
26 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On some refraction billiards

Published version:

DOI:10.3934/dcds.2022131

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1897435 since 2023-03-29T12:07:27Z



ON SOME REFRACTION BILLIARDS

IRENE DE BLASI AND SUSANNA TERRACINI

Abstract. The aim of this work is to continue the analysis, started in [10], of the dynamics
of a point-mass particle P moving in a galaxy with an harmonic biaxial core, in whose center
sits a Keplerian attractive center (e.g. a Black Hole). Accordingly, the plane R2 is divided into
two complementary domains, depending on whether the gravitational effects of the galaxy’s
mass distribution or of the Black Hole prevail. Thus, solutions alternate arcs of Keplerian
hyperbolæ with harmonic ellipses; at the interface, the trajectory is refracted according to
Snell’s law. The model was introduced in [11], in view of applications to astrodynamics.

In this paper we address the general issue of periodic and quasi-periodic orbits and associated
caustics when the domain is a perturbation of the circle, taking advantage of KAM and Aubry-
Mather theories.

1. Introduction and statement of the results

In this paper we deal with the dynamics of a point-mass particle P moving in a galaxy with
an harmonic biaxial core, in whose center sits a Keplerian attractive center (e.g. a Black Hole).
In our setting, the plane R2 is divided into two complementary domains, depending on whether
the gravitational effects of the galaxy’s mass distribution or of the Black Hole prevail. We set
the domain of influence of the the Black Hole’s to be a generic regular domain 0 ∈ D ⊂ R2, so
that the particle moves on the plane governed by the potential

V (z) =

{
VI(z) = E + h+ µ

|z| if z ∈ D
VE(z) = E − ω2

2
|z|2 if z /∈ D,

(1.1)

whith E + h, µ, ω > 0, while the behaviour of the solution, when crossing the boundary ∂D,
is ruled by a generalization of Snell’s law (see §2.2) of refraction. Thus, as sketched in Figure
1, trajectories alternate arcs of Keplerian hyperbolæ with harmonic ellipses, with a refraction
at the boundary ∂D. It is worthwhile noticing that, when also the domain D is radially
symmetrical the system is integrable, resulting in a shift of the polar angle only depending on
the shooting one. This paper deals with anisotropic perturbations of the circular domain, and
possibly of the potentials.

The model was introduced in [11], for specific applications to astrodynamical problems; be-
sides the motivations coming from Celestial Mechanics, as mentioned in [10], our class of systems
are of interests in view of possible applications in engineering artificial optical devices [24]. An-
other model which presents strong analogies with the one described in this work is studied in
[8], where the complex dynamics deriving by patching orbits coming from pure Kepler’s and
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Figure 1. Examples of trajectories for E = 2.5, ω = 1, h = 2 and µ = 2.
Left: general trajectory for an elliptic domain with eccentricity e = 0.6. Right:
quasi-periodic trajectory for a circular domain.

Stark’s problem (the so-called Sun-shadow dynamics) is considered.
In [10], the authors addressed the problem of the stability of homotetic and brake solutions,
depending on the values of the physical parameters E , h, µ, ω, the curvature of the boundary
and its distance from the Keplerian center. The analysis carried there shows an interesting and
varied landscape of bifurcations of homothetic and brake periodic orbits.
The aim of this work is to continue the analysis started in [10], addressing the general issue of
periodic and quasi-periodic orbits and associated caustics when the domain is a perturbation
of the circle, taking advantage of both KAM and Aubry-Mather theories.
In order to tackle the problem, we shall consider the first1 return map at the interface ∂D,
after two consecutive (outer and inner) excursions, working at the zero energy level for the
potential V as above. Shooting from boundary points, after performing a Levi-Civita regu-
larization (cfr. [27]) of Kepler potential, our system looks like a billiard, with reflection at
the boundary replaced by an outer excursion in between two refractions. We shall exploit the
Lagrangian structure of the problem, building (locally) a generating function as the sum of an
inner and outer contribution. Here comes a first problem, as these can not be globally defined.
In addition, major difficulties arise from the return map not being globally defined, from the
singularity of the attraction center and from a lack of twist condition (it can be in shown that,
in certain regimes of the parameters, even the completely intergrable circular case admits at
least a twist change, see Remark 4.7). Here are our main results.

Theorem 1.1 (Circular domains). When D is the unit circle, there are action-angle coordinates
(ξ, I) ∈ R/2πZ × (−Ic, Ic), where ξ is the polar angle, such that we can express the first return
map as a shift

F : R/2πZ × (−Ic, Ic)→ R/2πZ × (−Ic, Ic),
(ξ0, I0) 7→ (ξ1, I1) = (ξ0 + θ̄(I0), I0),

(1.2)

1The phrase first return may be confusing, since it is in fact a second crossing of the boundary; however,
such apparent ambiguity will be clarified in §3.
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where θ̄(I) = f(I) + g(I) and

f(I) =


arccot

(
E−2I2

I
√

4E−2(2I2+ω2)

)
if I ∈ (0, Ic)

0 if I = 0

arccot

(
E−2I2

I
√

4E−2(2I2+ω2)

)
− π if I ∈ (−Ic, 0)

and

g(I) =


2 arccos

(
2I2−µ√

4(E+h)I2+µ2

)
− 2π if I ∈ (0, Ic)

0 if I = 0

−2 arccos

(
2I2−µ√

4(E+h)I2+µ2

)
+ 2π if I ∈ (−Ic, 0)

are real analytic functions in (−Ic, Ic). For every I ∈ (−Ic, Ic), except for a finite number (at
most ten) of points, there holds θ̄′(I) 6= 0.

The critical value Ic corresponds to the action associated with the total reflection of the
trajectory at the boundary, i.e. when the outgoing refracted trajectory becomes tangent to the
boundary (see Remark 2.3) and is given in (3.17). In the circular case, the rotation number
of the orbit is ρI = θ̄(I) = f(I) + g(I). Depending whether this value is rational with 2π or
not, the corresponding orbits are periodic or quasi-periodic. In both cases they determine an
invariant curve and a pair of caustics, that is, smooth closed curves such that every trajectory
which starts tangent to remains tangent after every passage in and out the domain D. Let us
point out that caustics come in pair, respectively in D and in its complement. The proof of
this Theorem is performed in §4.

Next we consider a perturbation Dε of the domain whose boundary ∂Dε = supp(γε) is given
by a radial deformation of the circle of the form

γε : R/2πZ → R2 γε(ξ) = (1 + εf(ξ; ε)) eiξ, (1.3)

where f(ξ; ε) is a suitably smooth function of R/2πZ × [−C,C] and ξ is the polar angle. Then,
the first return map on the perturbed boundary can be extended as F(ξ,I; ε) (see definition
5.18), where (ξ, I) are canonical variables defined in suitable neighbourhoods of such invariant
curves. The following theorem resumes the results stated in Theorems 5.12, here considering a
single invariant curve, and 5.21.

Theorem 1.2 (Persistence of invariant curves (KAM)). Let f ∈ Ck, with k > 5. Let us suppose
that θ̄′(I0) 6= 0, and assume ρ0 = θ̄(I0) has a Diophantine ratio with 2π (see Definition 5.8).
Then there exists ε̄ρ0 such that for every ε ∈ R, |ε| < ε̄ρ0 the map F(ξ,I; ε) admits a closed
invariant curve of class C1 with rotation numbers ρ0. Each of these invariant curves generates
a pair of regular caustics.

Two invariant curves with Diophantine rotation numbers border an invariant region for the
map F(ξ,I; ε), subject to the application of Poincaré-Birkhoff theorem and Aubry-Mather the-
ory (see [1, 28, 29]). As the map is area-preserving, we only need to verify the twist condition.
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This is a nontrivial issue, as the function θ̄(I) may indeed change its monotonicity. This fact
poses some technical difficulties but also gives rise to a richer phenomenology. We have the
following result.

Theorem 1.3 (Existence of Aubry-Mather invariant sets). Let ρ̄− < ρ̄+ be Diophantine rotation
numbers, such that there are no critical values of the function θ̄ in the range [ρ̄−, ρ̄+]. Then there
exists ε̄ > 0 such that for every ε ∈ R with |ε| < ε̄ and for every ρ ∈ [ρ̄−, ρ̄+] the map F(ξ,I;ε)
admits at least one orbit with rotation number ρ. When ρ = 2πm

n
then for ε sufficiently small

there are at least 2 (m,n)-orbits, namely, such that, denoted with {(ξk, Ik)}k∈N = {F(ξ0, I0)}k∈N
the orbit generated by the initial point (ξ0, I0), one has

∀k ∈ N (ξk+n, Ik+n) = (ξk + 2πm, Ik) ≡2π (ξk, Ik).

This statement can be easily deduced from Theorem 5.20; as we shall see there, however, the
actual number of solutions can be larger, depending on the number of monotonicity changes of
the twist θ̄(I).

To conclude this preamble, let us remark that, although the computations are not explicitely
performed here, with means of the same analytical tools and techniques other variations of the
considered model, more similar to the one described in [11], can be investigated.
As an example, let us consider ε ∈ R and a non-isotropic perturbation of the outer potential
given by

ṼE(z) = E − ω2

2
x2 − (ω + ε)2

2
y2,

where z = (x, y) ∈ R2. Taking, if necessary, h ∈ R instead of h > 0, one has that the dynamics
induced by the potential

Ṽ (z) =

{
VI(z) if z ∈ D
ṼE(z) if z /∈ D

(1.4)

with the usual Snell’s refraction rule on the boundary is conservative if ∂D is the set of points
in R2 such that the potentials differ by the same constant A ∈ R, that is,

∂D = {z ∈ R2 | VI(z) = ṼE(z) + A};
note that, if A = 0, the potential is continous and the refraction reduces to a conservation of
both the position and velocity on ∂D, leading to a C1 junction between inner and outer arcs.
For ε ∈ R small, this system be considered again as a small perturbation of the circular case.

1.1. Analogies and differences with Birkhoff billiards. In some sense, the model investi-
gated in this work falls into the category of billiards and it is interesting to look for analogies.
There are, however, fundamental differences: first of all the rays are curved by the gravitational
force inside D; moreover, reflection at the boundary is replaced by an excursion in the outer
region in between two refractions. Similarly to billiards, our model can be described by an area
preserving map of the cylinder, but, as we shall show, the twist condition may be violated even
in the simplest case of a circular domain. It should be noted that refraction imposes a new
constraint, because the interface can only be crossed outwards when the inner arc is transverse
enough to the boundary (cfr Remark 3.2).
There is a wide literature on Birkhoff billiards, with recent relevant advances (see the book
[33] and papers [22, 23, 20, 4]), including some cases of composite billiard with reflections and
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Figure 2. Orbits of the first return map F for E = 10, ω = 1, h = 3, µ = 44
(left) and µ = 55 (right). The shift in the stability of the homotetic equilibrium
is evident, as well as the presence of invariant curves far from the ξ-axis in both
cases.

refractions [3], also in the case of a periodic inhomogenous lattice [17]. Special mention should
be paid to the work on magnetic billiards, where the trajectories of a charged particle in this
setting are straight lines concatenated with circular arcs of a given Larmor radius [15, 16]. Let
us add that, compared with the cases quoted above, additional difficulties arise because the
corresponding return map is not globally well defined and from the singularity of the Kepler
potential.
As a concrete example on how the considered model presents intrinsic analogies with classical
billiards, as well as important differences, let us consider the case of an elliptic domain. In
classical elliptic billiards of every eccentricity (see for example §4 in [33]), the straigh orbit
segment corresponding to the major axis determines always a saddle point for the associated
billiard map, while the one coinciding with the minor axis is a center. A similar behaviour
can be observed in our refractive model when the domain is an ellipse with small eccetricity,
but with a fundamental difference: while this model admits the same equilibrium orbits of the
classical billiard, their stabilities depend on the value of the physical parameter E , h, ω, µ. This
bifurcation phenomenon is derived in [10], and can be stated as follows:

Proposition 1.4 ([10], Corollary 1.3). Let us consider an elliptic domain, with horizontal
unitary major semiaxis and eccentricity e, and let z̄0 and z̄π/2 denote the horizontal and vertical

homotetic periodic solutions of collision-reflection type. If
√
E+h+µ
µ

<
√

2E−ω2

2
√

2E , then, for small

eccentricities, z̄0 is stable and z̄π/2 is unstable. Symmetrically, if
√
E+h+µ
µ

>
√

2E−ω2

2
√

2E , then, for

small eccentricities, z̄0 is unstable and z̄π/2 is stable.

Figure 2 shows the orbits of F in the two cases of Proposition 1.4; one can notice that, far
from the homotetic solutions, the system shows evidences of integrability.

As a final remark, let us highlight one more connection between classical Birkhoff billiards
and our refraction model, related to the methods used to study the respective dynamics: in this
work, the fundamental argument to prove Theorem 1.3 is the extension to small perturbations of
the existence results obtained for a circular domain, which is completely integrable. Analogous
reasonings are used for example in [2] and [23] to prove a local version of Birkhoff conjecture
starting from small deformations respectively of a circular and an elliptic domain, both sharing
the complete integrability property in the classic case.
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2. Preliminaries and notation

Let us consider a general fixed-ends differential problem of the type
z′′(s) = ∇V (z(s)) s ∈ [0, T ]
1
2
|z′(s)| − V (z(s)) = 0 s ∈ [0, T ]

z(0) = z0, z(T ) = z1

(2.1)

where z0, z1 ∈ R2 or some subset and V (z) is regular and greater than zero almost everywhere.
The solutions of problems of type (2.1) can be studied by taking advantage of the variational
structure, which also incorporates the junction rule between the inner and outer geodesics.
This Section aims to provide the basic definitions and properties of the main analytical tools
needed to study the dynamics described in §1, along with a derivation of the generalized Snell’s
law which connects the geodesic arcs. The latter, as well as a more detailed description of the
results presented, can be found in Appendix A of [10].

2.1. Maupertuis functional and Jacobi length.

Definition 2.1. Given z0, z1 ∈ R2, we denote with M([0, 1], z(t)) the Maupertuis functional

M(z) = M([0, 1], z(t)) =

∫ 1

0

|ż(t)|2V (z(t))dt

which is defined on the set

Hz0,z1 = {z(t) ∈ H([0, 1],R2) | z(0) = z0, z(1) = z1}.

Furthermore, the Jacobi length is given by

L(z) = L([0, 1], z(t)) =

∫ 1

0

|ż(t)|
√
V (z(t))dt,

and is defined on the closure of H0 = {z(t) ∈ Hz0,z1 | |ż(t)| > 0, V ((z(t))) > 0 ∀t ∈ [0, 1]} in
the weak topology of H1([0, 1],R2).

It can be shown (see for example [10, 31]) that the critical points at positive levels of M(z)
are reparametrizations of classical solutions of (2.1); moreover, the Hölder inequality, along
with the energy conservations law, allow to prove that, if z(t) is a critical point of M , then
L2(z) = 2M(z): the search for solutions of (2.1) is hence equivalent to the study of the critical
points of the Jacobi length, taking into account the different time scales of the problems.

Definition 2.2. We define:

• the geodesic time t ∈ [0, 1] as the time parameter to be used in M(z(t)) and L(z(t));
• the cinetic time s ∈ [0, T ] as the physical time parameter through which z(s) = z(t(s))

solves (2.1).

We denote with ˙ = d/dt and ′ = d/ds respectively the derivatives with respect to the geodesic
and the cinetic time.
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The relation between the geodesic and the cinetic time is proved in [10] and is given by

d

dt
=

L√
2V (z(t(s)))

d

ds
, (2.2)

where L = |ż(t)|
√
V (z(t)) is constant along the solutions of (2.1).

2.2. Generalized Snell’s law. Besides the analysis of the inner and outer dynamics taken
separately, the study of the dynamical system described in §1 is heavily influenced by the choice
of a suitable junction law between two consecutive arcs through the interface ∂D. In our case,
a local minimization argument leads to the determination of a connection rule which turns out
to be a generalization for curved interfaces and non-Euclidean metrics of the classical Snell’s
refraction law.
In general, let us consider an inner potential VI and an outer one VE, along with their associated
distances dE and dI , obtained by taking the metrics

(
gE\I

)
ij

(z) = VE\I(z)δij. Fixed z0
I ∈ D

and z0
E /∈ D in a suitable neighborood of ∂D, one can search for the point z̄ on the interface

such that the sum of the distances dE(z0
E, z) +dI(z, z

0
I ) is minimal. Denoted with T (z) the unit

tangent vector to ∂D in z, this extremality condition turns out to be equivalent to require√
VE(z̄)

żE(1)

|żE(1)|
· T (z̄) =

√
VI(z̄)

żI(0)

|żI(0)|
· T (z̄), (2.3)

where zE(t) and zI(t) are respectively the geodesic arcs connecting z̄ with z0
E and z0

I parametrised
by the geodesic time t ∈ [0, 1]. Equivalently, taking into account the relation between the geo-
desic and the cinetic time stated in(2.2), Equation (2.3) can be expressed as

1√
2
z′E(TE) · T (z) =

1√
2
z′I(0) · T (z),

where TE = s(1) is the cinetic ime value associated to t = 1. Geometrically, equation (2.3) rep-
resents the conservation of the tangent component of the velocity vector through the interface,
and, if αE and αI are respectively the angles of żE(1) and żI(0) with the normal vector to ∂D
in z̄, it can be rephrased as √

VE(z̄) sinαE =
√
VI(z̄) sinαI ; (2.4)

clearly, the transition from the inside of the domain D can be treated in analogous way obtaining
again (2.4).

Remark 2.3. Since for every z ∈ R2\{0} VE(z) < VI(z), one has that the equation

αI = arcsin

(√
VE(z)

VI(z)
sinαE

)
is always solvable, while

αE = arcsin

(√
VI(z)

VE(z)
sinαI

)
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admits a solution if and only if |
√
VI(z)/VE(z) sinαI | ≤ 1, that is, iff

|αI | ≤ αI,crit = arcsin

(√
VE(z)

VI(z)

)
. (2.5)

Whenever condition (2.5) is satisfied, the passage from the inner to the outer arc is possible.
Note that condition (2.5) depend globally on the physical parameters E , h, µ, ω and, locally, by
z ∈ ∂D.

3. First return map

The dynamics described in Section 1 will be studied by considering the corresponding dis-
crete dynamical system which keeps track of the crossings of the total orbit, obtained by the
juxtaposition of outer and inner arcs, and the domain’s boundary ∂D. Such a map is named
first return map and is the analogous of the billiard map in the classical theory of Birkhoff
billiards, see [32]: this Section is devoted to its construction, leaving to §4 and 5 the analysis
of its good definition for particular domains.

Notation 3.1. From now on we will denote the differential problems connected to the outer
and inner dynamics with the equivalent notations

z′′(s) = ∇VE\I(z(s)) s ∈ [0, TE\I ]
1
2
|z′(s)|2 − VE\I(z(s)) = 0 s ∈ [0, TE\I ]

boundary conditions

⇔

{
(HSE\I)[z(s)] s ∈ [0, TE\I ]

boundary conditions
(3.1)

where (HSE\I)[z] denote the differential problem z′′ = ∇VE\I(z(s)), along with the correspond-
ing energy conservation law. According to the scope of problem (3.1), the boundary conditions
will prescribe either the initial position and velocity or the endpoints of z(s).

