
Even Orientations of Graphs

M. Abreu
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Abstract

A graph G is 1-extendible if every edge belongs to at least one 1-factor of G. Let
G be a graph with a 1-factor F . Then an even F -orientation of G is an orientation in
which each F -alternating cycle has exactly an even number of edges directed in the
same fixed direction around the cycle. In this paper, we examine the structure of
1-extendible graphs G which have no even F -orientation where F is a fixed 1-factor
of G. In the case of graphs of connectivity at least four and k-regular graphs for
k ≥ 3 we give a complete characterization.

1 Introduction

All graphs considered are finite and simple (without loops or multiple edges). We shall
use the term multigraph when multiple edges are permitted. Most of our terminology is
standard and can be found in many textbooks such as [2], [10] and [19].

Let G be a graph with vertex set V (G) and edge set E(G) and denote by (u, v) an

edge with end-vertices u and v in G. An orientation ~G of G is an assignment of a direction
to each edge of G.

A 1-factor F of G is said to induce a 1-factor of a subgraph H of G if E(H) ∩ E(F )
is a 1-factor of H. Note that we will often identify F with E(F ).
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Let F be a 1-factor of G. Then a cycle C is said to be F -alternating if |E(C)| =
2|E(F )∩E(C)|. In particular, each F -alternating cycle has an even number of edges. An

F -alternating cycle C in an orientation ~G of G is evenly (oddly) oriented if for either choice
of direction of traversal around C, the number of edges of C directed in the direction of
traversal is even (odd). Since C is even, this is clearly independent of the initial choice

of direction around C. Let ~G be an orientation of G and F be a 1-factor of G. If every
F -alternating cycle is evenly oriented then ~G is said to be an even F -orientation of G.
On the other hand, if every F -alternating cycle is oddly oriented then ~G is said to be an
odd F -orientation of G.

An F -orientation ~G of a graph G is Pfaffian if it is odd. It turns out that if ~G is a
Pfaffian F -orientation then ~G is a Pfaffian F ∗-orientation for all 1-factors F ∗ of G (cf.[10,
Theorem 8.3.2 (3)]). In this case we simply say that G is Pfaffian. It is well known that
every planar graph is Pfaffian and that the smallest non-Pfaffian graph is the complete
bipartite graph K3,3. The Petersen graph is a further example of a non-Pfaffian graph
(cf. Lemma 2.7).

The literature on Pfaffian graph is extensive and the results often profound (see [17] for
a complete survey). In particular, the problem of characterizing Pfaffian bipartite graphs
was posed by Pólya [15]. Little [8] obtained the first such characterization in terms of a
family of forbidden subgraphs. Unfortunately, his characterization does not give rise to a
polynomial algorithm for determining whether a given bipartite graph is Pfaffian, or for
calculating the permanent of its adjacency matrix when it is. Such a characterization was
subsequently obtained independently by McCuaig [12, 13], and Robertson, Seymour and
Thomas [16]. As a special case their result gives a polynomial algorithm, and hence a
good characterization, for determining when a balanced bipartite graph G with adjacency
matrix A is det-extremal i.e. it has |det(A)| = per(A). For a structural characterization
of det-extremal cubic bipartite graphs the reader may also refer to [18], [11], [13] and [6].

The problem of characterizing Pfaffian general graphs seems much harder. Neverthe-
less, there have been found some very interesting connections in terms of bricks and near
bipartite graphs (cf. e.g. [7], [10], [14], [17], [20]).

A graph G is said to be 1-extendible if each edge of G is contained in at least one
1-factor of G. A subgraph J of a graph G is central if G− V (J) has a 1-factor.

A 1-extendible non-bipartite graph G is said to be near bipartite if there exist edges
e1 and e2 such that G\{e1, e2} is 1-extendible and bipartite.

The Pfaffian property which holds for odd F -orientations does not hold for even F -
orientations. Indeed, the Wagner graph W is Pfaffian, so there is an odd orientation for
each 1-factor. On the other hand, it has an even F1-orientation and no even F2-orientation
where F1 and F2 are chosen 1-factors of W (cf. Lemma 2.5).

Since little is known about even F -orientations, the purpose of this paper is to achieve
results helpful in this context. In particular, we examine the structure of 1-extendible
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graphs G which have no even F -orientation where F is a fixed 1-factor of G (cf. Theorem
3.8(i)). In the case of graphs of connectivity at least four and of k-regular graphs for
k ≥ 3 we give a characterization (cf. Theorem 3.8 points (ii) and (iii)).

2 Preliminaries

In order to state our results we need some preliminary definitions and properties.

We denote by P (u, v) a uv-path (u := u0, u1, . . . , un =: v) and by P (v, u) a vu-path
(v := un, un−1, . . . , u1, u0 =: u). Suppose that u, v and w are distinct vertices ofG and that
P (u, v) is a uv-path and Q(v, w) is a vw-path such that V (P (u, v)) ∩ V (Q(v, w)) = {v}.
Then P (u, v)Q(v, w) denotes the uw-path formed by the concatenation of these paths.

Definition 2.1 Let ~G be an orientation of G. We define a (0, 1)-function ω := ω ~G on
the set of paths and cycles of G as follows:

(i) For any path P := P (u, v) = (u0, . . . , un)

ω(P ) := |{i : [ui, ui+1] ∈ E(~G), 0 ≤ i ≤ n− 1}| (mod 2)

Note that ω(P (u, v)) ≡ ω(P (v, u)) + n(mod 2);

(ii) For any cycle C = (u1, . . . , un, u1)

ω(C) := |{i : [ui, ui+1] ∈ E(~G), 0 ≤ i ≤ n− 1}| (mod 2)

where the suffixes are integers taken modulo n.

We say that ω is the orientation function associated with ~G.

In other words, for each path P (or cycle C), ω(P ) (or ω(C)) is the parity of the

number of edges oriented consistently with ~G.

As we have already noted, if n is even then ω(C) is independent of any cyclic rotation
of the vertices of G. This is not the case when n is odd and so we have a slight abuse
of notation in this case. Note also that when n is even, C is evenly oriented or oddly
oriented if ω(C) = 0 or ω(C) = 1 respectively.

Suppose that ~G is an even (resp. odd) F -orientation of G where F is a fixed 1-factor

of G. Then the orientation function ω associated with ~G is said to be an even F -function
(resp. odd F -function).

Observe that when C is considered as a concatenation of paths, e.g.

C = (P1(u1, u2)P2(u2, u3), . . . , Pn(un, u1))
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then

ω(C) =
n∑

i=1

(Pi(ui, ui+1)) (mod 2)

.

Definition 2.2 Let G be a graph with a 1-factor F . Suppose that A := {C1, . . . , Ck}
is a set of F -alternating cycles such that each edge of G is contained in exactly an even
number of elements of A. Then A is said to be a zero-sum F -set.

We say that the zero-sum F -set is respectively an even F -set or an odd F -set if k is
even or odd.

The following lemma and its corollary are very useful to our purpose.

Lemma 2.3 [1] Let G be a graph with a 1-factor F and an odd zero-sum F -set C:=
{C1, . . . , Ck}. Suppose that C1, . . . , Ck1 are oddly oriented and Ck1+1, . . . , Ck are evenly

F -oriented in an orientation ~G of G. Let k2 := k − k1 and 0 ≤ ki ≤ k (i = 1, 2). Then,
G cannot have an even F -orientation or an odd F -orientation if either k1 or k2 is odd,
respectively.

Corollary 2.4 [1] Let G be a graph with a 1-factor F and an odd F -set. Then G cannot
have both an odd F -orientation and an even F -orientation.

The Wagner graph W is the cubic graph having vertex set V (W ) = {1, . . . , 8}
and edge set E(W ) consisting of the edges of the cycle C = (1, . . . , 8) and the chords
{(1, 5), (2, 6), (3, 7), (4, 8)}, see Figure 1.

Let C1 and C2 be cycles of G such that both include the pair of distinct independent
edges e = (u1, u2) and f = (v1, v2). We say that e and f are skew relative to C1 and

Figure 1: The Wagner Graph W
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C2 if the sequence (u1, u2, v1, v2) occurs as a subsequence in exactly one of these cycles.
Equivalently, we may write, without loss of generality, C1 := (u1, u2, . . . , v1, v2, . . .) and
C2 := (u1, u2, . . . , v2, v1, . . .) i.e. if the cycles C1 and C2 are regarded as directed cycles,
the orientation of the pair of edges e and f occur differently.

Lemma 2.5 Let F1 := {(1, 5), (2, 6), (3, 7), (4, 8)} and F2 := {(1, 2), (3, 4), (5, 6), (7, 8)}
be 1-factors of the Wagner graph W . Set e := (1, 8) and f := (4, 5). Then the Wagner
graph W satisfies the following:

(i) W is 1-extendible.

(ii) W − {e, f} is bipartite and 1-extendible (i.e. W is near bipartite).

(iii) W has an even F1-orientation and an odd F1-orientation.

(iv) W is Pfaffian.

(v) W has no even F2-orientation.

(vi) There exists no pair of F1-alternating cycles relative to which e and f are skew.

(vii) The edges e and f are skew relative to the F2-alternating cycles C1 = (1, . . . , 8) and
C2 = (1, 2, 6, 5, 4, 3, 7, 8).

Proof. (i), (ii) and (vii) are easy to check.

(iii) The F1-alternating cycles are C1 = (1, 2, 6, 5), C2 = (2, 3, 7, 6), C3 = (3, 4, 8, 7)

and C4 = (4, 5, 1, 8). It is easy to check that the orientation ~W :

E( ~W ) := {[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 1], [2, 6], [1, 5], [3, 7], [4, 8]}

is an even F1-orientation and that the orientation ~W

E( ~W ) := {[2, 1], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [1, 8], [2, 6], [7, 3], [4, 8], [1, 5]}

is an odd F1-orientation.

(iv) As we already remarked in the introduction if W has an odd F1-orientation then
W has an odd F -orientation for every 1-factor F of G. Hence, from (iii) W is Pfaffian.

(v) The F2-alternating cycles are:

C1 = (1, 2, 3, 4, 5, 6, 7, 8) , C2 = (1, 2, 6, 5, 4, 3, 7, 8)

C3 = (1, 2, 3, 4, 8, 7, 6, 5) , C4 = (3, 4, 8, 7) , C5 = (1, 2, 6, 5)
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It is easy to check that {C1, C2, C3, C4, C5} is an odd F2-set and that ~W where

E( ~W ) = {[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [1, 8], [5, 1], [2, 6], [7, 3], [4, 8]}

is an odd F2-orientation. Hence, from Corollary 2.4, W has no even F2-orientation.

