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On the Mahler measure in several variables.

Francesco Amoroso

Abstract.
If the total degree of a polynomial in n ≥ 2 variables of dimension n s bounded

by a double exponential function in n, we show that its Mahler measure is bounded
from below by an absolute constant > 1.

2000 Mathematics Subject Classification 11G50, 11J81, 14G40.

1 Introduction.

In early 1933 Lehmer (cf. [9], 13, p. 476) wrote

”The following problem arises immediately. If ε is a positive quantity, to find
a polynomial of the form f(x) = xr + a1x

r−1 + ... + ar where the a’s are integers,
such that the absolute value of the product of those roots of f which lie outside
the unit circle, lies between 1 and 1 + ε. (...) Whether or not the problem has a
solution for ε < 0.176 we do not know.”

Let P (x) = a(x − α1) · · · (x − αd) be a polynomial with complex coefficients.
We define its Mahler measure as

M(P ) = |a|
d∏

j=1

max{1, |αj |} .

By Kronecker’s theorem M(f) = 1 for an irreducible polynomial f ∈ Z[x] if and
only if f 6= ±x or if ±f is a cyclotomic polynomial. Lehmer’s problem is equivalent
to the following

Conjecture 1.1 Let f ∈ Z[x] be a nonconstant irreducible polynomial. Assume
f 6= ±x and that ±f is not a cyclotomic polynomial. Then

M(f) ≥ C

for some absolute constant C > 1.

The best known result in the direction of this conjecture is Dobrowolski’s lower
bound

M(f) ≥ C

(
log D

log log D

)−3
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which holds for any f of degree D ≥ 2 as in conjecture 1.1. Here C is an absolute
constant. In the original statement ([6]) C = 1/1200; later Voutier ([14]) shows
that one can take C = 1/4.

In this paper we are interested in the generalization of conjecture 1.1 to poly-
nomials in several variables. Let n be a positive integer and x = (x1, . . . , xn). We
define the Mahler measure of a polynomial P ∈ C[x] as

M(P ) = exp
∫ 1

0
· · ·
∫ 1

0
log |P

(
e2πit1 , . . . , e2πitn

)
| dt1 . . . dtn .

We remark that by Jensen’s formula this definition coincide with the previous
one if n = 1. Further, M(f) ≥ 1 for f ∈ Z[x], as is easily seen by induction
on n. An analogous of Kronecker theorem is known. Following Schinzel, we say
that an irreducible f ∈ Z[x] is an extended cyclotomic polynomial if there exist a
cyclotomic polynomial φ and λ, µ ∈ Zn such that

f(x) = ±xλφ(xµ) .

In other words, f ∈ Z[x] is extended cyclotomic if and only if the hypersurface
{f = 0} in Gn

m is a torsion variety (i. e. an union of translates of subtori by torsion
points) defined and irreducible over the rationals. Kronecker’s theorem generalizes
as follows. Let f ∈ Z[x] be irreducible. Then M(f) = 1 if and only if f = ±xj or
if f is an extended cyclotomic polynomial ([3], [7] and [13] independently).

We remark that conjecture 1.1 implies the lower bound

M(f) ≥ C

for any nonconstant irreducible f ∈ Z[x] such that f 6= ±xj and f not extended
cyclotomic. In this statement, C is the same as in conjecture 1.1. This is an easy
consequence of the following result of Lawton (see [8]). Let P ∈ C[x], and define,
for λ ∈ Nn,

q(λ) = min{max |µj | | µ ∈ Zn\{0}, λ.µ = 0} .

and
Pλ(t) = P (tλ1 , . . . , tλn) ∈ C[t] .

Then,
lim

q(λ)→+∞
M(Pλ) = M(P ) .

