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Abstract We investigate the properties and structure of the
recently discussed “fully inclusive jet correlator”, namely,
the gauge-invariant field correlator characterizing the final
state hadrons produced by a free quark as this propagates
in the vacuum. Working at the operator level, we connect
this object to the single-hadron fragmentation correlator of a
quark, and exploit a novel gauge invariant spectral decompo-
sition technique to derive a complete set of momentum sum
rules for quark fragmentation functions up to twist-3 level;
known results are recovered, and new sum rules proposed. We
then show how one can explicitly connect quark hadroniza-
tion and dynamical quark mass generation by studying the
inclusive jet’s gauge-invariant mass term. This mass is, on
the one hand, theoretically related to the integrated chiral-
odd spectral function of the quark, and, on the other hand, is
experimentally accessible through the E and ˜E twist-3 frag-
mentation function sum rules. Thus, measurements of these
fragmentation functions in deep inelastic processes provide
one with an experimental gateway into the dynamical gener-
ation of mass in Quantum Chromodynamics.
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1 Introduction

One of the crucial properties of the strong force is confine-
ment, namely the fact that color charged partons seemingly
cannot exist as free particles outside of hadrons. As a conse-
quence, any individual parton struck in a high-energy scatter-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8380-1&domain=pdf
http://orcid.org/0000-0002-2077-6557
http://orcid.org/0000-0001-6640-9659
mailto:accardi@jlab.org
mailto:asignori@jlab.org


  825 Page 2 of 30 Eur. Phys. J. C           (2020) 80:825 

ing process and extracted from its parent hadron must trans-
form into at least one hadron – in technical language, it must
“hadronize”. During this process, a struck light quark, such as
an up, down or strange, initially propagates as a high-energy
but nearly massless colored particle, radiating by chromo-
dynamic bremsstrahlung a number of other gluons and light
quark-antiquark pairs (the radiation of heavy quarks such as
the charm and the bottom is suppressed in proportion to their
much higher mass, and can be ignored for the purposes of
this discussion). Before reaching the experimental detectors,
however, this system of colored, nearly massles particles will
turn into a number of massive, color neutral hadrons such as
pions, kaons and protons (with overall color charge conserva-
tion guaranteed, arguably, by soft final state interactions with
the remnant of the parton’s parent hadron). Hadronization is
thus quite clearly and tightly connected to parton propaga-
tion, color charge neutralization, and dynamical generation
of the mass, spin, and size of hadrons. However, the exact
details of this parton-to-hadrons transition are poorly known.
It is the purpose of this article to shed new light on these.

Unraveling hadronization dynamics is not only of funda-
mental importance to understand the emergence and nature
of massive visible matter, but also an essential tool in hadron
tomography studies at current and future facilities, includ-
ing the 12 GeV program at Jefferson Lab [1] and a future
US-based Electron-Ion Collider [2,3]. For example, in Semi-
Inclusive Deep Inelastic Scattering (SIDIS), measuring the
transverse momentum of one of the final state hadrons can
crucially provide a handle into the transverse motion of
its parent quarks and gluons inside the hadron target [4–
16]. Understanding the hadronization mechanism is there-
fore critically important to quantitatively connect the initial,
short-scale lepton-quark scattering hidden by confinement,
with the measurable properties of hadrons as they hit the
detectors. Hadronization and, more in general, hadron struc-
ture are also very important for high-energy physics as they
are among the biggest sources of uncertainty in the deter-
mination of Standard Model parameters [17–24] and the
searches for physics beyond the Standard Model at the LHC
[25,26]. Understanding hadronization is also essential for the
study of cold and hot nuclear matter properties by means of
jet quenching measurements in electron-nucleus and heavy
ion collisions [27,28].

In high-energy collisions with a large four-momentum
transfer, factorization theorems in Quantum Chromodynam-
ics (QCD) allow one to separate the short-distance partonic
scattering from the long-distance, non perturbative dynamics
that binds the partons inside the target and detected particles
[5,29–37]. In this context, hadronization can be mapped –
and then utilized as a tool – by means of fragmentation func-
tions (FFs) that quantify the transmutation of a parton into
one or more hadrons. FFs can be “collinear”, namely, depend-
ing only on the ratio of the longitudinal momenta of the

hadron and the parton, or “trasverse-momentum-dependent”
(TMD), meaning they depend on both the longitudinal and
transverse hadron momentum components.

The fragmentation functions can be determined by means
of global QCD fits of hard semi-inclusive collisions. Collinear
FFs for unpolarized hadrons are relatively well determined
[38–40], but there is currently no fit available for leading-
twist polarized collinear FFs, such as the transversity FF H1.
The observation of a polarized hyperon in the final state
could, however, shed light on the twist-3 collinear sector
[41,42]. In the transverse momentum sector, some informa-
tion is available on the Collins TMD FF, among the polar-
ized ones, as this involves polarized quarks but unpolarized
hadrons [43–48]. Lastly, while unpolarized TMD FFs are so
far poorly known [49–51], present and forthcoming data from
the BELLE and BES-III collaborations [52–54] will soon
allow one to perform fits of these FFs, as well [55,56]. A
comprehensive review on the theory and phenomenology of
fragmentation functions, including di-hadron FFs and gluon
FFs, can be found in Ref. [57].

The behavior of the fragmentation functions can be use-
fully constrained in a global QCD fit utilizing suitable sum
rules [58]. A number of sum rules for single-hadron FFs
are documented in literature [59–65], starting from the well
known momentum sum rule for the unpolarized D1 fragmen-
tation function originally introduced in Ref. [59]. A few have
also been proposed for di-hadron FFs [57,66–68]. As we will
see, however, the interest of FF sum rules also extends beyond
their application to phenomenological fits, since a few of
these are also sensitive to aspects of the non-perturbative
QCD dynamics, such as the dynamics of mass generation.

The aim of this paper is to develop a field-theoretical for-
malism enabling us to take a fresh look at quark propagation
and hadronization in the QCD vacuum. Our strategy is to
establish an operator-level master sum rule connecting the
quark-to-hadron fragmentation correlator, that describes the
transition of a quark into a hadron and an unobserved rem-
nant [61,63], with the “fully inclusive jet correlator”, that
describes the fragmentation of a quark into an unobserved
jet of particles [65,69–71]. We do this by generalizing the
techniques utilized in Ref. [64]. We will then systematically
exploit this correlator-level sum rule, and derive a complete
set of sum rules for hadron spin independent fragmentation
functions up to the twist-3 level. Results for selected Dirac
structures have already been presented in Ref. [72]; in this
work, that also provides full details of our approach, we com-
plete the set of twist-3 sum rules (some of which generalize
known results) and comment on their theoretical and phe-
nomenological implications.

We would like to stress already here that, while the fully
inclusive jet correlator also finds an application in the QCD
factorization of, e.g., inclusive DIS scattering at large values
of the Bjorken x variable [65,69–71,73–80], in this paper
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we consider this correlator as a theoretical object of intrinsic
interest, and as a tool to derive the aforementioned sum rules,
independently of any scattering process in which it may find
application. In fact, as we will see, the inclusive jet correlator
can be rewritten as the gauge invariant propagator of a color-
averaged quark, and the generation of intermediate hadronic
states analyzed in terms of the quark’s Källen-Lehmann spec-
tral functions. The dynamics of mass generation in the quark
hadronization process can thus be explicitly connected in a
gauge invariant way to the propagation of a quark in the QCD
vacuum.

In Sect. 2 we perform a spectral analysis of the jet cor-
relator, that will yield a gauge invariant decomposition in
terms of the jet’s momentum k, its mass Mj , and its vir-
tuality K 2

j plus terms associated with the Wilson line that
renders the correlator gauge invariant. The starting point of
this analysis is the convolutional spectral representation of
the gauge invariant quark propagator proposed in Ref. [72],
see Eq. (23). We believe that this spectral representation can
also find application beyond the present paper, for example
in the study of the gauge independence of objects such as the
virtuality-dependent parton distributions of Ref. [81], that
are playing an increasingly important role in the direct lat-
tice QCD calculation of PDFs in momentum space [82,83].

All the coefficients in the inclusive jet correlator’s decom-
position are gauge invariant. In particular, this allows us to
identify Mj with, and propose a gauge invariant definition
of, the mass of a dressed quark. This mass can be calculated
in the light-cone gauge as an integral involving the chiral-
odd spectral function of the quark propagator (see Sects. 2.2
and 2.3), and can be considered as an order parameter for
the dynamical breaking of chiral symmetry (see Sect. 2.4).

In Sect. 3, we derive the master sum rule connecting the
unintegrated single-hadron fragmentation correlator to the
inclusive jet correlator, see Eq. (79), and from this obtain
momentum sum rules for FFs up to twist 3 by suitable Dirac
projections. These sum rules are summarized in Sect. 4,
where we extensively comment on their theoretical and phe-
nomenological implications. In particular, we find that the
jet mass can be expressed as the sum of the current quark
mass, m, and an interaction-dependent mass, mcorr, which
enter, respectively, at the right hand side of the sum rules for
the collinear twist-3 E and ˜E FFs, see Sect. 3.5. Measure-
ments of these fragmentation functions, therefore, provide
one with a concrete way to experimental probe the the mass
generation mechanism in QCD, and to study the dynamical
breaking of the chiral symmetry. Furthermore, the E and ˜E
sum rules provide a way to separate the contribution of each
hadron flavor to the overall jet mass, giving one even more
insight on these processes.

Finally, in Sect. 5 we summarize the results and discuss
possible extensions of our work, and in the appendices we

provide details about our conventions and the Lorentz trans-
formations of the fragmentation and inclusive jet correlators.

2 The fully inclusive jet correlator and its spectral
decomposition

2.1 The inclusive jet correlator

Let us start by considering the unintegrated inclusive quark-
to-jet correlator [65,69–72,78]

�i j (k;w) = Disc
∫

d4ξ

(2π)4 e
ik·ξ

× Trc
Nc

〈�|[ T W1(∞, ξ ;w)ψi (ξ)
]

× [

T ψ j (0)W2(0,∞;w)
]|�〉 , (1)

where |�〉 is the interacting vacuum state of QCD, ψ the
quark field, W1,2 are Wilson lines that ensure the gauge
invariance of the correlator, and w is an external vector that
determines the direction of their paths, as discussed in detail
later. T represents the time ordering operator for the fields
whereas T represents the anti time ordering operator [35,84],
and for sake of brevity we omit the flavor index of the quark
fields and of � (but all the results in this paper should be
understood to be flavor-dependent). The color trace of the
correlator will be shortly discussed in detail.

The definition (1) clarifies and refines the definitions pre-
viously advanced in Refs. [65,71,72]. In particular, with the
present definition, the jet correlator naturally emerges at the
right hand side of the master sum rule (79), that we will
derive in the next section and connects the single inclusive
quark fragmentation process to the propagation and inclusive
fragmentation of a quark discussed in this section. A dia-
grammatic interpretation of Eq. (1) is given in Fig. 1a, where
the vertical cut line represents the discontinuity, “Disc”, in
Eq. (1), or, in other words, a sum over all quark hadronization
products [69]. In fact, inserting a completeness between the
square brackets in Eq. (1), one can interpret the jet correla-
tor as the square of the sum of all possible quark-to-hadron
transition amplitudes.

The color-averaging of the initial-state quark, imple-
mented as Trc[. . . ]/Nc, has a crucial role, since it mimicks
the color neutralization that has to take place in order to
be able to consider the discontinuity, which corresponds to
having on-shell intermediate states (see, e.g., Ref. [85], Sec-
tion 2.4.). Furthermore, the color average is essential for the
spectral representation of the jet correlator to be developed
in Sect. 2.2. Finally, color averaging is also important in view
of the sum rule discussion of Sect. 3 and, more in general, for
using the inclusive jet correlator in factorization theorems at
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Fig. 1 Diagrammatic interpretations of a the fully inclusive jet corre-
lator of Eqs. (1) and (6), and b the single-hadron fragmentation corre-
lator (58). The black solid line corresponds to the hadronizing quark
with momentum k, the black dashed line to the produced hadron with

momentum Ph and spin Sh . The yellow blob corresponds to the unob-
served hadronization products. The vertical thin dashed line is the cut
that puts the (unobserved) particles on the mass shell (see Appendix A)

large Bjorken x [78]. When calculating Dirac traces, we will
also average over the quark’s polarization states as detailed
in Appendix A.

On the physics side, the correlator � captures the
hadronization of a quark including all the products of the
hadronization process. We call this the “fully inclusive” jet
correlator1 in order to stress that none of the jet’s constituents
is actually reconstructed – hence the absence of a definition
for a jet axis and radius, contrary to other semi-inclusive def-
inition of jets. In the following, when using for simplicity
the term “jet”(or “inclusive jet”) correlator, we will always
refer to this fully inclusive jet correlator. The inclusiveness
of � will also be evident when relating this to the correlator
for the hadronization of a quark into a single hadron by the
sum rule we will prove in Sect. 3. Finally, when inserting
� in a DIS diagram [65,71], which can be justified at large
values of Bjorken x where 4-momentum conservation limits
the amount of transverse momentum available to final state
hadrons [69,75,78], the jet in question can be identified with
the current jet.

It is also interesting to remark that, taking into account the
properties of the color trace and after a specific choice for the
path of the Wilson line (to be discussed next), the correlator �

can be expressed as the discontinuity of the gauge-invariant
quark propagator, whose spectral decomposition has been
studied in Ref. [86] for the case of a straight Wilson line
connecting 0 to ξ . In this paper, we will discuss instead the
spectral representation for the case of Wilson lines running
along staple-like contours – which are the natural paths aris-
ing in QCD factorization theorems – and use this in appli-
cations involving correlators integrated along one light-cone
direction.

1 Other names used in the literature for the same correlator are “jet
distribution” [69] and “jet factor” [70]. Its Dirac projections have also
been called “(final state) jet functions” [71,78,80].

2.1.1 Wilson line structure

We work in a reference frame specified by two light-like unit
vectors n+ and n− such that n2+ = n2− = 0 and n+ · n− = 1.
Any other vector aμ can then be specified in light-cone coor-
dinates as a = [a−, a+, aT ], with a± = a · n∓, and aT
the 2-dimensional coordinates of a transverse with respect
to the (n+, n−) plane, see Appendix A. We also assume the
quark to be highly boosted in the negative z direction, so
that the minus component of its momentum is dominant,
k− � |kT | � k+. When the jet correlator is included in the
calculation of a physical process, n+ and n− can be deter-
mined by the kinematics of that process; for example, in
DIS one can choose these to be coplanar with the hadron
and virtual photon momenta, with n− aligned with the latter
[65,71]. However, in this paper we study the jet correlator as
a theoretical object in its own right.

