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A B S T R A C T

Raman elastic geobarometry for mineral host-inclusion systems is used to determine the strains acting on an in-
clusion still entrapped in its host by measuring its Raman wavenumber shifts which are interpreted through the
phonon-mode Grüneisen tensors of the inclusion phase. The calculated inclusion strains can then be used in an
elastic model to calculate the pressure and temperature conditions of entrapment. This method is applied fre-
quently to host inclusion systems where the host is almost elastically isotropic (e.g. garnet) and the inclusion is
elastically anisotropic (e.g. quartz and zircon). In this case, when the entrapment occurs under hydrostatic condi-
tions the host will impose isotropic strains on the inclusion which in turn will develop non-hydrostatic stress. In
this scenario the symmetry of the inclusion mineral is preserved and the strains in the inclusion can be measured
via Raman spectroscopy using the phonon-mode Grüneisen tensor approach.

However, a more complex situation arises when the host-inclusion system is fully anisotropic, such as when a
quartz inclusion is entrapped within a zircon host, because the symmetry of the inclusion can be broken due to
the external anisotropic strain field imposed on the inclusion by the host, which in turn will modify the phonon
modes. We therefore calculated the strain states of quartz inclusions entrapped in zircon hosts in multiple orien-
tations and at various geologically relevant pressure and temperature conditions. We then performed ab initio
Hartree-Fock/Density Functional Theory (HF/DFT) simulations on α-quartz in these strain states. These HF/DFT
simulations show that the changes in the positions of the Raman modes produced by strains that are expected for
symmetry broken quartz inclusions in zircon are generally similar to those that would be seen if the quartz inclu-
sions remained truly trigonal in symmetry. Therefore, the use of the trigonal phonon-mode Grüneisen tensor to
determine the inclusion strains does not lead to geologically significant errors in calculated quartz inclusion en-
trapment pressures in zircon.

1. Introduction

The study and measurement of elastic strains in mineral inclusions
has undergone rapid development as a tool to determine the pressure
and temperature conditions of inclusion entrapment, thereby providing
constraints on the pressure-temperature (i.e. P-T) history of their host
minerals and rocks. The strain and stress fields in a crystal are the result
of both the surrounding environment (i.e. the hydrostatic or non-

hydrostatic stress applied to it) and the elastic properties of the crystal
itself. For example, when a crystal is immersed in a liquid medium it
will be under hydrostatic pressure and the crystal (e.g. inclusion) will
develop isotropic or anisotropic strains depending on its symmetry and
its elastic properties (Fig. 1a). However, if the crystal (inclusion) is en-
trapped within another solid material (i.e. the host) it will be subjected
to strains imposed upon it arising from the elastic properties of the host
material and the external stress conditions. In our discussion we will as-
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Fig. 1. Illustration of stress and strain states. (a) In a diamond-anvil cell a crystal is immersed in a fluid and is under hydrostatic pressure; (b) An isotropic inclusion
in an isotropic host is subject to isotropic strains and it will develop hydrostatic pressure; (c) An anisotropic inclusion in a cubic garnet host is subject to isotropic
strain and therefore is under non-hydrostatic stress; (d)An isotropic inclusion in an anisotropic host is subject to anisotropic strains and it will develop non-
hydrostatic stresses (e) an anisotropic inclusion in a zircon host is subject to anisotropic strains and therefore is under non-hydrostatic stress whose magnitude de-
pends upon their relative crystallographic orientations.Cases (b-e) assume that the stress acting on the host is hydrostatic.

sume that the external stress on the host is homogenous and hydrosta-
tic. Under this assumption, we can consider four representative cases
where the inclusion is spherical and embedded in an infinite host and
therefore the stress state of the inclusion is homogeneous and results
from the combination of the symmetries and properties of the host and
inclusion crystals:

(i) a completely isotropic (or almost isotropic) host-inclusion
system such as chromite in diamond (Fig. 1b). In this case, the
host mineral will impose an isotropic strain on the entrapped
mineral inclusion which in turn will develop an isotropic stress
field. It will therefore be under hydrostatic pressure and will
remain cubic.

(ii) an isotropic host and an anisotropic inclusion such as quartz in
garnet (Fig. 1c). Also in this case the host imposes isotropic
strains on the inclusion, but the inclusion being anisotropic will
develop a non-hydrostatic stress field but will retain its
symmetry.

(iii) an anisotropic host and an isotropic inclusion such as spinel in
olivine (Fig. 1d). The elastically anisotropic host will apply
anisotropic strains to the elastically isotropic inclusion which
will therefore develop a non-hydrostatic stress. The applied
anisotropic strain lowers the symmetry of the inclusion.

(iv) a completely anisotropic host-inclusion system such as quartz
in zircon (Fig. 1e). In this last case we have the most complex
situation considered here: the host is anisotropic and therefore
imposes anisotropic strains on the inclusion which, being
anisotropic, develops a stress field that depends upon its
orientation with respect to the host mineral and the contrast in
their elastic properties. These anisotropic strains can lower the
symmetry of the inclusion.In addition to these considerations,
we note that if the external stress conditions are non-
hydrostatic, the stress developed by the inclusion can be non-
hydrostatic also when the host is elastically isotropic. More
complex situations arise when the stress and the strain in the

inclusion are inhomogeneous due to inhomogeneities in the
external stress acting on the host or because of geometrical
features (morphology of the inclusion, its proximity to other
inclusions, or to the external surface of the host, e.g.
Mazzucchelli et al., 2018; Zhong et al., 2019).

