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ABSTRACT

PURPOSE Rare cancers constitute over 20% of human neoplasms, often affecting patients
with unmet medical needs. The development of effective classification and
prognostication systems is crucial to improve the decision-making process and
drive innovative treatment strategies. We have created and implemented
MOSAIC, an artificial intelligence (AI)–based framework designed for multi-
modal analysis, classification, and personalized prognostic assessment in rare
cancers. Clinical validation was performed on myelodysplastic syndrome
(MDS), a rare hematologic cancer with clinical and genomic heterogeneities.

METHODS We analyzed 4,427 patients with MDS divided into training and validation
cohorts. Deep learning methods were applied to integrate and impute clinical/
genomic features. Clustering was performed by combining Uniform Manifold
Approximation and Projection for Dimension Reduction 1 Hierarchical
Density-Based Spatial Clustering of Applications with Noise (UMAP 1

HDBSCAN) methods, compared with the conventional Hierarchical Dirichlet
Process (HDP). Linear and AI-based nonlinear approaches were compared for
survival prediction. Explainable AI (Shapley Additive Explanations approach
[SHAP]) and federated learning were used to improve the interpretation and the
performance of the clinical models, integrating them into distributed
infrastructure.

RESULTS UMAP 1 HDBSCAN clustering obtained a more granular patient stratification,
achieving a higher average silhouette coefficient (0.16) with respect to HDP
(0.01) and higher balanced accuracy in cluster classification by Random Forest
(92.7% 6 1.3% and 85.8% 6 0.8%). AI methods for survival prediction out-
perform conventional statistical techniques and the reference prognostic tool
for MDS. Nonlinear Gradient Boosting Survival stands in the internal (Con-
cordance-Index [C-Index], 0.77; SD, 0.01) and external validation (C-Index,
0.74; SD, 0.02). SHAP analysis revealed that similar features drove patients’
subgroups and outcomes in both training and validation cohorts. Federated
implementation improved the accuracy of developed models.

CONCLUSION MOSAIC provides an explainable and robust framework to optimize classifi-
cation and prognostic assessment of rare cancers. AI-based approaches
demonstrated superior accuracy in capturing genomic similarities and pro-
viding individual prognostic information compared with conventional statis-
tical methods. Its federated implementation ensures broad clinical application,
guaranteeing high performance and data protection.
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INTRODUCTION

According to RARECARENet, rare cancers are identified by an
incidence of <six cases per 100,000 persons per year.2

Twenty-five percent of patients diagnosed with cancer fall
into this category, with each clinical entity within it
encompassing a subset of patients with significant unmet
medical needs. Rare cancers present unique challenges in-
cluding low diagnostic rates, limited available data, and a
lack of robust clinical evidence for treatment decisions.3,4

Overall, these diseases constitute a public health emer-
gency, underscoring the urgent need to devise new tech-
niques for improved patient management.5,6

In this context, the establishment of effective classification
and prognostication systems would offer immediate clinical
utility, providing a solid basis to improve the clinical
decision-making process. Conventional classification/
prognostication tools in cancer primarily rely on clinical
and histopathologic features, which are complemented by
genomic features to better capture clinical-pathologic en-
tities and predict clinical outcomes of interest.7 The potential
impact of genomic profiling in the classification and the
clinical management of rare cancers lies on three key ad-
vantages: (1) enabling the categorization of morphologically
defined neoplasms into distinct genomic subgroups with
different therapeutic responses and outcomes, (2) identi-
fying biomarkers for disease monitoring, and (3) laying the
foundations for personalized treatments. In particular, the
combined use of clinical and genomic data may enable the
creation of prognostic models capable of generating per-
sonalized predictions of clinical outcomes.8