(vi) There is only one F1-alternating cycle, namely (4, 5, 1, 8), which contains both e
and f . 2

Definition 2.6 Let G be a bipartite graph with bipartition (X, Y ). Set X :=
{x1, x2, . . . , xn} and Y := {y1, y2, . . . , yn}. Let F := {(xi, yi) | i = 1, 2, . . . , n} be a 1-

factor of G. Let ~G be the orientation of G defined by:

E(~G) = {[xi, yi] | i = 1, 2, . . . , n} ∪ {[y, x] | (y, x) ∈ E(G) \ F, x ∈ X, y ∈ Y }

~G is said to be the canonical F -orientation of G. Clearly ~G is an even F -orientation.

Note that if G is a bipartite graph containing a 1-factor then G has an even orientation:
the canonical orientation. In this direction, the following results were shown by Carvalho,
Lucchesi and Murty:

Lemma 2.7 [4] The Petersen graph P has an even F -orientation for each
1-factor F of P, but has no odd F0-orientation, where F0 is the prismatic 1-factor. Hence
P is non-Pfaffian.

Lemma 2.8 [4] The complete bipartite graph K3,3 has an even F -orientation but no odd
F -orientation, where F is as in Defition (2.6). Hence, K3,3 is non-Pfaffian.

3 Main Results

As we have already said in the Introduction, since little is known about even F -
orientations, the purpose of this paper is to achieve helpful results in this context. Recall
that if G is a bipartite graph containing a 1-factor then G has an even orientation: the
canonical orientation. We ask when graphs, not necessarily bipartite, have an even orien-
tation. In particular, we examine the structure of 1-extendible graphs G which have no
even F -orientation where F is a fixed 1-factor of G. (cf. Theorem 3.8).

However, before stating our main theorems, again, we need some additional notation.

Definition 3.1 Let G be a graph and H ≤ G. If G has a 1-factor F and G\V (H) has a
1-factor which is 1-extendible to F we say that H is F -central.
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Definition 3.2 An even subdivision of a graph G is any graph G∗ which can be obtained
from G by replacing edges (u, v) of G by paths P (u, v) of odd length such that V (P (u, v))∩
V (G) = {u, v}.

Note that, if F is a 1-factor of G then F induces, in a obvious way, a 1-factor F ∗ of
G∗ and conversely. For brevity, we will often blur the distinction between F and F ∗.

Definition 3.3 A graph G is said to be a generalized Wagner graph if

(i) G is 1-extendible;

(ii) G has a subset R := {e, f} of edges such that G−R is 1-extendible and bipartite.

(iii) G−R has a 1-factor F and F -alternating cycles C1 and C2 relative to which e and
f are skew.

The set of such graphs is denoted by W. We define a W-factor of G ∈ W, a 1-factor of
G satisfying Definition 3.3(iii).

Remark 3.4 (a) For example in Lemma 2.5, the Wagner graph W ∈ W and F1 is not
a W-factor of W but F2 is. Incidentally, it is easy to prove that if G is a cubic graph
belonging to W with at most eight vertices then G is isomorphic to the Wagner graph.
Thus the Wagner graph is the smallest graph in W.

(b) If we say that G ∈ W we will often assume the notation of Definition 3.3 i.e. that
F is a W-factor of G and R, C1 and C2 are as described in Definition 3.3(ii) and (iii)
respectively.

(c) It is easy to see that Definition 3.3 implies that if G ∈ W then G is near bipartite.
In particular, G is non-bipartite by Definition 3.3(iii).

Remark 3.5 Let G ∈ W. We use the notation of Definition 3.2 with G∗ and F ∗ as
defined therein. It is easy to prove that G∗ ∈ W and that F ∗ is a W-factor of G∗. The
converse of this statement is also clearly true.

Definition 3.6 Let n ≥ 2 be an integer. LetW(≤ n) denote the subset ofW consisting of
graphs G with maximum degree n. Moreover, we define W(n) to be the subset of W(≤ n)
consisting of the graphs G ∈ W(≤ n) such that either

(i) G is regular of degree n;

or

(ii) G is an even subdivision of such a graph (i).
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Definition 3.7 Suppose that G ∈ W(3). Then G ∈ W∗(3) if G is cubic and contains no
proper central subgraph H such that H is an even subdivision of some element of W(3).

Then, using this notation our main results are:

Theorem 3.8 Let G be a 1-extendible graph containing a 1-factor F .

(i) Suppose that G has no even F -orientation, then G contains an F -central subgraph
H ∈ W and F is a W-factor of H.

(ii) Let G ∈ W such that κ(G) ≥ 4, then G has no even F -orientation for some
W-factor F of G.

(iii) Let G ∈ W k-regular (k ≥ 3), then G has no even F -orientation for some W-
factor F of G.

Theorem 3.9 Let G ∈ W. Suppose that G is a proper subgraph of some element of
W∗(3). Then G is F -even.

The proof of Theorem 3.8 is unfortunately very long. We begin by proving Theorem
3.8(i). In section 4 we discuss the structure of 1-extendible graphs (see [10]). In Sections 5
and 6 the structure of a possible minimal counterexample to Theorem 3.8(i) is examined.
Then in Section 7 the proof of Theorem 3.8(i) is completed. In Section 9 we prove Theorem
3.8(ii) and (iii). Finally in Section 10 we prove Theorem 3.9.

Figure 2: G /∈ W

Remark 3.10 Note that the graph G in Figure 2 satisfies the conditions of Theorem
3.8(i). Such a graph G contains an F -central subgraph H where F is a W-factor of H
and of course H ∈ W. However, G /∈ W.
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4 Structure of 1-extendible graphs

Let G be a 1-extendible graph A path of odd length in G whose internal vertices have
degree two is called an ear of G. An ear system is a set R = {P1, . . . , Pn} of vertex disjoint
ears of G. Suppose that G has such an ear system. Then G − R is the graph obtained
from G by deleting all edges and the internal vertices of the constituent paths of R.

R is said to be removable if (i) G − R is 1-extendible and (ii) there exists no proper
subset R′ of R such that G−R′ is 1-extendible.

Definition 4.1 (cf. [10], [3]) Let G be a 1-extendible graph. An ear decomposition of G
is a sequence D =(G1, . . ., Gr) of 1-extendible graphs Gi such that

(i) G1 = K2, Gr = G;

(ii) Gi−1 = Gi −Ri, for 2 ≤ i ≤ r, where Ri is a removable ear system.

Theorem 4.2 [10, Theorem 5.4.6] Let G be a 1-extendible graph and D =(G1, . . ., Gr)
be an ear decomposition of G with Gi−1 = Gi−Ri, for 2 ≤ i ≤ r, where Ri is a removable
ear system. Then, for each i, Ri has at most two ears. 2

We say that an ear system of size 1, size 2 is respectively a single, double ear. If
R = {P} is a removable single ear and P has length one with E(P ) = {e}, then e is said
to be a removable edge. If R = {P1, P2} is a removable double ear and Pi has length one,
E(Pi) = {ei}, i = 1, 2, then {e1, e2} is said to be a removable doubleton.

Definition 4.3 Let F be a 1-factor of a 1-extendible graph G. Let D =(G1, . . ., Gr) be
an ear decomposition of G such that Fi := E(F )∩E(Gi) is a 1-factor of Gi, i = 1, . . . , r.
Then D is said to be an F -reducible ear decomposition.

Proposition 4.4 Let F be a 1-factor of a 1-extendible graph G. Then there exists an
F -reducible ear decomposition D =(G1, . . ., Gr) of G with Gi−1 = Gi − Ri, where Ri is
either a removable single ear or a removable double ear, i = 2, . . . , r.

Proof. We may assume that G is connected. D is constructed inductively.

Let G1 = K2 where E(K2) ⊆ E(F ). Now suppose that for a fixed k, 2 ≤ k ≤ r, there
exists a sequence Dk= (G1, . . ., Gk) of subgraphs Gi of G such that, for 2 ≤ i ≤ k,

(i) Gi−1 = Gi −Ri, where Ri is a removable ear system.

(ii) Fi is a 1-factor of Gi where E(Fi) = E(F ) ∩ E(Gi).
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Suppose that Gk 6= G. Select, if possible, e to be an edge of G which has exactly one
end-vertex in Gk. Since G is 1-extendible there exists a 1-factor M of G which contains e.
Adjoin to Gk the set R′k+1 of paths contained in (M\E(Gk))∪(F\Fk). there exists at least
one such path: the path containing e. Set G′k+1 :=

⋃
R′k+1. Then G′k+1 is 1-extendible

since F ∩E(G′k+1) and M ∩E(G′k+1) are both 1-factors of G′k+1. Now choose Rk+1 ⊆ R′k+1

so that Rk+1 is removable. Again Fk+1 := E(F ) ∩ E(Gk+1) is a 1-factor of Gk+1. Thus,
by induction, D =(G1, . . ., Gr) is an ear decomposition of G with Gi−1 = Gi −Ri, where
Ri is a removable ear system, for i = 2, . . . , r. Hence, from Theorem 4.2, Ri has at most
two ears. Finally if e cannot be chosen with exactly one end in Gk then choose it so that
e has both ends in Gk, and the proof then continues exactly as in the former case. 2

Definition 4.5 (i) Let G be a graph and X ⊆ V (G). Let ∆(X) denote the set of edges
with one end in X and the other in V (G)\X. A cut in G is any set of the form ∆(X)
for some X ⊆ V (G).

(i) Suppose that G contains a 1-factor F . A cut ∆(X) is F -tight if |∆(X) ∩ F | = 1.
A cut is tight if it is F -tight for all 1-factors F of G. Let G be a graph G with a 1-factor
and v ∈ V (G), then every cut ∆({v}) in G is tight. These tight cuts are called trivial
while all the other tight cuts are called non-trivial.

(ii) Let ∆(X) be a non-trivial F -tight cut in a graph G where F is a 1-factor of G.
Let G1 and G2 be obtained from G by identifying respectively all the vertices in X and
all the vertices in X̄ := V (G)\X into a single vertex and deleting all resulting parallel
edges. We say that G1 and G2 are the shores of ∆(X). We denote by Fi the 1-factor of
Gi induced by F (i=1,2).