Mineral inclusions are common in metamorphic rocks and the deter-
mination of their apparent entrapment conditions using Raman elastic
geobarometry can provide new P-T constraints to understand the meta-
morphic history of the rock and the geological processes involved (e.g.
Alvaro et al., 2020; Rosenfeld and Chase, 1961). Raman elastic geo-
barometry relies on the joint application of the phonon-mode
Grüneisen tensor together with elastic geobarometry theory (e.g. Angel
et al., 2019; Murri et al., 2018; Murri et al., 2019). The phonon-mode
Grüneisen tensor is a well-established concept (Cantrell, 1980;
Grüneisen, 1926; Key, 1967) that relates the shifts of phonon frequen-
cies of a crystal to the strains imposed on a crystal. Being a second-rank
symmetric property tensor (Ziman, 1960) that relates to the strain, the
Grüneisen tensors are subject to the symmetry of the crystal, not to the
symmetries of the individual phonon modes themselves (Angel et al.,
2019; Ziman, 1960). While the symmetry constraints on the Grüneisen
tensors of all of the modes in a crystal are therefore the same, the values
of their components differ and must be determined by experiment
(Barron et al., 1982; Briggs and Ramdas, 1977; Cantrell, 1980; Key,
1967) or DFT simulations. Once the values of the components for the
Raman active modes have been determined in these ways, this allows us
to determine the residual strain state on the inclusions by measuring
their Raman wavenumber shifts (e.g. Angel et al., 2019; Murri et al.,
2019; Musiyachenko et al., 2021; Stangarone et al., 2019). The strain
state of the inclusion can then be used to calculate the apparent entrap-
ment conditions of the host-inclusion system. This method has been
largely applied to zircon and quartz inclusions contained in garnet (e.g.
Alvaro et al., 2020; Baldwin et al., 2021; Campomenosi et al., 2021;
Cisneros et al., 2021; Gilio et al., 2021; Gonzalez et al., 2019; Harvey et
al., 2020; Johnson et al., 2020; Schrojenstein Lantman et al., 2021;
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Zhong et al., 2019), in which cases the symmetry of the inclusion is pre-
served, since the strain applied to it is isotropic (see case ii above and
Fig. 1c). Moreover, when an anisotropic inclusion is spherical and iso-
lated within an isotropic host mineral, their relative crystallographic
orientation (RCO) has a negligible effect on the calculation of the en-
trapment conditions (see Mazzucchelli et al., 2019).

However, when we move to completely anisotropic host-inclusion
systems (e.g. quartz in zircon) the situation is more complex (see case iv
above and Fig. 1e). Even if the quartz crystal is entrapped in a zircon
host at external hydrostatic conditions, when the external P and/or T
are changed away from entrapment the strain field applied to the inclu-
sion can become non-uniaxial and will depend on the relative orienta-
tion of the host and the inclusion. Therefore, the a and b axis of the
quartz inclusion may be deformed by different amounts, and the angles
α, β, γ can change from those required by trigonal symmetry. Therefore
we expect that the quartz inclusions in natural zircon crystals are, in
general, not trigonal (Gonzalez et al., 2021). These deformations of the
quartz unit cell that break the symmetry of the crystal can be described
as ‘symmetry-breaking strains’ (Carpenter et al., 1998; Salje et al.,
1993). The effects of symmetry-breaking strains have been observed in
cubic garnet hosts adjacent to inclusions as birefringence haloes (e.g.
Campomenosi et al., 2020; Howell et al., 2010), however the effects of
symmetry breaking on the strain state of the inclusion phase are poorly
understood. In particular, when the quartz crystal is no longer trigonal,
the key question is whether using the phonon-mode Grüneisen tensor of
trigonal α-quartz (for example) to calculate the inclusion strains results
in significant errors in the strains and mean stresses, and whether these
errors lead to geologically significant errors in the calculation of inclu-
sion entrapment conditions during metamorphism.

To answer this question, we calculated the expected deformation of
quartz inclusions entrapped in a zircon host in multiple RCOs and at
various hydrostatic geologically relevant P-T conditions. We then per-
formed ab initio Hartree-Fock/Density Functional Theory (HF/DFT)
simulations on the deformed α-quartz to determine the Raman shifts for
quartz inclusions entrapped at these conditions. This enabled us to de-
termine (i) the error introduced by using the phonon-mode Grüneisen
tensor of trigonal quartz, (ii) the inclusion stress states and (iii) the en-
trapment conditions of inclusions whose symmetry has been broken.
Despite we specifically address the case of external hydrostatic condi-
tions, our general conclusions regarding the Raman response to symme-
try breaking strains are not just limited to this case. Since the Raman re-
sponse to the strain state of the inclusion does not depend on the spe-
cific conditions that have generated that strain, our analysis of Raman
shifts still apply when the external stress is non-hydrostatic, or when
the symmetry breaking strains are induced by the geometrical features
of the system (morphology of the inclusion, its proximity to other inclu-
sions or to free surfaces). These results can also be applied to quartz in-
clusions with non-homogeneous strain states, provided that the gradi-
ents are small at the spatial resolution of the Raman analysis.

2. Methods

The strains developed in an inclusion depend on the elastic proper-
ties of the host and inclusion minerals and the P-T conditions at entrap-
ment. Strains of measured quartz inclusions are defined in terms of the
fractional change in the unit-cell parameters of the quartz inclusion rel-
ative to a free crystal at ambient conditions (Nye, 1957) . We use the La-
grangian infinitesimal definition of strains, with the convention that the
Cartesian axes are aligned with the Z-axis parallel to the crystallo-
graphic c-axis, and the X-axis parallel to the crystallographic a-axis.
Thus, for example, the strain is simply the fractional differ-
ence in the c-lattice parameter of the strained inclusion from the lattice
parameter c0 of a free quartz crystal at ambient conditions. If the quartz
remains trigonal then the a and b unit-cell parameters remain equal, so
ε11 = ε22 and the unit-cell angles remain fixed so that the three shear-

strain components ε23, ε13, and ε12 remain zero. Symmetry breaking is
represented by the violation of one or more of these constraints on the
strain components.

The calculation of the final inclusion strains for each of our three en-
trapment conditions proceeded in several steps (Gonzalez et al., 2021).
First the changes in the unit-cell parameters of the zircon host crystal
from entrapment conditions to ambient conditions were calculated
from the axial and volume EoS of zircon (Ehlers et al., 2022). From
these changes the deformation tensor of the zircon was calculated,
transformed according to the chosen RCO and applied to the quartz in-
clusion. In combination with the axial and volume EoS of quartz
(Alvaro et al., 2020; Angel et al., 2017a), this gives the cell parameters
and strains of the inclusion that result from confinement by the zircon
host without considering the mutual elastic interaction of the two min-
erals (Angel et al., 2014b; Gonzalez et al., 2021). The second step of the
calculation is required to bring the system to mechanical equilibrium.
The elastic relaxation is calculated as the change in strain (and stress)
that leads to stress balance in the system assuming elastic behavior, and
therefore it reduces the strains in the inclusion to those measured in the
laboratory (Angel et al., 2014b) Therefore, the final strains of the inclu-
sion are obtained after accounting for the mutual elastic relaxation of
the host and inclusion, and they are calculated using the relaxation ten-
sor which depends on the elastic properties of both minerals, their mu-
tual orientation and the shape of the inclusion (Mazzucchelli et al.,
2018; Mazzucchelli et al., 2019) We used the relaxation tensors calcu-
lated numerically using finite elements by (Gonzalez et al., 2021) for
our chosen RCOs to obtain the final relaxed strains and cell parameters
of quartz inclusions apparently entrapped at eclogite and granulite con-
ditions (Table 1a and 1b).