We restrict our attention to a class of Wilson lines that
reproduces the paths determined by the TMD factorization
theorems for quark-initiated hard scattering processes, when
� is integrated over the sub-dominant momentum compo-
nents k+ [35,87] (or even in the fully unintegrated factoriza-
tion proposed in Ref. [70]). For simplicity, we also restrict the
discussion to the case w = n+, even though no substantial
impediment arises in the treatment of slightly off-the-light-
cone Wilson lines. To be specific, we take W2 to run first
from 0 to infinity along the plus light-cone direction, then
to infinity in the transverse plane, and eventually to infin-
ity again along the minus light-cone direction, see Fig. 2a.
Analogously, W1 runs from infinity backwards in the minus
direction until it reaches [ξ−,∞+,∞T ], then in the trans-
verse direction until [ξ−,∞+, ξ T ], and eventually reaching
ξ = [ξ−, ξ+, ξ T ] along the plus direction (see Fig. 2a).
Explicitly,

W2(0,∞; n+) = Un+[0−, 0+, 0T ; 0−,∞+, 0T ]
× UvT [0−,∞+, 0T ; 0−,∞+,∞T ]
× Un−[0−,∞+,∞T ;∞−,∞+,∞T ] ,

(2)
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Fig. 2 Staple-like Wilson line paths for the jet correlator �(k; w = n+): a W2(0,∞; w = n+) (red) and W1(∞, ξ ; w = n+) (blue); b the
combined Wilson line W (0, ξ ; w = n+); c the TMD Wilson line WTMD(ξ+, ξ T )

W1(∞, ξ ; n+) = Un−[∞−,∞+,∞T ; ξ−,∞+,∞T ]
× UvT [ξ−,∞+,∞T ; ξ−,∞+, ξ T ]
× Un+[ξ−,∞+, ξ T ; ξ−, ξ+, ξ T ] , (3)

with Uv representing the Wilson operator along a half-line
starting from a in the v direction, i.e.,

Uv[a;∞] = P exp

(

−ig
∫ ∞

0
ds vμAμ(a + sv)

)

, (4)

where P denotes the path-ordering operator, and the square
brackets emphasizes the straightness of the path. We will
comment upon other possible choices of paths below.

From the Definitions (2) and (3), one can see that W2

is automatically anti time ordered, and W1, time ordered.
Namely, with our choice of paths, T P ≡ P and T P ≡ P .
Owing to this specific choice for the Wilson lines and thanks
to the color trace and to the absence of intermediate states, we
can also perform a cyclic permutation of the fields in Eq. (1)
and combine the two Wilson operators W1,2 into the single,
staple-like operator

W (0, ξ ; n+) = W2(0,∞; n+)W1(∞, ξ ; n+) (5)

illustrated in Fig. 2b, so that

�i j (k; n+)

= Disc
∫

d4ξ

(2π)4 e
ik·ξ Trc

Nc
〈�|ψi (ξ)ψ j (0)W (0, ξ ; n+)|�〉 .

(6)

The jet correlator can thus also be written as the discontinuity
of a gauge invariant quark propagator.

Upon setting ξ− = 0, that corresponds to integrating the
correlator over the k+ component, we obtain the staple-like

WTMD Wilson line utilized to define TMD distributions:

WTMD(ξ+, ξ T ) ≡ W (0, ξ ; n+)|ξ−=0

= Un+[0−, 0+, 0T ; 0−,∞+, 0T ]
× UvT [0−,∞+, 0T ; 0−,∞+, ξ T ]
× Un+[0−,∞+, ξ T ; 0−, ξ+, ξ T ] , (7)

see Fig. 2c. Note that, even without choosing a specific form
for W1,2, the integration over k+ renders the (anti-)time
ordering on the light cone equivalent to the path ordering,
since ξ+ becomes proportional to the time variable. Setting
also ξT = 0, which corresponds to furthermore integrating �

over the transverse momentum kT , one would finally obtain
the collinear Wilson line Wcoll(ξ

+) ≡ WTMD(ξ+, 0T ) =
U[0−, 0+, 0T ; 0−, ξ+, 0T ], running along the light-like seg-
ment from 0+ to ξ+.

It is important to remark that the results discussed in this
paper hold true also for a larger class of Wilson lines. In order
to drop the T and T time-ordering operators and rewrite the
jet correlator as a gauge invariant quark propagator, one only
needs to ensure that the time variable increases along the path
that goes from 0 to ∞, and decreases when going from ∞
to ξ . This clearly restricts the class of Wilson lines available,
but not overmuch. For example, one could consider off-the-
light-cone lines, with w �= n+ slightly tilted away from the
plus light-cone direction, or adopt L-shaped lines reaching
infinity along n+ and then moving to infinity simultaneously
along the minus and transverse directions. Furthermore, we
will need W in Eq. (6) to reduce to the identity matrix when
ξ → 0, hence in that limit the path of the Wilson line should
not contain loops. The straight line and the staple-like Wilson
line that enter in collinear and TMD factorization belong to
this category.
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2.1.2 Dirac structure

The correlator � can be decomposed on a basis of Dirac
matrices,

{

I, γ5, γ
μ, γ μγ5, iσμνγ5

}

, where i is the imag-
inary unit, I the identity matrix, γ5 = iεμνρσ γμγνγργσ ,
εμνρσ the totally antisymmetric tensor of rank 4, and σμν =
(i/2)[γ μ, γ ν]. Assuming invariance under Lorentz and par-
ity transformations, we can parametrize � as:

�(k; n+) = �A1I + A3/k + �2

k · n+
B1/n+

+ �

k · n+
B3σμνk

μnν+ . (8)

The amplitudes Ai and Bi are, in principle, functions of all the
Lorentz scalars that one can build with the available Lorentz
vectors, k · n+ and k2 [61,88,89]. The vector n+ is avail-
able as the vector specifying the direction of the Wilson
line. The subscripts differ from the conventions discussed
in Refs. [65,75], but have been chosen such that they match
the customary decomposition of the fragmentation correla-
tor to be discussed in Sect. 3.1. We have also introduced a
power-counting scale � = O(�QCD) that defines an “opera-
tional” twist expansion for the correlator in powers of �/k−,
where we assume a large boost in the k− direction so that
k+ = (k2 + k2

T )/2k− 
 |kT | 
 k−, with kT ∼ O(�) and
k+, k2 ∼ O(�2). This expansion is analogous to that used
in Refs. [63,90] for the single-hadron fragmentation corre-
lator, and further discussed in Sect. 3.1. Its relation with the
rigorous twist expansion of local operators in the Operator
Product Expansion formalism is discussed, e.g., in Ref. [91].

The twist expansion of the inclusive jet correlator can be
made explicit by writing Eq. (8) in terms of the light-cone
Dirac matrices γ ± = /n∓:

�(k; n+) = k−A3 γ + + �

(

A1 I + A3
/kT
�

+ i

2
B3 [γ +, γ −]

)

+ �2

k−

(

B1 γ − + A3
k2 + k2

T

2�2 γ − + B3
i

2�
[/kT , γ −]

)

.

(9)

The amplitudes A1,3 and B1,3 can be projected out by tracing
� multiplied by suitable Dirac matrices. We report here only
the non-zero traces and group these according to the power
counting with which they contribute to Eq. (9):

• Twist-2 structures - O(k−):

Tr[� γ −] = 4A3k
− (10)

• Twist-3 structures - O(�):

Tr[� I] = 4�A1 (11)

Tr[� γ i ] = 4A3k
i
T (12)

Tr[� iσ i jγ5] = −4�B3ε
i j
T (13)

• Twist-4 structures - O(�2/k−):

Tr[� γ +] = 4A3
k2 + k2

T

2k− + 4�2

k− B1 (14)

Tr[� iσ i+γ5] = 4
�

k− B3ε
i j
T kT j (15)

In these formulas, the ε
i j
T = εi jμνn−μn+ν tensor is the pro-

jection of the completely antysimmetric tensor in the trans-
verse plane, and i, j = 1, 2 are transverse Lorentz indices
(see “Appendix A”).

We note that the trace in Eq. (10) corresponds to the inclu-
sive jet function J defined in e.g. Refs. [92,93]. As we shall
see in Sec. 2.2, the amplitudes A3 and A1 are also directly
related to the chiral even and chiral odd spectral functions of
the quark propagator, respectively.

Moreover, note that the Dirac structure associated to the
amplitude B3 is time-reversal odd (T-odd) [61,65,88,94]. In
the correlator that defines parton distribution functions, the
T-odd structures are generated by the presence of the gauge
link in the transverse plane. Since the partonic poles van-
ish in the correlator that defines fragmentation functions, the
T-odd FFs are generated by the interchange of in- and out-
states induced by a time-reversal transformation rather then
by the link structure [57,95–100]. For this reason the FFs are
universal, contrary to TMD PDFs. As shown in Sect. 3.2, the
inclusive jet correlator is related to the fragmentation corre-
lator via an on-shell integration over the hadronic momenta
and a sum over all the possible hadronic final states. Since
there are no out-states in Eq. (1), we conclude that T-odd
structures cannot be present in �, namely

B3 = 0 . (16)

This further simplifies Eq. (9) and its Dirac projections in
Eqs. (13) and (15). We will briefly return to this point also in
the next section.

2.2 Convolution representation and spectral decomposition

We aim now at deriving a spectral representation for the
inclusive jet correlator (1), or, equivalently, for the the gauge
invariant quark propagator (6).

The first step is to rewrite Eq. (6) as a convolution of a
quark bilinear i˜S and the Fourier transform ˜W of the Wilson
line,

�i j (k; n+) = Disc
∫

d4 p
Trc
Nc

〈�|i˜Si j (p)˜W (k − p; n+)|�〉 ,

(17)
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where

i˜Si j (p) =
∫

d4ξ

(2π)4 eiξ ·p ψi (ξ)ψ j (0) , (18)

˜W (k − p; n+) =
∫

d4ξ

(2π)4 eiξ ·(k−p) W (0, ξ ; n+) . (19)

Note that this convolution representation does not, in itself,
depend on the choice of the path for the Wilson line and
it is thus generally valid for the study of gauge invariant
quark propagators. A careful choice of Wilson line within the
generic class discussed in Sect. 2.1.1 is only needed when
relating the gauge invariant propagator to the inclusive jet
correlator (1).

The convolution representation becomes very useful in
combination with the spectral decomposition of the quark
bilinear. The vacuum expectation value of the operator i˜S is,
indeed, the retarded/advanced (according to the sign of ξ0)
quark propagator, for which there exist spectral representa-
tions [101]. However, in this paper, we are rather interested in
the jet correlator integrated over the sub-dominant k+ compo-
nent of the quark momentum, and we can, in fact, work with
the simpler spectral representation of the Feynman quark
propagator. To this end, we introduce the following auxiliary
unintegrated correlator:

�′
i j (k; n+)

= Disc
∫

d4ξ

(2π)4 e
ik·ξ Trc

Nc
〈�| T [ψi (ξ)ψ j (0)

]

W (0, ξ ; n+)|�〉 ,

(20)

where only the quark bilinear operator is time ordered. In
Sect. 2.3, we will show that under the Wilson line choice
discussed in Sect. 2.1.1, the � and �′ correlators integrated
over k+ are, in fact, identical, and we can equivalently work
with the latter.

The convolution representation of �′ is obtained from
Eq. (17) by replacing i˜S with i˜S′, defined as

i˜S′
i j (p) =

∫

d4ξ

(2π)4 eiξ ·p T
[

ψi (ξ)ψ j (0)
]

. (21)

This operator can be given a Dirac decomposition assuming
invariance under Lorentz and parity transformations [101]:

i˜S′
i j (p) = ŝ3(p

2)/pi j +
√

p2ŝ1(p
2)Ii j , (22)

where, for simplicity, we omitted an overall identity matrix
in color space, and we can call ŝ1,3 spectral operators for
reasons that will become clear shortly. The correlator �′ can
then be written as

�′
i j (k; n+)

= Disc
∫

d4 p
Trc
Nc

〈�|
[

ŝ3(p
2)/pi j +

√

p2ŝ1(p
2)Ii j

]

× ˜W (k − p; n+) |�〉 . (23)

We can obtain a connection with the Källen-Lehman spec-
tral representation of the quark propagator [71,72,101,102]
by noticing that the Feynman propagator for the quark in
momentum space is given by the expectation value of i˜S′
on the interacting vacuum. In turn, the Feynman propa-
gator can be written as a superposition of propagators for
(multi)particle states of invariant mass μ [101,102]:

Trc
Nc

〈�|i˜S′(p)|�〉

= 1

(2π)4

∫ +∞

−∞
dμ2

{

/p ρ3(μ
2) +

√

μ2 ρ1(μ
2)
}

θ(μ2)

× i

p2 − μ2 + iε
, (24)

where the theta function ensures that the spectral functions
ρ1,3 contribute to the integral only at time-like momenta.2

As a consequence of the canonical commutation relations,
the spectral function ρ3 satisfies [102,103]
∫ +∞

0
dμ2ρ3(μ

2) = 1 . (25)

This function can then be interpreted as the probability dis-
tribution for a quark to fragment into a multi-particle state
of invariant mass μ2. The ρ1 spectral function does not
satisfy any normalization condition, but, as we will show
in Sect. 2.3.2, is related to the mass density of the quark
hadronization products. Care is, however, needed with these
interpretations since the positivity of ρ3 (along with that of
ρ1) is not guaranteed in a confined theory.

Note that, when working in an axial gauge v · A = 0 as we
will do in Sect. 3, we should also add a structure proportional
to /v to the decomposition in Eq. (22) and to the term in
curly brackets in Eq. (24), see also Ref. [86]. However, in
our explicit calculations we will adopt the light-cone gauge,
where v = n+, and the additional, gauge-fixing term would
only contribute at twist-4 level. Since in this work we limit
the applications of our formalism to FF sum rules up to the
twist-3 level, for sake of simplicity we have not explicitly
written the gauge-fixing term in Eq. (24), but we will briefly
return on its role in Sect. 2.4.

The discontinuity in Eq. (23) is completely determined
by the discontinuity of Eq. (24). To calculate the latter, we
employ the Cutkosky rule [103–105], by which one simply
needs to replace

1

p2 − μ2 + iε
−→ −2π i δ(p2 − μ2) θ(p0) (26)

2 In Eq. (24), there is an extra (2π)−4 factor with respect to Refs.
[65,71,101] because of the normalization of Eq. (1), which is customary
in the literature dealing with TMD parton distribution and fragmentation
functions and the associated non-local operators (see e.g. Ref. [63]).
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at the right hand side of that equation. Namely, as the multi-
particle state of invariant mass μ2 passes the cut, this can be
thought of as a set of on-shell particles with positive energy.
We thus obtain:

Disc
Trc
Nc

〈�|i˜S′(p)|�〉

= 1

(2π)3

∫ +∞

−∞
dμ2{

/p ρ3(μ
2)

+
√

μ2 ρ1(μ
2)
}

θ(μ2) δ(p2 − μ2) θ(p0)

= 1

(2π)3

{

/p ρ3(p
2) +

√

p2 ρ1(p
2)
}

θ(p2) θ(p0)
︸ ︷︷ ︸

=θ(p2) θ(p−)

(27)

Finally, using the operator decomposition for i˜S′ given in
Eq. (22), we obtain the spectral representation for the dis-
continuity of the expectation values of the operators ŝ1,3:

(2π)3 Disc
Trc
Nc

〈�|ŝ1,3(p
2)|�〉 = ρ1,3(p

2) θ(p2) θ(p−).