We now describe the Lovász [9] decomposition of 1-extendible graphs (cf. also [3]).
Trivially we have:

Lemma 4.6 [10],[3] Let ∆(X), X ⊆ V (G) be a cut in a 1-extendible graph G. Then

(i) if F is a 1-factor of G, F induces a 1-factor of both of the shores of ∆(X);

(ii) if ∆(X) is a tight cut then both of the shores of ∆(X) are 1-extendible. 2

Definition 4.7 A brace (respectively a brick) is a connected bipartite (respectively a con-
nected non-bipartite) 1-extendible graph that has no non-trivial tight cuts.

A Petersen brick is a multigraph whose undelying simple graph is the Petersen graph.

Definition 4.8 A graph G is bicritical if G contains at least one edge and G− u− v has
a 1-factor for every pair of distinct vertices u and v in G.
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Lemma 4.9 [5] Let G be a non-bipartite graph with at least four vertices. Then G is a
brick if and only if G is 3-connected and bicritical. 2

Let G be a 1-extendible graph with a non-trivial tight cut then, from Lemma 4.6, its
two shores G1 and G2 are 1-extendible and both are smaller than G. If either G1 or G2

has a non-trivial tight cut this procedure can be repeated. The procedure can be repeated
until a list of graphs which are either bricks or braces is obtained. This is known as the
tight cut decomposition procedure.

Lemma 4.10 [9], [3] Any two applications of the tight cut decomposition procedure yields
the same list of bricks and braces, except for multiplicities of edges. 2

Lemma 4.11 [9], [3] Let G be a brick. If R is a removable doubleton then G − R is
bipartite. 2

Recall that Tutte’s 1-factor theorem states that a graph G has a 1-factor if and only
if c0(G − S) ≤ |S| for every subset S of V (G), where c0(G − S) denotes the number of
odd components of G − S (cf. e.g. [2]). A set S ⊆ V (G) is said to be a barrier of G if
c0(G− S) > |S|. The empty set and singletons are said to be trivial barriers.

Lemma 4.12 [3, Theorem 1.5, Corollary 1.6]

(i) Let G be a connected graph which contains a 1-factor. Then G is 1-extendible if
and only if, for every non-empty barrier B of G, G−B has no even components and no
edge has both ends in B.

(ii) Every connected 1-extendible graph is 2-connected. 2

Definition 4.13 (i) Suppose that B is a non-trivial barrier in a connected graph G.
Suppose that H is a non-trivial odd component of G−B. Then ∆(V (H)) is said to
be a barrier cut.

(ii) Let {u, v} (u 6= v) be a non-trivial barrier, 2-separation of a connected graph G .
Let G := G1 ∪ G2 where G1 ∩ G2 =< u, v > (i.e. the subgraph of G induced by u
and v). Then ∆(V (Gi)− u), ∆(V (Gi)− v) are tight cuts. Such cuts are said to be
2-separation cuts (G− {u, v} has exactly 2 components).

Lemma 4.14 [5], [3, Theorem 1.12] Suppose that G is a connected 1-extendible graph
which contains a non-trivial tight cut. Then G has either a non-trivial barrier cut or a
2-separation cut. 2

11



5 The structure of minimal counterexamples to

Theorem 3.8(i)

Let G0 be such that

(i) G0 is a 1-extendible graph.

(ii) G0 has no even F -orientation for some 1-factor F of G0.

(iii) G0 contains no F -central subgraph H such that H ∈ W .

(iv) G0 is as small as possible subject to (i), (ii) and (iii).

Then, if G0 exists, it is a smallest counterexample to Theorem 3.8.

Lemma 5.1 Let G0 be a smallest counterexample to Theorem 3.8. Then G0 is a non-
bipartite graph and it is either 3-connected or each 2-separation is a barrier.

Proof. G0 is non-bipartite since otherwise G0 has the canonical even F -orientation (see
Definition 2.6).

By minimality G0 is connected and, from Lemma 4.12(ii), G0 is 2-connected.

Assume that G0 has a 2-separation {u, v} which is not a barrier. Write G0 := G1∪G2

where G1∩G2 := {u, v}. Notice that, by definition, |V (G1)| = |V (G2)| ≡ 0 (mod 2), and
that G1 and G2 are both 1-extendible.

Let f1 and f2 be the edges of F incident with u and v respectively. There are two
cases to consider:

Case (i): f1 = f2.

Let Fi := F ∩ E(Gi). Then Fi is a 1-factor of Gi (i = 1, 2). For i = 1, 2 assume that

Gi has an even Fi-orientation ~Gi with associated even functions ωi := ω ~Gi
. We choose

~Gi so that ω1(u, v) = ω2(u, v): this is possible since, if necessary, one can reverse all the

orientations in, say, ~G1. Since {u, v} is a 2-separation, ~G1 and ~G2 together induce an even
F -orientation of G0 with associated even function ω1∪ω2. This contradicts the definition
of G0.

Hence, without loss of generality, we may assume that G1 has no even F1-orientation.
By the minimality of G0, G1 has an F1-central subgraph H such that H ∈ W . Then, it
follows that H is an F -central subgraph of G0 such that H ∈ W . Again a contradiction
by the minimality of G0.

Case (ii): f1 6= f2.
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Without loss of generality, we may assume that f1, f2 ∈ E(G1). Set

G∗i :=

{
Gi if (u, v) ∈ E(G0)

Gi + (u, v) if (u, v) /∈ E(G0)
, i = 1, 2 .

Then, again, since G0 is 1-extendible and {u, v} is a 2-separation, G∗i is 1-extendible
(i = 1, 2).

Set F1 := F ∩ E(G1) and F2 := F ∩ E(G2) ∪ {(u, v)}. Now assume that G∗i has an

even Fi-orientation ~G∗i with associated even function ωi (i = 1, 2). Reversing orientations
as in Case (i), if necessary, we may assume that ω1(u, v) = 1 and ω2(u, v) = 0.

Suppose that C is any F -alternating cycle of G0 such that C is not contained in G∗i
(i = 1, 2). Then u and v are both vertices of C since {u, v} is a 2-separation. Hence

C := (P1(u, v), P2(v, u)) ,

where Pi is an Fi-alternating path in Gi (i = 1, 2).

Again C induces Fi-alternating cycles Ci in G∗i where

C1 := (u, P1(u, v), v)

C2 := (v, P2(v, u), u)

and ωi(Ci) = 0, i = 1, 2. Hence, setting w := ω1 ∪ ω2,

ω(C) = ω1(P1(u, v)) + ω2(P2(v, u)) =

= (ω1(P1(u, v)) + ω1(v, u)) + (ω2(P2(v, u)) + ω2(u, v)) =

= ω1(C1) + ω2(C2) = 0.

On the other hand, if C is contained in G∗i , for some i, then ω(C) = ωi(C) = 0
(i = 1, 2). In all cases ω(C) = 0. Hence G0 has an even F -orientation which is not the
case.

Therefore, from cases (i) and (ii), we deduce that, for some i = 1, 2, G∗i has no even
Fi-orientation.

Firstly assume that G∗i has no even F1-orientation. Then, by minimality, G∗1 has an
F1-central subgraph H1 such that H1 ∈ W . Then, except in the case when (u, v) ∈ E(H1)
and (u, v) /∈ E(G0), H1 is an F -central subgraph of G0 such that H1 ∈ W . In the
exceptional case, we replace (u, v) ∈ E(H1) by an F2-alternating path P (u, v) in G2 to
obtain an even subdivision H∗1 of H1 such that H∗1 is an F ∗-central subgraph of G0 and
H∗1 ∈ W . Hence, using Definition 3.1 and Definition 3.2, again, in all cases minimality is
contradicted.

Finally assume that G∗1 has an even F1-orientation and G∗2 has no even F2-orientation.
The argument is almost identical as above but in the exceptional case when (u, v) is, by
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definition, in F2, and (u, v) /∈ E(G0). Now as above G∗2 has an F2-central subgraph H2

such that H2 ∈ W . We replace (u, v) in H2 by an F1-alternating path in G1 to obtain an
even subdivision H∗2 of H2 such that H∗2 is an F ∗-central subgraph of G0 (see Definition
3.2) and H∗2 ∈ W . Again minimality is contradicted.

Hence, if G0 is not 3-connected each 2-separation is a barrier. 2

In the next lemma and subsequently, we use the notation of Definition 3.1 and Defi-
nition 3.2. We need the following definition:

Definition 5.2 Let e0 ∈ E(G), we say that e ∈ E(G) is e0-bad if for all 1-factors L of
G that contain e, L contains e0. Thus e0 itself is e0-bad.

Lemma 5.3 Let G ∈ W and F be a W-factor of G. Then G contains an F -central
subgraph H such that H ∈ W(≤ 3). Moreover H is isomorphic to an even subdivision of
K4.

Proof. We may assume that G is connected. Suppose firstly that G ∈ W(3). Without
loss of generality G − {e, f} is bipartite, with vertex bipartition {X, Y } and e and f
are skew relative to F -alternating C1 and C2. Set e := (x1, x2) and f := (y1, y2) where
xi ∈ X, yi ∈ Y (i = 1, 2). Set

C1 = (x1, x2, P2(x2, y2), P1(y1, x1))

C2 = (x1, x2, Q2(x2, y1), Q1(y2, x1))

Then we may choose a1, a2 ∈ P1 and b1, b2 ∈ P2 such that Q1(b1, a1) and Q2(b2, a2)
are internally disjoint from C1. Notice that a2, b1 ∈ X and a1, b2 ∈ Y . Now if a1 < a2 in
P1(y1, x1) and b2 > b1 in P2(x2, y2) (or if a2 < a1 in P1(y1, x1) and b2 < b1 in P2(x2, y2))
then C1 ∪Q1(a1, b1)∪Q2(b2, a2) gives the required H. So now assume that these cases do
not arise.

Hence, without loss of generality, we may assume that a2 < a1 in P1(y1, x1) and b2 < b1
in P2(x2, y2) and furthermore that b1 and b2 are chosen so that

• b1 ∈ Q1(y2, x1) ∩ P2(y2, x2) and subject to this choice b1 is as large as possible in
Q1(y2, x1) and

• b2 ∈ Q2(x2, y1) ∩ P2(x2, y2) and subject to this choice b2 is as large as possible in
Q2(x2, y1).

