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Abstract
Malaria is an endemic in various tropical countries. The gold standard for disease detection is to examine the blood smears

of patients by an expert medical professional to detect malaria parasite called Plasmodium. In the rural areas of

underdeveloped countries, with limited infrastructure, a scarcity of healthcare professionals, an absence of sufficient

computing devices, and a lack of widespread internet access, this task becomes more challenging. A severe case of malaria

can be fatal within one week, so the correct detection of the malaria parasite and its life cycle stage is crucial in treating the

disease correctly. Though computer vision-based malaria detection has been adequately explored lately, the malaria life

cycle stage classification is still a relatively unexplored field. In this paper, we introduce a fast and robust deep learning

methodology to not only classify the malaria parasite-type detection but also the life cycle stage identification of the

infected cell. The proposed deep learning architecture is more than twenty times lighter than the widely used DenseNet and

has less than 0.4 million parameters, making it a good candidate to be used in the mobile applications of such economically

challenged states for malaria detection. We have used four different publicly available malaria datasets to test the proposed

architecture and gained significantly better results than the current state of the art on malaria parasite-type and malaria life

cycle classification.
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1 Introduction

Malaria is a fatal disease caused by the Plasmodium par-

asite. It is endemic in Pakistan, with 3.4 million suspected

cases of malaria from January to August in year 2022.

These numbers rose rapidly as compared with the 2.6

million cases reported in 2021, due to a surge of floods in

the country, and are expected to rise again in 2023 [1].

Other regions with the highest outbreaks of malaria are

sub-Saharan Africa, South-East Asia, Western Pacific, and

Eastern Mediterranean [2]. Malaria has been labeled as the

disease of poverty, resulting from lower socio-economic

and hygiene circumstances [3].

The malaria parasite is introduced into the host’s body

by a carrier mosquito and uses the red blood cells (RBCs)

to carry out its life cycle. There are four types of malaria

parasite known as Plasmodium (P.) falciparum, P. vivax,

P. ovale, and P. malariae; the first two are the most

common [4]. These parasite types target RBCs of a specific

age, i.e., malariae targets old RBCs, whereas vivax targets

young RBCs [5]. These types also have different lifespans

and maturing ages than each other; some types can lay

dormant for weeks and even relapse after the first infec-

tion [6]. Hence, it is important to diagnose not only the

infection but also the parasite type in infected cells. Each

parasite type has four stages in its life cycle: gametocyte,

ring, schizont, and trophozoite [7]. The correct diagnosis of
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the parasite life cycle stage is crucial for the proper treat-

ment of this disease as various life cycle stages need more

imminent care. Ring and trophozoite are the early stages of

the parasite where the patients are mostly asymptotic

(showing no symptoms of disease); hence, catching the

disease at this stage ensures organ safety and patient sur-

vival chances [8]. However, there is little work done in

classifying all the life cycle stages of the different types of

malaria parasites as compared to the identification and

detection of malaria parasite.

The standard malaria diagnosis method includes manu-

ally examining the blood slides under a microscope; if the

parasite is found within red blood cells, then further

investigation is done to detect the type, life cycle stage, and

the total number of infected RBCs [9]. The accuracy of this

method is directly dependent on the pathologists’ expertise

and the available infrastructure. Examining hundreds of

large samples can be time-consuming, and a shortage of

skilled pathologists could result in a misdiagnosis, espe-

cially in the already overwhelmed medical centers in

endemic flooded areas like Pakistan [10]. The test proce-

dure is not only time-consuming but also expensive given

the costs of man-hours being used for this task. Computer-

aided diagnosis (CAD) systems can relieve this load to a

great extent while ensuring a lesser error rate and faster

results at a cheaper cost. Previously traditional image

processing techniques have been used to detect the malaria

parasite and its types depending upon the morphological

features of cells and image intensity values [11, 12]. Now

there are more robust machine learning and deep learning

architectures like convolutional neural networks (CNNs)

that provide better results and are more preferred [13].

