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CHAOTIC PHENOMENA FOR GENERALISED N-CENTRE PROBLEMS

STEFANO BARANZINI AND GIAN MARCO CANNEORI

ABSTRACT. We study a class of singular dynamical systems which generalise the classical N-centre
problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface.
We investigate the existence of topological conjugation with the archetypal chaotic dynamical system,
the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic
solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers
of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any
collision regularisation. For any sufficiently large value of the energy, we prove that the generalised N-
centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature
is negative, we construct chaotic invariant subsets.
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1. INTRODUCTION AND MAIN RESULTS

The Euclidean N-centre problem has been the object of extensive investigations, starting from the
pioneering papers [24, 8, 21, 10, 25] which emphasised the intricate nature of this problem. In the most

classical setting, the singularity set is made of N heavy poles ci, ..., cxy in the configuration space R?
(here d = 2, 3), with associated masses my,...,my > 0. For a test particle z(t) € R%, the equation of
motion reads
Z my (x(t) — Ca)
x(t) — ¢j|at?’
which can be also written as & = —VV(z), where
N .
1 V(x) = — 7J,
1) ©=-3 o

with a > 1. The main focus of this paper is the analysis of complex and chaotic behaviours for a class
of 2D dynamical systems driven by singular homogeneous potentials. We study some generalised N-
centre problems, whose most relevant instances include the motion of a test particle on a Riemannian
surface (M, g), gravitating under the attraction of N fixed heavy bodies. In analogy with the classical
Keplerian gravitational laws with flat metric g, the particle is subjected to an attractive force depending
on the Riemannian distance induced by g.

As a consequence of the presence of singularities, the flow associated to the motion equation for the
generalized N-centre problems is not complete. Indeed, the point particle z(¢) may cross a centre ¢;
in finite time and usually we refer to this phenomenon as a collision. Another common feature of the
generalized N-centre problems (and (1)) is how the homogeneity degree « drastically affects the orbits
structure, already when N =1 (see [15, 14]). We say that the singularities of V are Newtonian when
a =1, weak force when « € (1,2) and strong force when o > 2.

As a further indicator of complexity of these systems, note that, except for the classical completely
integrable cases N = 1 (the Kepler problem) or N = 2 (the 2 centre problem, solved by Euler
and Jacobi), the analytic integrability of (1) is destroyed as the number of non-linear interactions
between the particle and the centres increases (see [8]). This fact, together with the relevant number
of applications in Celestial Mechanics, has fostered many different approaches to investigate the rise of
chaotic behaviours. In particular, topological methods relying on global regularisation of collisions and
classical perturbative approaches have brought to light chaotic invariant subsets of the phase space for
the flat N-centre problem, as discussed at the end of this section.

1.1. Problem setting. In this paper we consider a family of singular dynamical systems — the gen-
eralised N-centre problem — defined on an orientable and complete Riemannian surface (M, g). The
metric g provides a natural way of measuring the length of regular curves on M and a natural distance
function dy(p, ¢) for any p,q € M. Let us introduce the N-centre problem on the surface M. Consider

C={c1,...,cn} C M, the set of centres, and let M= M\ C be the configuration surface. We wish to
define a potential energy V on M depending on the reciprocal Riemannian distance dg4(+, ¢;). Recalling

the classical Euclidean potential defined in (1), a natural way to introduce one on (M, g) could be the
following:

Mz

(2)
= ajdq q, ¢;)®

where «; € [1,2) and mq,...,my € RT stand for the masses associated to each centre. However, such
a function V may fail to be differentiable in M if, for instance, M is compact or the curvature of g
is positive somewhere in M. Indeed, if we fix ¢ € M, the distance function p — dg4(p,q) is smooth

only as long as there is a unique minimiser of ¢ joining p and q. We are thus brought to consider
potentials V' which behave as (2) only locally around the singularities. More formally, we will assume
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that V € %Q(M\) and that there exists r > 0 such that, in every metric ball B,(c;), the potential V'
has the form

e
(3) V(g) ~ ———"—+ W;(a),
ajd/g(qvcj)aj !
where W; is a smooth function in B,(c;) (cf [9]). This means that, close to every centre ¢;, the particle
g is under the attraction of a perturbed —aj;-homogeneous potential, with a; € [1,2). In addition, we

require the function V to be bounded away from the centres

sup [V (g)| < +oo.
g€ M\U Br(c;)

The N-centre problem in M is then the following Lagrangian system, defined on the tangent bundle

D
(4) —i = —VV(u),
where the gradient V and the covariant derivative % are defined by the Riemannian metric g. The
associated Lagrangian function reads

L(u, ) = %mg V().

Formally, we say that u: J — M is a classical solution of (4) if u(t) solves (4) for any ¢t € J. Note
that, from the Hamiltonian viewpoint, any classical solution u of (4) verifies the following conservation
of energy law:

(5) %m(t)@ FV(u(t) =h, Yte,

and thus it makes sense to study (4) in fixed energy levels. For the purposes of this paper, we will
consider only energy levels h above a certain threshold, namely:

(6) h > supV.
M

This is the natural extension to (M, g) of the positive energy N-centre problem on R? with standard
flat metric g. (see [24, 8, 21, 12]).

Remark 1.1. So far, we have made no assumptions on the compactness of M and the non-compact
case is also an object of our study. However, in this case, some control on the metric g is needed. To
be precise, we will assume that, together with M, an embedding 1 : M — R? is given, and that the
Riemannian metric g can be controlled with the pull-back of the Euclidean metric through ¢, which
we have already denoted by g.. Namely, we will assume that there exist constants A, A > 0 such that:

(7) Ag < ge < Ag.

The purpose of this paper is twofold: as a first result we provide infinitely many distinct collision-
less periodic orbits for (4) with constant positive energy satisfying (6) and prescribed homotopy class.
Then, we relate this result with the presence of invariant subsets of the phase space on which the
first return map acts in a (possibly) chaotic way. More precisely, we construct a topological semi-
conjugation (which in some cases is actually a conjugation) with the paradigmatic chaotic dynamical
system: the Bernoulli shift on bi-infinite sequences.

1.2. Infinitely many periodic orbits. At first we provide some multiplicity results for periodic
solutions of the generalised N-centre problem. We say that two periodic solutions 77 and s of (4)
(defined respectively on [0,T;]) are geometrically distinct if their supports do not coincide, namely
71 ([0, T1]) # v2([0, T2]). In particular, non homotopic loops are geometrically distinct.

Our first main result (Theorem 5.2) states that there are infinitely many periodic trajectories belong-
ing to suitable homotopy classes which, according to Definition 2.10, we call admissible. An application
of Theorem 5.2 yields the following illustrative statement which generalises for instance [12, Theorems
1.2 and 1.3].
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Theorem 1.2. In every energy level h satisfying (6), there are infinitely many geometrically distinct,
periodic and classical solutions to equation (4) in each of the following cases:

o (M,g) = (R?,g.), where g stands for the Euclidean metric and N > 3;
o (M,g) = (8%g) and N > 5;
e M has genus greater than or equal to 1 and N > 1.