We performed analyses for quartz inclusions entrapped in a non-
metamict zircon host for two representative metamorphic entrapment
conditions, one in the eclogite metamorphic facies and one in the gran-
ulite facies, and a third case of entrapment at the limit of the stability
field of quartz near the quartz-coesite phase boundary. Because the two
minerals have anisotropic elastic properties, the strains developed in a

Table 1a
Symmetry-breaking strain tensor components (In Voigt notation) of the inclu-
sions.

quartz_eclogite quartz_granulite quartz_coesite

ε1 −0.00636 0.00687 −0.00837
ε2 −0.00788 0.00750 −0.01124
ε3 −0.00601 0.00337 −0.00967
ε4 0.00252 0.00048 0.0048
ε5 0.00000 −0.00076 0.00000
ε6 0.00000 0.00106 0.00000

Cartesian axes for the tensors are aligned with the Z-axis parallel to the crystal-
lographic c-axis, and the X-axis parallel to the crystallographic a-axis. Final re-
laxed strains for eclogite and granulite. Final unrelaxed strains for the coesite
case.

Table 1b
Unit-cell parameters used in the HF/DFT simulations.

quartz_ref quartz_eclogite quartz_granulite quartz_coesite

a (Å) 4.92825 4.89696 4.96211 4.88699
b (Å) 4.92825 4.8912 4.96207 4.87629
c (Å) 5.42395 5.39136 5.44223 5.37152
V (Å3) 114.086 111.789 116.1178 110.773
α (°) 90 89.874 89.955 89.761
β (°) 90 90 90.043 90
γ (°) 120 120.039 119.94 120.073

The resulting crystallographic structures for all the three cases have a triclinic
symmetry as indicated by a ≠ b and the deviation of the unit-cell angles from
90o and 120o.
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quartz inclusion within zircon and thus, the amount of symmetry break-
ing in the quartz, also depend on the RCO of the two crystals (Gonzalez
et al., 2021). If the RCO is such that the c-axes of zircon and quartz are
aligned to one another, there are no symmetry-breaking strains in the
quartz inclusion. We therefore selected RCOs from the calculations of
(Gonzalez et al., 2021) that gave the greatest amount of symmetry
breaking (see Table S1) reducing the symmetry of quartz from non-
centrosymmetric trigonal to non-centrosymmetric triclinic (P3121 or
P3221 to P1). The first case corresponds to a quartz inclusion entrapped
in the zircon host at eclogite facies conditions at 2.2 GPa and 650 °C in
the “stiff-RCO” with the quartz inclusion rotated −50.27° around the X-
axis because this orientation produced the largest magnitude symme-
try-breaking strains. The second case corresponds to a quartz inclusion
entrapped at the granulite facies at 0.6 GPa and 725 °C in the “soft-
RCO” with a quartz inclusion rotated −54.09° around the X-axis,
−54.40° around the Y-axis, and 29.40° around the Z-axis (see Gonzalez
et al. (2021) for the conventions followed for rotations). In this orienta-
tion the magnitude of the symmetry-breaking strains is less, but the
strains are more affected by mutual elastic relaxation (Gonzalez et al.,
2021; Mazzucchelli et al., 2019). We also investigated the effect of sym-
metry breaking on a quartz inclusion in the stiff-RCO entrapped in a zir-
con host at 3 GPa and 927 °C near to the quartz-coesite phase boundary
(Bose and Ganguly, 1995). This P-T condition provides a practical up-
per limit to quartz inclusion apparent entrapment and therefore repre-
sents the near-maximum effect of the entrapment P-T conditions on the
symmetry breaking of the quartz inclusion.

The relaxed inclusion pressures are 0.76 GPa and − 0.65 GPa for
the eclogite and granulite examples. For the coesite-boundary simula-
tion, the relaxation was not calculated because we were interested in
finding the greatest magnitude of symmetry-breaking strains and, for
these entrapment conditions, the mutual elastic relaxation reduces the
symmetry-breaking strains. The unrelaxed inclusion pressure for this
case is calculated to be ca. 1.1 GPa.

Raman spectra of these triclinic quartz inclusions were then calcu-
lated with the same ab initio simulation methods described in (Murri et
al., 2018; Murri et al., 2019). In brief, the unit-cell parameters were
fixed to the corresponding triclinic parameters calculated for the inclu-
sions from the three different entrapment conditions (Table 1b), and
the atomic positions were optimized to minimize the total energy of the
crystal. From the resulting atomic configuration, the frequencies of the
phonons (normal mode vibrations) can be calculated, including the
modes that give rise to peaks in measured Raman spectra. Ab initio hy-
brid HF/DFT simulations were performed with the CRYSTAL17 code
(Dovesi et al., 2018) by employing the same WC1LYP functional as in
(Murri et al., 2018; Murri et al., 2019). For the numerical integration of
the DFT functionals, the XXLGRID grid was chosen; the effectiveness of
such a grid is very high, as it can be estimated by the integration of the
electron density of the unit cell, which provides 90.000005 electrons
out of 90 for the reference volume at the static limit (no zero-point and
thermal pressures due to vibrational effects; (Prencipe et al., 2011) and
at a pressure of 0 GPa. The localized contracted atomic basis sets used
were the same as those employed by (Murri et al., 2018; Murri et al.,
2019) [i.e. Si 86-311G** (Pascale et al., 2005) and 8-411G(2d)
(Valenzano et al., 2006) for Si and O, respectively].

The unit-cell parameters were fixed at the chosen strain conditions
and only the fractional coordinates were optimized at the WC1LYP
level (at the static limit) by means of the keyword ATOMONLY
(Civalleri et al., 2001; Dovesi et al., 2014) of the CRYSTAL17 code. Vi-
brational wavenumbers of all of the normal modes were calculated at
the Г point within the limit of the harmonic approximation (see Murri
et al., 2019 for further details). The reference simulation of an un-
strained trigonal quartz was performed with the same basis set and
identical settings to provide the Raman spectrum to be used as the un-
strained reference. Structural and vibrational data are reported in the

deposited crystallographic information files (cifs) that contain the re-
sults of all the simulations that we performed.