Unfortunately, the quoted result of Lawton cannot be used to deduce an ana-
logue in several variables of Dobrowolski’s result. Nevertheless, the method of
Dobrowolski’s proof has been generalized to several variables in [1]. Let

f =
∑
λ

fλxλ ∈ Z[x]

be irreducible. Following Smyth ([12]) we define the dimension dim f as the di-
mension in Rn of the convex-hull of the set {λ such that fλ 6= 0}. It is easy to
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see that dim f is the smallest integer m such that f comes from a polynomial in
m variables by a monomial transformation:

f(x) = xλ0g(xλ1 , . . . ,xλm) (1.1)

where g ∈ x[y1, . . . , ym] and λ0, . . . ,λm ∈ Zn. Note that this formula implies the
equality M(f) = M(g). Further, dim f is the codimension of the stabilizer of the
hypersurface {f = 0} in Gn

m.
In [1] the authors show that for an irreducible polynomial f ∈ Z[x] of dimension

n, we have

log M(f) ≥ 1
C(n + 1)1+4/nn2

· (log((n + 1) log((n + 1)D)))2+1/n

(log((n + 1)D))1+2/n

where C is a positive constant. Note that the exponents on the error terms are
slightly better than the exponent 3 in Dobrowolski’s result.

The above considerations suggest that in some sense a generalized Lehmer’s
conjecture could be easier than the original one. More precisely, for any n ≥ 2 we
propose the following weaker form of Lehmer’s conjecture.

Conjecture 1.2 There exists an absolute constant C > 1 such that for any irre-
ducible f ∈ Z[x1, . . . , xn] of dimension n ≥ 2 we have

M(f) ≥ C .

Our main result shows that any eventual counterexample to this conjecture must
have a very high degree with respect to n.

Theorem 1.3 Let f ∈ Z[x1, . . . , xn] be an irreducible polynomial of dimension n.
Let D be the maximum of its partial degrees. Assume n ≥ 9 and

D ≤ 32n
.

Then
log M(f) ≥ 1

23
.

Let f ∈ Z[x1, . . . , xn] be an irreducible polynomial. The normalized height
ĥ(V ) of the hypersurface V = {f = 0} ⊂ Gn

m is log M(f). If V is not defined over
the rationals, see §2 for the definition of ĥ(V ). Theorem 1.3 generalizes to a lower
bound for the normalized height of a hypersurface defined and irreducible over a
number field (theorem 3.4 and remark 3.6). Moreover, in theorem 3.5 we bound
from below ĥ(V ) by a function c(n, D) > 0 depending on n and on D = deg(V ).
Unfortunately, c(n, D) might go to zero according to the growth of D with respect
to n.
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We finally mention that one formulate an even more optimistic conjecture.
In [4], Boyd asked whether the function

m(n) = inf{M(f) such that f ∈ Z[x1, . . . , xn] is irreducible and dim f = n}

tends to infinity with n. Concerning this problem, the best known sequence of
polynomials is the simplest one: fn(x) = x1 + · · ·+ xn. For these polynomials we
have

log M(fn) ∼ 1
2

log n

(see [12], [10]).

Acknowledgements. I would like to express my gratitude to Martin Sombra
and Evelina Viada for numerous helpful conversations on the subject of this paper.
The term involving the Arithmetic Hilbert Function in proposition 3.2 comes from
a suggestion of M. Sombra.

Overview of the proof.
Let F be an auxiliary polynomial vanishing on a geometrically irreducible

variety V ⊂ Gn
m. Then, if some inequalities concerning degrees and heights hold,

F must vanish on the translates of V by p-torsion points, at least for small primes p.
In [2] we exploit this vanishing principle to obtain a lower bound for the normalized
height of V , under the assumption that V is not a translate of a subtorus. The
main new idea behind the proof of theorem 1.3 is the following: the above vanishing
principle make use of the fact that V is p-adically close to ζV for all p-torsion points
ζ. But all the translates of V by p-torsion points are close to each other. Thus,
we replace the vanishing principle used in [2] by a symmetric vanishing principle.
For technical reasons, it is more convenient to use an interpolation determinant
than an auxiliary function. This will be done in proposition 3.2, which contains
all the information needed for the proof of theorem 1.3.