Hematologic neoplasms, such as myelodysplastic syn-
dromes (MDSs), exemplify the clinical challenges associ-
ated with rare cancers.9 MDSs are heterogeneous clonal
hematopoietic disorders characterized by peripheral blood

cytopenia and an increased risk of evolution into AML.
These disorders range from indolent conditions to cases
rapidly progressing into AML and, therefore, a risk-
adapted treatment strategy is needed.9,10 Over the past
decade, genomic characterization has revealed a complex
and heterogeneous landscape of recurrent genomic ab-
normalities in MDS, influencing distinct clinical pheno-
types, survival rates, and disease progression risks.11,12

Consequently, the assessment of mutational status has
now been integrated into current classification and prog-
nostication systems.13,14

Innovative technological approaches are essential to en-
hance the development of next-generation tools for per-
sonalized medicine in rare cancer and efficiently implement
these models in clinical practice.5,6 In this scenario, artificial
intelligence (AI) holds great promise in health care.15 Rare
cancers, which are severely under-represented in basic and
clinical research, can particularly benefit from AI technol-
ogies. The ability of AI technologies to integrate and analyze
data from different sources can effectively address the
unique challenges presented by rare cancers.5,6

In this study, we aimed to generate innovative, scalable, and
fully explainable predictive models for patients with rare
cancers combining statistical and machine learning
methods. Moreover, we addressed the issue of implementing
these models across multiple clinical centers, preserving
data privacy. To this purpose: (1) we developed MOSAIC, an
Artificial Intelligence–based Framework for Multimodal
Analysis, Classification, and Personalized Prognostic As-
sessment in Rare cancers; (2) we proposed innovative al-
gorithms to improve personalized medicine in these
diseases; (3) we tested the framework’s capability to im-
plement clinical analysis in a specific use case (MDS), and (4)
we provided preliminary evidence for the feasibility of a
decentralized learning approach that enables collaborative

CONTEXT

Key Objective
Rare cancers constitute over 20% of human neoplasms, often affecting patients with unmet medical needs. Effective and
standardized classification and prognostication systems on the basis of multimodal data analysis are crucial to improve
the decision-making process and drive innovative treatment strategies.

Knowledge Generated
We developed and implemented MOSAIC, an artificial intelligence (AI)–based framework designed for multimodal analysis,
classification, and personalized prognostic assessment in rare cancers. We compared different statistical and machine/
deep learning–based approaches, using Explainable AI and federated learning for interpretability and distributed analysis.

Relevance
MOSAIC is a comprehensive AI-based framework to optimize classification and personalized prognostic assessment of rare
cancers. The application of the model through a federated learning approach in clinical care can be valuable in decision-
making process and driving treatment strategies.
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model training by distributing the learning process among
several nodes, highlighting its advantages.

METHODS

Study Populations

The study was conducted by GenoMed4All16 and Synthema17

consortiums with the support of EuroBloodNET, the Euro-
pean Reference Network on rare hematologic diseases.18 All
the study procedures were compliant with the Ethics and
governance of artificial intelligence for health.19

The selection criteria for the clinical use case were a cancer
exhibiting rare prevalence in the general population with
high clinical and molecular heterogeneities. This choice was
aimed at assessing the performance of the MOSAIC platform
under the most challenging clinical scenario. Consequently,
we opted to focus on MDS as it aligned perfectly with these
criteria.9,11,12

The study population consisted of a retrospective cohort of
2,043 patients provided by GenoMed4All and Synthema
consortia (training cohort) and a publicly available data set

of 2,384 patients by the International Working Group for the
study of Prognosis in MDS (external validation cohort).14

Inclusion criteria were age ≥18 years, diagnosis of MDS by
WHO 2016 criteria,20 and information available on demo-
graphics, clinical features, mutational screening/
chromosomal abnormalities, treatment, and survival. The
Humanitas Ethics Committee approved the study (Clin-
icalTrials.gov Identifier: NCT04889729). Written informed
consent was obtained from each participant (Data
Supplement, SF1).