(28)

It is in this sense, that we can refer to ŝ1,3 as spectral operators.
Note that Eqs. (27) and (28) provide a spectral represen-

tation for the quark propagator 〈�|i˜S′|�〉 without a Wilson
line insertion. It is the purpose of the convolution represen-
tation in Eq. (23), supplemented by Eq. (28) to provide a
spectral representation for �′(k; n+). Its application to the
calculation of the k+-integrated jet correlator is discussed in
the next section.

2.3 The TMD inclusive jet correlator

When integrating the inclusive jet correlator over the sup-
pressed k+ quark momentum component, one obtains the
TMD inclusive jet correlator J [72],

Ji j (k
−, kT ; n+) ≡ 1

2

∫

dk+ �i j (k; n+)

= 1

2
Disc

∫

dξ+d2ξT

(2π)3

× eik·ξ Trc
Nc

〈�|ψi (ξ)ψ j (0)W (0, ξ ; n+)|�〉|ξ−=0
,

(29)

where the 1/2 normalization factor is justified in Appendix A,
and the integrand is now restricted to ξ− = 0.

The TMD jet correlator can be decomposed in Dirac struc-
tures, with coefficients that can be determined by integrating
the projections of � given in Eqs. (10)–(15). Following the
arguments discussed in Appendix A and using Eq. (A9), we
define the projection of J to be:

J [�] ≡ Tr

[

J
�

2

]

= 1

2

∫

dk+Tr

[

�
�

2

]

= 1

4

∫

dk+Tr
[

� �
]

. (30)

For twist-2 structures we have:

J [γ −] = 1

2

∫

dk2A3(k
2, k−) ≡ α(k−) . (31)

For twist-3 structures we have:

J [I] = �

2k−

∫

dk2A1(k
2, k−) ≡ �

k− ζ(k−) (32)

J [γ i ] = kiT
2k−

∫

dk2A3(k
2, k−) = �

k− α(k−)
kiT
�

(33)

J [iσ i jγ5] = − �

2k− ε
i j
T

∫

dk2B3(k
2, k−) ≡ − �

k− ε
i j
T η(k−) .

(34)

For twist-4 structures we have:

J [γ +] = �2

2(k−)2

∫

dk2
[

A3(k
2, k−)

k2 + k2
T

2�2

+ B1(k
2, k−)

]

≡ �2

(k−)2 ω(k−, k2
T ) (35)

J [iσ i+γ5] = �2

2(k−)2 ε
i j
T

kT j

�

∫

dk2B3(k
2, k−)

= �2

(k−)2 ε
i j
T

kT j

�
η(k−) . (36)

Because of the integration over k2, all the functions defined
in the previous equations depend only on k−, apart from
ω which has an additional dependence on k2

T that we will
discuss in Sect. 2.3.3. The TMD jet correlator can then be
given a twist decomposition in Dirac space as follows:

J (k−, kT ; n+)

= 1

2
α(k−)γ +

+ �

2k−

[

ζ(k−)I + α(k−)
/kT
�

+ η(k−)σμνn
μ
−n

μ
+
]

+ �2

2(k−)2

[

ω(k−, k2
T )γ − + 1

�
η(k−)σμνk

μ
T n

ν+
]

.

(37)

Since B3 = 0, according to time-reversal symmetry argu-
ments, we obtain η(k−) = 0 and thus the correlator J sim-
plifies to:

J (k−, kT ; n+) = 1

2
α(k−)γ + + �

2k−

[

ζ(k−)I + α(k−)
/kT
�

]

+ �2

2(k−)2

[

ω(k−, k2
T )γ −] . (38)

123



Eur. Phys. J. C           (2020) 80:825 Page 9 of 30   825 

Note that one could also explicitly factor a θ(k−) function out
of α, ζ , and ω. The positivity of k− is indeed guaranteed in
any gauge by four-momentum conservation, if one assumes
that the particles in the final state all have physical four-
momenta.

The explicit calculation of the coefficients in Eq. (38)
can be carried out with the aid of the convolutional spectral
representation discussed in Sect. 2.2. Indeed, recall that in
Eq. (29) the integrand is restricted to the light front ξ− = 0,
so that ξ2 = −ξ2

T < 0 is space-like. Under this condi-
tion, the fermion fields anticommute and T

[

ψi (ξ)ψ j (0)
] =

ψ(ξ)ψ(0). Thus, the integrated version of the correlators �

and �′ are equivalent,

Ji j (k
−, kT ; n+) = 1

2

∫

dk+ �i j (k; n+)

≡ 1

2

∫

dk+ �′
i j (k; n+) . (39)

and one can utilize formulas (23) and (28) in the calculation
of the jet correlator coefficient. This task is carried out in the
light-cone gauge in the next three sections.

2.3.1 Calculation of the twist-2 α coefficient

Using the definition of α given in Eq. (31), the equivalence
Eq. (39) between the � and �′ integrated correlators, and the
convolution representation for �′, we find:

α(k−)=
∫

dk+ Disc
∫

M
d4 p

Trc
Nc

〈�|ŝ3(p
2)p−

˜W (k − p)|�〉

= 1

2
Disc

∫

R
dp2

∫

R
dp− Trc

Nc
〈�|ŝ3(p

2)

×
∫

dξ+

2π
eiξ+(k−−p−)Wcoll(ξ

+)|�〉 , (40)

where the integration domain for p is the whole Minkowski
space (M) and we decompose the integral as d4 p =
dp2 d2 pT dp−/2p−. From the first to the second line we
used Eq. (19) and performed the integrations over k+ and
pT , fixing ξ− = 0 and ξT = 0 so that the staple-shaped Wil-
son line reduces to the straight gauge link in the n+ collinear
direction, i.e., Wcoll(ξ

+). Next, we choose the light-cone
gauge A− = 0 so that the collinear Wilson line reduces
to the unity matrix in color space. Finally, performing the
integration over ξ+ we obtain:

α(k−)
lcg= Disc

∫

R
dp2

∫

R

dp−
2

Trc
Nc

〈�|ŝ3(p2)|�〉δ(k− − p−)

=
∫

R
dp2

∫

R

dp−
2

δ(k− − p−){(2π)−3ρ3(p2)θ(p2)θ(p−)}

= 1

2(2π)3

{∫ +∞
0

dp2ρ3(p2)

}

θ(k−) = θ(k−)

2(2π)3 , (41)

where lcg stresses the use of the light-cone gauge. In the
second step we used the representation for the spectral oper-
ator ŝ3 given in Eq. (28), and in the last one we used the
normalization property for ρ3 given in Eq. (25). We remark
that the only dependence on k− resides in the theta function,
and that this result hold, in fact, in any gauge beacuse of the
invariance of the jet correlator, hence of the coefficients of its
Dirac decomposition. The theta function, which is due to four
momentum conservation, and the accompanying numerical
coefficients determined by the convention used in the defini-
tion of the correlators, also appear in the calculation of the
higher-twist ζ and ω coefficients to be discussed next.

2.3.2 Calculation of the twist-3 ζ coefficient

The ζ coefficient defined in Eq. (32) is proportional to the
trace of the gauge invariant TMD jet correlator J . Factoring
out the θ(k−) function, we can thus write

ζ(k−) = θ(k−)

2(2π)3�
Mj , (42)

where Mj is a gauge-invariant mass term. Mj is in fact
independent of k−, and can be interpreted as the inclusive
jet’s (or the color-averaged dressed quark’s) mass, as we will
presently show.

The calculation of ζ in the light-cone gauge follows
closely the procedure outlined in the calculation of α. We
start from the definition of ζ given in Eq. (32), use the con-
volution representation (23) for the jet correlator, and obtain

ζ(k−) = k−
4�

∫

dk+ Disc
∫

M
d4 p

× Trc
Nc

〈�|
√

p2 ŝ1(p2)4˜W (k − p)|�〉

= k−
2�

Disc
∫

R
dp2

∫

R

dp−
p−

Trc
Nc

〈�|
√

p2 ŝ1(p2)

×
∫

dξ+
2π

eiξ+(k−−p−)Wcoll (ξ
+)|�〉 , (43)

where the integrations have been performed as in the case
of α. In particular the integration over pT has projected the
Wilson line on the light cone, leaving us once more with
Wcoll(ξ

+). Imposing the light-cone A · n+ = 0 gauge and
integrating over ξ+, we obtain:

ζ(k−)
lcg= k−

2�
Disc

∫

R
dp2

∫

R

dp−

p−
Trc
Nc

〈�|
√

p2 ŝ1(p
2)|�〉δ(k− − p−)

= k−

2�

∫

R
dp2

∫

R

dp−

p− δ(k− − p−)

×
√

p2
{

(2π)−3ρ1(p
2)θ(p2)θ(p−)

}

= θ(k−)

2(2π)3�

{∫ +∞

0
dp2

√

p2ρ1(p
2)

}

, (44)
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where, in going from the first to the second line, we used the
representation for the spectral operator ŝ1 given in Eq. (28)

This calculation shows that the gauge-invariant jet mass
Mj has a particularly simple form when choosing the light-
cone gauge, being completely determined by the first moment
of the “chiral-odd” spectral function ρ1:

Mj
lcg=
∫ +∞

0
dμ2

√

μ2 ρ1(μ
2) . (45)

The integral at the right hand side is summing over all the
discontinuities of the quark propagator. In this gauge, there-
fore, Mj can be interpreted as the average mass generated
by chirality-flipping processes during the quark’s fragmenta-
tion, and therefore called “jet mass” as proposed in Ref. [65].
We will elaborate further on this interpretation in Sect. 2.4.
In closing, it is important to remark, that although the explicit
dependence of Mj on ρ1 may depend on the choice of gauge,
its numerical value is in fact gauge invariant - and, in partic-
ular, independent of k− as anticipated.

2.3.3 Calculation of the twist-4 ω coefficient

The calculation of the twist-4 ω coefficient is more complex
than for the α and ζ coefficients, although the main ideas and
techniques discussed in the previous two section also apply
to this case. Since this coefficient appears in Eq. (38) at twist
4 only, it will not contribute to the fragmentation function
sum rules discussed in Sect. 3, that are for now derived up
to twist 3. For this reason, we leave a full study of the ω

coefficient for future work, and here we outline its general
properties.

From the definition of ω in Eq. (35) and using the convo-
lution representation in Eq. (23) the ω coefficient reads:

ω(k−, k2
T ) =

(

k−

�

)2 ∫

dk+ Disc
∫

M
d4 p

× Trc
Nc

〈�|ŝ3(p
2)

p2 + p2
T

2p− ˜W (k − p)|�〉

≡
〈〈

p2

(p−)2

〉〉

+
〈〈

p2
T

(p−)2

〉〉

. (46)

The integral involving p2 in Eq. (46) can be calculated
following the same procedure used for the ζ coefficient. One
obtains
〈〈

p2

(p−)2

〉〉

= θ(k−)

4�2(2π)3 μ2
j , (47)

where the θ(k−) function arises as for the α and ζ coeffi-
cients, and (similarly to Mj ) μ2

j has a particularly simple
form in the light-cone gauge:

μ2
j
lcg=
∫ +∞

0
dμ2 μ2 ρ3(μ

2) . (48)

Unlike Mj , however, this is not gauge-invariant. Given the
properties of ρ3 in Eq. (25), μ2

j can be interpreted as the aver-
age invariant mass squared directly generated by the quark
as it fragments into the final state3.

The calculation of the 〈〈 p2
T /(p−)2〉〉 term is more involved

because one cannot immediately integrate over pT and
project the integrand on the light cone. To achieve that, one
needs first to remove the explicit dependence of the integrand
on p2

T using

p2
T eiξT ·( pT −kT )

=
(

− ∂

∂ξα
T

∂

∂ξ T α

− 2ikα
T

∂

∂ξα
T

+ k2
T

)

eiξT ·( pT −kT ) .(49)

One then obtains
〈〈

p2
T

(p−)2

〉〉

= θ(k−)

4�2(2π)3

(

k2
T + τ 2

j

)

, (50)

where

θ(k−) τ 2
j

= (2π)3(k−)2 Disc
∫

M
d4 p

Trc
Nc

1

(p−)2 〈�|ŝ3(p
2)

×
∫

dξ+d2ξ T

(2π)3 eiξ+(k−−p−)

×
(

− ∂

∂ξα
T

∂

∂ξ T α

− 2ikα
T

∂

∂ξα
T

)

× eiξT ·( pT −kT )WTMD(ξ+, ξT )|�〉 . (51)

The k2
T term in Eq. (50) is a purely kinematical effect of the

initial parton’s non-zero transverse momentum. The τ 2
j term

can be interpreted as the average squared transverse momen-
tum of the fragmented hadrons relative to the quark axis.
This quantity also characterizes the jet’s transverse shape: the
larger τ 2

j the less aligned the final state is to the initial quark;

in this sense, we can call τ 2
j the “jet broadening” parameter.

2.4 Summary and interpretation of Mj

Inserting the expressions of the α, ζ , ω coefficients in Eq. (38)
we obtain the following decomposition for the TMD jet cor-
relator:

J (k−, kT ; n+) = θ(k−)

4(2π)3 k−

{

k− γ + + /kT + Mj I + K 2
j + k2

T

2k− γ −
}

,

(52)

with the “jet virtuality”

K 2
j = μ2

j + τ 2
j + g.f.t. (53)

3 One has to be careful, though, with this interpretation since the posi-
tivity of ρ3 is not guaranteed in a confined theory.
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receiving contributions from the invariant mass directly pro-
duced in the quark fragmentation process (μ2

j , Eq. (48)),

from the final state jet broadening (τ 2
j , Eq. (51)), and from

a gauge fixing term [g. f.t.]. The latter symbolically repre-
sents the potential contributions from a structure proportional
to /v = /n+ in Eqs. (22) and (24), that, as discussed, we do
not consider further in this article. As it happens to the jet
mass Mj (45) the jet virtuality K 2

j is also a gauge invariant
quantity.