2 Notation and preliminary results.

2.1 Normalized height, essential minimum.

Let K be a number field and let V be a hypersurface in Gn
m defined over K:

V = {α ∈ Gn
m such that f(α) = 0}

with f ∈ K[x] square-free. Let MK be the set of places of K. We define

ĥ(V ) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log Mv(f),

where if v is non archimedean Mv(f) is the maximum of the v-adic absolute val-
ues of the coefficients of f and if v is an archimedean place associated with the
embedding σ : K ↪→ Q

Mv(f) = M(σf) .
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We recall that ĥ is an additive function. Let V be a reduced hypersurface, say
V = W1 ∪ · · · ∪Wl where W1, . . . ,Wl are geometrically irreducible hypersurfaces.
Then ĥ(V ) = ĥ(W1)+ · · ·+ ĥ(Wl). For a more general definition of ĥ and for more
of its properties, see [5].

Let V be a K-irreducible hypersurface. For θ ≥ 0 we denote

V (θ) = {α ∈ V (Q) such that ĥ(α) ≤ θ},

where ĥ(α) = h
(
(1 : α1 : · · · , αn)

)
and h is the Weil height on the projective space.

Hence V (0) is the set of torsion points on V . Let define the essential minimum
µ̂ess(V ) of V as the infimum of the set of θ ≥ 0 such that V (θ) is Zariski dense in
V . By a special case of Zhang’s inequality (see [15]) we have

µ̂ess(V ) ≤ ĥ(V )
deg(V )

≤ nµ̂ess(V ).

We consider a variant of the essential minimum. Let j ∈ {1, . . . , n} and θ ≥ 0. We
define Vj(θ) as the subset of α ∈ V (Q) such that αi is a root of unity for i 6= j
and h(αj) ≤ θ. We set µ̂ess

j (V ) as the infimum of the set of θ ≥ 0 such that Vj(θ)
is Zariski dense in V . Let j ∈ {1, . . . , n} and assume that the partial degrees Dj

satisfy Dj > 0. In [1], proposition 2.7 (i) we prove the inequality

Djµ̂
ess
j (V ) ≤ ĥ(V ) . (2.2)

Although this is not needed in the proof of the lower bounds for ĥ(V ), this in-
equality is in fact an equality. See Appendix, theorem 4.1.

Let V = {f = 0} be a K-irreducible hypersurface. In the second part of
proposition 2.7 of [1], we deduced a new proof of Zhang’s upper bound µ̂ess(V ) ≤
ĥ(V )/ deg(V ) from the inequality (2.2). As Martin Sombra pointed out, there is a
mistake in the proof of this implication. If the polynomial f(x1xn, . . . , xn−1xn, xn)
is not necessarily irreducible over K, we cannot apply the result of the part (i) of
that proposition.

2.2 The stabilizer.

We recall the definition and some properties of the stabilizer of a subvariety V ⊆
Gn

m. We define the stabilizer of V as the group

Stab(V ) = {α ∈ Gn
m, αV = V } .

We also denote by Stab(V )0 the connected component of Stab(V ) containing the
identity. Let l be an integer. We remark that l acts on Gn

m by α 7→ αl. Let k be
the codimension of Stab(V ) and assume that V is geometrically irreducible. Then
for any prime p such that

p - [Stab(V ) : Stab(V )0]

ker[p]V is an union of pk distinct translates of V .
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2.3 Hilbert Functions.

Let I ⊂ Q[x] be an ideal and ν = (ν1, . . . , νn) ∈ Nn. We denote the multi-
homogeneous Geometric Hilbert Function by

Hg(I;ν) = dim(Q[x]ν/Iν) .