Design of MOSAIC Framework

MOSAIC, an Artificial Intelligence–based Framework for
Multimodal Analysis, Classification, and Personalized
Prognostic Assessment in Rare cancers, was designed to help
clinicians in the implementation of next-generation clas-
sification and prognostic systems that integrate an in-
creasing amount of genomic information (Fig 1). MOSAIC
was developed with a strategic selection of methods, har-
nessing the full potential of multilayer data integration and
analyses specific to rare diseases. We implemented advanced
methods for real-world missing data imputation to prevent
the introduction of potential biases that might compromise

Input data

AI-based
clustering methods

Hierarchical Dirichlet
clustering methods

Analysis Evaluation New patient

Statistical and AI-based
survival prognostic

models

Patient groups

Model performance
analysis and selection

of the best model

Classification model for
assigning new patients to

a clinical group

ExplainAbility of the AI
models

 

Survival prognostic
model enhanced by
Federated Learning

implementation

 

Patient groups

Clinical implementation of

personalized medicine

program

Data imputation of

missing values

Clinical features

Genomic features

Classification

Prognostic assessment

FIG 1. Overview of the MOSAIC framework architecture applied on training and validation cohorts. The figure shows the AI-based framework
for multimodal analysis of classification and personalized prognostic assessment in rare cancers. Once the analysis framework is applied to
the training cohort, the validated models can be used on new patients (green block), even in a federated environment. The scheme suggests
analysis pathways, methods, and how to use them, for the multimodal analysis of classification and prognostic assessment in rare cancers,
including the implementation of the models in a federated environment to enhance performance while maintaining a high degree of privacy.
AI, artificial intelligence.
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the generalizability of the predictive models.21 High-
performing hierarchical clustering methods were applied
to genomic data to identify the main components defining
the study population.22 Information on the identified
genomic-based patients’ groups was then combined with
demographics and longitudinal data to perform survival
analysis, comparing statistical versus deep learning ap-
proaches. Models with the best performance were selected
and included into a specific pipeline to allow the classifi-
cation and prognostic assessment of new patients. In ad-
dition, MOSAIC enabled model implementation through a
federated learning approach, which has provided evidence of
improved prediction performance and a wide implementa-
tion of algorithms intended for clinical use, while main-
taining a high degree of privacy.23-27 The following sections
show the results of the framework assessment we performed
on patients with MDS. All the models were validated on the
independent validation cohort.

Missing Data Imputation Through Deep Learning

Deep generative decoder architecture was implemented for
missing data imputation of the clinical-biologic variables
(Data Supplement, Fig S1).28 We used a latent space with a
dimensionality of 2 and 10 Gaussian components. The neural
network decoder contains two hidden layers with 12 and 33
units, respectively. We trained all parameters during 200
epochs using the Adam optimizer29 (with betas 0.5 and 0.9)
with a learning rate of 1e-1 for the Gaussian mixture model
and representations and a learning rate of 1e-3 for the de-
coder parameters (Data Supplement, Fig S2). To perform
imputation, we masked out 10% of the original MDS data set
and tested imputation accuracy on the masked values. To
yield the final imputed values, we left the trained Gaussian
mixture model and decoder intact while maximizing the
probability of the missing data conditioned on the observed
data and amaximum-a-posteriori estimated representation
(Data Supplement, SF2).

Clinical and Genomic-Based Clustering and
Classification of Rare Cancers

Hierarchical Dirichlet Process (HDP) was considered to
define groups of patients according to specific genomic
features.12 In addition, Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN)22 was
applied to the two-dimensional embedding of the genomic
panel obtained from Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP),30 which re-
produces the data spatial distribution in a lower dimensional
space. UMAP significantly reduced the number of features in
the clustering step, avoiding the curse of dimensionality.31

