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CHAOTIC DYNAMICS IN REFRACTION GALACTIC BILLIARDS

VIVINA L. BARUTELLO, IRENE DE BLASI, SUSANNA TERRACINI

Abstract. We prove the presence of topological chaos at high internal energies for a new
class of mechanical refraction billiards coming from Celestial Mechanics. Given a smooth closed
domainD ∈ R2, a central mass generates a Keplerian potential in it, while, in R2\D, a harmonic
oscillator-type potential acts. At the interface, Snell’s law of refraction holds. The chaoticity
result is obtained by imposing progressive assumptions on the domain, arriving to geometric
conditions which holds generically in C1. The workflow starts with the existence of a symbolic
dynamics and ends with the proof of topological chaos, passing through the analytic non-
integrability and the presence of multiple heteroclinic connections between different equilibrium
saddle points. This work can be considered as the final step of the investigation carried on in
[12] and [11].

1. Introduction

While studying dynamical systems coming from Celestial Mechanics, it is not uncommon to
come across examples of chaotic models; nevertheless, rigorously proving the chaotic nature of
a physical system is often problematic and it is, for example, the subject of the recent papers
[1, 20, 2, 19, 33, 25, 6, 5, 14]. In this paper we propose the proof of the chaoticity of a model
describing a class of mechanical refraction billiards, which can be thought as general models for
the motion of a particle subject to a discontinuous potential. Their physical interest cover many
different situations (see for instance [18, 29]). In particular, the dynamical system considered
in the present paper is of interest in Celestial Mechanics and involves two forces acting in two
complementary regions of the plane: a Keplerian center of gravitation sits inside a bounded
region D, while a harmonic oscillator is acting in the complementary set of D. This choice of
the potentials appears in the literature (see [13, 12, 11]) to mimic the motion of a particle in an
elliptic galaxy with a Black Hole in its centre; in particular in [13], the 3-dimensional model is
considered and its chaoticity is inferred using a mixed numerical and analytical approach. At
the interface of the two regions, which we assume to be a smooth curve, a generalized Snell’s
refraction law holds and trajectories concatenate inner arcs (Keplerian hyperbolæ) with outer
ones (harmonic arcs) being deflected in the transition through the boundary of D. This indeed
corresponds to some (possibly ill-defined) area-preserving map in the cylinder. While reflection
billiards have been extensively investigated with and without internal potentials (as general
reference we quote the monographs [28, 34] and the paper [35]), at the best of our knowledge,
refraction ones seem to be a new subject in the literature.

The main result of this paper, namely, the chaoticity of the above-said model, will be reached
proceeding step by step. We start by constructing a symbolic dynamics under natural assump-
tions on the geometry of the boundary ∂D and for high inner energies, hence we proceed with
some theorems on the analytical non-integrability and the existence of multiple heteroclinic
connections. Our results take advantage of the fact that a Keplerian centre acts as a scatterer
at high energies (see e.g. [10, 8]) and complement the almost-integrability of the model proved
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Figure 1. Snell’s law between inner and outer arcs. Here, z is the transition
point and t and n are respectively the tangent and outward-pointing normal unit
vectors to ∂D in z.

in [11].
The interested reader can compare our result with the well established theory of integrability
of the gravitational n-centre problem ([5, 6, 7, 9, 25, 22]), while more on integrability at high
energies of the n-center problem can be found in [23, 24].

Analytical description of the model. Let us consider an open bounded domain D ⊂ R2

with a smooth boundary. The different results presented in the current paper will be obtained
imposing different assumptions on ∂D; let us start by assuming that D contains the origin, and
consider the discontinuous potential

V (z) =


VE(z) = E − ω2

2
∥z∥2, if z /∈ D,

VI(z) = E + h+
µ

∥z∥
, if z ∈ D,

where ω2, µ and E are fixed and strictly positive, while h will be chosen progressively large
enough to ensure our results. We also implicitly assume that D is contained in the Hill’s region
of the outer potential VE, that is, the open ball centered at the origin and with radius

√
2Eω−1.

The 0-energy trajectories moving under the force induced by V are concatenations of arcs in
D, which are Keplerian hyperbolæ , and arcs outside D, given by segments of harmonic ellipses;
for the sake of clarity, we will always suppose our concatenation starting with an outer arc. The
potential VI can be extended by continuity on ∂D, hence it makes sense to rule the transition
between outer and inner arcs by means of Snell’s law

(1.1)
√

VE(z) sinαE =
√

VI(z) sinαI ,

where z ∈ ∂D is the transition point and αE, αI are the angles that the two arcs form with the
normal unit vector to ∂D in z (see Figure 1). As we will state more precisely in Appendix A,
Eq. (1.1) has a variational interpretation based on a critical point argument.

Note that the stated Snell’s law depends on the point z, and, as, for any z ∈ ∂D, VI(z) >
VE(z), the transition from the outside to the inside is always well defined; to pass from inside
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Figure 2. Left: homothetic trajectories for the complete dynamics; the dashed
circle denotes the boundary of the Hill’s region for the outer potential. Right:
trajectories for the complete dynamics near homothetic arcs.

to outside we need instead to ask that the inner arc arriving at z is transversal enough, namely,

(1.2) |αI | ≤ αcrit
.
= arcsin

(√
VE(z)√
VI(z)

)
.

The definition of a complete dynamics can actually be compromised from this fact.
Special trajectories for the complete dynamics are homothetic arcs : since both potentials are

radially symmetric and, by Snell’s law (1.1), αI = 0 if and only if αE = 0, every radial direction
hitting the boundary orthogonally is in fact preserved (recall Figure 2, left). The construction
of inner homothetic arcs is based on the classical Levi-Civita regularization method (see [30]
and the recent paper [12]): the solution is in this case understood in a regularized sense; when
a collision occurs it is reflected back following the same direction.

Our aim is then to construct outer and inner arcs connecting points in suitable regions of
∂D; in particular in Section 3 such regions will be understood as neighbourhoods of points on
these straight trajectories (see also Figure 2, right). The procedures to obtain such arcs are
different:

• outer arcs will connect points close to each others and will be obtained via perturbative
methods;

• inner ones will act as transfer orbits between possibly disjoint regions of ∂D, and can
be obtained by purely geometric arguments.

Statement of the results. The proof of the chaoticity of our system is developed through
intermediate results, first of them the presence of a symbolic dynamics. This is guaranteed
under some dynamical and geometric conditions on the boundary of the billiard’s domain D.
Here we give an heuristic description of these assumptions, postponing to Definitions 2.1, 2.5,
and 2.6 the rigorous explanation. The outer-arc and inner-arc properties regard the existence
of a unique outer or inner arc connecting points in suitable subsets of ∂D, where we stress
that the uniqueness of the inner arc is understood in a selected topological class. Furthermore,
the outer-arc property involves a single segment of the boundary, while, since inner arcs acts
indeed as transition arcs between different part of ∂D, the inner-arc property describes a union
of segments of the boundary. The change sign property is connected to the change in sign
of a partial derivative of a suitable Jacobi distance (see Appendix A). At high energies, this
property may be related with the sign-change of the derivative of the Euclidean norm function
restricted to ∂D.
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Definition 1.1. We say that the domain D is admissible if ∂D = γ ([0, L]), γ ∈ C1, and
there exists a finite union of disjoint intervals A = ∪m

i=1(ai, bi) ⊂ [0, L], m ≥ 2, satisfying
the inner-arc property (Def. 2.5), the change-sign property (Def. 2.6) and such that for every
i = i, . . . ,m each interval (ai, bi) satisfies the outer-arc property (Def. 2.1).

Now, assuming the admissibility of D, we can start with the construction of our symbolic
dynamics. First of all we need an alphabet, given in our case by the set I .

= {1, . . . ,m} labeling
the connected components of A. The corresponding words will be composed as bi-infinite
sequences of symbols in I, with a suitable grammar here specified.

Definition 1.2. We define the set of admissible words for our symbolic dynamics as

L .
=

{
ℓ = (ℓi)i ∈ IZ

∣∣∣∣ for every i ∈ Z, the symbols ℓi and ℓi+1 do not

correspond to antipodal intervals

}
.

In the previous definition, two intervals are antipodal if there exists a point in the first interval
and another point in the second one which are antipodally directed (see Definition 2.3). The
non-antipodality condition is essential for the uniqueness of the inner arc and it is not just a
technical requirement.

Example 1.3. Let the intervals (ai, bi) be neighbourhoods of some connected components [αi, βi]
of the critical set of the distance function to the Keplerian center ∥ · ∥|∂D . Let us assume that
the half-line connecting the origin to γ(t) intersects ∂D only at γ(t) for every t ∈ ∪m

i=1(ai, bi).
Then, the domain is admissible for large internal energies provided each interval is not self
antipodal and the critical intervals are topologically stable (i.e. the derivative of the distance
function changes sign close to their extremals).

The correspondence between words and trajectories of our dynamics is given by the following
definition.

Definition 1.4. Assuming D is admissible, we say that a trajectory realizes a word ℓ ∈ L if it
visits the intervals (ai, bi), in the order imposed by ℓ (see Figure 3). This means that there are
two consecutive crossings of ∂D in each γ ((ai, bi)).

Now we are in a position to state our first result.

Theorem 1.5. Let D be an admissible domain. Then for any sufficiently large h there exists
a subset X of the initial conditions-set, a first return map F and a continuous surjective map
π : X → L such that the diagram

X X

L L

F

π π

σr

commutes, where σr is the Bernoulli right-shift. In other words, for large enough h, our refrac-
tion billiard model admits a symbolic dynamics.

Remark 1.6 (Example 1.3 continued). In the setting described there, let us assume furthermore
that there are at least two distinct intervals which are nor antipodal: then there are infinitely
many distinct admissible words, giving rise to a nontrivial symbolic dynamics at large inter-
nal energies. The proof is an easy modification of that of Theorem 1.9, where the connected
components [αi, βi] are reduced to singletons.

To prove Theorem 1.5 we shall use a broken geodesic method, reminiscent of the one used in
[33, 2]; the key part of the proof is the surjectivity of the map π; in practice, this means that
for every ℓ ∈ L we need to find an initial condition in X that generates a trajectory realizing
the world ℓ. This result is achieved by means of a shadowing lemma which consists in searching
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Figure 3. Example of orbit which realizes the periodic word ℓ =
(. . . , 1, 3, 2, 1, 3, 2, . . .). The orbit visits the three segments γ ((ai, bi)), i = 1, 2, 3,
in the order prescribed by ℓ.

critical points of a suitable length functional. Such critical points are obtained applying a
fixed point theorem, known as Poincaré-Miranda Theorem (see [31]) and here the change-sign
property is crucial. In particular this techniques can be used to prove the existence of closed
trajectories realizing any periodic word in L.
The possible injectivity of π, necessary to prove the actual chaoticity of the model, may be
obstructed by the lack of uniqueness of the searched critical point: we will return on this
problem later.
Under some restrictions on the words in L, we can prove that the corresponding symbolic
dynamics is collision-free. In order to do that we define the set of bi-infinite symmetric words
Ls ⊂ L admitting a symmetry axis and state the following corollary.

Corollary 1.7. Replacing L with L̃ .
= L\Ls in the diagram of Theorem 1.5, we obtain that the

symbolic dynamics is not collisional, in the sense that any trajectory corresponding to a word
ℓ ∈ L̃ does not have any collisional inner arc.

Let us now come back to Theorem 1.5; the admissibility of D stated in Definition 1.1 has a
quite implicit formulation, nevertheless there are some simple geometric sufficient conditions to
guarantee it. They are related to the presence of the special directions that define homothetic
arcs, called, from this moment on, central configurations.

Definition 1.8. A central configuration is a point P ∈ ∂D such that

• P is a constrained critical point for ∥ · ∥|∂D , that is, the position vector P is orthogonal

to the boundary ∂D at P ;
• the half-line connecting the origin to P intersects ∂D only at P .

A central configuration is termed strict if it is a strict local maximum of minimum for ∥ · ∥|∂D .

Theorem 1.9. Let us suppose that γ ∈ C1([0, L]) and that there exist m strict central config-
urations, not antipodal if m = 2. Then the domain D is admissible and our refraction billiard
admits a symbolic dynamics as defined in Theorem 1.5.
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In this framework, strengthening the assumptions on the central configurations we can obtain
results on the analytic non integrability of the system.

Definition 1.10. A central configuration P is termed non degenerate if γ is of class C2 in a
neighborhood of P and the second differential of the function ∥ · ∥|∂D is not degenerate at P .

The non-degeneracy of a central configuration allows to prove that, as far as h is large enough,
the corresponding homothetic equilibrium trajectory is a saddle (see Proposition 4.2 and [12]).
The hyperbolicity of such trajectory determines the presence of a stable and of an unstable
manifold which are the key objects to prove the following results.

Theorem 1.11. Let us suppose that there exist m ≥ 2 strict central configurations, not antipo-
dal if m = 2. Then:

• assuming that one of them is non-degenerate and h large enough, there are no analytic
first integrals associated to the dynamics which are not constant;

• if h is large enough, for every pair of distinct and non-degenerate central configurations
there exist infinitely many heteroclinic connections between the corresponding homothetic
trajectories.