However, these deep learning architectures also require

good-quality network coverage and hardware to function

accurately. In countries facing economic disparities, where

rural and remote areas encounter challenges in accessing

reliable computer hardware and good internet connectivity,

CAD systems cannot be incorporated due to their high

computation cost. Thus, there is a need for a deep learning

methodology that works with minimal computational cost,

is lightweight to be embedded in mobile devices, and

requires no internet or additional digital tools.

In this paper, we use deep learning to classify the var-

ious malaria parasite types and life cycle stages using a

lightweight model that can be easily integrated into mobile

applications for broad and enhanced user accessibility in

remote and financially challenged areas. The main contri-

butions and advantages of this paper are:

• Introduction of a novel lightweight deep learning (DL)

architecture to classify both malaria parasite type and

life cycle stage.

• Unlike most existing proposals which use multiple DL

architecture pipelines for malaria classification and

stage detection, e.g., [14], the proposed model is a

single, lightweight architecture.

• Ablation study and experiments conducted to show the

proposed architecture give better results than the state

of the art while being less computationally expensive.

2 Literature review

Several computer-aided diagnosis (CAD) systems have

been developed for the classification of malaria parasites

from the blood slide images [15–17]. These systems take

blood slide images of patients as input and classify the

blood cells as infected or not infected, also called the

binary classification of malaria [18]. Most public malaria

datasets also have only two labels, healthy and infected,

along with the blood slide images [19, 20].

The conventional classification of malaria includes

using the morphological features of blood cells to identify

the infected cells [21], along with improving the image

acquisition method [22], and incorporating the image

intensity information with the size of cells [23]. Some

studies have altered full image color spaces to find the

number of healthy and infected red blood cells [24],

whereas color-based pixel discrimination has also been

used for malaria cell detection [25]. The research in [26]

uses histogram equalization and connected components to

estimate the malaria parasite density. These traditional

image processing methods are time-consuming and

dependent on the features that vary between different

datasets, e.g., intensity, prominent image color due to the

staining technique used, etc. To further improve the results

and speed up the process, machine learning and deep

learning architectures were introduced as a much faster and

more efficient alternative for the purpose of image

classification.

The machine learning techniques range from using

stacked CNNs for binary classification of malaria [27] to

more sophisticated deep learning architectures for better

accuracy [28]. Pre-trained neural networks along with

optimization techniques have been used to achieve a higher

accuracy in binary classification of malaria [29, 30] and to

automatically detect malaria parasite from the given blood

slide images [19].

Moving toward the multiclass classification of malaria

parasite types, a few datasets provide the multiclass labels

for various types of malaria parasites [31] and the area is

relatively less explored. Kassim et al. [32] have worked on

classifying P. Falciparum and P. Vivax from thick smear

images. Recently, new datasets have been published that
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include not only the type of malaria parasite with blood

slides images but also have the multiclass labels for the life

cycle stage, e.g., [14]. Their proposed method segments

and classifies the malaria life cycle stage using deep

learning architectures of pre-trained neural networks.

Loddo et al. [33] also worked on a subset of [31] for the

multiclass classification of life cycle stage using only the

blood slide images of P. Falciparum malaria type. Several

pre-trained networks were used, and DenseNet outper-

formed all the other networks for this task. Another malaria

life cycle classifier is presented in [34] which classifies the

malaria parasite using the ring, schizont, and trophozoite

stages. Recent studies have used AlexNet and GoogleNet

for the life cycle classification of Plasmodium parasite

using data collected from the Hospital Universiti Sains

Malaysia (HUSM). The GoogleNet Network and AlexNet

showed an accuracy of 91.1% and 89.1% on test data

respectively [35]. Another study used deep neural networks

for the classification of the Plasmodium parasite into four

known life cycle stages (ring, schizont, trophozoite, and

gametocyte) where the Efficient Net B7 achieved an

accuracy of 87.95% outperforming the other networks [36].