In this formula Q[x]ν is the vector space of polynomials of partial degrees Dj ≤ νj

and Iν is its vector subspace I ∩Q[x]ν .
Let V ⊂ Gn

m ⊆ (P1)n be an equidimensional reduced cycle, i. e. V = W1∪ · · ·∪
Wl where W1, . . . ,Wl are geometrically irreducible of the same dimension. Let
I ⊂ Q[x]ν be the ideal defining V and let I(T ) be the T -symbolic power of I, i. e. the
ideal of polynomials vanishing with multiplicity ≥ T on the Zariski set defined by I.
By abuse of notation, we set Hg(V ;ν) = Hg(I;ν) and Hg(V, T ;ν) = Hg(I(T );ν).
For a hypersurface V of multi-degrees (D1, . . . , Dn) we have:

Hg(V, T ;ν) = (ν1 + 1) · · · (νn + 1)− (ν1 − TD1 + 1) · · · (νn − TDn + 1) . (2.3)

We further need an Arithmetic Hilbert Function. Given a linear subspace E ⊆ QN

of dimension L, we define, following Schmidt ([11], Ch. 1, §. 8), its height as

hL2(E) =
∑

v

[Kv : Qv]
[K : Q]

log ‖w1 ∧ · · · ∧wN‖v ,

where w1, . . . ,wN is any basis of E, K is a number field on which this basis is
defined, ‖ · ‖v is the sup norm if v - ∞ and

‖w‖2
v =

∑
j

|wj |2v

otherwise. Take ν as before and set N = (ν1 + 1) · · · (νn + 1). We identify Q[x]ν
with QN by

∑
λ qλxλ 7→ (qλ)0≤λj≤νj

. Given a polynomial F ∈ K[x]ν we set

hL2(F ) =
∑

v

[kv : Qv]
[k : Q]

log ‖F‖v .

Thus hL2(F ) = hL2(E) where E ⊆ QN is the linear subspace generated by F .
We recall Landau’s theorem: if P ∈ C[x] then M(P ) is bounded by the quadratic
mean of its coefficients. Thus, if F ∈ Z[x] vanishes on a reduced hypersurface V ,

ĥ({F = 0}) ≤ hL2(F ) . (2.4)

Let V be an equidimensional reduced cycle as in the beginning of this subsection.
We define its Arithmetic Hilbert Function as

Ha(V ;ν) = hL2([I]ν) .
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3 Proof of the main results.

The following lemma is the key ingredient for the proof of the main results.

Lemma 3.1 Let ν1, . . . , νn, T be positive integers, {α1, . . . ,αL} ⊆ Pn(C), and
λ1, . . . ,λL be multi-indexes such that 0 ≤ λi,j ≤ νj for i = 1, . . . , L and j =
1, . . . , n . Define

T0 :=
(
L−Hg({α1, . . . ,αL}, T ;ν)

)
T .

Then the multi-homogeneous polynomial

F (x1, . . . ,xL) = det(xλj

i )1≤i,j≤L .

vanishes on (α1, . . . ,αL) ∈ Pn(C)L with multiplicity at least T0.

Proof. Let S0 = {α1, . . . ,αL}. If Hg(S0, T ;ν) ≥ L the assertion is obvious.
Assume Hg(S0, T ;ν) < L and let L0 = L−Hg(S0, T ;ν). Then there exist linearly
independent polynomials Gk =

∑L
j=1 gkjxλj (k = 1, . . . , L0) vanishing on S0 with

multiplicity ≥ T . By elementary operations we replace the last L0 columns of the
matrix (xλj

i ) by (
Gk(x1), . . . , Gk(xL)

)t
, k = 1, . . . , L0

(the exponent t means “transpose”). Let F ′(x1, . . . ,xL) be the determinant of this
new matrix; then F ′(x1, . . . ,xL) = cF (x1, . . . ,xL) for some c ∈ C∗. The polynomi-
als Gk vanish on S with multiplicity ≥ T . Expanding F ′(x1, . . . ,xL) with respect
to the last L0 columns we see that F ′(x1, . . . ,xL) vanishes on (α1, . . . ,αL) ∈
Pn(C)L with the prescribed multiplicity.

