tn such that ζ̃n(tn) is a non vertex point of the innermost loop

formed by ζ̃n. It is not hard to see that ηn|[a,tn] and ηn|[tn,b] have the same properties of the ηin listed
in Lemma 5.3. Since we are now dealing only with transversal intersections, it makes sense to rename
η1n = ηn|[a,tn] and η2n = ηn|[tn,b]. In this way, the only step needed to conclude is to show that η1n and

η2n do not intersect.
Assume then that η1n meets η2n. This can occur only in a finite number of points p1, . . . , pk, ordered

increasingly with respect to the distance from the centre c. From Lemma 5.3, we know that γ̃n is not
taut and thus, from Theorem 2.8, it must have either a 1−gon or a 2−gon. We are then left to rule
out these two situations:

• Assume that there is a 1−gon. Since 1−gons are contractible, the vertex must coincide with
pk. The 1−gon can be either contained in

(
∪cj∈CBr(cj)

)c
or pass through some of the balls.

By construction, if γ enters any of those balls it must have a collision with the associate centre.
Thus γ̃n has a singular 1−gon if and only if γ is as in point i) of Proposition 3.12 or as in
point i) of Proposition 3.13. Neither of these cases agrees with the minimality of γ in H∆(τ).

• Assume that there is a 2−gon. By point iii) of Lemma 5.3 any such 2−gon cannot be com-
pletely contained in the ball Br(c). Hence we have again two possibilities: either there is an
edge of the 2−gon contained in Br(c), or both edges lie partially outside the said ball.

Assume that there is one edge of the 2−gon completely contained in the ball Br(c). One
of the two vertices must be pk, denote the other one by qk. Recall that, by construction, if γ̃n
comes back to the ball Br(c) then γ must have a collision with c. This means that the singular
2−gon of γ̃n corresponds to a singular 1−gon of γ with vertex in c. This possibility cannot
occur for minimisers of Mh in H∆(τ), as stated in point iii) of Proposition 3.12 and point i)
of Proposition 3.13.

Assume now that both edges of the 2−gon lie partially outside of the ball Br(c). We have
again two possibilities: the vertex qk can be contained in one of the balls Br(cj) (including
Br(c)) or not.

Assume first that qk /∈ Br(cj) for all cj ∈ C. Arguing as before, the 2−gon of γ̃n must
correspond to one of the configurations listed in Proposition 3.12 and Proposition 3.13. In this
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case, we have either the situation in point iv) of Proposition 3.12 if the edges do not touch
any of the balls Br(cj), or we are in the case of point ii) of Proposition 3.13 if they do. Both
cases are not possible.

Assume that qk ∈ Br(cj) for some cj or qk ∈ Br(c). This is the first situation in which we
have to treat separately the case α = 1 and α > 1.

Suppose first that α > 1. Arguing as before, we see that we are in case iii) of Proposition
3.13. Without loss of generality we can assume that γ collides with c and has a collision-
reflection arc. Since, by Lemma 4.6, the total angular variation is strictly greater than 2π,
it must be at least 4π. Since [τ ] is an admissible class, if γ̃ winds at least twice around c it
must also wind once around it in the opposite direction, after leaving the ball Br(cj). A visual
explanation of the argument is given in Figure 10 below.

c

ck ck

c

Figure 10. The profile of the minimiser on the left and the desingularised version
γ̃n on the right.

Assume, without loss of generality, that γ̃n|J∩(−∞,a] does so and suppose that this segment
corresponds to a collision arc of γ, i.e., γ̃n crosses again Br(c). It follows that γ has a singular
1−gon as in point i) of Proposition 3.13, made by the collision arcs between c and cj . This is
not possible if γ is a minimiser of Mh. See a) in Figure 11 below.

Assume then that γ does not collide with c. Then, it must intersect the collision-reflection
arc issuing from c, and thus form a 2-gon as in point iv) of Proposition 3.12. This fact, again,
is not compatible with minimality. See also b) in Figure 11 below. Thus, if α > 1, there are

a) b)

ck

c c
c

ck
ck

Figure 11. Case a) illustrates the situation in which γ|J∩(−∞,a] collides again with
c. Case b) depicts the case in which γ|J∩(−∞,a] intersects the collision-reflection arc.

not intersections between η1n and η2n, and so γ is a collision-less minimiser. Note that, if the
other centre cj is a Newtonian singularity (αj = 1), the proof does not change and thus we
have completely proved the assertion in situation i) of this theorem.

To prove assertion ii), assume that α = 1 and there exists another centre cj 6= c such that
αj = 1. Then, reasoning as above, it could be that the angular variation is exactly 2π. After
bouncing back form c, it must collide with another centre ck. If αk > 1, we argue as before
and no collisions for γ can occur between these two centres. However, if ck = cj , we apply
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c

c

Figure 12. Instances of collision-reflection solutions. A representative of the original
homotopy class (which would not be admissible according to Definition 2.10) is dashed
in grey.

the same argument to the collision centre cj (since αj = 1) and we can conclude that γ must
collide and be reflected back also in this case. Thus this periodic trajectory bounces between
the centres c and cj . This fact provides an explicit restriction on the homotopy classes in
which minimisers can have collisions. If γ is in the boundary of H∆(τ), there should be a
representative arbitrarily close to it. Since γ is either a segment (when c 6= cj) or a loop (if
c = cj), small neighbourhoods around it are either disks or immersed annuli. The second case,
however, is not compatible with the admissibility condition of Definition 2.10. See also Figure
12.

�

6. Construction of symbolic dynamics

In the previous sections we provided a huge set of periodic orbits for the N -centre problem on a
generic surface M . In the configuration space, the corresponding trajectories are always collision-less,
except for some precise homotopy classes when V has at least two Newtonian singularities, as described
in Theorem 5.2. Such paths can be distinguished with respect to their topological properties and this
fact enriches the dynamics on T ∗M , so that we are naturally motivated to investigate the existence of
a topological conjugation with a chaotic dynamical system.

6.1. Existence of infinitely many distinct admissible classes. The aim of this first subsection
is to show that there are infinitely many distinct independent admissible homotopy classes in any of
the situations listed in Theorem 1.2. Despite the global nature of our results, the construction of such
classes turns out to be purely local. In the first paragraph we will consider the case in which M = R2

and N = 3. This is, of course, completely analogous to considering a small disk bounding three centres
on any surface M . In particular, our local approach will imply that there are infinitely many distinct
admissible homotopy classes on R2 \ C with N ≥ 3 and on S2 \ C with N ≥ 5. Indeed, concerning the
sphere, it is enough to treat S2 as the union of two disks, one containing 3 centres and the other the
remaining N − 3 ≥ 2.