For the proof, we opt for a variational argument, in which solutions are obtained as critical points
of a suitable functional. We introduce the so-called Maupertuis functional, defined as

Mi(y) = / ()2 / [l — V()] dr,

where | - |4 is the norm induced by g on the tangent bundle (rigorous definitions are given in Section 3).
Non-constant critical points of My, are collision-less solutions of (4) at energy h (Maupertuis principle,
see [4]). Let us mention another useful characterization of critical points of Mpy: minimisers of the
Maupertuis functional are re-parametrised minimising geodesics of the so-called Jacobi-Maupertuis
metric

gs(v,v) = (h—=V(z))g(v,v), x€T.M,
which is conformal to the ambient metric g whenever h satisfies (5).

The first step in the proof of Theorem 1.2 is to minimise M over those closed H! paths which
belong to suitable homotopy classes (see Section 3). To exclude possible collisions, a blow-up analysis
and a refinement of the classical obstacle technique for singular problems (see [30, 29]) is developed
in Section 4. Not every homotopy class on M matches our purposes, especially when more than one
centre is Newtonian. In Definition 2.10, we give a notion of admissible classes which extends the one
introduced in [12, 31] and we prove that infinitely many admissible classes, which contain collision-less
periodic minimisers, exist in any of the situations listed in Theorem 5.2.

The existence proof of minimisers can be replicated for any lower semi-continuous functional on
a weakly closed set. In this sense, it is reasonable to consider potentials of the form (2) which may
correspond to continuous, but non-differentiable functionals My. In this case, the dynamical system
(4) has additional singularities on the cut locus of dy(-, ¢;), which have to be treated separately. This
is addressed in Section 7, under some additional regularity assumptions on dy(.,¢;). In Theorem 7.1
we construct periodic €1 weak solutions of (4) with prescribed energy h in infinitely many homotopy
classes.

1.3. Invariant chaotic subsets, conjugation, symbolic dynamics. In this work we will use the
following definition of a chaotic dynamical system:

Definition 1.3 (Devaney [13]). If (X, d) is a metric space, we say that a continuous map f: X — X
is chaotic if

e periodic points are dense in X;
o f is transitive;
e f has sensitive dependence on initial conditions.

For a continuous dynamical system, a straightforward verification of these three properties is usually
highly difficult and mostly unfeasible. This is where the tool of conjugation becomes very useful. As
a matter of fact, there is a prototypical dynamical system which easily verifies the above definition
of chaos, the so-called Bernoulli shift. It is a discrete dynamical system, which acts on bi-infinite
sequences of symbols, chosen in a finite set. Let S = {s1,...,s,} be a finite set endowed with the
usual discrete metric p(sy, sj) = dy;, where dx; stands for the classical Kronecker delta. We define the
set of bi-infinite sequences in S as

SZ = {(Sk)kGZ DSk € S},

and we endow S% with the following distance:

) D(se), (1)) = 3 2%l

keZ
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so that (S%,d;) is a metric space. The Bernoulli shift is then the discrete dynamical system (S%, o),
where the map o acts in the following way

o: 8% — S§”
(sk) = o((sk)) = (Sk+1)s

which means that the whole sequence (sy) is shifted on the right. It is well-known that the Bernoulli
shift is a chaotic map (for a proof see [13, 20]), but it can also be used to prove that other dynamical
systems (X, f) possess invariant subsets on which the restriction of the map f is chaotic.

(9)

Definition 1.4. Let X,Y be two metric spaces. A map ¢g: Y — Y is topologically semi-conjugate to
amap f: X — X if there exists a continuous and surjective map w: X — Y such that gor = 7w o f.
In addition, if 7 is a homeomorphism, we say that the maps f and g are topologically conjugated.

Definition 1.5. Let S be a finite set, ¥ be a metric space and R: ¥ — ¥ be a continuous map.
We say that the dynamical system (X, R) admits a symbolic dynamics with set of symbols S if there
exists a R-invariant subset IT of ¥ such that the map R|n is semi-conjugated to the Bernoulli shift
map o. Furthermore, if the map R|r is conjugated to o, we say that (X, R) admits a chaotic symbolic
dynamics.

Our first result on this direction is the following:

Theorem 1.6. The N-centre problem on R? displays a symbolic dynamics on every energy level
satisfying (6) for N > 3.

The proof is given in Section 6 and the main idea behind this construction is to encode all information
about a given homotopy class into a proper sequence of intersection numbers. This approach traces
back to the seminal works of [27, 17] for geodesics flow on negatively curved surfaces. Let us remark
that the symbolic dynamics we build is collision-less, i.e., all admissible sequences are realised by non
collision solutions. Compared to the results given in [9], our construction is completely explicit and
elementary. Moreover, let us recall that it is known that the presence of a semi-conjugation with a
chaotic map is enough to conclude that our dynamical system possesses positive topological entropy
(see [20, Proposition 3.1.6]).

Notice that Theorem 1.6 is local in nature. Starting from a surface (M, g), whenever we can prove
the existence of a closed solution of (4) which bounds at least three centres, our construction provides
an invariant compact subset topologically semi-conjugated to the Bernoulli shift. This, for instance,
allows us to prove an analogous statement for the sphere S? with at least 5 centres, as discussed in
Section 6. A similar construction can be carried out on any surface of genus greater than or equal to
1 with at least one singularity (we refer in particular to Subsection 6.1.2).

At last, we present the most relevant application of Theorems 1.2 and 1.6. Under some suitable
assumptions on the curvature of g, we prove that our dynamical system is conjugated to the Bernoulli
shift. The proof relies strongly on the uniqueness of minimisers of My, in each homotopy class. This is
strictly related to the sign of the scalar curvature of the Jacobi-Maupertuis metric g (see in particular
Theorem 6.7).

Theorem 1.7. The following holds:

o If M = R?, N > 3 and g. is the Euclidean metric, then the N-centre problem on (R2, g.)
admits a chaotic symbolic dynamics on any energy level h as in (6).

o Let (M,g) be such that g has negative curvature and assume that N > 3 when M = RZ;
then, there exists h* = h*(M,g,V) > sup,, V for which the N-centre problem on (M, g) has a
chaotic symbolic dynamics on any energy level h > h*.

As a consequence of the topological conjugation, in all the situations identified by this result, the
N-centre problem has a chaotic first return map acting on an invariant subset of the energy shell. It
is important to notice that, when M = R? is endowed with a non negatively curved metric, we can
consider potentials of the form (2), for there exist no conjugate points nor closed geodesics. Moreover,
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we notice that our arguments are flexible enough to extend also Theorem 1.7 to the case of a surface
with genus g > 1 and N > 1 centres.