It is a matter of fact that the results of Theorem 1.11 represent a further step in the proof
of the presence of chaos; in particular multiple heteroclinics are usually indicators of a complex
behaviour and actually can be used to prove the presence of a symbolic dynamics (see [1, 20, 19]).
Our final aim is achieved when every central configuration is non-degenerate.

Theorem 1.12. Let us suppose that there exist m ≥ 2 non-degenerate central configurations,
not antipodal if m = 2. Then, if h is large enough, the projection map π defined in Theorem 1.5
is also injective. In other words, the dynamics of the refraction billiard admits a topologically
chaotic subsystem.

The injectivity of the map π, or the uniqueness of the solution corresponding to a prescribed
word, can also be proved, under the same non-degeneracy conditions, by means of the implicit
function theorem as in [10] and [8]. Furthermore, Theorem 1.12 provides the analytical justifi-
cation of the numerical simulations presented in [12]: here a centered elliptic domain, namely,
with the singularity in its center, is taken into consideration and the presence of diffusive or-
bits is observed for increasing value of h. Of course such domain satisfies the assumptions of
Theorem 1.12.
Let us conclude with a short digression on reflective Kepler billiards: in this dynamical models a
central mass dominates the inner dynamics, but trajectories reflect elastically on the boundary.
It is easy to verify that the results presented in our work apply also in this case and, actually,
the dynamics is simpler since we do not have the outer part. Thus, also in this case, the dynam-
ics associated to a centered ellipse is chaotic. This negatively complements the recent results
about integrability of the focused elliptic Kepler billiard by Takeuchi and Zhao [37, 35, 36],
namely, with the singularity in one of the two foci. This is coherent with our study, since
focused ellipses, having only two central configurations which are antipodal, are not admissible
domain. This provides also a useful counterexample on the importance of the non-antipodality
condition, which is finally far from being just a technical assumption.

2. Symbolic dynamics under general assumptions on D

2.1. General assumptions on D. We Let us consider an arc-length parametrization of the
boundary ∂D given by the function γ : [0, L] → R2, for some L > 0.
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Definition 2.1. An open interval (a, b) ⊂ [0, L] satisfies the outer-arc property if for any pair
ξ1, ξ2 ∈ (a, b) there exists a unique solution of the fixed-ends problem

(2.1)


z′′(s) = −ω2z(s), s ∈ [0, T ],
1

2
∥z′(s)∥2 − E +

ω2

2
∥z(s)∥2 = 0, s ∈ [0, T ],

z(s) /∈ D, s ∈ (0, T ),

z(0) = γ(ξ1), z(T ) = γ(ξ2)

for some T
.
= T (ξ1, ξ2) > 0.

Some remarks on the previous definition are due. A possible obstruction to the existence of
a solution for Problem (2.1) is condition z(s) /∈ D, s ∈ (0, T ); it turns out that such constraint
is satisfied as far as the domain D enjoys some simple geometric assumptions.

Definition 2.2. We say that the domain D is local star-convex with respect to ξ ∈ [0, L], in
short (LSC)ξ, if the half-line connecting the origin to γ(ξ) intersects ∂D only in γ(ξ). Similarly,
D is local star-convex with respect to A ⊂ [0, L], in short, (LSC)A, if it is (LSC)ξ for every
ξ ∈ A.

Choosing for instance D = B1(0), every interval (a, b) ⊂ [0, 2π] such that b − a < π enjoys
the outer-arc property (see also [11, Theorem 4.1]). In general, we will prove in Section 3 that
when the quantity b− a is small enough and D is (LSC)(a,b) then (a, b) satisfies the outer-arc
property.

We now proceed with analogous definitions concerning the inner dynamics. In this case we
need a more complex framework to guarantee both existence and uniqueness results.

Definition 2.3. We say that ξ1, ξ2 ∈ [0, L] are antipodally directed, or shortly, antipodal, if
the origin belongs to the segment connecting γ(ξ1) and γ(ξ2). On the other hand, two intervals
(a, b), (c, d) ⊂ (0, L) are not antipodal if every ξ1 ∈ (a, b) and ξ2 ∈ (c, d) are not antipodal.
Note that (a, b) and (c, d) have not to be distinct.

Definition 2.4. Let ξ1, ξ2 ∈ [0, L] be not antipodal and let α : [0, A] → R2 \{0} be a continuous
curve such that α(0) = γ(ξ1) and α(A) = γ(ξ2). We say that α is topologically non-trivial, in
short (TnT) , if α([0, A]) is not homotopic to the line segment connecting γ(ξ1) and γ(ξ2) in
the punctured plane R2 \ {0}.

Definition 2.5. We say that A satisfies the inner-arc property if:

(IP0) it is a disjoint union of open intervals

(ai, bi) ⊂ [0, L], i ∈ I .
= {1, . . . ,m}, m ≥ 2;

(IP1) for every i = 1, . . . ,m there exists j ̸= i such that both intervals (ai, bi) and (aj, bj) are
not antipodal to (ai, bi);

(IP2) there exists h0 > 0 such that for every ξ1, ξ2 belonging to two non antipodal intervals
(possibly the same) and for every h > h0 there exists a unique (TnT) solution of the
fixed-ends problem

(2.2)



z′′(s) = −µ
z(s)

∥z(s)∥3
, s ∈ [0, T ],

1

2
∥z′(s)∥2 − E − h− µ

∥z(s)∥
= 0, s ∈ [0, T ],

z(s) ∈ D, s ∈ (0, T ),

z(0) = γ(ξ1), z(T ) = γ(ξ2),

for some T
.
= T (ξ1, ξ2;h) > 0. If ξ1 = ξ2, the solution is intended in a regularized sense.
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We refer to [11, Theorem 4.2] and [12, Proposition 6.3]) to provide some examples of simple
domains where the existence of inner arcs is proved.
The local star-convexity assumption introduced in Definition 2.2 plays a role also in the inner
case: if A is a disjoint union of open intervals satisfying (IP1) and Ã is an open set such that
A ⊂ Ã ⊂ [0, L] satisfying (LSC)Ã then A satisfies (IP2), hence the whole inner arc property.
The explicit computations will be carried out in Section 3.

In order to guarantee the existence of a symbolic dynamics we need a third condition on the
domain D, which is based on the notion of Jacobi length introduced in Appendix A, Eq. (A.1).
Given A as in Definition 2.5, let

(2.3) NA(i)
.
= {j ∈ I such that (ai, bi) and (aj, bj) are not antipodal} , i ∈ I.

By the assumptions on A, #NA(i) ≥ 2, i ∈ I.
In the next definition we focus our attention on a union of compact intervals contained in A

since the behaviour of our arcs at the edges of the intervals must be investigated.

Definition 2.6. Let A satisfy the inner-arc property and suppose that any (ai, bi) satisfies the
outer-arc property. We say that A satisfies the change-sign property if there exist h1 ≥ h0 and
m compact intervals [αi, βi] ⊂ (ai, bi) such that for every h > h1 the following inequality holds

(∂bSE(ξE, αi) + ∂aSI(αi, ξI ;h)) (∂bSE(ξE, βi) + ∂aSI(βi, ξI ;h)) < 0,

for any choice of i ∈ I, ξE ∈ [αi, βi] and ξI ∈
⋃

j∈NA(i)[αj, βj].

The change-sign property can be derived by a purely geometrical assumption on ∂D as well.
In such case, the passage from the geometric to the dynamical property is not as straightforward
as in the previous ones, and would require more sophisticated estimates.

Definition 2.7. Let A satisfy the inner-arc property and suppose that any (ai, bi) satisfies the
outer-arc property. We say that A satisfies the Euclidean change-sign property if there exist m
subintervals [αi, βi] ⊂ (ai, bi) such that, defined σ−

i (resp. σ+
i ) the angles between γ(αi) (resp.

γ(βi)) and the tangent vector to ∂D at γ(αi) (resp. γ(βi)), the following inequality holds

cos
(
σ−
i

)
cos
(
σ+
i

)
< 0.

The geometrical meaning of the Euclidean change-sign property is the following: observing
that the angles σ±

i are always in [0, π], the property is verified if the two angles are in the
opposite sides with respect to π/2 (see Figure 4). Since

(2.4) cos(σ−
i ) =

d

dξ
∥γ(ξ)∥|ξ=αi

, cos(σ+
i ) =

d

dξ
∥γ(ξ)∥|ξ=βi

,

the Euclidean change-sign property corresponds to require that the function ξ 7→ ∥γ(ξ)∥ has a
change of monotonicity between αi and βi. This property is for example verified when there is
a strict minimum or maximum for γ(·) in each (ai, bi); this case will be investigated in Section
3.

Proposition 2.8. If A satisfies the Euclidean change-sign property, then it satisfies the change-
sign property as well.

Proof. Let us start by showing that the quantity ∂bSE(ξ1, ξ2), ξ1, ξ2 ∈ [αi, βi], i ∈ I, is bounded
uniformly in the endpoints. This is a simple consequence of Lemma A.5 from which we deduce
the existence of a positive constant C such that, for every ξ1, ξ2 ∈ [αi, βi], i ∈ I,

|∂bSE(ξ1, ξ2)| =
√
VE (γ(ξ2))

∣∣∣ cos (∠ (z′E(T ; γ(ξ1), γ(ξ2)), γ̇(ξ2)))
∣∣∣ ≤ C,
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γ(α1)

σ−
1

γ(β1)
σ+
1

σ−
2

γ(α2)

γ(β2) σ+
2

Figure 4. Geometrical meaning of the Euclidean change-sign property: at the
edges of the segments of ∂D the angles between the tangent vector and the radial
direction are opposite w.r.t. π/2.

where zE(·; γ(ξ1), γ(ξ2)) is the outer arc connecting γ(ξ1) to γ(ξ2).
Let us now fix i ∈ I: by the Euclidean change-sign property and Eq. (2.4), one has that(

d

dξ
∥γ(ξ)∥|ξ=αi

)(
d

dξ
∥γ(ξ)∥|ξ=βi

)
< 0;

to fix the ideas, let us suppose

(2.5)
d

dξ
∥γ(ξ)∥|ξ=αi

> 0 and
d

dξ
∥γ(ξ)∥|ξ=βi

< 0.

Take now ξE ∈ [αi, βi], ξI ∈
⋃

j∈NA(i)[αj, βj], and suppose h to be greater than h0: we can then

define the quantities SE(ξE, αi) + SI(αi, ξI ;h) and SE(ξE, βi) + SI(βi, ξI ;h), corresponding to
the total Jacobi lengths of the two concatenation outer-inner arcs connecting γ(ξE) to γ(ξI)
and passing respectively through γ(αi) and γ(βi). We want to show that, if h is sufficiently
large,

(2.6)
∂bSE(ξE, αi) + ∂aSI(αi, ξI ;h) > 0

∂bSE(ξE, βi) + ∂aSI(βi, ξI ;h) < 0.

From Lemma B.1, one has that

SI(αi, ξI ;h) =
√
E + h (∥γ(αi)∥+ ∥γ(ξI)∥) +

µ√
E + h

(
F1(αi, ξI ; E + h)− log

(
µ

2(E + h)

))
,

where, by the chain rule, F1 is at least C1-bounded uniformly in the first two variables when
h → ∞. One has then that

∂bSE(ξE, αi) + ∂aSI(αi, ξI ;h) ≥ −C +
√
E + h

d

dξ
∥γ(ξ)∥ξ=αi

+
µ√
E + h

∂aF1(αi, ξI ; E + h);

by virtue of Eq. (2.5), if h is sufficiently large then the above quantity is positive. With a
completely analogous reasoning, one can prove also the second inequality in (2.6).
We stress that, due to the uniform boundedness of F1 with respect to the endpoints’ parameters,
the regularity of γ and the compactness of [αi, βi], i = 1, . . . ,m, one can find a uniform threshold
value h1 such that the change-sign property holds. □
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Remark 2.9. From the proof above, one immediately understands that, as far as h is large, the
dominant quantity in the derivatives of the total Jacobi length is the one related to the inner
arc. In general, this fact holds also for the total length itself and not only for its derivatives.

2.2. Existence of suitable periodic trajectories. The outer-arc, inner-arc and change-sign
properties are the keystones to prove the existence of a symbolic dynamics for our refraction
billiard; for this reason we give the following definition.

Definition 2.10. We say that a domain D is admissible if ∂D = γ ([0, L]), γ ∈ C1, and there
exists A ⊂ [0, L] satisfying the inner-arc property, the change-sign property and such that every
interval (ai, bi) satisfies the outer-arc property.

The first step to construct a symbolic dynamics is to define an alphabet, as well as the rules
to build admissible words (see [15]). Take then an admissible domain D and let

(2.7) I(i)
.
= [αi, βi], i ∈ I,

where [αi, βi] have been introduced in Definition 2.6.
Let now n ∈ N, n ≥ 1, and define the set Ln ⊂ In of the admissible words of length n as

Ln
.
=
{
ℓ = (ℓ0, . . . , ℓn−1) : ℓi ∈ I and ℓ(i+1)modn ∈ NA (ℓi) , i = 0, . . . , n− 1

}
,

where the sets NA (ℓi) have been introduced in Eq. (2.3). Since for any i ∈ I the set of not
antipodal indices NA(i) is not empty, the set Ln is not empty as well. We are now ready to
define the set of admissible finite words

(2.8) L .
=

⋃
n∈N\{0}

Ln.