The expression in brackets in Eq. (52) generalizes the
familiar term appearing in the numerator of the free quark
propagator:

/k + m = k− γ + + /kT + mI + m2 + k2
T

2k− γ − . (54)

We can see that the current quark mass generalizes to the jet
mass, m � Mj , and the mass shell generalizes to the jet’s
virtuality, m2 � K 2

j . Conversely, using the non-interacting

propagator’s spectral functions ρ1,3 ∝ δ(μ2 − m2) in
Eq. (48), we obtain Mj = m; furthermore, neglecting the
contribution of the Wilson line and the gauge fixing term, we
obtain K 2

j = m2.
Overall, the jet correlator (52) can be thought as a prop-

agating particle of mass Mj , that is however off the mass
shell because its virtuality K 2

j = μ2
j + τ 2

j + g.f.t. is in gen-

eral different from M2
j . However, it may be dangerous to push

this interpretation beyond the kinematic level, because the jet
mass cannot necessarily be interpreted as a pole mass. In fact,
let us consider the non-perturbative Feynman quark propaga-
tor in momentum space expressed in terms of a renormaliza-
tion factor Z(p2) and a mass function M(p2) [85,103,106–
108])4:

iSF (p) = iZ(p2)

(2π)4[/p − M(p2)] . (55)

By comparing this expression with the spectral representa-
tion for the Feynman propagator presented in Eq. (24) with
p0 > 0 and using the definition (45) of Mj in the light-cone
gauge, we find that

Mj
lcg=
∫ +∞

−∞
dp2 θ(p2)

√

p2 ρ1(p
2)

= i

2π

∫ +∞

−∞
dp2 Disc

Z(p2)M(p2)

p2 − M2(p2)
. (56)

This equation relates the gauge-invariant and scale-dependent
jet mass Mj in the light-cone gauge and the gauge-dependent

4 As for the spectral representation in Eq. (24), there is an additional
1/(2π)4 factor with respect to the expression given in e.g. Refs. [85,
103,106–108] in order to match the convention for the Fourier transform
used in Eq. (1).

and scale-invariant mass function M(p2). The scale depen-
dence of the jet mass is provided by the (implicit) scale depen-
dence of the renormalized spectral function ρ1 on the one
hand, and on the other hand is accounted for by the Z(p2)

renormalization function [85,106,108]. If the propagator iSF
in Eq. (55) had a single pole at p2 = M2(p2) ≡ M2

p and no
branch cut, by a simple application of Cutkosky’s rule one
would obtain Mj = Z(M2

p) Mp – i.e., the jet mass could
be identified with the renormalized pole mass. In general,
however, Mj is summing all the discontinuities of the non-
perturbative propagator, hence also over the mass spectrum
continuum, and can be different from zero even if no pole,
in fact, exists. A more universal interpretation of Mj can be
obtained by considering the jet correlator as represented in
Eq. (1). Mj can then be thought as the sum over the masses of
all physical states overlapping with a quark, weighted by the
amplitude squared of that particular quark to multi-hadron
state transition.

From a heuristic point of view, one can think of Mj as a
gauge-invariant mass scale that characterizes the physics of a
color-averaged (or color-screened) dressed quark. In light of
this interpretation, it is possible to subtract from Mj the cur-
rent quark mass component responsible for the explicit break-
ing of the chiral symmetry, and isolate a dynamical compo-
nent generated by quark-gluon interactions and responsible
for the dynamical breaking of the chiral symmetry. This sug-
gest the decomposition

Mj = m + mcorr , (57)

where m is the current quark mass, mcorr is the dynam-
ical mass, and all terms have an implicit renormalization
scale dependence. In perturbation theory mcorr

pert ∝ m van-
ishes in the chiral m → 0 limit. Thus the dynamical mass
mcorr = Mj−m can also be thought as an order parameter for
dynamical chiral symmetry breaking. As will be discussed in
details in Sect. 3, the decomposition (57) is also particularly
meaningful in light of the equations of motion that relate the
twist-2 and twist-3 fragmentation functions, and we will see
that this mass is quantitatively related to quark-gluon-quark
correlations. For this reason in the following we will refer to
it as the correlation mass.

Crucially, all this discussion is not merely of theoretical
interest because, in fact Mj and mcorr can couple to the tar-
get’s transversity PDF in inclusive DIS processes [71], and
can furthermore be related to the chiral-odd twist-3 fragmen-
tation functions Eh and ˜Eh by momentum sum rules mea-
surable in semi-inclusive processes [65,72]. We are therefore
offered the possibility of comparing calculations of the quark
spectral functions, nowadays directly possible in Minkowski
space [107,108], to experimentally measurable quantities:
this is a non-trivial feature in the case of particles such as
quarks that do not appear in the physical spectrum of the
theory because of color confinement.
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In summary, when investigating the transition of a quark
propagating in the QCD vacuum into a set of detectable
hadrons in terms of the higher-twist components of the jet
correlator (52), one is provided with a with a rather concrete
window on color confinement and the dynamical generation
of mass. We will revisit these points in Sect. 4.1, after an in-
depth discussion of the connection of the inclusive jet corre-
lator with the single-inclusive fragmentation correlator, and
the ensuing fragmentation function sum rules.

3 Momentum sum rules for single-hadron
fragmentation functions

In this section, we will establish a sum rule at the correlator
level between the single-hadron fragmentation correlator and
the inclusive jet correlator, and systematically exploit this
to derive explicit sum rules for fragmentation functions up
to the twist-3 level. We will recover known sum rules, and
derive a number of new ones. As we will discuss, the interest
of these sum rules also extends beyond their application to
phenomenological fits.

3.1 The single-hadron fragmentation correlator

The unintegrated correlator describing the fragmentation of
a quark into a single hadron (or “single-inclusive” correlator)
is defined as [57,61,63,84,94,109,110]

�h
i j (k, P, S) =

∑

X

∫

d4ξ

(2π)4 e
ik·ξ

× Trc
Nc

〈�|T [W1(∞, ξ)ψi (ξ)
] |PSX〉

× 〈PSX | T [ψ j (0)W2(0,∞)
]|�〉 , (58)

where k is the quark’s four-momentum, h is an identified
hadron with four-momentum P and spin S, and X represents
the quantum numbers of all unobserved hadrons in the final
state. The vector Sμ is the covariant spin vector associated to
the Bloch representation for a hadron with spin 1/2 [61,63].
The remarks given in Sect. 2 about the importance of the color
average for the definition of the inclusive jet correlator also
apply to the fragmentation correlator (58). A diagrammatic
interpretation is given in Fig. 1b.

In the following we will deal only with the correlator
describing the fragmentation of a quark into an unpolarized
or spinless hadron �h(k, P), which is defined as a sum of
the polarization-dependent correlator over the polarization
of the identified hadron:

�h
i j (k, P) =

∑

S

�h
i j (k, P, S) . (59)

Letting the sum over S act on the right hand side of
Eq. (58), one obtains an explicit definition by substituting
|PSX〉〈PSX | with |PX〉〈PX | in that equation.

Let us now focus on the structure of the |PX〉 final state.
This is composed of one identified hadron h with momentum
P and a remnant X . Following the approach of Ref. [111],
we assume that:

∑

X

|X〉〈X | = I =
+∞
∑

n=0

In . (60)

The first equality in Eq. (60) is the completeness relation for
the |X〉 states, i.e., the resolution of the identity in terms of
the projectors |X〉〈X |. The second equality decomposes the
identity as a sum of identity operators In acting in the sub-
space spanned by n–hadron states. These can be explicitly
represented as

In = 1

n!
∫

d ˜K1 . . . d ˜Kna
†(K1) . . . a†(Kn)|�〉〈�|a(K1) . . . a(Kn),

(61)

where, for ease of notation we combined the momen-
tum Ki and flavor hi of the i-th unobserved hadron into
a single ˜Ki variable, and a(˜Ki ), a†(˜Ki ) are the associated
annihilation and creation operators. The integration reads
∫

d ˜Ki ≡ ∑

hi

∫

d3Ki/[(2π)32Ei ], and as before a sum over
the hadron spin is understood when the corresponding index
is not explicitly written. Using Eqs. (60) and (61), we can
recast the sum over the projectors |PX〉〈PX | as:

∑

X

|PX〉〈PX |

= |P〉〈P| +
∫

d ˜K1a
†(˜K1)|P〉〈P|a(˜K1)

+ 1

2

∫

d ˜K1d ˜K2a
†(˜K1)a

†(˜K2)|P〉〈P|a(˜K1)a(˜K2) + · · ·

= a†
h

(+∞
∑

n=0

In

)

ah

= a†
hah , (62)

where we have used a†(˜Ki )|�〉 = |˜Ki 〉, and a†
h |�〉 = |P〉

creates the identified hadron h from the vacuum. Using
Eq. (62), we obtain

�h
i j (k, P) =

∫

d4ξ

(2π)4 e
ik·ξ

×Trc
Nc

〈�|T [W1(∞, ξ)ψi (ξ)
]

(

a†
hah

)

×T
[

ψ j (0)W2(0,∞)
] |�〉 , (63)

where it is understood that ah = ah(P, S) and the same for
a†
h . For brevity of notation, in the following we work with

the same Wilson lines W1,2 we have chosen for the inclusive
jet correlator � and drop the (anti)time-ordering operators.

123



Eur. Phys. J. C           (2020) 80:825 Page 13 of 30   825 

The expansion of this correlator on a basis of Dirac structures
can be obtained from the one given in Refs. [90,112] for the
distribution correlator by replacing the target hadron momen-
tum with the produced hadron momentum, the target mass
with the produced hadron mass, by interchanging n− with
n+, and neglecting the structures related to the polarization
of the produced hadron:

�h(k, P) = Mh A1I + A2 /P + A3/k + A4

Mh
σμν P

μkν

+ M2
h

P · n+
B1/n+ + Mh

P · n+
B2σμν P

μnν+

+ Mh

P · n+
B3σμνk

μnν+

+ 1

P · n+
B4 εμνρσ γ μ γ5 Pν kρ nσ+ . (64)

The amplitudes Ai and Bi are functions of the Lorentz scalars
k ·n+, k · P , k2. The terms proportional to n+ originate from
the path defining the Wilson lines W1,2, that provides one
additional vector beside k and P with which to carry out
the decomposition. These terms generate TMD and collinear
structures that appear only at subleading twist [61,63,94]. In
keeping with the conventions of [63], we have introduced a
power-counting scale Mh equal to the mass of the identified
hadron. This choice is not mandatory, and only affects the
normalization of the above defined amplitudes and of the
related fragmentation functions to be introduced below. For
example, a flavor-independent choice of scale, such as �

used for the jet expansion of the inclusive jet correlator in
Eq. (9), would slightly simplify a number of the sum rules
to be discussed later. However the present choice of Mh not
only agrees with most of the literature on TMD FFs, but
also suggests interesting physical interpretations for these
sum rules. It is also of interest to note that, formally, Eq. (8)
for the decomposition of the inclusive correlator �(k; n+)

can be obtained from Eq. (64) by replacing the hadron four-
momentum P with the parton four-momentum k, and by
replacing the hadron mass Mh with the power counting scale
�.

The fragmentation process can be studied either in the
parton or in the hadron frame [35,111]. The Lorentz trans-
formation between these and its consequences are discussed
in detail in Appendix B5. In the parton frame, defined such
that the parton’s transverse momentum kT = 0, one can
interpret the fragmentation correlator as the probability den-
sity for the quark to fragment into a hadron of a given flavor
h and momentum P , with PT generically non zero [35,57].
The parton frame, however, turns out not to be convenient
in derivations of factorization theorems and calculations of

5 See also Ref. [94] and Section 12.4.1 in Ref. [35].

semi-inclusive cross sections: the partonic momenta are inte-
grated over, and the parton frame axes are not fixed (see Chap.
12 in Ref. [35]). In this case, it is preferable to utilize the
hadron frame, where the experimentally observable hadron’s
3-momentum determines the z direction, so that PT = 0. In
this frame, it is the quark’s transverse momentum that, in
general, has a non-zero value.

Since we are not dealing with a specific scattering process
and we want to connect the fragmentation correlator to the
invariant quark propagator, we choose to work from now on in
the parton frame. Namely, we consider a base in Minkowski
space composed of the light-cone n+ and n− vectors such
that k = k+n+ + k−n−, and two transverse four-vectors n1

and n2. This basis not only determines the coordinates of
any four-vector under consideration, but will also be used to
define a set of parton-frame TMD fragmentation functions,
as we will discuss next.

In calculations of semi-inclusive hadron production cross
sections one deals with the fragmentation correlator inte-
grated over the subdominant quark momentum component
k+. According to the convention outlined in Appendix A
this is defined as

�h(z, PT ) ≡ 1

2z

∫

dk+ �h(k, P)k−=P−/z , (65)

which corresponds to:

�h
i j (z, PT ) = 1

2z

∫

dξ+d2ξ T

(2π)3 eik−ξ+

×Trc
Nc

Disc 〈�|W1(∞, ξ)ψi (ξ)

×(a†
hah)ψ j (0)W2(0,∞)|�〉ξ−=0

k−=P−/z

. (66)

In the parton frame, this can be expanded in Dirac structures
and parametrized in terms of TMD FFs up to twist 3 as:

�h(z, PT ) = 1

2
/n−Dh

1

(

z, P2
T

)

− i

[

/PT , /n−
]

4zMh
H⊥ h

1

(

z, P2
T

)

+ Mh

2P− Eh
(

z, P2
T

)

− /PT

2zP− D⊥ h
(

z, P2
T

)

+ iMh

4P−
[

/n−, /n+
]

Hh
(

z, P2
T

)

− 1

2zP− γ5ε
ρσ
T γρ PT σG

⊥ h
(

z, P2
T

)

, (67)

where the Dirac structures and the TMDs explicitly depend
on the hadron momentum PT . It is important to note that this
decomposition of the TMD fragmentation correlator depends
on the choice of the light cone basis vectors, in our case the
parton-frame basis discussed above, even though for simplic-
ity of notation no explicit index is introduced to remind us
of this fact. In Refs. [57,61,63] an analogous decomposition
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is given, instead, in the hadron frame, as is standard proce-
dure in the TMD literature. The relation between the hadron-
and parton-frame decomposition, and therefore between the
hadron- and parton-frame TMD fragmentation functions, is
discussed in detail in “Appendix B”.

Equation (67) can be also re-arranged as a sum of terms
with definite rank in PT [89]:

�h(z, PT ) = �h
0

(

z, P2
T

)

+ PT α �h α
1

(

z, P2
T

)

, (68)

where

�h
0(z, P2

T ) = 1

2
/n−Dh

1 (z, P2
T ) + Mh

2P− Eh
(

z, P2
T

)

+ iMh

4P−
[

/n−, /n+
]

Hh
(

z, P2
T

)

, (69)

�h α
1 (z, P2

T ) = −i

[

γ α
T , /n−

]

4zMh
H⊥ h

1 (z, P2
T ) − γ α

T
2zP− D⊥ h

(

z, P2
T

)

− 1

2zP− γ5ε
ρα
T γρG

⊥ h
(

z, P2
T

)

. (70)

The subscript 0, 1 refers to the rank in PT of the associated
structures [89] and, in the following, we will collectively
refer to Dh

1 , Eh , Hh as the rank 0 TMD FFs, and to H⊥ h
1 ,

D⊥ h , G⊥ h as the rank 1 TMD FFs. From Eq. (68) one can
see that [63]

�h(z) =
∫

d2PT �h(z, PT ) =
∫

d2PT �h
0(z, PT ) , (71)

where the collinear fragmentation correlator �h(z) is defined
as

�h
i j (z) = z

2

∫

dξ+

2π
eiξ+P−/z

×Trc
Nc

Disc 〈�|W1(∞, ξ)ψi (ξ)

(

a†
hah

)

ψ j (0)W2(0,∞)|�〉ξ−=ξT =0
PT =0

.