Most of the reviewed studies in this literature use tra-

ditional image processing techniques that are dependent on

the features of a specific dataset and hence can’t be used on

others. Some recent studies have, however, used deep

learning models on a malaria dataset that is too small or on

a subset of the existing malaria dataset, eliminating some

classes of either the malaria parasite type or life cycle

stage. Our study provides a comprehensive network that

classifies all the common classes of malaria parasite type

and life cycle stage classification. Moreover, the deep

learning networks used in recent studies are computation-

ally expensive to be embedded in the inferior quality

hardware available in remote areas of lower economically

developed countries. Furthermore, a huge literature gap

exists due to the high imbalance between the amount of

work done in binary classification versus the multiclass

classification of malaria parasite type. This research not

only fills this gap but also provides more insight into the

life cycle stages of malaria-infected cells. This malaria life

cycle stage detection is an important key in planning the

correct treatment and dosage of medicine, and ultimately

saving many lives. Besides, there is a need for a method-

ology that is robust and independent of the varying features

between different datasets. We also cater to this issue by

using various public datasets and validating our method-

ology on all those. The rest of the paper is organized as

follows, the benchmark malaria datasets used for testing

the proposed technique are introduced in Sect. 3. Section 4

introduces the proposed methodology for malaria detection

and classification. The experimental evaluations and

discussion are presented in Sect. 5, and conclusions are

drawn in Sect. 6.

3 Datasets

In this section, we briefly introduce the benchmark malaria

datasets MP-IDB, MP-IDB2, IML_Malaria, and Malaria-

Detection-2019 that we used in our experiments and per-

formance evaluations.

3.1 MP-IDB

The MP-IDB [31] is a publicly available1 malaria dataset

collected at Centre Hospitalier Universitaire Vau-

dois (CHUV) using an optical laboratory microscope cou-

pled with a built-in camera. There are a total of 229 full-slide

blood images of four types of malaria parasites, P. falci-

parum, P. vivax, P. malariae, and P. ovale. These full-slide

images have a resolution of 2592� 1944 and are stored in

PNG format with 24-bit color depth. The sample images of

MP-IDB full-slide blood images are presented in Fig. 1.

Each parasite type is further divided into four life cycle

stages, called ring, schizont, trophozoite, and gametocyte.

For the life cycle stages, cell crops of varying resolutions

are provided in PNG format, this dataset is referred to as

MP-IDB2. The same microscope is used for acquiring all

the images but the images vary in terms of illumination,

background uniformity, and image border overexposure.

The sample images of cell crops are presented in Fig. 2.

3.2 IML_Malaria

The IML_Malaria [14] is a benchmark dataset for malaria

life cycle classification in thin blood smear images con-

taining Giesema-stained full blood slide images of the

malaria parasite. The dataset was first published in 2021

and contains 345 microscopic images. The images have a

resolution of 1280� 960 and are provided in a JPG format.

An annotation file is also given along with the dataset that

contains JSON arrays for each image. There are two keys

for each JSON object, named as ‘image_name’ and ‘ob-

jects’. The objects array further has the ‘type’ of each cell

visible on the image and its bounding box called ’bbox’.

The types of blood cell range from ‘red blood cell’, ‘ring’,

‘schizont’, ‘trophozoite’, ‘gametocyte’, and ‘difficult’. The

dataset is publicly available.2 Sample images of this dataset

are shown in Fig. 3.

1 https://github.com/andrealoddo/MP-IDB-The-Malaria-Parasite-

Image-Database-for-Image-Processing-and-Analysis.
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3.3 Malaria-Detection-2019

The Malaria-Detection-2019 dataset [34] is publicly

available.3 It contains 883 Giesema-stained full blood slide

images from the malaria parasite. The images have a res-

olution of 1382� 1030 in PNG format. The life cycle stage

labels are provided along with the dataset. There are a total

of eight labels for life cycle stages including early

trophozoite (LR-ET), mid trophozoite (MT), ring (R), late

ring, segmenter (Seg), early schizont (Esch), late schizont

(Lsch), white blood cells (WBC), and debris. In their

work [34], distinguishing between all eight stages was

becoming very difficult, especially the early and late labels

of each life cycle stage. Therefore, these eight stages were

merged and finalized into three stages instead, ring, sch-

izont, and trophozoite to increase the accuracy. We will

also follow the same strategy in this research. A few

images of these three stages are shown in Fig. 4.