The second paragraph focuses on the case of genus g > 1 and on the non compact case. The
construction of the homotopy classes is completely explicit in all these cases.

6.1.1. M = R2 and N = 3. Consider three centres c1, c2, c3 ∈ R2. Define βi as a simple loop that
winds once around the centres {c1, c2, c3} \ {ci} and η as a simple loop winding once around all the
centres, both counter-clockwise. For any non zero natural numbers m,n ∈ N, define the following
homotopy classes:

(22) ωin,m
.
= [βni η

m].
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c2

c1

c3
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c1
c3
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c2 c2

ω1
1,1

ω2
2,1

ω3
1,2

Figure 13. Representatives for the homotopy classes ω1
1,1, ω

2
2,1 and ω3

2,1 respectively.

Lemma 6.1. The classes ωin,m are admissible in the sense of Definition 2.10. Moreover, so are they
products.

In particular, all the elements contained in the semigroup generated by the ωin,m are admissible.

Proof. The first assertion follows directly by definition of ωin,m (see also Figure 13). Instead, the

second assertion follows by induction. Take a product of k homotopy classes ω
ij
nj ,mj , j = 1, . . . , k. By

induction hypothesis, assume that all the homotopy classes that can be written as a product of at
most k − 1 factors are admissible. Notice that, multiplying to one of this shorter words another letter
ωjl,r does not create any sub-loop containing only one centre. If this was the case, also concatenating

a taut representative of η (the class of loops winding once around all three centres) with ωjl,r would.
This is clearly not the case. �

6.1.2. Genus g, g ≥ 1. Now we consider the case of genus grater than or equal to 1. This is essentially
simpler than the case stressed in the previous section. Recall that any orientable compact surface is
diffeomorphic to a sphere with g−handles. Pick a meridian and longitude of one of the handles in such
a way that they avoid all the centres cj . The semigroup of the homotopy classes generated by these
loops is again made up of admissible classes.

Lemma 6.2. Let M be a compact surface with genus g ≥ 1 and assume N ≥ 1. There are infinitely
many admissible homotopy classes in the sense of Definition 2.10.

Proof. Let us consider first the case in which M is a torus with only one centre c. Since M \ {c}
retracts to a bouquet of two loops, the fundamental group π1(M \ {c}) is isomorphic to Z ∗ Z . Pick
two generators of π1(M \ {c}) and consider the semigroup generated by them. All these classes are
admissible since no sub-loop of taut representatives disconnects the torus (the generators do not!).
Thus, there is a bijection between the set of words of two letters and elements of this semigroup, i.e.,
a set of admissible classes.

Now, let M be a surface of genus greater than or equal to 1 with N ≥ 2 centres. There exists
T ⊂M homeomorphic to a torus with a disk removed such that:

• T is a smooth submanifold with boundary of M ;
• {c1, . . . , cN} ⊆ T c.

Clearly, now we can reason as for the torus with one centre in order to produce the desired family of
admissible classes. �

The same kind of reasoning applies to the case of non-compact surfaces M . Indeed, a similar
classification theorem holds in the non-compact case as well. Loosely speaking, an orientable surface
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M is homeomorphic to a sphere with g handles glued to it and minus a certain number of points. In
general, orientable non-compact surfaces are homeomorphic if and only if they have the same genus
and homeomorphic ideal boundary. For further details we refer to [28].

We can easily extend the argument of the compact case to the non-compact one. Notice that
choosing a meridian and a longitude (that this time avoids the holes as well) satisfy also the third
condition of Definition 2.10. As a compact set K, it suffices to take a torus (with some open disks
removed) which contains the two curves.

6.2. Construction of symbolic dynamics. We begin our study of symbolic dynamics introducing

some notations. We recall that the configuration space is M̂ = M \ {c1, . . . , cN} and that we are
studying a fixed energy problem with h satisfying (6). For this reason, the periodic orbits given by
Theorem 1.2 live in the energy shell

Eh .
=

ß
(q, v) ∈ T ∗

q M̂ :
1

2
|v|2g + V (q) = h

™
.

In this section we work with three centres c1, c2 and c3; this is enough to succeed in our construction
of symbolic dynamics. Working with more centres requires just a slight modification of our argument
and would only make our notation heavier. The idea here is to associate to each periodic orbit a
bi-infinite sequence of symbols, in order to investigate the presence of a topological conjugation with
the prototypical chaotic system: the Bernoulli shift. For more details on this dynamical system we
refer the reader to the Introduction (see (9)).

The first step is to define a set of symbols and a rule which produces distinct sequences for each
distinct homotopy class at our disposal. This is achieved describing homotopy classes via intersec-
tion numbers. Note that we will often refer to some technical results contained in the forthcoming
Subsection 6.3 (in particular, Lemma 6.9 and Lemma 6.11).

Following (22) and recalling Lemma 6.1, let us denote by βi the minimisers of (11) in the homotopy
class enclosing the centres {c1, c2, c3} \ {ci}. By Theorem 5.2, they always exist provided that the
classes are admissible. If one of the centres is not Newtonian, they are collision-less and enclose a
region Di homeomorphic to a disk. On the other hand, they may be a collision-reflection solution if
both centres are Newtonian. In the latter case, they do not bound any disk and Di stands for the
support of βi.

Now, we will assume that the homotopy class of paths enclosing the three centres c1, c2 and c3 is
admissible and we denote by γ a minimiser of the Maupertuis functional (11) in the said class. Notice
that, if for instanceM = S

2, we would need at least 5 centres onM to fulfil the admissibility condition
(see also Definition 2.10).

Denote the disk which has γ as boundary by D. The next result shows that the minimisers of the
Maupertuis functional in the classes ωin,m described in (22) are confined in D.

Proposition 6.3. Assume that η1 and η2 are collision-less minimisers belonging to two different
homotopy classes. Then, η1 and η2 can form no 2−gon.