(72)

Moreover, �(z) can be parametrized as [63]:

�h(z) = 1

2
/n−Dh

1 (z) + Mh

2P− Eh(z)

+ iMh

4P−
[

/n−, /n+
]

Hh(z). (73)

The rank-1 term �h α
1 (z, P2

T ) in Eq. (68) does not contribute
at the collinear level (71) since the explicit PT α factor sets
the associated integral over PT to zero. For this reason, we
will only be able to derive constraints on the integral of rank-
0 TMD FFs, but not of rank-1 FFs (see Sect. 3.4). On the
contrary, by weighting �h(z, PT ) by Pα

T and integrating over
the transverse momentum one can obtain sum rules for the
first moment of rank-1 TMD FFs. Note that Eq. (71), relating
the collinear correlator to the TMD correlator integrated over
PT , is only valid for bare, i.e., non-renormalized fields in

perturbative QCD [35].6 The same is also true when one
identifies the integrated TMD FFs f = Dh

1 , Eh, Hh with
their collinear counterparts in Eq. (73), i.e., takes f (z) ≡
∫

d2PT f (z, P2
T ).

3.2 Connection between the fragmentation and jet
correlators

We can now discuss a momentum sum rule connecting the
unintegrated single-hadron fragmentation correlator to the
inclusive jet correlator. We work in the context of field the-
ory, taking inspiration from, but generalizing, the strategy
outlined in Ref. [64]. In particular, the authors of that ref-
erence directly manipulate the k+-integrated TMD correla-
tor, withouth the notion of the jet correlator, and limit their
attention to a restricted number of Dirac structures. Instead,
we prove the sum rule at the level of unintegrated correla-
tors, then specialize this to the TMD correlators, and from
there derive the sum rules for the fragmentation functions.
As a result, we are able to extend the formalism to include all
twist-2 and twist-3 FFs. Let us also stress from the outset that,
as discussed in Ref. [64], the proof is only valid for unpo-
larized correlators and FFs. In the polarized case one would
just obtain trivial identities. The methods utilized here have
also been used in Ref. [114] to prove momentum sum rules
for the quark fracture functions and reduce these to parton
distribution functions, but without considering Wilson line
insertions as we do, instead, in this paper.

Our starting point are the definitions of the unintegrated
correlators � and �h in Eqs. (1) and (58), respectively. Let
us then consider the following quantity:

∑

h

∑

S

∫

d4P

(2π)4 (2π)δ
(

P2 − M2
h

)

Pμ�h(k, P, S) . (74)

The integration is performed in Minkowski space over the
on-shell momentum P of the detected hadron with mass Mh ,
and the sum extends to all hadron spin states and species.
Equation (74) can be loosely understood as providing one
with the average four-momentum of the produced hadrons,
if one considers � as a probability distribution in hadron
momentum and spin. This interpretation becomes explicit in
the parton frame for the γ + projection of the k+-integrated
� correlator [94].

Let us now introduce the P̂
μ

h hadronic momentum oper-
ator associated to the vector Pμ of the identified hadron in

6 The identification of an integrated TMD FF with the corresponding
collinear FF is also valid in certain models of QCD, where the inte-
gration over the transverse momentum can be regularized introducing
a phenomenological scale to suppress the large momentum region. An
example is the parton model in Gaussian approximation [12,13]. Other
examples include the spectator diquark model [113] and the Nambu–
Jona–Lasinio model [49].
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the framework of second quantization [59,102]:

P̂
μ

h =
∑

S

∫

dP−d2PT

2P−(2π)3 Pμ â†
h(P, S)âh(P, S) (75)

as well as the inclusive P̂
μ

momentum operator, that also
appears in Eq. (4.25) of Ref. [59] and in Ref. [64]:

P̂
μ =

∑

h

P̂
μ

h . (76)

Using Eqs. (75) and (76), the average four-momentum
defined in Eq. (74) can be further manipulated:

∑

h S

∫

d4P

(2π)4 (2π)δ
(

P2 − M2
h

)

Pμ�h(k, P, S)

=
∑

h S

∫

dP−d2 PT

(2π)32P−

× Pμ

∫

d4ξ

(2π)4 e
ik·ξ 〈�|W1ψi (ξ)

(

a†
hah

)

ψ j (0)W2|�〉

=
∫

d4ξ

(2π)4 e
ik·ξ 〈�|W1(∞, ξ)ψi (ξ) P̂

μ
ψ j (0)W2(0,∞)|�〉

=
∫

d4ξ

(2π)4 e
ik·ξ i

∂

∂ξμ

{〈�|W1(∞, ξ)ψi (ξ)ψ j (0)W2(0,∞)|�〉} ,

(77)

where, for brevity, we have omitted the color traces. The last
step can be justified as follows:

〈�|W (∞, ξ)ψ(ξ) P̂
μ

= 〈�|[W (∞, ξ)ψ(ξ) , P̂
μ]

= 〈�|W (∞, ξ)
[

ψ(ξ) , P̂
μ]+ 〈�|[W (∞, ξ) , P̂

μ]
ψ(ξ)

= 〈�|W (∞, ξ)

(

i
∂

∂ξμ

ψ(ξ)

)

+ 〈�|
(

i
∂

∂ξμ

W (∞, ξ)

)

ψ(ξ)

= i
∂

∂ξμ

{

〈�|W (∞, ξ)ψ(ξ)

}

. (78)

Finally, integrating by parts, we obtain the master result of
this section,

∑

h

∑

S

∫

d4P

(2π)4 (2π)δ
(

P2 − M2
h

)

Pμ�h(k, P, S)

= kμ �n.c.(k) , (79)

where the boundary terms have vanished because of the
boundary conditions for the fermionic fields, and the n.c.
(no cut) label at the r.h.s. means that we are not calculating
the discontinuity of the inclusive jet correlator. It is impor-
tant to notice that the derivation of Eq. (79) holds true even
with the (anti)time-ordering operators explicit, namely the
specified choice for W1,2 is not a necessary condition for the
sum rule (but it is necessary for the spectral representation
of � discussed in Sect. 2.2).

The master sum rule (79) encodes the connection between
the quark-to-single-hadron fragmentation correlator and the
jet correlator without the discontinuity, which coincides with
the gauge invariant color averaged dressed quark propagator.
The Dirac projections of its discontinuity give rise to the sum
rules for collinear and TMD fragmentation functions that
will be discussed in detail in the remainder of this section.
Note that, since Eq. (79) involves a sum over the hadron
spins, all the polarized structures in the �h correlator vanish.
Thus, we will be able to prove sum rules for unpolarized
fragmentation functions only. Preliminary results on these
FF sum rules have been presented at various conferences
[75], and the unpolarized case has been discussed in Ref.
[72].

3.3 Sum rules for rank 0 fragmentation functions

We now specialize the master sum rule (79) to the TMD case
in the parton frame. We start with the rank 0 term, defined
in Eq. (68), which can be selected by choosing μ = −.
We then consider the discontinuity of the sum rule, integrate
both sides on the suppressed plus component of the partonic
momentum, and choose the parton frame (kT = 0). We also
exploit the relation

∫

d4P

(2π)3 δ(P2 − M2
h ) =

∫

dP−d2PT

2P−(2π)3 =
∫

dzd2PT

2z(2π)3 ,

(80)

and obtain:

∑

h S

∫

dzd2PT

2z(2π)3 P−
∫

dk+ Disc [�h(k, P, S)]P−=zk−
kT =0

= k−
∫

dk+ Disc [�n.c.(k)]kT =0 . (81)

This equation can be rewritten in terms of the collinear frag-
mentation correlator (71) and the jet correlator Eq. (29). The
result is:

∑

h S

∫

dz z �h(z) =
∑

h S

∫

dz d2PT z �h
0(z, PT )

= 2(2π)3 J (k−, 0T ) . (82)

Note that only the hadron spin-independent part of �h(z)
survives in (82). Considering now the Dirac projections of
the correlators on both sides, we can turn this into momentum
sum rules for the collinear FFs in Eq. (73). There are, in
general, 9 Dirac projections �[�] and J [�] involving twist-2
and twist-3 functions, of which only three are relevant for the
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rank 0 case:7

[� = /n+ ]
∑

h S

∫

dzz Dh
1 (z) = 1 , (83)

[� = I ]
∑

h S

∫

dzMhE
h(z) = Mj , (84)

[� = iσμνniμn j νγ5 ]
∑

h S

∫

dzMhH
h(z) = 0. (85)

To obtain the result for the collinear D1 and E FFs we have
used Eqs. (41) and (44) with θ(k−) = 1 because k− is posi-
tive by four momentum conservation (k− is equal to the sum
of the minus momenta of all produced hadrons, and these are
physical on-shell particles).

Renormalization is known to preserve Eq. (83) [35,59].
The renormalization of Eh(z) and its moments has been dis-
cussed in Refs. [115,116] at leading order in the strong cou-
pling and in the large Nc limit, using the light-cone gauge
and neglecting current quark mass contributions. One can
then infer an approximate evolution equation for Mj . Instead,
the renormalization of Hh , which is directly connected to
a three-parton correlation function [57], has not yet been
addressed to our knowledge. Nevertheless, the derivations of
these sum rules are rooted in the conservation of the partonic
four-momentum encoded in Eq. (79) and in the symmetry
properties of the correlators � and �h . Therefore, we expect
Eqs.(83)–(85) and all the other sum rules discussed in this
paper to be valid in form also at the renormalized level in
perturbative QCD.

The normalization (25) of the spectral function ρ3 – which
is a direct consequence of the equal-time anticommutation
relations for the fermion fields [102,108] – is crucial to obtain
the well-known momentum sum rule (83) for the unpolarized
fragmentation function Dh

1 , that was originally proven with-
out reference to the jet correlator [59,61]. An experimental
verification of this sum rule is therefore also an indirect check
of the validity of the Källen-Lehman spectral representation.
It is also interesting to note that Eq. (83) allows one to write
the unpolarized “inclusive jet function” and “energy-energy
correlation jet function” introduced in the context of soft
collinear effective theory as, respectively, the matching coef-
ficients of the fragmenting jet functions onto the collinear FFs
[92,93] and of the TMD FFs onto the collinear FFs [117,118].

The chiral-odd sum rule (84), that generalizes the one
discussed in Refs. [60,91], can be called “mass sum rule”
because of its physical interpretation: the non-perturbative

7 The structures � = {γ −γ5, iγ5, iσ−+γ5} project polarized TMD
fragmentation functions out of �. Since we are summing over the
hadron polarization states in Eq. (74), these contributions vanish; on
the contrary, these structure do not appear in J from the very begin-
ning because of parity invariance. The projections for the other 3 Dirac
structures � = {iσ i−γ5, γ i , γ iγ5} produce the trivial result 0 = 0.

jet mass Mj corresponds to the sum of the masses of all pos-
sible particles produced in the hadronization of the quark,
weighted by the chiral-odd collinear twist-3 fragmentation
function Eh(z). In looser terms, Mj can be interpreted as the
average mass of the hadronization products.

Finally, the sum rule (85) is, to our knowledge, new.

3.4 Sum rules for rank 1 fragmentation functions

Let us now specify the master sum rule to the case of the
rank 1 correlator �h α

1 (z, PT ) defined in Eq. (70). This can
be selected by choosing μ = α = 1, 2 in Eq. (79). Since we
are working in the parton frame where kT = 0, this reads:
∑

h S

∫

dz d2PT Pα
T �h(z, PT )

=
∑

h S

∫

dz d2PT Pα
T PT ρ �

h ρ
1 (z, PT ) = 0 . (86)

This result can also be achieved directly from Eq. (77) choos-
ing the parton frame, performing the integration explicitly
with μ transverse index, and assuming that the fermion fields
vanish at the boundary of space [64].

Using the correspondence between symmetric traceless
tensors built with the transverse momentum and complex
numbers outlined in Appendix A and Ref. [89], and the rela-
tion [63,94]

P [α
T ε

ρσ ]
T PT ρ = P2

T ε
αρ
T , (87)

we can calculate the Dirac projections of Eq. (86), based on
the parametrization given in Eq. (70). The result reads

[ � = −iσμνniμn+νγ5 ]
∑

h S

∫

dzzMh H
⊥ (1) h
1 (z) = 0 ,

(88)

[ � = −/ni ]
∑

h S

∫

dzM2
h D⊥ (1) h(z) = 0 ,

(89)

[ � = −/niγ5 ]
∑

h S

∫

dzM2
h G

⊥ (1) h(z) = 0 ,

(90)

where we defined the first PT -moment of a generic fragmen-
tation function D as (see Appendix B):

D(1)(z) =
∫

d2PT
P2
T

2z2M2
h

D(z, P2
T ) . (91)

As in Sect. 3.3, the remaining Dirac projections yield the triv-
ial result 0 = 0. The sum rule (88) for H⊥ h

1 is also known as
the Schäfer-Teryaev sum rule [62,64]. We already discussed
the sum rule for D⊥ h in Ref. [72], and that for G⊥ h is new.
The QCD evolution of the first moment of H⊥ h

1 has been
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discussed in Ref. [119], but no statement is available on the
validity of the Schäfer–Teryaev sum rule under renormal-
ization. Nevertheless, the sum rule for the T-odd FFs, H⊥ h

1 ,
G⊥ h , and Hh , is a result of the absence of T-odd terms in
the inclusive jet correlator, a feature that should be preserved
under renormalization, too. Checking this by explicit calcu-
lation remains an interesting exercise for the future.

3.5 Sum rules for dynamical twist-3 fragmentation
functions

Let us now consider the equations of motion relations
(EOMs) which relate twist-2 and twist-3 fragmentation func-
tions in the parton frame:

Eh = ˜Eh + z
m

Mh
Dh

1 (92)

Hh = ˜Hh − P2
T

zM2
h

H⊥ h
1 (93)

D⊥ h = ˜D⊥ h + zDh
1 (94)

G⊥ h = ˜G⊥ h + z
m

Mh
H⊥ h

1 , (95)

where the functions with a tilde parametrize the twist-3 ˜�α
A

quark-gluon-quark correlator [63], and m is the current mass
of the specific quark considered. These relations, that are a
consequence of the Dirac equation for the quark field, have
been originally presented in the hadron frame [61,120] (see
also Ref. [63]) and in Appendix B we discuss their transfor-
mation to the parton frame.

The Eqs. (92)–(95) allow us to investigate the momentum
sum rules for the “dynamical” twist-3 FFs (those with a tilde)
without explicitly working with the quark-gluon-quark frag-
mentation correlator˜�α

A and the quark-gluon-quark inclusive
jet correlator ˜Jα

A introduced in Ref. [65]. Indeed, combining
the four EOMs with the sum rules discussed in Sects. 3.3
and 3.4 we obtain

∑

h S

∫

dzMh˜E
h(z) = Mj − m = mcorr (96)

∑

h S

∫

dzMh ˜H
h(z) = 0 (97)

∑

h S

∫

dzM2
h
˜D⊥ (1) h(z)

= −
∑

h S

∫

dzz M2
h D

(1) h
1 (z) ≡ 1

2
〈P2

T /z2〉 (98)

∑

h S

∫

dzM2
h
˜G⊥ (1) h(z) = 0 , (99)

which provide a complete set of sum rules for the four unpo-
larized dynamical twist-3 FFs. As with the twist-2 case, no
sum rule can be established for polarized FFs.