This is due to the capability of manifold learning algorithms
(a subclass of dimensionality reduction) to create a low-
dimensional embedding space that will be input to
HDBSCAN, preserving the global information of the data
spatial distribution. HDP identifies statistical components
for molecular alterations, whereas UMAP 1 HDBSCAN

focuses on clustering patients on the basis of the similarity of
their molecular profiles. Both HDP and UMAP 1 HDBSCAN
automatically tune the number of clusters. HDP is more
robust than UMAP 1 HDBSCAN, but it may struggle with
extreme heterogeneity and it requires slower computational
times. On the other hand, UMAP1HDBSCAN is the state-of-
the-art preferred approach because of its scalability on big
data and efficient visualization capabilities, but it requires
clinical feedback for optimal cluster determination, espe-
cially in heterogeneous and sparse data scenarios.32 To
improve UMAP stability and identify the optimal number of
clusters, we tuned the number of the nearest neighbors by
identifying the first significant gap in the average distance
from the neighbors’ trend (Data Supplement, Fig S3), which
affects the cluster size. A statistical analysis was imple-
mented to check if clusters found by UMAP1HDBSCANmay
provide coherent and integrative information to HDP clus-
ters. We measured the Adjusted Rand Index (ARI) for
agreement among the two clustering schemes, and we
implemented a Random Forest classification to assign new
patients to a specific cluster in a clear, interpretable, and
reproducible way to investigate cluster characterization and
reproducibility. Models’ explainability was performed
through the Shapley Additive Explanations Approach (SHAP)
to investigate features’ importance and their effect on the
cluster assignment process.33 Further details are given in the
Data Supplement (SF3).

Prognostic Assessment of Rare Cancers on the Basis of
the Integration of Clinical Parameters and Genomics

The following models were assessed to identify the best-
performing prognostic tools for patients with rare cancers
by integrating clinical and genomic features: Cox Proportional
Hazards (CoxPH)model (and its penalized version),34 Random
Survival Forests,35 DeepSurv,36 Gradient Boosting,37 and
XGboost Survival.38 All these models, except for CoxPH, are
inherently nonlinear, thus potentially capable of leveraging
complex interactions among the covariates to predict the
survival outcome. We also considered different feature con-
figurations, including patients’ stratification from the pre-
vious step. Models’ hyperparameters were optimized using a
three-time repeated three-fold cross-validation schema on
the training cohort, targeted to maximize the median
Concordance-Index (C-Index). All models were then tested
with a 10-time repeated three-fold cross-validation on the
training cohort and further on the external validation cohort.
Finally, we performed explainability analysis through SHAP
on the outcome of the best model in terms of performance.33

Further details are given in the Data Supplement (SF4).

Federated Learning Implementation of the Survival
Predictive Models

To provide evidence of the advantages provided by imple-
menting the models using a federated approach, we simu-
lated a federated environment in different centers (ie,
hospitals providing data) to give an insight into how this

4 | © 2024 by American Society of Clinical Oncology
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process would affect a clinical scenario by implementing
three experimental settings. In setting A, we performed a
centralized training of the CoxPH model on a single center
(node) using all the 4,427 patients with MDS and simulating
the best case scenario in which themodel is trained on all the
available data. In setting B, we assumed three nodes par-
ticipating with a different amount of data for training the
CoxPH (first node: 60% of the total number of patients with
all features; second node: 30% of the total number of pa-
tients with all features; third node: 10% of the total number
of patients, but forcing a significantly high percentage of
missing covariates). This setting allows testing if a federated
implementation helps to improve local results since it is
known that the nodewith fewer datawill performworse than
the other one. Finally, in setting C, a federated approach was
implemented by using Federated Average (FedAvg)39 on the
three nodes of the previous setting. Every node indepen-
dently trains the model and periodically transmits its model
weights to a centralmodel. The centralmodel then computes
an average of the weights, assigning greater significance to
nodes with a higher patient count. This average is then
transmitted back to each node to update its model weights
(Data Supplement, SF5).

RESULTS

Missing Data Imputation

We applied an advanced deep generative decoder for data
imputation,28,29 achieving accurate results. We first focused
on clinical-biologic features, obtaining low errors in im-
putingmissing values. When imputing genomic features, we
observed a tendency to assign higher mutation probabilities
to mutated sites, indicating that the model is able to learn
which sites are more likely to be mutated in MDS. Com-
parative analysis revealed the decoder’s superiority over
traditional mean imputation methods for both clinical and
genomic features.