Consider the homotopy classes ωin,m introduced in (22) and let γin,m be any minimiser of the Mau-
pertuis functional (11) therein. Then:

i) the support of γin,m is contained in D, for all i, n, and m;

ii) the support of γin,m is contained in Dc
i , for all i, n, and m;

iii) any minimisers in the classes [γi1n1,m1
. . . γiknk,mk

], for all ik, nk,mk and k ∈ N, is contained in
D.

Proof. The first assertion is a slight modification of Proposition 3.12 and follows by regularity of
minimisers. Items i), ii) and iii) follow by a straightforward application of the above property to γi
and γ. �

As a consequence of this result, all the minimisers γin,m in the homotopy class ωin,m (see the definition
(22)) are confined to the topological disk D bounded by γ. Consider now any simple curve that does
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c1
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η1

η2 η3

Figure 14. On the left, a qualitative picture of the segments ℓi. In the middle, a
curve η1 with removable intersection and, on the right, two non homotopic curves
η2, η3 having the same (unsigned) itinerary.

not meet the boundary of D, passes through the centres c1, c2 and c3 and encloses a disk D′. Draw a
segment ℓi from ci to ∂D in such a way that:

• ℓi ∩ ℓj = ∅ if i 6= j;
• ℓi ⊆ D \D′ for all i.

A qualitative picture is given in Figure 14.

Remark 6.4. It is possible to choose the segments ℓi as reparametrisations of (collision) solutions of
the motion equation (4). Indeed, in a forthcoming technical result (see Lemma 6.9), we minimise the
Maupertuis functional Mh among paths joining one of the centres and a generic boundary point in
D ∩ ℓi. Recalling the properties of Maupertuis minimisers proved in Section 3-4-5, we can do this in
such a way that any of such minimisers do not meet the centres it is not emanating from. Moreover,
because of the same properties, these minimisers do not intersect. Thus, without loss of generality, we
can choose the segments ℓi among collision solutions of (4) at energy h too. As a consequence of this
choice, we can parametrise any of the segment ℓi with respect to the time variable t, and for instance
we can consider the curve (ℓi(t), ℓ̇i(t)) as a curve which lies on the energy shell Eh. Moreover, if a
solution of (4) intersects any of the segments ℓi, then it does so transversally.

Let us introduce the set of all initial data in the energy shell Eh which lie in one of the segments ℓi,
namely

T .
= {(q, v) ∈ Eh : q ∈ ℓj , for some j ∈ {1, 2, 3}}.

Note that, since the energy h is fixed, T is the union of 3 open cylinders in TM̂ . We can decompose each
connected component of T into two disconnected sets C±

i using the curves (ℓi(±t),±ℓ̇i(±t)). Following
Remark 6.4, the velocity v of each solution of (4) intersecting ℓi necessarily satisfies g(v, ℓ̇⊥i ) 6= 0 at
intersection points. Thus, it always belongs to one of the two connected components C±

i . We say that
a solution crosses positively if v ∈ C+

i and negatively otherwise.
Denote by Φt : Eh → Eh the flow determined by the motion equation (4). We will denote the image

of the initial data (q, v) after a time t by Φt(q, v). We can now introduce a subset of T which collects
all the initial conditions which come back to T in finite time without leaving D, namely:

Σ
.
=
{
(q, v) ∈ T : inf

{
t > 0 : Φt(q, v) ∈ T

}
< +∞, Φt(q, v) ∈ D, ∀t

}
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and, for any (q, v) ∈ Σ, we can define its first return time T (q, v) as the infimum in the above formula,
which is actually a minimum on Σ.

At this point, we can inductively define the set

Σn
.
=
{
(q, v) ∈ Σn−1 : inf

{
t > 0 : Φt(q, v) ∈ T

}
< +∞, Φt(q, v) ∈ D ∀t

}
,

where we have set Σ1 .
= Σ. Let J denote the map (q, v) 7→ J (q, v) = (q,−v) and define the collection

of trajectories coming back infinitely many times, both in the future and in the past, as the following
intersection:

Σ∞ .
= ∩n≥1 (Σ

n ∩ J (Σn)) .

Note that, as a consequence of the existence of (collision-less) periodic solutions (see Theorem 5.2),
Σ∞ is non empty, since all periodic trajectories belonging to the admissible homotopy classes listed in
Lemma 6.1 return to T infinitely many times.

Now, we define the itinerary of a point of Σ∞. Take (q, v) ∈ Σ∞ and let us look at the segment
t 7→ Φt(q, v) with t ∈ [0, T (q, v)]. By definition, it connects two segments, say ℓi to ℓj (see Figure 14,
picture in the middle). By construction, any trajectory with initial condition (q, v) ∈ Σ∞ is defined
on the whole R and meets transversally the segments ℓi infinitely many times. Thus, we can associate
to it an infinite sequence

(sk)∈Z, sk ∈ {±1,±2,±3},
as the sequence of signed intersections with the segments ℓi. In particular, we set sk = i if the
trajectory starting from (q, v) hits ℓi after k iterations and the crossing is positive. Similarly, we set
sk = −i if the crossing is negative. For negative k, we can use a time inversion and define positive and
negative intersections accordingly. We have thus defined an equivariant map:

(23) π : Σ∞ → SZ, such that π ◦ ΦT (·,·) = σ ◦ π.
Notice that, for minimisers in the classes defined in (22), not all the possible sequences are allowed.
In fact, for those minimisers, the associated sequence cannot contain any piece of the form:

. . . ,−i1,−i2, . . . , −ik, ik , . . . i2, i1 . . . .
Indeed, the presence of two consecutive intersections with the segment ℓik would correspond to the rise
of a 2−gon between the minimiser and ℓik , which is impossible for the main assertion of Proposition
6.3.

Following this rule, it is easy to guess what kind of (periodic) sequences corresponds to the min-
imisers γin,m introduced in Proposition 6.3:

γ3n,m ⇒ . . . 1, 2, 1, 2 . . . , 1, 2︸ ︷︷ ︸
n times

, 1, 2, 3, . . . , 1, 2, 3︸ ︷︷ ︸
m times

, . . .

γ2n,m ⇒ . . . 1, 3, 1, 3 . . . , 1, 3︸ ︷︷ ︸
n times

, 1, 2, 3, . . . , 1, 2, 3︸ ︷︷ ︸
m times

, . . .

γ1n,m ⇒ . . . 2, 3, 2, 3 . . . , 2, 3︸ ︷︷ ︸
n times

, 1, 2, 3, . . . , 1, 2, 3︸ ︷︷ ︸
m times

, . . .