There are several important contributions in the literature which are strictly related to our results.
For instance, in [9, 24] (and in [10] for the spatial case) several collisions regularisation schemes have
been proposed, yielding positive topological entropy and existence of invariant chaotic subsets. A deep
study of high energy scattering phenomena for Newtonian potentials have been carried out in [21] and
in [25] for the tridimensional case.

A significant difference between the aforementioned results and ours is that we make use of vari-
ational methods alone, we build a symbolic dynamic using non collision orbits and describe chaotic
behaviours for these singular systems without employing any regularisation argument. Almost all the
arguments presented here naturally extend to more singular situations in which regularization is not
possible at all, for instance due to the presence of anisotropy in the asymptotic expansion of the poten-
tial (see for instance [6]). Indeed, one of the advantages of our arguments is that we work directly with
the homotopy classes of the punctured surfaces, without using any compactification procedure. More-
over, our results considerably extend the ones presented in [12], on which a different and preliminary
construction of a semi-conjugation is illustrated in the case (M, g) = (R?, g.).

It is also interesting to compare our results to the classical ones for complete compact manifolds.
The study of the geodesic flow on higher genus surfaces has attracted a lot of interest in the past
century, starting from the seminal works of Morse, Hedlund, Hopf and many others. The main reason
behind these investigations is a subtle interplay between topological and dynamical properties of the
geodesic flow. The configuration spaces we consider display a similar topological complexity, but lack
the regularity and compactness properties of closed manifolds. Nevertheless, many of the phenomena
arising in the classical case persist. For instance, it is known that the geodesic of flow on any higher
genus surface has positive topological entropy ([19]). Moreover, the geodesic flow on negatively curved
surfaces is the prototypical example of Anosov flows (see [5, 22]): it possesses periodic dense orbits,
which are hyperbolic, and it is ergodic.

1.4. Outline of the paper. The structure of the paper is the following. In Section 2 we recall
some basic facts about loops on surfaces and their intersections properties. In Section 3 we present
the variational framework and prove some elementary properties of Maupertuis minimisers. Section 4
contains all the basic information about the obstacle technique and its adaptation to the non Euclidean
setting. Section 5 contains the proof of Theorem 1.2 and its more general version (Theorem 5.2).
Section 6 is devoted to the construction of symbolic dynamics and to the proofs of semi-conjugation
and conjugation (see Theorem 6.6 and 6.7). Finally, in Section 7 we consider non regular potentials of

the form (2).

2. TOPOLOGICAL FRAMEWORK AND ADMISSIBLE LOOPS

In this section we recall some basic definitions and results about the geometrical self-intersection
index, in order to fix our notation and to introduce a notion of admissible classes of loops.

A curve or path on the configuration surface M is a continuous map ~v:[0,1] — M. If ~v(0) = ~(1),
we refer to « as a closed curve or a loop, which can also be seen as a continuous map from S' into M ,
if S! denotes the oriented unit circle.

Roughly speaking, two loops are equivalent if they can be deformed continuously one into another,
as it is made rigorous in the following:

Definition 2.1. Given two loops v, 7 : St — ]/\/[\7 we say that v and 7 are homotopic, and we write
v ~ 7, if there is a continuous map h: [0,1] x S' — M such that

b h(Ovt) = W(t);
e h(1,t) =7(t),

for all ¢t € St.
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We say that a loop is contractible if it is homotopically trivial, i.e., if it is homotopic to a constant
loop. If 4,7:[0,1] — M are continuous paths with the same endpoints, we say that v and 7 are
homotopic (or homotopic rel boundary) if there exists h: [0,1] x [0,1] — M such that

7(0) = h(s,0) = 7(0);

e (1) =h(s,1) =71(1);
o 1(0,1) =~(t);
e h(1,t) =1(t),

for any t € [0, 1].

Definition 2.2. Let q € M and denote by m (]\//7 ,q) the set of homotopy equivalence classes of loops
with base point q. We call 71 (M, q) the fundamental group of M based at q.

Definition 2.3 (Concatenation of paths). Given two paths v: [a,b] — M and 7: [b, c] = M such that
~v(b) = 7(b), we define their concatenation as the path v#7: [a,c] — M.

2.1. Intersection indices and minimal position loops. In this paragraph we briefly recall the
notion of geometric self-intersection number for homotopy classes as well as the definition of taut loop
that is required in the next sections. Our basic reference is [16] and references therein.

Given two closed curves in M , there are two natural ways to count the number of intersection
points between them: signed and unsigned. Unless otherwise specified, we will mainly refer to unsigned
intersections.

Definition 2.4. For two loops v and 7 in J/\/[\, their number of intersections is
lynr| = {(t,t):t,t' € S" and y(t) = 7(¢')}| € NU {+00}.

The number of self-intersections of T is given by
1
7| = 5 [{(t,t"):t#t €S" and 7(t) = 7(t')}| € NU {+00}.

Remark 2.5. Notice that the factor 1/2 appearing in Definition 2.4 comes from the identification
of (t,t') with (¢',t). Moreover, the number of intersections or self-intersections is always finite if the
curves are in general position, i.e., their intersections are always transversal.

Definition 2.6. The geometric intersection number between two homotopy classes [7] and [y] of simple

closed curves in a surface M is defined to be the minimal number of intersection points between a
representative curve in the class [7] and a representative curve in the class [v]:

i([r), [v]) = min{|7" NA'| - 7" € [7], v € (Y}
The geometric self-intersection number i([7]) is defined to be the minimal number of self-intersection
points over all closed curves in the class [7]:

i([7]) = min{|7'| : 7" € [7]}.

Given two loops 7 and ~y, we say that they are in minimal position if they realise the intersection
number of their homotopy class. Similarly, a loop 7 is in minimal position (or taut) if it realises the
self-intersection number of its homotopy class.

If a loop 7 is not in minimal position it is usually said that it exceeds the number of self-intersections.
It is straightforward to check that the minimum in the definition of intersection number above is always
achieved by curves that intersect transversally.

However, unlike what happens for the signed intersection number, i([7]) cannot be computed directly
using any representative in general position. Thanks to some results from [16], which we will recall
below, it is possible to compute i([7]) starting from any representative in general position and using
just a finite set of moves. To state the result we need, we recall the following definitions (see Figure 1
for some examples).

Definition 2.7. Let v:S! — M be a loop.
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a)

F1GURE 1. The striped areas of this picture represent the regions bounded by some
examples of singular 1-gons and 2-gons. In picture a) we have an innermost singular
1-gon, while the ones showed in b) and ¢) are not innermost. In d) we can see a
singular 2-gon in the case M = TZ2.

e We say that v has a singular 1-gon if there exists a sub-arc [a,b] C S* such that v(a) = v(b)
and 7|[q,p is contractible.

e We say that v has a singular 2-gon if there exist two disjoint sub-arcs [a,b],[c,d] C S! such
that y(a) = v(c) , v(b) = v(d) and 7|[q,p)uc,q is contractible.