For any fixed ℓ ∈ L we define the (2n+ 1)−dimensional open rectangle

(2.9) Uℓ
.
= (I0 × I0)× (I1 × I1)× · · · × (In−1 × In−1)× I0, Ik

.
= I(ℓk),

domain of (the parameters of) the transition points between the inner and outer arcs of the
periodic solutions we are searching for. To this purpose, define the closed set

(2.10) Sℓ
.
=
{
ξ = (ξ0, . . . , ξ2n) ∈ Uℓ : ξ0 = ξ2n

}
.

Let us point out that for every j = 0, . . . , n − 1 the points ξ2j and ξ2j+1 belong to the same
interval Ij, while the points ξ2j+1 and ξ2j+2 belong to possibly different intervals Ij and I(j+1)modn

and correspond to non-antipodal points in R2. Since our complete dynamics starts with an outer
arc, by virtue of Definitions 2.1 and 2.5 we have that for every j = 0, . . . , n − 1 and h > 0
sufficiently large

(2.11)
∃! zE(·; γ(ξ2j), γ(ξ2j+1)) outer arc from γ(ξ2j) to γ(ξ2j+1),

∃! zI(·; γ(ξ2j+1), γ(ξ2j+2);h) inner (TnT) arc from γ(ξ2j+1) to γ(ξ2j+2) with energy h.

The relation between sequences in Sℓ and periodic trajectories for the complete dynamics can
be built as follows: given ξ ∈ Sℓ, the corresponding periodic orbit z(·) is the concatenation of
the arcs in Eq. (2.11), which is unique. More precisely, one can give the following definition.

Definition 2.11. Given n ≥ 1, ℓ ∈ Ln, ξ ∈ Sℓ and h > h0, let us consider the unique arcs
listed in Eq. (2.11) which connect pairs of subsequent points; with reference to Definitions 2.1
and 2.5, let us define

T
(j)
E

.
= TE (ξ2j, ξ2j+1) , T

(j)
I

.
= TI (ξ2j+1, ξ2j+2;h) , j = 0, . . . , n− 1.
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and the partial sums T (j) .
=
∑j

k=0 T
(k)
E + T

(k)
I . Setting T (−1) .

= 0, consider the concatenation
z
(
·; ξ;h

)
:
[
0, T (n−1)

]
→ R2 where, for every j = 0, . . . , n− 1,

z
(
s; ξ;h

) .
= zE

(
s− T (j−1); γ (ξ2j) , γ (ξ2j+1)

)
s ∈

[
T (j−1), T (j−1) + T

(j)
E

]
z
(
s; ξ;h

) .
= zI

(
s− T (j−1) − T

(j)
E ; γ (ξ2j+1) , γ (ξ2j+2) ;h

)
s ∈

[
T (j−1) + T

(j)
E , T (j)

] .

The function z
(
·; ξ;h

)
is trivially continuous, and, since z

(
0; ξ;h

)
= z

(
T (n−1); ξ;h

)
, it is

also periodic. We can then extend it by periodicity and, with an abuse of notation, suppose
z
(
·; ξ;h

)
: R → R2.

We stress that in general such concatenations are not C1. For z to be an admissible trajectory
for the complete dynamics, the Snell’s law must be satisfied at every transition point Pi

.
= γ(ξi),

i = 0, . . . , 2n, namely, for every j = 0, . . . , n− 1,

(2.12)

√
VE (P2j+1)

z′E

(
T

(j)
E ;P2j , P2j+1

)
∥∥∥z′E (T (j)

E ;P2j , P2j+1

)∥∥∥ · γ̇(ξ2j+1) =
√
VI (P2j+1)

z′I (0;P2j+1, P2j+2;h)∥∥∥z′I (0;P2j+1, P2j+2;h)
∥∥∥ · γ̇(ξ2j+1),

√
VI (P2j+2)

z′I

(
T

(j)
I ;P2j+1, P2j+2;h

)
∥∥∥z′I (T (j)

I ;P2j+1, P2j+2;h
)∥∥∥ · γ̇(ξ2j+2) =

√
VE (P2j+2)

z′E (0;P2j+2, P2j+3)∥∥∥z′E (0;P2j+2, P2j+3)
∥∥∥ · γ̇(ξ2j+2),

where, with an abuse of notation, P2n+1 = P1. Since, fixed h and ξ, the concatenation z
(
·; ξ;h

)
is uniquely determined, the validity of conditions (2.12) depends only on the transition points
and on the energy.

Fixed h > h0 and ℓ ∈ L, the total Jacobi length of z
(
·; ξ;h

)
is the function Wℓ (·;h) : Sℓ → R

defined as

(2.13) Wℓ(ξ;h) =
n−1∑
j=0

SE(ξ2j, ξ2j+1) +
n−1∑
j=0

SI(ξ2j+1, ξ2j+2;h), n = |ℓ|,

where SE and SI has been introduced in Eq. (A.1). By means of Eq. (A.6), we have that ξ̂

solves ∇Wℓ

(
ξ̂;h
)
= 0 if and only if z

(
·; ξ̂;h

)
satisfies the Snell’s law at every transition point.

The searches for critical points of Wℓ(·;h) and for periodic trajectories are then equivalent.
Provided that h is large enough, the existence of a critical point ofWℓ(·;h) is a straightforward

consequence of the following classical result.

Theorem 2.12 (Poincaré-Miranda Theorem, [31]). Let F1, . . . , Fd d-functions in the variables
(x1, . . . , xd) continuous on the d-dimensional hypercube

R = {(x1, . . . , xd) | |xk| ≤ L for every k = 1, . . . , d}

and such that for every k = 1, . . . , d

(2.14) Fk (x1, . . . , xd)|xk=−L · Fk (x1, . . . , xd)|xk=L < 0.

Then there exists at least a solution in R̊ of

(2.15) Fk(x1, . . . , xd) = 0 for every k = 1, . . . , d.

Proposition 2.13. Given ℓ ∈ L, the total Jacobi length Wℓ(·;h) admits a critical point ξ̂ in S̊ℓ

provided h > h1, where h1 is introduced in Definition 2.6.
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Proof. This proof relies on a direct application of Poincaré-Miranda Theorem: let us fix ℓ ∈ L
and set d

.
= 2|ℓ| = 2n and R

.
= Πn−1

i=0 (Ii × Ii), where Ii = [αℓi , βℓi ]. For every ξ ∈ Sℓ, define

F2i

(
ξ
)
= ∂bSI (ξ2i−1, ξ2i;h) + ∂aSE (ξ2i, ξ2i+1) ,

F2i+1

(
ξ
)
= ∂bSE (ξ2i, ξ2i+1) + ∂aSI (ξ2i+1, ξ2i+2;h) , i = 0, . . . , n− 1

where ξ−1 = ξ2n−1. Computing the above functions on the hypercube’s edges, one has that

(2.16)
F2i

(
ξ
)
|ξ2i=αℓi

= ∂bSI (ξ2i−1, αℓi) + ∂aSE (αℓi , ξ2i+1) ,

F2i+1

(
ξ
)
|ξ2i+1=αℓi

= ∂bSE (ξ2i, αℓi) + ∂aSI (αℓi , ξ2i+2) ,

and similarly for the right edges. If h > h1, the change-sign property ensures the application

of Poincaré-Miranda Theorem to obtain ξ̂ ∈ S̊ℓ such that ∇Wℓ

(
ξ̂;h
)
= 0. □

The main result of this section now follows straightforwardly.

Theorem 2.14. Given ℓ ∈ L and h > h1, there exists ξ̂ ∈ S̊ℓ and a periodic trajectory

z
(
·; ξ̂;h

)
for the complete dynamics which realizes the word ℓ, in the sense that it connects

γ
(
ξ̂0

)
, . . . , γ

(
ξ̂2n−1

)
.

2.3. Existence of suitable fixed-ends trajectories. The same techniques used in Section
2.2 to find periodic solutions can be applied to the construction of fixed-ends trajectories real-
izing admissible words. Although very similar to Theorem 2.14, the final result of the current
section will be of crucial importance in Section 4, where the analytic non-integrability of our
model is proved.
To begin our construction, let us consider some slight modifications of the sets Ln and Sℓ: in
particular, for any n ≥ 2, let

L′
n = {ℓ = (ℓ0, . . . , ℓn−1) : ℓi ∈ I and ℓi+1 ∈ NA (ℓi) , i = 0, . . . , n− 2} ,

U′
ℓ = (I0 × I0)× (I1 × I1)× · · · × (In−2 × In−2)× In−1,

S′
ℓ =

{
ξ = (ξ0, . . . , ξ2n−2) ∈ Uℓ : ξ0 = ξa, ξ2n−2 = ξb

}
,

where ξa ad ξb are fixed respectively in I0 and In−1. It is easy to prove that

L ⊆ L′ =
⋃

n∈N\{0}

L′
n,

with L defined as in Eq. (2.8).
Let us remark that, in this setting, we have 2n− 3 free points ξ1, . . . , ξ2n−3. As a consequence,
given a sequence ξ ∈ S′

ℓ, the total Jacobi length takes the form

(2.17) W ′
ℓ(ξ;h) =

n−2∑
j=0

SE(ξ2j, ξ2j+1) +
n−2∑
j=0

SI(ξ2j+1, ξ2j+2;h).

In this framework, Definition 2.11 and Eq. (2.12) are the same, with straightforward modifica-
tions in the indices. Again, critical points of the total Jacobi length correspond to admissible
trajectories for our fixed-ends dynamics.

Proposition 2.15. Let ℓ ∈ L, h > h1, ξa ∈ I0 and ξb ∈ In−1 with n
.
= |ℓ|. Then there exists a

trajectory which connects γ (ξa) to γ (ξb) realizing the word ℓ.

Proof. The proof is completely analogous of the one of Theorem 2.14, setting d
.
= 2n− 3,

R
.
= I0 × (I1 × I1)× . . .× (In−2 × In−2) , Fi(ξ)

.
=

∂W ′
ℓ

∂ξi

(
ξ;h
)
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for every i = 1, . . . , 2n− 3. □

2.4. Construction of the symbolic dynamics. We are finally ready to prove the existence
of a symbolic dynamics for our refractive billiard model; in particular, we will construct a
surjective and continuous application between a suitable set of initial conditions of trajectories
and admissible bi-infinite words. To this end, let us define the energy shell for the external
dynamics

Ξ
.
=

{
(ξ, v) : ξ ∈ [0, L], v ∈ R2,

1

2
∥v∥2 − VE(γ(ξ)) = 0

}
.

We now introduce the sets of initial conditions in Ξ for which the parameter ξ belongs to a
fixed I(r) and the velocity vector points respectively outward or inward the domain D, namely,

Ξ+
r

.
=
{
(ξ, v) ∈ Ξ: ξ ∈ I(r) and ⟨n(ξ), v⟩ > 0

}
, Ξ−

r
.
=
{
(ξ, v) ∈ Ξ: ξ ∈ I(r) and ⟨n(ξ), v⟩ < 0

}
,

where n(ξ) is the outward-pointing normal unit vector to γ in γ(ξ).
Since in our model a crossing through γ implies a refraction of the trajectory, it is convenient
to define analytically a refraction map which of course depends on the parameter ξ and the
energy jump h. From now on we assume h > h1, where h1 is the threshold value introduced in
Definition 2.6 and used in Theorem 2.14.

Definition 2.16. Fixed h and ξ ∈ [0, L], we define the sets

Bξ
E

.
=
{
v ∈ R2 : ∥v∥2 = 2VE(γ(ξ))

}
Bξ

I
.
=
{
v ∈ R2 : ∥v∥2 = 2VI(γ(ξ))

}
and the refraction map

REI(·; ξ, h) : Bξ
E → Bξ

I

v = a t(ξ) + b n(ξ) 7→ REI(v; ξ, h) = a t(ξ) + sgn(b)
√

2VI(γ(ξ))− a2 n(ξ)

where we recall that t(ξ) is the tangent unit vector to γ in γ(ξ).

Remark 2.17. Some words are due to understand the previous definition. First of all, we
observe that for every ξ ∈ [0, L] the vectors (t(ξ), n(ξ)) form a orthonormal basis of the plane.

Moreover, since v ∈ Bξ
E (namely, a2+b2 = 2VE(γ(ξ))) and VI > VE everywhere in the punctured

plane, the quantity 2VI(γ(ξ))− a2 is always positive, so that the refraction map is well defined
in its domain. Furthermore, it is clear that the normal component preserves the sign, so that
the image of an outward (resp. inward)-pointing vector is still outward (resp. inward)-pointing.

It can also be easily proved that given a vector v ∈ Bξ
E, its image REI(v; ξ, h) is the unique

vector with which v satisfies the refraction Snell’s law (1.1).