Let us suppose that the boundary of the regular domain D defined in Section 1 can be
parametrized by a regular closed curve γ : R/2πZ → R2. Given some initial conditions

p
(I)
0 , v

(I)
0 , p

(E)
0 and v

(E)
0 , let us consider the solutions zI(s) and zE(s) of the two systems{

(HSI)[z(s)] s ∈ [0, TI ]

zI(0) = p
(I)
0 , z′I(0) = v

(I)
0

{
(HSE)[z(s)] s ∈ [0, TE]

zE(0) = p
(E)
0 , z′E(0) = v

(E)
0

(3.2)

for some TI , TE > 0.
Fixed p0 ∈ ∂D, v0 ∈ R2 such that it points towards the exterior of D, we want to describe
(supposing that it exists) the orbit obtained by the juxtaposition of an exterior orbit zE and
the subsequent inner orbit zI , namely, the function zEI(s) : [0, TE + TI ]→ R2 defined by

zEI(s) =


zE(s) s ∈ [0, TE)

zI(s) s ∈ [TE, TE + TI)

z
(1)
E (s) s = TE + TI ,

(3.3)
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where, defined

p̃1 = zE(TE), p̃2 = zI(TE + TI),

u1 =
z′E(TE)

|z′E(TE)|
, u′1 =

z′I(TE)

|z′I(TE)|
, u2 =

z′I(TE + TI)

|z′I(TE + TI)|
, u′2 =

z′
(1)
E (TE + TI)

|z′(1)
E (TE + TI)|

,

the arcs zE, zI , z
(1)
E are solutions of either the outer or inner problem and the the initial conditions

of each branch satisfy the Snell’s law. More precisely,
(HSE)[zE(s)] s ∈ [0, TE]

zE(s) /∈ D, p̃1 ∈ ∂D s ∈ (0, TE)

zE(0) = p0, z
′
E(0) = v0

(3.4)


(HSI)[zI(s)] s ∈ [TE, TE + TI ]

zI(s) ∈ D, p̃2 ∈ ∂D s ∈ (TE, TE + TI)

zI(TE) = p̃1,
√
VE(p̃1)u1 · e1 =

√
VI(p̃1)u′1 · e1

(3.5)


(HSE)[z

(1)
E (s)] s ∈ [TE + TI , TE + TI + T̃ ]

z
(1)
E (s) /∈ D s ∈ (TE + TI , TE + TI + T̃ ]

z
(1)
E (TE + TI) = p̃2,

√
VE(p̃2)u′2 · e2 =

√
VI(p̃2)u2 · e2,

(3.6)

for some TE, TI , T̃ > 0 and where e1 and e2 are the unit vectors tangent to ∂D respectively in
p̃1 and p̃2.
Once defined the concatenation of arcs zEI(s), the first return map is given by the iteration
map which expresses (p1, v1) = (zEI(TE+TI), z

′
EI(TE+TI)) as a function of (p0, v0) in a suitable

set of coordinates.
Recalling that we set ∂D = supp(γ), with γ regular closed curve in R/2πZ, let us suppose that
p0 = zEI(0) = γ(ξ0) ∈ ∂D is the starting point of the first outer branch of zEI(s): then, denoting
with t(ξ0) and n(ξ0) respectively the tangent and the outward-pointing normal unit vectors to

γ in p0, the initial velocity v0 can be expressed as v0 =
√

2VE(γ(ξ0))(cosα0 n(ξ0)+sinα0 t(ξ0)),
where α0 ∈ [−π/2, π/2] is the angle between v0 and n(ξ0), positive if v · t(ξ0) ≥ 0 and negative
otherwise. Then, once ξ0 is fixed, the vector v0 is completely determined by α0. We can then
consider the map

F : R/2πZ × [−π/2, π/2]→ R/2πZ × [−π/2, π/2], (ξ0, α0) 7→ (ξ1, α1) = (ξ1(ξ0, α0), α1(ξ0, α0)),
(3.7)

where the pair (ξ1, α1) completely determines (zEI(TE + TI), z
′
EI(TE + TI)).

Remark 3.2. In general, one can not guarantee that F is well defined, as the existence of ξ1

an α1 as described depends strongly on the interaction between the outer and inner arcs with
the domain’s boundary. The conditions for F to be well defined are essentially two:

(i) the existence and uniqueness of the outer and inner arcs for fixed endpoints on ∂D;
(ii) the good definition of the refraction from the inside to the outside of D. As a matter

of fact, from Remark 2.3 one has that, while the refraction exterior-interior is always
possible, an inner arc can be refracted in an outer one if and only if, denoted with β1
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the angle between z′I(TE +TI) and the inward-pointing normal unit vector of γ in γ(ξ1),

|β1| < βcrit = arcsin
(√

VE(γ(ξ1))/VI(γ(ξ1))
)

.

In other words, condition (ii) is verified if the inner Keplerian arcs zI are transverse enough to
the domain’s boundary ∂D. This obstruction to the good definition of F may be cicumvented
by considering a suitable prolonging according to which, whenever |β1| > βcrit, the test particle
returns back in the interior of the domain with an angle β = β1. This extension, corresponding
to the so-called total reflection, is somehow suggested by physical intuition and by analogy with
the classical Birkhoff billiards, as well as the traditional Snell’s law for light rays. However, as
this approach leads to technical difficulties due to the passage to the tangent case for |β1| = βcrit
and the consequent loss in regularity, in this work such extension is not considered, and, by
definition, the map F will be well defined only when |β1| < βcrit for every inner arc.
As we will see in Sections 4.1 and 5.1, this is true if D is a disk or a perturbation of the latter,
provided α0 6= ±π/2.

3.1. Variational approach. Choosing the right set of canonical variables, the first return
map can be expressed in a variational form, which allows to take advantage of a wide range of
powerful theoretical instruments, coming from KAM and Aubry-Mather theories, which allow
to tackle the case of small perturbations of a circular domain D0 (the latter is discussed in §4,
while the perturbational approach is the subject of §5). Following e.g. [18], we can consider
the generating function

S : R/2πZ × R/2πZ → R, S(ξ0, ξ1) = SE(ξ0, ξ̃) + SI(ξ̃, ξ1) = dE(γ(ξ0), γ(ξ̃)) + dI(γ(ξ̃), γ(ξ1)),
(3.8)

where dE and dI are defined as in §2 and, according to Snell’s law, the intermediate point p̃ =
γ(ξ̃) is such that ξ̃ is a critical point for the function f(ξ0, ξ, ξ1) = dE(γ(ξ0), γ(ξ))+dI(γ(ξ), γ(ξ1))

with ξ0 and ξ1 fixed. In other words, ξ̃ is a solution of

∂bSE(ξ0, ξ̃) + ∂aSI(ξ̃, ξ1) = 0, (3.9)

where ∂a and ∂b denote respectively the partial derivatives with respect to the first and second
variable. In general, one can not guarantee the global good definition of the generating function
S(ξ0, ξ1), which depends strongly on the specific geometry of the domain and on the values of
the physical parameters E , h, µ, ω. On the other hand, the local defiinition of S(ξ0, ξ1) needs
a nondegeneration condition: under the assumption of existence and uniqueness of the inner
and outer arcs, which ensures the differentiability of dE(p0, p1) and dI(p0, p1) separately, let us

consider (ξ0, ξ̃, ξ1) ∈
(
R/2πZ

)3
such that (3.9) is satisfied. If

∂ξ̃(∂bSE(ξ0, ξ̃) + ∂aSI(ξ̃, ξ1)) = ∂2
bSE(ξ0, ξ̃) + ∂2

aSI(ξ̃, ξ1) 6= 0, (3.10)

then locally around ξ0, ξ1 one can express ξ̃ = ξ̃(ξ0, ξ1) as a function of the endpoints. Moreover,
one has

∂ξ0 ξ̃(ξ0, ξ1) = − ∂abSE(ξ0, ξ̃(ξ0, ξ1))

∂2
bSE(ξ0, ξ̃(ξ0, ξ1)) + ∂2

aSI(ξ̃(ξ0, ξ1), ξ1)
,

∂ξ1 ξ̃(ξ0, ξ1) = − ∂abSI(ξ̃(ξ0, ξ1), ξ1)

∂2
bSE(ξ0, ξ̃(ξ0, ξ1)) + ∂2

aSI(ξ̃(ξ0, ξ1), ξ1)
.

(3.11)
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If (3.10) holds, the generating function is well defined locally around ξ0 and ξ1, an one can define
the canonical actions associated to the system and to the above coordinates by the relations

I0 = −∂ξ0S(ξ0, ξ1), I1 = ∂ξ1S(ξ0, ξ1); (3.12)

note that, when S(ξ0, ξ1) is well defined, the same is true also for the actions as functions of
the angles ξ0 and ξ1.
In order to define a first return map in the new canonical action-angle variables, one needs to
express ξ1 and I1 as functions of ξ0 and I0: this is possible if a second nondegeneracy condition
holds. Let us consider ξ0, ξ1, ξ̃(ξ0, ξ1) such that (3.10) holds, and define I0 as in (3.12): if

∂ξ1(I0 + ∂ξ0S(ξ0, ξ1)) 6= 0, (3.13)

one can find ξ1 = ξ1(ξ0, I0) as a function of the initial action-angle variables. In particular,
making use of (3.9) and (3.11), condition (3.13) translates in

∂abSE(ξ0, ξ̃(ξ0, ξ1))∂abSI(ξ̃(ξ0, ξ1), ξ1)

∂2
bSE(ξ0, ξ̃(ξ0, ξ1)) + ∂2

aSI(ξ̃(ξ0, ξ1), ξ1)
6= 0, (3.14)

which is well defined in view of (3.10). If (3.14) holds, one can then find two neighborhoods
[ξ0 − λξ0 , ξ0 + λξ0 ] and [I0 − λI0 , I0 + λI0 ] such that the new local first return map

F : [ξ0 − λξ0 , ξ0+λξ0 ]× [I0 − λI0 , I0 + λI0 ]→ R/2πZ → R,
(ξ0, I0) 7→ (ξ1(ξ0, I0), I1(ξ0, I0)),

(3.15)

where I1(ξ0, I0) = ∂ξ1S(ξ0, ξ1(ξ0, I0)), is well defined.
The switch from a Lagrangian approach adopted by using the original first return map F and
an Hamiltonian one involving the generating function and the canonical action-angle variables
is crucial as it will allow, in Section 5, to take advantage of the results coming from KAM and
Aubry-Mather theories to derive the existence of orbits with prescribed rotation numbers in
the case of small perturbations of a circula domain (see §5).
In the circular case, which will be analyzed in details in §4, both the potentials and the domain
are centrally symmetric: a consequence of the subsequent invariance under rotations is that
the nondegeneracy conditions (3.10) and (3.14) will result in fact equivalent, and S, denoted in
this case with S0, will be well defined almost everywhere.
As a final remark, one can observe that (2.4), along with (3.12) and (3.9), provides a general
relation between the actions I0, I1 and the angles α0, α1 defined above: in particular,

I0(ξ0, ξ1) = −∂ξ0(SE(ξ0, ξ̃) + SI(ξ̃, ξ1))) = −∂aSE(ξ0, ξ̃) =

=
1√
2
z′E(0) · γ̇(ξ0)

|γ̇(ξ0)|
=
√
VE(γ(ξ0)) sinα0

I1(ξ0, ξ1) = ∂ξ1(SE(ξ0, ξ̃) + SI(ξ̃, ξ1))) = ∂bSI(ξ̃, ξ1) =

=
1√
2
z′I(TE + TI) ·

γ̇(ξ1)

|γ̇(ξ1)|
=
√
VI(γ(ξ0)) sinα′1 =

√
VE(γ(ξ1)) sinα1.

(3.16)

Eqs.(3.16) provides a natural boundary for the values that the actions can assume, which, in a
inhomogeneous case, depend on ξ0 and ξ1: in particular

|I0| ≤
√
VE(γ(ξ0)) and |I1| ≤

√
VE(γ(ξ1)),
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where the equalities correspond to the tangent case α0\1 = ±π/2.
In the case of a circular domain, the bound on the actions is uniform and given by

I0, I1 ∈

[
−
√
E − ω2

2
,

√
E − ω2

2

]
= [−Ic, Ic] . (3.17)

For reasons which will be clear in §4, related to the good definition of the map F , we will not
consider the tangent case, restricting ourselves to the open interval (−Ic, Ic).

4. The unperurbed case: circular domain

Let us suppose that D is a disk of radius 1, and denote it with D0: in this particular case,
both the potentials and the domain are centrally symmetric, and, as a consequence, the system
is integrable. In particular, it is possible to find the explicit expression of the first return map
in action-angle variables, which in this case is denoted with F0, as it will be done in Section 4.3.

4.1. Good definition of dE and dI. As already pointed out in Remark 3.2, the preliminary
condition for the generating function S(ξ0, ξ1) to be well defined is that the inner and outer
distances dE(p0, p1) and dI(p0, p1) are differentiable with respect to their variables. This is true
when the inner and outer arcs connecting two points on ∂D are (locally) unique, as Theorems
4.1 and 4.2 yield for the circular domain. The proofs of these theorems are given, along with
some preliminary results leading to them, in Appendix A.

Theorem 4.1. If E > ω2, for every p0, p1 ∈ ∂D0 such that |p0 − p1| < 2, there exists T > 0
and a unique z(s; p0, p1) : [0, T ]→ R2 solution of the fixed ends problem

(HSE)[z(s)] s ∈ [0, T ]

|z(s)| > 1 s ∈ (0, T )

z(0) = p0, z(T ) = p1.

(4.1)

Moreover, z(s; p0, p1) is of class C1 with respect to variations of the endpoints.

The analogous of Theorem 4.1 for the inner dynamics states the existence and uniqueness of
the Keplerian arc connecting two points with an additional topological constraint. To define it,
it is necessary to recall and adapt the classical concept of winding number to open arcs which
connects points on the circle; to do that, we use a definition which recalls the one given in [31].
In general, let p0, p1 ∈ ∂D0 two non-antipodal points on the circle, that is, |p0 − p1| < 2, and
a regular, simple curve α : [a, b] → R2 such that α(a) = p0 and α(b) = p1 and α(s) 6= 0 for
every s ∈ [a, b]. Let us then consider a closed curve Γα which is equal to α(s) for s ∈ [a, b] and
then follows the shortest arc of ∂D0 which connects p1 to p0. We can then define the winding
number associated to the curve α with respect to 0 ∈ R2 as

I(α([a, b]), 0) =
1

2πi

∫
Γα

dz

z
. (4.2)
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Theorem 4.2. For every p0, p1 ∈ ∂D0, |p0 − p1| < 2, there is a unique T > 0 and a unique
solution z(s; p0, p1) of 

(HSI)[z(s)] s ∈ [0, T ]

|z(s)| < 1 s ∈ (0, T )

z(0) = p0, z(T ) = p1

(4.3)

such that z(s; p0, p1) is of class C1 with respect to p0 and p1 and:

• if p0 = p1, z(s; p0, p0) is an ejection-collision solution;
• if p0 6= p1, z(s; p0, p1) is a classical solution of (4.3) such that |Ind(z([0, T ]), 0)| = 1. If
p1 → p0, z(s; p0, p1) tends to the ejection-collision solution z(s; p0, p0).

Moreover, there is 0 < C < 1 such that, for every p0, p1 as above,

− p0 ·
z′1(0; p0, p1)

|z′1(0; p0, p1)|
> C and p1 ·

z′1(T1; p0, p1)

|z′1(T1; p0, p1)|
> C. (4.4)

The quantity C depends on the physical parameters E + h, µ and on |p0 − p1|. In particular, it
tends to 1 when E → ∞ or |p0 − p1| → 0

The estimates given by (4.4) are crucial to ensure that the inner arcs are transversal to ∂D0

as much as needed: this is necessary for the first return map to be well defined, since, according
to Remark 3.2, it is clear that these arcs can not be tangent to the interface.

4.2. Study of the map F0. Once the good definition and differentiability of the distances
dI(p0, p1) and dE(p0, p1) is ensured, one can eventually consider the generating function intro-
duced in Section 3.1 and given by

S0(ξ0, ξ1) = SE,0(ξ0, ξ̃) + SI,0(ξ̃, ξ1) = dE(γ0(ξ0), γ0(ξ̃)) + dI(γ0(ξ̃), γ0(ξ1)),

where γ0 : R/2πZ → R2 denotes the circle of radius 1, and investigate the associated nonde-
generacy conditions (3.10) and (3.14). Although the complete analysis on its good definition
will be done after the derivation of the explicit formulation of the associated first return map
F0 in Section 4.3, the central symmetry of the circular case allows to give some preliminary
informations. As both the outer and inner systems are invariant under rotations, the associated
generating functions can be expressed as univariate functions depending on the angle spanned
by the arc; more precisely,

S0(ξ0, ξ1) = S̃0(ξ1 − ξ0) = S̃E,0(ξ̃ − ξ0) + S̃I,0(ξ1 − ξ̃).
Going through the same analysis described in general in Section 3.1, the intermediate coordinate
ξ̃ is implicitely determined as a function of ξ0 and ξ1 by the relation

∂ξ̃(S̃E,0(ξ̃ − ξ0) + S̃I,0(ξ − ξ̃)) = 0

if (3.10) is verified. In the circular case, the latter translates in

S̃ ′′E,0(ξ̃ − ξ0) + S̃ ′′I,0(ξ1 − ξ̃) 6= 0. (4.5)

If (4.5) holds, one has

∂ξ0 ξ̃ =
S̃ ′′E,0(ξ̃ − ξ0)

S̃ ′′E,0(ξ̃ − ξ0) + S̃ ′′I,0(ξ1 − ξ̃)
, ∂ξ1 ξ̃ =

S̃ ′′I,0(ξ1 − ξ̃)
S̃ ′′E,0(ξ̃ − ξ0) + S̃ ′′I,0(ξ1 − ξ̃)

,
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and the canonical actions are defined by

I0 = −∂ξ0S̃0(ξ1 − ξ0) = S̃ ′E,0(ξ̃(ξ0, ξ1)− ξ0),

I1 = ∂ξ1S̃0(ξ1 − ξ0) = S̃ ′I,0(ξ1 − ξ̃(ξ0, ξ1)).
(4.6)

The first equation in (4.6) defines implicitely ξ1 = ξ1(ξ0, I0), and, as a consequence, the map
F0, if (3.14) holds, that is, if

∂ξ1(I0 − S̃ ′E,0(ξ̃(ξ0, ξ1)− ξ0)) = −
S̃ ′′E,0(ξ̃(ξ0, ξ1)− ξ0)S̃ ′′I,0(ξ1 − ξ̃(ξ0, ξ1))

S̃ ′′E,0(ξ̃(ξ0, ξ1)− ξ0) + S̃ ′′I,0(ξ1 − ξ̃(ξ0, ξ1))
6= 0. (4.7)

As a final remark, note that the validity of conditions (4.5) and (4.7) are strongly related to
the twist condition (see [21, 18, 1]) associated to the map F0, defined as ∂I0ξ1 6= 0. As a matter
of fact, one has

∂I0ξ1 =
S̃ ′′E,0(ξ̃(ξ1 − ξ0)− ξ0) + S̃ ′′I,0(ξ1 − ξ̃(ξ1 − ξ0))

S̃ ′′E,0(ξ̃(ξ0, ξ1)− ξ0)S̃ ′′I,0(ξ1 − ξ̃(ξ1 − ξ0))
:

one can then say that, if F0 is given, the twist condition is equivalent to require the nondegen-
erations (4.5) and (4.7) to be true.