Equation (96) is the generalization of the sum rule
∫

dz˜E = 0 discussed in Ref. [63]. This generalization is
based on the fact that the jet mass Mj differs in general
from the current quark mass by an amount mcorr (the cor-
relation mass introduced in Eq. (57)) which we argued is
non-perturbatively generated by quark-gluon-quark correla-
tions and the dynamical breaking of the chiral symmetry. In
the FF correlator ˜�α

A, the chiral odd component of these cor-
relations is parametrized by the ˜E function [63], that also
provides a flavor decomposition for mcorr through Eq. (108).
See Sect. 4 for a deeper discussion of this point.

The sum rule (98) connects the first moment of the twist-
3 ˜D⊥ FF to the average squared transverse momentum
acquired by unpolarized hadrons fragmented from an unpo-
larized quark [72] (for the definition of the average opera-
tor see Appendix B). Therefore, this sum rule also probes
the nature of the non-perturbative hadronization process in
analogy with the way the sum rule for ˜E probes the nature
of the vacuum. Similar relations exist in literature, see e.g.
Eq. (76) in Ref. [57], which connects a three-parton FF, the
first moment of the Collins FF, and the average transverse
momentum of an unpolarized hadron fragmenting from a
transversely polarized quark. Another example is the rela-
tion between the average transverse momentum of an unpo-
larized quark in a transversely polarized hadron and the Qiu–
Sterman function [121,122].

It is finally worthwhile remarking that the sum rules for
D⊥ and ˜D⊥ are frame dependent because such are the
involved transverse momenta. On the contrary, all other sum
rules are frame independent. Appendix B discusses these fea-
tures in details.

4 Sum rules compendium and discussion

We collect here for convenience the complete set of sum rules
for twist-2 and twist-3 FFs scattered throughout Sect. 3, and
remind that all fragmentation functions implicitly depend on
the quark flavor, omitted for sake of simplicity. At twist 2,

∑

h S

∫

dz z Dh
1 (z) = 1 , (100)

∑

h S

∫

dz z MhH
⊥ (1) h
1 (z) = 0 . (101)

At twist 3,

∑

h S

∫

dz Mh E
h(z) = Mj , (102a)
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∑

h S

∫

dz Mh ˜E
h(z) = Mj − m = mcorr , (102b)

∑

h S

∫

dz Mh H
h(z) = 0 , (103a)

∑

h S

∫

dz Mh ˜H
h(z) = 0 , (103b)

∑

h S

∫

dz M2
h D⊥ (1) h(z) = 0 , (104a)

∑

h S

∫

dz M2
h
˜D⊥ (1) h(z) = 1

2
〈P2

T /z2〉 , (104b)

∑

h S

∫

dz M2
h G

⊥ (1) h(z) = 0 , (105a)

∑

h S

∫

dz M2
h
˜G⊥ (1) h(z) = 0 . (105b)

The sum rules (100), (101) and (103)bwere already known
in literature [59,61–64], with the latter proven here for the
first time at the correlator level. It’s interesting to notice
that the sum rules for the T-odd FFs Hh , H⊥ h

1 , G⊥ h are
a consequence of the absence of T-odd terms in the inclu-
sive jet correlator (1) (see Eq. (16)). Being the consequence
of time-reversal symmetry, this feature is frame-independent
(see Appendix B). The sum rules (102) for E and ˜E have
been originally discussed in Ref. [91], but here extended to
the non-perturbative domain (we will have more to say about
these shortly). All others are, to the best of our knowledge,
novel results.8

As we will discuss below, these sum rules are generically
useful as constraints in phenomenological fits where exper-
imental data is scarce, and when developing fragmentation
models. The non-zero sum rules, however, have a significance
that goes well beyond that. To start with, we have shown
that the D1 sum rule is theoretically linked to the normal-
ization property (25) of the chiral-even ρ3 spectral function,
and, thus, to the equal-time anticommutation relations for
the fermion fields. Hence its experimental verification also
entails an indirect check of the validity of the Källen-Lehman
spectral representation. The sum rules (102) for E and ˜E ,
and (104) b for ˜D⊥ are also noteworthy because, unlike the
others, they are sensitive to aspects of the non perturbative
dynamics of QCD: respectively, the dynamical mass gen-
eration in the QCD vacuum, and the transverse momentum
generation in the fragmentation process [72].

8 A partial proof was discussed in Ref. [72] and at various conferences,
see for example Ref. [75].

Our proof has been developed in the parton frame in
order to connect to the inclusive jet correlator, that cannot
be defined in the hadron frame. Most of the sum rules are
nonetheless frame independent, as detailed in Appendix B.
The only exceptions are the sum rules (104) for D⊥ and ˜D⊥,
that in the hadron frame exchange the role of the kinematic
and dynamical twist-3 functions. In that frame, it is the first
moment of the D⊥h functions that are sensitive to the trans-
verse momentum of the fragmented hadrons, whereas the
first moment of the ˜D⊥h functions sum up to zero.

Finally, note that our proofs are at present valid only for
unrenormalized FFs. However, the arguments we utilized are
rooted in the conservation of the partonic four-momentum
encoded in Eq. (79), and on the symmetry properties of the
correlators � and �h . For this reason, we expect all momen-
tum sum rules to be valid in form also at the renormalized
level. In fact: renormalization is known to preserve Eq. (100)
[35,59]; the evolution of E(z) and Mj can be inferred from
the results presented in Refs. [115,116]; it could also be
argued that the sum rules for the T-odd FFs are preserved
under renormalization due to the absence of T-odd terms
in the inclusive jet correlator, but explicit calculations are
needed to corroborate this hypothesis and to understand the
behavior of all the other sum rules.

4.1 Dynamical chiral symmetry breaking

The mass sum rules (102) are of particular interest, because
they shed additional light on the QCD mass generation mech-
anism already explored in Sect. 2 in terms of the jet correlator
J and its chiral odd component. As discussed in Sect. 2.4, the
jet mass Mj = m + mcorr quantifies the dressing of a quark
as it propagates in the QCD vacuum. Here we suggest that,
whereas the current quark mass m is the component of Mj

that explicitly breaks the chiral symmetry, it is themcorr corre-
lation mass component that can be considered a theoretically
solid order parameter for its dynamically breaking. That this
is the case is supported by the following arguments, high-
lighting the central role played by quark-gluon interactions
in generating mcorr , and how this is intrinsically connected
to the properties of the QCD vacuum.

Overall, the correlation mass can vanish in two circum-
stances, where the neglect of quark-gluon-quark correla-
tions is achieved in different ways. In the first case, one
can invoke the “Wandzura-Wilczek (WW) approximation”,
which consists in neglecting the twist-3 “tilde” functions,
that parametrize the strength of quark-gluon-quark correla-
tions, compared to the twist-2 and twist-3 functions without a
tilde, that describe quark-quark correlations. In other words,
this approximation consists in neglecting the role of gluons
except in the dressing of the quark-quark correlators, and
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setting the “tilde” functions to zero [123]9 Thus, Mj
WW= m

and mcorr WW= 0, as can be easily seen by setting ˜E = 0 in
Eq. (92) and using the sum rules (83) and (84). (An appli-
cation of the same WW approximation to the sum rule (96)
consistently provides one with the identity 0 = 0.) Another
case in which the dynamical mass mcorr vanishes is when the
non-interacting vacuum |0〉 of the theory is used in place of
the interacting one |�〉 [125], so that one cannot fully con-
tract the ψ Aα

T ψ̄ operator that defines ˜E unless the interaction
terms in the Lagrangian are taken into account, effectively
causing ˜E = 0 as in the WW approximation.

Furthermore, one can decompose the chiral-odd spectral
function ρ1 into a pole part, with an isolated singularity at the
(renormalized) current mass value μ2 = m2, and a remnant
ρ1 (see, e.g., Ref. [108]):

ρ1(μ
2) = δ(μ2 − m2) + ρ1(μ

2) . (106)

This singularity, in fact cannot appear in the full, non-
perturbative propagator because quarks are not physical
states of the theory; rather, it originates from a perturbative
treatment of a the propagating quark considered as an asymp-
totic field while in reality it is not. Next, combining the E
and ˜E sum rule with the EOM relation (92) one sees that

mcorr lcg=
∫

dμ2
√

μ2 ρ1(μ
2) . (107)

Therefore, the perturbative pole is effectively removed in the
sum rule for ˜E , and from the spectral decomposition of the
correlation mass. This is all the more interesting, because it
is the twist-3 ˜E function rather than E , that contributes to
hadroproduction DIS processes, whence the sum rules can
be experimentally measured [63].

Finally, the ˜E sum rule also provides one with a hadronic
flavor decomposition of the correlation mass:

mcorr =
∑

h,S

∫

dzMh ˜E
h(z) ≡

∑

h

mcorr
h , (108)

where eachmcorr
h = ∑

S

∫

dzMh ˜Eh(z) quantifies the contri-
bution to the interaction-dependent part of the jet mass asso-
ciated to the hadronization into a specific hadron h. One can
therefore envisage investigating the separate role of baryon

9 The WW appriximation takes its name from the fact that one is in
fact utilizing simplified form of the Wandzura-Wilczek-type relations,
originally introduced and discussed in Ref. [124], that relate twist-2 and
twist-3 functions. While in some processes the neglect of quark-gluon-
quark interactions leads to phenomenologically successful comparisons
to experimental data [123], this assumption is not a priori justified in all
circumstances [65]. In particular, one needs to make sure that the dom-
inant quark-quark terms do not cancel in the observable of interest. For
example, in our case, a WW approximation applied to Eq. (98) would
amount to predicting no transverse momentum in the fragmentation
process, 〈P2

T /z2〉 = 0, which is clearly not the case.

and light mesons in the dynamical chiral symmetry breaking
process, with the pions and kaons expected to become mass-
less in the chiral limit due to the Goldstone theorem, and
obtain a more fine-grained picture of the spontaneous gener-
ation of mass in QCD. As a starter, calculations of E and ˜E in
models which incorporate the dynamical breaking of the chi-
ral symmetry, for example such as in treatments combining
the Nambu–Jona-Lasinio model [49,50,126] The full set of
sum rules provided in this article could be used to constrain
and refine these calculations, and a comparison with even a
limited amount of experimental data on ˜E would provide the
model with the dynamical input necessary to explore with
confidence the chiral limit via Eq. (108).

4.2 Phenomenology

These sum rules can be of phenomenological relevance in the
studies of hard scattering process with hadrons in the final
states, for example, semi-inclusive deep-inelastic scattering
(SIDIS) and electron-positron annihilation into one or two
hadrons, as well as hadroproduction in hadronic collisions at
both fixed target and collider facilities [127,128]).

The leading-twist TMD FFs D1 and H⊥
1 can be observed

in SIDIS procceses, considering specific angular modula-
tions of the cross section at low transverse momentum [63].

The dynamical twist-3 FFs (˜E , ˜H , ˜D⊥, ˜G⊥) appear in
the SIDIS cross section at order 1/Q, where Q is the hard
scale of the process. As it turns out, these are the only twist-3
FFs contributing to the cross section in a frame where the
azimuthal angles refer to the axis given by the four-momenta
of the target nucleon and the photon, rather than of the target
nucleon and the detected hadron [63]. In such a frame, their
kinematic twist-3 counterparts (those without a tilde in their
symbol) do not contribute to the cross section, but can be
obtained from the former by use of the equation of motion
relations (92)–(95). The role of twist-3 FFs in other semi-
inclusive processes is reviewed in Ref. [57]. In general, to
access these fragmentation functions one needs to calculate
cross sections at least to twist-3 level, and, in the case of
the chiral-odd E and ˜E FFs, to combine these with another
chiral-odd distribution or fragmentation function.

The possibility to experimentally observe the tilde func-
tions in semi-inclusive processes is particularly interesting
for the case of ˜E , which contributes to the determination of
the interaction-dependent correlation mass mcorr and its fla-
vor decomposition through the sum rule (102). This is not,
however, the only experimental window on mcorr. For exam-
ple, as discussed in Refs. [65,75], the correlation mass mcorr

also contributes coupled to the collinear transversity PDFs
to the inclusive DIS g2 structure function at large Bjorken
xB . Likewise, the correlation mass couples to the collinear
transversity FF H1 in single hadron production of, say, the
self-polarizing � particle in semi-inclusive e+e− collisions.

123



  825 Page 20 of 30 Eur. Phys. J. C           (2020) 80:825 

Likewise, it can couple to the dihadron H�
1 FF in the case of

same-hemisphere double hadron production.
As one can see, the experimental information we are after

is scattered among a umber of diverse observables and pro-
cess. One way to gather it in a consistent fashion is to perform
“universal” QCD fits of a suitable subsets of PDFs and FFs.
One possibility is to simultaneously fit mcorr, the collinear
transversity PDFs h1, and the collinear dihadron H�

1 . The
needed processes are longitudinal-transverse asymmetries in
inclusive DIS (∝ mcorr h1 [65]), di-hadron production in
SIDIS (∝ h1H�

1 [129,130]), the Artru-Collins asymmetry
in double di-hadron production in electron-positron anni-
hilation (∝ H�

1 H�
1 [131]), and semi-inclusive same-side

dihadron production (∝ mcorrH�
1 [65]). This kind of univer-

sal QCD analysis, seeking to numerically fit several non per-
turbative functions at once, is numerically very demanding
in terms of raw computational power and stability of the fit-
ting algorithms. Nonetheless its feasibility has been recently
demonstrated in a series of works by the JAM collaboration
[132–134].

In order to properly separate perturbative and non-
perturbative contributions, these observables should be addressed
in the context of the associated factorization theorems. In
this respect, resummed perturbative QCD and Soft-Collinear
Effective Theories (SCET) provide the needed tools. Namely,
the inclusive jet correlator � emerges, e.g., in the factoriza-
tion of the so-called end-point region of DIS processes at
large x [69,73,74,78,79], where the final state invariant mass
Q(1 − x) ∼ �QCD, and Q is the hard momentum transfer.
Those analyses should be extended to the chiral-odd com-
ponents of the jet correlator, and also applied to SIDIS and
e+e− annihilation into one or two hadrons.

5 Summary and outlook

In this paper we have studied the properties of the fully inclu-
sive jet correlator (1) introduced and in, e.g., Refs. [65,69–
72,78]. In particular, in Sect. 2.1.1 we have have presented a
gauge-invariant definition for this correlator, and discussed
a specific class of Wilson lines (staple-like) that allows one
to re-write this as the gauge-invariant quark propagator (6).
Moreover, in Sect. 2.1.2 we have decomposed the fully inclu-
sive jet correlator in Dirac structures, and organized the vari-
ous terms according to their suppression in powers of �/k−,
where � is a generic hadronic scale and k− the dominant
light-cone component of the quark momentum.

As a byproduct of the Dirac decomposition of the jet cor-
relator, we have provided a gauge invariant definition for
the inclusive jet mass Mj , an object which encodes the
physics of the hadronizing color-averaged dressed quark.
This mass can be decomposed in terms of the current quark
mass and a dynamical component generated by nonpertur-

bative quark-gluon-quark correlations (see Eq. (57)). New
non-perturbative effects induced by this mass and its dynam-
ical component can emerge at the twist-3 level, for example
in inclusive deep-inelastic scattering at the level of the g2

structure function [65,75], and potentially in semi-inclusive
DIS, in semi-inclusive annihilation into one or two hadrons,
and in hadronic collisions (see Sect. 4.2).

