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Summary. — In this contribution we describe a recent study, published in Gam-

bino P. et al., JHEP, 07 (2022) 083, focused on the lattice calculation of inclusive
decay rates of heavy mesons. We show how the inclusive calculation can be achieved
starting from four-point lattice correlation functions normalised appropriately. The
correlators used in this project come from gauge ensembles provided by the JLQCD
and ETM collaborations. An essential point of this method is the extraction of
spectral densities from lattice correlators which is obtained using two of the most
recent approaches in the literature. Our results are in remarkable agreement with
analytical predictions from the operator-product expansion. This study represents
the first step towards a full lattice QCD study of heavy mesons inclusive semileptonic
decays.

1. – Introduction

One of the most interesting objects in quark flavour physics is the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. It is a complex unitary matrix in the Standard Model (SM)
where the modulus of each of its elements parametrises the weak decays of quarks. The
elements of the CKM matrix are fundamental parameters of the SM and cannot be di-
rectly calculated from theory alone. In order to determine the value of these matrix
elements, one needs to combine experimental measurements of certain observables in-
volving the weak decay of quarks together with precise theoretical calculations of some
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quantity parametrising the decay. By determining each CKM matrix element it is pos-
sible to verify if the CKM matrix is indeed unitary as the SM predicts, knowing that
any deviation from unitarity would be indirect evidence for beyond the Standard Model
(BSM) physics.

At the moment, there is a persistent tension between the inclusive and exclusive
determination of two CKM matrix elements, i.e., |Vub| and |Vcb|. These determinations
are obtained studying exclusive or inclusive semileptonic decays of B-mesons, where in
the first case the B-meson decays to a specific daughter meson plus the leptonic pair while
in the latter the B-meson decays to any possible final states allowed by the conservation
of quantum numbers plus the leptonic pair. In fact, this tension might not be a direct
result of new physics, as it has been argued that BSM models struggle to accommodate
this discrepancy in a consistent and significant way [1, 2].

In order to resolve this tension it is important to better understand the analysis behind
the exclusive and inclusive determinations of these CKM matrix elements. From the
theory side, the exclusive determination requires the calculation of non-perturbative form
factors which nowadays can be calculated very precisely from lattice QCD simulations [3],
while the computation of inclusive quantities used the operator product expansion (OPE)
technique [4, 5].

In this contribution we show a method that can be used to calculate inclusive quan-
tities using lattice QCD correlation functions.

2. – Theoretical framework

Following the mathematical formalism introduced in ref. [6], we focus on the inclusive
semileptonic decay rate of a Bs meson decaying into some charmed final state Xc and a
pair of leptons lν. Choosing the rest frame of the Bs meson, one can write the differential
decay rate as

(1)
dΓ

dq2dq0dEl
=

G2
F |Vcb|2
8π3

LμνW
μν ,

where Lμν and Wμν are respectively the leptonic and hadronic tensor. It is useful to
write the hadronic tensor in its spectral representation as

(2) Wμν(ω, q) =
(2π)3

2MBs

〈Bs(0)|J†
μ(0)δ(Ĥ − ω)δ3(P̂ − q)Jν(0)|Bs(0)〉,

with the Hamiltonian operator Ĥ and momentum operator P̂ written explicitly.
After integrating analytically over El, the differential decay rate can be rewritten as

(3)

dΓ

dq2
=

G2
F |Vcb|2
24π3|q|

2∑
l=0

(√
q2

)2−l

Z(l)(q2),

with Z(l)(q2) =

∫ ∞

0

dω Θl(ωmax − ω)Z(l)(ω, q2),

where Z(l)(q2) is the energy integral the hadronic tensor decomposed into Lorentz in-
variant structure functions Z(l)(ω, q2). The integration kernel Θl is defined as Θl(x) =
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Fig. 1. – Schematic representation of the four-point Euclidean correlation function defined in
eq. (4). The crosses represent the insertions of the weak currents at times t1 and t2, the meson
states are created at time tsrc and annihilated at time tsnk. Between the currents we have the
propagation of the charm quark, hence, the piece of the correlation functions defined between
the currents contained all the possible charmed states Xc.

xlθ(x), where θ(x) is the Heaviside step function, and it enforces the correct integration
over the allowed phase space.

Equation (3) is the key quantity which allows to unlock the differential decay rate
calculation. In the following section we will show how to compute it using lattice corre-
lators.

3. – Lattice computation

In ref. [6], the authors show that in order to access the full spectrum of charmed
final states, one needs to compute a four-point lattice correlation function, which can be
written explicitly as

(4) Cμν(tsnk, t2, t1, tsrc) =

∫
d3x eiq·xT 〈0|φ̃Bs

(0, tsnk)J
†
μ(x, t2)Jν(0, t1)φ̃

†
Bs

(0, tsrc)|0〉,

where the two currents are sandwiched between the Bs meson states, as shown in fig. 1.
The above equation can then be normalised with two-point correlators C(t) in order to
remove the contribution coming from the creation/annihilation of the Bs meson,

(5) Mμν(t2 − t1; q) = lim
tsnk→+∞
tsrc→−∞

Cμν(tsrc, t2, t1, tsnk)

C(tsnk − t2)C(t1 − tsrc)
.

Then, it is possible to rewrite this expression as the Laplace transform of the hadronic
tensor

(6) Mμν(t; q) =

∫ ∞

0

dω Wμν(ω, q
2)e−ωt,

where here the time t is understood as the time separation between the two currents
t = t2 − t1.