4.3. Explicit formulation of F0. When the domain D is circular, the first return map F :
(ξ0, α0) 7→ (ξ1, α1) can be explicitely determined: in this case, the nondegeneracy given through
(4.5) and (4.7) can be investigated in the equivalent form given by the twist condition. The
boundary ∂D0 can be parametrized as γ(ξ) = (cos ξ, sin ξ), with ξ ∈ R/2πZ, and the symmetry
properties of the potentials VE and VI and the isotropy of the Snell’s law on a circular domain
imply that F is of the form

F (ξ0, α0) = (ξ1(ξ0, α0), α1(ξ0, α0)) = (ξ0 + θ̄(α0), α0); (4.8)

in other words, the first return map on the circle reduces to a conservation of the velocity
variable α and a shift in the angle ξ of a suitable quantity θ̄ which depends only on the physical
parameters of the problem and on α0. The Jacobian matrix DF ((ξ0, α0)) can be then expressed
for every pair (ξ0, α0) ∈ R/2πZ × (−π/2, π/2) as

DF (ξ0, α0) =

(
1 ∂θ̄

∂α0
(α0)

0 1

)
.

From the above considerations, we have that θ̄(α0) = θ̄E(α0) + θ̄I(α0), where θ̄E(α0) and θ̄I(α0)
represent the excursions in the angles due respectively to the outer and the inner arcs of the
orbit zEI(s).
Outer shift. The outer shift has been already computed as an additional result in the proof
of Theorem 4.1 in Appendix A, and is equal to

θE(α) =


θ+
E(α) = arccot

(
ω2

(2E−ω2) sin (2α)
+ cot (2α)

)
if α > 0,

0 if α = 0,

θ−E(α) = arccot
(

ω2

(2E−ω2) sin (2α)
+ cot (2α)

)
− π if α < 0.

(4.9)
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Inner shift. As the system is invariant under rotations, without loss of generality let p0 =
(1, 0) to be the initial point of the inner orbit and, denoted by v0 its initial velocity, let β0 ∈
(−π/2, π/2) the angle between v0 and the inward-pointing radial unit vector, namely, −p0; then

v0 =
√

2(E + h) + 2µ(− cos β0, sin β0) = (vx, vy). The inner Cauchy problem is then given by{
z′′(s) = − µ

|z(s)|3 z(s), s ∈ [0, T ]

z(0) = p0, z
′(0) = v0.

(4.10)

Unlike the outer case, for the inner Keplerian orbit it is not possible to decouple the 2−dimensional
system into two one-dimensional systems in the variables (x, y); we shall rely on other classi-
cal techniques (see [9]) which require the passage in polar coordinates: consider the functions
r(s) ∈ R+ and θ(s) ∈ R/2πZ such that z(s) = r(s)eiθ(s). From the conservation of the angular
momentum, we have that

r(s)2θ′(s) = const = k = |p0||v0| sin β0 =
√

2E + 2h+ 2µ sin β0, (4.11)

while the energy conservation law implies

E + h =
1

2

(
r′(s)2 + r(s)2θ′(s)2

)
− µ

r(s)
⇒ r′(s) = −

√
2(E + h)− k2

r2(s)
+

2µ

r(s)
, (4.12)

where the sign depend by the fact that, according to the chosen initial conditions, r(s) is
decreasing. Taking together (4.11) and (4.12), one has then

dθ = − k

r2

√
2(E + h)− k2

r2 + 2µ
r

dr. (4.13)

The classical results for the two-body problem ensure that, for positive energies, the Kepler
problem is unbounded, and r(t) reaches its unique minimum rp at a time sp > 0. The value of
rp is given by (see [9])

rp =
k2

µ

(
1 +

√
1 +

2(E + h)k2

µ2

)−1

. (4.14)

If we denote with θp the polar angle of the pericenter and consider the initial conditions given
by (4.10), taking into account the simmetry of r(s) with respect to sp, we have that the inner
shift angle is given by

θ̄I = 2θp, (4.15)

where θp can be obtained by integration from (4.13):

θp =

∫ θp

0

dθ = −k
∫ rp

1

dr

r2

√
2(E + h)− k2

r2 + 2µ
r

=
k

|k|

∫ 1
rp

1

du√
2(E+h)
k2 − u2 + 2µ

k2u

setting x = u− µ/k2, x0 = 1− µ/k2 and x1 = µ
k2

√
1 + 2(E+h)k2

µ2 :

θp =
k

|k|

∫ x1

x0

dx√
2(E+h)
k2 + µ2

k4 − x2

.
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Finally, defining y = x
(

2(E+h)
k2 + µ2

k4

)−1/2

, y0 = (k2 − µ) (2(E + h)k2 + µ2)
−1/2

and y1 = 1:

θp =
k

|k|

∫ y1

y0

dy√
1− y2

=
k

|k|
arccos y0 =

k

|k|
arccos

(
k2 − µ√

2(E + h)k2 + µ2

)
. (4.16)

Casting together (4.11), (4.15) and (4.16), one obtains

θ̄I(β0) =


θ̄+
I (β0) = 2 arccos

(
(2E+2h+2µ) sinβ0

2−µ√
4(E+h)(E+h+µ) sinβ0

2+µ2

)
− 2π if β0 ≥ 0

θ̄−I (β0) = −2 arccos

(
(2E+2h+2µ) sinβ0

2−µ√
4(E+h)(E+h+µ) sinβ0

2+µ2

)
+ 2π if β0 < 0,

(4.17)

where the shift is such that θ̄I(β0) ∈ (−π, π) for every β0 ∈ (−π/2, π/2). Note that

lim
β0→0+

θ̄+
I (β0) = 0 = lim

β0→0−
θ̄−I (β0),

lim
β0→0+

d

dβ0

θ̄+
I (β0) = −4(E + h+ µ)

µ
= lim

β0→0−

d

dβ0

θ̄−I (β0)

and then θ̄I ∈ C1(−π/2, π/2).
Total shift and properties of the overall trajectories. The total shift angle θ̄(α0) is
computed by taking the sum of the outer and the inner shifts and taking into account the
transition laws for the velocities across the interface ∂D0. In particular, if α̃ and β̃ denote
respectively the angles wit the normal unit vector of the outer and the inner velocities of an
orbit crossing the interface in a point p̃ ∈ ∂D0, from (2.4) one has√

E − ω2

2
|p̃|2 sin α̃ =

√
E + h+

µ

|p̃|
sin β̃;

in the particular case of a circular domain, the Snell’s law is uniform over all the points of ∂D0,
and the initial and final angles with the radial direction are equal for every brach of the orbit.
Performing in (4.17) the substitution sin β0 =

√
(2E − ω2)/(2(E + h+ µ)) sinα0, one obtains

the total shift

θ̄(α0) =


θ̄+
E(α0) + θ̄+

I (α0) if α0 > 0

0 if α0 = 0

θ̄−E(α0) + θ̄−I (α0) if α0 < 0,

where θ̄+
E(α0) and θ̄−E(α0) are given by (4.9) and

θ̄+
I (α0) = 2 arccos

(
(2E − ω2) sinα0

2 − µ√
2(E + h)(2E − ω2) sinα0

2 + µ2

)
= −θ̄−I (α0).

The map is continuous and differentiable with respect to α0, and

d

dα0

θ̄(0) = lim
α0→0+

d

dα0

θ̄(α0) = lim
α0→0−

d

dα0

θ̄(α0) =

=
2E − ω2

E
− 2
√

2
√
E + h+ µ

√
2E − ω2

µ
.
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Passing to the canonical coordinates (ξ, I), the axisymmetry of the potentials and the isotropy
of Snell’s law on the circle translates in the conservation of the quantity I both in the endpoints
and the transition point ξ̃. The first claim is a straightforward consequence of Eq.(4.8), while
to prove the conservation of the action across the intermediate point one needs to consider the
actions IE and II associated to SE,0 and SI,0 separately:

IE1 (ξ0, ξ1) = ∂bSE,0(ξ0, ξ̃) =

√
VE(γ(ξ̃)) sin β0 =

√
VI(γ(ξ̃)) sin β1

II0 (ξ0, ξ1) = −∂aSI,0(ξ̃, ξ1) =

√
VI(γ(ξ̃)) sin β1.

(4.18)

Since on the circle α0 = β0 and β1 = α′1, we have that for every ξ0, ξ1 ∈ R/2πZ

I0(ξ0, ξ1) = IE1 (ξ0, ξ1) = II0 (ξ0, ξ1) = I1(ξ0, ξ1) ≡ I(ξ0, ξ1). (4.19)

Moreover, from (3.16) one has that in the circular case the global domain of definition of the
actions does not depend on the points ξ0, ξ1, that is

I0, I1 ∈

(
−
√
E − ω2

2
,

√
E − ω2

2

)
= (−Ic, Ic) = I.

Taking into account Eq.(4.8), the definitions of θ̄E and θ̄I and the relations (3.16), (4.19), in
the new set of canonical coordinates (ξ, I) ∈ R/2πZ × I we can express the first return map as

F : R/2πZ × I → R/2πZ × I,
(ξ0, I0) 7→(ξ1, I1) = (ξ0 + θ̄(I0), I0) = (ξ0 + f(I0) + g(I0), I0),

(4.20)

where

f(I) =


arccot

(
E−2I2

I
√

4E−2(2I2+ω2)

)
if I ∈ (0, Ic)

0 if I = 0

arccot

(
E−2I2

I
√

4E−2(2I2+ω2)

)
− π if I ∈ (−Ic, 0)

and

g(I) =


2 arccos

(
2I2−µ√

4(E+h)I2+µ2

)
− 2π if I ∈ (0, Ic)

0 if I = 0

−2 arccos

(
2I2−µ√

4(E+h)I2+µ2

)
+ 2π if I ∈ (−Ic, 0)

are C1 functions in I.

Remark 4.3. Direct computations show that for every E > ω2, h > 0, µ > 0 and for every
I ∈ I one has f ′(I) > 0 and g′(I) < 0: the outer and inner shifts are then invertible in I, and

one can define the inverse functions f̃(θ) = f−1(I)|I=I(θ) and g̃(θ) = g−1(I)|I=I(θ). From the

regularity of both f and g, we have that f̃ and g̃ are of class C1 in the respective domains. In
particular,

f (I) = (−π, π), g (I) = (−θ̄, θ̄),
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θ̄ = 2π − 2 arccos

(
2E − ω2 − µ√

2(E + h)(2E − ω2) + µ2

)
. (4.21)

Moreover,

ξ̃ = ξ0 + f(I)⇔ I = f̃(ξ̃ − ξ0) ≡ IE1 (ξ0, ξ̃),

ξ1 = ξ̃ + g(I)⇔ I = g̃(ξ1 − ξ̃) ≡ II0 (ξ̃, ξ1).
(4.22)

Lemma 4.4. For every I ∈ I, except for a finite number if points, f ′(I) + g′(I) 6= 0.

Proof. Direct computations lead to

f ′(I) + g′(I) =

√
2(2E2 − (E + 2I2)ω2)√

2E − ω2 − 2I2(E2 − 2ω2I2)
− 8(E + h)I2 + 4(E + h)µ+ 4µ2√

E + h+ µ− I2(4(E + h)I2 + µ2)
=

=
A(I2)

B(I2)
− C(I2)

D(I2)
.

(4.23)

Since for every I ∈ I we have that A(I2), B(I2), C(I2), D(I2) > 0,

f ′(I) + g′(I) = 0⇔ X = I2 ∈
[
0, I2

c

)
is a solution of p(x) = 0,

where p(x) = A2(x)D2(x) − B2(x)C2(x). As p(x) is a real polynomial of degree 5 in X, one
can have at most ten values of I ∈ I such that f ′(I) + g′(I) = 0. �

We define Ī = {I ∈ I | f ′(I) + g′(I) = 0} as the set of the critical points of the function
f + g.

Proposition 4.5. The generating function S0(ξ0, ξ1) is well defined in R/2πZ × R/2πZ except
for a finite number of pairs (ξ0, ξ1) in the quotient space (R/2πZ × R/2πZ)/ ∼, where (ξ0, ξ1) ∼
(ξ′0, ξ

′
1)⇔ ξ1 − ξ0 = ξ′1 − ξ′0.

Proof. For S0(ξ0, ξ1) = SE,0(ξ0, ξ̃) + SI,0(ξ̃, ξ1) to be well defined, one needs to verify condition
(3.10). From the definition of the actions

∂ξ̃(∂bSE,0(ξ0, ξ̃) + ∂aSI,0(ξ̃, ξ1)) = ∂ξ̃(I
E
1 (ξ0, ξ̃)− II0 (ξ̃, ξ1)) = ∂ξ̃I

E
1 (ξ0, ξ̃)− ∂ξ̃I

I
0 (ξ̃, ξ1) =

= ∂ξ̃f̃(ξ̃ − ξ0)− ∂ξ̃g̃(ξ1 − ξ̃) =

(
1

f ′(I)
+

1

g′(I)

)
I=I(ξ0,ξ1)

=

=

(
f ′(I) + g′(I)

f ′(I)g′(I)

)
I=I(ξ0,ξ1)

which is zero if and only if ξ1 − ξ0 ∈ (f + g)(Ī). �

Proposition 4.6. For every (ξ0, I0) ∈ R/2πZ ×
(
I\Ī

)
the first return map F0

(1) is conservative;
(2) satisfies the twist condition

∂ξ1

∂I0

(ξ0, I0) 6= 0.
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Proof. The conservativity of F0 is a direct consequence of the variational formulation of the
problem: when ξ̃ is well defined, we have (expressing ξ1 = ξ1(ξ0, I0))

∂ξ0ξ1 = − ∂
2
aS0(ξ0, ξ1)

∂abS0(ξ0, ξ1)
, ∂I0ξ1 = − 1

∂abS0(ξ0, ξ1)

∂ξ0I1 = ∂abS0(ξ0, ξ1)− ∂2
bS0(ξ0, ξ1)∂2

aS0(ξ0, ξ1)

∂abS0(ξ0, ξ1)
, ∂I0I1 = − ∂

2
bS0(ξ0, ξ1)

∂abS0(ξ0, ξ1)
,

where, from (4.22),

∂abS(ξ0, ξ1) = ∂ξ0ξ1S(ξ0, ξ1) = ∂abSI(ξ̃, ξ1)∂ξ0 ξ̃ = − g̃′(ξ1 − ξ̃)f̃ ′(ξ̃ − ξ0)

f̃ ′(ξ̃ − ξ0) + g̃′(ξ1 − ξ̃)

is well defined and different from zero for every (ξ0, I0) ∈ R/2πZ × I\Ī. Whenever F0 is well
defined, the determinant of its Jacobian matrix is

D(ξ0,I0)F0 = ∂ξ0ξ1∂I0I1 − ∂I0ξ1∂ξ0I1 = 1,

thus F0 is conservative.
As for the twist condition, we have ∂I0ξ1 = f ′(I0)+g′(I0), which is nonzero whenever I0 /∈ Ī. �

Summarizing the previous results, we can then conclude that the set I\Ī is the finite union
of open intervals (at most eleven, but possibly the whole (−Ic, Ic) if Ī = ∅2), in which F0 is
well defined, conservative and satisfies the twist condition with constant sign.

Remark 4.7. Locally around ±Ic and 0 the sign of ∂I0ξ1 can be easily determined as a function
of the physical parameters E , ω, h, µ: as a matter of fact, one has

lim
I→I−c

∂I0ξ1 = lim
I→−I+

c

∂I0ξ1 = +∞

and

∂I0ξ1(ξ0, 0) =
2
√
E − ω2

2

E
− 4
√
E + h+ µ

µ
,

then, for every E > ω2, h > 0, µ > 0

• ∃Ī ∈ (0, Ic) such that for every I ∈ I with |I| > Ī it results ∂I0ξ1 > 0;

• if
2

√
E−ω2

2

E > 4
√
E+h+µ
µ

(resp.
2

√
E−ω2

2

E < 4
√
E+h+µ
µ

), ∃ ¯̄I ∈ (0, Ic) such that for every

I ∈ (−Ic, Ic) with |I| < ¯̄I one has ∂I0ξ1 > 0 (resp. ∂I0ξ1 > 0);

• additionally, if
2
√
E−ω2/2

E < 4
√
E+h+µ
µ

, the derivative ∂I0ξ1 admits at least a change of

sign, which corresponds to a change of twist for the map F0.

2Numerical investigations shows that this case is consistent, in the sense that there are values of the parameters
E , h, µ and ω such that the sign of f ′ + g′ is constant (for example E = 2.5, ω = 2, µ = 2 and h = 2).
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4.4. Periodic solutions on the circle. Once the general properties of F0 on the circle are
defined, we can pass to the study of its orbits. To this end, given (ξ0, I0) ∈ R/2πZ ×I\Ĩ, let us
define the orbit of (ξ0, I0) as the sequence of the iterates {(ξk, Ik)}k∈Z = {Fk0 (ξ0, I0)}|k∈Z .

Definition 4.8. The rotation number3 associated to (ξ0, I0) through F0 is given by

ρ(ξ0, I0) = lim
k→∞

ξk − ξ0

k
. (4.24)

In the circular case, one can easily see that for every (ξ0, I0) for which F0 is well defined one
has ρ(ξ0, I0) = θ̄(I0).
As the action I0 is preserved on the circle, we have that, taking into account the phase space
(ξ, I) ∈ R/2πZ×I, the straight lines R/2πZ×{I0} are invariant for the dynamics induced by F0.
We can then distinguish between two types of orbits:

• if θ̄(I0)/2π = p/q ∈ Q, then

(ξq, Iq) = (ξ0 + 2πp, I0) ≡2π (ξ0, I0);

in this case, we say that the point (ξ0, I0) and the associated orbit are (p,q)-periodic;
• if θ̄(I0)/2π /∈ Q, then for all ξ0 ∈ R/2πZ the orbit with initial point (ξ0, I0) is dense in
R/2πZ × {I0}.

A particular class of fixed points for F0 is given by the ejection-collision solutions, which form
an invariant line of periodic points of period one defined on R/2πZ × {0}. Taking advantage of
the continuity of the function f + g on I, one can state the following existence result.

Proposition 4.9. Given C = θ̄ − π, where θ̄, as in (4.21), depends only on the physical
parameters E , h, µ, ω, for every ρ ∈ (−C,C) there are two values I± ∈ (−Ic, Ic) of the actions
such that, for every ξ0 ∈ R/2πZ, ρ(ξ0, I

±
0 ) = ρ.

In particular, for every p, q ∈ Z such that −C < 2πp/q < C, there are I
(p,q)
± ∈ (−Ic, Ic) such

that for every ξ0 ∈ R/2πZ the points (ξ0, I
(p,q)
+ ) and (ξ0, I

(p,q)
− ) are (p, q)-periodic.