Notice that, since the system is reversible, reversing time changes all the signs. As a shorthand
notation, we will write (i, j)k to denote the string i, j repeated k times. Thus, for instance, a periodic
trajectory which minimises Mh in the class of point iii) of Proposition 6.3 corresponds to a periodic
sequence of the form:

(24) . . . (i1, j1)
k1 , (1, 2, 3)w1, (i2, j2)

k2 , . . . , (1, 2, 3)wr , (ir, jr)
kr , . . . ,

for il < jl, wl, kl > 0, and for any l = 1, . . . r.
To be precise, one should index any string of the latter form and work with the resulting sequence.

Hoping it causes no confusion, we will sometimes use the word sequence to denote the plain string too.
This is equivalent to replacing an element with its orbit under the Bernoulli shift map σ (recall that
σ acts by shifting the whole sequence on the right (see (9))).
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We denote by X the closure, with respect to the metric defined in (8), of the set of elements of the
form (24).

Lemma 6.5. The set (X, σ) is a chaotic sub-system of (SZ, σ) and it is homeomorphic to a Cantor
set.

Proof. Since X is the closure of an invariant set and σ is continuous, X is invariant. To show that X is
chaotic, we have to check the three items of Definition 1.3. By construction, periodic trajectories are
dense. To see that the system is transitive, pick any two sequences x1 and x2 in X . By construction,
they are limits of periodic sequences (xni ), i.e., x

n
i → xi as n → +∞, i = 1, 2. Define a new sequence

y as the concatenation of larger and larger portions of xn1 and xn2 . The orbit of y is arbitrarily close to
both x1 and x2. Sensitivity with respect to initial conditions can be proved by similar arguments.

Now we show that X is homeomorphic to a Cantor set. We will make use of the following result
contained in [11]:

Suppose that X is a non-empty, compact, Hausdorff space without isolated points and that there is a
countable base consisting of open and closed sets. Then X is homeomorphic to a Cantor set.

By definition, X is closed and, being a closed subset of the compact space SZ (with respect to the
product topology), it is compact itself. Moreover, since it is metrizable, it is also Hausdorff. Pick now
a finite string of symbols as in (24), say f = (f−k, f−k+1, . . . , fl−1, fl) with k, l ∈ N. If we define the
sets

Uf
.
= {s ∈ X : sj = fj , ∀ j = −k, . . . , l}

they are closed and also open. In fact, they are open since any point in Uf contains a ball with respect
to the metric defined in (8), for sufficiently small radius. On the other hand, they are closed since the
evaluation maps evk : s→ sk, k ∈ Z are continuous. Notice that these sets are a basis for the product
topology (and also for the one defined by the metric (8)). Lastly, using the same arguments, one sees
that there can be no isolated points in X and thus X is a Cantor set. �

Now we are finally ready to prove the semi-conjugation with the Bernoulli shift as stated in Theorem
1.6, which is equivalent to the following result.

Theorem 6.6. The map π is continuous and its image contains X. Therefore, there exists a compact
invariant subset Σ′ ⊂ Σ∞ which is semi-conjugated to the chaotic system (X, σ).

Proof. The proof is a slight modification of the argument given in [29, Proposition 6.1] or in [6, Theorem
1.7].

According to Definition 1.4, we have to show that π is a continuous and surjective map. First of
all, we prove continuity. This is essentially a reformulation of continuous dependence on initial data
for regular flows. For (q0, v0) ∈ Σ∞, we have to show that, for every ε > 0, there exists δ > 0 such
that, for every point in Bδ(q0, v0), we have

d(π(q, v), π(q0, v0)) < ε,

with d as in (8). The condition that π(q, v) is close to π(q0, v0) can be equivalently formulated in this
way: for some m0 > 0, the images π(q, v) and π(q0, v0) have the same −m0, . . . ,m0 components. By
continuous dependence on data, there exists a small neighbourhood of (q0, v0) such that the image of
any (q, v) via the flow Φt stay ε−close to Φt(q0, v0) on any fixed compact time interval. This means
that, if we choose an interval big enough to reach the first 2m0 + 1 intersections with the segments
ℓi, sufficiently close initial conditions will intersect the same ℓi in the same order (notice that we are
actually close in the C 1 topology for the configuration surface). Thus π is continuous.

Now we have to show now that π(Σ∞) ⊃ X . Indeed, once this is done, we can define Σ′ .
= π−1(X),

which is a closed (with respect to the subspace topology) and invariant subset of Σ∞. To this aim,
consider x ∈ X and fix a sequence of periodic minimisers whose itinerary approximates x. Note that
here we are going to use some results from the next section, which have been postponed being rather
technical (see in particular the forthcoming Lemma 6.11). As we will do before proving Lemma 6.11,
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we can define a sequence ar > 0 with r ∈ N, such that ar → +∞ (cf the forthcoming (26)). Applying
Lemma 6.11, we can refine this sequence in such a way that it converges on compact intervals of
the form [−ar + ε, ar − ε] for ε > 0 in the C 1 topology. The resulting limit is a minimiser defined on
[−ar, ar], collision-less on (−ar, ar) and whose itinerary coincides with x−r, . . . , xr . Then, we iterate the
procedure, we fix a longer piece of x and we apply the previous construction to the refined sequence
obtained before, obtaining a collision-less limit on (−ar+1, ar+1). By point ii) of Lemma 6.11, the
intervals [−ar, ar] are increasing and arbitrarily large. Thus, a diagonal argument produces a sequence
which converges C 1 on arbitrarily large compact intervals. Denote by γ this limit. By construction, it
immediately follows that π(γ) = x and π is surjective. �

The next result is the most important application of Theorem 1.2 and establishes the presence of
chaotic invariant subsets of the phase space of the N -centre problem. This result, which is stronger
than Theorem 6.6, requires some further hypotheses on the scalar curvature of the Jacobi-Maupertuis
metric, which is defined in this way:

gJ(v, v)
.
= (h− V (x))g(v, v), v ∈ TxM.

Theorem 6.7. Assume that the scalar curvature κJ of the Jacobi metric gJ is negative. Then, the
set Σ′ is conjugate to (X, σ) and is chaotic.