The next result contains some necessary conditions for a loop to be taut in its homotopy class.

Theorem 2.8. ([16, Theorem 4.2]) Let v : St — M bea general position loop. If v is not taut, then
v has a singular 1-gon or a singular 2-gon.

Definition 2.9. A loop ~ is called simple if it has no self-intersections. A sub-loop of ~ is said to be
innermost if it is simple.

In a similar fashion, a singular 1-gon (resp. 2-gon) is innermost if, regarded as a loop, it does not
contain a singular 1-gon or 2-gon.

By the well-known Jordan curve theorem in R?, any simple curve 7 divides the plane in exactly
two connected components: one is bounded and contractible, while the other is unbounded and not
contractible. If M is an orientable surface, this is no longer true in general. However, if a simple loop
~ is contractible and M # S?, v divides M in exactly two components, one of which is contractible
and the other is not. If M = S?, v divides it into two disks.

These last remarks are crucial for our purposes, since we need to refine the possible choices for a
homotopy class to work in. Indeed, facing the problem of avoiding collisions, we need to require some
nice behaviours inside the homotopy class. A rigorous notion of admissible class of loops is given in
the next definition and concludes this section. Some remarkable examples are depicted in Figures 2
and 3.

Definition 2.10. Given a non trivial homotopy class [7] € m (]\7), let v be a taut representative in
[7]. We say that [7] is admissible if v satisfies one of the following:

e if M ~ S?, then any innermost and contractible (in M) sub-loop 7 of v contains at least two
centres in both the bounded components of M \ ¥;

o if M £ S?, then any innermost and contractible (in M) sub-loop 7 of v contains at least two
centres in the contractible component of M \ 7.

Moreover, if M is non compact, we require that there exists a compact subset K C M such that any
representative v of [7] satisfies v N K # (.

In the next sections, we are going to stress how is it possible to find periodic solutions of the N-
centres problem on M. Then, it will be clear that the admissibility notion introduced in the previous
definition is translated into a topological constraint which we impose on such trajectories to avoid
collisions with the centres.
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a) b)
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FIGURE 2. In this picture we see some examples of admissible homotopy classes of
loops on M. Pictures a) and b) show that when M = T? it is enough to have just one
centre to define an admissible class. In ¢) and e) we have two examples of admissible
classes when M = R? while in picture d) we see that at least 4 centres are required
to put this definition in the context of a two-dimensional sphere.

FIGURE 3. An example of non admissible class in the case M = S2. It is not difficult
to check that the loops in a) and b) are in the same homotopy class. The one in b)
has a sub-loop which encloses a unique centre.

Remark 2.11. The requirement that v N K # () for all v € [r] will be needed in Section 3 to prove
the coercivity of the Maupertuis functional. Intuitively, this means that we are excluding those curves
that can be continuously deformed into one of the ends of the manifold M. It is worth stressing that
this is not a purely topological issue. Indeed, the condition of Definition 2.10 ensures the coercivity of
the Maupertuis functional in many situations, but it is not necessary in general (consider for instance
the plane R? and a cylinder C'). An example of this phenomenon is given in Figure 4.

3. THE VARIATIONAL FRAMEWORK

This paper relies on some variational techniques which succeed in the task of producing periodic
solutions to our problem of study. For this reason, the present section is devoted to fix the abstract
variational setting and to recall some basic properties of the Maupertuis functional. In particular,
we are going to state a variational principle which guarantees that critical points of this functional
actually corresponds to trajectories which solve the N-centre problem.

3.1. The Maupertuis functional on surfaces. As a first step, to introduce a topology in our loops
space, we consider an embedding of our orientable surface M in R3. With a slight abuse of notation,
we identify M with its image under this embedding.
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AN

S

FI1GURE 4. In this picture, two topologically indistinguishable situations are shown.
On the right, we have a standard cylinder, while on the left two planes are bridged.
Both surfaces are endowed with the metric induced by R3. In a), following the original
argument of Gordon (see [15]), one can show that the Maupertuis functional in the
depicted homotopy class is coercive. This fails in b), since one can have representatives
with arbitrary large L? norm and bounded length.

Given J = [tg,t1] C R we define
(10) H={yeH'(J;R?): y(t) e M, Vt € [to,t1]},

which is a Banach manifold modelled on the Sobolev space H!(J;R?). If g is a Riemannian metric on
M (not necessarily the one induced by the ambient space), the tangent space of the manifold H can
be endowed with the scalar product

D D
(& = /J (Zetw. Enm}g at + /J (€(t), (b)), dt.

When the surface M is compact, all the metrics g induce equivalent scalar products. If M is non
compact, however, this is no longer true. The assumption given in (7) ensures precisely that this is
the case.

We denote by H the subset of H made of those paths which do not intersect the singular set C. In
particular, H is an open dense submanifold of #: its weak H!-closure is exactly 7. The boundary oM
is given by all those paths whose preimage of the singular set C is not empty. The following result is
well-known.

Lemma 3.1. ([23, Proposition 2.4.1]) Let M be a smooth manifold and J = [to,t1]. The evaluation
map
evi:H—MxM

v ev(y) = (y(to), (1))

is a submersion. As a consequence, if N C M x M is a submanifold of codimension k, ev™1(N) is a
submanifold of H of codimension k.

For the special case of N = {p,q} we get the (closed) submanifold of all H! paths starting at the
point p and ending at the point q. For N = A the diagonal of M x M, we get the space of parametrised
loops in M.

In analogy with the introduction notation, we will often use M=M \ C to denote the configuration
surface (without the centres). Moreover, given N C M x M, N denotes N N (]\//f X ]\7) We set

Hy =ev ! (]/V\ )
which is a k-codimensional submanifold of H and H ~ its H! closure. Looking for periodic solutions,
we are interested in the case N = A. Since we want to work with loops in a fixed homotopy class, we
introduce the following definition.
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Definition 3.2. For any [1] € m (]\//7) we set
Ha(r) = {y € Ha sy € 7]}
and Ha (1) its weak H! closure.