In the circular case, the existence of two orbits of all the rotation numbers is a simple conse-
quence of the continuity of the total shift function. As it will be analysed in §5, a deformation
of the boundary ∂D0 breaks the symmetry of the system: in general, the first return map will
be not integrable anymore and more sophisticated tools should be used to retrieve, at least
partially, analogous existence results. In this framework, the persistence of the twist condi-
tion under small perturbations of the boundary will play a crucial role, and this is the reason
why, although not immediately used, this nondegeneracy condition has been investigated in the
circular case.

Under particular assumptions on the physical parameters, one can prove the existence of a
second type of fixed points different from the ones which correspond to the ejection-collision
solutions:

Proposition 4.10. Fixed E > ω2 > 0, let us define

µ̄ =
4E +

√
8E3(4E − ω2)

2E − ω2
> 2E − ω2, h̄ =

2E − ω2

8E2
µ2 − (E + µ).

3With an abuse of notation, in Section 5.2 we will use the same definition to identify the rotation number of
the lift of a map of the annulus R/2πZ × [a, b], that is, its periodic extension to R× [a, b].
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Figure 3. Examples of periodic and non-periodic orbits on the circle in the
phase space (ξ, I) ∈ R/2πZ × I.

If (µ > µ̄ ∧ h > h̄) or (2E − ω2 < µ ≤ µ̄ ∧ h > 0) there is Ī(1) ∈ (0, Ic) such that for every
ξ0 ∈ R/2πZ the points (ξ0, Ī

(1)) and (ξ0,−Ī(1)) are non-homotetic fixed points of F .

Proof. Recalling that f(0) + g(0) = 0, limI→I−c f(I) + g(I) = θ̄ + π and Eq.(4.23), from direct
computations one has that

• fixed E > ω2 > 0 and µ > 0,

f ′(0) + g′(0) < 0⇐⇒ h > h̄;

• fixed E > ω2 > 0,

h̄ > 0⇔ µ > µ̄ and θ̄ + π > 0⇔ µ > 2E − ω2.

If (µ > µ̄ ∧ h > h̄) or (2E − ω2 < µ ≤ µ̄ ∧ h > 0), we have then that f ′(0) + g′(0) < 0 and
limI→I−c f(I) + g(I) > 0: as a consequence, there exists Ī(1) > 0 such that f(Ī(1)) + g(Ī(1)) =

0 = f(−Ī(1)) + g(−Ī(1)), and then for every ξ0 ∈ R/2πZ, (ξ0,±Ī(1)) are fixed points of F . Given

that Ī(1) 6= 0, these points are ot homotetic (see Figure 4). �

4.5. Caustics for the unperturbed case. A question of great interest in the study of billiards
is that of caustics, which plays a key role in the determining the regions of the plane where
the orbits can access. A caustic is a smooth closed curve Γ such that every trajectory which
is tangent to Γ in a point remains tangent to the latter after every passage in and out the
domain D. The issue of the existence of caustics in standard billiards ([25, 33]) and its variants
([16]) has been widely studied; in particular, in the framework of a standard convex billiard D,
Lazutkin used the KAM approach to prove that, if ∂D is sufficiently smooth (of class C553 in
the original paper [25], later improved to C6 by Douady in [14]), then there exists a discontinous
family of caustics in a small neighborhood of ∂D.
The aim of this Section is to extend the concept of caustic to our refractive model in the circular
case: in view of the presence of two distinct dynamics inside and outside the domain D, one
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Figure 4. Example of a non-homotetic fixed point for F , with E = 7, ω2 =
3, h = 2, µ = 15. In this case, with reference to Proposition 4.10, µ̄ = 41.6287.

shall search for two of such curves, which can be studied separately. Moreover, by the central
symmetry typical of the circular case, it is reasonable to foresee that the inner and outer caustics
are circles of suitable radii depending on the action I0.

Theorem 4.11. For every E , h, ω, µ > 0, E > ω2, given I0 ∈ (−Ic, Ic):

• the exterior caustic ΓE(ζ; I0) is given by the locus of the apocenters of the outer ellipses,
namely,

ΓE : [0, 2π]→ R2, ΓE(ζ; I0) = RE(cos ζ, sin ζ),

RE =

√
E +

√
E2 − 2I2

0ω
2

ω
;

• the interior caustic ΓI(ζ; I0) is the locus of the pericenters of the inner Keplerian hiper-
bolæ. In particular,

ΓI : [0, 2π]→ R2 ΓI(ζ; I0) = RI(cos ζ, sin ζ),

RI =
p

1 + e
,

where

p =
2I2

0

µ
, e =

√
1 +

4I2
0 (E + h)

µ2
.

In general, following [33] and [6], one shall give the following characterization for the caustic:
take an orbit for our dynamical system and suppose that one of its (interior or exterior) branches
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is implicitely defined through the relation

G(x, y; ξ) = 0, (4.25)

where G : R2 → R is of class C2 in all the variables and ξ acts as a parameter (for example,
it could denote the polar angle of the initial point of the branch, its pericenter or apocenter).
The caustic Γ can be then seen as th envelope of the family of curves defined by (4.25) varying
ξ ∈ [0, 2π], that is, the set of points (x0(ξ), y0(ξ)) satisfying{

G(x, y; ξ) = 0

∂ξG(x, y; ξ) = 0
. (4.26)

By means of the implicit function theorem, it is straightforward that if

∇(x,y)G(x, y; ξ) ∦ ∇(x,y)∂ξG(x, y; ξ) on the solutions of (4.26), (4.27)

then (4.26) defines a regular curve Γ(ξ) = (x0(ξ), y0(ξ)).
The proof of Theorem 4.11 relies on the evaluation of (4.26) in the particular cases of the
inner and outer dynamics: in the case of circular domains, the solutions of such system can be
computed explicitely.
Outer caustic. Given p0 = (px, py) = eiξ0 , v0 = (vx, vy) ∈ R2, |v0| =

√
2E − ω2, from the proof

of Theorem 4.1 (see Appendix A), one has that the solution of{
(HSE)[z(s)] s ∈ [0, TE]

z(0) = p0, z
′(0) = v0

(4.28)

can be parametrized as

(x(s), y(s)) =
(
px cos(ωs) +

vx
ω

sin(ωs), py cos(ωs) +
vy
ω

sin(ωs)
)
.

If, as in §3, α ∈ (−π/2, π/2) denotes the angle between p0 and v0, recalling the definition of
canonical action (3.16) one has

v0 =
√

2E − ω2(cosα p0 + sinα t0) =
√

2E − ω2 − 2I2
0 p0 +

√
2I0 t0,

were t0 = ieiξ is the tangent unit vector to ∂D0 in p0. Since in the circular case the action I0

is constant along the orbits, it can be treated as a parameter in I. Additionally, consider the
non-homotetic case, that is, suppose I0 6= 0 (the case I0 = 0 can be easily analysed separately,
leading to te same result).
Taking the function r2(s) = x2(s) + y2(s), by direct computations one has

a2 = max
s∈[0, 2πω ]

r2(s) =
E +

√
E2 − 2I2

0ω
2

ω2
> 0

b2 = min
s∈[0, 2πω ]

r2(s) =
E −

√
E2 − 2I2

0ω
2

ω2
> 0.
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In the reference frame whose axes coincide with the ellipse’s ones, denoted with R(O, x′′, y′′),
the outer arc can be then implicitely defined as a segment of the conic

GE,0(x′′, y′′) =
x′′2

a2
+
y′′2

b2
− 1 = 0.

Denoting by ζ the polar angle of one of the apocenter points, all the solutions of (4.28) with
∠(p0, v0) = α are then implicitely defined by

GE(x, y; ζ) =
(x cos ζ + y sin ζ)2

a2
+

(y cos ζ − x sin ζ)2

b2
− 1 = 0

where ζ ∈ [0, 2π] is treated as a parameter.
As

∂ζGE(x, y; ζ) =

√
E − 2I2

0ω
2

I2
0

(
(x2 − y2) sin(2ζ)− 2xy cos(2ζ)

)
,

the explicit formulation of (4.26) for the outer arcs is then, for ζ 6= k π
2
, k = 0, 1, 2, 3{

(x cos ζ+y sin ζ)2

a2 + (y cos ζ−x sin ζ)2

b2
− 1 = 0√

E2−2I2
0ω

2

I2 sin(2ζ) (x+ y cot ζ) (x− y tan ζ) ;
(4.29)

note that, in the degenerate cases ζ = k π
2
, from ∂ζGE(x, y; ζ) = 0 one obtains x = 0 or y = 0.

The solutions of (4.29) are the ellipse’s apocenters and pericenters: since the outer arc of the
considered dynamical systems involves only the first apocenter, the only admissible solution of
(4.29) is given by

(x̄(ζ), ȳ(ζ)) =

√
E +

√
E2 − 2I2

0ω
2

ω
(cos ζ, sin ζ) ,

which describes, for ζ ∈ [0, 2π], the caustic ΓE(ζ; I0) as the circle of raduis RE of Theorem 4.11.
Although the caustics for the circular domain are completely determined, let us investigate
the nondegeneracy condition (4.27), which will be generalized for small perturbations of D0 in
Section 5.3. By direct computations, one has

∇(x,y)GE(x, y; ζ)|(x̄,ȳ) = 2a

√
E2 − 2I2

0ω
2

I2
0

(− cos ζ,− sin ζ) ,

∇(x,y)∂ζGE(x, y; ζ)|(x̄,ȳ) = 2a

√
E2 − 2I2

0ω
2

I2
0

(sin ζ,− cos ζ) ,

leading to
∇(x,y)GE(x, y; ζ)|(x̄,ȳ)

⊥ ∇(x,y)∂ζGE(x, y; ζ)|(x̄,ȳ)
. (4.30)

Inner caustic. Let us now consider the inner problem{
(HSI)[z(s)] s ∈ [0, TI ]

z(0) = p0, z
′(0) = v0,

(4.31)

and denote with α = (π/2, 3π/2) the angle between p0 and v0. Recalling (A.23) and (A.24),
and given that

k = |p0 ∧ v0| = |p0||v0| sinα =
√

2I0,
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one has that the polar equation of the Keplerian inner arc is

r =
p

1 + e cos f
,

with

p =
2I2

0

µ
, e =

√
µ2 + 4I2

0 (E + h)

µ
.

Choosing the reference frame R(O, x′′, y′′) where the pericenter is on the positive branch of the
x-axis, the inner Keplerian arc is expressed by

GI(x
′′, y′′) = (e2 − 1)x′′

2 − y′′2 − 2pex′′ + p2 = 0, x′′ ≤ p

e+ 1
, (4.32)

where the inequality condition expresses the choice of the branch of the hiperbola whith the
concavity in the direction of the central mass.
As in the outer case, denoting with ζ the polar angle of the pericenter, one has that all the
Keplerian hyperbolæ with central mass µ, energy E + h and angular momentum k =

√
2I0 are

given by

GI(x, y; ζ) = (e2 − 1)(x cos ζ + y sin ζ)2 − (y cos ζ − x sin ζ)2 − 2pe(x cos ζ + y sin ζ) + p2 = 0,

x cos ζ + y sin ζ ≤ p

e+ 1
,

with ζ ∈ [0, 2π]. The system (4.26) in the inner case becomes then{
(e2 − 1)(x cos ζ + y sin ζ)2 − (y cos ζ − x sin ζ)2 − 2pe(x cos ζ + y sin ζ) + p2 = 0

2e (y cos ζ + x sin ζ) (p− e x cos ζ + e y sin ζ) = 0
(4.33)

with the additional condition (x cos ζ + y sin ζ) ≤ p/(1 + e). Problem (4.31) admits the unique
solution

(x̄(ζ), ȳ(ζ)) =
p

1 + e
(cos ζ, sin ζ)

which corresponds to the position of the pericenter of the corresponding Keplerian arc, taking
ζ as a parameter. The inner caustic ΓI(ζ, I0) is then expressed by a circle with radius RI as in
Theorem 4.11.
It is straightforward to verify that the nondegeneracy condition (4.27) is verified: from

∇(x,y)GI(x, y; ζ)|(x̄,ȳ)
= −2p(cos ζ, sin ζ), ∇(x,y)∂ζGI(x, y; ζ)|(x̄,ȳ)

=
2ep

1 + e
(sin ζ,− cos ζ),

one has

∇(x,y)GI(x, y; ζ)|(x̄,ȳ) ⊥ ∇(x,y)∂ζGI(x, y; ζ)|(x̄,ȳ).

5. Perturbations of the circle

Many of the results obtained in the circular case, although significant in themselves, can be
generalized to non-circular smooth domains, provided they are close enough to D0 in a way
which will be soon specifed. This extension can be performed by means of classical perturbation
theory, as well as of more sophisticated results such as KAM and Aubry-Mather theorems (see
[18, 29, 21, 28, 1]).
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To this end, let us consider a class of domains Dε whose bundary ∂Dε = supp(γε) is given by a
radial deformation of the circle of the form

γε : R/2πZ → R2 γε(ξ) = (1 + εf(ξ; ε)) eiξ, (5.1)

where f(ξ; ε) is a smooth function of R/2πZ× [−Cε, Cε], with Cε > 0 arbitrarily high; note that,
from the choice of the parametrization of γε, the variable ξ still represents the polar angle of ξ.
This Section aims to analyze the generating function Sε, with particular emphasis to its good
definition and nondegeneracy properties, and the associated first return map Fε, whose orbits,
when possible, will be studied in terms of their rotation numbers.

5.1. Global existence of the outer and inner arcs for the perturbed dynamics. As for
the circular case (see Section 4.1), the generating function associated to the so-called perturbed
dynamics, that is, the dynamics induced by the potential (1.1) inside and outside the perturbed
domain Dε, is given by

S(ξ0, ξ1; ε) = dE(γε(ξ0), γε(ξ̃)) + dI(γε(ξ̃), γε(ξ1)),

where γε(ξ̃) is the passage point of zEI(s), as defined in §3, through ∂Dε.
A preliminary passage to discuss the good definition of Sε as a whole is to ensure that the
functions dE(p0, p1) and dI(p0, p1) are differentiable as functions of p0, p1 ∈ ∂Dε, namely, that
the inner and outer dynamics admit a unique geodesic arc joining p0 and p1.
In view of the results of Section 4.1 and Appendix A, this follows from the continous dependence
of the solutions of the fixed ends problems (4.1) and (4.3) with respect to p0 and p1. To fix
the notation, let us denote with zE\I(s; p0, p1; 0) the respective solutions in the unperturbed
circular case, where the last variable refers to ε = 0.

Remark 5.1. Focusing on the outer problem, from the continous dependence on p0 and p1

of the solution zE(s; p0, p1; 0) defined in Theorem 4.1, along with the invariance of the system
under rotations, there exists ρE > 0 such that for every p0, p1, p̃0, p̃1 satisfying |p0− p1| < 2 and
|p̃0 − p0|, |p̃1 − p1| < ρE one finds T > 0 and a unique solution zE(s; p̃0, p̃1) of the problem{

(HSE)[z(s)] s ∈ [0, T ]

z(0) = p̃0, z(T ) = p̃1.
(5.2)

For computational reasons, we require ρE < 1, ad set

SρE =
⋃

p0∈∂D0

BρE(p0) = {p ∈ R2 | dist(p, ∂D0) < ρE}. (5.3)

Proposition 5.2. There exists δ > 0 such that for every p̃0, p̃1 ∈ SρE with |p̃0 − p̃1| < δ there
is T > 0 and a unique zE(s; p̃0, p̃1) solution of the fixed-ends problem{

(HSE)[z(s)] s ∈ [0, T ]

z(0) = p̃0, z(T ) = p̃1.
(5.4)

Proof. It is sufficient to set δ < 2(1 − ρE). Denoting in polar coordinates p̃0 = r0e
iθ0 and

p̃1 = r1e
iθ1 , cosider p0 = eiθ0 and p1 = eiθ1 : we have then |p̃0 − p0|, |p̃1 − p1| < ρE, and

|p0 − p1| ≤ |p̃0 − p0|+ |p̃0 − p̃1|+ |p̃1 − p1| < δ + 2ρE < 2, (5.5)



ON SOME REFRACTION BILLIARDS 27

then, by Remark 5.1, the thesis is proved. �

Theorem 5.3. There are δ̄E > 0, ε̄E > 0 such that for every ε ∈ R and for every ξ0, ξ1 ∈ R/2πZ
with |ξ0 − ξ1| < δ̄E and |ε| < ε̄E there is T > 0 and a unique function zE(s; γε(ξ0), γε(ξ1)) ≡
zE(s; ξ0, ξ1; ε) which is a classical solution of{

(HSE)[z(s)] s ∈ [0, T ]

z(0) = γε(ξ0), z(T ) = γε(ξ1).
(5.6)

Proof. The claim is true if δ̄E < δ/2 and ε̄E < min{1/ (‖f‖∞ + ‖∂ξf‖∞) , ρE/‖f‖∞}. For, fixed
ε ∈ R such that |ε| < ε̄E, one has that for every ξ ∈ R/2πZ

|γ̇ε(ξ)| = |ε∂ξf(ξ, ε)eiξ + (1 + εf(ξ, ε)) ieiξ| ≤ 1 + |ε| (‖∂ξf‖∞ + ‖f‖∞) < 2.

If ξ0, ξ1 ∈ R/2πZ are such that |ξ0 − ξ1| < δ̄E < δ/2, defining p̃0 = γε(ξ0), p̃1 = γε(ξ1), p0 = eiξ0

and p1 = eiξ1 :
|p̃0 − p0| = |ε| |f(ξ0)| ≤ |ε| ‖f‖∞ < ρE,

|p̃1 − p1| < ρE,

|p̃0 − p̃1| < ‖γ̇ε‖∞|ξ0 − ξ1| < 2|ξ0 − ξ1| < δ,

(5.7)

then the hypotheses of Proposition 5.2 hold and the claim is true.
�

Passing to the inner dynamics, let us observe that the definition of windng number given in
(4.2) can be extended to regular, simple curves joining points which are in a sufficiently small
tubolar neighborhood of ∂D0: if Sρ is defined as in (5.3), p̃0 = r0e

iθ0 , p̃1 = r1e
iθ1 ∈ S with

|θ0− θ1| 6= π and α̃(s) is such that α̃(a) = p̃0, α̃(b) = p̃1, one can construct the closed curve Γα̃
by following α̃ in [a, b], then the shortest arc of ∂Br1(0) joining p̃1 and p̃′0 = r1e

iθ0 and finally
the ray of eiθ0 from p̃′0 to p̃0 (see Figure 5). If ρ is sufficiently small, the definition (4.2) can be
straightforwardly extended to α̃.

Theorem 5.4. There exist ε̄I > 0, δ̄I > 0 and C > 0 such that for every ε ∈ R, ξ0, ξ1 ∈ R/2πZ
satisfying |ξ0 − ξ0| < δ̄I and |ε| < ε̄I there exists a unique T (ξ0, ξ1) ≡ T > 0 and a unique
solution zI(s; ξ0, ξ1; ε) of 

(HSI)[z(s)] s ∈ [0, T ]

z(s) ∈ Dε s ∈ (0, T )

z(0) = γε(ξ0), z(T ) = γε(ξ1)

(5.8)

with the following properties:

• if ξ0 6= ξ1, then z(s; ξ0, ξ1; ε) is a classical solution of (5.8) such that |I(z([0, T ]), 0)| = 1;
• if ξ0 = ξ1, z(s; ξ0, ξ0; ε) is an ejection-collision solution.