Proof. The core of the proof is an application of Gauss-Bonnet Theorem together with the computation
of the scalar curvature κJ of the Jacobi metric gJ of the forthcoming Lemma 6.12. This will imply
a strong form of uniqueness for geodesics contained in the disk D. Recall that minimisers of the
Maupertuis functional (11) are reparametrised geodesics of gJ (see for instance [1]). It is known that,
for (sectionally) negatively curved (complete) manifolds, geodesics are unique in any homotopy class.
In our case, gJ is not complete; however, this is more than an existence issue. Suppose that in one
of the classes appearing in Lemma 6.1 there are two distinct geodesics γ1, γ2. Pick two points, p and
q, belonging to γ1 and γ2 respectively. Join them using a length minimising curve and lift the three
curves to the universal cover of D \ {c1, c2, c3}. By construction, the three curves bound a region
homeomorphic to a disk Ω. Moreover, the sum of the internal angles at the corner points is 2π by
construction. An application of Gauss-Bonnet theorem yields:

0 >

∫

Ω

κJdA = 2π(χ(Ω) − 1) = 0.

For those minimisers which are not periodic, we can argue as follows. We can assume, without loss
of generality, that γ1 and γ2 have the same itinerary, intersect some ℓi at time t = 0 and γ1(0) is
closest to ∂D. Lift them to the universal cover. By construction, they bound a region homeomorphic
to a strip. Denote by ηt the geodesics issuing from γ1(t) with an angle of π/2. Since the curvature is
negative, no ηt can intersect ητ for t 6= τ before it intersects γ2. If that were the case, we would have
a geodesic triangle with sum of the internal angles greater than π.

For t < τ , define Ωt,τ as the disk bounded by segments of γ1,γ2, ηt and ητ . Denote by ατ and βt the
turning angle between ητ and γ2 and γ2 and ηt respectively. Applying again Gauss-Bonnet Theorem
to Ωt,τ , we find: ∫

Ωt,τ

κJdA+ π + αt + βτ = 2π ⇒ αt + βτ > π.

Since βt = π−αt, we get that the function t 7→ βt is strictly decreasing. On the other hand, since the
curvature satisfy −c2 > kJ > −C2 and the integral −

∫
Ωt,τ

kJdA is bounded by π, the area of Ωt,τ is

bounded for all t, τ ∈ R. In particular, the length of the segments ητ must go to zero as τ → +∞.
However, this would imply that the corresponding angle βτ is arbitrarily close to π/2. A contradiction.

It follows that the map π : Σ′ → X is one-to-one whenever the curvature kJ is negative. To prove
that π it is actually an homomorphism, we will show that the restriction π|Σ′ → X is closed.

Let C ⊆ Σ′ be a closed subset. Pick a sequence (xn) ⊆ π(C) which converges to a point x0 ∈ X .
We have to show that there exists c0 ∈ C such that π(c0) = x0. By definition and thanks to the
first part of the proof, if xn ∈ π(C), there exists a unique minimiser γn of (11) with initial conditions
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cn ∈ C and having xn as itinerary. Since xn → x, we can apply again Lemma 6.11 and the argument of
Theorem 6.6 used to prove continuity to the family γn. We thus obtain a subsequence which converges
uniformly in the C 1 topology on compacts intervals of R. Its limit is a solution of (4) having x as
itinerary. Moreover, since the convergence is uniform, the corresponding initial conditions converge to
a point c0 ∈ Σ′. Since C is closed, c0 ∈ C and x ∈ π(C). �

Remark 6.8. In the next section, we are going to prove a result (see Lemma 6.12) which detects some
conditions on the metric g and the energy h under which the hypotheses of Theorem 6.7 are satisfied.
For instance, we will see that this is the case if g is the flat metric on R2 or if g has strictly negative
curvature and the energy level h is high enough. As a consequence, the statement of Theorem 1.7
presented in the Introduction will follows as an application of Theorem 6.7 above.

6.3. Some technical lemmas. As announced, this section collects and proves some technical state-
ments that were used in the proof of Theorem 6.6 and 6.7.

The next lemma proves the existence of collision solutions connecting the boundary of D with the
centres cj . These solutions are actually the segments ℓi introduced in the previous section and are
fundamental to define the alphabet of our symbolic dynamics (see also Remark 6.4).

Lemma 6.9. There exist 3 points p1, p2, p3 ∈ ∂D and 3 arcs ℓ1, ℓ2, ℓ3 inside D such that, for any
i ∈ {1, 2, 3}:

• ℓi connects ci and pi;
• ℓi ∩D = {pi}, ℓi ∩D′ = {ci};
• ℓi is the support of a solution of (4) at energy h;
• ℓi ∩ ℓj = ∅, for any i 6= j.

Proof. Choose three curves joining ci and the boundary of D. Without loss of generality, we can choose
them in such a way that they do not intersect. Denote by pi the intersection between the segment
emanating from ci and ∂D.

Now, we wish to minimise the Maupertuis functional (11) among all the H1 paths which connect

c1 and p1 and are homotopic rel boundary in M̂ . Following the same procedure of Section 3, we start
by allowing for collisions with the other two centres, so that the minimisation space becomes weakly
closed and Mh is coercive therein. In this way, a minimiser γ1 is provided (cf. Proposition 3.7).
Assume by contradiction that γ1 collides with cj for some j 6= 1. Arguing exactly as in Section 4, we
find a contradiction:

• if αj > 1, then the obstacle minimisers would have to self-intersect forming a loop bounding
cj (obtaining a similar version of Lemma 4.6), but this incompatible with the homotopy class
chosen;

• if αj = 1, then the minimiser would have to reflect after hitting cj . This is again impossible
since it has to connect c1 and p1.

Moreover, γ1 collides with c1 only once in the endpoint, since the Maupertuis functional is super-
additive. Finally, γ1 is contained in D. If this were not the case, γ1 and ∂D would form a 2−gon
contradicting the usual regularity argument (see Propositions 3.12 and 6.3). Now, let us define ℓ1 as
the image of γ1 in D. An analogous of Proposition 3.10 guarantees that γ1 solves (4)-(5) except at the
unique instant t where γ1(t) = c1. With a similar construction, we can build ℓ2 and ℓ3, proving the
first three points of the statement.