3. Results

3.1. Structure

The strains imposed on the quartz inclusions by their host zircon
crystals reduce the symmetry of the quartz to triclinic (see Table 1b).
This symmetry breaking means that the positions of the 3 Si atoms and
the 6 O atoms within the unit-cell of quartz are no longer related by
symmetry and are independent of one another. As a consequence, there
are three symmetrically independent SiO4 tetrahedra within the primi-
tive unit-cell, which can have bond lengths, bond angles, and mutual
orientations that differ from one another. It is these differences that
give rise to additional Raman peaks arising from a splitting or change in
the activity of parent trigonal phonon modes. Indeed, the HF/DFT sim-
ulations show that structurally-equivalent O-Si-O bond angles within
the SiO4 tetrahedra differ by up to 0.5o between the tetrahedra in each
structure. The range of Si-O-Si bond angles between the tetrahedra is
0.2–0.3o and the differences between equivalent Si O bond lengths in
the tetrahedra in each structure range up to 0.005 Å. The internal O-Si-
O angles of the tetrahedra also differ by up to 0.5o from the values
found in the hydrostatic simulations at the same pressure (Murri et al.,
2019) and the Si-O-Si angles are increased by 0.2o-0.3o. Despite these
internal differences in bond angles, the volumes of the SiO4 tetrahedra
are the same as those of trigonal quartz. This shows that symmetry
breaking is mostly accommodated structurally by small shears and tilts
of the SiO4 tetrahedra. These structural changes are similar to those that
occur in the trigonal structure of quartz under shear strains that do not
break the symmetry (Murri et al., 2019), but with the difference that
the shears and tilts are not the same for every tetrahedron within the
symmetry-broken structures.

3.2. Raman modes

Results of the HF/DFT simulations show that symmetry breaking in-
duces small changes in the structure of quartz which also correspond to
small changes in the observed Raman spectra. This allows us to com-
pare directly the corresponding ‘parent’ modes of the trigonal quartz
structure with those calculated from the symmetry-broken quartz struc-
tures. This reveals several slight differences between the corresponding
Raman spectra. First, the reduction in symmetry of the structure means
that the symmetries of the modes themselves change. Trigonal quartz
has A1, A2 and E modes, of which only the A1 and E modes are Raman
active, while A2 are infrared active. In triclinic symmetry all of the
modes become A modes and all are both Raman and infrared active
(Aroyo et al., 2011). However, the HF/DFT simulations show that for
this degree of symmetry breaking and structural distortion, the Raman
inactive A2 modes of the trigonal structure do not develop any signifi-
cant Raman activity in the triclinic structure and their calculated inten-
sities all remain less than 10−5 of the most intense Raman mode. There-
fore, the symmetry breaking does not result in any additional de-
tectable Raman peaks stemming from the apparent A2 modes under
conventional experimental conditions (Fig. 2).

The Raman-active A1 modes in trigonal quartz are non-polar, but
when the symmetry is reduced to triclinic they transform into polar
modes of A symmetry. Polar optical modes show the so-called LO-TO
splitting, that is, they have longitudinal optical (LO) and transverse op-
tical (TO) components that appear at different wavenumbers with a dif-
ference ΔωLO-TO = ωLO - ωTO. For such modes, not only the intensities
but also the positions of the corresponding Raman peaks depend on the
scattering geometry, namely the orientation of the net crystal polariza-
tion with respect to the polarization of the incident light. In a random
orientation, the two components will mix into quasi phonons and may
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Fig. 2. Comparison of the calculated Raman spectra of inclusions labelled by
entrapment conditions with the reference spectra of an unstrained quartz crys-
tal (bottom) and an extreme non-realistic case of large symmetry-breaking
strains (top). The symmetry labels for the modes (E and A1) refer to trigonal
reference quartz. All Raman spectra were simulated with a FWHM (Full Width
at Half Maximum) of 5 cm−1 and with a Lorentzian line shape. This FWHM is
that measured for the band near to 128 cm−1 in natural quartz at ambient con-
ditions by using a Raman spectrometer with a resolution of 2 cm−1 (Morana et
al., 2020).

produce two Raman peaks with a wavenumber difference ΔωLO-TO de-
pending on the angle of inclination between the net polarization and
the incident-light polarization. However, for the triclinic A modes com-
ing from trigonal A1 modes the maximum ΔωLO-TO is less than
0.06 cm−1 and therefore it will not result in any detectable change of
Raman signal as a function of the crystal orientation. In trigonal quartz
the E modes already exhibit LO-TO splitting, whose magnitude depends
on the phonon polarity and can be of up to 174 cm−1 (for the mode near
1060 cm−1, see Table S2). The symmetry breaking from trigonal to tri-
clinic means that effectively each E mode evolves into two A modes in
triclinic and both of these A modes themselves exhibit LO-TO splitting;
thus each E mode of the trigonal Raman spectra will now appear as a
doublet, whose components may shift with the orientation of the crystal
due to their LO-TO splitting. However, for the natural inclusion cases
(i.e. eclogite and granulite cases) the split between all pairs of A modes
coming from each E parent mode is less than 0.88 cm−1, while for the
coesite boundary case the maximum splitting is 1.82 cm−1 for the first
pair of A modes (see Table 2). Such peak splitting is in general de-
tectable with high-resolution Raman spectrometers, but most of the
commercially-available spectrometers have an instrumental resolution
of ~2 cm−1. In this case the peak splitting would likely not be resolv-
able but may produce detectable peak broadening if the split phonon
modes have similar intensities. Similarly, peak-shape asymmetry could
be observed if one of the split phonon modes is more intense than the
other. Splitting of the order of 5–6 cm−1 can be achieved only when the
symmetry-breaking component of the strains approaches 0.01 in mag-
nitude, as shown in the example in Fig. 2, labelled ‘large strains’. The
LO-TO splitting of individual triclinic A modes arising from trigonal E
modes is about the same in magnitude as their parent modes in trigonal
(see Table S2) even for the coesite case. Thus, examination of the LO-
TO splitting does not indicate whether or not symmetry-breaking
strains are present in the inclusion. Moreover, the detection of the LO-
TO splitting requires the appropriate orientation of the crystal with re-
spect to the scattering geometry (Shapiro and Axe, 1972). In particular,
the crystal must be oriented in different directions in order to see both
of the components. This procedure is easily performed with free crys-