The refraction map REI is clearly injective, hence invertible on its image

B̃ξ
I
.
=
{
v ∈ R2 : ∥v∥2 = 2VI(γ(ξ)) and ⟨v, t(ξ)⟩ ≤

√
2VE(γ(ξ))

}
.

Remark 2.18. In view of Eq. (1.2), to take v ∈ B̃ξ
I corresponds to require that the angle

between v and n(ξ) is less than the critical value αcrit.

Let us now fix (ξ, v) ∈ Ξ+
r and follow step by step the trajectory of the complete dynamics

starting from the initial condition (γ(ξ), v). Assumptions on the allowed initial conditions will
become more and more restrictive as the dynamics proceeds in order to obtain a final set

(2.18) X ⊆
⋃
r∈I

Ξ+
r

for which it is possible to construct a symbolic dynamics.
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First of all, let us consider the flow Φs
E(γ(ξ), v) generated by the Cauchy problem associated to

the outer potential. As customary dealing with this kind of systems, we consider the projections
of such flow onto the configuration and the velocity space respectively:

ΠzΦ
s
E(·, ·), ΠvΦ

s
E(·, ·).

Given an initial condition (γ(ξ), v), we can define the set

(2.19) T−(ξ, v)
.
=

{
s1 > 0

∣∣∣∣∣ Φ
s1
E (γ(ξ), v) = (γ(ξ1), v1) for some (ξ1, v1) ∈ Ξ−

r

ΠzΦ
s
E(γ(ξ), v) /∈ D for every s ∈ (0, s1)

}
.

which contains at most one element. In view of the outer-arc property, there holds{
(ξ, v) ∈ Ξ+

r : T−(ξ, v) ̸= ∅
}
̸= ∅ for all r ∈ I.

Let us now suppose that T−(ξ, v) = {s1} and call

(γ(ξ1), v1)
.
= Φs1

E (γ(ξ), v).

To proceed with the inner dynamics we need to refract our arc hence we define (γ(ξ1), v
′
1)

.
=

(γ(ξ1), REI(v1; ξ1, h)) to start with an inner arc. We consider the flow associated to the inner
problem, Φs

I(γ(ξ1), v
′
1) and the set

(2.20) T+(ξ, v)
.
=

s2 > 0

∣∣∣∣∣∣∣∣∣
Φs2

I (γ(ξ1), v
′
1) = (γ(ξ2), v

′
2) for some (ξ2, v

′
2) ∈

⋃
r′∈NA(r)

Ξ+
r′

v′2 ∈ B̃ξ2
I

ΠzΦ
s
I(γ(ξ1), v

′
1) ∈ D for every s ∈ (0, s2)

 .

Once more, T+(ξ, v) has at most one element and we can extend its definition to every pair
(ξ, v) ∈ Ξ+

r by requiring that

T−(ξ, v) = ∅ =⇒ T+(ξ, v) = ∅.

In view of Theorem 2.14, there holds again that{
(ξ, v) ∈ Ξ+

r : T+(ξ, v) ̸= ∅
}
̸= ∅ for all r ∈ I;

indeed, it is sufficient to consider a word ℓ of length at least 2 with the first element equal to r
and take the initial condition of the corresponding trajectory.
Let now (ξ, v) ∈ Ξ+

r be such that T+(ξ, v) ̸= ∅ and let (ξ2, v
′
2) as in Eq. (2.20). As v′2 ∈ B̃ξ2

I we
are allowed to define

(2.21) v2
.
= R−1

EI(v
′
2; ξ2, h)

so that (ξ2, v2) ∈ Ξ+
r′ and we have the initial condition for a second outer arc.

The following non-empty set contains pairs (ξ, v) for which it is possible to construct a
complete concatenation outer-inner arc and where a first return map is well defined.

Definition 2.19. Let us define the set A ⊂ [0, L]× R2 as the set of pairs (ξ, v) such that

(1) (ξ, v) ∈ Ξ+
r for some r ∈ I;

(2) there exist s1 ∈ T−(ξ, v) and s2 ∈ T+(ξ, v);

and the first return map

(2.22) F : A → F (A), F (ξ, v)
.
= (ξ2, v2)

where ξ2 and v2 are introduced respectively in (2.20) and (2.21), see Figure 5.
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γ (ξ0)

v0

v1
v′1

γ (ξ1)

γ (ξ2)

v′2

v2

Figure 5. An example of concatenation starting from a point (γ(ξ0), v0), with
(ξ0, v0) ∈ A.

The function F is clearly a bijection and, by recurrence, we construct the set X as the set
on which all the positive and negative iterates of F are defined. Let

X+
1

.
= A and X−

1
.
= A ∩ F (A) = X+

1 ∩ F (X+
1 )

and observe that X−
1 ̸= ∅ (by Theorem 2.14); moreover both F and F−1 are well defined on

X−
1 . Then, for any positive integer k ≥ 2, we introduce the non-empty sets

X+
k

.
= X−

k−1 ∩ F−1(X−
k−1) and X−

k

.
= X+

k ∩ F (X+
k )

so that onX−
k the iterates F j, with j ∈ Z and |j| ≤ k, are well defined (in our notation F 0 = Id).

We are then ready to define the set of initial conditions in Ξ+
r that generate trajectories with

an infinite number of transversal intersections with ∂D, namely

X
.
=
⋂
k∈N

X−
k .

By virtue of Theorem 2.14, the set X is non empty, and on X are defined the iterates F j, for
any integer j ∈ Z. The set X is the set of initial conditions which generate trajectories for the
complete dynamics that cross ∂D an infinite number of times; hence it is invariant for the first
return map F an then it is convenient to consider the restriction

F .
= F |X

Let us now consider the set of bi-infinite admissible words

(2.23) L .
=
{
ℓ ∈ IZ : ℓj+1 ∈ NA(ℓj), ∀j ∈ Z

}
endowed with the metric

(2.24) d(ℓ,m)
.
=
∑
k∈Z

ρ(ℓk,mk)

4|k|
,

where ρ(i, j) = 0 if i = j and ρ(i, j) = 1 if i ̸= j; we refer to the book [21] for a complete
treatment on the subject. It is straightforward to prove that, with this metric, the subset of
the periodic bi-infinite words

LP
.
= {ℓ ∈ L : ℓ is periodic}

is dense in L. Furthermore, we observe that the elements of LP are the periodic extensions of
the finite admissible words of the set L introduced in Eq. (2.8).
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We now introduce the map χ : X → I such that

(2.25) χ(ξ, v) = r ⇐⇒ ξ ∈ I(r)

and the projection map

π : X → L, (ξ, v) 7→ π(ξ, v) = (ℓj)j∈Z with ℓj = χ(F j(ξ, v))

through which we are able to associate to every (ξ, v) the bi-infinite word realized by the
trajectory of initial condition (γ(ξ), v).
We can then consider the commutative diagram

X X

L L

F

π π

σr

where σr is the Bernoulli right-shift. In order to prove Theorem 1.5, we are left to show that
the map π is a continuous surjection.

Proposition 2.20. If h > h1, the projection map π is surjective.

Proof. Let us take a sequence ℓ = (ℓj)j∈Z ∈ L, and, for every n ∈ N consider the truncated
sequences

ℓ(n)
.
= (ℓ−n, . . . , ℓn),

which are elements of L of length 2n+1. Since h > h1, by Theorem 2.14, for every n ∈ N there

exists ξ̂
(n)

∈ Sℓ(n) such that the corresponding trajectory

z(n)(·) .
= z

(
·; ξ̂

(n)
, h
)

realizes the word ℓ(n). Since the trajectories z(n)(·) are periodic, without loosing in generality
and possibly with a time translation, we can assume that

z(n)(0) ∈ γ(I(ℓ0)).

We now extend by periodicity ξ̂
(n)

to obtain a sequence in L(
ξ(n)
)
n
, ξ(n) =

(
ξ
(n)
k

)
k∈Z

,

where, for every n, ξ(n) ∈ LP is a (4n+ 2)-periodic sequence. By construction,

(2.26) ∀k ∈ Z, ∃Nk > 0, ∃ik ∈ I : ξ
(n)
k ∈ I(ik), ∀n ≥ Nk,

namely, fixed k, the points ξ
(n)
k belong eventually to the same compact interval prescribed by

the sequence ℓ. Through a diagonal process, we can construct an index sequence (an)n ⊂ N
with an → ∞ such that

ξ
(an)
i

n→∞−→ ξ̄i, for every i ∈ Z,
where the sequence ξ̄

.
= (ξ̄i)i realizes the word ℓ, in the sense that

ξ̄2j, ξ̄2j+1 ∈ I(ℓj), for every j ∈ Z.

Since h > h1, we can then define the concatenation z̄ : R → R2 connecting the sequence of
points

(
γ(ξ̄i)

)
i
: our aim is now to verify that z̄ is an admissible trajectory for the complete

dynamics. This fact follows from the differentiable dependence of each arc and recalling that
the concatenations

(
z(an)

)
n
⊂
(
z(n)
)
n
satisfy the Snell’s law at every transition point.

Defining now (ξ, v)
.
= (ξ̄0, z̄

′(0)) we have that π(ξ, v) = ℓ and the surjectivity is proved. □
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In order to prove the continuity of π let us start with a preliminary lemma whose proof
follows from the continuous dependence of the outer and inner arcs with respect to variations
of the endpoints and by the compactness of the intervals I(j), j ∈ I.

Lemma 2.21. Let h > h1; then there exists C > 0 such that for every j ∈ I, ξ0, ξ1 ∈ I(j) and
ξ2 ∈

⋃
i∈NA(j) I

(i) it holds

TE(ξ0, ξ1) ≤ C, TI(ξ0, ξ2;h) ≤ C,

where TE and TI are as in Definition 2.11.

We are now ready to verify the continuity of the map π; we recall that the space of the
admissible words L is endowed with the distance d(·, ·), defined in Eq. (2.24), while in X we
will consider the usual Euclidean metric over R3.

Proposition 2.22. If h > h1, the projection map π is continuous.

Proof. Let us fix (ξ0, v0) ∈ X. In order to estimate the quantity d (π(ξ, v), π(ξ0, v0)) we define,
for every k ∈ Z, the k − th projection map

πk : X → I, πk(ξ, v)
.
= χ

(
Fk(ξ, v)

)
,

where χ is defined as in Eq. (2.25), to have

(2.27) d (π(ξ, v), π(ξ0, v0)) =
∑
k∈Z

ρ (πk(ξ, v), πk(ξ0, v0))

4|k|
.

As the above series is always convergent, for any ϵ > 0 there exists k0 ∈ N such that for every
(ξ, v) ∈ X ∑

|k|≥k0

ρ (πk(ξ, v), πk(ξ0, v0))

4|k|
< ϵ.

We will now prove that, if δ > 0 is small enough and ∥(ξ, v)− (ξ0, v0)∥ < δ, then

(2.28)
∑
|k|<k0

ρ (πk(ξ, v), πk(ξ0, v0))

4|k|
= 0.

This is equivalent to require that, if ℓ
.
= π(ξ, v) and m

.
= π(ξ0, v0), then ℓk = mk for every

|k| < k0, namely, that the trajectories generated by (ξ, v) and (ξ0, v0) intersect the boundary
∂D in the same neighbourhoods in the first k0 steps forward and backward. In view of Lemma
2.21 it is possible to find a > 0 such that both the trajectories cross ∂D at least 4k0 + 3 times
within the time interval [−a, a]. The thesis then follows from the continuous dependence on
the initial data on [−a, a]. □

We conclude this section with a final remark; following exactly the techniques used in Propo-
sition 2.20 we can prove a result which will be crucial in Section 4.

Proposition 2.23. Let

L+ .
=
{
(ℓ0, . . . , ℓn, . . .) ∈ IN : ℓi+1 ∈ NA(ℓi) ∀i ∈ N

}
.

be the set of the admissible infinite words, ℓ ∈ L+ and ξ ∈ I(ℓ0). The there exists v ∈ R2 such
that (ξ, v) ∈ X and π(ξ, v) = ℓ1.

1Here, the projection is intended only for the forward trajectory starting from (γ(ξ), v).
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∂D

γ
(
ξ̂2j+1

)
v
2j+1

ṽ2j+1

∂D

γ
(
ξ̂2j+1

)
= γ

(
ξ̂2j+2

)v
2j+2

v
2j+1

ṽ 2
j+

1
=

−
ṽ 2

j+
2

Figure 6. Velocity vectors as defined in Eq. (2.29) in the non-collisional case
(left) and in the collisional case (right). In the second case, the collisional inner
arc forces a reflection in the adjacent outer arcs.

2.5. Non-collisional symbolic dynamics. As observed in Definition 2.5, the inner dynamics
naturally includes collisional arcs as well. As a consequence, we can not a priori exclude the
occurrence of collisions in the symbolic dynamics found by means of Theorem 1.5. Nevertheless,
as we will prove in the present section, if we suitably restrict the set L we can construct a non-
collisional symbolic dynamics.
Let z be a concatenation satisfying ℓ ∈ L and assume that z has a collision, which means that

one of its inner arcs is homothetic. Assume, without loosing in generality that such collisional
inner arc hits the boundary in γ

(
I(ℓ0)

)
. By uniqueness of the solution of a Cauchy problem

and by Snell’s law we deduce that after the collision the trajectory reflects into itself. This
reflection, which involves every arc in the concatenation, forces the symmetry of the word ℓ
with respect to ℓ0, in the sense that ℓk = ℓ−k for any k ∈ N.
On the other hand, the same reasoning can be used in a reversed formulation to have sufficient
conditions for the concatenation induced by ℓ to be non-collisional. In particular one can
construct a non-collisional symbolic dynamics for our refractive billiard, as stated in Corollary
1.7.