In any case, z(s; ξ0, ξ1; ε) is of class C1 with respect to variations of ξ0 and ξ1 and, if we define

β0 = ∠(γ̇ε(ξ0), z′(0; ξ0, ξ1; ε)), β1 = ∠(γ̇ε(ξ1), z′(T ; ξ0, ξ1; ε)), (5.9)

one has that |β0| > C and |β1| > C.



28 IRENE DE BLASI AND SUSANNA TERRACINI

α~

p~
0

~p'
0 p~

1

Γα~

∂Br1

∂∂Dε

Figure 5. Curve Γα̃ for the computation of the winding number in the perturbed case.

Proof. As in the case of the outer dynamics, in view of Theorem 4.2, there exists 0 < ρI < 1
such that, choosing δ < 2(1− ρI), for every p̃0 = r0e

iθ0 , p̃1 = r1e
iθ1 ∈ SρI the problem{

(HSI)[z(s)] s ∈ [0, T ]

z(0) = p̃0, z(T ) = p̃1

admits a unique solution zI(s; p̃0, p̃1), with T > 0 depending on the endpoints. Moreover,
possibly reducing ρI , defining p0 = eiθ0 and p1 = eiθ1 and considering zI(s; p0, p1) introduced
by Theorem 4.2, one has that zI(s; p̃0, p̃1) and zI(s; p0, p1) have the same winding number.

Choosing then ε1 < min
{

ρI
‖f‖∞ ,

1
‖f‖∞+‖∂ξf‖∞

}
and δ̄I = δ < 2(1 − ρI), for any ξ0, ξ1 ∈ R/2πZ

with |ξ0 − ξ1| < δ and any |ε| < ε1, following the proof of Theorem 5.3, the existence and
uniqueness of the solution zI(s; ξ0, ξ1; ε) of problem (5.8) is ensured, with preservation of the
winding number with respect to the unperturbed case.

From the regularity of γε with respect to ξ and of z(s; p̃0, p̃1) with respect to the endpoints,
we have that z(s; ξ0, ξ1; ε) is of class C1 in the variables ξ0 and ξ1.
To prove the transversality properties of zI(s; ξ0, ξ1; ε), let us observe that by Proposition A.30
and the differentiability of z(s) ≡ z(s; ξ0, ξ1; ε), as well as by the invariance under rotations of
the system, there is C1 > 0, possibly lower than C, such that for every ξ0, ξ1 satisfying the
existence hypotheses, defined p̃0 and p̃1 as above, one has

1 ≥ − p̃0

|p̃0|
· z
′(0)

|z′(0)|
> C1, 1 ≥ p̃1

|p̃1|
· z
′(T )

|z′(T )|
> C1. (5.10)

Let us now consider α1 = ∠(p̃1, z
′(T )) (if α0 = ∠(−p̃0, z

′(0)) we proceed analogously): setting
C2 = arccos(C1) ∈ (0, π/2), we have |α1| < C2, and, taking β1 = ∠(γ̇ε(ξ1), z′(T )), one has

β1 = ∠(γ̇ε(ξ1), p̃⊥1 ) + ∠(p̃⊥1 , z
′(T )), (5.11)
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where p̃⊥1 = ip̃1. Then we have that

|β1| ≥
∣∣∣∠(p̃⊥1 , z

′(T ))
∣∣∣− ∣∣∣∠(γ̇ε(ξ1), p̃⊥1 )

∣∣∣,∣∣∣∠(p̃⊥1 , z
′(T ))

∣∣∣ > π

2
− C2 ≡ C3 ∈

(
0,
π

2

)
.

(5.12)

To estimate ∠(γ̇ε(ξ1), p̃⊥1 ), let us observe that∣∣ sin (∠(γ̇ε(ξ1), p̃⊥1 )
) ∣∣ =

|γ̇ε(ξ1) ∧ p̃⊥1 |
|γ̇ε(ξ1)||p̃⊥1 |

, (5.13)

where p̃⊥1 /|p̃⊥1 | = ieiξ1 and γ̇ε(ξ1) = ε∂ξf(ξ1, ε)e
iξ1 + (1 + εf(ξ1, ε))ie

iξ1 . If |ε| < ε1,

|γ̇ε(ξ1)| =
√

(ε∂ξf(ξ1, ε))2 + (1 + εf(ξ1, ε))2 ≥ 1− |ε| ‖f‖∞ > 1− ρI

⇒
∣∣ sin (∠(γ̇ε(ξ1), p̃⊥1 )

) ∣∣ =
|ε| |∂ξf(ξ1, ε)|
|γ̇ε(ξ1)|

<
|ε|

1− ρI
|∂ξf(ξ1, ε)|.

(5.14)

If we consider C4 > 0 such that 0 < arcsin(C4) < C3, setting ε < min
{
ε1,

C4(1−ρI)
‖∂ξf‖∞

}
= ε̄I :∣∣ sin (∠(γ̇ε(ξ1), p̃⊥1 )

) ∣∣ < C4 ⇒ |β1| > C3 − arcsin (C4) ≡ C̄ > 0. (5.15)

Recalling the definitions which lead to ε̄ and C̄, it is clear that they do not depend on ξ0 nor
ξ1, but only on ρ and the global properties of f .
Finally, the condition z(s) ∈ Dε for s ∈ (0, T ) follows from the smallness of ε and the transver-
sality of z(s) with respect to the perturbed domain ∂Dε, which ensures that z(s) do not intersect
twice the domain’s boundary in a neighborhood of z(T ). �

Remark 5.5. Using the same transversality argument described in details for the inner dy-
namics, one can prove that, if ε is small enough and ξ0, ξ1 sufficiently close, the solution
zE(s; ξ0, ξ1; ε) of (5.6), whose existence is ensured by Theorem 5.3, is such that zE(s; ξ0, ξ1; ε) /∈
D̄ε for s ∈ (0, T ).

5.2. Invariant sets for Fε. The good definition of the distances dE(p0, p1) and dI(p0, p1) for
p0, p1 ∈ ∂Dε allows to consider the associated generating function

S(ξ0, ξ1; ε) = SE(ξ0, ξ̃; ε) + SI(ξ̃, ξ1; ε) = dE(γε(ξ0), γε(ξ̃)) + dI(γε(ξ̃), γε(ξ1)). (5.16)

When well defined, S(ξ0, ξ1; ε) has the same regularity of f(ξ, ε) as a function of both the angle
variables ξ0, ξ1 and the perturbative parameter ε.
This Section aims to prove that, under suitable assumptions, the results proved for the circle
regarding the twist condition and the existence of invariant sets with prescribed rotation num-
bers (see Section 4.4) can be extended to the perturbed dynamics as described in (5.1).
Recalling the notation of Section 4, Ī is the finite set in I = (−Ic, Ic) for which F0 is not well

defined, with Ic =
√
E − ω2/2. To highlight the dependence on ε, from now on we will use the

notation F0(ξ0, I0) ≡ F(ξ0, I0; 0).

Proposition 5.6. Let [a, b] ⊂ I\Ī, and suppose that, in (5.1), f ∈ Ck
(
R/2πZ × I

)
with k ≥ 2.

Then there exists ε̄ > 0 such that for every ε ∈ R, |ε| < ε̄, the perturbed first return map

F(ξ0, I0; ε) = (ξ1 (ξ0, I0; ε) , I1 (ξ0, I0; ε))
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is well defined and of class Ck−2(R/2πZ × [a, b]). Moreover, F(·, ·, ε) is conservative and twist.

Proof. Let us consider [a, b] ⊂ I\Ī, and, with reference to (4.20), define

K =
{

(ξ0, ξ0 + θ̄(I0)) | ξ0 ∈ R/2πZ, I0 ∈ [a, b]
}

:

in view of Propositions 4.5 and 4.6, the generating function S(ξ0, ξ1; 0) is well defined and
infinitely many differentiable in K, and the same holds for F(ξ0, I0; 0) in R/2πZ×[a, b]. Moreover,
K is a compact subset of the torus R/2πZ × R/2πZ. In particular, one has that the quantity

∂2
bSE(ξ0, ξ̃(ξ0, ξ1; 0); 0) + ∂2

aSI(ξ̃(ξ0, ξ1; 0), ξ1; 0), (5.17)

with ξ̃(ξ0, ξ1; 0) such that ∂bSE(ξ0, ξ̃(ξ0, ξ1; 0); 0) + ∂aSI(ξ̃(ξ0, ξ1; 0), ξ1; 0) = 0, is different from
0 and has always the same sign for (ξ0, ξ1) ∈ K.
Let us now fix (ξ̄0, ξ̄1) ∈ K: by the implicit function theorem, there are two neighborhoods

Aξ̄0 , Aξ̄1 respectively of ξ̄0 and ξ̄1, a quantity ε̄(ξ̄0, ξ̄1) > 0 and a unique function ξ̃(ξ0, ξ1; ε),

defined in Aξ̄0 × IAξ̄1 × [−ε̄(ξ̄0, ξ̄1), ε̄(ξ̄0, ξ̄1)], such that the refraction law

∂bSE(ξ0, ξ̃(ξ0, ξ1; ε); ε) + ∂aSI(ξ̃(ξ0, ξ1; ε), ξ1; ε) = 0

holds also in the perturbed case. Moreover, the function ξ̃ is of class Ck−1 in all its vari-
ables. As a consequence, the generating function S(ξ0, ξ1; ε) is well defined in Aξ̄0 × Aξ̄1 ×
[−ε̄(ξ̄0, ξ̄1), ε̄(ξ̄0, ξ̄1)]. Varying (ξ̄0, ξ̄1) ∈ K, the family{

Aξ̄0 × Aξ̄1 | (ξ̄0, ξ̄1) ∈ K
}

is a covering of K such that, if (Aξ̄0 × Aξ̄1) ∩ (Aξ̄′0 × Aξ̄′1) 6= ∅, then ξ̃(ξ0, ξ1; ε) coincide in the

intersection. Sice K is compact, there exists a finite sequence (ξ̄
(i)
0 , ξ̄

(i)
1 )Ni=1 such that

K ⊂
N⋃
i=1

A
ξ̄
(i)
0
× A

ξ̄
(i)
1
.

Setting ε̄′ = mini=1,...,N ε̄(ξ̄
(i)
0 , ξ̄

(i)
1 ), one has that for every (ξ0, ξ1) ∈ K and every ε ∈ R such

that |ε| < ε̄′, the perturbed generating function S(ξ0, ξ1; ε) is well defined and of class Ck−1. In
such set one can define the canonical actions

I0(ξ0, ξ1; ε) = −∂ξ0S(ξ0, ξ1; ε), I1(ξ0, ξ1; ε) = ∂ξ1S(ξ0, ξ1; ε),

and, by the definition of K, one has that for every (ξ0, ξ1) ∈ K, I0(ξ0, ξ1; 0) ∈ [a, b]. Fixing
ξ̄0 ∈ R/2πZ and Ī0 ∈ [a, b], set ξ̄1 = ξ1(ξ̄0, Ī0; 0): from the proof of Proposition 4.6, one has that

∂ξ1
(
Ī0 + ∂ξ0S(ξ̄0, ξ̄1; 0)

)
6= 0, and then, varying (ξ̄0, Ī0) in the compact rectangle [0, 2π]× [a, b],

one can apply the same reasoning used before to find 0 < ε̄ < ε̄′ such that for every ξ0 ∈ [0, 2π],
I0 ∈ [a, b] and |ε| < ε̄ the function ξ1(ξ0, I0; ε) is well defined and of class Ck−2. Extending
ξ1(ξ0, I0; ε) by periodicity for ξ0 ∈ R/2πZ, one has then that, for every ε > 0, |ε| < ε̄, the
perturbed first return map

F(ξ0, I0; ε) = (ξ1(ξ0, I0; ε), I1 (ξ0, I0; ε)) ,

where I1(ξ0, I0; ε) = I1(ξ0, ξ1(ξ0, I0; ε); ε), satisfies the claim in terms of good definition and
regularity. The conservativity is a straightforward consequence of the existence of the perturbed
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generating function, while the twist property depends on the existence of ξ1(ξ0, ξ1; ε), since

∂ξ1

∂I0

=

(
∂I0

∂ξ1

)−1

= − 1

∂ξ0ξ1S(ξ0, ξ1; ε)
.

�

Remark 5.7. Proposition 5.6 remains valid if we ask weaker regularity hypotheses on f(ξ, ε).
In particular, if f is of class Ck in ξ and is continous, along with all its k ξ−derivatives, in ε,
one can find ε̄ > 0 such that, for |ε| < ε̄, the map F(ξ0, I0; ε) is of class Ck−2 in R/2πZ × [a, b]
and continous in ε, and the same holds for all its k − 2 derivatives.

The map F(ξ0, I0; ε), whose existence under suitable conditions and for subsets of R/2πZ ×I
is ensured by Proposition 5.6, can be expressed in the form

F(ξ0, I0; ε) =

{
ξ1 = ξ0 + θ̄(I0) + F (ξ0, I0; ε)

I1 = I0 +G(ξ0, I0; ε)
(5.18)

where F and G are of class Ck−2 in all the variables and

‖F‖Ck+2
ε→0−−→ 0, ‖G‖Ck−2

ε→0−−→ 0.

We can now prove the existence of particular orbits with prescribed rotation number for Fε.
We will make use of KAM Theorem in the finitely differentiable version of Moser (cfr [29]);
before stating the Theorem, let us now give some preliminary definitions.

Definitions 5.8. Let s ≥ 1 and f(ξ, I) of class Cs in R/2πZ × [a, b]. The s-th derivative norm
of f is given by

|f |s = sup

∣∣∣∣∣
(
∂

∂I

)m1
(
∂

∂ξ

)m2

f(ξ, I)

∣∣∣∣∣, m1 +m2 ≤ s.

Let us now consider F(ξ0, I0) = (ξ1(ξ0, I0), I1(ξ0, I0)) a given map on the annulus R/2πZ× [a, b].
We say that F has the intersection property if for any closed curve α near the circle, that is,
of the form

α(ξ1) = (ξ1, f(ξ1))

where f is 2π−periodic and with f ′ small, one has

supp(α) ∩ supp (F(α)) 6= ∅.

If F is area-preserving, the intersection property is straightforwardly verified (see [5]).
Finally, given σ > 0, define

D(σ) =
{
ω ∈ R | ∀n,m ∈ Z, n > 0, |nω −m2π| ≥ σn−3/2

}
the set of Diophantine numbers with respect to the constant σ/2π and the exponent 5/2. Ac-
cording to [18], given

D =
⋃
σ>0

D(σ),
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one has that D is dense in [0, 1], and by extension in every closed interval of R. As a conse-
quence, for every [c, d] ⊂ R and every ρ ∈ (c, d) ∩ D there exists σρ > 0 such that

∀σ < σρ ρ ∈ (c+ σ, d− σ) ∩D(σ).

Let us point out that, although we consider D in accordance to the original statement by Moser
in [29], in all the following results such set can be replaced by the set of all Diophantine numbers
of exponent τ > 2, that is,

D̃ =
⋃
σ>0
τ>2

{
ω ∈ R | ∀n,m ∈ Z, n > 0,

∣∣∣ ω
2π
− m

n

∣∣∣∣ ≥ σ

nτ

}

Theorem 5.9. (KAM Theorem, [29]) Let a, b ∈ R such that 0 < a < b and b− a ≥ 1, and let

F0(ξ0, I0) =

{
ξ1 = ξ0 + θ̄(I0)

I1 = I0

be a map on the annulus R/2πZ × [a, b]; suppose that there is c0 ≥ 1 such that

c−1
0 ≤

∂θ̄

∂I0

(I0) ≤ c0.

Moreover, let

F(ξ0, I0) =

{
ξ1 = ξ0 + θ̄(I0) + F (ξ0, I0)

I1 = I0 +G(ξ0, I0)

a perturbation of F0 that satisfies the intersection property.
Fixed σ > 0 and s ≥ 1, there are δ0 = δ0(c0, σ, s) > 0 and an integer l = l(s) > 0 such that, if

(1) |F |0 + |G|0 < δ0,
(2) F and G are of class C l(R/2πZ × [a, b]) and |θ̄|l + |F |l + |G|l < c0,

then F admits a closed invariant curve{
ξ = u+ p(u)

I = Ī + q(u),
(5.19)

with Ī ∈ [a, b], which induces a mapping

u1 = u0 + θ̄(Ī) (5.20)

and such that p and q are 2π−periodic functions in the parameter u with s continous derivatives
and

|p|s + |q|s < σ. (5.21)

Moreover, for every ω ∈
(
θ̄(a) + σ, θ̄(b)− σ

)
∩D(σ) there exists an invariant curve of the form

(5.19) with rotation number θ̄(Ī) = ω.

Remark 5.10. The rotation number of the invariant curve (5.19) can be derived from the
mapping (5.20) as follows: let us take u0 ∈ R and consider the sequence {un}n∈N produced by
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(5.20), which is trivially given by un = u0 + nθ̄(Ī). The orbit of F generated by (5.20) and
lying in the invariant curve (5.19) is then {(ξn, In)}n∈N, with{

ξn = u0 + nθ̄(Ī) + p
(
u0 + nθ̄(Ī)

)
In = Ī + q

(
u0 + nθ̄(Ī)

)
.

(5.22)

From the definition (4.24) and given that p is bounded, one can easily compute the rotation
number associated to the initial condition (ξ0, I0) = (ξ(u0), I(u0)) through the map F as

ρ(ξ0, I0) = lim
n→∞

ξn − ξ0

n
= lim

n→∞
θ̄(Ī) +

p(u0 + nθ̄(Ī))− p(u0)

n
= θ̄(Ī).

Remark 5.11. Although in the original paper [29] for s = 1 the minimal number of continous
derivatives required for the application of Theorem (5.9) is l = 333, Rüssman and Hermann
reduced this number to l = 5 and then to l > 3 (see [30] and [19]). For this reason, and in view
of Proposition 5.6, we require the normal perturbation f(ξ, ε) to be of class Ck

(
R/2πZ × [−ε̄, ε̄]

)
,

with k > 5: as a consequence, F(ξ0, I0; ε) ∈ Ck′
(
R/2πZ × [a, b]× [−ε̄, ε̄]

)
, with k′ > 3, and the

invariant curves, if existing, are of class C1(R/2πZ).

Theorem 5.12. Let us suppose that θ̄′(I0) > 0 in [a, b], and take ρ0, ρ1 ∈
(
θ̄(a), θ̄(b)

)
∩ D.

Then there exists ε̄ρ0ρ1 such that for every ε ∈ R, |ε| < ε̄ρ0ρ1 the map F(ξ0, I0; ε) defined in
(5.18) admits two closed invariant curves of class C1 with rotation numbers ρ0 and ρ1.