4 Methodology

Our multiclass malaria classification methodology is divi-

ded into two parts. Firstly, we classify the malaria parasite

type using the MP-IDB dataset. Secondly, we classify the

malaria parasite life cycle stage using MP-IDB,

IML_Malarai, and Malaria-Detection-2019 datasets. In this

section, we explain all the preprocessing steps taken to

prepare the dataset for both of the multi-class classification

tasks. We also introduce the proposed architecture and

other compared models used in the experiments section and

the parameters chosen for training the datasets. For both

malaria parasite type and life cycle stage classification we

have used the same training pipeline as shown in Fig. 7. A

pseudo-code of the proposed pipeline is also shown in

Algorithm 1 for a better understanding of the process.

4.1 Preprocessing

All the datasets were randomly divided into training and

testing sets with an 80:20 ratio. For both multi-class clas-

sification tasks, we normalize the images using mean and

standard deviation. For the malaria parasite-type classifi-

cation, we used the full-slide blood smear images as shown

in the sample images of the previous section. Whereas, in

the malaria life cycle stage classification, we cropped the

IML_Malaria and Malaria-Detection-2019 datasets around

the infected labeled cells using the location information

provided in the annotation files of these datasets. As MP-

IDB2 dataset with life cycle stage classification explained

in section 3.1 was already provided in crops around the

infected labeled cells. The images of all three datasets used

for malaria life cycle stage classification (IML_Malaria,

Malaria-Detection-2019, and MP-IDB2) become symmet-

rical. The sample images of crops obtained from these

datasets can be seen in Fig. 5.

Due to the high imbalance of classes in most datasets,

there was a high probability of the networks overfitting on

the most represented classes in the training dataset. Hence

several different augmentations were used to overcome this

issue. The augmentations used in our study include random

crop, random pad, and horizontal and vertical flips. These

augmentations were applied independently for each batch

2 https://github.com/QaziAmmar/A-dataset-and-benchmark-for-

malaria-life-cycle-classification-in-thin-blood-smear-images.
3 https://data.mendeley.com/datasets/5bf2kmwvfn/1.

Fig. 4 Sample images from Malaria-Detection-2019: a ring, b
schizont, and c trophozoite

Fig. 1 Sample images from MP-IDB dataset: a Falciparum, b Vivax,
c Ovale, and d Malariae

Fig. 2 Sample images from MP-IDB2 dataset: a Falciparum Ring, b
Falciparum Gametocyte, c Vivax Schizont, and d Vivax Trophozoite

Fig. 3 Sample images from IML_Malaria dataset: a ring, b schizont,

c trophozoite, and d vivax trophozoite
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with a probability of 0.5. After the augmentations, the input

images (both full-slide images and crops) are resized to

224� 224 for all the other architectures and 299� 299 for

InceptionV3. These preprocessing and augmentation steps

are also defined in line 3 of our methodology Algorithm 1.

The images are then converted to tensors as a standard

input format. The statistical details of all the datasets used

in our study, including the total number of full-slide ima-

ges, crop images, and augmented images, are presented in

Table 1.

4.2 Proposed architecture

We propose a less complicated yet efficient deep learning

architecture for malaria-type classification and life cycle

detection. The first layers of this network are the convo-

lution layers and are translation invariant. Hence they can

detect objects (cells in our case) even when the image is

augmented. In our convolution layers, we have used a

kernel size of 3� 3 as the smaller kernels have proved to

be more efficient in grasping meaningful information. We

have used five convolutional layers in our network fol-

lowed by MaxPool and ReLu layers. The MaxPool layers

further reduce the feature map dimensions and the activa-

tion function ReLu (Rectified Linear Unit) converts all

negative values to zero while keeping the positive values

unchanged. Afterward, we use a global average pooling

(GAP) layer. Global average pooling (Eq. 1) down-sam-

ples the feature maps to a single average value, reducing

the spatial dimensionality while saving the important

information.

GAP(c) ¼ 1

HW
�
XH

i¼1

XW

j¼1

Fði; j; cÞ ð1Þ

Here GAP(c) represents the average value of channel c,

H and W stand for the height and width of the feature map,

and the feature map F(i, j, c) gives the value at the location

of (i,j) in channel c.