To show the last property, notice that any intersection between two of them would generate a 2−gon
thanks to the homotopy constraint. This is not possible because of the usual regularity argument
employed several times in the previous sections (see Propositions 3.12 and 6.3). �

Now we prove some results needed in the proof of Theorem 6.6 to show that the map π which
assigns to each solution its itinerary is surjective. Consider the collision solutions arcs ℓi (i = 1, 2, 3)
just constructed in Lemma 6.9. For any solution γ of (4) with energy h such that there exists t0 for
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which γ(t0) ∈ Σ∞, define the following quantity:

(25) Ti,j(γ) = inf
t<s

{s− t : γ(t) ∈ ℓi and γ(s) ∈ ℓj}.

Lemma 6.10. Assume that γ is a solution of (4) and that there exists t0 such that γ(t0) ∈ Σ∞.
Moreover, assume that, for any a, b ∈ R, γ|[a,b] is a minimiser of (11) in the space of paths joining
γ(a) to γ(b) homotopic to γ|[a,b]. Then, there exists positive constants C1 and C2 not depending on γ
such that

C1 ≤ Ti,j(γ) ≤ C2.

Proof. Consider η = γ|[t,s], where s, t are such that γ(t) ∈ ℓi and γ(s) ∈ ℓj . Then, recalling that ℓ(η)
is the Riemannian length of η, we easily get:

Mh(η) =
1

2

∫ s

t

|γ̇|2g
∫ t

s

[h− V (η)] ≥ h

2

∫ s

t

|γ̇|2g ≥
h

2

Å∫ s

t

|γ̇|g√
s− t

ã2
≥ h ℓ(η)2

2(s− t)

Now, since ℓi and ℓj are compact and at a bounded distance, the value of Mh on minimisers can be
bounded below and above by positive constants c2 ≥ Mh(η) ≥ c1. This implies that

s− t ≥ h dg(ℓi, ℓj)

2c1
.

On the other hand, since we are working with fixed energy h we have:

|η̇|2g ≥ 2h⇒
∫ s

t

|η̇|2g ≥ 2h(s− t).

And, since η is a segment of solution, we have:

√
c2 ≥

»
Mh(η) ≥

h (s− t)

2
.

�

Let us consider a bi-infinite non periodic sequence s = (sn)n∈Z of the form (24). Let γk be a
sequence of periodic minimisers whose itinerary approximates the sequence s. For r ∈ N, define xr to
be the following truncation of s:

xr
.
= (s−r, s−r+1, . . . , sr−1, sr).

Up to a shift on the parametrisation of the elements γk, let us define

(26) ar
.
= lim

k→+∞
inf
T>0

{T : the itinerary of γk|[−T,T ] contains xr}.

Lemma 6.11. The following assertions hold:

i) if 2Tk is the period of γk, then limk→+∞ Tk = +∞;
ii) limr→+∞ ar = +∞; moreover, ar < ar+1 < +∞ for all r;
iii) there exists a sequence εn → 0 and a subsequence of the γk such that, defining

ηn
.
= γkn |[−ar−εnk

,ar+εnk
],

then ηn(ar + εn) ∈ ℓsr and ηn(−ar − εn) ∈ ℓs−r
;

iv) each of the ηn is a minimiser of the Maupertuis functional (11) between its endpoints;
v) the family (ηn) is bounded in H1 and admits a uniformly convergent subsequence;
vi) the uniform limit η is a minimiser and has no collision. Up to subsequence, the convergence

is in C 1(I) for any I ⊂ [−ar, ar].

Proof. The proof of points i)− iv) follows form a straightforward application of definitions and Lemma
6.10.
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Point v) is essentially a consequence of the compactness of ℓsr and ℓs−r
. Clearly, the ηn are

bounded in L2 since they lie in a common compact set. To provide a bound on the velocities, using
the conservation of the energy, for any ηn we can write

»
Mh(ηn) =

1

2

∫
η̇2n.

It follows from the definition that ηn joins ℓ−r to ℓr. This implies that Mh(ηn) is uniformly bounded,
for the space of initial conditions is compact and solutions having collisions at the endpoints have finite
and uniformly bounded Maupertuis energy.

To prove point vi) we have to show that η is collision less. Assume that η has a collision with
a centre cj at a certain instant. We can use the sequence (ηn) to approximate η. If αj > 1, the
blow-up argument of Section 4 would imply that the paths ηn are definitely tied around cj . This is
a contradiction, for the initial sequence γk has an itinerary of the form (24). Instead, if αj = 1, this
would imply that η is a collision reflection arc. But this is again not compatible with the limit itinerary
(24). Thus, η is collision-less in any proper subinterval of [−ar, ar]. Now, using the motion and energy
equations (4)-(5) as in Proposition 4.5, an application of Ascoli-Arzelà theorem to the derivatives η̇n
yields the C 1 convergence. �

6.4. The scalar curvature of the Jacobi-Maupertuis metric. It is well know that minimisers
of (11) can be interpreted as geodesics for a (incomplete) Riemannian metric, the Jacobi-Maupertuis
metric (see for instance [1]). As already observed in the Introduction, this metric is conformal to our
reference metric g and it is defined as follows:

(27) gJ(v, v) = (h− V (x))g(v, v), v ∈ TxM.

This section is devoted to computing the curvature of the metric gJ . Using standard formulas for
conformal changes of the metric (see for instance [26, Theorem 7.30]), one obtains that the scalar
curvature of gJ is

(28) κJ(x) =
κ(x)−∆g log(h− V (x))

h− V (x)
, for x ∈M.

On the other hand, we have:

−∆g log(h− V (x)) =
|∇gV (x)|2
(h− V (x))2

+
∆gV (x)

h− V (x)
.

Lemma 6.12. The curvature κJ is bounded and negative in the neighbourhood of every centre cj.
Moreover:

• if κ < 0, then, for any fixed compact subset Ω of M , there exists h(Ω) > 0 such that κJ (x) < 0,
for all x ∈ Ω and h > h(Ω);

• if M = R
2, V is of the form (2) and there exist C1, C2 > 0 such that −C2

1 < κ < −C2
2 , then

there exists h∗ ∈ R such that κJ < 0, for all h > h∗. Alternatively, if κ ≡ 0, then κJ ≤ 0 for
all h > 0.