Proof. To verify the hypotheses of Theorem 5.9, let us choose C > (b− a)−1 such that ρ′0 =
ρ0/C, ρ

′
1 = ρ1/C ∈ D (such C exists for the density of D in R), and consider the canonical

change of coordinates {
ξ′ = ξ

C
, I ′ = C I.

Expressing F0 and Fε in the new variables, one obtains the rescaled problem

F̃0(ξ′0, I
′
0) =

{
ξ′1 = ξ′0 + Θ(I ′0)

I ′1 = I ′0
F̃(ξ′0, I

′
0; ε) =

{
ξ′1 = ξ′0 + Θ(I ′0) + F̃ (ξ′0, I

′
0; ε)

I ′1 = I ′0 + G̃(ξ′0, I
′
0; ε),

where I ′ = CI ∈ [a′, b′] = C[a, b], b′ − a′ > 1, and

Θ(I ′0) =
θ̄
(
I′0
C

)
C

=
θ̄(I0)

C
, F̃ (ξ′0, I

′
0; ε) =

1

C
F

(
Cξ′0,

I ′0
C

; ε

)
=

1

C
F (ξ0, I0; ε),

G̃(ξ′0, I
′
0; ε) = C G

(
Cξ′0,

I ′0
C

; ε

)
= C G(ξ0, I0; ε)

are defined for ξ′0 ∈ R/2πZ, I ′0 ∈ [a′, b′] and |ε| < ε̄ (see Proposition 5.6). Note that the
monotonicity and convergence properties

∂I′0Θ (I ′0) > 0, ‖F̃‖Ck−2
ε→0−−→ 0, ‖G̃‖Ck−2

ε→0−−→ 0 (5.23)

hold also for the rescaled map, as well as the conservativity. Moreover, as Θ(a′) = θ̄(a)/C and
Θ(b′) = θ̄(b)/C, one finds σ > 0 such that ρ′0, ρ

′
1 ∈ (Θ(a′) + σ,Θ(b′)− σ) ∩ D(σ).
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Since F̃ is conservative, it satisfies the intersection property, and, given that Θ ∈ C1([a′, b′]),
there is c0 > 1 such that

∀I ′0 ∈ [a′, b′] c−1
0 ≤ Θ′(I ′0) ≤ c0.

Fixed s = 1, let us consider l = l(s) as in Theorem 5.9, and, eventually taking a higher c0,
suppose c0 > |Θ|l. By Theorem 5.9, there exists δ0 = δ0(c0, σ, s) > 0 such that, if (1) and (2)
hold for F̃ , then the existence of the two invariant orbits for the rescaled problem is ensured.
From (5.23), one can choose 0 < ε̄ρ0ρ1 < ε̄, such that for every ε ∈ [−ε̄ρ0ρ1 , ε̄ρ0ρ1 ]

|F̃ |0 + |G̃|0 < δ0 and |F̃ |l + |G̃|l < c0 − |Θ|l,

then the hypotheses of Theorem 5.9 hold and the invariant curves obtained for F̃ can be
reparametrized to be invariant curves for F . In particlar, such curves have rotation number ρ0

and ρ1: for example, let us consider the invariant curve for the rescaled problem with rotation
number ρ′0, which, in view of Theorem 5.9, can be expressed as{

ξ′0 = u′ + p̃(u′)

I ′0 = Ī ′ + q̃(u′)
with mapping u′1 = u′0 + Θ(Ī ′) = u′0 + ρ′0.

Returnig to the original coordinates and setting u = C u′, one gets the rescaled invariant curve{
ξ0 = u+ p(u)

I0 = Ī + q(u)
with mapping u1 = u0 + θ̄(Ī) = u0 + ρ0,

with p(u) = Cp̃ (u/C) and q(u) = C−1q̃ (u/C). �

In the phase space (ξ, I), the curves obtained in Theorem 5.12 can be identified as the
graphs of functions of the form Iρ(ξ; ε) ∈ C1(R/2πZ): fixing ε ∈ (−ε̄ρ0ρ1 , ε̄ρ0ρ1), let us consider
for example the closed invariant curve of F of rotation number ρ0, which can be expressed,
according to (5.19) and (5.20), as{

ξρ0(u; ε) = u+ p(u; ε)

Iρ0(u; ε) = Ī + q(u; ε)
with θ̄(Ī) = ρ0. (5.24)

From the boundedness of p asserted in (5.21), if σ is small enough (e.g. σ < 1) the quantity

∂uξ(u; ε) = 1 + ∂up(u; ε) (5.25)

is always positive: one can then invert the first equation in (5.24) obtaining u(ξ), which is
differentiable. As a consequence, one can parametrize the curve (5.24) as the graph of the C1

function

Iρ0 : R/2πZ → R, Iρ0(ξ; ε) = Iρ0(u(ξ); ε). (5.26)

Remark 5.13. Taking σ sufficiently small and a suitable ε̄ρ0ρ1, one can find invariant curves
of F which are arbitrarily close to the unperturbed orbits R/2πZ×{Ī} in the plane (ξ, I). Then,
as ε → 0, the functions Iρ(ξ; ε) which define the invariant curves in the perturbed phase space
tend in norm C1(R/2πZ) to the constant functions Īρ with θ̄(Īρ) = ρ.
Moreover, Theorem 5.9 can be extended to negative twist maps, leading to the existence result
for invariant curves as stated in Theorem 1.2
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Figure 6. Sketch of the perturbed dynamics in the region described by Propo-
sition 5.6 and Theorem 5.12 in the phase plane (ξ, I). Red: the invariant curves
of Diophantine rotation numbers ρ0 and ρ1, which are deformations of the un-
perturbed invariant straight lines I = Īρ0 , I = Īρ1 (green) such that θ̄

(
Īρ0

)
= ρ0

and θ̄
(
Īρ1

)
= ρ1. In the striped region the map F(ξ0, I0; ε) is area-preserving

and twist. The blue dashed lines denote two singular action values for the un-
perturbed dynamics (i.e. I ∈ Ī).

As sketched in Figure 6, the presence of two invariant curves with irrational rotation number
leads to a confinement in the dynamics of F(ξ0, I0; ε), where, in view of Proposition (5.6), the
map is conservative and twist. More precisely, the set

A =
{

(ξ, I) ∈ R/2πZ × R | Iρ0(ξ; ε) ≤ I ≤ Iρ1(ξ; ε)
}

(5.27)

is invariant under Fε, as well as its boundaries.
In the unperturbed dynamics, the existence of periodic orbits of any rotation number in a suit-
able interval is the simple consequence of the continuity of the total shift θ̄(I); when ε 6= 0, one
can not take advantage of the explicit formulation of the perturbed map, then this strategy is
no longer suitable. Nevertheless, the broad properties of the map, such as its conservativity and
the existence of the invariant curves ensure Theorem 5.12, enable the use of more sophisticated
topological results, where the existence of orbits with prescribed rotation number is ensured
under more general assumptions: this is the case of the Poincaré-Birkhoff theorem, here pre-
sented in the version of [18].

Theorem 5.14 (Poincaré-Birkhoff). Let F an area preserving map on the annulus R/2πZ×[c, d]
which preserves the boundaries and FR its lift on R × [c, d]. Suppose that FR satisfies the
boundary twist condition, that is, the restrictions of FR to each boundary component u− =
R × {c} and u+ = R × {d} have rotation numbers ρ± with ρ− < ρ+ (the case ρ+ < ρ− is
analogous). If 2πm

n
∈ [ρ−, ρ+] and m,n are coprime, then F has at least two (m,n)−orbits.

Remark 5.15. Theorem 5.14 can be extended to conservative maps which preserve invariant
strips in R/2πZ × R whose boundaries are fixed by F and are graphs of C1 functions over the
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ξ−axis. Let us take the set A defined in 5.27 and consider Φ0(ξ; ε),Φ1(ξ; ε), Ī0, Ī1 such that

∂ξΦ0(ξ; ε) = Iρ0(ξ; ε), ∂ξΦ1(ξ; ε) = Iρ1(ξ; ε), θ̄(Īρ0) = ρ0, θ̄(Īρ1) = ρ1,

choosing Φ1 and Φ0 such that Φ1(ξ; 0) = Ī1ξ and Φ0(ξ; 0) = Ī0ξ. For ε sufficiently small,
consider the quantity

A(ε) =

∫ 2π

0

Iρ1(ξ; ε)− Iρ0(ξ; ε)dξ = Φ1(2π; ε)− Φ0(2π; ε)− (Φ1(0; ε)− Φ0(0; ε)) > 0,

and, noted that A(0) =
(
Ī1 − Ī0

)
2π, define the change of coordinates

Ψ(ξ, I; ε) =

{
ξ′ = 2π

A(ε)
(Φ1(ξ; ε)− Φ0(ξ; ε))

I ′ = A(ε)
2π

(
I−Iρ0 (ξ;ε)

Iρ1 (ξ;ε)−Iρ0 (ξ;ε)
+ Ī0

Ī1−Ī0

)
.

From direct computations, one has that:

(i) Ψ(ξ, I; ε) is C1 in all its variables and for every fixed ε ∈ R det
(
D(ξ;I)Ψ(ξ, I; ε)

)
= 1:

hence, Ψ defines a canonical change of variables;
(ii) for ε = 0, Ψ(ξ, I; 0) = Id;
(iii) Ψ maps the horizontal boundaries of A, that is, {(ξ, Iρ0(ξ; ε)) | ξ ∈ R/2πZ} and
{(ξ, Iρ1(ξ; ε)) | ξ ∈ R/2πZ} respectively into the straght lines

I = I ′0 =
A(ε)

2π

Ī0

Ī1 − Ī0

> 0 and I = I ′1 =
A(ε)

2π

Ī1

Ī1 − Ī0

> I ′0;

(iv) for every ξ ∈ R/2πZ and every fixed ε, one has Φ1(ξ + 2π; ε)−Φ0(ξ + 2π; ε) = Φ1(ξ; ε)−
Φ0(ξ; ε) + A(ε), and then

ξ′(ξ + 2π) =
2π

A(ε)
(Φ1(ξ + 2π; ε)− Φ0(ξ + 2π; ε)) =

=
2π

A(ε)
(Φ1(ξ; ε)− Φ0(ξ; ε) + A(ε)) = ξ′(ξ) + 2π;

(v) ξ′ is strictly increasing in ξ, while I ′ is 2π−periodic in ξ.

Globally, Ψ maps the Fεinvariant set A into the straight line B = R/2πZ × [I ′0, I
′
1] preserving

the orientation and the boundaries. One can then consider the map F̄ε : B → B such that
F̄ε ◦ Ψ = Ψ ◦ Fε, namely, such that F̄ε = Ψ ◦ Fε ◦ Ψ−1. It can be proved that F̄ε preserves the
rotation number of the corresponding orbits of F : for a (m,n)−periodic orbit, it is a simple
consequence of (iv), as, taken {(ξk, Ik)}k∈N (m,n)−periodic for Fε and defined for every k ∈ N
(ξ′k, I

′
k) = Ψ(ξk, Ik), one has

(ξ′k+n, I
′
k+n) = Ψ(ξk+n, Ik+n) = Ψ(ξk + 2πm, Ik) = (ξ′k + 2πm, I ′k).

Let us now take a Fε−orbit with rotation number ρ ∈ R parametrized, according to Mather’s
definition in [28], by (ξk, Ik) = (ψ1(tk), ψ2(tk)) such that

tk+1 = tk + ρ, F (ξk, Ik) = (ξk+1, Ik+1) = (ψ1(tk + ρ), ψ2(tk + ρ)) ,

(ψ1(t+ 2π), ψ2(t+ 2π)) = (ψ1(t) + 2π, ψ2(t)) ,
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with ψ1 : R → R a weakly order preserving map (not necessarily continous). Now, setting
(ξ′k, I

′
k) = Ψ(ξk, Ik) = Ψ(ψ1(tk), ψ2(tk)), one has

F̄ε(ξ′k, I ′k) = Ψ ◦ F (ξk, Ik) = Ψ(ξk+1, Ik+1) = (ξ′k+1, I
′
k+1),

and, defined (ψ̃1(t), ψ̃2(t)) = Ψ(ψ1(t), ψ2(t)),

(ψ̃1(t+ 2π), ψ̃2(t+ 2π)) = (ψ̃1(t) + 2π, ψ̃2(t)),

leading to the conclusion that the F̄ε−orbit {(ξ′k, I ′k)}k∈N has period ρ. Note that for ε sufficiently
small F̄ε satisfied the hypotheses of Theorem 5.14, as for ε = 0 the identity map is trivially twist.
As the preservation of the rotation number holds also for Ψ−1, given a twist map on invariant
sets of the type A which preserves the horizontal boundaries one can pass to the strip B and
use Theorem 5.14 to prove the existence of (m,n)−periodic orbits for F̄ε; returning then to the
map Fε, this translates to the existence of (m,n)−periodic orbits for the original map.

Making use of Theorem 5.14, one can prove, under suitable conditions on the perturbation,
the existence of periodic orbits for the dynamics induced by the map F(ξ0, I0; ε) with ε 6= 0.
We recall that in §4 we denoted with I\Ī the set of well defnition of the unperturbed map
F(ξ0, I0; 0) and we proved that it is the finite union of open intervals in R. In particular, the
set of the singular points Ī is composed by the critical points of the C1 function θ̄(I) (see
Proposition 4.6), and one can set

I\Ī =
N⋃
i=1

Ai

with N > 0 (possibly N = 1) and Ai open intervals in I. In the following, to ensure the good
definition of the perturbed map in a compact set, a finit union of closed intervals in I\Ī will
be fixed, : in particular, we fix ai, bi ∈ I such that ∀i ∈ {1, . . . , N}

[ai, bi] ⊂ Ai and, if θ̄− = min
i

{
θ̄(ai), θ̄(bi)

}
, θ̄+ = max

i

{
θ̄(ai), θ̄(bi)

}
,

θ̄
(i)
− = min{θ̄(ai), θ̄(bi)}, and θ̄

(i)
+ = max{θ̄(ai), θ̄(bi)}, one has

N⋃
i=1

[
θ̄

(i)
− , θ̄

(i)
+

]
= [θ̄−, θ̄+].

(5.28)

Note that, by the continuity of θ̄, such sets {ai}Ni=1, {bi}Ni=1 exist.

Proposition 5.16. Let ai, bi ∈ I as in (5.28), and fix ρ
(i)
± ∈ D such that for every i = 1, . . . , N

one has θ̄
(i)
− < ρ

(i)
− < ρ

(i)
+ < θ̄

(i)
+ . Then there exists ε̄ > 0 such that for every ε ∈ R, |ε| < ε̄, and

for every m,n ∈ Z coprime, n > 0, with 2πm
n
∈ (ρ

(i)
− , ρ

(i)
+ ) for some i ∈ {1, . . . , N}, the map

F(ξ0, I0; ε) admits at least 2k (m,n)-orbits, where k is the number of the pairs (ρ
(i)
− , ρ

(i)
+ ) such

that ρ
(i)
− < 2πm

n
< ρ

(i)
+ .

Proof. According to Theorem 5.12, for every pair ρ
(i)
− , ρ

(i)
+ there is ε̄

(i)
ρ± such that for every

|ε| < ε̄
(i)
ρ± the map F(ξ0, I0; ε) admits two orbits of rotation numbers ρ

(i)
− and ρ

(i)
+ . Moreover, the

perturbed map is conservative and twist between these two orbits. Setting ε̄ = mini∈{1,...,N},

one has that if ε is such that |ε| < ε̄ all the orbits of rotation numbers ρ
(i)
± are preserved and
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the perturbed map in between is well defined and conservative.

Fixing ε ∈ R, |ε| < ε̄, if m,n are such that 2πm
n
∈
(
ρ

(i)
− , ρ

(i)
+

)
, then by Theorem 5.14 the

perturbed map F(ξ0, I0; ε) admits at least 2 (m,n)-orbits. As this reasoning can be repeated

whenever a pair (ρ
(i)
− , ρ

(i)
+ ) is such that ρ

(i)
− < 2πm

n
< ρ

(i)
+ , the claim is true. �

Proposition 5.16 claims the existence of a unique treshold value of ε under which the presence
of periodic orbits of prescribed rotation numbers in a certain set is guaranteed. Another slightly
different approach is proposed in Proposition 5.17, where, fixed m,n such that 2πm

n
lies in a

suitable interval which does not depend on prefixed boundary rotation numbers ρ
(i)
± , one can

find a treshold ε̄mn, depending on m,n, such that for every |ε| < ε̄mn the presence of the
corresponding (m,n)-orbit is ensured.

Proposition 5.17. Given {ai}Ni=1, {bi}Ni=1, {θ̄(i)
+ }Ni=1, {θ̄

(i)
− }Ni=1 as in (5.28), let m,n ∈ Z co-

prime, n > 0, such that 2πm
n
∈
(
θ̄

(i)
− , θ̄

(i)
+

)
for some i ∈ {1, . . . , N}. Then ∃ε̄mn > 0 such that

for every ε ∈ R, |ε| < ε̄mn the map F(ξ0, I0; ε) admits at least 2k (m,n)-orbits, where k is the

number of intervals (ai, bi) such that 2πm
n

is between θ̄
(i)
− and θ̄

(i)
+ .

Proof. By the density of D in every bounded interval, one can find ρ± ∈ D with θ̄
(i)
− < ρ− <

2πm
n
< ρ+ < θ̄

(i)
+ . From Theorem 5.12, one can find ε̄mn = ε̄ρ± such that, if ε is such that

|ε| < ε̄mn, the map F(ξ0, I0; ε) admits two orbit with rotation numbers ρ±, and it is conservative
between them. Applying again Theorem 5.14, the claim follows. �

Extending the discussion beyond perodic orbits, one may search for more general class of
invariant sets. KAM theory allowed us to claim the persistence of orbits with Diophantine
rotation numbers within certain ranges, while Poincaré-Birkhoff theorem extended the existence
result to periodic number with 2π-rational numbers between them. The Aubry-Mather theory
allows to move further, providing the existence of orbits of the perturbed map of every prescribed
rotation number in suitable subsets of R.

Theorem 5.18 (Aubry-Mather on the compact annulus). Let F an area and orientation-
preserving twist homeomorphism of the annulus R/2πZ × [a, b] which preserves R/2πZ × {a} and
R/2πZ × {b}, and define ρa and ρb as the rotation numbers of the two boundary components.
Then for every ρ ∈ [ρa, ρb] there exists at least an orbit for F with rotation number ρ. In
particular:

• if ρ = m/n ∈ Q, such orbit is periodic of period n;
• if ρ /∈ Q, the orbit rotates either on a closed continous curve or on a Cantor set.

In any case, the orbits with the same rotation number belong to a common invariant set Γρ,
called Mather set, which is a subset of the graph of a Lipschitz-continous function over the
ξ−axis.

We refer to [1, 21, 28] for the definition of Mather set and for a thorough discussion on the
Aubry-Mather theory.

Remark 5.19. As in the case of Poincaré-Birkhoff Theorem 5.14, with the same reasoning
also Aubry-Mather Theorem can be extended to maps on invariant sets of the type A defined in
5.27.
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Making use of the same arguments used in the proofs of Propositions 5.16 and 5.17, one can
take advantage of Theorem 5.18 to state these existence results in a more general way.