In Sect. 2.2, we have developed a spectral representation
for the gauge-invariant quark propagator, and we have con-
nected the jet’s mass and virtuality to the chiral-odd and
even spectral functions, respectively. In particular, in the
light-cone gauge the jet mass reduces to the first moment
of the chiral odd spectral function, which provides a link to
non-perturbative treatments of the quark propagator and in
particular to the properties of the associated mass function
[85,106–108], see Sect. 2.4. In analogy with the role played
by the dressed quark mass and the mass function, the dynam-
ical component of the jet mass can be interpreted as an order
parameter for the dynamical breaking of the chiral symmetry
(see Sects. 2.4 and 4.1).

In Sect. 3, we have presented a connection at the oper-
ator level between the single-hadron fragmentation correla-
tor (58) and the fully inclusive jet correlator (1). This con-
nection, encoded in the master sum rule (79), provides an
explicit link between the propagation of the quark and the
fully inclusive limit of its hadronization. The chosen class of
Wilson lines allows one to connect these operators to matrix
elements accessible in high-energy scattering experiments. In
fact, from the master sum rule (79) we have derived momen-
tum sum rules for the fragmentation functions of quarks
into unpolarized hadrons up to twist 3, confirming sum rules
already known in the literature and proposing new ones (see
Sect. 4). Among the others, the novel sum rules for the ˜E
and the ˜D⊥ FFs have a dynamical interpretation: the RHS of
this sum rules corresponds, respectively, to the mass and the
average squared transverse momentum generated during the
fully inclusive hadronization of a nearly massless quark.

Moreover, we have connected the sum rules for the D1 and
the E FFs to the integral of the quark’s chiral-even and chiral-
odd spectral functions, whose integrals become experimen-
tally measurable quantities (see Eqs. (83) and (84), respec-
tively). As a result, the sum rule for the unpolarized D1 FF
acquires a new deep interpretation, which goes beyond con-
servation of the collinear quark momentum: the RHS of the
momentum sum rule for D1 is precisely the normalization
of the chiral-even ρ3 spectral function, whose value only
depends on the equal-time (anti)commutation relations for
the fields involved [102,108]. The mass sum rules for the E
and ˜E FFs, instead, provide us with a way to constrain the
chiral-odd ρ1 spectral function, or, equivalently, to measure
the color-screened dressed quark mass Mj and its dynamical
componentmcorr, respectively. We believe that the possibility
to experimentally access quantities connected to the dynam-
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ical breaking of the chiral symmetry in QCD is one of the
most important outcomes of this paper.
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Appendix A: Conventions

In this Appendix we discuss our light-cone conventions and
notation. We start by reviewing the Fourier transform, the
light-cone basis vectors for the longitudinal Minkowksi sub-
space, and the tensors needed to discuss parton and hadron
dynamics in the transverse subspace. We then turn to the con-
ventions for the integration over the suppressed momentum
component used to define the TMD fragmentation correla-
tor and the fully inclusive jet correlators, and for the Dirac
traces (or projections) needed to define the related TMD func-
tions. For completeness, we also include a short discussion
of the parton distribution correlator restricted to the spin-
independent case.

5.1 Fourier transform

In order to be consistent with a large share of the litera-
ture dealing with TMD parton distribution and fragmen-
tation functions (e.g. Refs. [61,63,94,111]), we define the
Fourier transform with a 1/(2π)4 factor for space-time
four vector integrations, see e.g. the definition of �(k;ω)

in Eq. (1). Correspondingly, we do not include such fac-
tor in four-momentum integrations, contrary to, e.g., Refs.

[85,101,106–108]. This, in particular, results in an additional
1/(2π)4 factor in Eqs. (24) and (55) with respect to the def-
initions in Refs. [85,101,106].

5.2 Light-cone coordinates and transverse space

In a given reference frame, we collect the space-time com-
ponents of a four-vector aμ inside round parentheses, aμ =
(a0, a1, a2, a3), with a0 the time coordinate. We define the
light-cone ± components of the a vector as

a± = 1√
2
(a0 ± a3) (A1)

and collect these inside square brackets: aμ = [a−, a+, aT ],
with aT = (a1, a2) being the 2-dimensional components
in transverse space. We also define the transverse four-
vector as aμ

T = [0, 0, aT ], such that a2
T = −a2

T . Namely,
the norm of aT is taken according to the Euclidean met-
ric δ

i j
T = diag(1, 1), whereas the norm of aT is calculated

using the Minkowski metric gμν = diag(1,−1,−1,−1).
Note that, in this paper, we consider highly boosted quarks
and hadrons with dominant momentum component along the
negative 3-axis, namely along the negative light-cone direc-
tion. Hence, we grouped the light-cone components inside
the square parenthesis starting with the minus component.

The light-cone basis vectors are defined as:

n± = 1√
2
(1, 0, 0,±1) , (A2)

such that n2+ = n2− = 0, nμ
+n−μ = 1, and a± = aμn∓μ.

Upon considering a specific process, the basis vectors nμ
±

can be determined by physical quantities. For example, in
inclusive deep-inelastic scattering one can choose the four-
momentum of the target and virtual photon to lie in the plus-
minus plane; in semi-inclusive processes the tagged hadron’s
momentum can replace either one, typically the photon’s
momentum. In semi-inclusive electron-positron annihilation
into two hadrons, one typically chooses the four-momenta
of both tagged hadrons. In this paper, however, we consider
quark propagation and fragmentation independently of any
specific process, and will study the Lorentz transformation
between the different frames in which the quark hadroniza-
tion mechanism can be studied (see Appendix B).

Following Refs. [63,94], the transverse projector, gμν
T , and

the transverse anti-symmetric tensor, ε
μν
T , are defined as:

gμν
T ≡ gμν − n{μ

+ nν}
− (A3)

ε
μν
T ≡ εμνρσn−ρn+σ ≡ εμν+− , (A4)

where gμν is the Minkowski metric, εμνρσ is the totally anti-
symmetric Levi-Civita tensor (with ε0123 = 1). Note that

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  825 Page 22 of 30 Eur. Phys. J. C           (2020) 80:825 

gμν
T aν = aμ

T projects a four-vector onto its transverse com-
ponent, and ε

μν
T aν = ε

μν
T aT ν rotates that component by 90

degrees in the transverse plane.
In the paper we also make use of the correspondence

between symmetric traceless tensors of definite rank and
complex numbers, detailed in Ref. [89]. Its essence is the
possibility to trade an uncontracted rank-m tensor with a
complex number. For a rank-m tensor T built out of a single
transverse vector aT , this reads:

T i1···im (aT ) → 1

2m−1 |aT |m e±imφ , (A5)

where φ is the polar angle associated to aT in the transverse
plane. The rank m of the tensor is reflected in the power of
the modulus and in the phase of the complex number.

A useful consequence of this correspondence is that
expressions proportional to T i1···im vanish upon integration
over aT , due to the angular part of the integration measure. In
our analysis we apply this correspondence to the following
rank-2 tensor, built out of the hadron’s transverse momentum
PT [89,135]:

Pi j
T ≡ Pi

T P
j
T + P2

T

2
gi jT . (A6)

5.3 Parton distribution correlator

The TMD parton distribution correlator and its Dirac projec-
tions are defined as:

�(x, pT ) ≡
∫ +∞

−∞
dp−�(p, P)p+=x P+

=
∫

dp− Disc[�(p, P)]p+=x P+ , (A7a)

�[�](x, pT ) ≡ Tr

[

�(x, pT )
�

2

]

, (A7b)

where the unintegrated � quark distribution correlator is
defined as [61,63,84]:

�i j (p, P) =
∫

d4ξ

(2π)4 e
ip·ξ Trc〈P|T [ψ j (0)W2(0,∞)

]

×T
[

W1(∞, ξ)ψi (ξ)
] |P〉 .

In the previous equations p is the quark momentum, P is
the hadronic momentum, x = p+/P+ is the parton frac-
tional momentum in the dominant direction. In Eq. (A7)(b),
the “Tr” operator “Tr” without subscripts indicates to a Dirac
trace, the 1/2 factor is explained in Section 6.7 and 6.8 of Ref.
[35], and � is a generic Dirac matrix; for example, � = γ +
is associated to the unpolarized TMD f1, and the matrices
associated to the other TMDs can be found in [63]. In the
spirit of Feynman rules, the Dirac trace operator “Tr” corre-
sponds to the sum over the polarization states of the quark
in the final state. The analogous color trace Trc, correspond-

ing to a sum over the color configurations, is included in the
definition of the correlator �.

Assuming that the correlators have the standard analitic-
ity properties of the scattering amplitudes, the integration
over the suppressed momentum component used to define
the TMD correlators can be performed by complex contour
deformation. Depending on the value of x , one can then
replace the integral of the unintegrated correlator by the inte-
gral of its s-channel or u-channel discontinuity, denoted by
“Disc” [100,136–138]. These correspond, respectively to a
quark distribution (0 ≤ x ≤ 1), and to an antiquark distribu-
tion (−1 ≤ x ≤ 0).

5.4 Parton fragmentation correlator

The TMD fragmentation correlator in the parton frame and
its Dirac projections are defined as:

�(z, PT ) ≡
∫ +∞

−∞
dk+

2z
�(k, P)P−=zk−

=
∫

dk+

2z
Disc [�(k, P)]P−=zk− , (A8a)

�[�](z, PT ) ≡ Tr

[

�(z, PT )
�

2

]

, (A8b)

with the unintegrated quark correlator �(k, P) defined in
Eq. (58). Here k is the momentum of the fragmenting
quark, P is the momentum of the produced hadron, and
z = P−/k− is the hadron’s fractional momentum in the
dominant momentum direction. The 1/2 factor in Eq. (A8)(b)
arises in the same way as in Eq. (A7)(b). In Eq. (A8)(a),
the 1/z factor comes from the normalization of the hadronic
states (see Ref. [59] and Section 12.4 in Ref. [35]). The
trace operator in this case has an additional 1/2 factor which
appears in Eq. (A8)(a), since it corresponds to an average
over the quark polarizations in the initial state. A color trace
Trc/Nc, that in the same way corresponds to an average over
the hadron’s color configurations, is already included in the
definition of the unintegrated correlator �(k, P).

Note that in the fragmentation case we integrate over the
suppressed partonic plus component even if the correlator
has a probabilistic interpretation in terms of the hadronic
variables. This is because the integration is always performed
with respect to the momentum components of the object that
in a process would enter the hard interaction in a process,
namely the parton.

5.5 Fully inclusive jet correlator

In analogy with Eqs. (A8), the TMD inclusive jet correlator
and its Dirac projections are defined as:

J (k−, kT ) ≡ 1

2

∫

dk+ �(k) , (A9a)
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J [�](k−, kT ) ≡ Tr

[

J (k−, kT )
�

2

]

. (A9b)

For consistency with Ref. [69], the discontinuity has been
inserted directly in the definition of the unintegrated jet cor-
relator (1), or equivalently (6), where we also included the
color trace Trc/Nc corresponding to an average over the ini-
tial state color configurations. Note that there is no 1/k−
prefactor, at variance with Ref. [71].

Appendix B: Frame transformations

In this appendix we discuss the dependence of the fragmen-
tation functions and of the associated momentum sum rules
on the frame chosen to study the hadronization mechanism.

We will consider, in particular, two cases: the hadron frame
used to define the TMD fragmentation functions [35,63], and
the parton frame used in the main text to derive the momen-
tum sum rules. Either frame is defined by a specific choice
of basis four-vectors n−( f ), n+( f ), n1( f ), n2( f ), that identify
the light-cone plus and minus directions and the two direc-
tions orthogonal to these, with an index f = h, p explicitly
referring to the hadron and parton frames, respectively. The
basis vectors are not only utilized to define the corresponding
coordinate system, but also to decompose the fragmentation
correlator in terms of Fragmentation Functions, whose defi-
nition, consequently, depends on the choice of frame. In this
appendix, therefore, we will consistently use the h and p sub-
scripts to explicitly distinguish between quantities defined in
one or the other frame. Note, however, that in the main text
we dispensed from this notation.

As discussed in Sect. 3.1, the hadron frame is defined
such that the momentum of the hadron under consideration
has no transverse component (PTh = 0); and the parton
frame is such that the quark’s momentum has no transverse
component (kT p = 0). In the main body of this paper, we
connected the fragmentation correlator and the quark propa-
gator through a correlator-level sum rule that integrated over
all hadron momenta. Hence only the quark’s momentum is
available to define the frame, and we could only choose to
work in the parton frame. When discussing the fragmenta-
tion correlator, however, both frames are possible, with the
hadron frame being the conventional choice [35,63]. As a
consequence, the FFs functions defined in the TMD liter-
ature, and here generically denoted by Xh , differ from the
fragmentation functions entering the sum rules for the parton-
frame X p FFs summarized in Sect. 3.1, where the p index
was dropped for simplicity. It is the purpose of this Appendix
to derive the rules for transforming one set of FFs, and their
corresponding sum rules and Equation of Motion relations,
into the other.

5.6 Parton and hadron frames

We will first consider the Lorentz transformation from the
parton frame to the hadron frame. The transformation is com-
pletely determined by requiring that (1) the parton transverse
momentum in the parton frame kT p be zero, (2) the minus
component be invariant, and (3) the norm of any four-vector
be invariant. The matrix associated to this transformation
reads, in light-cone coordinates [35,111]:

Mh←p =
⎡

⎢

⎣

1 0 0
k2
Th

2(k−)2 1 kTh
k−

kTh
k− 0 1

⎤

⎥

⎦
, (B1)

where kTh is the (Euclidean 2D) transverse momentum of the
quark in the hadron frame. The hadron frame components aμ

h
of the vector a can then be obtained from the parton frame
components by

aμ
h = (Mh←p)

μ
ν
aν
p . (B2)

As the minus component is invariant, we will omit the sub-
script identifying the frame whenever little risk of misunder-
standing occurs. The inverse transformation matrix Mp←h

from the hadron to the parton frame can be simply obtained
by replacing kTh → −kTh in Eq. (B1).

From Eq. (B1) one can see that the transverse momentum
PT p of the hadron in the parton frame and the transverse
momentum kTh of the quark in the hadron frame are related
by

PT p = −z kTh , (B3)

while the hadron’s collinear momentum fraction relative to
the quark is invariant between the two considered frames
because of the invariance of the minus components of the
momenta:

z = P−
p

k−
p

= P−
h

k−
h

. (B4)

Let us now consider the transformation of the different
ingredients in the Dirac decomposition of the TMD frag-
mentation correlator, that defines the fragmentation functions
(see, for example, Eq. (67) for the decomposition in the par-
ton frame). To start with, the metric tensor gμν is Lorentz-
invariant by definition, and the Levi-Civita tensor εμνρσ is
invariant, as well, since the transformation Mh←p belongs
to the orthochronus Lorentz group (det Mh←p = 1).