For any fixed energy level h satisfying (6), let us consider the Maupertuis functional
(11) Mp i H — RU{+occ} defined by My (y) = / 5(t)|2 dt - / [h =V (y(t))] dt,
J J

and, if v belongs to a positive level of M}, we set

o Jy = V@) di
LT BORd

It is well-known that the functional My, is differentiable over H. Moreover, as a direct consequence of
Lemma 3.1, if N C M x M is a k-codimensional submanifold, then the restriction of the Maupertuis
functional to this set is differentiable as well. Moreover, up to reparametrisation, its critical points are
solutions of the fixed energy problem (4)-(5). More precisely, the following result holds true:

and J, = {t—o t—l}

w w

(12)

Proposition 3.3 (Maupertuis principle). Let vy € H be a non-constant critical point of My, at a
positive level. Then v is a classical solution of

W 2/(1) =~V (3(1) teJ
e S e

with boundary conditions
(v(to),7(t1)) € N
Dy L(y(to), 7' (to))[€0] = DuL(y(t1),7 (1)) [&1] V' (£0,€1) € Tyto) ey N

where D, L(x,v) is the covariant derivative of the Lagrangian L with respect to v.
In the same way, the function v defined by ¥ (t) = vy(wt) is a classical solution of

SV =-VVEO)  ted
SOR V@@ =k ted

)

with boundary conditions
{(w(to/w>,¢<t1/w>) enN
Dy L(%(to/w), ' (to/w))[§0] = Do L(¥(t1/w), ¥’ (t1/w))[&] V(€05 €1) € Top(to /) ot ) N
Proof. The proof follows from a slight modification of the one given in [4, Theorem 4.1]. O

Remark 3.4. Unfortunately, the manifold 7/-[\]\; is not the right choice to employ direct variational
methods, since it is not weakly closed. Naturally, we can overcome this problem by working in its weak
H?' closure H and find minimisers of My,. However, the price to pay is that some ad hoc arguments
have to be developed in order to get rid of those minimisers which interact with the singular set C.
In particular, any loop v € Ha(7) which does not collide with any of the centre is an interior point
of Ha(7). Thus any such point is a true critical point of M; and thus satisfies the conditions of
Proposition 3.3.

We recall some useful properties of the Maupertuis functional and we put them in the context of
the minimising space Ha (7). As a general remark, it is straightforward to check that My,

i) is invariant with respect to affine time rescaling,
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it) is not additive with respect to concatenation, meaning that

Mu(#72) # Mn(71) + Mau(y2).

Even so, the lack of additivity of the Maupertuis functional is partially recovered by exploiting the
following two properties.

Lemma 3.5. The Maupertuis functional My, is super-additive: if v € Ha(T) and [a,b] C J, then
Mp(v) 2 Mr(Y(a,0) + Ma(Y|\[a,b)-

Moreover, if v is a minimiser of My, in Ha(T), then the path |(, 4 is a minimiser in the space

Hiv@) o (1) = {n € H: nla) =~(a), n(b) =v(b), n#7V[1\[a.0) € Hal(T)}.

Proof. The first assertion follows directly from the definition of Mj,. To see that, set 3 = 7|, and
Y2 = 7|y, for J1 = [a,b] and Jo» = J \ [a, b], and define

/I% )[5dt, UiZ/Jh—V(%-(t))dt.

With a slight abuse of notation on My, we have
Mp(v) = (K1 + K2)(Ur + Uz) = KqUy + KaUs + K1Uz + KoUy > My (1) + Ma(72),

since the terms U; > 0.

Now, assume by contradiction that + is a minimiser in Ha(7) but ~; is not a minimiser in
H(y(a),y(v)) (7). Take v in the same space with My (v) < Mp(71) and define K, and U, as the kinetic
and potential integrals of v, as before. By time-rescaling invariance, we can assume that K; = K, and
the inequality on My, turns then into U; > U,. At this point, if we set ¥ = v#y2 we have:

Mh(’}/) = K,Ui + KsUs + K,Us + KUy > K, U, + KUy + K,Us + KU, = Mh(’?),
which is clearly against the minimality of v in Ha (7). O

3.2. Existence of minimisers. As a starting point, by means of direct methods in the calculus of
variations, we prove the existence of a minimiser of the Maupertuis functional, possibly interacting
with the singularity set C. We work in Ha (1), which is a weakly closed subset of H'(.J,R?). Whenever
we will use the symbols || - ||z and || - || g1 we will mean the norms with respect to the ambient Sobolev
space, while | - | stands for the Euclidean norm in R3. The proof is based on this preliminary result.

Lemma 3.6. Assume that T is an admissible homotopy class as in Definition 2.10. Then, the func-
tional My, is coercive and weakly lower semi-continuous on Ha (7).

Proof. We first prove coercivity. Take (v,) C Ha(7) such that ||v,| g — +oo; if [l = +oo we
are done, since by (6) and (7) we have

1 . .
Mi(m) > = [3nl2 / (= V()] > Cu 32

for some Cq > 0.

Now assume that ||y,]|]2 = +oo and, without loss of generality, that every =, is defined on the
same interval [0,1]. Clearly, if the surface M is compact, we have nothing to prove since ||y, |2 goes
to infinity if and only if ||y ||2 does so. If M is non-compact, recalling Definition 2.10, without loss of
generality we can assume that 7 is such that there exists a compact subset K of M for which K N~,, #
for any n. Recall that, for fixed s € [0, 1], the distance between ~,(s) and K is defined as

dg(n(s), K) = mindy(v(s),p).
peK
Since K is compact, the minimum is obtained and there exists p* € K (depending on s) such that
dg(1n(s), K) = dg(n(s),p").-
Moreover dg('Yn(S)vp*) > /\|7n(5

)
Jnax, dg(m(s), K) = A Jnax 1v(s) =P = Alllvmlloe = P71l = Alllymll2 — [P7]

— p*| for any s (where A is given in (7)) and thus:
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On the other hand, there exists ¢, € v,, 'K and thus dg(7,(s), K) < dg(vn(5),¥n(tn)). Moreover:

Ay (1 (), A (t2)) < Elgern) < / Fnly < CMa (7).

Combining the two inequalities we get the desired conclusion.

Concerning the weakly lower semi-continuity, the product of two positive R—wvalued lower semi-
continuous functions is a lower semi-continuous function. In principle M, is R-valued. However,
the admissibility of the homotopy class 7 guarantees that ||¥,[/3 > C > 0 uniformly. Similarly, the
potential part is uniformly bounded from below and lower semi-continuous. This is enough to conclude
the proof. O

As a direct consequence, we have the following result:

Proposition 3.7. Assume that T is an admissible homotopy class as in Definition 2.10. For every h
satisfying (6), the functional My, attains its minimum on Ha(T).

3.3. Properties of the minimisers. In this section we collect some qualitative properties of min-
imisers of the Maupertuis functional. First of all, we deal with points in the boundary of Ha (7).

Proposition 3.8 (Collisions are isolated). Assume that v € Ha(T) is a minimiser of the Maupertuis
functional (11) and has collisions. Then, the set

Io={teJ:v({t)=c¢j, je{1,...,N}}
s a finite set.

Proof. Assume by contradiction that |Z.| = oo. Since My (vy) < 400, Z, has measure zero and does
not contain any proper subinterval. Pick a strictly monotone sequence (t,) C N contained in Z, and
label the corresponding collisions by ¢,. As a consequence of (7), (6) and since My, is finite on v, we
see that

tnit
S dencn) <Y [ RS [ 1R < 0Mi) < +oc,

and so the sequence (¢,,) is definitively constant.