Proof. Let us compute first κJ(x) when x is close to cj using the explicit expression for V (x) given in
(3). As a shorthand notation denote dg(x, cj) as r. A straightforward computation yields:

|∇gV |2 = |∇gWj |2 +
2mjg(∇gr,∇gWj)

rαj+1
+

m2
j

r2αj+2

∆gV = ∆gWj −
mj(αj + 1)

rαj+2
+
mj∆gr

rαj+1

and, when r → 0+, we can write

1

h− V
=
αj
mj

rαj

Ç
1− αj(h−Wj)r

αj

mj
+
α2
j (h−Wj)

2r2αj

m2
j

+O(r3αj )

å
.
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Fix geodesic normal coordinates around cj and let Sr be the geodesic sphere of radius r. Denote by
H(x) the mean curvature of Sr at x. For any smooth function f , the Laplacian reads:

∆gf =
∂2f

∂r2
+H

∂f

∂r
+

∆Sf

r2

In particular, applying the formula to f(x) = dg(x, cj), for x 6= cj , one finds that:

∆gdg(x, cj) = H(x)

It is known that, on polar exponential coordinates (r, θ) centred at cj , the mean curvature H has the
following asymptotic expansion

H(r, θ) =
1

r
+O(r), as r → 0,

from which we obtain that:

|∇gV |2
h− V

+∆gV = −
α2
j(h−Wj)

r2
+O(r−αj ), as r → 0.

Combining with the expression for κJ in (28), we get:

κJ(x) = −
α4
j(h−Wj(cj))

m2
j

r2(αj−1) +O(rαj ), as r → 0.

This implies that, on small balls near the centres, κJ(x) is always negative and bounded.
Moreover, expanding (28) with respect to h, for a certain function FV = FV (h, x) we can write

κJ(x) =
κ(x)

h
+

1

h2
FV (h, x).

Since we have just proved that κJ(x) is a bounded function on any compact subset ofM , so is FV (h, x),
uniformly with respect to h. Thus, for any subset Ω ⋐M , if κ is negative and h = h(Ω) is sufficiently
large, κJ(x) is negative for all x ∈ Ω.

Assume now that M = R2 and that −c2 ≤ κ < −C2, for some constants c, C > 0. Under these
hypotheses, the distance function from a point x is always smooth on R \ {x}. We can thus take V of
the form (2) and we have the following inequality

|∇gV (x)|2 =
∑

i,j

mimjg(∇gd(x, ci),∇gd(x, cj))

dg(x, ci)αi+1dg(x, cj)αj+1

≤
∑

ij

mimj

dg(x, ci)αi+1dg(x, cj)αj+1
=

Ñ
∑

j

mj

d(x, cj)αj+1

é2

.

Now, if we define the Euclidean vectors

v =

( √
α1m1

dg(x, c1)
α1+2

2

, . . . ,

√
αNmN

dg(x, cN )
αN+2

2

)
, w =

Ç √
m1√

α1dg(x, c1)
α1
2

, . . . ,

√
mN√

αNdg(x, cN )
αN
2

å
,

applying the Cauchy-Schwartz inequality, we obtain:

|∇gV (x)|2 ≤

Ñ
∑

j

mj

dg(x, cj)αj+1

é2

= 〈v, w〉2 ≤ ‖v‖2 · ‖w‖2

=

Ñ
∑

j

mj

αjdg(x, cj)αj

éÑ
∑

j

αjmj

dg(x, cj)αj+2

é

= −V (x)

Ñ
∑

j

αjmj

dg(x, cj)αj+2

é

.

Moreover, we can compute:

∆gV (x) = −
∑

j

mj

αj
∆g

Å
1

dg(x, cj)αj

ã
= −

∑

j

(αj + 1)mj|∇dg(x, cj)|2
dg(x, cj)αj+2

+
mj∆gd(x, cj)

dg(x, cj)αj+1
,
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with |∇dg(x.cj)|2 = 1 for any j. Therefore, recalling (28), we have obtained the following inequality:

kJ(x) ≤
1

h− V (x)

Ñ

κ(x) +
1

h− V (x)

Ñ
∑

j

mj
dg(x, cj)∆gd(x, cj)− 1

dg(x, cj)α+2

éé

.

Comparison theorems for the Laplacian of the distance (see for example[18, Section 2]) imply, for the
same positive constant C1 of the statement:

∆gdg(x, cj) ≤ C1 cotanh(C1dg(x, cj)).

This implies that the term
1

h− V (x)

Ñ
∑

j

mj
dg(x, cj)∆gd(x, cj)− 1

dg(x, cj)α+2

é

decays at infinity and thus,

for sufficiently high energies h, kJ ≤ 0 on the whole plane.
The case k ≡ 0 is easier, since ∆dg(x, cj) = dg(x, cj)

−1 clearly gives κJ(x) ≤ 0. �

7. The unperturbed N-centre problem

If M is a Riemannian manifold and p ∈M is an arbitrary point, it is well known that the function
q 7→ dg(q, p) may fail to be smooth, due to the presence of conjugate points or periodic geodesics (see
for example [7, Section 6.5]). The set of non smoothness points of dg(·, p) is called cut locus of p and
will be denoted by Cp. As an example, consider the case of two homogeneous surfaces: the torus T2

and the sphere S
2, with constant curvature metrics. For these spaces, since the isometry group acts

transitively, the cut locus Cp is essentially the same for any point p ∈M and it is completely explicit.
It consists of one point for the sphere and of the join of two circles for the torus.

Despite this additional set of singularities, we can use Theorem 1.2 to produce C 1 minimisers of
the Maupertuis functional for the N -centre problem driven by potential (2), which we rename here for
the reader’s convenience:

Ṽ (q) = −
N∑

j=1

mi

αjdg(q, cj)αj
.

In general, under some regularity assumptions on the cut locus (see Lemma 7.2 which conclude this
section), we provide the following result:

Theorem 7.1. Consider the N -centre problem on a compact Riemannian surface (M, g), driven by
the potential (2) and with constant energy h satisfying (6). Assume that the cut locus Ccj admits a
triangulation for every j and that [τ ] is an admissible homotopy class as in Definition 2.10.

• If there exists at most one j ∈ {1, . . . , N} such that αj = 1 (i.e., αk > 1 for any k 6= j), then
any minimiser of the Maupertuis’ functional (11) in the space H∆(τ) is collision-less, C 1 and
admits a reparametrisation which solves (14) weakly.

• If there exist at least two distinct elements j, k ∈ {1, . . . , N} such that αj = αk = 1, the same
result holds true, provided that [τ ] is not in one of the homotopy classes listed in Theorem 5.2,
ii).