In our analysis we make use of the decomposition of the hadronic tensor in structure
functions and we write a linear combination of normalised four-point lattice correlators

(7) G(l)(aτ ; q) =

∫ ∞

0

Z
(l)
L (ω, q2) e−aτω,
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where we used t = aτ , a being the lattice spacing. The problem of computing eq. (3) is

then reduced to the problem of extracting Z
(l)
L (ω, q2) from eq. (7) and then performing

the integral with the correct integration kernel. This is known in the literature as an
ill-posed inverse problem as the lattice correlators are unavoidably affected by statistical
errors and are limited by the finite temporal size of the lattice.

In order to overcome the inverse problem, we employed two slightly different tech-
niques which are known in the literature as the HLT method [7] and the Chebyshev
polynomials method [8].

The correlators used in our work are obtained from two distinct ensembles of gauge
configurations, one provided by the ETM collaboration [9, 10] and the other one from
the JLQCD collaboration [11, 12], using two different fermion discretisations namely
Twisted Mass Wilson fermions and Domain-Wall fermions respectively. The valence
quark in the ETM correlators were simulated using the Osterwalder-Seiler action [13].
For both ensembles, the b-quark mass (and hence the simulated Bs meson) is unphysically
light. This naturally affects the phase space region which can be accessed in the lattice
calculation.

4. – Kernel reconstruction

In our study we employed the Chebyshev polynomials method and HLT method on
the JLQCD correlators and the ETMC correlators respectively. The first step in both

methods is to convolute the spectral density (in our case Z
(l)
L (ω, q2)) with a smooth

kernel. This is done for two reasons: First, in order to overcome the ill-posed inverse
problem it is necessary to reconstruct the integration kernel numerically, which can only
work with sufficiently smooth functions. Second, the energy spectrum contained in a
lattice correlator is a finite distribution of δ-functions due to the finiteness of the volume
in the simulation. Hence, in order to make contact with the physical quantity, one needs
a continuous smooth function which can be extrapolated to infinite volume.

For this reason, in order to extract Z
(l)
L (ω, q2) one would normally choose a smeared

version of a δ-function. However, considering that our target quantity to access the
differential decay rate is Z(l)(q2) (as shown in eq. (3)), one can instead choose a smooth
version of the integration kernel Θl

σ(ωmax − ω), where σ is a smearing parameter which
will be removed at the end of the analysis. The kernel is then reconstructed in terms of
a series of polynomials

(8) Θl
σ(ωmax − ω) = (ωmax − ω)lθσ(ωmax − ω) � ml

Bs

τmax∑
τ

gτ (ωmax;σ)e
−aωτ ,

where τmax is the maximum time extent of the lattice correlator.
Once the coefficients gτ have been obtained, either employing the Chebyshev poly-

nomials or the HLT method (we encourage the interested reader to see refs. [7, 8] for

details), we are able to apply them to the lattice correlator in order to compute Z
(l)
σ (q2)

Z
(l)
σ,L(q

2) =

∫ ∞

0

dω Θl
σ(ωmax − ω)Z

(l)
L (ω, q2)(9)

�
τmax∑
τ

gτ (ωmax;σ)

∫ ∞

0

dω Z
(l)
L (ω, q2)e−aωτ �

τmax∑
τ

gτ (ωmax;σ)G
(l)(aτ).(10)
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Fig. 2. – Combined σ → 0 extrapolation of Z
(l)
σ for the ETMC correlators, employing 10 values

of σ ∈ [0.12mBs , 0.3mBs ] and using the smallest 5 to perform the fit.

5. – Lattice results and comparison with the OPE

As stressed in the previous section, in order to make contact with any physical quantity
it is important to remove the dependence on the finite volume and the smearing. In
particular, one needs to first perform the infinite volume extrapolation and only then
take the σ → 0 limit:

(11) Z(l)(q2) = lim
σ→0

(
lim

L→∞
Z

(l)
σ,L(q

2)

)
.

The two limits do not commute due to the fact that the infinite volume extrapolation
is well-defined for continuous (smeared) quantities only. However, in our study we were
unable to perform the infinite-volume extrapolation due to the fact that our data were
obtained from simulations at only one physical volume. We quote our final results per-
forming only the σ → 0 limit, a choice which is justified considering that our present
statistical uncertainties are likely to be larger than finite volume effects.

An example of the σ → 0 extrapolation is shown in fig. 2, where we show a combined

linear fit of the results obtained with different versions of the smeared kernel Θ
(l)
σ , for

details see ref. [14].

Finally, we are also able to compare the lattice results with the analytic predictions of
the OPE. The two lattice results cannot be directly compared because they use different
quark masses in their respective simulations. In fig. 3 we see a remarkable agreement
between the lattice results both in the JLQCD and the ETMC case. It is important
to note that the uncertainty in the OPE is larger than the lattice one because of the
unphysically light mass of the b-quark which enters the analysis through a 1

mb
expansion.

These results provide a non-trivial test for the method discussed in this work, making
us optimistic that a full lattice QCD study including all the sources of systematic errors
can be achieved in the near future. This is certainly a remarkable first step towards a
better comprehension of the inclusive analysis with the hope that it could one day resolve
the tension that affects the determination of |Vcb|.
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Fig. 3. – Differential q2 spectrum, divided by |q|, in the SM. Comparison of OPE with JLQCD
(top panel) and ETMC (bottom panel) data are shown.
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