Since v is uniformly continuous, any accumulation point of Z. has a neighbourhood which contains
only collisions with a fixed centre.

Arguing similarly and applying Proposition 3.5, we see that if sg is an accumulation point of Z. and
(sn) a strictly increasing sequence converging to it, we have that:

ZM’I(ﬂ[sman]) < My(y) which implies Mp(V[(s,,5,41]) — O-

Moreover, the image of the curves 7|, ,.,] is arbitrarily close to the collision centre. Recall that
since 7 is a minimiser, we must have that Mp (7|}, s,,,]) are definitely all equal (and thus all equal to
0) since we can exchange the segments |, s, ,,- Thus 7 is constant in a neighbourhood of sg, which
contradicts My (y) < +o0. O

Remark 3.9 (Lagrange-Jacobi inequality). Usually, Proposition 3.8 is proved using the convexity
of the function dy(c;j,v(t))? along collision solutions (see for instance [29, Lemma 4.25] for the case
M = R?). In particular, it applies also to critical points. The proof given above has a different flavour
and does not rely on the explicit form of the potential, just on the structure of the variations space
and on minimality. In any case, a version of the classical Lagrange-Jacobi inequality can be easily
proved in this context too. To lighten the notation, assume that v collides with a centre ¢ and that
the homogeneity degree of V' close to c is a. By direct computation one gets:

L e =X +dylen) (9 (Dx.5) 40 (x.24))

=g (4 +dy(en) (9 (2%.4) 9 (X, WV )
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where X stands for the velocity of the unit speed geodesic joining ¢ and ~(t). Let us consider the

D
term g <EX’ W). Since integral curves of X are geodesics, we have that Vx X = 0. We can extend

X to a orthonormal frame {X,Y} on a small annulus around c. It follows that k = ¢(Vy X,Y) is
the mean curvature of the Riemannian balls around c. Close to ¢, we have the asymptotic relation
k(p) ~ dy(c,p)~t + O(dy(c,p)). Tt follows that:

D . .
=X =g(3.Y)Vy X|y = g(3. V)k(1)Y |5,

from which we see that:

dg(c,7)g (%K 7) =dy(c,7) k(7) 9(Y,%)* ~ (Y, %)*.

Now, recalling the definition of the potential V' (see (3)), close to ¢ we can write V as a singular plus
a regular part U as follows:

_W—FUW@)'

Computing the gradient of V' and substituting in the equation above, it yields:

V() =

d? 2 . 2 mi N2
» 5o €0 = 004X = e dyfe7(8) () 9(Y:4)° + o(VU (). X))
a2 m; of1) — 2—-« m;
=0l = g e ame TN = e deame oW

where, in the last equality, we have used the conservation of energy (5). This shows that ;—;dg (¢, (%))

blows up to 400 as (t) approaches ¢, providing strict convexity.

It is well known that outside the collision set Z., minimisers of the Maupertuis functional (11) are
%? and satisfy a non linear system of ODEs. The following proposition holds as an application of
Proposition 3.3.

Proposition 3.10 (Regularity outside the collision set). Assume that v is a minimiser of (11).
For every subinterval I C J \ I., the restriction ~y|; belongs to €*(I, M). Moreover, it is a re-
parametrisation of a solution of the following system:

Dn

where the parameter w > 0 is determined as in (12).

Note that (14) is a Lagrangian system. Thus the associated Lagrangian i[n| — V(n) is locally
constant on J \ Z.. It is known that the total energy is conserved through collisions too, as the
following shows.

Proposition 3.11 (Conservation of energy through collisions). Assume that v is a minimiser of (11)
on Ha (7). Then, we have that

1,.

§|7(t)|§ +V({H@#)=h, forae te.

Proof. Even if 4 may be on the boundary of Ha (7), we can still exploit extremality of  with respect
to time reparametrisations. Take ¢ € €>°(J) and define the function fi(t) =t + Ap(t). It is easy to
see that if |A| is sufficiently small, say A € [—4, ], then f) is a change of variable on the interval J.
Now, let us define the loop

(E) = (A1) = vt + Ap(t)).
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It clearly belongs to the space Ha(7) and thus My (y) < Mp(ya), for every A € [—6,d]. Defining the
new variable s = f)(t) = t + A\p(t), we can write

1 2

Mup(a) =

Z 0| @ [ in-voawa

h=V{(s)
BB+ xelr o) ds [ D as
/ A 7 1S (s))
On the other hand, we can write the time variable ¢ as an implicit function of s in this way
t(s) = fx'(s) =5 = p(f3 ' (5));
moreover, we can provide the following estimate

130 (s) = sl = Is = Ao(f 1 (5)) = 5| < Mllelloc = 0F, as A =0

so that f, !(s) uniformly converge to s in J as A — 0. For this reason, the minimality condition can
be written as follows

.

./\/l
/w ()26 Lm—vw&n%—l/ww@@/w—VW@ﬂﬂ@@

[ 5 ([ n=vienas) 5 - (5 [ reas) - v} e ds

Since the previous holds for any ¢ € CK"O(J ), we have that there exists k € R such that

% (/J [h =V (v(s))] dS / [5(s) |2 dS [h =V (v(s)] =k, forae. sel.

Recalling the expression (12) of w?, dividing both sides by 3 [ A (s) |§ ds we obtain

w2,
5 1)y = h+V(v(s)) = ks
note that here we have used the fact that the minimum is attained at a positive level and we have
used the same constant k. Integrating both sides in J, we obtain that
s Jylht k= Viy(s) ds
3 S ()2 ds
and definition (12) gives k = 0. O

Another important feature of minimisers of the Maupertuis functional on Ha (7) is that they tend to
be taut, meaning that they tend to minimise the number of self-intersections in their homotopy class.
Intuitively, there can be no 1—gon or 2—gon in the regular portion of a minimiser (recall Definition

2.7). However, much more attention should be paid when the minimisers lie on the boundary of Ha (1)
and have some collisions with the centres. For such singular curves the word taut does not make much
sense. However, the number of self-intersections of these singular minimisers can be reduced by strongly
exploiting the minimality of My () and employing some careful surgical procedures.

Proposition 3.12. Suppose that v is a minimiser of (11) on Ha(7). Then:
i) v has no singular 1-gon in ]/W\;
it) v has no singular 2-gon in ]/W\;
iii) v has no singular 1-gon in MU {¢;} for any j;
iv) v has no 2—gon colliding with just one centre, i.e., no singular 2—gon in MU {¢;} for any j;
v) all isolated self-intersections are transversal.
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V'[a,b]
FIGURE 5. Picture a) shows the 1-gon described in point ) of Proposition 3.12, while

pictures b) and ¢) depict two examples of the behaviour excluded by point i7), namely
when v(a) # ¢; and v(a) = ¢;.