Proof. Let us consider a centre ci and its cut locus Cci . The first step of the proof is to build a family
(ϕε) of smoothings of the distance function dg(·, ci), with the following properties:

• supp(ϕε − dg(·, ci)) ⊂ Cεci
.
= {q ∈M : d(q, Cci) < ε};

• ϕε → dg(·, ci) uniformly;
• ‖∇ϕε‖∞ ≤ C uniformly.

This approximating sequence is provided in Lemma 7.2 below. If we replace dg(·, ci) with ϕε in the

definition of Ṽ (see also (2)), we obtain a family of potentials Vε which now satisfy the assumptions
of Theorem 1.2. In particular, for any admissible class [τ ] there exists a collision-less minimiser γε,
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for any ε > 0. At this point, we want to show that (γε) is a minimising sequence in H∆(τ) for the
Maupertuis functional:

M̃h(γ) =
1

2

∫

J

|γ̇|2g
∫

J

(h− Ṽ (γ)).

For any ε > 0, we also define the following approximating Maupertuis functional on H∆(τ):

Mε
h(γ)

.
=

1

2

∫

J

|γ̇|2g
∫

J

(h− Vε(γ)) .

First of all, we observe that (Ṽ − Vε) is a family of functions, each of which is compactly supported
on
⋃
i C

ε
ci , which converges uniformly to 0 as ε → 0. Without loss of generality, we can also assume

that ‖V − Vε‖∞ ≤ ε, from which we deduce that

|M̃h(γ)−Mε
h(γ)| ≤

1

2

∫

J

|γ̇|2g
∫

J

|V (γ)− Vε(γ)| ≤
ε

2
|J |
∫

J

|γ̇|2g, ∀γ ∈ H∆(τ).

In particular, recalling that Mε
h(γε) = minH∆(τ) Mε

h, we have that

• there exists C > 0 such that Mε
h(γε) ≤ C, for all ε > 0;

• |M̃h(γε)−Mε
h(γε)| → 0, as ε→ 0;

• Mε
h(γε) ≤ M̃h(γ) +

ε
2 |J |

∫
J |γ̇|2g, for any γ ∈ H∆(τ).

Thus lim
ε→0

M̃h(γε) = lim
ε→0

Mε
h(γε) ≤ min

H∆(τ)
M̃h. It follows that (γε) is a minimising sequence and admits

a weakly convergent subsequence (γεn). Let us call γ0 the weak (and uniform) limit.
Notice that γ0 is collision-less. In fact, we know that γε is taut for any ε (see Sections 2-3). In

particular, it cannot contain a sub-loop which encloses only one centre since [τ ] is admissible. Assuming
that γ0 has a collision with a centre c, we see that its angular variation is no more than 2π, since this is
so for all the γε thanks to the admissibility condition of the homotopy class. Thus, the only possibility
here is to have collision reflection solutions, which is excluded by our assumptions (cf Section 5).

We have thus proved that γε is definitely at a positive distance from the centres. We can then
argue as in Proposition 4.5 to prove the regularity of γ0. In fact, since the minimisers γε have constant
energy h and are far from the singularities ci, the conservation law

1

2
|γ̇ε|2g + Vε(γε) = h

provides a uniform bound on the velocities γ̇ε. Moreover, using the differential equation for
D

dt
γ̇ε and

the uniform bound on ∇ϕε, we get equi-continuity of γ̇ε and thus C 1 convergence. �

As announced, below we prove the approximation lemma used in the previous proof.

Lemma 7.2 (Approximation of Lipschitz functions). Let ϕ be a Lipschitz function on a smooth
Riemannian surface (M, g) and assume that the set of points Σ where ϕ is not smooth admits a
triangulation. Then, there exists a family of smooth functions (ϕε) such that:

• ϕε → ϕ uniformly as ε→ 0;
• supp(ϕ− ϕε) ⊆ Tε(Σ), where Tε stands for a tubular neighbourhood of Σ of radius ε;
• there exists a constant C > 0 such that ‖∇ϕε‖∞ ≤ C.

Proof. Choose a partition of unity {ψα}α supported on some open subsets Uα diffeomorphic to R2.
Consider the functions ϕα

.
= ψαϕ as functions on R

2. It is easy to build a smoothing kernel ηε such
that:

• supp(ηε) ⊆ Bε(0) and ηε ≥ 0;
• ηε ∈ C∞(R2) and

∫
R2 ηε = 1;

• ηε(y) = ε−2η(ε−1y), for some smooth, positive function η of mean 1, and such that ηε → δ0
as distributions.
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Using the ηε, define ϕα,ε(x)
.
=
∫
R2 ηε(y− x)ϕα(y)dy. Since ϕα is compactly supported, say in a ball of

radius Rα, ϕα,ε is supported in a ball of radius Rα + ε. Moreover, if Cα is the Lipschitz constant of
ϕα, we have:

|ϕα,ε(x1)− ϕα,ε(x2)| ≤
∫

R2

ηε(y)|ϕα(y + x1)− ϕα(y + x2)|dy ≤ Cα|x1 − x2|,

|ϕα(x) − ϕα,ε(x)| ≤
∫

R2

ηε(y)|ϕα(y + x)− ϕα(x)|dy

=
z=ε−1y

∫

R2

η(z)|ϕα(εz + x) − ϕα(x)| dz ≤ Cαε.

Thus, the ϕα,ε uniformly converge to ϕα, are smooth and have the same Lipschitz constant of ϕα.
Now, we glue back the approximating functions to a function on M . Set ϕ̃ε =

∑
α ψαϕα,ε.

Since we are assuming that Σ is triangulable, the ε−neighbourhood

Σε
.
= {p ∈M : dg(p,Σ) ≤ ε}

is a smooth manifold with boundary. Pick a smooth function ψ which satisfies ψ|Σ ≡ 1 and ψ|Σc
ε
≡ 0.

Consider then the functions ϕε
.
= ϕ(1 − ψ) + ψϕ̃ε. Clearly |ϕε − ϕ| = ψ|ϕ− ϕ̃ε| and thus ϕε satisfies

the first two properties in the statement. Similarly, the uniform bound on the gradient follows from
this inequality:

|ϕε(p)− ϕε(q)| ≤ |ϕ(p)− ϕ(q)|+ |ϕ̃ε(p)− ϕ̃ε(q)| ≤ 2
∑

α

Cα|p− q|. �
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