Table 2
Wavenumbers (cm−1) of Raman and IR active-modes from the HF/DFT simu-
lations at the static limit.
Mode symm_
trigonal

quartz_
ref

Mode symm_
triclinic

quartz_
eclogite

quartz_
granulite

quartz_
coesite

TO
(cm−1)

TO (cm−1)

E(R, IR) 133.13 A(R, IR) 136.77 128.99 137.92
A(R, IR) 137.59 129.13 139.74

A1(R) 212.72 A(R, IR) 229.50 196.32 236.47
E(R, IR) 266.43 A(R, IR) 269.82 263.31 271.36

A(R, IR) 270.21 263.53 271.91
A1(R) 348.42 A(R, IR) 348.03 349.82 348.10
A2 (IR) 353.81 A(R, IR) 351.37 357.03 350.29
E(R, IR) 392.73 A(R, IR) 393.33 391.42 393.50

A(R, IR) 393.37 392.08 393.62
E(R, IR) 447.81 A(R, IR) 452.86 442.65 454.91

A(R, IR) 453.31 443.37 455.67
A1(R) 469.62 A(R, IR) 476.77 463.92 480.39
A2 (IR) 503.39 A(R, IR) 511.28 495.18 514.61
E(R, IR) 695.30 A(R, IR) 701.16 689.10 703.54

A(R, IR) 701.76 689.64 704.66
A2 (IR) 774.55 A(R, IR) 776.85 772.72 778.37
E(R, IR) 797.68 A(R, IR) 804.63 792.08 808.04

A(R, IR) 804.89 792.67 808.35
E(R, IR) 1060.35 A(R, IR) 1061.96 1059.03 1062.79

A(R, IR) 1062.41 1059.28 1063.56
A2 (IR) 1068.49 A(R, IR) 1071.75 1065.05 1072.96
A1(R) 1077.31 A(R, IR) 1079.93 1075.99 1081.30
E(R, IR) 1159.50 A(R, IR) 1157.38 1160.68 1156.25

A(R, IR) 1158.26 1161.10 1157.83

R: Raman-active, IR: infrared-active; phonons that are IR active carry polarity
and therefore exhibit LO and TO components.

tals, but when dealing with host inclusion systems it becomes challeng-
ing because of the limited accessible orientations of the inclusion im-
posed by it being buried in its' host, together with possible symmetry
and polarization mixing (e.g. Shapiro and Axe, 1972), and peak over-
laps due to the presence of the host mineral (Fig. S1).

In principle the intensities of the modes, both in parallel polarized
‘HH’ and cross polarized ‘VH’ spectra (see Campomenosi et al., 2020),
can be analysed in order to detect symmetry-breaking strains. However,
under realistic conditions, the ab initio simulations do not show any
particular trend that could be indicative of symmetry-breaking strains.
In detail, the two A modes derived from the trigonal E modes have a
similar pattern of intensities to their parent modes in trigonal quartz
with the A intensities being half of the E modes for both HH and VH
configurations. A modes from A1 have similar intensity components (in
terms of absolute values), while as mentioned above, A modes coming
from A2 are Raman active but with intensities close to zero (see de-
posited cif file). Therefore, when the splitting of the two A modes com-
ing from an E mode is not sufficient to individually resolve them, the in-
tensity contributions of the A modes will sum up giving rise to a single
peak as shown in Fig. 2 for the eclogite, granulite and coesite cases.

As a consequence, for geologically relevant inclusion entrapment
conditions, the Raman spectrum of a quartz inclusion in zircon host is
expected to show similar features to that of a free quartz crystal. The
major exception is that the Raman peak positions from the quartz inclu-
sions will differ based on the entrapment conditions (i.e. the magnitude
of the inclusion pressure) and the applied strain from the zircon host. If
the quartz inclusion is, however, subjected to large degrees of symme-
try breaking, we then may observe broadening or asymmetry of Raman
peaks, or even splitting of the trigonal E modes if the instrumental reso-
lution of the available spectrometer is sufficient. The question then is
whether these differences between the Raman spectra of triclinic quartz
inclusions and trigonal quartz are large enough to induce significant er-
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rors into the calculations of inclusion stress states and thus inferred en-
trapment conditions.

4. Implications for Raman piezo-barometry

4.1. Inclusion remnant pressures and hydrostatic pressure calibrations

Hydrostatic pressure calibrations of Raman wavenumber shifts as a
function of pressure (e.g. Morana et al., 2020; Schmidt and Ziemann,
2000) are frequently used to estimate the remnant pressures of quartz
inclusions for the application of elastic geothermobarometry. The prob-
lems with this approach, generally in the context of a quartz inclusion
in a garnet host, have previously been explained in detail (e.g. Angel et
al., 2019; Gilio et al., 2021; Gonzalez et al., 2019; Murri et al., 2018),
but have not been evaluated for quartz inclusions contained in elasti-
cally anisotropic host minerals such as zircon.

Here we can test the use of hydrostatic pressure calibrations by us-
ing them to infer from the Raman shifts calculated in our DFT simula-
tions the residual pressures in the inclusions. For these tests we used the
quartz hydrostatic calibration equations of Schmidt and Ziemann
(2000) for the 206 and 464 cm−1 bands, Thomas and Spear (2018) for
the 128 cm−1 band, and Morana et al. (2020) for the 128, 206, 265,
464, 696, 809, 1080, and 1161 cm−1 bands (Table S3). In general, the
resulting “pressures” indicated by each individual mode are signifi-
cantly different from one another (Fig. 3, Table S3) and there is a large
variation in the discrepancy between the hydrostatic calibration results
and the true mean stress of the symmetry-broken inclusion. The biggest
discrepancy is for the 1080 cm−1 which can yield inclusion pressures
more than 1 GPa different from the true pressure (Fig. 3). Therefore,
the apparent entrapment conditions obtained by measuring single
modes and using the hydrostatic calibrations are dependent on the Ra-
man band selected for interpretation. Though the data in Fig. 3 appear