If the collisional trajectory is periodic a more complex phenomenology appears. Let ℓ =

(ℓ0, . . . , ℓn−1) ∈ L, and z
(
·; ξ̂;h

)
the trajectory realizing ℓ where ξ̂ ∈ S̊ℓ is provided in Thereom

2.14 (once more we assume h > h1). From this moment on, we will identify ℓ with any of its
shifts.

To describe in details the trajectory z
(
·; ξ̂;h

)
, it is worth to keep trace not only of the

transition points γ
(
ξ̂
i

)
, i = 0, . . . , 2n − 1, but also of the inner and outer velocity vectors at

such points (see also Figure 6, left)2,

(2.29)
v2j = z′E

(
0; γ

(
ξ̂2j

)
, γ
(
ξ̂2j+1

))
, v2j+1 = z′E

(
T ; γ

(
ξ̂2j

)
, γ
(
ξ̂2j+1

))
, v2n = v0,

ṽ2j+1 = z′I

(
0; γ

(
ξ̂2j+1

)
, γ
(
ξ̂2j+2

)
;h
)
, ṽ2j+2 = z′I

(
T ; γ

(
ξ̂2j+1

)
, γ
(
ξ̂2j+2

)
;h
)
, ṽ0 = ṽ2n,

where j = 0, . . . , n− 1.
The following Theorem underlines as the presence of collisional inner arcs can impact the

overall structure of z
(
·; ξ̂;h

)
, when it is periodic.

2From this moment on, for the sake of brevity and with an abuse of notation, we will denote with T the final
time of an arc, omitting the dependence on the endpoints and without discerning between the inner and the
outer case.
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ξ̂2
= ξ̂5

ξ̂3 =
ξ̂4

ξ̂8 =
ξ̂0 =

ξ̂7

ξ̂1 =
ξ̂6

Figure 7. Graphical representation of a possible periodic collisional trajectory.
The presence of a collisional inner arc, along with the periodicity of the whole
concatenation and the total number of transition points, implies the existence of

a second collisional arc. With an abuse of notation ξ̂i is identified with γ
(
ξ̂i

)
.

Theorem 2.24. Let ℓ ∈ L and h > h1; define n
.
= |ℓ|, and suppose n > 1. Let ξ̂ ∈ S◦

ℓ

and z(·) .
= z

(
·; ξ̂;h

)
as in Theorem 2.14, and suppose that the concatenation z(·) admits a

collisional inner arc. Then:

(1) if n is even, z(·) has another collisional arc and ℓ is symmetric with respect to the axis
that separates ℓn/2−1 from ℓn/2;

(2) if n is odd, then z(·) has a homothetic outer arc and (ℓ0, . . . , ℓn−1, ℓ0) is symmetric with
respect to the axis that separates ℓ(n+1)/2−1 from ℓ(n+1)/2.

Proof of Theorem 2.24. Let us start by assuming that n is even: without loss of generality

we can suppose that the collisional arc is the one connecting γ
(
ξ̂n−1

)
to γ

(
ξ̂n

)
, namely,

zI

(
·; γ
(
ξ̂n−1

)
, γ
(
ξ̂n

)
;h
)
. Then, the trajectory is reflected back after the collision and one

has the following equalities:

(2.30)

ξ̂n−(j+1) = ξ̂n+j , ṽn−(j+1) = −ṽn+j , vn−(j+1) = −vn+j , j ∈ {0, . . . , n− 1}

zE

(
·; γ
(
ξ̂n−(j+2)

)
, γ
(
ξ̂n−(j+1)

))
= zE

(
T − · ; γ

(
ξ̂n+j

)
, γ
(
ξ̂n+j+1

))
, j ∈ {0, . . . , n− 2} even,

zI

(
·; γ
(
ξ̂n−(j+2)

)
, γ
(
ξ̂n−(j+1)

)
;h
)
= zI

(
T − · ; γ

(
ξ̂n+j

)
, γ
(
ξ̂n+j+1

)
;h
)
, j ∈ {0, . . . , n− 2} odd.

In particular, taking j = n − 1, one has ξ̂0 = ξ̂2n−1; by periodicity, ξ̂2n = ξ̂2n−1. Hence, by

uniqueness, since it has the same endpoints, the inner arc zI

(
·; γ
(
ξ̂2n−1

)
, γ
(
ξ̂2n

)
, h
)
must be

collisional, and then the first claim is proved.
Let us now focus on the structure of ℓ = (ℓ0, . . . , ℓn−1). Since for every k = 0, . . . , n − 1

one has ξ̂2k, ξ̂2k+1 ∈ I(ℓk), equalities in (2.30) imply that for every j = 0, . . . , n/2 − 1 it holds
ℓn/2−(j+1) = ℓn/2+j, and then the sequence (ℓ0, . . . , ℓn−1) is symmetric with respect to the axis
which separates ℓn/2−1 from ℓn/2.
Let us now suppose that n > 1 is odd and, without loss of generality, assume that the arc

zI

(
·; γ
(
ξ̂n

)
, γ
(
ξ̂n+1

)
, h
)
is collisional. Using the same reasoning as in the even case, one can

conclude that zE

(
·; γ
(
ξ̂0

)
, γ
(
ξ̂1

))
is homothetic and that for every j = 0, . . . , (n + 1)/2− 2

one has ℓ(n+1)/2−(j+1) = ℓ(n+1)/2+j. □



CHAOTIC DYNAMICS IN REFRACTION GALACTIC BILLIARDS 20

Remarks 2.25. The proof of Theorem 2.24 is particularly rich of further informations:

(1) in both the described cases one can not have more than two radial (inner or outer) arcs;
in particular, the concatenation segment between two radial arcs must contain n − 1
non-radial intermediate arcs. This is necessary to have |ℓ| = n;

(2) with completely analogous reasonings, one can prove that, if z
(
·, ξ̂, h

)
admits an outer

homothetic arc, then
• if |ℓ| is even, there must be another outer homothetic arc;
• if |ℓ| is odd, there must be a collision-ejection inner arc.

In both cases, the sequence ℓ must satisfy symmetry properties analogous to the ones
described in Theorem 2.24;

(3) as a consequence, a periodic trajectory can have either zero or two radial arcs, between
which it is reflected.

Remark 2.26. In the particular case n = 1, one has that the concatenation z
(
·, ξ̂, h

)
is

collisional if an only if it is a homothetic orbit for the complete dynamics.

3. Admissible domains and central configurations

The result stated in Theorem 2.14 guarantees the presence of a symbolic dynamics under
quite abstract assumptions on the domain D, namely the outer and inner-arc properties as
well as the change-sign one. This section is devoted to translate these assumptions into more
concrete ones. At the end we will find a general set of domains which enjoys the admissibility
property. Such conditions will be strictly related to the notion of central configurations for the
domain that we now define.

Definition 3.1. We say that ξ̄ ∈ [0, L] is a central configuration for D if it is a critical point
of ∥γ(ξ)∥, ξ ∈ [0, L] and if D satisfies (LSC)ξ̄ (see Definition 2.2).

Generalizing Eq. (2.4) we immediately deduce that ξ̄ is a critical point for ∥γ(ξ)∥ if and
only if γ(ξ̄) is orthogonal to ∂D. Furthermore, as the star convexity is assumed at a central
configuration, by the regularity of γ, we deduce the existence of an open interval (a, b) ∋ ξ̄ such
thatD satisfies (LSC)(a,b). Possibly reducing this interval, the outer-arc property is guaranteed.

Proposition 3.2. Let ξ̄ ∈ [0, L] be a central configuration for D. Then there exists a neigh-
borhood ξ̄ ∈ (ā, b̄) ⊂ [0, L] which satisfies (LSC)(ā,b̄) and the outer-arc property.

The proof is based on the regularity of γ, and on the differentiable dependence of the solution
of a Cauchy problem on its initial data. In particular one can start from the existence of the
homothetic outer solution at γ(ξ̄) (for more details see [12, Theorem 3.1]). In particular, if b−a
is small enough, we can ensure that all the outer arcs are not tangent to the boundary. Let us
outline that the outer dynamics is local in the sense that an outer arc connects two points on
∂D belonging to a neighborhood of the same point γ(ξ̄).
Let us now pass to the inner dynamics. as already seen in Section 2, they act as transfer

trajectories between different regions od ∂D. It is then necessary to consider not only single
central configurations but a set of the latters, having suitable mutual properties.

Proposition 3.3. Let ξ̄1, . . . , ξ̄m be central configurations, m ≥ 2, which are not antipodal if
m = 2. Then there exists A =

⋃
i∈I(ai, bi) that satisfies the inner-arc property and such that

ξ̄i ∈ (ai, bi), for every i ∈ I.

Proof. Let us start by observing that if m > 3 any central configuration ξ̄i admits at least a
non-antipodal (different for ξ̄i itself) one. Then there exists a disjoint union of open intervals

Ã =
⋃m

i=1(ãi, b̃i) satisfying (IP1) and such that ∂D is (LSC)(ãi.b̃i) for every i. Let us now take
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ξ̄3
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T2 T1

T3

Bρ(0)

Figure 8. The open set A introduced in the proof of Proposition 3.3. A is the
union of the circular neighborhood of the origin Bρ(0) and of the sectors Ti, i = 1, 2, 3.

A =
⋃m

i=1(ai, bi) such that for every i it holds ãi < ai < ξ̄i < bi < b̃i: we want to show that it
satisfies (IP2).
For every h > 0, the existence and uniqueness of a (TnT) arc connecting two non-antipodal
points γ(ξ1) and γ(ξ2), ξ1, ξ2 ∈ A, with energy E + h, called zI(·)

.
= zI(·; γ(ξ1), γ(ξ2); E + h), is

guaranteed by Lemma B.1. We have then to ensure that all these arcs are completely contained
in the domain D.

Defining, for every ξ1, ξ2 ∈ A, the broken line c(γ(ξ1) 0 γ(ξ2)) as the union of the two straight-
line segments from γ(ξ1) to 0 and from 0 to γ(ξ2), from [4, p. 274] one has that

(3.1) lim
h→∞

dist (zI ([0, T ]) , c(γ(ξ1) 0 γ(ξ2))) = 0,

T > 0 being such that zI(T ) = γ(ξ2).
Let ρ > 0 be such that Bρ(0) ⊊ D and, for every i = 1, . . . ,m, define the conic set (see Figure
8)

Ti =
{
λγ(ξ) | λ ∈ (0, 1), ξ ∈

(
ãi, b̃i

)}
,

and the open set

A =
⋃

i=1,...,N

Ti ∪Bρ(0).

By the convergence in (3.1) and the finiteness of m, we can then ensure the existence of a
threshold value for h that ensures that A satisfied (IP2). □

We stress that, possibly reducing the size of its intervals, we can find A satisfying both the
inner and the outer-arc property.

Remark 3.4. Propositions 3.2 and 3.3 imply in particular the existence of radial solutions
(collisional in the inner case) separately for the inner and outer dynamics in correspondence
of every direction. Since at a central configuration the radial direction is orthogonal to the
boundary ∂D, the corresponding solution is not deflected by Snell’s law (A.12). Hence, for any
central configuration, our complete dynamics admits an homothetic ejection-collision solution
in the direction γ(ξ̄).

Remark 3.5. Propositions 3.2 and 3.3 ensure the existence of the outer and inner dynamics
separately, provided that the endpoints’ parameters ξ1 and ξ2 are in suitable neighborhoods of ξ̄i,
i = 1, . . . ,m. Nevertheless, this is not sufficient to ensure the good definition of the complete
dynamics, that is, a concatenation between outer and inner arcs satisfying the Snell’s law.
In particular, one has that the refraction exterior-interior is always possible, while the converse,
interior-exterior, can take place if and only if the inner arc is sufficiently transverse to the
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(
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Figure 9. Asymptotic behavior of inner arcs, for large inner energies, in neigh-
borhoods of strict central configurations (see Remark 3.7).

boundary. Hence, in order to prove the existence of a complete dynamics, we should find
conditions to have uniform transversality properties of the inner arcs. On the other hand, this
is not really necessary to our purposes: indeed, in Section 2, we have proved a posteriori that
the particular concatenations of outer and inner arcs that realize a symbolic dynamics for our
problem are admissible trajectories for the complete dynamics. The transversality of an inner
arc was in fact indirectly deduced from the validity of the variational formulation of Snell’s law,
along with the transversality of the subsequent outer arc.

To link the presence of central configurations to the admissibility of the domain D (see
Definition 1.1), we are left to guarantee the change-sign property. This will be true under
some more assumptions on the central configurations themselves: we will say that a central
configuration is strict if it is a strict maximum or minimum for ∥γ(·)∥. The following result
is a direct consequence of the notion of strict extremal points for C1 functions along with
Proposition 2.8.