Theorem 5.20. Let {ai}Ni=1, {bi}Ni=1, {θ̄(i)
− }Ni=1, {θ̄+}Ni=1 as in (5.28). Then:

• letting ρ
(i)
± ∈ D as in Proposition 5.16, there exists ε̄ > 0 such that for every ε ∈ R

with |ε| < ε̄ and for every ρ ∈ R such that ρ ∈ [ρ̄
(i)
− , ρ̄

(i)
+ ] for some i ∈ {1, . . . , N} the

map F(ξ0, I0; ε) admits k orbits with rotation number ρ, with k defined as in Proposition
5.16;

• for every ρ ∈ R such that ρ ∈ [θ̄
(i)
− , θ̄

(i)
+ ] for some i ∈ {1, . . . , N} there is ε̄ρ > 0 such

that for every ε with |ε| < ε̄ρ the map F(ξ0, I0; ε) admits k orbits with rotation number
ρ, where k is defined as in Proposition 5.17.

In both cases, if ρ = 2πm
n

then for ε sufficiently small there are at least 2k (m,n)-orbits, where
k is defined suitably according to the cases.

5.3. Caustics for the perturbed case. The persistence of invariant curves with Diophantine
rotation numbers ensured by the KAM theorem has important consequences for the existence
of caustics in the perturbed dynamics. As a matter of fact, for such invariant tori (which are
dense in the phase space) it is possible to find, although not explicitely, the inner and outer
caustics also for small perturbations of the circular domain D0.

Theorem 5.21. Let ξ0 ∈ [0, 2π], I0 ∈ I\Ī such that θ(I0) ∈ D. Then there exists ε̄ > 0 such
that for every |ε| < ε̄ there are ΓE(ξ; ε, θ(I0)), ΓI(ξ; ε, θ(I0)) respectively outer and inner caustics
related to the perturbed orbit of rotation number θ(I0).

The proof of Theorem 5.21 relies on showing that, for ε small enough, system (4.26) evaluated
both for the outer and inner dynamics admits a unique solution for each ξ ∈ [0, 2π], which defines
a regular and closed curve. To prove that, it is worthwile to derive the form of GE\I(x, y; ξ) for
a perturbed domain.
Outer dynamics. Let us consider ξ ∈ [0, 2π], p0 = γε(ξ) and v0 ∈ R2 such that |v0| =√

2VE(p0) and α = ∠(p0, v0) ∈ (−π/2, π/2).
To fix the notation, recall the definition of γε(ξ) = (1 + εf(ξ, ε))eiξ = ρ(ξ; ε)eiξ : as the pertur-
bation of the circle is only in the normal direction, the curve’s parameter ξ still represents the
polar angle of the point γε(ξ). We want to find the Cartesian equation of the outer elliptic arc
of initial conditions p0 and v0.
Following the same reasoning of Appendix A and denoting with (x(s), y(s)) the parametrization
of such ellipse, its maximal and minimal distances from the origin can be then computed as

a2 = max
s∈[0,2π/ω]

r2(s) = A+
E
ω2

=
E +

√
(E − ω2|p0|2)2 + ω2(p0 · v0)2

ω2

b2 = min
s∈[0,2π/ω]

r2(s) = −A+
E
ω2

=
E −

√
(E − ω2|p0|2)2 + ω2(p0 · v0)2

ω2
:

(5.29)

in the reference frame R(O, x′′, y′′) whose axes coincide with the ellipse’s ones the latter is then
implicitely defined by the equation

x′′2

a2
+
y′′2

b2
= 1.
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Let us now search for the angle β̄ such that the rotated ellipse

(x′ cos β̄ + y′ sin β̄)2

a2
+

(y′ cos β̄ − x′ sin β̄)2

b2
= 1

passes from p0 = |p0|(1, 0) in R(O, x′, y′): one has to solve the equation

|p0|2 cos2 β̄

a2
+
|p0|2 sin2 β̄

b2
− 1 = 0⇒ sin2 β̄ =

b2

a2 − b2

(
a2

|p0|2
− 1

)
≥ 0.

Denoting by (v′x, v
′
y) the components of v0 in R(O, x′, y′), one has that

sin β̄ =

−
b√

a2−b2

√
a2

|p0|2 − 1 if v′y < 0

b√
a2−b2

√
a2

|p0|2 − 1 if v′y > 0
⇒ cos β̄ =

a√
a2 − b2

√
1− b2

|p0|2
. (5.30)

Returning to the original frame R(O, x, y), one can then retrieve the Cartesian equation of the
outer arc as

GE(x, y; ξ, ε) =

(
x cos(ξ + β̄) + y sin(ξ + β̄)

)2

a2
+

(
(y cos(ξ + β̄)− x sin(ξ + β̄)

)2

b2
−1 = 0 (5.31)

Once obtained the general expression for an ellipse of initial conditions p0 and v0, we shall
return to the framework of our perturbed problem. Let us then consider I0 ∈ I\Ī such that
θ(I0) is Diophantine: from Theorem 5.9 there exists ε̄(1) > 0 such that, if |ε| < ε̄(1), we can
define I(ξ; ε) invariant curve in the plane (ξ, I) for the perturbed map Fε such that I(ξ; 0) ≡ I0

and with rotation number θ(I0). Moreover, I(ξ; ε) is continous in ε and differentiable in ξ, with
∂ξI(ξ; ε) continous in ε: as a consequence, since θ(I0) ∈ D implies I0 6= 0, possibly reducing ε̄(1)

one can assume that I(ξ; ε) has always the same sign of I0.
For the caustic of the orbit associated to (ξ, I(ξ; ε)) to be well defined, it is necessary that the
system {

GE(x, y; ξ, ε) = 0

∂ξGE(x, y; ξ, ε) = 0
(5.32)

defines implicitely a unique curve ΓE(ξ; ε) for ξ ∈ [0, 2π], that is, that x and y can be expressed
as functions of (ξ, ε) globally defined for ξ ∈ [0, 2π]. As already pointed out in Section 4.5, from
the implicit function theorem the local existence of ΓE(ξ; ε) is then ensured by requiring the
nondegeneracy condition

∇(x,y)GE(x, y; ξ, ε) ∦ ∇(x,y)∂ξGE(x, y; ξ, ε) (5.33)

on the solutions of (5.32).

Lemma 5.22. If I0 ∈ I\Ī is such that θ(I0) is Diophantine, then there is ε̄(2) > 0 such that, if
|ε| < ε̄(2), then GE(x, y; ξ, ε) is continous in ε, differentiable in ξ and such that ∂ξGE(x, y; ξ, ε)
is continous in ε.

Proof. Recalling (5.31), the proof of the Lemma relies on showing that all the quantities in-
volved in the definition of GE(x, y; ξ, ε), namely, a−2, b−2, cos β̄ and sin β̄ are continous in ε,
differentiable in ξ and with derivative continous in ε, provided the latter is small enough.
Starting from a−2 and b−2, from (5.29) it is clear that the expression of p0 · v0 as a function of
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ξ and ε is needed. Recalling the definition (5.1), denoted with t(ξ; ε) and ne(ξ; ε) the tangent
and the outward-pointing normal unit vectors to γε in p0, one has that

v0 =
√

2E − ω2ρ(ξ; ε)2 (cosα ne(ξ; ε) + sinα t(ξ; ε)) .

Expliciting cosα, sinα, t(ξ; ε), ne(ξ; ε) and setting for simplicity ρ ≡ ρ(ξ; ε), ρ′ ≡ dρ(ξ; ε)/dξ and
I(ξ; ε) ≡ I, one obtains

v0 =

(
vx
vy

)
=

1√
ρ2 + ρ′2

(√
2I (ρ′ cos ξ − ρ sin ξ) +

√
2E − ω2ρ2 − 2I2 (ρ′ sin ξ + ρ cos ξ)√

2I (ρ′ sin ξ + ρ cos ξ) +
√

2E − ω2ρ2 − 2I2 (ρ sin ξ − ρ′ cos ξ)

)
⇒ p0 · v0 =

ρ(ξ; ε)√
ρ2(ξ; ε) + ρ′2(ξ; ε)

(
ρ(ξ; ε)

√
2E − ω2ρ2(ξ; ε)− 2I2(ξ; ε) +

√
2I(ξ, ε)ρ′(ξ; ε)

)
,

(5.34)
which has the desired continuity and differentiability properties provided ε is small enough.
This implies that a2 and b2 have the same properties. Moreover, it is trivial that a2 > 0 and,
since for ε = 0

b2
|ε=0 =

E −
√
E2 − 2ω2I2

0

ω2
> 0,

by the continuity of b with respect to ε we have also b2 > 0 for ε small enough. Applying the
same reasoning, we can infer

√
a2 − b2 > 0.

Going back to (5.30), cos β̄ is then continous and differentiable, and the same conclusion holds
for sin β̄ if one can ensure that v′y has the same sign for all the points of the orbit (ξ, I(ξ; ε)).
From (5.34), in the plane R(O, x′, y′) one has

v′y =
1√

ρ2(ξ; ε) + ρ′2(ξ; ε)

(
ρ(ξ; ε)

√
2I(ξ; ε)− ρ′(ξ; ε)

√
2E − ω2ρ2(ξ; ε)− 2I2(ξ; ε)

)
,

which for ε = 0 translates in
v′y |ε=0

=
√

2I0 6= 0.

Taking again advantage of the continuity of v′y with respect ε, we can finally ensure that for ε
small enough the thesis is proved. �

Proposition 5.23. If I0 ∈ I\Ī is such that θ(I0) ∈ D, then there exists ε̄E such that for
|ε| < ε̄E the caustic ΓE(ξ; ε, θ(I0)) is globally well defined.

Proof. As the nondegeneracy condition (5.33) holds for ε = 0 (cfr. (4.30)), from Lemma 5.22, for
every ξ̄ ∈ [0, 2π] there exists ε̄(2)(ξ̄) such that for every |ε| < ε̄(2)(ξ̄) condition (5.33) is satisfied.
By the implicit function theorem, there are λξ(ξ̄), λε(ξ̄) > 0 such that the curve (x(ξ; ε), y(ξ, ε))
solution of (5.32) is well defined in R(ξ̄) =

(
ξ̄ − λξ(ξ̄), ξ̄ + λξ(ξ̄)

)
×
(
−λε(ξ̄), λε(ξ̄)

)
. For the

uniqueness of the solution, if ξ̄1 and ξ̄2 are such that R(ξ̄1) ∩ R(ξ̄2) 6= ∅, the curve coincides in
such intersection. As [0, 2π] is compact, it is possible to find N > 0, {ξ̄1, . . . ξ̄N} ⊂ [0, 2π] such
that

[0, 2π] ⊂
N⋃
i=1

(
ξ̄i − λξ(ξ̄i), ξ̄i + λξ(ξ̄i)

)
,

then, setting
ε̄E = min

i∈{1,...,N}
λε(ξ̄i),
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for every ε > 0 such that |ε| < ε̄E the curve ΓE(ξ; ε, I0) = (x(ξ; ε), y(ξ; ε)) is globally well defined
in [0, 2π]. �

Inner caustics. Following the same reasoning applied for the outer caustic, let us consider the
inner problem 

z′′(s) = − µ
|z(s)|3 z(s), s ∈ [0, TI ]

1
2
|z′(s)|2 − E − h− µ

|z(s)| = 0 s ∈ [0, TI ]

z(0) = p0, z′(0) = v0

by fixing p0 = |p0|eiξ, v0 =
√

2(E + h+ µ/|p0|)eiθv such that θv − ξ ∈ (π/2, 3π/2). This last
assumption, which is done to guarantee that the hyperbola points inward a circle of radius |p0|,
can be ensured for ε small enough and suitable bounds on I(ξ). Rotating again the reference
frame R(O, x, y) by an angle −ξ, we obtain R(O, x′, y′) such that p0 = |p0|(1, 0).
Recalling (4.32), in the reference frame R(O, x′′, y′′) were the hiperbola’s pericenter lies on the
positive half of the x-axis, its Cartesian equation is given by:

(e2 − 1)x′′
2 − y′′2 − 2pex′′ + p2 = 0 with x ≤ p

e+ 1
,

where

p =
k2

µ
, e =

√
µ2 + 2(E + h)k2

µ
, k = |p0 ∧ v0|.

To find the corresponding equation in the reference frame R(O, x′, y′), one can search again for
the angle δ̄ such that the arc defined by

(e2 − 1)(x′ cos δ̄ + y′ sin δ̄)2 − (y′ cos δ̄ − x′ sin δ̄)2 − 2ep(x′ cos δ̄ + y′ sin δ̄) + p2 = 0,

x′ cos δ̄ + y′ sin δ̄ ≤ p

e+ 1

(5.35)

passes from p0 = |p0|(1, 0). Solving (5.35) with x′ = |p0| and y′ = 0, one obtains

cos δ̄ =
p− |p0|
e|p0|

,

which is in [−1, 1] if we take non-degenerate hyperbolæ. Referring to v′y as the vertical compo-
nent of v0 in R(O, x′, y′), one has then

sin δ̄ =

{
(e2−1)|p0|2+2p|p0|−p2

e|p0| if v′y > 0

− (e2−1)|p0|2+2p|p0|−p2

e|p0| if v′y < 0
.

Returning to the original reference frame R(O, x, y), one obtains then the Cartesian equation
for the inner Keplerian arc

GI(x, y; ξε) =(e2 − 1)(x cos(δ̄ + ξ) + y sin(δ̄ + ξ))2 − (y cos(δ̄ + ξ)− x sin(δ̄ + ξ))2+

− 2pe(x cos(δ̄ + ξ) + y sin(δ̄ + ξ)) + p2 = 0

x cos(δ̄ + ξ) + y sin(δ̄ + ξ) ≤ p

e+ 1
.

(5.36)
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Note that, with reference to the polar angles ξ and θv, the angle δ̄ can be also expressed as

δ̄ =
sin(θv − ξ)
| sin(θv − ξ)|

arccos

(
p− |p0|
e|p0|

)
. (5.37)

As in the case of the outer dynamics, the global good definition of the inner caustic ΓI(ξ; ε, θ(I0))
depends on proving thatGI(x, y; ξ, ε) differentiable in ξ and that bothGI and ∂ξGI are continous
in ε.

Lemma 5.24. If I0 ∈ I\Ī is such that θ(I0) ∈ D, then there is ε̄(3) > 0 such that, if |ε| < ε̄(3),
then GI(x, y; ξ, ε) is continous in ε, differentiable in ξ and such that ∂ξG(x, y; ξ, ε) is continous
in ε.

Proof. As in the case of Lemma 5.22, one needs to prove the desired regularity properties on
the quantities p and e, as well as sin δ̄ and cos δ̄. As all these quantities depend on k = |p0∧v0|,
let us find the expression of the angular momentum as a function of ξ. As already done in §3,
let us now denote with α the angle between v0 and the inward-pointing normal unit vector to
γε in p0, which we indicate with ni(ξ); then referring to (3.16) and using the same notation of
Lemma 5.22, we have

v0 =

√
2

(
E + h+

µ

ρ

)
(sinα t(ξ) + cosα ni(ξ)) =

=
1√

ρ2 + ρ′2

(√
2I (ρ′ cos ξ − ρ sin ξ)−

√
2(E + h+ µ/ρ− I2) (ρ′ sin ξ + ρ cos ξ)√

2I (ρ′ sin ξ + ρ cos ξ) +
√

2(E + h+ µ/ρ− I2) (ρ′ cos ξ − ρ sin ξ) .

)

And, since p0 = ρeiξ,

k = |p0 ∧ v0| =
√

2ρ(ξ; ε)√
ρ2(ξ; ε) + ρ′2(ξ; ε)

(
I(ξ; ε)ρ(ξ; ε) + ρ′(ξ; ε)

√
E + h+

µ

ρ(ξ; ε)
− I2(ξ; ε)

)
p =

k2

µ
=

2ρ2(ξ; ε)

µ(ρ2(ξ; ε) + ρ′2(ξ; ε))

(
I(ξ; ε)ρ(ξ; ε) + ρ′(ξ; ε)

√
E + h+

µ

ρ(ξ; ε)
− I2(ξ; ε)

)2

e =

√
1 +

4(E + h)ρ2(ξ; ε)

(ρ2(ξ; ε) + ρ′2(ξ; ε))µ2

(
I(ξ; ε)ρ(ξ; ε) + ρ′(ξ; ε)

√
E + h+ µ/ρ(ξ; ε)− I2(ξ; ε)

)2

The regularity of p and e is then ensured whenever ρ2(ξ; ε) + ρ′2(ξ; ε) 6= 0, which is true for ε
small enough. As for sin δ̄ and cos δ̄, from (5.37) one can infer that the requested regularity is
ensured if sin(θv − ξ) has always the same sign on the orbit (ξ, I(ξ; ε)). As in the case of the
outer orbit, this is a consequence of the continuity of ρ(ξ; ε), ρ′(ξ; ε) and I(ξ; ε) with respect to ε.
Denoting with θni the polar angle of ni(ξ), from the definition of α one has θv− ξ = θni− ξ−α,
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and then

sin(θv − ξ) = sin(θni − ξ) cosα + cos(θni − ξ) sinα =

=
1

ρ(ξ; ε)
√
E + h+ µ

ρ(ξ;ε)

(√
E + h+

µ

ρ(ξ; ε)
− I2(ξ; ε)|nI(ξ) ∧ γε(ξ)| − I(ξ; ε)γε(ξ) · ni(ξ)

)
=

=
ρ′(ξ; ε)

√
E + h+ µ

ρ(ξ;ε)
− I2(ξ; ε) + ρ(ξ; ε)I(ξ; ε)√

ρ2(ξ; ε) + ρ′2(ξ; ε)
√
E + h+ µ

ρ(ξ;ε)

.

For ε = 0, sin(θv−ξ)|ε=0 = I0/
√
E + h+ µ 6= 0, then, if ε is small enough, sin(θv−ξ) has always

the same sign of I0, and sin δ̄, cos δ̄ are differentible in ξ and continous in ε, with derivative
continous in ε. �

Making use of Lemma 5.24 and following the same reasoning used in the proof of Proposition
5.23, it is possible to prove the existence of a well-defined inner caustic ΓI(ξ; ε, θ(I0)) related to
the invariant curve for the map Fε with rotation number θ(I0).

Proposition 5.25. If I0 ∈ I\Ī is such that θ(I0) ∈ D, then there exists ε̄I such that for |ε| < ε̄I
the caustic ΓI(ξ; ε, θ(I0)) is globally well defined.

Appendix A. Proofs of Theorems 4.1 and 4.2

A.1. Outer arcs. In the case of the inner arcs, the proof of the existence and uniqueness
Theorem 4.1 lies on the direct computation of the solutions of problem 4.1 for fixed p0 and p1.
Moreover, the results obtained in the following proof are used in Section 4.3 to give the explicit
expression of the outer shift in the unperturbed case.