In our case, the input of the global average pool is 256�
7� 7 feature maps and it outputs an average of all 7 feature

maps as 256� 1� 1. This GAP layer is used to replace the

fully connected layers and reduce the number of parame-

ters. GAP layers also help in eliminating overfitting and are

useful in cases where the dataset is small. Lastly, the fea-

ture maps are flattened and passed to a linear layer to be

classified into the four class labels. The proposed archi-

tecture is shown pictorially in Fig. 6.

We also used several deep learning architectures and

conducted numerous experiments using the pre-trained

networks already available in PyTorch [37], including

ResNet18 [38], Densenet121 [39], Alexnet [40], Squeeze-

net [41], VGG11 [42], and Inceptionv3 [43]. Details of

these architectures and the proposed model are given in

Table 7. It can be noted that the proposed model has the

least number of trainable parameters, making it three times

lighter than SqueezeNet and twenty times lighter than

DenseNet. Having less than 0.4 million parameters, this

network becomes the optimal lightweight network to be

deployed in mobile applications and computer-aided

diagnosis systems.

Algorithm 1 Algorithm for malaria classification

4.3 Training

Initially, we used the architectures mentioned in the above

section with two different optimizers for training over the

multiclass classification of malaria parasite type, called

stochastic gradient descent (SGD) and adaptive moment

estimation (Adam). The Adam optimizer gave us better

results so we used it in the multiclass classification of

malaria life cycle stage as well. The LR of 0.001 was used

with a Scheduler of step size=1. For the loss calculation,

we used cross-entropy loss. It is particularly useful for

unbalanced classes and works with non-normalized logits

as input for each class. For both malaria parasite type and

life cycle stage classification, this training and testing

describes the steps in second half of our pipeline, as shown

Fig. 5 Malaria life cycle stage crops obtained from parasite location

anchors, a schizont, b gametocyte, c ring, and d trophozoite. Here a
and b are derived from IML_Malaria dataset, and c and d are derived

from the Malaria-Detection-2019 dataset
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in Fig. 7. However, the output label classes may vary

depending on the dataset used.

All the training was done for 100 epochs and different

metrics were computed to gauge the model’s performance.

A test can result in one of four possible outcomes: true

positive (TP), false positive (FP), true negative (TN), and

false negative (FN). A TP occurs when the model correctly

predicts the presence of malaria parasites, aligning with the

actual positive label. Conversely, an FP happens when the

model incorrectly predicts the presence of parasites in an

image labeled as negative. This might lead to a misdiag-

nosis, indicating parasites where there are none. On the

other side, a TN signifies the correct identification of an

absence of parasites in an image labeled as negative.

Finally, an FN occurs when the model fails to detect par-

asites in an image labeled as positive. We use accuracy,

precision, sensitivity, and F1-score to evaluate the perfor-

mance of the classifiers.

Accuracy is a common metric used to evaluate the

overall performance of a classification model. It is defined

as the ratio of correctly predicted instances (both true

positives and true negatives) to the total number of

instances in the dataset.

Accuracy ¼ TPþ FN

TPþ FPþ TNþ FN
ð2Þ

The sensitivity is the rate of true positive, in disease

detection a positive refers to the patient having that disease.

So, the sensitivity (aka recall) is the model’s ability to

correctly diagnose an ill patient as such.

Sensitivity ¼ TP

TPþ FN
ð3Þ

Precision measures the accuracy of the positive predictions

made by the model.

Precision ¼ TP

TPþ FP
ð4Þ

The F1-score is a valuable metric in image classification

problems because it considers both false positives and false

negatives, providing a balanced assessment of a model’s

performance, particularly in situations with imbalanced

datasets.