�

In what follows we let V ⊆ Gn
m be a geometrically irreducible hypersurface of

multi-degrees (D1, . . . , Dn).

Proposition 3.2 Let ν1, . . . , νn, T be positive integers and let p be a prime num-
ber. Let h1, . . . , hn be positive real numbers. Let S be a subset of Gn

m of points α
satisfying h(αi) ≤ hi for i = 1, . . . , n. We assume that S is Zariski dense in V .
Then

Ha(ker[p]V ;ν)
Hg(ker[p]V ;ν)

≤ −
(

1− Hg(V, T ;ν)
Hg(ker[p]V ;ν)

)
T log p

p− 1

+
n

2
log(νmax + 1) + ν1h1 + · · ·+ νnhn . (3.5)

where νmax = max{ν1, . . . , νn}.
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Proof. For simplicity let S′ = ker[p]S, V ′ = ker[p]V and N = (ν1+1) · · · (νn+1).
We associate to β ∈ S′ the vector

wβ =
(
βλ
)
0≤λj≤νj

∈ QN
.

Let E be the vector space generated by the wβ with β ∈ S′. Since S is Zariski
dense, E⊥ = [I]ν where I is the ideal defining V ′. We recall that hL2(E) =
hL2(E

⊥) (see [11], Ch. 1, §8). Thus

Ha(V ′;ν) = hL2(E) . (3.6)

Further
L := dim E = Hg(V ′;ν) .

We choose a basis β1, . . . ,βL of E and we denote for brevity wj = wβj
. Let v be

a place. Then (see [11], proof of lemma 8A),

‖w1 ∧ · · · ∧wL‖v ≤
L∏

j=1

‖wj‖v .

Moreover, for any β ∈ S′,

log ‖wβ‖v ≤


∏n

i=1 max{1, |βi|v}νj , if v - ∞ ;

N1/2
∏n

i=1 max{1, |βi|v}νj , if v | ∞ .

Thus, using the inequality N ≤ (νmax + 1)n,

log ‖w1 ∧ · · · ∧wL‖v

≤


∑L

j=1

∑n
i=1 νj log max{1, |βj,i|v}, if v - ∞ ;

n
2 L log(νmax + 1) +

∑L
j=1

∑n
i=1 νj log max{1, |βj,i|v}, if v | ∞ .

(3.7)

We give a better bound for v | p. Let’s choose distinct λ(1), . . . ,λ(L) with 0 ≤
λj,i ≤ νj for j = 1 . . . , L and i = 1, . . . , n. We consider the determinant

∆ = det
(
βλs

r

)
r,s=1,...,L

Let α1, . . . ,αL ∈ S such that βj ∈ ker[p]αj and set

F (x1, . . . ,xL) = det(xλs
r )r,s=1,...,L .

Thus ∆ = F (β1, . . . ,βL) and, by lemma (3.1), F vanishes on (α1, . . . ,αL) with
multiplicity at least

T0 :=
(
L−Hg({α1, . . . ,α}, T ;ν)

)
T ≥

(
L−Hg(V, T ;ν)

)
T .
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Since v | p, we have
|αj,i − βj,i|v ≤ p−1/(p−1)

for j = 1, . . . , L and i = 1, . . . , n. Thus, by Taylor expansion of F around
(α1, . . . ,αL),

|∆|v = |F (β1, . . . , βL)|v ≤ p−T0/(p−1)
L∏

j=1

n∏
i=1

max{1, |βj,i|v}νjL .

This formulas holds for the determinant of any L × L submatrix of the L × N
matrix

(βλ
j ) j=1,...,L

0≤λi≤νi

.

Thus,

log ‖w1 ∧ · · · ∧wL‖v ≤ −T0 log p

p− 1
+

L∑
j=1

n∑
i=1

νj log max{1, |βj,i|v} . (3.8)

By (3.6), (3.7) and (3.8) we obtain:

Ha(V ′;ν) ≤ −T0 log p

p− 1
+

n

2
L log(νmax + 1) + (ν1h1 + · · ·+ νnhn)L .

Proposition 3.2 follows.