Fig. 3. Inclusion pressures in symmetry-broken inclusions determined from the
hydrostatic calibrations of the shifts of individual Raman lines plotted as the
difference from the true mean stress in the inclusion (ΔPinc). a) Plot of the Pinc
discrepancies from all of the calibrated Raman modes available. The dashed
outline box indicates the area plotted in (b). b) Pinc discrepancy for the fre-
quently used 464 cm−1 band of quartz. Error bars were determined assuming a
0.3 cm−1 uncertainty on the Raman band position which is consistent with typ-
ical laboratory Raman spectrometers (Bonazzi et al., 2019; Gonzalez et al.,
2019). Open symbols are the granulite case, closed symbols the eclogite case.
Hydrostatic calibrations of individual lines are indicated by symbol color,
black for Morana et al. (2020), red for Schmidt and Ziemann (2000), and blue
for Thomas and Spear (2018). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

to suggest that the 464 cm−1 band would provide a reasonable Pinc esti-
mate, we emphasize that this approach is still inherently incorrect be-
cause it is not consistent with the other Raman band “pressures” or
within the uncertainties of the dPinc = 0 line. Furthermore, unlike the
quartz-in-garnet system which is not affected by the RCO, the devia-
toric stresses on a quartz inclusion in a zircon are dependent on the ori-
entation, implying that the discrepancy between the hydrostatic cali-
brations and true inclusion pressure cannot be predicted in a straight-
forward manner. Based on the facts that individual Raman bands yield
different “pressures” and that the discrepancies as a function of orienta-
tion cannot be simply predicted, we conclude that the hydrostatic cali-
brations of wavenumber shifts with pressure should not be applied to
the quartz-in-zircon elastic system to estimate the residual inclusion
pressure. As shown in Table S3, this practice will yield over- or underes-
timated inclusion pressures and entrapment conditions, and lead to in-
correct geological interpretations.

4.2. Residual inclusion strains, stress, and pressure: The phonon-mode
Grüneisen tensor approach

The strains of quartz inclusions are calculated from the measured
Raman wavenumber shifts using the trigonal phonon-mode Grüneisen
tensor (Angel et al., 2019; Barron et al., 1982; Cantrell, 1980; Murri et
al., 2018; Murri et al., 2019; Ziman, 1960):

(1)

in which ∆ωm is the difference between the wavenumber of the Ra-
man mode in the inclusion from ω0m the wavenumber of the same mode
of a free quartz crystal at ambient conditions. The γ1mand γ3m are com-
ponents of the Grüneisen tensor (in Voigt notation, see S·I and Angel et
al. (2019) for further details) of phonon mode m. This approach implic-
itly assumes that the tensor components γ1mand γ2m are equal and that
the tensor components γ4m = γ5m = γ6m = 0 because of the trigonal
symmetry of quartz (Nye, 1985). When the symmetry of quartz is bro-
ken, these restrictions on the tensor components are removed, Eq. 1 is
no longer valid and we have to consider the general formulation for the
triclinic case (Angel et al., 2019):

(2)

However, the values of these tensor components for quartz with tri-
clinic symmetry are not available and their calculation would require
extensive HF/DFT simulations. Furthermore, as we have shown, when
an inclusion is measured by Raman spectroscopy it is difficult to deter-
mine from inspection of the spectra (Fig. 2) whether or not its symme-
try remained trigonal or has been broken by elastic interaction with the
host. Therefore, it is useful to evaluate the error introduced into esti-
mated entrapment conditions by ignoring the effects of symmetry
breaking. For these tests we used the Raman peak positions calculated
from HF/DFT simulations in conjunction with the trigonal Grüneisen
tensor of quartz at 0 K to recalculate the inclusion strains, stresses, and
entrapment conditions (values of the Grüneisen tensor components are
reported in Table S4). The values obtained can be then compared
against the real values which account for the effects of symmetry break-
ing (Table 1a).

For all three cases the strains were calculated from the Raman
wavenumber shifts of three sets of Raman modes: i) all modes, ii) 133,
212, 469 cm−1 (HF/DFT values which correspond to the following ex-
perimental values: 128, 206 and 464 cm−1) and iii): 133, 469, 695 cm−1

(which correspond to the experimental values: 128, 464, 697 cm−1).
For each set of Raman modes, the strains were calculated by means of
the trigonal phonon-mode Grüneisen tensor of quartz using the stRAin-
MAN software (Angel et al., 2019). Then, the strains were used with the
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rescaled (Mazzucchelli et al., 2021) elastic moduli at 1 bar of
Lakshtanov et al. (2007) to determine the inclusion mean stress (i.e.
Pinc) at room temperature (25 °C; Bonazzi et al., 2019). The strains ob-
tained using the trigonal phonon-mode Grüneisen tensor and the corre-
sponding inclusion mean stresses are reported in Table 3.

Application of the trigonal phonon-mode Grüneisen tensor assumes
that the inclusion symmetry is not broken and therefore the constraints
of the trigonal symmetry are valid. Therefore, only the strains that con-
form to trigonal symmetry are obtained, with ε1 = ε2 ≠ ε3. These val-
ues are different from the real strains (Table 1b) where ε1 ≠ ε2 and the
components ε4,ε5,ε6 are non-zero. This assumption affects the deter-
mined inclusion stresses and average pressures (Pthermo for the unre-
laxed strains, Pinc for the relaxed strains) causing slight differences be-
tween the symmetry broken and trigonal Grüneisen cases (see Table 3).
Furthermore, the strains determined from these calculations vary
slightly depending on the subset of Raman modes that is used, because
the different Raman modes have different sensitivities to each strain
component as they have different values for the components of their
phonon-mode Grüneisen tensors. This can also be seen in the slopes of
the isoshift lines when plotted against the strains (see Murri et al.,
2018).