F1 score ¼ 2� Precision� Recall

Precisionþ Recall
ð5Þ

Table 1 Statistics of the data used in malaria parasite-type and life

cycle stage classification

Dataset Full Crops Augmented Classes Resolution

MP-IDB 210 – 105 4 224y

MP-IDB2 – 1361 680 4 224y

IML_Malaria – 427 213 4 224y

md-2019 – 1361 680 3 224y

� Here Full refers to the full-slide images used in malaria parasite-

type classification and crops refers to the infected cell cropped image

in the life cycle stage classification task. y Input image is resized to

this resolution for each model in Table 7 other than InceptionV3

Fig. 6 Proposed malaria classification and life cycle detection

architecture

Fig. 7 Proposed malaria classification and life cycle detection pipeline
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5 Results and discussion

The first part of our methodology, multiclass classification

of malaria parasite type uses the MP-IDB dataset men-

tioned in sect. 3.1. After training for 100 epochs using the

proposed architecture, we checked the classification accu-

racy on the test set. The multiclass classification of malaria

parasite type reached an average accuracy of 99%. The

individual precision, sensitivity, and F1-scores of each four

classes along with the index (count frequency) of each

class are shown in Table 2. The confusion matrix of each

class is also represented separately in Fig. 8. It is worth

noting that only one image is misclassified over the entire

dataset.

The second part of our methodology corresponds to the

multi-class classification of malaria life cycle stages. The

proposed architecture is also trained and tested on the cell

images of the MP-IDB dataset with the life cycle stage

labels. The test set achieves an overall accuracy of 96% for

the four mentioned life cycle stages. The indexes of all the

classes, along with their individual precision sensitivity and

F1-scores, are presented in Table 3. Furthermore, Fig. 9

shows the confusion matrices for this classification. These

statistics show a low F1-score for the Trophozoite class. It

is because this dataset is highly unbalanced as the

Trophozoite and Gametocyte classes are severely under-

represented. It is also worth mentioning here that current

state of the art, e.g., Loddo et al. [33] only considered the

falciparum class, we contrastingly include all the dataset

cell images instead of using only the life cycle stages of the

falciparum class.

The second dataset we used in our multiclass classifi-

cation of the malaria life cycle stage is IML_Malaria. This

dataset has four balanced life cycle stages. We used the

proposed network initialized from scratch for training on

this dataset. Due to the balanced nature of the dataset, the

individual scores of each class are better, with an overall

accuracy of 92%. Table 4 refers to the individual scores of

each class using all four performance parameters. The

corresponding confusion matrices are shown in Fig. 10.

Table 2 Performance of the proposed algorithm on MP-IDB dataset

for multiclass classification of malaria parasite type

Class Precision Sensitivity F1-score Indexes

Falciparum 1.00 1.00 1.00 6

Vivax 1.00 0.95 1.00 251

Ovale 1.00 1.00 1.00 6

Malariae 1.00 1.00 1.00 12

Average accuracy 0.99

Fig. 8 Multi-class classification confusion matrix of the proposed

algorithm malaria parasite-type classification on MP-IDB dataset

Table 3 Performance of the proposed model on MP-IDB2 dataset for

multiclass classification of malaria life cycle stage

Class Precision Sensitivity F1-score Indexes

Gametocyte 0.80 0.67 0.73 6

Ring 0.97 1.0 0.99 251

Schizont 0.62 0.83 0.71 6

Trophozoite 1.0 0.11 0.20 12

Average accuracy 0.96

Fig. 9 Multi-class classification confusion matrix of the proposed

algorithm on MP-IDB2 dataset

Neural Computing and Applications

123



Lastly, we used the Malaria-Detection-2019 dataset. The

given eight life stage classes are merged to make three final

classes, called ring, schizont, and trophozoite. The overall

accuracy achieved by our proposed network is 82%, which

is comparable to Abbas et al. [34]. Although Abbas et al.

[34] collected and used 112 features along with random

forests to classify this dataset, the tailored collection of

features is highly dependent upon the dataset and can vary

when applied to other datasets. Hence our methodology is

more robust and generalizable. The individual scores of

each class are mentioned in Table 5, and the corresponding

confusion matrices are shown in Fig. 11.