Proposition 3.6. Let ξ̄1, . . . , ξ̄m be strict central configurations, m ≥ 2, which are not antipodal
if m = 2. Then there exists A =

⋃
i∈I(ai, bi) that satisfies the change-sign property.

Remark 3.7. Let us fix i ∈ I and suppose that ξ̄i is a strict minimum for ∥γ(·)∥; let now [αi, βi]
be the compact neighborhood provided by the change-sign property. Recalling Lemma B.1 and
the geometric interpretation of the derivatives of the Jacobi distances given in Eq. (A.6) one
can deduce that, for h large enough, every inner arc starting from (or arriving to) γ(αi) form
with γ̇(αi) an angle strictly greater than π/2; the inequality is reversed if we consider γ(βi) (see
Figure 9, left). The situation is symmetric if ξ̄i is a strict maximum (see Figure 9, right).
In view of Remark 2.9, is exactly this asymptotic behavior that let us pass from the Euclidean
change-sign property to the change-sign property itself.

Given the above construction, it turns out that the domain D is admissible and Theorem 1.9
follows.

4. Non integrability and chaos

Until now we focused on the construction of a symbolic dynamics, which is a substantial
intermediate step to the presence of chaos. In this section we fill the gap between the two
concepts providing also some statements on the non integrability of the model.

Let us start with some considerations related to the presence of infinitely many heteroclinic
connections between different homothetic ejection-collision trajectories (on this topic see for
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example [1, 19, 20, 26]). We will present results which hold under some further assumptions
on central configurations, according to the following definition.

Definition 4.1. A central configuration ξ̄ (according to Definition 3.1) is termed non degen-
erate if γ is of class C2 in a neighborhood of ξ̄ and

d2

dξ2
∥γ(ξ)∥|ξ=ξ̄

̸= 0.

Proposition 4.2. Suppose D admits a non-degenerate central configuration ξ̄. Then if h is
large enough, the homothetic trajectory in the direction of γ

(
ξ̄
)
is a hyperbolic saddle equilib-

rium.

Proof. The proof of this result relies on asymptotic estimates based on [12, Remark 5.1]. Here,
in particular, a general domain is considered, and, after the construction of a suitable first
return map f , the stability of the homothetic trajectories is investigated in relation to the
local geometric features of the boundary and the value of the physical parameters E , h, ω, µ.
The inspection is carried on by considering the sign of the discriminant ∆ of the characteristic
polynomial associated to the Jacobian matrix of f centered in an homothetic direction. By
straightforward estimates, one can prove that, as long as the considered homothetic direction
is nondegenerate, limh→∞ ∆ > 0, and then ξ̄ is a saddle point. □

Let us now assume that we are in the setting of Theorem 1.9 and let [αi, βi], i ∈ I, be
the compact neighborhood around each central configuration used to construct the symbolic
dynamics. The next result is a straightforward consequence of Propositions 2.23 and 4.2.

Corollary 4.3. Let us suppose that there exist ξ̄1, . . . , ξ̄m strict central configurations, not an-
tipodal if m = 2 and that ξ̄1 is non-degenerate. Then, if h is large enough, for every ξ ∈

⋃
i[αi, βi]

there exist infinitely many half-heteroclinic connections tending forward (resp. backward) to the
homothetic trajectory in the direction of γ

(
ξ̄1
)
.

As far as more than one central configuration is non degenerate, Proposition 2.23 allows to
construct heteroclinic connections between different saddle points.

Corollary 4.4. Let us suppose that there exist ξ̄1, . . . , ξ̄m strict central configurations, not
antipodal if m = 2. Then, if the energy jump h is large enough, for every pair of non-degenerate
central configurations ξ̄i, ξ̄j, i ̸= j, there exist infinitely many heteroclinic connections between
the homothetic trajectories in the direction of γ

(
ξ̄i
)
and γ

(
ξ̄j
)
.

Proof. Let us suppose that h is large enough such that both Theorem 1.9 and Proposition 4.2
hold. Now, call z̄i and z̄j the corresponding homothetic trajectories in the direction of γ

(
ξ̄i
)
and

γ
(
ξ̄j
)
, and consider the bi-infinite (non-periodic) word ℓ = (. . . , i, i, i, [. . .], j, j, j, . . . ), where

[. . .] denotes any word of finite length such that ℓ ∈ L. In view of Proposition 2.20 we define

the sequence (ξ̂k)k∈Z which realizes ℓ. By the hyperbolicity of both z̄i and z̄j as equilibrium
trajectories, this sequence must belong to the unstable manifold of z̄i as well as to the stable
manifold of z̄j. □

We now connect the presence of infinitely many half-heteroclinics to the analytic non inte-
grability of our dynamical systems. This result is obtained by adapting a classical argument
by Kozlov ([27]) and makes use of Proposition 2.23 and Corollary 4.3.

Theorem 4.5. Let us suppose that there exist ξ̄1, . . . , ξ̄m strict central configurations, not an-
tipodal if m = 2, and assume that ξ̄1 is non-degenerate. Then, if h is large enough, there are
no analytic first integrals associated to the dynamics which are not constant.
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Proof. On every initial condition (ξ, v) ∈ X, the first return map, its inverse and all their iterates
are well defined. In particular, let us observe that, fixed ξ ∈ [0, L], every outward-pointing
velocity vector v starting from γ(ξ) is uniquely determined by the angle α ∈ (−π/2, π/2)
between v and the normal unit vector to γ at γ(ξ). Using α as a new variable, the initial
conditions corresponding to the homothetic arcs will be denoted with (ξ̄j, 0), j = 1, . . . ,m. By
construction, and with a slight abuse of notation, there exists α0 > 0 such that

X ⊂ U .
=

m⋃
i=1

[αi, βi]× (−α0, α0).

Let now G : O → R, with O an open set containing U , be an analytic first integral and let c ∈ R
be such that G(ξ̄1, 0) = c. If h is large enough, by Proposition 4.2, the stable and unstable
manifolds of (ξ̄i, 0) are contained in the same level set {G = c}.
Fix now ξ̂ ∈

⋃m
i=1[αi, βi]: Proposition 2.23 ensures that there exist infinite pairs (ξ̂, α) ∈

{ξ̂}× (−α0, α0) that belong to the stable manifold of (ξ̄1, 0). This means that the c-level of the

analytic function G(ξ̂, ·) : (−α0, α0) → R admits an accumulation point. Hence this function

is constant. We conclude the proof by the arbitrarity of ξ̂. □

We are now ready to state the results which prove the chaoticity of our model.

Lemma 4.6. Let us suppose that there exist ξ̄1, . . . , ξ̄m non-degenerate central configurations,
not antipodal if m = 2. Possibly restricting the intervals, assume that the function ∥γ(·)∥ is
strictly concave or convex in [αi, βi], for every i = 1, . . . ,m.
Then, fixed i ∈ {1, . . . ,m}, ξE ∈ [αi, βi] and ξI ∈

⋃
j∈NA(j)[αj, βj], for h large enough the

quantities

(4.1) ∂2
bSE(ξE, ·) + ∂2

aSI(·, ξI ;h), ∂2
bSI(ξI , ·;h) + ∂2

aSE(·, ξE)

have constant sign in [αi, βi].

Proof. Let us consider the first quantity in Eq. (4.1), and, to fix the ideas, let us suppose that
ξ̄i is a strict maximum for ∥γ(·)∥. Hence, there exists a constant A such that

d2

dξ2
∥γ(ξ)∥ > A > 0, ∀ξ ∈ [αi, βi].

By the differentiable dependence of the solutions of the outer problem with respect to variations
of the endpoints, the C2-regularity of γ and the compactness of [αi, βi], one can ensure that
there exists a constant C > 0 such that, for every ξ1, ξ2 in [αi, βi],

−C ≤ ∂2
bSE(ξ1, ξ2) ≤ C;

moreover, from Lemma B.1 one has that

∂2
aSI(ξ, ξI ;h) =

√
E + h

d2

dξ2
∥γ(ξ)∥+ µ√

E + h

∂2

∂ξ2
F1(ξ, ξI ; E + h),

for every ξ ∈ [αi, βi], where F1 is uniformly C2-bounded with respect to the first two variables.
One then obtains

∂2
bSE(ξE, ξ) + ∂2

aSI(ξ, ξI ;h) ≥ −C +
√
E + h A+

µ√
E + h

∂2

∂ξ2
F1(ξ, ξI ; E + h),

and then the thesis follows by the uniform boundedness of F1. □

From the proof of the previous lemma it follows that the threshold for h can be chosen
uniformly also in ξE and ξI . This fact allows to deduce our final result.
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Theorem 4.7. Let us suppose that there exist ξ̄1, . . . , ξ̄m non-degenerate central configurations,
not antipodal if m = 2. Then, if h is large enough, the projection map π defined in Theorem 1.5
is also injective. In other words, the dynamics of the refraction billiard admits a topologically
chaotic subsystem.

Proof. Let us go back to the proof of Proposition 2.13: to prove that π is injective it is sufficient
to prove that the critical point found through Poincaré-Miranda Theorem is unique.
In the notation of Theorem 2.12, if the functions Fk are monotone, then the solution of
problem (2.15) must be unique in R. This is true if, for any k ∈ {1, . . . , d}, and any fixed
x1, . . . , xk−1, xk+1, . . . , xd, the quantity

∂

∂xk

Fk(x1, . . . , xk)

has constant sign for xk ∈ [−L,L].
In our case, this is ensured by Lemma 4.6. □

5. Final remarks and conclusions

In this work, along with the previous papers [12, 11], we presented the analysis of a brand
new dynamical model of interest in Celestial Mechanics, starting from the basic study of its
fixed points and arriving to its non-integrability. In particular there is fil rouge between the first
and the present paper: an elliptic domain with its center in the origin satisfies the assumptions
of Theorem 4.7 and thus the associated system is chaotic; this represents the analytical proof
of the numerical results shown in paper [12, Figure 11].

Furthermore, the results of the present paper hold also when we deal with reflective billiards :
in this case, known in literature as Kepler billiard, Keplerian arcs are reflected against the
domain’s boundary, hence just internal arcs are considered (see [8]). Taking again the example
of an elliptic domain, we deduce that, as far as the singularity is in the center of the ellipse, the
reflective system is chaotic as well. This negatively complements the recent results by Takeuchi
and Zhao [37, 35, 36] where they consider an elliptic Kepler billiard with the mass in one of the
foci, proving its integrability. Note that an ellipse with focus at the origin does not satisfy the
hypotheses of Theorem 1.5, while it does when moving the gravitational center at the center of
the ellipse. The transition from integrability to chaoticity in such elliptic model is the subject
of a forthcoming paper ([3]).

We stress that refraction billiards can be used to study the motion of a particle subjected
to any discontinuous potential: although we consider a galactic model, the techniques we used
can be implemented in different contexts, in particular emerging from physical models. We cite
for instance inverse magnetic billiards studied in [17].

Appendix A. Jacoby distances and Snell’s law

This appendix is devoted to the definition and the introduction of the main results connected
to the Jacobi distances related to the inner and outer dynamics, which are used in Section 2.
In particular, the relation between the variational and geometric properties of the inner and
outer arcs connecting points on ∂D are investigated.

Definition A.1. Let ξE1 , ξ
E
2 ∈ (a, b) ⊂ [0, L], where (a, b) satisfies Definition 2.1 and let

zE(·; γ
(
ξE1
)
, γ
(
ξE2
)
) : [0, TE] → R2 be the unique solution of (2.1). The outer Jacobi dis-

tance between the two points is given by3

dE
(
γ
(
ξE1
)
, γ
(
ξE2
)) .

=

∫ TE

0

∥z′E(s)∥
√
VE (zE(s))ds.

3Here and in the following, to ease the notation, we will omit the arguments in TE(·, ·) and TI(·, ·; ·).
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According to Definition 2.5, let A satisfy the inner-arc property, h > h0, and ξI1 , ξ
I
2 ∈ A be such

that there exists a unique (TnT) solution of (2.2), zI(·; γ
(
ξI1
)
, γ
(
ξI2
)
;h) : [0, TI ] → R2. The

inner Jacobi distance between the endpoints is then given by

dI
(
γ
(
ξI1
)
, γ
(
ξI2
)
;h
) .
=

∫ TI

0

∥z′I(s)∥
√

VI (zI(s))ds.

The integral quantities in the above definitions can be interpreted as the Jacobi lengths of
zE (resp. zI) related to the outer (resp. inner) potential (see also [32]). These quantities can
indeed be defined in more general frameworks, although it is beyond the scope of our work.

Remarks A.2. In view of Definition A.1, we observe that:

• the uniqueness of the solutions of the problems (2.1) and (2.2) implies that the quantities
dE and dI are well defined and differentiable. In particular, when ξI1 = ξI2 and the inner
arc is the collision-ejection solution, the integral representing its Jacobi length can be
interpreted in its regularised formulation in the Levi-Civita plane (see for example [12]);

• the functions dE and dI are not proper distances: as a matter of fact, when ξE1 = ξE2 or
ξI1 = ξI2 they do not vanish but represent the non-zero Jacobi length of the homothetic
(outer or inner) arc;

• the Jacobi length is invariant under reparametrizations of the path zE/I .