As a consequence of these variations in sensitivity the resulting in-
clusion pressures (i.e. Pinc and Pthermo) for the three different sets of Ra-
man modes (i.e. all modes; 128, 206, 464 cm−1 and 128, 464,
695 cm−1) using the trigonal phonon-mode Grüneisen approach differ
slightly (Table 3) but are always less than the real pressure values by
<0.1 GPa. However, in practice it is not feasible to use all of the quartz

Raman bands to calculate the inclusion strain because there are peak
overlaps from the host mineral (see Fig. S1). The problem is even worse
when the host mineral has a high absorbance, such as zircon, which
produces an intense Raman signal that masks the signal from the under-
lying quartz inclusion. In previous studies of quartz inclusions (typi-
cally contained in garnet), the 128, 206, and 464 cm−1 bands are gener-
ally used for the determination of residual strain (e.g. Bonazzi et al.,
2019). When using this phonon-mode combination, we obtain inclusion
pressure values of 0.736 GPa, −0.751 GPa, and 1.025 GPa, compared
to the real Pinc and Pthermo (quartz-coesite case) calculated from the sym-
metry-breaking strains of 0.757, −0.648 and 1.102 GPa for the eclogite,
granulite and quartz-coesite cases, respectively. But on the basis of ex-
perimental experience with quartz in zircon host-inclusion systems, this
band combination is often not usable because of the interfering peak
overlaps on the 206 cm−1 band (see Fig. S1). Therefore, a more realistic
phonon-mode combination for the determination of inclusion strains is
the 128, 464, and 695 cm−1 bands, where there is generally less inter-
ference from the zircon host, so hereafter only this case from the trigo-
nal approach will be discussed. When this phonon-mode combination is
used for the calculation of the inclusion pressures, we obtain values of
0.727 GPa, −0.659 GPa, and 1.057 GPa, which yields errors of 0.03,
0.01, and 0.05 GPa with respect to the real inclusion pressures (Table
3). These results suggest that application of the trigonal quartz phonon-
mode Grüneisen tensor to calculate the residual pressure from a Raman
measurement of a slightly symmetry-broken inclusion will result in gen-
erally small errors that would typically fall within the uncertainty of the
Raman measurements. However, in order to determine whether these

Table 3
Strains, Pinc and Ptrap determinations.

Trigonal approach_1 (All_modes) Trigonal approach_2 (128,206,464) Trigonal approach_3 (128,464,695)

ECL GRAN COE ECL GRAN COE ECL GRAN COE

P = 2.2GPa /
T = 650 °C

P = 0.6 GPa/
T = 725 °C

P = 3 GPa/
T = 927 °C

P = 2.2GPa /
T = 650 °C

P = 0.6 GPa/
T = 725 °C

P = 3 GPa/
T = 927 °C

P = 2.2GPa /
T = 650 °C

P = 0.6 GPa/
T = 725 °C

P = 3 GPa/
T = 927 °C

ε1 −0.00677 0.00820 −0.00917 −0.00697 0.01011 −0.00814 −0.00660 0.00698 −0.00914
ε2 −0.00677 0.00820 −0.00917 −0.00697 0.01011 −0.00814 −0.00660 0.00698 −0.00914
ε3 −0.00608 0.00309 −0.00943 −0.00578 0.00101 −0.01060 −0.00616 0.00395 −0.00972
Pinc 0.736 −0.707 – 0.736 −0.751 – 0.727 −0.659 –

Pthermo 0.973 −0.876 1.048 0.973 −0.920 1.025 0.960 −0.819 1.057
Ptrap_ iso

trig
2.135 0.575 2.803 2.135 0.572 2.774 2.118 0.585 2.815

Ptrap_aniso
trig

2.192 0.592 2.951 2.196 0.503 2.906 2.176 0.602 2.966

Symm break Approach Symm break Approach Symm break Approach

ε1 −0.00636 0.00687 −0.00837 −0.00636 0.00687 −0.00837 −0.00636 0.00687 −0.00837
ε2 −0.00788 0.00750 −0.01124 −0.00788 0.00750 −0.01124 −0.00788 0.00750 −0.01124
ε3 −0.00601 0.00337 −0.00967 −0.00601 0.00337 −0.00967 −0.00601 0.00337 −0.00967
ε4 0.00252 0.00048 0.0048 0.00252 0.00048 0.0048 0.00252 0.00048 0.0048
ε5 0.00000 −0.00076 0 0.00000 −0.00076 0 0.00000 −0.00076 0
ε6 0.00000 0.00106 0 0.00000 0.00106 0 0.00000 0.00106 0
Pinc 0.757 −0.648 – 0.757 −0.648 – 0.757 −0.648 –

Pthermo 1.001 −0.806 1.102 1.001 −0.806 1.102 1.001 −0.806 1.102
Ptrap_ iso sb 2.171 0.588 2.873 2.171 0.588 2.873 2.171 0.588 2.873
Ptrap_aniso sb 2.200 0.600 3.000 2.200 0.600 3.000 2.200 0.600 3.000
Pinc_sb- Pinc trig 0.021 0.059 0.020 0.103 0.030 0.011
Pthermo sb- Pthermo trig 0.028 0.070 0.055 0.028 0.114 0.077 0.041 0.013 0.045
Ptrap_ iso sb - Ptrap_ iso trig 0.036 0.013 0.070 0.036 0.016 0.099 0.053 0.003 0.058
Ptrap_aniso sb- Ptrap_ iso trig 0.065 0.025 0.197 0.065 0.028 0.226 0.082 0.015 0.185
Ptrap_aniso sb - Ptrap_aniso trig 0.008 0.008 0.049 0.004 0.097 0.094 0.024 −0.002 0.034

N·B: All pressure values are in GPa.
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errors in the inclusion pressures lead to geologically significant errors
in the calculation of inclusion entrapment conditions, the entrapment
pressures have been calculated and discussed in the framework of both
isotropic and anisotropic models.