Now choose y in P1(y1, x1) so that

(i) y ∈ Q1(y2, x1)
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(ii) if v > y in P1(y1, x1), v /∈ Q2(x2, y1)

(iii) from (i) and (ii), y is as small as possible in P1(y1, x1).

Then choose x ∈ Q2(x2, y1)∩P1(y1, x1) so that x < y in P1(y1, x1) and x is as large as
possible.

Note that by choice x ∈ X, y ∈ Y and P1(x, y) is internally disjoint from Q1 ∪ Q2.
Again P2(b1, b2) is internally disjoint from Q1 ∪Q2. Set

C∗1 := (x1, P2(x2, b2), Q2(b2, y1), P2(y2, b1), Q1(b1, x1)),

and this case is symmetric to the one already studied with C∗1 ,P1(x, y) and P2(b1, b2)
taking respectively the roles of C1, Q1(a1, b1) and Q2(b2, a2). Notice that now b2 < x in
Q2(b2, y1) and b1 < y in Q1(b1, x1), b1 ∈ X, b2 ∈ Y . This give the required H.

Assume now that G contains a vertex u with deg(u) ≥ 4. Since deg(u) ≥ 4 there
exists e0 := (u, v) ∈ E(G) such that e0 /∈ C1 ∪ C2 ∪ F . Since G is 1-extendible, e0 ∈ L0

for some 1-factor L0 of G.

Let H be the graph obtained from G by deleting all e0-bad edges. We show that
G∗ ∈ W and F ∗ is a W-factor of H (see Definition 3.1 and Definition 3.2).

Step 1: C1 ∪ C2 ⊆ H.

Let e ∈ E(C1 ∪ C2). If u ∈ V (C1 ∪ C2) then e is contained in a 1-factor L such that
e0 /∈ L. So now suppose that u /∈ V (C1∪C2). If e ∈ F , then e is not e0-bad, since e0 /∈ F .
Thus, w.l.o.g , we may assume that e ∈ E(C1) and e /∈ F . Let F0 be the 1-factor derived
from F by changing the “colours” of E(C1). Since u /∈ V (C1 ∪ C2), e0 ∈ F0, and e is not
e0-bad.

Step 2: H ∈ W .

Trivially C1 and C2 are skew relative to e and f in H since they are skew relative to
e and f in G. Furthermore, since C1 ∪ C2 ⊆ H, H − {e, f} is bipartite.

Suppose e ∈ E(H). Then e is not e0-bad and hence there exists a 1-factor L of G such
that e ∈ L and e0 /∈ L. This, in turn, implies that each edge of L is not e0-bad. Thus L
is a 1-factor of H. Hence H is 1-extendible. Thus H ∈ W , F ∗ is a W-factor of H and
degH(u) = degG(u)− 1.

The thesis follows on repetition, if necessary, of this argument. 2

Theorem 5.4 Let G0 be a minimal counterexamples to Theorem 3.8. Then G0 is 3-
connected.

Proof. Assume that G0 is not 3-connected. Then, from Lemma 5.1, G0 has a barrier
B = {u, v}, u 6= v. Let H1 and H2 be the odd components of G0−B. From Lemma 4.12,
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G0−B has no even components and (u, v) /∈ E(G0). Since G0 is non-bipartite at least one
of H1 and H2 is non-trivial. So assume that H1 is non-trivial and suppose that (u, x1),
(v, y1) ∈ E(F ), x1 ∈ V (H1), y1 ∈ V (H2). Write Xi := V (Hi), i = 1, 2. Let G1 and G2 be
the shores of ∆(Xi) (cf. Definition 4.5) where G1 is obtained by contracting the vertices
of V (G2)\X1 to a vertex x and G2 is obtained contracting the vertices of V (G0)\X2 to a
vertex y.

Set F1 := (F ∩ E(H1)) ∪ {(x, x1)} and F2 := (F ∩ E(H2)) ∪ {(y, y1)}. Clearly Fi is a
1-factor of Gi (i = 1, 2). From Lemma 4.6 both G1 and G2 are 1-extendible.

Since G0 has no even F -orientation for some i = 1, 2, Gi has no even Fi-orientation.
Indeed, suppose that Gi has an even orientation ~Gi with even Fi-orientation function ωi,
i = 1, 2. Set K1 := ∆(X) = {(xi, x) : i = 1, . . . , k1} and K2 := ∆(Y ) = {(yi, y) : i =
1, . . . , k2}. Moreover, suppose that C is an F -alternating cycle of G0 such that (x1, u)
and (y1, v) are edges of C. Then C := (P1(x1, xi), v, P2(y1, yj), u), 2 ≤ i ≤ k1, 2 ≤ j ≤ k2,
where Pi is and Fi-alternating path in Hi (i = 1, 2).

We define an F -alternating function ω for G0 as follows:

(i) if (a, b) ∈ E(Hi) then ω(a, b) = ωi(a, b), i = 1, 2;

(ii) for edges of E(G0)\E(H1) ∪ E(H2) define

(1) ω1(xi, x, x1) + ω2(y1, y, yj) := ω(x1, u, yj) + ω(y1, v, xi).

Then, by definition of C, and using (1):

(2) ω(C) = ω(P1(x1, xi)) + ω(xi, v, y1) + ω(P2(y1, yj)) + ω(yj, u, x1)

= ω1((P1(x1, xi)) + ω1(xi, x, x1) + ω2(P2(y1, yj)) + ω2(yj, y, y1)

= ω1(D1) + ω2(D2)

where Di is an Fi-alternating cycle in Gi. Hence ω(C) ≡ 0 (mod 2).

By (i) if C is an F -alternating cycle of G0 not containing (x1, u) or (y1, v) then ω(C) ≡
0 (mod 2).

This ends the proof that, since G0 has no even F -orientation for some i = 1, 2, Gi has
no even Fi-orientation.

Thus, we may assume that, say G1, has no even F1-orientation.

By the minimality of G0, G1 contains an F1-central subgraph H such that H ∈ W
and F1 is a W-factor of H. If x /∈ V (H) then G0 contains H and H is central in G0 and
F is a W-factor of H, thus contradicting the minimality of G0. Hence x ∈ V (H). By
Lemma 5.3, we may assume that 2 ≤ degH(x) ≤ 3.

Assume that degH(x) = 3 and (x, xi) ∈ E(H), i = 1, 2, 3. We may assume, without
loss of generality, that either

(i) (u, x1), (u, x2), (v, x3) ∈ E(G0)
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or
(ii) (u, x1), (v, x2), (v, x3) ∈ E(G0)

otherwise H again would contradict the minimality of G0.

We consider case (i). Let L be a 1-factor of G0 containing (v, x3). Now replace the edge
(x, x3) in H by the path P1(u, x3) contained in F ∪ L (disjoint from H1) to again obtain
a subgraph H∗ of G0 with the required properties. In case (ii), Let L be a 1-factor of G0

containing (v, x3). Now replace the edge (x, x3) in H by the path P2(v, x3) contained in
F ∪L (disjoint from H1) to again obtain a subgraph H∗ of G0 with the required properties.
Finally if degH(x) = 2 then the proof of the existence of H∗ is exactly the same as for
case (ii).

In all cases we have a contradiction with the minimality of G0. Hence G0 is 3-
connected. 2

Lemma 5.5 Suppose that G is a non-bipartite 1-extendible graph with a barrier cut B.
Let H1, H2, . . . , Hn (n ≥ 2) be the odd components of G−B. Suppose that G has no even
F -orientation where F is a 1-factor of G. Set Xi := V (Hi) and Gi to be the shore of δ(Xi)
obtained by contracting Xi to a vertex yi. Set δ(Xi) ∩ F := {ai, bi} where ai ∈ Xi. Set
Fi := (F ∩E(Hi))∪{ai, yi}. Then, for some i, 1 ≤ i ≤ n, Gi has no even Fi-orientation.

Proof. The proof follows by induction, using the argument obtained in the proof of
Theorem 5.4. 2

Theorem 5.6 Let G0 be a minimal counterexample to Theorem 3.8(i). Then G0 is a
non-Petersen brick.

Proof. By Lemma 2.7 G0 is not the Petersen graph. By Lemma 5.1 and Theorem 5.4,
G0 is 3-connected and not bipartite. Now suppose that G0 is not a brick. Then, by
definition, G0 has a non-trivial tight cut. Hence, by Lemma 4.14, G0 has a barrier cut.
So by Lemma 4.12 there exists a barrier B with odd components H1, . . ., Hn (n ≥ 2) of
G0−B such that there are no even components and E(B) = ∅. Since G0 is non-bipartite,
using Lemma 5.5 and also its notation, w.l.o.g. we assume that H1 is non-trivial and
that G1 has no even F1-orientation. Therefore, by minimality, G1 has a central subgraph
H such that F1 induced a 1-factor and H is an even subdivision of some graph in W.
As in the proof of Theorem 5.4, using Lemma 5.3, we may also assume that y1 ∈ V (H),
2 ≤ degH(y1) ≤ 3 and (y1, a1) ∈ E(H).

Firstly assume that degH(y1) = 3. Set NH := {x11, x12, x13} where x11 = a1. Set
gi := (x1i, bi) i = 1, 2, 3 where x11 = a1 and g1 ∈ F (recall that F is a 1-factor of G0).
Up to relabelling we may set B := {b1, . . . , bn}. Write G∗0 for the multigraph obtained
from G0 by contracting each Xi to a single vertex xi. Clearly G∗0 is a bipartite graph
having the 1-factor F ∗ := {(xi, bi)|i = 1, . . . , n} induced by F . Let Li be a 1-factor of G0
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which contains gi, where L1 ≡ F . Notice that, since B is a barrier cut, |Li ∩∆(Xi)| = 1,
i = 1, . . . , n; j = 1, 2, 3. Set g∗i := (x1, bi), i = 1, 2, 3. Then, Li induces naturally a
1-factor L∗i of G∗0 which contains g∗i , i = 1, 2, 3. Let Pj := Pj(bj, b1) be the bjb1-path in
L∗j ∪ F ∗ (with first edge in F ∗), j = 2, 3. Since b1 ∈ P2 ∩ P3, P2 ∩ P3 6= ∅. Now choose
u ∈ V (G∗0) as follows:

(i) u ∈ P2 ∩ P3;

(ii) V (P3(b3, u) ∩ P2) = {b1, u}, (possibly b1 = u).