Patient Classification on the Basis of Genomic Data

We performed patient classification using HDP and UMAP 1

HDBSCAN clustering approaches. We noticed that both ap-
proaches identified valid clusters in our training cohort,
whereHDP identified eight robust clusters, whereas UMAP1

HDBSCAN identified 18 strongly characterized clusters, with
a boost in granularity, but with considerable overlap with
HDP outcomes (Fig 2A; Data Supplement, Fig S4), and 38.5%
of ARI agreement, significantly good for a HDBSCAN clus-
tering scheme with more than twice the number of HDP
clusters. Indeed, the average Silhouette Coefficient on the
same original data space was 0.16 for UMAP1HDBSCAN and
0.01 for HDP and, therefore, the higher data compression
with UMAP 1 HDBSCAN might foster the creation of less
heterogeneous groups by increasing the optimal number of
clusters. Figure 2B shows how the patients assigned to HDP

clusters are distributed in the UMAP 1 HDBSCAN clusters.
Finally, a Random Forest classifier was used to assign pa-
tients from a test set to the clusters found, obtaining higher
performance with UMAP1HDBSCAN with respect to HDP in
terms of balanced accuracy (92.7% 6 1.3% v 85.8% 6 0.8%)
and Cohen’s K (92.1% 6 1.4% v 83.3% 6 0.9%) as shown in
the Data Supplement (Table S1). Replicating these analyses
on the validation cohort, similar distributions were observed
when trying to assign patients from the external validation
cohort to the UMAP 1 HDBSCAN clusters (Fig 3A) compared
with the training cohort. The explainability analysis showed
that, in both populations, similar features drive patients’
classification (Fig 3B). Figure 3C shows SHAP summary plot
analysis on the top 10 most important defining features for
training and external validation cohorts for clusters 1, 2, 3,
and 4 (others in the Data Supplement, Fig S5).

Comparison of Prognostic Models for Rare Cancers

We applied different survival models considering demo-
graphics and clinical and genomic features to predict the
probability of overall survival in patients with MDS for the
training and the validation external cohort, which repre-
sented a blind test set to assess the performance.

The models’ performance in the two cohorts (expressed in
terms of C-Index) is reported in Figure 4A. The results
obtained by using different feature sets are shown in theData
Supplement (Fig S6).

Overall, nonlinear machine learning/deep learning–based
methods outperformed classical CoxPH-based approaches.
All the models showed higher C-indices with respect to the
reference prognostic tool for MDS (Revised International
Prognostic Scoring System).10 In particular, the Gradient
Boosting Survival (GBS) model achieved a mean C-Index of
0.74 (SD, 0.02) in the external validation cohort, signifi-
cantly greater than that in the linear CoxPH method
(C-Index, 0.71; SD, 0.02). C-Indices in the internal vali-
dation (from training cohort) were 0.75 (SD, 0.01) and 0.77
(SD, 0.01) for CoxPH and GBS, respectively. Explainability
analysis by SHAP showed similar feature importance
ranking for both training and external validation cohorts
(Fig 4B).

Federated Learning Implementation of the
Predictive Models

We implemented FedAvg39 on the CoxPH model34 consid-
ering overall survival as the end point and performed a
three-fold cross-validation evaluating the C-Index for all
the experimental settings described in the Methods section
(Fig 5A). In setting A, the centralized model results in a
C-Index of 0.74 6 0.01. Results in setting B in terms of
C-Index were 0.72 6 0.03, 0.70 6 0.002, and 0.54 6 0.11 for
the nodes having 60%, 30%, and 10% of all available

JCO Clinical Cancer Informatics ascopubs.org/journal/cci | 5
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patients, respectively. Finally, in setting C implementing the
CoxPH model with FedAvg, results in terms of C-Index were
0.726 0.02, 0.736 0.01, and 0.636 0.12 for the first, second,
and third nodes, respectively. The obtained results sum-
marized in Figures 5B and 5C demonstrate an enhancement
in the model’s performance with the implementation of the
federated approach (Data Supplement, Fig S7), even in a
situation of data scarcity (third node in settings B and C).