�

Choosing the parameters in a suitable way, we deduce

Proposition 3.3 For any prime number p,

ĥ(V ) ≥ log p

7p
− nk log p

pk
− n log(n2Dmax)

2pk
, (3.9)

where k is the codimension of the stabilizer of V and where Dmax = max{D1, . . . , Dn}

Proof. Let us assume first that p - [Stab(V ) : Stab(V )0], so that (see subsection
2.2) V ′ = ker[p]V is a union of pk translates of V . We show in this case that

ĥ(V ) ≥ log p

7p
− nk log p

pk
− n log(nDmax)

2pk
. (3.10)

Let ε > 0. Assume Dmax = Dn. By proposition 2.7 (i) of [1] the set

S = {(ζ1, . . . , ζn−1, α) ∈ V (Q), ζ1, . . . , ζn−1 roots of unity, h(α) ≤ ĥ(V )/Dn + ε}
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is Zariski dense in V . We apply proposition 3.2 with h1 = · · · = hn−1 = 0 and
hn = ĥ(V )/Dn + ε. We chooseνj = npkDj − 1, for j = 1, . . . , n− 1;

νn = pkDn − 1

and
T = [pk/2] .

We remark that νmax = max{ν1, . . . , νn} ≤ npkDmax − 1. Further, by (2.3)

Hg(V, T ;ν) = (ν1 + 1) · · · (νn + 1)− (ν1 − TD1 + 1) · · · (νn − TDn + 1)

≤ nn−1pknD1 · · ·Dn −
1
2

(
n− 1

2

)n−1

pknD1 · · ·Dn

and

Hg(V ′;ν) = (ν1 + 1) · · · (νn + 1)− (ν1 − pkD1 + 1) · · · (νn − pkDn + 1)

= nn−1pknD1 · · ·Dn

so that

1− Hg(V, T ;ν)
Hg(V ′;ν)

≥ 1
2

(
1− 1

2n

)n−1

≥ 1
2
√

e
.

Inequality (3.5) gives (forgetting the positive contribution of the Arithmetic Hilbert
Function)

νnhn ≥
T log p

2
√

ep
− n

2
log(νmax + 1)

≥ pk log p

4
√

ep
− log p

2
√

ep
− n

2
log(npkDn)

≥ pk log p

7p
− nk log p− n

2
log(nDn) .

Further,

νnhn = (pkDn − 1)

(
ĥ(V )
Dn

+ ε

)
≤ pk(ĥ(V ) + εDn) .

Thus
ĥ(V ) + εDn ≥

log p

7p
− nk log p

pk
− n log(nDmax)

2pk
.

By letting ε → 0 we obtain the lower bound (3.10).
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We now consider the general case, when Stab(V ) is not necessarily connected.
Proposition 2.4 of [1]1 gives a hypersurface W = {H = 0} with connected stabi-
lizer of the same codimension k and normalized height ĥ(W ) ≤ ĥ(V ). Let r be
the rank of the finite abelian group Stab(V )/ Stab(V )0 and let dr | · · · | d1 its
elementary divisors . By inspection of the proof of this proposition, we see that
(after eventually renumbering the coordinates)

D′
j := degxj

(H) =

(j − 1 + 1/dj)Dj if j = 1, . . . , r ;

(r + 1)Dj if j = r + 1, . . . , n .

Thus W has multi-degree (D′
1, . . . , D

′
n) with D′

j ≤ nDj . By inequality (3.10) we
deduce

ĥ(V ) ≥ ĥ(W ) ≥ log p

7p
− nk log p

pk
− n log(n2Dmax)

2pk
.

�

We now assume k = n, i. e. Stab(V ) discrete. Choosing p = 5 we obtain

Theorem 3.4 Assume that Stab(V ) is discrete, n ≥ 9 and

max Dj ≤ 32n
.