4.3. Recalculation of apparent entrapment pressures: isotropic model

The same volume EoS for quartz (Angel et al., 2017a) and zircon
(Ehlers et al., 2022) used for the original calculation of inclusion strains
have been used for the calculation of isotropic entrapment isomekes by
means of the EosFit7-Pinc software (Angel et al., 2017b). The entrap-
ment isomeke is a path in P-T space where the fractional volume
changes of both the host and the inclusion phases remain equal to one
another but non-zero (e.g. Adams et al., 1975; Rosenfeld and Chase,
1961).When the Pinc from the fully symmetry-broken strains is used in
the isotropic model, the entrapment pressures are 2.171 GPa for the
eclogite facies, 0.588 GPa for the granulite facies, and 2.873 GPa for
the coesite-quartz case. The discrepancies, with respect to the preset en-
trapment conditions (see Table 3), occur because of the assumed
isotropic behavior during the back calculation of the entrapment condi-
tions and are in agreement with similar tests performed by (Gonzalez et
al., 2021). If instead we take the Pinc that is calculated from the strains
using the trigonal quartz Grüneisen tensor, we obtain Ptrap estimates
that even further underestimate the original entrapment conditions. For
the Pinc values calculated using the 128,464 and 695 cm−1 modes, we
obtain Ptrap values of 2.118 GPa for the eclogite facies, 0.585 GPa for
the granulite facies, and 2.815 GPa for the coesite-quartz boundary and
this gives discrepancies of 0.082 GPa, 0.015 GPa, and 0.185 GPa with
respect to the preset entrapment conditions. These discrepancies repre-
sent the errors introduced by assuming that (i) the inclusion is trigonal
with no symmetry-breaking when the strain is obtained from Raman
measurements, and (ii) the host and inclusion are completely isotropic
for the calculation of the entrapment conditions. These results imply
that significant errors result from the application of fully isotropic cal-
culations to anisotropic host-inclusion systems (see Table 3). Further-
more, the magnitudes of these errors are dependent on the entrapment
conditions and RCO.

4.4. Recalculation of apparent entrapment conditions: anisotropic model

In the anisotropic elastic model, the inverse relaxation tensor was
calculated for a given orientation (Table S1) and applied to the trigonal
symmetry relaxed strains to determine the unrelaxed strain tensor
(Mazzucchelli et al., 2019). The unrelaxed strain tensor was then used
in EoSFit7c (Angel et al., 2014a) to calculate the axial isomekes (i.e.
curves in P-T space along the crystallographic directions where no
strain gradients are developed) of the quartz inclusion using the
method of (Alvaro et al., 2020) but extended to lower symmetry host-
inclusion systems. This calculation provides the axial isomekes of the
quartz inclusion for the directions of quartz parallel to the three crystal-
lographic axes of the zircon host. The entrapment conditions are inter-
preted as the intersection point of the axial isomekes. As expected, this
was verified for each of the three entrapment conditions when the full
symmetry broken strain tensor was input to calculate the axial
isomekes, meaning that our calculations are internally consistent (see
Fig. 4). On the other hand, when the strains from the trigonal quartz
Grüneisen tensors are used, the three axial isomekes do not intersect at
a single P-T point. This happens because application of the trigonal
Grüneisen tensor yields incorrect inclusion strains that conform to the
trigonal symmetry but are not to the actual triclinic strains. This result
implies that unique entrapment conditions cannot be calculated from
symmetry-broken inclusions unless the full symmetry-broken strain
tensor is known. Despite this, the results in Fig. 4 show that the average
of the three axial isomekes still nearly intersects the original entrap-
ment conditions. Indeed, from the trigonal Grüneisen tensor strains us-
ing the 128, 464, and 695 cm−1 bands, the calculated entrapment con-
ditions are 2.176 GPa, 0.602 GPa, and 2.966 GPa, giving discrepancies
on Ptrap of 0.024 GPa, −0.002 GPa, and 0.034 GPa (Table 3). These dis-
crepancies demonstrate that the error in the individual axial isomekes
and their failure to intersect at one unique PT point results solely from
the use of the trigonal quartz phonon mode Grüneisen tensor because
all other parts of the calculations are equivalent.

These results suggest that we can still use the trigonal quartz
phonon-mode Grüneisen tensor to calculate the entrapment conditions
using the anisotropic elastic model. However, in this case an external
constraint on either pressure or temperature is still required to deter-

Fig. 4. Axial and volume isomekes calculated for the various sets of entrapment conditions and selected quartz phonon-mode combinations. Figures a-c show the
results from the true symmetry-broken strains. Figures d-f show the results from the trigonal strains calculated using the trigonal Grüneisen phonon-mode tensor
for the 128, 464 and 695 cm−1 modes. The cross in each panel represents the entrapment conditions used for the simulation. Axial isomekes are drawn for the di-
rections of the a,b, and c-axes of the zircon host and their corresponding directions in the quartz inclusion, and their average (black solid line) is labelled ‘avg’.
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mine the unique entrapment conditions. It is important to note that de-
spite the requirement of an external constraint, this approach yields a
smaller error than the use of an isotropic elastic model. Because these
errors are relatively small and substantially less than those produced by
the errors on measured Raman peak positions, we conclude that the
trigonal quartz phonon mode Grüneisen tensor can be used to calculate
the strains from slightly symmetry broken quartz inclusions contained
in zircon hosts without introducing major uncertainties in the inferred
entrapment pressures.

5. Conclusions

We have reported the first study on symmetry breaking strains in
quartz by HF/DFT. Ab initio simulations allowed us to avoid the diffi-
culties that would arise if we tried to apply deviatoric stress to quartz
experimentally and measure the Raman modes (e.g. Briggs and
Ramdas, 1977). These HF/DFT simulations have shown that the
changes in the positions of the Raman modes for strains that are ex-
pected for real quartz inclusions in zircon are similar to those that
would be seen if the quartz inclusions remained truly trigonal in sym-
metry. But, because the Raman bands of the inclusions do not shift as
they would under hydrostatic pressure, the use of the positions of single
bands and a hydrostatic calibration leads to incorrect pressure esti-
mates for entrapment of quartz inclusions in zircon.

Very large symmetry-breaking strains can generate a broadening or
even a splitting of the Raman modes (see Fig. 2) coming from the par-
ent E modes, and therefore particular attention should be paid to these
modes when studying quartz in zircon host-inclusion systems. If no
broadening or splitting of the Raman modes is observed, our results
show that, even when the inclusion is subjected to symmetry-breaking
strains, the measured Raman modes of quartz can be used to calculate
the average inclusion pressures with small errors.

These inclusion pressures yield entrapment isomekes with the
isotropic model that pass within 0.185 GPa of the true entrapment pres-
sures. The inclusion strains calculated via the trigonal phonon-mode
Grüneisen tensors are not correct, as would be expected, so the axial
isomekes calculated from them often do not intersect as would be re-
quired to define the P and T of entrapment (Alvaro et al., 2020). How-
ever, the average of the axial isomeke pressures result in better esti-
mates, within 0.034 GPa of the true entrapment pressures. Therefore,
the use of the trigonal phonon-mode Grüneisen tensor to interpret Ra-
man spectra of quartz inclusions in zircon does not introduce geologi-
cally significant errors in calculated entrapment pressures within the
stability field of α-quartz provided the anisotropic analysis is followed.
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