7/[(:,,1]

b) Ao

FIGURE 6. An example of the 2-gon excluded by iv) of Proposition 3.12 is shown in
picture a), while b) shows the 2-gons treated in 7).

Proof. Property ) follows from super-additivity of the Maupertuis functional. In fact, if [a,b] C J
is an interval such that vy(a) = v(b) and 7[5 is null-homotopic, the loop 1 = v| 1\ (a,5)/(a~b) s still
continuous and in the same homotopy class as . However, My, (v) > My (n).

To see ii) we use regularity. Suppose that we can find two intervals [a,b] and [¢, d] such that, for
instance, y(a) = y(c), 7(b) = v(d) and |4,y #7|[_c71d] is null-homotopic. Then we can obtain a curve n

exchanging 7|[44 and 7[(.q. This curve has the same Maupertuis value as -y, but it is no longer ¢
and thus it cannot be a minimiser (see Proposition 3.10).

The argument for ii) is very similar to case i7). Assume first that there exists [a,b] as in i) and
v(a) # ¢, but ¥|[q 4 is null-homotopic in R\ CU {c;}. Then, if we run twice the portion between ~(a)
and ¢;j, we end up with another minimiser which is not ¢. The case in which vy(a) = ¢; follows from
super-additivity as in i) (see Figure 5). Indeed, if we remove the sub-loop (45 from ~, we obtain
a curve still lying in the boundary of Ha(7), but on which the Maupertuis functional takes a lower
value.

Point iv) is again a matter of regularity. Switching between two possible branches gives a non %2
minimiser exactly as in the previous point (see Figure 6).

Point v) is obvious given Proposition 3.10. In fact, by uniqueness for Cauchy problems, if position
and velocity coincide at some instant, we must be dealing with two pieces of the same trajectory.
Conservation of energy implies that the norm of the velocity is a function of the position and initial
condition alone. Thus, if « self intersects, the velocities cannot be multiples unless they coincide or
are opposite, and in this latter case we are dealing with a time inversion. O
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FIGURE 7. The situation described in point i) of Proposition 3.13. Since v collides
with the centres c;,, ¢;, and cj,, the curve 1 keeps trace of the homotopy class of .
In the first case the point y(a) coincides with one centre, while in the other not.

We can extend points iii) and iv) of the previous proposition also to those minimisers which collide
with more then one centre. However, in this case, we have to keep track of the homotopy class 7 we
are starting in.

Proposition 3.13. Suppose that v is a minimiser of (11) on Ha(7). Then:
i) there is no interval [a,b] C J and no subset of centres C' such that
e v(a) =~(b),
o C" S ([a,b]),
o there exists a null homotopic curve n in MucC'uU {v(a)} with the property that

YIN[apF#1 € Ha(T).
ii) there are no intervals [a,b], [c,d] C J, with b < ¢, and no subset of centres C' such that:
e y(a) =v(c) and v(b) = v(d) and at least one between these two points is not a centre,
e " C([a,0]) Ur(le,d]), -
o there exists a curve n in M U{v(a),v(b)} joining v(a) and v(b), with the property that

s (=o0,a FNFY b, FNFY J0[d,+00) € HA(T).
iii) if in point ii) above y(a) and y(b) are both centres, we can build a minimiser 7 in Ha (1) which
coincides with v on J \ ([a,b] U [c,d]) and such that 5([a,b]) = ¥([c, d]) = v([a, b]).

Proof. The proof is completely analogous to the one of Proposition 3.12. The assumptions guarantee
that performing the same type of surgeries as before does not change the property of belonging to the
boundary of 7/-[\A(7'). Point 4) follows from super-additivity, point i) from regularity and minimality
and fro point i74) minimality is enough: the Maupertuis functional must coincide on 7|4 and v/ q
(see also Figures 7-8).

4. COLLIDING TRAJECTORIES, GEODESICS AND OBSTACLES

In this section we introduce the main variational tools to exclude collisions: the obstacle problem
and the blow-up analysis of collision solutions. The main idea is to study the qualitative properties of
near collision solutions, going gradually closer to a singularity. More precisely, the proof of Theorem 1.2
heavily relies on the properties of a suitable sequence of geodesics with obstacle, which approximates



18 STEFANO BARANZINI AND GIAN MARCO CANNEORI

FIGURE 8. The pathological situations described in points i) and iii) of Proposition 3.13.

a collision solution in a small neighbourhood of a centre. After a rescaling, we identify the limit as a
zero energy solution of a Kepler problem and we exploit some of its known properties.

4.1. The obstacle problem on surfaces. Assume that v is a minimiser of the Maupertuis functional
(11) on Ha(7) and that there exist a time ¢ € J and a centre ¢ such that v(f) = ¢. Proposition 3.8
guarantees that such a collision instant is isolated and so we can switch to a local analysis of the
minimiser. In particular, we can find a subinterval [a,b] C J such that

e t € a,b] and Z. N [a,b] = {t};

e the function I(t) = d,(y(t),c)? is strictly convex in [a,b], attaining its minimum in £ (see

Remark 3.9).
We call p = y(a) and ¢ = ~(b) and, without loss of generality, we assume that p,q € 9B, (c) for some
r > 0, where B, (c) is a metric ball with respect to dy. The main idea here is to pass from a global
analysis of the loop 7 to a local analysis of the path +y|(, 5, which is entirely contained in B,(c). For
this reason, from now on we will lighten the notation on the homogeneity degrees a;; which appear in
the definition of V' (see (3)), and we write
M
Vig) ~ ————2— +U(q),
(q) adilg o T (q)
for a smooth function U, whenever ¢ € B,.(c). Indeed, since v is continuous, we can also suppose that
dg(y(t),ck) > C >2r, foranyt € [a,b], ¢ # ¢ and some C > 0,

so that we can focus our efforts on a unique singularity ¢. A first important property required on
Yl{a,p) 18 that it minimises the Maupertuis functional among all those paths which, concatenated with
Y| 7\[a,5]; Delong to the space Ha (7). Recalling the definition (10) of the Banach manifold H, with a
slight abuse of notation on the interval J, we introduce the space of paths

K ={neH:nt) € B:(c)\ {c}, Vt € [a,0], n(a) =p, n(b) = ¢}

and its weak H'-closure K. Thanks to Lemma 3.5, Y{a,p) 18 @ minimiser of My, in the space

K(t) ={n e K: n#v|n[p € Ha(T)}.

Following [29], for € > 0 we introduce the function

d(¢) = min {./\/lh(n) :m e K(r), min dy(n(t),c) = 5} ,

t€la,b]
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which is well-defined because the space
K(7): min d t),c) = }
{77 €K(r): min do(n(t),c) =e
is weakly closed in H?!.