By construction, u ∈ B and there exist three internally disjoint F ∗-alternating paths
Q∗j := Q∗j(u, bj), j = 1, 2, 3 in G∗0 each of which has even length. Then, in G0, we can
construct three internally disjoint F -alternating paths Qj := Qj(u, bj) from Q∗j , j = 1, 2, 3
as follows, suppose that R∗j := (y1, xi, y2) is the subpath of Q∗j containing xi for some i,
1 ≤ i ≤ n. We may assume that (y1, xi) ∈ F ∗ and (xi, y2) ∈ L∗j . Then there exist xi, and
xi2 in V (Hi) such that (y1, xi1) ∈ F and (xi2, yj) ∈ Lj. In Q∗j we replace R∗j by the path
(y1, R(xi, xi2), y2) where R is the xi1xi2-path contained in (F ∪Lj)∩E(Hi), j = 1, 2. Each
of the paths P ∗j if of even length. So in this way, by iteration, we obtain the required
paths Qj(u, bj), j = 1, 2, 3. It follows that the graph H0 defined by:

V (H0) = (V (H)\{y1}) ∪ {u} ,

E(H0) = E(H − y1) ∪Q1 ∪Q2 ∪Q3 ,

is a central subgraph of G0 such that F induces a 1-factor of H0 and H0 ∈ W .

We have assumed, for the sake of clarity, that if B∗ = {b1, b2, b3} then |B∗| = 3.
There is nothing to prove if |B∗| = 1 since H is already contained in G0. If |B∗| = 2 the
argument is contained in the case |B∗| = 3.

We observe that in all cases H0 is contained in G0 which contradicts the minimality
of G0. Hence G0 is a non-Petersen brick. 2

In the next theorem we use the notation of Definition 4.1 and 4.3:

Theorem 5.7 Let G0 be a minimal counterexample to Theorem 3.8(i). Then G0 has an
F -reducible ear decomposition D =(G1, . . . , Gn), (n ≥ 2; G0 = Gn), such that Gi has an
even Fi-orientation (i = 1, . . . , n− 1) and either:

(i) Gn−1 = G0 −R, where R = {e} is a removable edge

or

(ii) Gn−1 = G0 −R, where R = {e1, e} is a removable doubleton and Gn−1 is bipartite.
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Proof. From Proposition 4.4 G0 has an F -reducible ear decomposition D = (G1,. . ., Gn)
with Gn = G0 and Gi−1 = Gi−Ri where Ri is either a removable single ear or a removable
double ear. Recall that Fi = F ∩ E(Gi). trivially G1 (= K2) has an even F1-orientation.
Choose i, 1 ≤ i ≤ n, as large as possible, so that Gi has an even Fi-orientation. By
the minimality of G0, i = n − 1. Since G0 is a brick (see Theorem 5.6), G0 is bicritical
(cf. Lemma 4.9). Hence, R is either a removable edge or a removable doubleton. From
Lemma 4.11, since G0 is a brick, if R is a removable doubleton then Gn−1 = G0 −R and
Gn−1 is bipartite. 2

Remark 5.8 In the next section, we get rid of case (i) of Theorem 5.7. Then we will be
very close to proving the main Theorem 3.8(i).

6 Theorem 5.7, Case (i)

We assume throughout this section that G0 is a minimal counterexample to Theorem 3.8(i)
and that G0 has an F -reducible ear decomposition D = (G1,. . .,Gn), (n ≥ 2, G0 = Gn)
such that Gi has an even Fi-orientation (i = 1, . . . , n − 1) and G∗ := Gn−1 = G0 − R
where R = {e} is a removable edge, i.e. we assume that Case (i) of Theorem 5.7 is true.

We now examine the structure of G0 in even more detail and via a series of lemmas
derive a contradiction. Our proof imitates the proof of [8, Theorem 1].

Let ~G∗ be an even F -orientation of G∗ with associated even F -function ω and let
e := (u, v).

Lemma 6.1 There exist F -alternating paths Q1 := Q1(u, v), Q2 := Q2(u, v) in G∗ such
that ω(Q1)6= ω(Q2). Moreover, the first and last edges of Qi (i = 1, 2) belong to F .

Proof. Since ~G∗ is an even F -orientation if no such paths Q1 and Q2 exist, a suitable
orientation of e would yield an even F -orientation of G0.

Since e /∈ F , the first and last edges of Qi (i = 1, 2) must belong to F . 2

Lemma 6.2 The F -alternating paths Q1 and Q2 may be chosen in Lemma 6.1 so that
there exist x0, y0 ∈ V (Q1) ∩ V (Q2) such that

(i) x0 < y0 in Qi (i = 1, 2).

(ii) There exist paths Ri := Ri(x0, y0) (i = 1, 2) such that R1 and R2 are respectively
equal to Q1\Q2and Q2\Q1 (abusing notation slightly). The first and the last edges
of Ri do not belong to F (i = 1, 2).
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(iii) ω(R1) = 1, ω(R2) = 0;

(iv) subject to (i), (ii) and (iii), |E(Q1(u, x0)|+ |E(Q1(y0, v)| is a maximum.

(v) Q2(u, v) = Q1(u, x0)R2(x0, y0)Q1(y0, v).

Proof. Choose Q1 and Q2 as above and write Q1 :=Q1(a0,. . .,ak) and Q2 :=Q2(b0,. . .,bl),
where u = a0 = b0, v = ak = bl. Let x be the smallest integer such that ax 6= bx. Since
the first and the last edges of Qi belong to F , x ≥ 2 and x ≤ l − 2, x ≤ k − 2. Now
choose Q1 and Q2 so that x is maximized. Let by be the first vertex of Q2(bx, v) in V (Q1).
By definition y > x. Set R1 := Q1(ax−1, by), R2 := Q2(ax−1, by), x0 := ax−1, y0 := by. If
ω(R1) 6= ω(R2) then, without loss of generality, let ω(R1) = 1 and ω(R2) = 0. Finally,
choose Q2 such that Q2 = Q1(u, x0)R2(x0, y0)Q1(y0, v).

Thus we assume that ω(R1) = ω(R2). Let Q∗2(u, v) = Q1(u, by)Q2(by, v) and replace
Q2 by Q∗2 in the above argument. Then, by Lemma 6.1, the choice of Q1, Q2 and x is
contradicted.

Now choose Q1, Q2, R1 and R2 as above to maximize |E(Q1(u, x0)| + |E(Q1(y0, v)|.
This choice implies that Q2(u, v) = Q1(u, x0)R2(x0, y0)Q1(y0, v).

Note that, since Q1 and Q2 are F -alternating paths, R1 and R2 are F -alternating
paths with first and last edges not in F . 2

We now examine G∗ in more detail. Recall that G∗ = G0 − e and that G∗ is 1-
extendible.

Lemma 6.3 In G∗ there exists an edge f in R1\F with the property that each F -
alternating cycle containing f has a nonempty intersection with R2. Furthermore, f
is contained in at least one such cycle.

Proof. Suppose that the Lemma is not true. Then for each f = (a, b) ∈ R1\F (a < b
in Q1) there exists a path P (x, y) (y < a < b < x in Q1) where P is internally disjoint
from Q1 ∪Q2 and C := Q1(x, y)P (x, y) is an F -alternating cycle.

Since C is F -alternating and Q1 is F -alternating, Q1(y, x) has first and last edge in F
and P (x, y) has first and last edge in E(G∗)\F .

Let f := e1 = (u1, y0) where u1 < y0 in Q1. From Lemma 6.2 and the definition of
y0, e1 ∈ R1\F . Choose a path P1(x1, y1), y1 < u1 < y0 < x1 in Q1 where P1 is internally
disjoint from Q1 ∪Q2 and C1 := Q1(y1, x1)P1(x1, y1) is an F -alternating cycle in G∗. We
choose x1 and y1 to minimize the length of Q1(u1, y1).

If y1 ∈ V (R1), we repeat the procedure with y1 playing the role of y0. In the same
way we choose y2, x2, P2(x2, y2) and C2 := Q1(y2, x2)P2(x2, y2) such that the length of
Q1(u2, y) is minimized. Because of the minimization of the lengths of Q1(ui, yi), i = 1, 2:
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(i) y2 < y1 < x2 < y0 < x1 in Q1;

(ii) P1(x1, y1) and P2(x2, y2) are disjoint.

We repeat this argument and continue to construct disjoint paths Pi := Pi(xi, yi) and
F -alternating cycles Ci := Q1(yi, xi)Pi(xi, yi), (yi−1 < yi−2 < xi−1 < yi−3 < . . . < x2 <
y0 < x1) until we reach an integer j such that yj ∈ Q(u, x0) and yj−1 ∈ R1(x0, y0). Since
Cj is F -alternating and the first and last edges of Pj do not belong to F , yj 6= x0.

Now let ~G∗ be a fixed even F -orientation of G∗ with associated even function ω. Since
ω is even and Ci is an F -alternating cycle in G∗, ω(Ci) = 0, for i = 1, . . . , j. Hence

j∑
i=1

ω(Q1(yi, xi)) +

j∑
i=1

ω(Pi) ≡ 0 (mod 2) . (1)

Set

C := Q1(yj, x0)R2(x0, y0)Q1(y0, x1)P1(x1, y1)Q1(y1, x2)P2(x2, y2)

Q1(y2, x3)P3(x3, y3) . . . Pj−1(xj−1, yj−1)Q1(yj−1xj)Pj(xj, xj) .
(2)

By definition, C is an F -alternating cycle in G∗ and therefore ω(C) = 0. Hence, using
Lemma 6.2(iii) and (2)

ω(Q1(yj, x0)) +

j∑
i=1

ω(Q1(yj−1, xi)) +

j∑
i=1

ω(Pi) ≡ 0 (mod 2) . (3)

Since

Q1(yi, xi) = Q1(yi, yi−1) +Q1(yi−1, xi),

ω(Q1(yi, xi)) ≡ ω(Q1(yi, yi−1)) + ω(Q1(yi−1, xi)) (mod 2) .
(4)

Adding (1) and (3)

j−1∑
i=2

(ω(Q1(yi, xi)) + ω(Q1(yi−1, xi))) + (ω(Q1(y0, x1)) + ω(Q1(y1, x1))+

+ω(Q1(yj, xj)) + ω(Q1(yj, x0)) + ω(Q1(yj−1, xj))) ≡ 0 (mod 2) .