Then
ĥ(V ) ≥ 1

23
.

Proof. We apply the above proposition with p = 5 and k = n. By assumption
Dmax ≤ 32n

. We obtain

ĥ(V ) ≥ log 5
35

− n2 log 5
5n

− n log(n2Dmax)
2× 5n

≥ log 5
35

− n2 log 5
5n

− 2n log n

2× 5n
− n2n log 3

2× 5n
=: f(n) .

An easy computation shows that f is an increasing function and f(9) > 1/23.

�

1In this proposition, the authors assume that V is defined over Q and Q-irreducible.
Nevertheless, the proof of the proposition can immediately be generalized to a geometri-
cally irreducible hypersurface.
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We conclude this section with a more general and technical lower bound for
the normalized height of a hypersurface.

Theorem 3.5 Assume that V is not a translate of a torus. Then

ĥ(V ) ≥ 1
56
×max

(
log(n log(n2Dmax))

k
, 1
)
×
(

log(n log(n2Dmax))
28nk log(n2Dmax)

)1/(k−1)

where k is the codimension of the stabilizer of V and Dmax = maxDj. In particular

ĥ(V ) ≥ log(n log(n2Dmax))2

6272n log(n2Dmax)
.

Proof. Let

N =
(

28nk log(n2Dmax)
log(n log(n2Dmax))

)1/(k−1)

. (3.11)

Let us choose a prime p such that N ≤ p ≤ 2N . Since for any x > 0

log x ≤ x1/2 (3.12)

we have log(n log(n2Dmax)) ≤ log(n(n2Dmax)1/2) ≤ log(n2Dmax). Hence

pk−1 ≥ N ≥ 28nk .

Moreover relation (3.12) gives

log p ≥ log N ≥ log(28n1/2k log(n2Dmax)1/2)
k − 1

≥ log(n log(n2Dmax))
2k

. (3.13)

Therefore
pk−1 log p ≥ Nk−1 log p ≥ 14n log(n2Dmax) .

By proposition 3.3 we deduce

ĥ(V ) ≥ log p

7p
− nk log p

pk
− n log(n2Dmax)

2pk

≥ log p

7p
− log p

28p
− log p

28p

=
log p

14p
.

By relation (3.13) and by the trivial bound log p ≥ log 2 we obtain

ĥ(V ) ≥ 1
14
×max

(
log(n log(n2Dmax))

2k
, log 2

)
× 1

2N

≥ 1
56
×max

(
log(n log(n2Dmax))

k
, 1
)
×
(

log(n log(n2Dmax))
28nk log(n2Dmax)

)1/(k−1)

.
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This proves the first inequality of theorem 3.5. For the second one, we remark
that k ≥ 2 and k(nk)1/(k−1) ≤ 4n. Thus

ĥ(V ) ≥ log(n log(n2Dmax))2

56× 28× 4n log(n2Dmax)
=

log(n log(n2Dmax))2

6272n log(n2Dmax)
.

�

Remark 3.6 Let K be a number field and let V be any hypersurface defined and ir-
reducible over K, of multidegree (D1, . . . , Dn). Let W be a geometrically irreducible
component of V , of multidegree (δ1, . . . , δn). Then dim StabW = dim Stab V ,
δj ≤ Dj and ĥ(W ) ≤ ĥ(V ). Thus, theorems 3.4 and 3.5 apply to a hypersurfaces
defined and irreducible over a number field K. In particular, we deduce from theo-
rem 3.4 the lower bound for the Mahler measure of a polynomial f ∈ Z[x1, . . . , xn]
announced in the introduction.

4 Appendix. Normalized height and essential mini-
mum

Let V ⊆ Gn
m be a hypersurface of multi-degrees (D1, . . . , Dn) defined and irre-

ducible over some number field K. We prove:

Theorem 4.1 Let j ∈ {1, . . . , n} and assume Dj > 0. Then

ĥ(V ) = Djµ̂
ess
j (V ) .