Results for overall survival and event-free survival are re-
ported in the Data Supplement (Fig S8 and Table S2).

DISCUSSION

Next-generation classification/prognostication systems
integrating clinical and morphologic information with the
genomic profile are expected to improve themanagement of
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FIG 2. Patient clustering on the basis of genomic features performed using AI-based clustering and HDP
methods on the MDS cohort (N 5 2,043). (A) UMAP two-dimensional embedding. Each dot represents a
patient, whose location is defined on the basis of its cytogenetics and genomic features (gene muta-
tions). The figure shows the number of assigned clusters together with some labels to specify the
genomic characterization of some clusters. The model found 18 clusters with 56 unclear patients
assigned to cluster –1. (B) Alluvial plot showing the more granular classification of HDBSCAN compared
with the clinical groups in the study by Bersanelli et al12 found using the HDP clustering approach. AI,
artificial intelligence; HDBSCAN, Hierarchical Density-Based Spatial Clustering of Applications with
Noise; HDP, Hierarchical Dirichlet Process; MDS, myelodysplastic syndrome; UMAP, Uniform Manifold
Approximation and Projection for Dimension Reduction.
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patients with rare cancers.4,5 Here, we showed that the
MOSAIC platform offers an explainable and robust approach
to optimize classification and prognostic evaluation of rare
cancers, such as MDS. MOSAIC incorporates cutting-edge
methodological approaches specifically designed to handle
and integrate complex information, even in scenarios with a
limited amount of data available (as reflected in federated

experimental settings). Our findings indicate that machine/
deep learning methods are more efficient and accurate than
conventional statistical approaches in capturing genomic
similarities between patients and prognostic information at
the individual patient level. In addition, federated learning
algorithms enable a wide clinical implementation of the
models, ensuring high performance and data protection.
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FIG 3. Validation of the identified clusters in the MDS cohorts (N 5 4,427) using XAI frameworks. (A) Cluster relative frequency in both MDS
training (N 5 2,043) and validation cohorts (N 5 2,384); clusters were assigned training a RF classifier (100 trees, maximum depth 5 35,
minutes samples per leaf 5 1) on the whole training cohort. (B) Average impact on cluster assignment for every feature and every cluster,
obtained using SHAP on the trained best selected RF classifier on the training data set (left). Average impact on cluster assignment for every
feature and every cluster, obtained using SHAP on the trained best selected RF classifier on the validation data set (right). (C) Feature impact
on cluster assignment, obtained using SHAP on the trained best selected RF classifier, for both training and validation cohorts. MDS,
myelodysplastic syndrome; RF, Random Forest; SHAP, Shapley Additive Explanations Approach; XAI, Explainable artificial intelligence.
(continued on following page)
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To assess the clinical value of theMOSAIC platform, different
important issues were addressed, essential for the right
deployment of predictive models in clinical care, particularly
when including AI-based approaches. These include trans-
parency, reliability, implementation, and data privacy
preservability.15,19

In terms of transparency, MOSAIC provided a good under-
standing of all the models (interpretability and explain-
ability) by using effective algorithms that assist clinicians in
defining the most relevant clinical and genomic features (in
order of priority) driving the classification and prediction of
survival probabilities for an individual patient.

Regarding reliability, it iswell known thatmainvulnerabilities
of predictive models are related to lack of generalizability.19

Here, we provided evidence for the clinical implementability

of theMOSAIC platform in the challenging clinical scenario of
a rare cancer with high clinical and genomic heterogeneities
(MDS), also demonstrating the generalizability of findings
through a large independent validation cohort.

Regarding technological implementability, the MOSAIC
platform leverages containerized models, thus facilitating
immediate deployment and continuous performance anal-
ysis in different hospitals, ready for federated infrastructure
implementation.