The transformation of the transverse gμν
T and ε

μν
T tensors

are, instead, more complex, and we need to first address the
relation between the basis vectors defining the two frames
under consideration. Let’s consider first the hadron frame
basis vectors, which can be expressed in hadron-frame coor-
dinates as n−μ

(h) = [1, 0, 0T ]h , n+μ

(h) = [0, 1, 0T ]h and
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nμ

i(h) = [0, 1, ei ]h , where e1 = (1, 0) and e2 = (0, 1),
and i = 1, 2 a transverse index. We also collect the trans-
verse basis vectors ni(h) into a 2D transverse vector, nT (h) ≡
(n1(h), n2(h)). The parton frame basis vectors are analogously
defined in parton frame coordinates. One can easily show that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

nμ

−(h)=nμ

−(p) − 1

k− kTh · nμ

T (p)+
1

2

k2
Th

(k−)2 n
μ

+(p) (B5a)

nμ

+(h) = nμ

+(p) (B5b)

nμ

T (h) = nμ

T (p) − kTh
k− nμ

+(p) , (B5c)

It is then not difficult to obtain

gμν

T (h) = gμν

T (p) + 1

k− kTh · n{μ
T (p)n

ν}
+(p) − k2

Th

(k−)2 n
μ

+(p)n
ν
+(p)

(B6)

ε
μν

T (h) = ε
μν

T (p) − 1

k− εμνρσ kTh · nT (p)ρ n+(p)σ . (B7)

While neither tensor is actually Lorentz invariant in itself, the
breaking terms are at least of O(1/k−). In our application to
the Lorentz transformation of the fragmentation correlator
�, we only need these tensors contracted with kν , with a
much simpler transformation:

gμν

T (h)kν = −1

z
gμν

T (p)Pν − P2
T p

z2k− nμ

+(p) (B8)

ε
μν

T (h)kν = −1

z
ε
μν

T (p)Pν . (B9)

Note that Eq. (B8) generalizes Eq. (B3) to the four vector
case. Finally, the first four Dirac matrices transform as any
other four-vector:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

γ −
h = γ −

p ≡ γ − (B10a)

γ +
h = γ +

p + k2
Th

2(k−)2 γ − + kTh · γ T p

k− (B10b)

γ Th = γ T p + kTh
k− γ − , (B10c)

with γ5 = εμνρσ γ μγ νγ ργ σ invariant because such is the
Levi-Civita tensor and we are working in 4 dimensions [139].

We now have all the tools to understand what happens
to the fragmentation functions, the equation of motion rela-
tions (EOMs), and the momentum sum rules when changing
frames.

5.7 Transformation of the fragmentation functions

As discussed, the TMD fragmentation functions are con-
ventionally defined by decomposing the TMD fragmenta-

tion correlator in terms of the light cone basis vectors of the
hadron frame [63]:

�(h)(z, kT (h)) = 1

2
/n−(h)D1h

(

z, k2
Th

)

+ i

[

/kT (h), /n−(h)

]

4M
H⊥

1h(z, k
2
Th)

+ M

2P− Eh

(

z, k2
Th

)

+ /kT (h)

2P− D⊥
h

(

z, k2
Th

)

+ iM

4P−
[

/n−(h), /n+(h)

]

Hh

(

z, k2
Th

)

+ 1

2P− γ5 ε
ρσ

T (h) γρ kσ G⊥
h

(

z, k2
Th

)

.

(B11)

Note that we omitted the frame subscript for the frame-
independent quantities, and that /kT (h) = γμ gμν

T (h)kν . We
have also dropped the flavor index on the mass M to avoid
confusion with the frame subscript h, and used k2

Th =
kμ

T (h)kT (h)μ as a shorthand in the argument of the fragmen-
tation functions.

It is now important to realize that the TMD correla-
tor �(h)(z, k2

Th) ≡ (2z)−1
∫

dk+
h �(k, P) is invariant under

Lorentz trasformations, such as the hadron to parton frame
transformation under discussion in this appendix, that con-
nect frames with the same light-cone plus axis. Explicitly,

�(p)

(

z, P2
T p

)

= �(h)

(

z, k2
Th

)

, (B12)

where the TMD correlator �(p) = (2z)−1
∫

dk+
p �(k, P) is

decomposed in terms of the parton-frame light-cone basis
vectors, see Eq. (67) in the main text. This can be seen
in two steps. First, notice that the integration over dk+ is
Lorentz invariant because the minus and transverse compo-
nents are fixed. Then, look at the definition (64) of the uninte-
grated �h(k, P): on the one hand, there are no open Lorentz
indexes; on the other hand, the light-cone plus vectors asso-
ciated with the Bi functions is the same in the considered
frames.

Schematically, the Dirac projections that define the FFs
take the form

X f ∼ Tr
[

�TMD �( f )

]

, (B13)

where �( f ) is a suitable contraction of the Dirac matrices
and the light-cone basis vectors for a given frame f , see for
example Eqs. (83), (84), (85), (88), (89), (90). When per-
forming a Lorentz transformation, one needs to keep all the
involved vectors unchanged. Under this condition, the traces
in Eq. (B13) are Lorentz invariant. If one changes the basis
vectors, though, one obtains a different definition of frag-
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mentation functions, and one can study how these different
fragmentation functions transform into one another.

Specifically, let’s consider the transformation between
the hadron-frame FFs introduced in this appendix, and the
parton-frame FFs discussed in the main text. This can be
obtained by decomposing, with the help of Eq. (B5), the n(h)

vectors in Eq. (B12) on the parton-frame light-cone basis, and
transforming the transverse momentum components accord-
ing to Eq. (B3). The parton frame FFs can then be projected
out utilizing the �(p) functions, or, more simply, obtained by
matching the corresponding Dirac structures in Eq. (B12).
One finds

D⊥
p

(

z, P2
T p

)

= D⊥
h

(

z, k2
Th

)

− z D1h

(

z, k2
Th

)

≡ ˜D⊥
h

(

z, k2
Th

)

, (B14)

Hp

(

z, P2
T p

)

= Hh(z, k
2
Th) − z

k2
Th

M2 H⊥
1h

(

z, k2
Th

)

≡ ˜Hh

(

z, k2
Th

)

, (B15)

while all other fragmentation functions do not mix10:

X p

(

z, P2
T p

)

= Xh

(

z, k2
Th

)

. (B16)

In practice, the change of basis vectors mixes the twist-2 FFs
in the hadron frame (D1h and H⊥

1h) with two other twist-3
FFs (D⊥

h and Hh) through the off-diagonal terms in Eq. (B1)
proportional to 1/k− ∼ 1/P−

h . The other FFs do not mix
under this change of basis.

The identification of the r.h.s. of Eqs. (B14) and (B15)
with the ˜Dh and ˜Hh functions requires one to use the hadron
frame EOM relations discussed in Ref. [63]. It is important to
remark that these tilde-functions are among the functions that
parametrize the dynamical twist-3 quark-gluon-quark corre-
lator �α

A [63]. Hence, Eqs. (B14) and (B15) imply that the
distinction between kinematical and dynamical twist-3 is, for
certain functions, frame-dependent, and the transformation
Mh←p actually maps a kinematical twist-3 quantity into a
dynamical one. A similar version of the transformation (B14)
for D⊥ was already discussed in Ref. [111], whereas the
transformation (B15) for H is, to our knowledge, new.

Before moving to collinear functions, it is worthwhile
remarking an important, but potentially confusing difference
between our notation (derived e.g. from Ref. [63]) and that
of, e.g., Refs. [35,57]. In the hadron frame, the natural trans-
verse momentum variable for a FF is kTh , as we have used
in this “Appendix”. However, the physical interpretation of
a FF should be given in the partonic frame. Hence, reading

10 For the G⊥function, this is actually true only when summing over
the hadron spins.

Eq. (B16) from right to left, and utilizing Eq. (B3), we find

Xh(z, k
2
Th) = X p

(

z, z2k2
Th

)

. (B17)

In other words, the hadron frame FFs depend on the z2k2
Th

combination, rather than k2
T h alone. This justifies using z2k2

Th
as argument of Xh as done in e.g. Refs [35,57]. An impor-
tant consequence is that, if one wishes to use a Gaussian
approximation for the transverse momentum dependence of
the FFs in the hadron frame, this should read Xh(z, k2

Th) ≈
D(z) exp

[− z2k2
Th/(�

2)
]

, where �2 is the variance, and D
a function of z alone.

The collinear FFs are usually defined in the parton frame as
integrals of the TMD FFs over the transverse momentum (see
Refs. [57,63]). The definition in the hadron frame follows,
if one requires the collinear FFs to be frame independent.
Explicitly,

X p(z) ≡
∫

d2PT p X p(z, P
2
T p) ,

Xh(z) ≡ z2
∫

d2kTh Xh(z, k
2
Th) , (B18)

and it is easy to see that

X p(z) = Xh(z) (B19)

for FFs that do not mix under Lorentz transformations. Fol-
lowing the standard conventions discussed in Refs. [57,63],
the first transverse moments are defined in the parton and
hadron frames as

X (1)
p (z) ≡

∫

d2PT p
P2
T p

2z2M2 X p

(

z, P2
T p

)

,

X (1)
h (z) ≡ z2

∫

d2kTh
k2
Th

2M2 Xh

(

z, k2
Th

)

. (B20)

These also do not mix, X (1)
p (z) = X (1)

h (z), except for the D⊥
and H functions.

5.8 Transformation of the EOMs

The EOMs allow one to relate twist-2 fragmentation func-
tions with kinematical and dynamical twist-3 fragmentation
functions. They can be obtained by applying the Dirac equa-
tion (i /D(ξ) − m)ψ(ξ) = 0 to the fragmentation correlator
and projecting on the good quark components. The resulting
relation between the twist-2 and twist-3 fragmentation cor-
relators is Lorentz covariant, as seen in Eq. (3.53) of Ref.
[63], which is given in the hadron frame. Using the transfor-
mation (B1) it is possible to show that the EOMs are frame
invariant up to terms suppressed by powers of M/P−, which
can be kinematically neglected in a frame boosted to high
values of P− such as we are considereing in this paper [63].
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Thus, in order to derive the EOMs in the parton frame, one
simply needs to apply the replacement rule (B3) for the trans-
verse momenta to the hadron frame EOMs given in Ref. [63]:

Ep = ˜Ep + z
mq0

M
D1p D⊥

p = ˜D⊥
p + zD1p

Hp = ˜Hp − P2
T p

zM2 H
⊥
1p G⊥

p = ˜G⊥
p + z

mq0

M
H⊥

1p. (B21)

These are the EOMs utilized in Sect. 3.5, but are written with
an explicit p frame subscript.

5.9 Transformation of the sum rules

We now discuss the frame (in)dependence of the momentum
sum rules for the fragmentation functions.

Let us start from the rank 0 sum rules for the D1 and E
fragmentation functions, derived in Sect. 3.3 in the parton
frame. The Dirac matrices that project these functions out of
the fragmentation correlator are, respectively, the γ − and I

matrices. Since these are invariant under the Mh←p trans-
formation, also the momentum sum rules for D1 and E are
invariant.

The transformation of the rank 0 parton frame sum rule
for H is less straightforward, because of its mixing with the
Collins function H⊥

1 , and it is instructive to look at the latter
first. The projection matrix for H⊥

1 is � = iσ i−γ5, which
renders the RHS of the master sum rule (86) equal zero.
Moreover this matrix is frame independent, because the extra
term from Eq. (B10c) cancels in the commutator that defines
σ i−. Accordingly, the rank 1 sum rule for H⊥

1 is Lorentz-
invariant. As a consequence of Eq. (B15), also the sum rule
for H is, despite the fact that this FF mixes with the Collins
function under Lorentz transformations.

The other two FFs appearing in the rank 1 sum rules dis-
cussed in Sect. 3.4 are G⊥ and D⊥. The projection matrix
for G⊥ is � = γ i

T γ5, such that the RHS of the sum rule is
zero, as well. Differently from the sum rule for the Collins
function, this matrix does get an extra term proportional to
γ −γ5 under Lorentz transformation, which is however only
related to polarized FFs. Since the sum rules can only be
obtained after summing over the hadronic polarizations, this
extra term does not contribute and the sum rule for G⊥ is
Lorentz invariant.

The sum rule for D⊥ in the parton frame involves the
hadronic transverse momentum rescaled by the collinear
momentum fraction averaged over the kinematics and summed
over the produced hadrons and their spin. It is therefore use-
ful to introduce the notion of the average of a momentum-
dependent Op = Op(z, P2

T p) observable in the parton frame
as:

〈Op〉 =
∑

H,S

∫

dz d2PT p Op

(

z, P2
T p

)

z DH
1

(

z, P2
T p

)

,

Table 1 Sum rules for the D⊥ and ˜D⊥ twist-3 FFs in the parton frame
( f = p) and in the hadron frame ( f = h). The flavor index is denoted
by an uppercase H to distinguish this from the lowercase h frame index

frame 2
∑

H,S

∫

dz M2
H DH⊥(1)

f (z) 2
∑

H,S

∫

dz M2
H
˜DH⊥(1)

f (z)

f = p 0 〈P2
T p/z

2〉
f = h 〈k2

Th〉 0

(B22)

where, at variance with the main text, we used an upper case
hadronic H flavor index to distinguish this from the hadronic
frame index (this definition can also be extended to a flavor
dependent observable OH , but we suppressed that index for
clarity). The average operator is Lorentz invariant if we define
this for a hadron frame observable Oh = Oh(z, k2

Th) as

〈Oh〉 ≡
∑

H,S

∫

dz d2kTh Oh

(

z, k2
Th

)

z3 DH
1

(

z, k2
Th

)

.

(B23)

Now, one can calculate the hadron frame sum rule for D⊥ by
applying the Mh←p Lorentz transformation and the mixing
relation (B14) to the parton frame sum rule (104)a. Utilizing
the EOMs in the two frames, it is also possible to obtain the
hadron frame sum rule for ˜D⊥. The result of these manipu-
lation is given in Table 1, where we collect and compare the
D⊥ and ˜D⊥ sum rules in either frame, expressed in terms of
the average defined in Eqs. (B22) and (B23).

One can notice an interesting symmetry between the
results obtained in the parton and in the hadron frames. In the
parton frame, the twist-3 ˜D⊥ sum rule measures the average
squared hadronic transverse momentum dynamically gener-
ated during the hadronization process scaled by a factor 1/z,
while the D⊥ sum rule is trivial. In the hadron frame, instead,
it is the twist-2 sum rule for D⊥ that measures the dynamical
generation of transverse momentum. In this case the aver-
aged quantity is formally the transverse partonic momentum
as seen by the hadron. While different in form, the two aver-
ages measure the same quantity, as is obvious from Eq. (B3).
The formal frame dependence of the D⊥ and ˜D⊥ sum rules
is a consequence of the fact that these FFs enter the fragmen-
tation correlator with a coefficient proportional to the trans-
verse momentum, and of the Lorentz transformation proper-
ties of the latter.
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