(5)

From (5), using (4)

j−1∑
i=2

(ω(Q1(yi, yi−1)) + ω(Q1(y1, x1)) + (ω(Q1(y0, x1)) + ω(Q1(yj, xj))+

+ω(Q1(yj, x0)) + ω(Q1(yj−1, xj))) ≡ 0 (mod 2) .

(6)

i.e.
ω(Q1(yj−1, y1)) + ω(Q1(y1, y0)) + ω(Q1(x0, yj−1)) ≡ 0 (mod 2) .

i.e. ω(R1) = 0 which contradicts Lemma 6.2(iii). 2
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Lemma 6.4 Case (i) of Theorem 5.7 is not possible.

Proof. The result is proved by contradiction. Using Lemma 6.3 we can select an edge
f := (a, b) in R1\F and an F -alternating cycle C such that for some z, x1 ∈ V (Q1),
z < a < b < x1 (x1 6= y0) and C := Q1(z, x1)P (x1, z) where P (x1, z) ∩R2(x0, y0) 6= ∅.

Now choose y1 ∈ V (R2) (y1 6= y0) so that P1 := P (x1, y1) is edge-disjoint from R2.
Furthermore, choose x1 and y1 to minimize the length of Q2(u, y1).

We repeat the argument of Lemma 6.3. In that Lemma we begin with the edge
e1 = (u1, y0) where u1 < y0 in Q1. We now start with the edge e2 := (u∗1, y1) in Q2 where
e2 ∈ R2\F . The edge e2 plays the role of e1 below.

As in Lemma 6.3 we construct disjoint F -alternating paths Pi := Pi(xi, yi), i = 1, . . . , j
such that

(i) Pi is edge disjoint from Q1 ∪Q2.

(ii) x1, yj ∈ V (Q1); x2 ∈ V (Q2); xi ∈ V (R2), i = 2, . . . , j; yi ∈ V (R2), i = 1, . . . , j − 1.

(iii) y0 < y1 < x3 < y2 < x4 < . . . < xj < yj−1 < x0 in R2(y0, x0); y0 < x2 < y1 in
R2(y0, x0) or x2 < y0 < y1 in Q2(v, u).

Below, we assume that y0 < x2 < y1 in R2(y0, x0) (the case when x2 < y0 < y1 in
Q2(v, u) is almost exactly the same; equation (12) must be adjusted in the case i = 2).

Set
Ci := R2(yi, xi)Pi(xi, yi), (i = 2, . . . , j − 1) (7)

Then Ci is an F -alternating cycle.

Let ~G∗ be a fixed even F -orientation of G∗ with associated even function ω. Since ω
is even, ω(Ci) = 0. Hence, from (7),

j−1∑
i=2

ω(R2(yi, xi)) +

j−1∑
i=2

ω(Pi(xi, yi)) ≡ 0 (mod 2) . (8)

Case (a): x1, yj ∈ V (R1).

Set

C0 := Q1(yj, x1)P1(x1, y1)R2(y1, x2)P2(x2, y2)R2(y2, x3) . . . R2(yj−2, xj−1)

Pj−1(xj−1, yj−1)R2(yj−1xj)Pj(xj, xj) .

Then C0 is an F -alternating cycle and ω(C0) = 0. Hence,

j∑
i=1

ω(Pi(xi, yi)) +

j−1∑
i=1

ω(R2(yi, xi+1)) + ω(Q1(yj, x1)) ≡ 0 (mod 2) . (9)
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Also (see Lemma 6.2 and its proof) because of the choice of Q1, Q2, R1, R2, x0, y0 and
the maximality condition of Lemma 6.2(iv) (see Remark 6.5 below), ω(C∗i ) = 0, i = 1, 2
where

C∗1 := Q1(x1, y0)R2(y0, y1)P1(y1, x1)

C∗2 := Q1(x0, yj)Pj(yj, xj)R2(xj, x0) .

Hence
ω(Q1(x1, y0)) + ω(R2(y0, y1)) + ω(P1(y1, x1)) ≡ 0 (mod 2) , (10)

and
ω(Q1(x0, yj)) + ω(Pj(yj, xj)) + ω(R2(xj, x0)) ≡ 0 (mod 2) , (11)

Adding (8), (9), (10) and (11), we obtain:

(

j−1∑
i=1

ω(R2(yi, xi+1)) +

j−1∑
i=2

ω(R2(yi, xi))) + ω(Q1(yj, x1))+

+ω(Q1(x1, y0)) + ω(Q1(x0, yj)) + ω(R2(y0, y1)) + ω(R2(xj, x0)) ≡ 0 (mod 2) .

(12)

Since R2(yi, xi) = R2(yi, xi+1)R2(xi+1, xi),(i=2,. . . , j-1), from (12):

ω(R2(xj, y1)) + (ω(Q1(x0, yj))) + ω(Q1(yj, x1)) + ω(Q1(x1, y0)))

+(ω(R2(y1, y0)) + 1) + (ω(R2(x0, xj)) + 1) ≡ 0 (mod 2) .

i.e.
ω(R1) + ω(R2) ≡ 0 (mod 2) , (13)

which contradicts Lemma 6.2(iii).

Case (b): x1 ∈ V (R1), yj ∈ V (Q1(u, x0)).

The only difference from Case (a) is that now C∗2 is an F -alternating cycle and hence
ω(C∗2) = 0, simply because ω is an even function.

Case (c): x1 ∈ V (Q1(y0, v)), yj ∈ V (R1).

This is the same as Case (b) up to a relabelling.

Case (d): x1 ∈ V (Q1(y0, v)), yj ∈ V (Q1(u, x0)).

This is the same as Case (a) except that now ω(C∗i ) = 0, i = 1, 2, simply since ω is an
even function. 2

Remark 6.5 Note that ω(C∗i ) = 0, i = 1, 2, by the maximality condition in Lemma
6.2(iv). For instance, consider the cycle C∗1 and new paths Q∗1 := Q1(u, v) and Q∗2 :=
Q1(u, x1)P1(x1, , y1)R2(y1, y0)Q1(y0, v) with R∗1 := Q1(x1, y0), R∗2 := P1(x1, y1)R2(y1, y0).
By maximality ω(R∗1) = ω(R∗2) i.e. ω(Q1(x1, y0)) = ω(P1(x1, y1)) + ω(y1, y0)) (mod
2). Since for odd length paths P (u, v), ω(P (u, v)) + ω(P (u, v)) ≡ 1 (mod 2), we have
ω(Q1(x1, y0)) + ω(R2(y0, y1)) + ω(P1(y1, x1)) ≡ 0 (mod 2).
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7 Proof of Theorem 3.8(i)

Let G0 be a minimal counterexample to Theorem 3.8(i). From Theorem 5.7 and Lemma
6.4, G∗ = G0−R where R = {e1, e2} is a removable doubleton and G∗ is bipartite. Also F
is a fixed 1-factor of G0 such that R∩F = ∅ and such that G0 has no even F -orientations.

Let ~G∗ be the canonical even F -orientation of G∗ with associated even function ω (cf.
Definition 2.6). Assume that there does not exist cycles C1 and C, relative to which e1
and e2 are skew. Let e1 = (x1, x2) and e2 = (y1, y2), xi ∈ X and yi ∈ Y (i = 1, 2) and
(X, Y ) is a bipartition of G∗. W.l.o.g., any cycle C containing e1 and e2 is of the form

C := (x1, x2, P1(x2, y2), y,y1, P2(y1, x1)). (1)

Since ~G∗ is canonical, ω(P1) = 1 and ω(P2) = 0. Now define an F -alternating function
ω0 on G0 as follows:

(i) if (x, y) ∈ E(G∗0), ω0(x, y) = ω(x, y);

(ii) ω0(x1, x2) = 0, ω0(y2, y1) = 1.

Then ω0 extends ω which itself is even. Hence, if C is any cycle such that R ∩ E(C) = ∅
then ω0(C) = 0. If R ∩ E(C) 6= ∅ then R ⊆ E(C) and C has the form of (1). Then

ω0(C) := ω0(x1, x2) + ω0(P1) + ω0(y2, y1) + ω0(P2) ≡ 0 , (mod 2).

Hence, ω0(C) = 0 for all F -alternating cycles C. Thus G0 has an even F -orientation
which is not true. Hence G0 does have cycles C1 and C2 relative to which e1 and e2 are
skew. Hence G0 has a central subgraph H (H = G0) such that F is a 1-factor of H and
H is an even subdivision of a graph in W . This contradicts the definition of G0. 2

8 Preliminaries to Theorem 3.8(ii), (iii) and to The-

orem 3.9

In this section we introduce important tools, which will be useful in the proofs of the
theorems.

Definition 8.1 (Weights)

Let
−→
G be an F -orientation of the graph G. Let w be an additive (0, 1)-function defined

on the directed edges of E(
−→
G) as follows:

Let
−→
P ≡ (u1, u2, . . . , un) denote an orientation of the F -alternating path P (u1, un).

The “opposite orientation” of
−→
P is denoted by

←−
P . Now define a function w∗ as follows.

Set

24



w∗(ui, ui+1) =


1 if

−−−−−−→
(ui, ui+1)

0 if
←−−−−−−
(ui, ui+1),

, 1 ≤ i ≤ n

and w∗(P ) ≡
∑n−1

i=1 w
∗(ui, ui+1). Similarly if C is the F -alternating cycle C :=

(u1, u2, . . . , un, u1) = (P, u1) set w∗(C) := w∗(P )+w∗(un, u1). Finally set w ≡ w∗(mod 2).

We shall say that w is the weight of the orientation
−→
G . 2

Lemma 8.2 Let w be the weight functions of
−→
G , G ∈ W, where

−→
G is an F -orientation

of G. Let C = (u1, u2, . . . , un, u1) be an F -alternating cycle. Then, for 1 ≤ i ≤ n −
1 (i modulo n)

w(u1, u2, . . . , ui) ≡ w(ui, ui+1, . . . , un, u1) (mod 2)

if and only if C is evenly oriented.