A crucial topic for the clinical implementation of precision
medicine tolls in rare cancer is the scalability of the tech-
nology across different clinical scenarios (rare cancers ac-
count for >20%of all human cancers, but each single identity
involves only a limited number of patients and presents
disease-specific clinical and genomic features).2-6
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FIG 4. Prognostic assessment of patients with MDS (N5 2,043) on the basis of clinical and genomic features comparing
different methods for survival prediction. (A) Comparison of different overall survival prediction methods in MDS: CoxPH
model (and its penalized version), Random Survival Forests, DeepCox, Gradient Boosting, and XGboost survival methods.
C-Index was used to evaluate model performance; C-Index of the conventional IPSS-R scoring system is reported as a
baseline. *P < .01, **P < .001, ***P < .0001. (B) Validation using XAI frameworks of the best-performing survival model
(Gradient Boosting). The figure shows the features’ impact on overall survival prediction in the training (right) and
validation cohorts (left). C-Index, Concordance-Index; IPSS-R, Revised International Prognostic Scoring System; MDS,
myelodysplastic syndrome; XAI, Explainable artificial intelligence.
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FIG 5. Federated learning implementation. (A) Overview of experimental settings implemented to test the benefits of a federated learning
architecture. Setting C shows the federated architecture’s implementation, allowing information of (continued on following page)
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MOSAIC platform’s ability to integratemultiple data layers and
to account for conditional dependencies between features in a
heterogeneous genomic landscape (MDS)9-12 suggests that
classification/prognostication models can be efficiently
translated into different clinical scenarios.Multimodal analysis
is crucial not only to increase the generalizability ofmodels but
also to increase the performances by leveraging more infor-
mation. ThenextversionofMOSAICwill involve the integration
of other datamodalities such as imaging, text, advanced omics
data, and other nonstructured information available.

Innovative technologies for data collection and analysis to
preserve data privacy are required for implementing per-
sonalized medicine, especially in rare cancers where pre-
dictive models rely on limited data. Federated learning
addresses privacy concerns by collaboratively training al-
gorithms without sharing data. Recent studies show that
federated models perform comparably with centralized

ones, without moving patient data beyond the firewalls of
the institutions in which they reside. Our experiment
demonstrates the effectiveness of federated learning in
improving predictive models for MDS patient survival
prediction.

MOSAIC aims to improve translational research by also
scaling in different clinical domains of rare cancers. The
initiative originates within the European GenoMed4All and
Synthema consortia, following the goal of creating advanced,
accessible, and clinically validated technologies in the clinical
practice for precision medicine. For effective technology
dissemination and validation, future plans include the fol-
lowing: (1) implementing the MOSAIC pipeline in all the
reference centers of EuroBloodNET (>100) to increase the
accuracy of classification/prognostication tools for rare he-
matologic diseases, (2) using the MOSAIC framework in
validation studies on different rare cancers by comparing the
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FIG 5. (Continued). individual models sharing without data transfer. In this setting, we simulated three different centers (ie, hospitals
providing data) to have 60%, 30%, and 10% of the total MDS training patient population (N5 2,043). (B) The figure shows the evolution of the
C-Index for overall survival calculated at each epoch duringmodel training. It can be clearly observed how the value of thismetric rises at five
epochs in the nodes that train in a federated way. After this increase, they continue training with their data for another five epochs. This is
why peaks can appear during training for each of the nodes, especially for nodes 2 and 3. (C) Experiment mean-SD results for C-Indexmetric.
The results are evaluated for the overall survival. Bold entries refer to the best results for each node. C-Index, Concordance-Index; MDS,
myelodysplastic syndrome; OS, overall survival; SD, standard deviation.
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results with traditional methodologies (as done in MDS), and
(3) designing and implementing dissemination and user
adoption strategies to effectively raise awareness of results in

different clinical settings by promoting the use of theMOSAIC
open-source platform in other studies and implementation of
new methodologies by the community.
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