It is useful to express the distances as functions of the curve’s parameter rather than of the
endpoints in the plane. Given then ξE1 , ξ

E
2 ∈ [0, L] and h > 0, ξI1 , ξ

I
2 ∈ [0, L] as in Definition

A.1, we can define the functions

(A.1) SE(ξ
E
1 , ξ

E
2 )

.
= dE(γ(ξ

E
1 ), γ(ξ

E
2 )), SI(ξ

I
1 , ξ

I
2 ;h) = dI(γ(ξ

I
1), γ(ξ

I
2);h).

We observe that this definition is coherent with the one of generating function in classical
Birkhoff billiards (see [34]).
Let us recall that the distances dE and dI are infinitely-many differentiable as functions of the
endpoints in every set in which they are well defined; by the chain rule, this implies that the
lengths SE and SI inherit the regularity of the curve γ: in our case, since this curve is supposed
to be at least of class C1([0, L]), provided that the energy jump h is large enough the two Jacobi
lengths have the same regularity in every subset of [0, L] × [0, L] in which the inner or outer
dynamics are well defined.
Denoting with ∂a and ∂b the partial derivatives respectively with respect to the first and second
variable, one has

(A.2)
∂aSE

(
ξE1 , ξ

E
2

)
= ∇P1dE

(
γ
(
ξE1
)
, γ
(
ξE2
))

· γ̇
(
ξE1
)

∂bSE

(
ξE1 , ξ

E
2

)
= ∇P2dE

(
γ
(
ξE1
)
, γ
(
ξE2
))

· γ̇
(
ξE2
)

(and similarly for SI), where ∇P1 and ∇P2 denote respectively the gradient with respect to
the first and the second point. In order to compute this quantities, it is worth a more general
digression on the relation between solutions of suitable fixed-ends problem and the critical
points of the corresponding Jacobi length. More precisely, let us fix P1, P2 ∈ R2 and consider
the Bolza problem

(A.3)


z′′(s) = ∇V (z(s)) , s ∈ [0, T ]
1
2
∥z′(s)∥2 − V (z(s)) = 0 s ∈ [0, T ]

z(0) = P1, z(T ) = P2

for some T > 0, where V is a C2 potential defined on an open set Ω ⊆ R2. The corresponding
Jacobi length is given by

(A.4) L(z)
.
=

∫ T

0

∥z′(s)∥
√

V (z(s))ds,
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and is defined on the set of the path connecting P1 to P2 and belonging to the Hill’s region
associated to V

HP1P2

.
=
{
z ∈ H1

(
[0, T ],R2

)
| z(0) = P1, z(T ) = P2, V (z(s)) ≥ 0 for all s ∈ [0, T ]

}
.

Let us start by stating some classical results coming from Critical Points theory.

Lemma A.3. A path z ∈ HP1P2 is a critical point of L(·) if and only if it is a solution of the
Euler-Lagrange equations

(A.5)
d

ds

(√
V (z(s))

z′(s)

∥z′(s)∥

)
− ∥z′(s)∥

2
√
V (z(s))

∇V (z(s)) = 0 a.e. in [0, T ].

Proof. One has that z is a critical point for the Jacobi length if and only if for every v ∈
H1

0 ([0, T ]) one has that dL(z)[v] = 0. This is equivalent to require that the following chain of
equalities holds:

0 =
d

dϵ
L(z + ϵv)|ϵ=0 =

(
d

dϵ

∫ T

0

∥z′(s) + ϵv′(s)∥
√
V (z(s) + ϵv(s)) ds

)
|ϵ=0

=

∫ T

0

√
V (z(s))

∥z′(s)∥
z′(s) · v′(s) + ∥z′(s)∥

2
√
V (z(s))

∇V (z(s)) · v(s) ds

=

∫ T

0

[
− d

ds

(√
V (z(s))

z′(s)

∥z′(s)∥

)
+

∥z′(s)∥
2
√
V (z(s))

∇V (z(s))

]
· v(s) ds,

where in the last equation an integration by parts has been employed. As the identity must be
true for every v ∈ H1

0 ([0, T ]), one has that the Euler-Lagrange equations (A.5) must hold for
almost every s ∈ [0, T ]. □

We stress that if u ∈ C1([0, T ]) ∩HP1P2 is such that V (z(s)) > 0 and ∥z′(s)∥ > 0 for every
s ∈ [0, T ], by continuity one can infer that Eq. (A.5) holds everywhere in [0, T ]. Making use of
the previous result, it is possible to find a connection between solutions of problem (A.3) and
critical points of L(·).

Lemma A.4. Let z̄ ∈ HP1P2 be a solution of problem (A.3) such that V (z̄(s)) > 0 for every
s ∈ [0, T ]. Then z̄ is also a critical point of the Jacobi length L.

Proof. Let us start by observing that, if z̄ is a solution of problem (A.3) such that V (z̄(s)) > 0
in [0, T ], then z̄ ∈ C2([0, T ]) ∩HP1P2([0, T ]) and ∥z̄′(s)∥ > 0 for every s ∈ [0, T ]. We will then
prove that z̄ is a critical point for L(·) by verifying that it solves the Euler-Lagrange equations
(A.5) for every s ∈ [0, T ]. As a matter of fact, one has, for every s ∈ [0, T ],

d

ds

(√
V (z̄(s))

z̄′(s)

∥z̄′(s)∥

)
=

∇V (z̄(s)) · z̄′(s)
2
√

V (z̄(s))

z̄′(s)

∥z̄′(s)∥
+

√
V (z̄(s))

∥z̄′(s)∥
z̄′′(s)−

√
V (z̄(s))

z̄′(s) · z̄′′(s)
∥z̄′(s)∥3

z̄′(s),

and the Euler-Lagrange equations follow from the first two lines in Eq. (A.3). The conclusion
follows from Lemma A.3. □

Passing now from a generic potential V to the inner and outer potentials of our dynamical
system, let us remark that, when V = VE or V = VI and P1 ̸= P2 are as in Definition A.1,
the unique inner or outer solution is in the form described in Lemma A.4. Starting from this
observation, we can now obtain the explicit expressions of the quantities involved in Eq. (A.2).
In the following, the Jacobi lengths related respectively to the outer and inner potentials will
be denoted by LE and LI .
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Lemma A.5. Let ξE1 , ξ
E
2 , ξ

I
1 , ξ

I
2 ∈ [0, L] and h > 0 as in Definition A.1. Then

(A.6)

∂aSE(ξ
E
1 , ξ

E
2 ) = −

√
VE(γ(ξE1 ))

z′E(0; γ(ξ
E
1 ), γ(ξ

E
2 ))

∥z′E(0; γ(ξE1 ), γ(ξE2 ))∥
· γ̇(ξE1 )

∂bSE(ξ
E
1 , ξ

E
2 ) =

√
VE(γ(ξE2 ))

z′E(TE; γ(ξ
E
1 ), γ(ξ

E
2 ))

∥z′E(TE; γ(ξE1 ), γ(ξ
E
2 ))∥

· γ̇(ξE2 )

∂aSI(ξ
I
1 , ξ

I
2 ;h) = −

√
VI(γ(ξI1))

z′I(0; γ(ξ
I
1), γ(ξ

I
2);h)

∥z′I(0; γ(ξI1), γ(ξI2);h)∥
· γ̇(ξI1)

∂bSI(ξ
I
1 , ξ

I
2 ;h) =

√
VI(γ(ξI2))

z′I(TI ; γ(ξ
I
1), γ(ξ

I
2);h)

∥z′I(TI ; γ(ξI1), γ(ξ
I
2), h)∥

· γ̇(ξI2).

Proof. Let us observe that the partial derivatives in Eq. (A.2) can be expressed as directional
derivatives of the (inner or outer) Jacobi length in the direction of γ̇(ξ) for suitable ξ ∈ [0, L].
Taking for example ∂aSE(ξ

E
1 , ξ

E
2 ) (analogous expressions hold for the other derivatives listed in

Eq. (A.6)), one has

∂aSE(ξ
E
1 , ξ

E
2 ) = ∂1,γ̇(ξE1 )dE

(
γ
(
ξE1
)
, γ
(
ξE2
))

= ∂1,γ̇(ξE1 )LE

(
zE
(
·; γ
(
ξE1
)
, γ
(
ξE2
)))

,

where, in general, ∂1,σ denotes the directional derivative with respect to variations of the first
endpoint in the direction of the unit vector σ.
To find the explicit expression of ∂aSE, let us start by assuming that ξE1 ̸= ξE2 . It is straightfor-
ward to verify that zE(·)

.
= zE

(
·; γ
(
ξE1
)
, γ
(
ξE2
))

is a classical solution of the associated Bolza
problem such that VE (zE(s)) > 0 for every s ∈ [0, TE]: by Lemma A.4, the outer arc is a
solution of the associated Euler-Lagrange equations for every s ∈ [0, TE]. Let us now consider
the new parametrization s 7→ t(s) given by

dt

ds
=

√
2VE(zE(s))

LE

t(0) = 0

where L
.
= LE(zE) ∈ R as defined in (A.4) with V = VE, and define z̃(t)

.
= zE (s(t)). Defining

the new time derivative as · .
= d

dt
, it is straighforward to verify that t ∈ [0, 1] and that

∀t ∈ [0, 1] ∥ ˙̃z(t)∥
√
VE (z̃(t)) = LE.

Moreover, by the invariance of the Jacobi length under reparametrizations, one has that

SE

(
ξE1 , ξ

E
2

)
= LE(zE) = LE (z̃) ,

and then, by (A.2), ∂aSE(ξ
E
1 , ξ

E
2 ) = ∂1,γ̇(ξE1 )LE (z̃). Starting by (A.5), one can prove that the

reparametrized curve z̃ satisfies the Euler-Lagrange equations

d

dt

(
∂L
∂ż

)
=

∂L
∂z

,

where L .
= ∥ż(t)∥2VE(z(t)) = L2

E, namely,

(A.7)
d

dt

(
2VE (z̃(t)) ˙̃z(t)

)
= ∥ ˙̃z(t)∥2∇VE (z̃(t)) .

Let us now compute ∂1,γ̇(ξE1 )LE (z̃): differentiating L with respect to the first endpoint, one has
that
(A.8)

2LE∂1,γ̇(ξE1 )LE = ∂1,γ̇(ξE1 )L = ∂1,γ̇(ξE1 )

∫ 1

0

∥ ˙̃z(t)∥2
√

VE (z̃(t))dt =

∫ 1

0

∂1,γ̇(ξE1 )

(
∥ ˙̃z(t)∥2

√
VE (z̃(t))

)
dt

=

∫ 1

0

2VE (z̃(t)) ˙̃z(t) · ∂1,γ̇(ξE1 )
˙̃z(t) + ∥ ˙̃z(t)∥2∇VE (z̃(t)) · ∂1,γ̇(ξE1 )z̃(t).



CHAOTIC DYNAMICS IN REFRACTION GALACTIC BILLIARDS 29

Moreover, multiplying (A.7) by ∂1,γ̇(ξE1 )z̃(t) and integrating the result in [0, 1], one obtains

(A.9)∫ 1

0

d

dt

(
2VE (z̃(t)) ˙̃z(t)

)
· ∂1,γ̇(ξE1 )z̃(t) =

∫ 1

0

∥ ˙̃z(t)∥2∇VE (z̃(t)) ∂1,γ̇(ξE1 )z̃(t)

=⇒
∫ 1

0

2VE (z̃(t)) ˙̃z(t) · ∂1,γ̇(ξE1 )
˙̃z(t) + ∥ ˙̃z(t)∥2∇VE (z̃(t)) · ∂1,γ̇(ξE1 )z̃(t) = −2VE (z̃(0)) ˙̃z(0) · γ̇

(
ξE1
)
,

where the second equation is obtained by integrating by part and observing that ∂1,γ̇(ξE1 )z̃(0) =

γ̇(ξE1 ) and ∂1,γ̇(ξE1 )z̃(1) = 0. Comparing now (A.9) and (A.8) and recalling the expression of LE,
one gets the final expression

∂1,γ̇(ξE1 )LE (z̃) = −VE (z̃(0)) ˙̃z(0)

LE

· γ̇
(
ξE1
)
= −

√
VE (z̃(0))

˙̃z(0)

∥ ˙̃z(0)∥
· γ̇
(
ξE1
)
.

Returning now to the time parameter s, one obtains

∂aSE(ξ
E
1 , ξ

E
2 ) = −

√
VE(γ(ξE1 ))

z′E(0; γ(ξ
E
1 ), γ(ξ

E
2 ))

∥z′E(0; γ(ξE1 ), γ(ξE2 ))∥
· γ̇(ξE1 ).

The same identity can be extended to the case ξE1 = ξE2 by observing that VE

(
zE(s; γ(ξ

E
1 ), γ(ξ

E
1 ))
)
>

0 almost everywhere in [0, TE] and by taking into account the differentiable dependence of
zE
(
·; γ(ξE1 ), γ(ξE2 )

)
with respect to variations of the endpoints.