Proof of Theorem 4.1. Fix p0 = eiθ0 ∈ ∂D0, and, given α ∈ (−π/2, π/2), consider the Cauchy
problem {

z′′(s) = −ω2z(s),

z(0) = p0, z
′(0) = v0 =

√
2E − ω2eiθ0+α,

(A.1)

whose solution z(s; p0, v0) is an ellipse whose parameters depend on the initial conditions and
can be decoupled as

z(s) = (x(s), y(s)) = (p0,x cosωs+
v0,x

ω
sinωs, p0,y cosωs+

v0,y

ω
sinωs) (A.2)

Since α ∈ (−π/2, π/2), the orbit is exterior to D in a neigborhood of s = 0. Let s1 > 0 the
first positive instant for which z(s1; p0, v0) ∈ ∂D0 again, and define p1 = eiθ1 = p1(p0, α) =
z(s1; p0, v0). As the system is invariant under rotations, the shift θE from θ0 to θ1 and s1

depend only on the direction of v0 with respect to the radial direction, i.e. on α. We can then
fix p0 = p̄0 = (1, 0), and we have θE(α) = θ1. The solution z(s; p̄0, v0) simplifies as

z(t) = (x(s), y(s)) =
(

cosωs+
vx
ω

sinωs,
vy
ω

sinωs
)
, (A.3)
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from which one has

r2(s) = x2(s) + y2(s) =
ω2 − E
ω2

cos (2ωs) +
vx
ω

sin (2ωs) +
E
ω2

= A cos (2ωs+ ᾱ) +
E
ω2
, (A.4)

with A ∈ R and ᾱ ∈ [0, 2π) such that{
A cos ᾱ = ω2−E

ω2 , A sin ᾱ = −vx
ω
, (A.5)

and, since vx > 0,

cot ᾱ =
E − ω2

ωvx
⇒ ᾱ = arccot

(
E − ω2

ωvx

)
∈
(

0,
π

2

)
,

cos ᾱ =
E − ω2√

ω2v2
x + (E − ω2)2

, sin ᾱ =
ωvx√

ω2v2
x + (E − ω2)2

A = − vx
ω sin ᾱ

= −
√
ω2v2

x + (E − ω2)2

ω2
< 0.

(A.6)

The time s1 > 0 is such that ρ(s1) = 1 and is given by s1 = (π − ᾱ)/ω: if y(s1) 6= 0 (namely,
α 6= 0), the polar angle θ1 of the point p1 is given by

θ1 =

arccot
(
x(s1)
y(s1)

)
if α > 0,

arccot
(
x(s1)
y(s1)

)
− π if α < 0,

(A.7)

where we took into account that, for α < 0, θ̄E ∈ [π, 2π], then one has to take the second
determination of arccot.
Direct computations of the homotetic solution (corresponding to α = 0) and equation (A.6),
along with the definition of θE, lead finally to

θE(α) =


θ+
E(α) = arccot

(
ω2

(2E−ω2) sin (2α)
+ cot (2α)

)
if α > 0,

0 if α = 0,

θ−E(α) = arccot
(

ω2

(2E−ω2) sin (2α)
+ cot (2α)

)
− π if α < 0.

(A.8)

If E > ω2, the function θE(α) is of class C1 in (−π/2, π/2) and assumes all the values in (−π, π).
Moreover,

dθE
dα

(α) =
(2E − ω2)(2E − ω2 + ω2 cos (2α))

2E(E − 2ω2)− (2E − ω2)ω2 cos (2α)
> 0 for all α ∈

(
−π

2
,
π

2

)
. (A.9)

From the inverse function theorem, there exist a unique function α : (−pi, π) → (−π/2, π/2),
θ1 7→ α(θ1) such that for every θ1 we have

p1 = eiθ1 = z
(
s1(α(θ1)); p̄0,

√
2E − ω2eiα(θ1)

)
. (A.10)

Moreover, α(θ1) ∈ C1(−π, π).
Fixing now p0, p1 ∈ D0 such that |p0 − p1| < 2, we have that |θ0 − θ1| < π, then problem{

z′′(s) = −ω2z(s),

z(0) = p0, z
′(0) = v0 =

√
2E − ω2

2
ei(θ0+α(θ1−θ0)),

(A.11)
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admits the unique solution z(s; p0, p1). If we define T = s1 as above, we have that z(T ; p0, p1) =
p1 and |z(s)| > 1 for every s ∈ (0, T ), while the energy conservation law is ensured by the
choice of v0. Moreover, by the differentiable dependence on the initial contitions of the Cauchy
problem and the fact that α(θ1) is of class C1, one can conclude that z(s; p0, p1) is differentiabl
as a function of its endpoints.

�

A.2. Inner arcs. Unlike the outer case, the inner Kepler problem presents a singularity in
the origin, which should be treated with more sophisticated strategies. To this end, techniques
such as the Levi-Civita regularisation and more general results from Riemannian Geometry are
used.
The Levi-Civita regularization technique consists in a change both in the temporal parameter
and the spatial coordinates, in order to remove the singularity of Kepler-type potentials.

Lemma A.1. Let p0, p1 ∈ R2\{0}. The fixed end problem{
(HSI)[z(s)], s ∈ [0, T ]

z(0) = p0, z(T ) = p1

(A.12)

is conjugated to the Levi-Civita problem
ẅ(τ) = Ω2w(τ) τ ∈ [0, T̃ ]
1
2
|ẇ(τ)|2 − Ω2

2
|w(τ)|2 − E = 0, τ ∈ [0, T̃ ]

w(0) = w0, w(T̃ ) = w1

(A.13)

with Ω2 = 2(E + h), E = µ, w2
0 = p0, w2

1 = p1 and τ = τ(s) such that dτ
ds

= 1
2|z(s)| .

Proof. Let us consider the reparametrisation s = s(τ) such that d
ds

= 1
2r

d
dτ

with r = |z(s)|.
Then, denoting with the dot the derivation with respect to τ ,

d2

ds2
=

1

4

(
− 1

r3
ṙ
d

dτ
+

1

r2

d2

dτ 2

)
: (A.14)

the first and second equations in (A.12) can be expressed with respect to τ as

rz̈ − ṙż + 4µz = 0,
1

8r2
|ż|2 = E + h+

µ

r
. (A.15)

Considering now the new spatial variable in the complex plane C ' R2 given by z = w2, we
have from (A.15) :

1

2
|ẇ|2 − Ω2

2
|w|2 − E = 0, rẅ + w

(
2E − |ẇ|2

)
= 0⇒ ẅ = Ω2w. (A.16)

�

We will refer to the time variable τ as the Levi-Civita time, and to the new reference system
as the Levi-Civita plane; the original time and coordinate space will be called physical time
and plane. Moreover, following up on Notation 3.1, we will denote the first two lines of system
(A.13) with the abbreviation (HSLC)[w].
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Remark A.2. From Lemma A.1 we have that, if w(τ ;w0, w1) is a solution of (A.13), then

z(s; p0, p1) =
(
w(τ ;w0, w1)|τ=τ(s)

)2
is a solution of (A.12) with endpoints p0 = w2

0 and p1 = w2
1.

On the other hand, as the complex square determines a double covering of R2\{0}, if we fix
p0 = r0e

iθ0 , p1 = r1e
iθ1 ∈ R2\{0}, with p0 6= p1, and z(z, p0, p1) is a solution of (A.12), we can

find two distinct solutions of (A.13) such that
(
w(τ ;w0, w1)|τ=τ(s)

)2
= z(s; p0, p1). For, there are

two pairs of points in the Levi-Civita plane, namely, w±0 = ±√r0e
iθ0/2 and w±1 = ±√r1e

iθ1/2,
such that w±0\1 = p0\1. Supposing that problem (A.13) admits the solutions w(τ ;w−0 , w

−
1 ) and

w(τ ;w−0 , w
+
1 ), it is straightforward that w(τ ;w+

0 , w
+
1 ) = −w(τ ;w−0 , w

−
1 ) and w(τ ;w+

0 , w
−
1 ) =

−w(τ ;w−0 , w
+
1 ): passing to the physical plane, we have then two distinct solutions of (A.12),

given by
(
w(τ ;w−0 , w

+
1 )τ=τ(s)

)2
and

(
w(τ ;w−0 , w

−
1 )τ=τ(s)

)2
.

If instead p0 = p1 = r0e
iθ0, the solution given by w(τ, w−0 , w

−
1 ) collapses into a single point:

there is only one solution of (A.13) conjugated to z(s; p0, p1), and it can be computed explicitely
by choosing w0 = −√r0e

iθ0/2 and w1 =
√
r0e

iθ0/2:

w(τ, w0, w1) =
√
r0

√
2E

Ω
sinh (Ω(τ − τ0))eiθ0/2, τ0 =

1

Ω
arcsinh

(√
Ω

2E

)
=
T

2
, (A.17)

which corresponds to an ejection-collision solution z(s; p0, p0) parallel to the direction eiθ0.

To find solutions of (A.12) we can then search for solutions of (A.13) with suitable endpoints.
We will prove that the fixed ends problem in the Levi-Civita plane admits a unique solution
for every pair of points in R2: to this purpose, we need to introduce some known results from
Riemannian Geometry.
The solutions of (A.13) can be seen as reparametrizations of geodesic curves which connect w0

and w1 in the Riemannian manifold (R2, g̃), with the metric g̃ given by the metric tensor

g̃ij = eσ(w)δij, σ(w) = ln

(
Ω2

2
|w|2 + E

)
> 0 (A.18)

with i, j ∈ {1, 2}: if we prove the existence of a unique geodesic in (R, g̃) with connects w0

and w1, our claim follows straightforwardly. Once we have verified that its hypotheses hold,
this will follow from the Cartan-Hadamard theorem: to retrieve its statement, along with the
definition of all the involved quantities, we refer to [26] and [7]. Taking into account (A.18),
one can prove that, given w ∈ R2, the sectional curvature of TwR2 at w is given by

K(w) = −∆σ(w)

eσ(w)
= − Ω2E(

Ω2

2
|w|2 + E

) < 0. (A.19)

As R2 is simply connected, to apply the Cartan-Hadamard theorem one has then to verify that
the conformal metric (M, g̃) is complete. In view of Hopf-Rinow Theorem, this is equivalent to
show that (M,dg̃) is complete as a metric space, where the distance dg(w0, w1) is defined as the
infimum of all the lengths in (M ; g) of piecewise C1 curves which connect w0 and w1. To prove
this last assertion, we shall take advantage on the following Lemma, stated as part of Theorem
1 in [12, 13].

Lemma A.3. Let (M, g) be a non-compact and complete Rieannian manifold and A : M →
(0,∞) a positive function. We denote a conformally transformed metric on M by g̃ = g/A2. If
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A grows at most linerly towards g-infinity on M , that is,

∀x0 ∈M ∃c1, c2 > 0 such that ∀x ∈M A(x) ≤ c1dg(x0, x) + c2, (A.20)

then (M, g̃) is complete.

In our regularised system, g is the usual Euclidean metric on R2, thenA =

(√
Ω2

2
|w|2 + E

)−1

,

and (A.20) is trivially verified with c1 = 1 and c2 = 1/
√
µ, as

A(w) =
1√

Ω2

2
|w|2 + E

≤ 1
√
µ
≤ |w0 − w|+

1
√
µ

for every w0, w ∈ R2. The Cauchy-Hadamard theorem can be then applied, and as a conse-
quence the existence and uniqueness of an orbit for any pairs of points in the Levi-Civita plane
can be proved.

Proposition A.4. For every w0, w1 ∈ R2 ∃|w(τ ;w0, w1) solution of (A.13) for some T̃ > 0.
Moreover, w(τ ;w0, w1) is of class C1 with respect to variations of w0 and w1.

Taking together Proposition A.4 and Remark A.2, we can then pass to the physical plane,
obtaining the below existence theorem.

Theorem A.5. For every p0, p1 ∈ ∂D0 with p0 6= p1 there are exactly two classical solutions
z0(s; p0, p1) and z1(s; p0, p1) of problem (A.12) for some T0, T1 > 0, which are of class C1 with
respect to p0 and p1.
If instead p0 = p1, there is a unique solution of (A.12), which is ejection-collision.

The previous results ensure the existence and differentiability of exactly two orbits (one in the
case of ejection-collision solutions) which join two different points in ∂D0; on the other hand,
to gain transversality properties an explicit expression of the two solutions is needed. Classical
arguments of Celestial Mechanics (see [9]) allow us to obtain their Cartesian equations: let us
consider the first equation of Problem (A.12), namely, z′′(s) + µ

|z(s)|3 z(s) = 0, and express it in

polar coordinates, obtaining {
r′′(s)− r(s)θ′(s) = − µ

r2(s)
,

r(s)θ′′(s)− 2r′(s)θ′(s) = 0.
(A.21)

The second equation express the conservation of the modulus of the angular momentum

k = r2(s)θ′(s) = |z(s) ∧ z′(s)| = |z(0) ∧ z′(0)|. (A.22)

Taking into account the uniqueness of the ejection-collision solution for p0 = p1, we can state
that k = 0⇔ p0 = p1: assuming p0 6= p1, we have then k 6= 0.
The polar equation associated to a solution of z′′(s) + µ

|z(s)|3 z(s) = 0 having energy E + h and

angular momentum k is

r(f) =
p

1 + e cos f
, (A.23)
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where f ∈ [0, 2π) is traditionally called true anomaly and

p =
k2

µ
, e =

√
1 +

2k2(E + h)

µ2
> 1. (A.24)

With a suitable choice of a reference frame denoted with R(0, x′, y′), we can see that equation
(A.23) represents the branch of particular hyperbolæ with the concavity facing the origin. More
precisely, if a = µ/ [2(E + h)]:

• if we choose (x′, y′) = (r cos f, r sin f), we obtain that for every s ∈ R
(x′(s), y′(s)) ∈ H1 =

{
(x, y) ∈ R2 | (x− ae)2(e2 − 1)− y2 = a2(e2 − 1), x ≤ a(e− 1)

}
(A.25)

• if instead (x′, y′) = (−r cos f, r sin f), we have that ∀s ∈ R
(x′(s), y′(s)) ∈ H0 =

{
(x, y) ∈ R2 | (x+ ae)2(e2 − 1)− y2 = a2(e2 − 1), x ≥ a(1− e)

}
.

(A.26)

Proposition A.6. For every p0 = eiθ0 , p1 = eiθ1 ∈ ∂D0, p0 6= p1, the two solutions z0(s; p0, p1)
and z1(s; p0, p1) of (A.12) are such that:

• for every s ∈ [0, T0]

z0(s; p0, p1) ∈ H0(p0, p1) =

=
{

(x′, y′) ∈ R2 | (x′ + ae0)2(e2
0 − 1)− y′2 = a2(e2

0 − 1), x′ ≥ a(1− e0)
}
,

• for every s ∈ [0, T1]

z1(s; p0, p1) ∈ H1(p0, p1) =

=
{

(x′, y′) ∈ R2 | (x′ − ae1)2(e2
1 − 1)− y′2 = a2(e2

1 − 1), x′ ≤ a(e1 − 1)
}
,

where (
x′

y′

)
=

(
cosα0 sinα0

− sinα0 cosα0

)(
x
y

)
, α0 =

θ1 + θ0

2
, (A.27)

e0 =
−x0 +

√
4a2 + 4a+ x2

0

2a
, e1 =

x0 +
√

4a2 + 4a+ x2
0

2a
, x0 = cos

(
θ1 − θ0

2

)
. (A.28)

Proof. As the system is invariant under rotations, it is sufficient to prove the claims for p0, p1

symmetric with respect to the x−axis, namely, p̄0 = e−iβ, p̄1 = eiβ, β ∈ (0, π): any other cases
can be treated as this one after a rotation of angle α0.
For p0 = p̄0 and p1 = p̄1, we have α0 = 0 and x0 = cos β: direct computations shows that e0 and
e1 as defined in (A.28) are the only values of eccentricity such that p̄0, p̄1 ∈ H0 and p̄0, p̄1 ∈ H1.
The thesis follows from the uniqueness of the two solutions of (A.12). �

Remarks A.7. • One can easily verify that, according to Definition 4.2, for every p0, p1 ∈
∂B1(0), p0 6= p1, |p0 − p1| < 2,

Ind(z0[0, T0], 0) = 0 and |Ind(z1[0, T1], 0)| = 1. (A.29)

• For p1 → p0, the solution z1(s; p0, p1) tends to the ejection-collision solution z(s; p0, p0)
in the direction of p0. For, p1 → p0 implies e1 → 1 and k1 → 0.
• It is clear that for every s ∈ (0, T1) we have that |z(s; p0, p1)| < 1.
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The analytic expressions of the traces of z0(s; p0, p1) and z1(s; p0, p1) allow to derive the transver-
sality properties of the latter; as we are interested to the solution which converges to the ejection-
collision one for p1 → p0, we will focus on the transversality of z1(s; p0, p1) (an analogous result
can be obtained for z0(s; p0, p1)).

Proposition A.8. There is 0 < C < 1 such that for every p0, p1 ∈ ∂B1(0), |p0 − p1| < 2, we
have

− p0 ·
z′1(0; p0, p1)

|z′1(0; p0, p1)|
> C and p1 ·

z′1(T1; p0, p1)

|z′1(T1; p0, p1)|
> C. (A.30)

Proof. If p0 = p1, the ejection-collision solution is orthogonal to ∂D0, then the claims are
trivially true. Let us assume p0 6= p1. As in Proposition A.6, it is sufficient to prove the claims
for p0 = e−iβ = (x0,−

√
1− x2

0), p1 = eiβ = (x0,
√

1− x2
0), with β ∈ (0, π/2). The positive

branch of H1 can be parametrized as y(x) =
√
e2

1 − 1
√

(x+ ae1)2 − a2, with e1 as in (A.28).
Writing p1 = p1(x0) = (x0, y(x0)) and v1 = (1, ∂xy(x0)), we can express the cosine of the angle
between p1 and v1 as a function

c(x0) ≡ p1 ·
v1

|v1|
= e0

√
2a+ x0(x0 +

√
4a2 + 4a+ x2

0)

2 + 4a
, (A.31)

which is strictly increasing for x0 ∈ [0, 1] and such that c(0) =
√

1+a
1+2a

= C < 1 and c(1) = 1:

this prove the claim for p1 and s = T1. The same estimate holds for −p0 and s = 0, taking into
account that z′1(0, p0, p1) points inward the domain D. �

Remark A.9. The value of C depends on the physical parameters of the problem: in particular,
with reference to the proof of Proposition A.8, one has

c(0) =

√
1 + a

1 + 2a
=

√
E + h+ µ/2

E + h+ µ
,

which tends to 1 when E + h → ∞. As a consequence, one can control the transversality of
z1(s; p0, p1) by acting on the value of the total inner energy. This fact is of particular importance
in view of Remark 3.2, since for the first return F to be well defined one needs that the angle
β1 = ∠(p1, v1) is such that

| sin β1| ≤

√
VE(p1)

VI(p1)
=

√
E − ω2/2

E + h+ µ
. (A.32)

If E + h is such that
√

1− C2 <
√

(E − ω2/2)/(E + h+ µ), and this is true if
√
µ/2 <√

E − ω2/2, Eq.(A.32) is satisfied.
Moreover, since for p0 → p1 the arc z1(s; p0, p1) tends to the ejection-collision solution, the
lower bound C can be controlled also by choosing the endpoint to be close enough.

Taking together Theorem A.5, Propositions A.6 and A.8 and Remark A.7, we can finally
state the final existence and uniqueness theorem for the unperturbed boundary.
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