Proof. Follows immediately from the definitions. 2

Lemma 8.3 Let
−→
G be an even F -orientation of G, G ∈ W, with weight function w. Let

P and Q be F -alternating paths of odd length:

P :=(u1, u2, . . . , uk)

Q :=(v1, v2, . . . , vl)

where u1 = v1, uk = vl and (u1, u2) ∈ F . Then w(P ) ≡ w(Q).

Proof. Notice that since (u1, u2) ∈ F and k and l are both even, E(P ∪ Q) ⊂ E(G)−
{e, f}. From Lemma 8.2, if E(P ) ∩ E(Q) = ∅ the result immediately follows. So now
assume that this is not the case.

Assume that the result is false. Choose P and Q so that w(
−→
P ) ≡ w(

−→
Q) and such that

|V (P ) ∩ V (Q)| is minimal. Choose j as small as possible such that uj ∈ V (P ) ∩ V (Q)
(j ≥ 1). Then, form above, j < k. And choose i so that i ≤ j − 1, P (ui, uj) ⊂ Q and i is
as small as possible. From Lemma 8.2

w(P (u1, ui)) = w(
←−
Q(vn, v1)) (2)

where vn = ui.
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Now replace u1 by ui(= vn) in the above argument and replace the paths P and Q by
P (ui, uk) and Q(vm, vk) respectively, using (2) and in minimality we obtain a contradic-
tion. 2

Lemma 8.4 Let G ∈ W and u, v ∈ V (G). Let
−→
G be an F -orientation of G. Suppose

that G contains a path P (u, v):

P (u, v) :=(u1, u2, . . . , uk) ; (u1, u2) ∈ E(G) \ F
u1 = u, uk = v and k ≥ 2, k even.

Then
−→
G contains an F -alternating path P ∗(u1, uk).

Proof. Choose P := P (u, v) so that |E(P ) \F | is as small as possible. Now choose i as
large as possible such that P (u1, ui) is F -alternating. Set e0 = (ui, ui+1) and choose C0

to be an F -alternating cycle containing e0. Then P ∪ C contains a path P ∗ := P ∗(u, v)
such that |E(P ∗) \ F | < |E(P ) \ F | which is a contradiction. 2

Lemma 8.5 Let G ∈ W. Let u, v ∈ V (G). Let
−→
G be an F -orientation of G. Let P (u, v)

be an F -alternating path in
−→
G with first and last edges in F . Then if Q(u, v) is any

F -alternating path

w(P ) = w(
←−
Q).

Proof. This follows from Lemmas 8.3 and 8.4. 2

Definition 8.6 (Splitting an edge)

Let G be a cubic graph and e0 = (a, b) ∈ E(G). Suppose that N(a) = {b, b1, b2}, N(b) =
{a, a1, a2} and N(a)∩N(b) = ∅. Set R1 := {(a1, b1), (a2, b2)} and R2 := {(a1, b2), (a2, b1)}.
An e0-splitting of G is a multigraph G∗ such that:

(i) V (G∗) = V (G)\{a, b};

(ii) E(G∗) = E(G− a− b) ∪R, where R = Ri for some i ∈ {1, 2}.

Note that, we abuse notation slightly in Definition 8.6(ii): for instance if (a1, b1) ∈
E(G) and R = R1 then (a1, b1) is a multiple edge in G∗.

26



Definition 8.7 (Special vertices and edges, e-splittings)

Suppose that G ∈ W(3) and F is a W-factor for G. Let G − {e, f} be bipartite and
e = (x1, x2), f = (y1, y2). Then we say that xi, yi (i = 1, 2) are special vertices and that
e and f are special edges.

Suppose that e0 = (x, y) ∈ F , x ∈ X, y ∈ Y and y is not special, where (X, Y ) is a
bipartition of G − R with R = {e, f}. Suppose that there exists a special vertex u which
is adjacent to either x or y. Then any e0-splitting G∗ is said to be a special e0-splitting.
The converse construction where two edges e1 and e2 (one of which is incident to a special
vertex) are glued together will be called a special {e1, e2}-glueing.

Lemma 8.8 Suppose that the 3-regular graphs G ∈ W(3) has no non-trivial F -tight cut
of size three (see Definition 4.5), where F is a W-factor for G. Then there exist a special
e0-splitting G∗ of G such that G∗ is a graph.

Proof. If G∗ contains no multiple edges then Ri ∩ E(G) = ∅ for some i (i = 1, 2).
Otherwise, if (x1, y3) and (x3, y3) are both edges of G, then {x1, x3, x, y, y3} is an F -tight
cut. If (x1, y4) and (x3, y4) are both edges of G, then {x1, x3, x, y, y4} is an F -tight cut. If
(x3, y3) and (x3, y4) are both edges of G, then {x3, x, y3, y4, y} is an F -tight cut. Finally,
since x1 has degree 3 and (x1, x2) ∈ E(G), at most one of (x1, y3) and (x1, y4) is an edge.
It follows that Ri ∩ E(G) = ∅ for some i (i = 1, 2) which is a contradiction. 2

9 Proof of Theorem 3.8(ii) and (iii)

Notation 9.1 Suppose that G ∈ W (see Figure 3 and set ` := κ(G). Let S =
{w1, w2, . . . , w`} be a separating set. Let G\S := G1∪G2 where e ∈ E(G1) and f ∈ E(G2).
Suppose that V (G1) \ {e} := X1 ∪ Y1 and V (G2) \ {f} := X2 ∪ Y2 where X = X1 ∪ X2

and Y = Y1 ∪ Y2.
Set Fi := F ∩ E(S,Xi ∪ Yi) (i = 1, 2) and finally set Fi1 := Fi ∩ E(S,Xi) and

Fi2 := Fi ∩ E(S, Yi) (i = 1, 2).

Set |Xi| = si, |Yi| = ti; kij := |E(wi, Xj ∪ Yj)| (i = 1, 2, 3; j = 1, 2).

Proof. (Theorem 3.8(ii))

Suppose that G ∈ W and κ(G) = 4. By Lemma 5.3, G contains an F -central subgraph
H ∈ W(≤ 3) which is isomorphic to an even subdivision of K4 (cfr. Figure 4).

In Figure 4 P1 and P2 (P1 ∩ P2 = ∅) denote paths P1 := P1(a1, b2), P2 := P2(b1, a2),
a1, b1 ∈ X and a2, b2 ∈ Y . We set e := (u1, u2) and f := (v1, v2). The skew cycles C1 and
C2 are
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Figure 3: Illustration of Notation 9.1

Figure 4: Even subdivision of K4

C1 := (u1, u2, . . . , a1, . . . , a2, . . . , v2, v1, . . . , b2, b1, . . . , u1)

C2 := (u1, u2, . . . , a1, P1, b2, . . . , v1, v2, . . . , a2, P2, b1, . . . , u1).

Since κ(G) = 4 there exist disjoint paths P ∗3 := P ∗3 (u1, v1) and P ∗4 := P ∗4 (u2, v2)
(or we can relabel say u1 and v1). Now from Lemma 8.4 there exist F -alternating paths
P3 := P3(u1, v1) and P4 := P4(u2, v2). Now let us suppose thatG has an F -even orientation
−→
G with weight function w. Set (again see Figure 4)

P5 := P5(u2, . . . , a1) P6 := P6(a1, . . . , a2) P7 := P7(a2, v2)
P8 := P8(v1, . . . , b2) P9 := P9(b2, . . . , b1) P10 := P10(b1, u1)
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Now using Lemmas 8.3 and 8.5 and set wi := w(Pi) (i = 1, 2, . . . , 10)

w(u1, u2) + w5 + w6 + w7 + w(v2, v1) + w8 + w9 + w10 ≡ 0 (mod 2)

w(u1, u2) + w5 + w1 + w8 + w(v1, v2) + w7 + w2 + w10 ≡ 0 (mod 2)

w3 + w8 + w9 + w10 ≡ 0 (mod 2)

w5 + w6 + w7 + w4 ≡ 0 (mod 2)

w3 + w8 + w1 + w5 + w4 + w7 + w2 + w10 ≡ 0 (mod 2)

where wi := 1 + wi (i = 1, 2, . . . , 10)

Adding this equation:

w5 + w(v1, v2) + w8 + w1 + w4 ≡ 0 (mod 2)

which is a contradiction. 2

Lemma 9.2 Let G ∈ W and G be regular of degree k (k ≥ 3). Suppose that κ(G) = 2.
Then G is not F -even.

Proof. Suppose that G ∈ W , κ(G) = 2 and G k-regular (k ≥ 3). Suppose that G
is F -even. Set S := {w1, w2} where S is a separating set. There are (several cases) to
consider.

Case 1 (|F11|+ |F12| ≡ 0 (mod 2)) In these cases G /∈ W since the skewness condition
of W is contradicted.

Case 2 (|F11| = 1, |F12| = 0) In this case s1 = t1 + 1 and ks1 − k11 − 2 = kt1 − k12.
Hence k = 2 + k11 + k12 and k11 = k − 1, k12 = 1. Set E0 = {(w1, y1), (w2, x2)} where
y1 ∈ Y1, x2 ∈ X2, w1 ∈ X, w2 ∈ Y . Then E0 is an edge-cut. Let G1 \ E0 = H1∪̇H2 and
set H∗1 := H1 + (w1, x2) and H∗2 := H2 + (y1, w2). Clearly H∗i ∈ W for some i ∈ {1, 2}.
Furthermore we can choose H∗i to be as small as possible. In particular we can choose H∗i
so that κ(H∗i ) ≥ 3 and H∗i is k-regular (k ≥ 3). So by Case 1, H∗i is not F -even which
implies G is not F -even which is not true.

Case 3 (|F11| = 2) In this case s1 = t1 + 2 and s1k − k11 − k12 − 2 = t1k. Hence
2k = k11 + k12 + 2. Hence k11 = k12 = k − 1. Set E0 = {(w1, y1), (w2, y2)} where yi ∈ Y2,
wi ∈ X (i = 1, 2). This E0 is an edge-cut and we repeat the argument of Case 2. 2

Proof. (Theorem 3.8(iii)) Let G ∈ W be regular of degree k (≥ 3). Assume that G is
F -even. From Theorem 3.8(ii) and Lemma 9.2, κ(G) = 3.