Proof. We can assume j = n. We have already remarked that the inequality
Dnµ̂ess

n (V ) ≤ ĥ(V ) is proved in [1], proposition 2.7 (i). Hence, it is enough to prove

ĥ(V ) ≤ Dnµ̂ess
n (V ) .

Let W1, . . . ,Ws be the geometrically irreducible components of V . Then µ̂ess
n (V ) =

µ̂ess
n (Wj), ĥ(V ) = sĥ(Ws) and Dn = sdegxn

(Wj). Thus we can assume that V is
geometrically irreducible. Let θ > µ̂ess

n (V ) and let p be a prime number. Let also
k ≥ 1 be the codimension of the stabilizer of V . We apply proposition 3.2 with
h1 = · · · = hn−1 = 0, hn = θ and

νj =

λpkDj − 1, if j = 1, . . . , n− 1

µpkDn − 1, if j = n

where λ and µ are positive integers. We further set

T = [P k/2] .
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Inequality (3.5) gives (forgetting the extra contribution at the place dividing p):

Ha(ker[p]V ;ν)
Hg(ker[p]V ;ν)

≤ n

2
log(νmax + 1) + νnθ . (4.14)

Let ε > 0. The Absolute Siegel’s lemma of Zhang (see [5], lemme 4.7 and the
remark which follows) shows that for any ε > 0 there exists a non-zero point x ∈ S
such that

hL2(x) ≤ hL2(S)
dim(S)

+
log dim(S)

2
+ ε . (4.15)

We choose in this statement S = [I]ν , with I the ideal of definition of ker[p]V .
Let N = (ν1 + 1) · · · (νn + 1) and assume that Hg(ker[p]V ;ν) < N . We have
hL2(S) = Ha(ker[p]V ;ν) and

dim(S) = N −Hg(ker[p]V ;ν) < N ≤ (νmax + 1)n .

Let
ε =

n

2
log(νmax + 1)− log dim(S)

2
> 0 .

By (4.14) and (4.15) there exists a non-zero F ∈ Q[x]ν vanishing on ker[p]V and
such that

hL2(F ) ≤ Ha(ker[p]V ;ν)
N −Hg(ker[p]V ;ν)

+
n

2
log(νmax + 1)

≤ Hg(ker[p]V ;ν)
N −Hg(ker[p]V ;ν)

νnθ +
N

N −Hg(ker[p]V ;ν)
n

2
log(νmax + 1) .

By Landau’s theorem (see (2.4)) pkĥ(V ) ≤ hL2(F ). Thus

ĥ(V ) ≤ Hg(ker[p]V ;ν)
N −Hg(ker[p]V ;ν)

p−kνnθ +
N

N −Hg(ker[p]V ;ν)
n

2pk
log(νmax + 1) .

We have
N = λn−1µpnkD1 · · ·Dn

and, by (2.3),

N −Hg(ker[p]V ;ν) = (λ− 1)n−1(µ− 1)pnkD1 · · ·Dn .

Thus

ĥ(V ) ≤ λn−1µ− (λ− 1)n−1(µ− 1)
(λ− 1)n−1(µ− 1)

µDnθ

+
λn−1µ

(λ− 1)n−1(µ− 1)
n

2pk

(
log(max{λ, µ}) + k log p

)
.
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Taking p → +∞ and θ → µ̂ess
n (V ) we obtain:

ĥ(V ) ≤ λn−1µ− (λ− 1)n−1(µ− 1)
(λ− 1)n−1(µ− 1)

µDnµ̂ess
n (V ) .

It is now enough to remark that

lim
µ→+∞

lim
λ→+∞

λn−1µ− (λ− 1)n−1(µ− 1)
(λ− 1)n−1(µ− 1)

µ = lim
µ→+∞

µ

µ− 1
= 1 .

�
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