Lemma 4.1. The value d(0) is achieved by 7|ja,p) and the function d(e) is continuous in € = 0.

Proof. The first part of this lemma is again a consequence of Lemma 3.5, while the continuity follows
from a slight modification of [30, Lemma 17], once similar asymptotic estimates are provided (see also
the proof of Proposition 4.5). Indeed, using exponential coordinates around ¢, it is possible to describe
the asymptotic behaviour of a collision solution as a small perturbation of the Euclidean case described
in [30]. O

For 0 < €1 < €5 define the space
Ke, e, (1) = {17 eK(r): trer[lir})] dg(n(t),c) € [51,52]} ,

which is weakly closed in H' too and so M}, admits a minimiser therein. For this reason, the following
set of paths is well defined too:

Koy op(T) = {77 EKeyen(1): Mp(n) = min My, min dy(n(t),c) < 52} .

Key,eq(T) t€la,b]
Since we have assumed that « collides in ¢, it is reasonable to expect that the previous set of paths is
definitely non-empty. This is the content of the next result.
Lemma 4.2. Assume that v collides with c¢. Then, for any e > 0, there exist 0 < g1 < €9 < € such
that

1651152 (7') # 0.
Proof. The proof goes exactly as in [12, Lemma 5.3]. O

As a consequence of the previous lemma, we can find two sequences of positive numbers (g,), (£,)
such that
0<eéen <&p, €Enén—0T,
and a sequence of paths (n,) C (7) such that

n € I€5n;§n (T)v Mh(nn) = d(‘gn)v VneN.

In particular, since by Lemma 4.1 the function d is continuous at 0, we see that
Jm M (1) = Ma(3]e.)-

Since the paths 7, are minimisers of a geodesic with obstacle problem (or geodesics on a surface
with boundary problem, see for instance [2, 3]), they share some nice regularity properties which are
summarised in the following result.

Proposition 4.3 (Regularity of obstacle minimisers). For any n € N:
i) Nn € € (a,b);
i) nn is of class €2 on any sub-interval of [a,b] \ T, = 1, (0B, (c)) and solves the following
second order system:

b
Dy, h—V(n,
wi M _ VUV (), wi: fa[ . (n )],
dt L7 |2
2 Ja I'iMlg
iii) the total energy of nu(t) is constant on [a,b]. In particular:
2
w

i (8)2 4+ V() = b, Vi € [a,1];
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) the set T,, = n,; 1 (0Be, (c)) is an interval;
v) using exponential coordinates centred at ¢, we can write 1, (t) = exp,(rn(t)e?»®)). The angular
part 9, (t) is strictly monotone and €% on T,.

Proof. Point i) follows from [2, Theorem 1]. Point i) is basically a Maupertuis principle and thus
follows by direct differentiation of the Maupertuis functional. Point i4i) is a consequence of the same
argument used in Proposition 3.11. Point iv) can be proved using a version of (13) for 7,. Indeed,
using point #i¢) one has

L& 2 = (X, i (t))? e d k() g(Y, 1) X

5 gz da(cmn ()" = g(X, M (2))" — S do @) g (€ () (k(mn)g (Y, 1)~ + g(VU (1 (1)), X))
on any interval contained in [a, b]\ T},. Notice that, by the coercivity of M}, w2 is a bounded sequence
(see also [29, Lemma 4.30]). It follows that %dg(c7 N (t))? can be uniformly bounded from below on
[a, b] for all n sufficiently large, in a small ball centred at c. This implies that d,(c, 7, (t))? are definitely
convex near the obstacle, thus if there exist two instants t; < to such that dg(c, n,(¢;)) = €n, then the
same holds for all intermediate times.

Point v) follows easily from the conservation of energy. In fact, introducing exponential coordinates

on the obstacle and using iv), we have:

M (t) = Dn(t)en de, cion exp(ie? D),

2h — V(g (t N .
2O VOO g, o, exp(ie?O) 20, (2722,

wi
One easily deduces monotonicity of ¥,,() from the last formula. Set Y; = d. v, exp,(ie??»®),
differentiating the energy identity yields an equation for ¥, (t):
3 1 VVin(@) | Y, ))
15 U (t) = — (( 9, (D Ys, —— ) ).
( ) () |Y;§|q g W%En () tit |th|q

O

4.2. Blow-up analysis. In the previous section we introduced the obstacle technique and we provided
a sequence of curves 7, (t) on [a,b] and a sequence of radii e, converging to zero, which satisfy:

i) nn(a) = p € 9B, (c), and n,,(b) = q € IB,(c),

ii) 77;1 (0B, (c) =T = [t,,, t;ﬂ
Now, we want to investigate the behaviour of 7, as the parameter ¢, goes to zero. In the flat case,
we would define a blow-up sequence of the form e, 1(n,(4t) — ¢) + ¢ for a suitable value of v. In this
way we would map an open ball around c to larger and larger balls contained in R? and the obstacle
0B, (c) to an euclidean sphere of radius 1. Since we are working on a surface M, we have to slightly
modify the argument using exponential coordinates centred at c¢. In any case, the rate v depends on
the time spent by 7, on the obstacle, i.e., on the quantity ¢t} — ¢ . The next lemma gives an estimate

for this quantity.
Lemma 4.4. Let [t ,t;}] be the interval on which n,(t) lies on the obstacle. There exists a positive
constant C7 such that:

+2

0<th—t, <Cien®
Proof. We use the same notation as in the proof of Proposition 4.3, referring to the proof of point v).
Assuming that 9, is strictly increasing, when ¢ € [¢,,,t}] and €, — 07 we have:

n»’n

(16) .t = 2%;3&’[5“):\/ 7 (i +oten) )

awp [Yi[3

Moreover, using the fundamental theorem of calculus:

_at2 fln 2m; _af2
In(th) — (L) =en 2 —7 O > Chen 2 (tF —1t,)).
@) =) =en® [T s o) 2 Gl — )

n
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Notice that C),, > 0 is uniformly bounded in n and that the angular variation of 6,, is bounded by
27k, k € N. The number k depends solely on the prescribed homotopy class [r] and can be estimated
a priori. O

We now define the following family of continuous functions on R with values in (T.M, g) ~ (R?, g¢):

_at2 +44—
e, exp, t(p) ifs<en ? (a— %)
at?2
un(s) =< et (exp;1 Nn(en® s+ t"+t )) elsewhere
_azx2 T
e, texpst(q) ifs>en 2 (b— @)

Proposition 4.5 (Uniform convergence on compacts of u,, ). There exists a subsequence of the sequence
Uy, which converges to a limit v in the €' norm, on any compact subset of R.

There exists sg > 0 such that the limit u € €*(R\ {£s0}). Moreover, on R\ [—s0, 0], u is a solution
of an a— Kepler problem centred at 0, which has constant velocity on the boundary of a ball of radius
1, for any s € [—so, So].

F