In the inner case one can use the same reasonings, keeping in mind that, whenever a collision
occurs, one can consider the corresponding regularized system. □

We are now ready to validate the refraction Snell’s law stated in Eq. (1.1) to rule the junction
between outer and inner arcs and given by

(A.10)
√
VE(γ(ξ)) sinαE =

√
VI(γ(ξ)) sinαI ,

where:

• γ(ξ) is the transition point between the outer and inner region (or viceversa);
• αE, αI are the angles of the two arcs with respect to the outward-pointing normal unit
vector to γ in ξ.

As already pointed out in the Introduction, Eq. (A.10) is justified by a variational argument,
which can be explicited by means of the partial derivatives of SE and SI .
Let us start by fixing h > h0, where h0 is defined in Definition 2.5; now take ξE, ξI ∈ [0, L]
such that there exists a concatenation outer-inner arc starting from γ(ξE) and arriving in γ(ξI).
More precisely, this means that there exists ξ ∈ [0, L] such that there exists a unique outer arc
between γ(ξE) and γ(ξ) and an unique (TnT) inner arc from ξ to ξI .
Although this reasoning can be treated by referring to a more general setting, let us suppose to
have a disjoint union of intervals A =

⋃
i=1,...,m(ai, bi) ⊂ [0, L] satisfying the inner-arc property

(Definition 2.5) and such that every connected component (ai, bi), i = 1, . . . ,m, enjoys the
outer-arc property (Definition 2.1); suppose now that ξE ∈ (ai, bi) and ξI ∈ (aj, bj), j ∈ NA(i),
where NA(i) has been defined in Eq. (2.3). We have then that for every ξ ∈ (ai, bi) there are
exactly one outer arc connecting γ(ξE) to γ(ξ) and one (TnT) inner arc starting from γ(ξ) and
arriving in γ(ξI). We can then consider the total Jacobi length of the concatenation composed
by these arcs, denoted, following the notation introduced in Eq. (A.1), by SE(ξE, ξ)+SI(ξ, ξI ;h).

Definition A.6. We say that the concatenation between γ(ξE) and γ(ξI) of transition point
γ(ξ̄), with ξ̄ ∈ [0, L], satisfies the Snell’s law if ξ̄ is a critical point4 for the total Jacobi length,

4This criticality argument can be replaced in a minimality argument if we consider a more general definition
for the inner and outer Jacobi distances, whose variables can be points not necessarily lying on ∂D, and restrict
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namely, if

(A.11)
d

dξ
(SE(ξE, ξ) + SI(ξ, ξI ;h))|ξ=ξ̄

= 0.

An analogous condition can be established for a concatenation starting with an inner arc.
Note that condition (A.11) is equivalent to require that

(A.12) ∂bSE(ξE, ξ̄) + ∂aSI(ξ̄, ξI ;h) = 0,

which, in view of Lemma A.5, can be rephrased as

(A.13)
√

VE(γ(ξ̄))
z′E(TE; γ(ξE), γ(ξ̄))

∥z′E(TE; γ(ξE), γ(ξ̄))∥
· γ̇(ξ̄) =

√
VI(γ(ξ̄))

z′I(0; γ(ξ̄), γ(ξI);h)

∥z′I(0; γ(ξ̄), γ(ξI);h)∥
· γ̇(ξ̄).

Eq. (A.12) is used as an admissibility criterion in Section 2 to establish if a concatenation is
a trajectory for the complete dynamics. As for Eq. (A.13), it can be easily translated into
Eq. (A.10), and can be interpreted as a conservation law for the tangential component of the
trajectory’s velocity vector across the interface.

Let us conclude by observing that Eq. (A.10) has an evident correlation with the classical
Snell’s law for straight light rays, which can be derived again from a variational minimization
problem (known as Fermat’s principle). In this sense, our refraction law can be interpreted as
a generalization for generic potentials and curved geodesics of this classical Snell’s law; in par-
ticular, while in the classical case the geodesic arcs are always minimizers for the Jacobi length,
in our case the solutions of the Bolza problems are only critical points of the corresponding
lengths LE(·) and LI(·): this justifies the use of a criticality condition rather than a minimality
one (which, in any case, can be retrieved working locally around the transition point).

Appendix B. Existence and properties of Keplerian hyperbolæ connecting
two points

In this appendix we analyze some properties of Keplerian hyperbolæ connecting two not
antipodal points on the boundary ∂D. The next result is a particular case of some results
provided in paper [10] (see Lemma 4.1 and Proposition 6.1) where the authors consider much
more general singular dynamical systems. The same authors indeed remarked that the classical
Keplerian problem is a special case of their construction that can be computed explicitly.

Lemma B.1. Let p0, p1 ∈ ∂D such that they are not antipodal, and fix M > 0. Then for every
E > 0 there exists a unique (TnT) (possibly regularized) solution of

z′′(s) = −M
z(s)

∥z(s)∥3
, s ∈ [0, T ],

1

2
∥z′(s)∥2 − E − M

∥z(s)∥
= 0, s ∈ [0, T ],

z(0) = p0, z(T ) = p1,

called zI(·; p0, p1;E). Moreover,

LI(zI) =
√
E (∥p0∥+ ∥p1∥) +

M√
E

(
F (p0, p1;E)− log

(
M

2E

))
,

where F is C2-bounded uniformly with respect to p0, p1 as E → ∞.

our analysis to a strongly convex neighborhood for both the inner and outer Jacobi metric (see [16]). In such
case, indeed, the geodesic arcs connecting any two points are minimizers for the Jacobi length.
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Proof. The existence and uniqueness of zI is a classical result in Celestia Mechanics (see for
instance [4, p. 274]). Let us then consider the Jacobi length of zI

LI(zI) =

∫ T

0

∥z′I(s)∥

√
E +

M

∥zI(s)∥
ds =

√
E

∫ T

0

∥z′I(s)∥

√
1 +

M

E

1

∥zI(s)∥
ds,

and the equivalent Kepler problem with energy equal to 1 and mass M/E. Using Levi-Civita
regularization, and in particular considering the transformation (in complex notation)

d

ds
=

1√
2∥z (s(τ)) ∥

d

dτ
, w2(τ) = z(s(τ))

one arrives to the harmonic repulsor-system for a suitable T̃

(B.1)


w′′(τ) = w(τ) τ ∈ [0, T̃ ]
1
2
∥w′(τ)∥2 − 1

2
∥w(τ)∥2 = E ′ τ ∈ [0, T̃ ]

w(0) = w0, w(T̃ ) = w1

where E ′ = M/2E and w0, w1 ∈ C are such that w2
0 = p0 and w2

1 = p1. Since the complex
square determines a double covering over C, we have two possible choices for every wi, i = 0, 1.
To obtain solution corresponding to the (TnT) arc in the physical Kepler problem, we need
to take w0 =

√
p0 and w1 = −√

p1 (or, equivalently, w0 = −√
p0 and w1 =

√
p1); with some

geometric remark we verify that, with this choice, w0 ·w1 < 0. Back to R2, the solution of (B.1)
is

w(τ) = Aeτ +Be−τ ,

where the vectors A,B ∈ R2 can be expressed in terms of w0, w1 and T̃ as

A =
w1 − w0e

−T̃

eT̃ − e−T̃
, B =

w0e
T̃ − w1

eT̃ − e−T̃
,

and the energy conservation law gives E ′ = −2A ·B.
Computing the Jacobi length of zI , one has then that (see [12] for more explicit computations)

LI(zI) =
√
E

∫ T

0

∥z′I(s)∥

√
1 +

M

E

1

∥zI(s)∥
ds = 2

√
E

∫ T̃

0

∥w′(τ)∥
√
2E ′ + ∥w(τ)∥2dτ

= 2
√
E

[
1

2

eT̃ + e−T̃

eT̃ − e−T̃
(∥w0∥2 + ∥w1∥2)−

2w0 · w1

eT̃ − e−T̃
+ T̃E ′

]
.

It is then necessary to express all the quantities depending on T̃ in terms of w0 and w1. Let
us start by computing

y(w0, w1;E
′)

.
=

eT̃ + e−T̃

2
= −w0 · w1

2E ′ +

√
1

2E ′ (∥w0∥2 + ∥w1∥2) +
(w0 · w1

2E ′

)2
+ 1;
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since w0 ·w1 < 0, the function 1/y is analytic on a right neighborhood of E ′ = 0 (which indeed
corresponds to E → +∞). Using the expression of y, one can then find

(B.2)

T̃ = log
(
y +

√
y2 − 1

)
= log

(
|w0 · w1|

2

)
− logE ′ + log

1 +

√
1 + 2E ′∥w0∥2 + ∥w1∥2

(w0 · w1)2
+

(
2E ′

w0 · w1

)2


+ log

(
1 +

√
1− 1

y2

)
= − logE ′ + g1(w0, w1;E

′),

where g1 is an analytic function.
Furthermore, we have that
(B.3)

2

eT̃ − e−T̃
=

1√
y2 − 1

=

√
2

|w0 · w1|
E ′

1 +
E ′(∥w0∥2 + ∥w1∥2)

(w0 · w1)2
+

√
1 +

2E ′(∥w0∥2 + ∥w1∥2)
(w0 · w1)2

+
4E ′2

(w0 · w1)2

−1/2

= E ′g2(w0, w1;E
′),

where again g2 is analytic. As for the coefficient of (∥w0∥2 + ∥w1∥2) one has that

eT̃ + e−T̃

eT̃ − e−T̃
=

1√
1− 1

y2

;

this term is then analytic and its Taylor expansion around E ′ = 0 is of the form

(B.4)
eT̃ + e−T̃

eT̃ − e−T̃
= 1 + E ′g3(w0, w1;E

′).

Taking together Eqs. (B.2), (B.3) and (B.4), and recalling that E ′ = M/2E, one obtains

LI(zI) = 2
√
E

(
1

2

(
∥w0∥2 + ∥w1∥2

)
+ E ′G(w0, w1;E

′)− E ′ logE ′
)

=
√
E (∥p0∥+ ∥p1∥) +

M√
E

(
F (p0, p1;E)− log

(
M

2E

))
,

where F is C2-bounded with respect to p0, p1 as E → ∞. □
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[1] I. Baldomá, M. Giralt, and M. Guardia. Breakdown of homoclinic orbits to L3 in the RPC3BP (I). Complex
singularities and the inner equation. Adv. Math., 408:Paper No. 108562, 64, 2022.

[2] V. Barutello, G. M. Canneori, and S. Terracini. Symbolic dynamics for the anisotropic N -centre problem
at negative energies. Arch. Ration. Mech. Anal., 242(3):1749–1834, 2021.

[3] V. Barutello and I. De Blasi. From integrability to chaos in elliptic refraction billiards. in preparation, 2022.



CHAOTIC DYNAMICS IN REFRACTION GALACTIC BILLIARDS 33

[4] R. H. Battin. An introduction to the mathematics and methods of astrodynamics. AIAA Education Series.
American Institute of Aeronautics and Astronautics (AIAA), Reston, VA, revised edition, 1999. With a
foreword by J. S. Przemieniecki.

[5] S. Bolotin. Nonintegrability of the problem of n centers for n > 2. Vestnik Moskov. Univ. Ser. I Mat.
Mekh., 3:65–68, 1984.

[6] S. Bolotin and P. Negrini. Regularization and topological entropy for the spatial n-center problem. Ergodic
Theory Dynam. Systems, 21(2):383–399, 2001.

[7] S. Bolotin and P. Negrini. Chaotic behavior in the 3-center problem. J. Differential Equations, 190(2):539–
558, 2003.

[8] S. V. Bolotin. Degenerate billiards in celestial mechanics. Regul. Chaotic Dyn., 22(1):27–53, 2017.
[9] S. V. Bolotin and V. V. Kozlov. Topological approach to the generalized n-centre problem. Uspekhi Mat.

Nauk, 72(3(435)):65–96, 2017.
[10] S. V. Bolotin and R. S. Mackay. Periodic and chaotic trajectories of the second species for the n-centre

problem. Celestial Mechanics and Dynamical Astronomy, 77(1):49–75, 2000.
[11] I. De Blasi and S. Terracini. On some refraction billiards, 2021.
[12] I. De Blasi and S. Terracini. Refraction periodic trajectories in central mass galaxies. Nonlinear Anal.,

218:Paper No. 112766, 40, 2022.
[13] N. Delis, C. Efthymiopoulos, and C. Kalapotharakos. Effective power-law dependence of Lyapunov expo-

nents on the central mass in galaxies. Monthly Notices of the Royal Astronomical Society, 448(3):2448–2468,
2015.

[14] R. Devaney. Singularities in classical mechanical systems. In Ergodic theory and dynamical systems, I
(College Park, Md., 1979–80), volume 10 of Progr. Math., pages 211–333. Birkhäuser, Boston, Mass., 1981.
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[24] A. Knauf and I. Tăımanov. Integrability of the n-center problem at high energies. Dokl. Akad. Nauk,

397(1):20–22, 2004.
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