We use the terminology of the introduction and of Notation 9.1. Thus S = {w1, w2, w3}
is a separating set. By symmetry we may assume that |S ∩X| ≥ 2. We now prove, with
this assumption, that
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|S ∩X| ≡ |F11|+ |F12| (mod 2) (1)

Set kij := |E(wi, X, ∪ Yj| (i = 1, 2, 3; j = 1, 2). There are two cases

Case 1 (|S ∩ X| = 3) Since |S ∩ (V (C1) ∪ V (C2))| ≥ 2, |F12| ≤ 1. Suppose that
|F12| = 0. Then |F22| = 3. Hence t2 = s2 + 3. Hence t2k − 2 − (k21 + k22 + k23) = s2k.
Hence 3k = 2 + (k21 + k22 + k23) ≤ 3k − 1. Hence |F12| = 1 and, by definition, |F11| = 0.
Hence (1) is satisfied.

Case 2 (|S ∩X| = 2) Suppose that w1, w2 ∈ X and w3 ∈ Y . As in the previous case
|F12| ≤ 1. By definition |F11| ≤ 1.

Suppose that |F12| = 0. Assume that F11 = 1. Then t2 = s2 + 2. Hence s2k − k23 =
t2k− 2− k21− k22. Hence 2k = 2 + k21 + k22− k23 ≤ 2k− 1. Hence if |F12| = 0, |F11| = 0
and (1) is satisfied.

Finally suppose that |F12 = 1|. Assume that |F11| = 0. Then this is impossible since
|S ∩ (V (C1) ∪ V (C2))| ≥ 2. Hence |F11| = 1.

Hence in all cases (1) is satisfied.

Now we assume that |S ∩X| = 2 and |F11| = |F12| = 1 (see (1) above. We follow the
method of proof of Theorem 3.8(ii). By Lemma 5.3, G contains an F -central subgraph
H ∈ W(≤ 3) which is isomorphic to an even subdivision of K4 (See Figure 3 in the proof
of Theorem 3.8(ii).

We may assume (see Figure 5 without loss of generality that there exist edges w1, y11 ∈
E(G) \ F and (w2, x13) ∈ F1, y11 ∈ Y1, x13 ∈ X1, belonging to E(C1) ∪E(C2). Also there
exists an edge (w2, y12) ∈ F , y12 ∈ Y1.

Suppose that e and y12 are in different components of G1. If y12 and x13 are in the
same component then since x13 ∈ V (C1) ∪ V (C2), y12 and e are in the same component
which is a contradiction.

So now assume that x13 and y12 belong to different components of G1. Consider the
component of G1 containing x13 (which must clearly contain e) having sides X12 ⊆ X1,
Y12 ⊆ Y1, s12 := |X12| and t12 := |Y12|. Then s12 = t12+1 and s12k−2−k∗23 = t12k−k∗21−k∗22
where k∗ji := |E(wi, X12 ∪ Y12|. Hence

k∗21 + k∗22 = 2 + k∗23 − k ≤ 1.

Hence there exists a proper subset of S which separates K form G \ K which is a
contradiction. Hence x13 and y12 belong to the same component of G1 which also includes
e.

Without loss of generality, there exist paths P ∗13 := P ∗13(u1, y12) and P ∗14 := P ∗14(u2, y12)
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Figure 5: Illustration for the proof of Theorem 3.8(iii)

in G1 \ {e} with both paths having their final edges in E(G) \ F (note that the notation
may be chosen so that u1 and u2 or v1 and v2 may be interchanged). Similarly in G \G1

there exist paths P ∗23 := P ∗23(w2, v1) and P ∗24 := P ∗24(w2, v2). Finally set P ∗3 := P ∗13P
∗
23 and

P ∗4 := P ∗14P
∗
24 and continue exactly as in Theorem 3.8(ii).

There are now two other cases to consider. In fact these cases basically duplicate the
first case:

Case A (|S ∩X| = 3, |F1| = 1, |F11| = 0) Suppose that (w2, y12) ∈ F1, y12 ∈ Y1 (see
Figure 6)

Figure 6: Illustration for the proof of Case A in Theorem 3.8(iii)

Suppose that y12 and e are in different components of G1. Then t2 = s2 and s2k− 2 =
t2k− k∗21− k∗22− k∗23. Hence k∗21 + k∗22 + k∗23 = 2. Hence the component K, say, containing
e in G1 is separated from G \K by a proper subset of S which is a contradiction.
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Case B (|S ∩X| = 2, |F11| = |F12| = 0)

Suppose that (w3, x3i) ∈ E(G) \ F , x3i ∈ X1, i = 1, 2, . . . , ` (see Figure 7)

Figure 7: Illustration for the proof of Case B in Theorem 3.8(iii)

Now suppose that there is no component in G1 containing both e and x3i for any
i ∈ {1, 2, . . . , `}. Again this would imply that the component K containing e in G1 is
separated from G \K by a proper subset of S which is the final contradiction. 2

Example 9.3 We give a concrete example illustrating Theorem 3.8(iii). The graph G
in Figure 8 is such that G ∈ W, κ(G) = 3 and G is 4-regular G has a separating set
S = {w1, w2, w3} where w1 ∈ X, w2, w3 ∈ Y.

Figure 8: G

In Figure 9 the graph G0 is an F -central even subdivision of G and
−→
G0 is an F -

orientation. We use the labelling of Figure 8 except now w2 and w3 are relabelled 10 and
8 respectively.
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Figure 9: G0 = an F -central even subdivision of G

G0 has F -alternating cycles:

C1 := (1, 2, 3, 4, 5, 6, 7, 8, 1), C2 := (1, 9, 10, 6, 7, 8, 1),
C3 := (2, 9, 10, 5, 4, 3, 2), C4 := (1, 9, 10, 5, 4, 8, 1),
C5 := (2, 9, 10, 6, 7, 3, 2), C6 := (1, 2, 3, 7, 6, 5, 4, 8, 1).

Then {C1, C2, . . . , C6} is a zero-sum set and in this set C6 is the only evenly F -oriented
cycle. This proves that G0 is not F -even and hence G is not F -even. 2

10 Proof of Theorem 3.9

Definition 10.1 (Almost F -even)
Suppose that G ∈ W and G is not F -even. If for each e0 ∈ E(G) \ (F ∪ {e, f}), G − e0
is F -even then G is said to be almost F -even.

Proof. (of Theorem 3.9)

Let G ∈ W(3) then G is not F -even (Theorem 3.8 (i)). If G is a graph satisfying the
conditions of Theorem 3.9 then G is a proper subgraph of some graph G0 ∈ W(3) that is
almost F -even.

Choose G0 as small as possible such that G0 ∈ W(3) and G0 is not almost F -even.
Hence there exists e0 ∈ E(G0) \ (F ∪ {e, f}) such that G0 − e0 is F -even.

Select a special e∗-splitting G∗0 of G0 (see 8.6) where e∗ = (a2, b2). We use the notation
of Figure 10.

We recall that G∗0 := (G0 \ {a2, b2}) ∪ {e1, e2} where e1 = (a1, b1) and e2 = (a3, b3).
Furthermore G∗0 ∈ W(3) and G∗0 is cubic.
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Figure 10: Notation for a special e∗-splitting G∗0 of G0

Since G0 ∈ W(3), G∗0 ∈ W(3). Otherwise there is an F -even subdivision of G∗0 which
gives rise to a central subgraph H as described in Definition 3.7. Since e1 is incident to e
and P2(a3, b3) (see below) exists H must be contained in G0 which is not possible.

By the minimality of G0, G
∗
0 is almost F -even.

Let f ∗0 ∈ E(G∗0). Let
−−−−−−→
G∗0 \ {f ∗0} be an F -even orientation of G∗0 \ {f ∗0} with weight

function w∗. Set

P1 := (a1, b2, a2, b1) ; P2 := (a3, b2, a2, b3)
P3 := (a1, b2, a2, b3) ; P4 := (b1, a2, b2, a3)

(2)

We now show that this orientation induces an F -even orientation
−−−−−−→
G∗0 \ {f ∗0} of G∗0\{f ∗0}

with weight function w defined as follows:

w(e∗) := w∗(e∗) ; ∀e∗ ∈ E(G∗0) \ {f ∗0 ∪ {e1, e2}} (3)

w(Pi) := w∗(ei) , i = 1, 2 if f ∗0 /∈ {e1, e2}
if f ∗0 = ei define w(Pi) := w∗(ej); j 6= i, i ∈ {1, 2}.

(4)

It is clear that w(C∗) is F -even for all cycles C∗ in G∗0 \ ({f ∗0}∪{e1, e2}). Furthermore
if E(C∗) ∩ {e1, e2} = ei (i ∈ {1, 2}) it is clear from (3) that w(C) is F -even where if for
example if i = 1

C = (a1, b1, P0, a1)

then

C∗ = (a1, P1, P0, a1).
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Figure 11: G ∈ W(3) but G /∈ W∗(3)

One small twist here is if |E(C∗) ∩ {e1, e2}| = 2. This case is covered in fact by the
following argument.

Finally we must consider the cycles C in G0 \ {f ∗0} such that E(C) ∩ {P3, P4} = ∅.
Suppose that

C1 := (a1, P3, b3, Q1, a1) (5)

and

C2 := (b1, P4, a3, Q2, a3) (6)

Now since C1 and C2 are F -even

w(P3) := w∗(Q1) (7)

w(P4) := w∗(Q1) (8)

Then, from Lemma 8.3, the definitions of w(Pi) (i = 3, 4) is independent of the choice
of Qi (i = 1, 2).

The case mentioned above when |E(C∗) ∩ {e1, e2}| = 2 gives rise to two cycles as in
(5) and (6).

Now since w∗ is an additive (0, 1)-function equations (4), (7) and (8) have a solution
(we have four equations in the four unknowns in E(P3) ∪ E(P4)). So w is a weight

function for some even F -orientation
−−−−−−→
G0 \ {f ∗0} of G0 \ {f ∗0}. This is true for all f ∗0
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in E(G0) \ (E(P3) ∪ E(P4) \ {e∗}). However this case is easy to deal with. If we set
f ∗0 := (B3, a3) then this case is exactly the same for the case when f ∗0 := e2 and so on.

We have thus shown that
−−−−−−→
G0 \ {f ∗0} is F -even and G0 is almost F -even which is a

contradiction. 2

Remark 10.2 The graph G in Figure 11 is such that G ∈ W(3) but G /∈ W∗(3) since
G\{e1, e2} is an even subdivision of W ∈ W(3). This example illustrates why in Theorem
3.9 we need the restriction that G ∈ W∗(3). 2
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