In Table 6, we provide a performance comparison

between the proposed method and the state-of-the-art rep-

resentative method for each dataset. On malaria-type

classification problems, the proposed method achieves 99%

compared to 91% of Yang [44]. On life cycle stage

detection, the proposed method outperforms the

Arshad [14] method by significant margins and gives

comparable results to Abbas [34] without any tailored

collection of features. The performance of the proposed

method on MP-IDB2 is also appreciable as it achieves 96%

accuracy on the entire dataset when compared to

Luddo [33] which achieved 99% accuracy but only for

falciparum class of the dataset.

All the results acquired using our novel deep learning

approach beat the previous state-of-the-art results by a

Table 4 Performance of the proposed model on IML_Malaria for

multiclass classification of malaria life cycle stage

Class Precision Sensitivity F1-score Indexes

Gametocyte 0.91 0.98 0.95 44

Ring 0.95 0.91 0.93 22

Schizont 0.88 0.88 0.88 8

Trophozoite 0.80 0.67 0.73 12

Average accuracy 0.92

Fig. 10 Multi-class classification confusion matrix of the proposed

algorithm on IML_Malaria dataset

Table 5 Performance of the proposed method on Malaria-Detection-

2019 for multiclass classification of malaria life cycle stage

Class Precision Sensitivity F1-score Indexes

Ring 0.83 0.87 0.85 52

Schizont 0.90 0.73 0.81 111

Trophozoite 0.73 0.87 0.79 100

Average accuracy 0.82

Fig. 11 Multi-class classification confusion matrix of the proposed

algorithm on Malaria-Detection-2019 dataset

Table 6 Performance comparison of the proposed with the state of the

art

Dataset Classification Results

Method Ours

MP-IDB Malaria type Yang [44]: 91% 99%

MP-IDB2 Life cycle Luddo [33]: 99%* 96%y

IML_Malaria Life cycle Arshad [14]: 80% 92%

MD-2019 Life cycle Abbas [34]: 82% 82%

� This accuracy is only for the falciparum class of the dataset

y This accuracy is achieved for the entire dataset
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clear margin. The convolution layers in our network focus

on the vital information present in the input images and the

GAP layer averages this information while preserving the

spatial dimension. Due to the combination of these layers,

our network is able to provide better results in a cost-

efficient manner while avoiding overfitting. The state-of-

the-art deep learning architectures rely on large datasets to

learn better and give optimal results. In this problem, as the

datasets are small, these deep learning architectures overfit

and gave better results than our architecture on the training

set images but worse on the test set. The comparison

between the previous state of the art and our results is

presented in Table 7. Our proposed architecture gives

better accuracy results than ResNet (the closest competitor)

on MP-IDB dataset, with six times lower Flops (floating

point operations per second) and 13% faster inference time

proving that our architecture is more cost and time-

efficient.

Furthermore, as these datasets are highly unbalanced the

state-of-the-art architectures only gave good results for the

most represented classes, i.e., falciparum and vivax in the

malaria parasite type, and ring in the malaria life cycle

stage. On the other hand, as seen in the confusion matrices,

our proposed architecture emphasizes the under-repre-

sented classes and gives better precision and sensitivity

values for them as compared to the other architectures.

This trait makes our architecture the most suitable candi-

date for the unbalanced healthcare and medical datasets.

5.1 Ablation study

The main motive of this research is to propose a light-

weight deep learning model that gives optimal results for

the multiclass classification of malaria. To this end, we

trained the proposed method on two different input reso-

lutions, 224� 224 and 112� 112. The number of param-

eters for both input resolutions is the same, i.e., 393K, but

the main measure of difference is floating point operations

per second (FLOPS). FLOPS play an integral part in

measuring the complexity of a deep learning model, as a

higher number of FLOPS leads to more training time and

slower inference speed. To save computational resources

while maintaining a high accuracy score is an active

research field in deep learning. In our experiments, we

observed that the lower-resolution input image decreases

the FLOPS considerably and is computationally more cost-

effective. We present the results of this ablation in Table 8.

The image input resolution of 224� 224 achieved the

highest accuracy scores for all datasets. However, by

reducing this input resolution to 112� 112, the FLOPS

decrease by four times. This reduction in computational

complexity is achieved by trading off only 2 to 3% average

accuracy.

6 Conclusion

In this paper, we have presented a lightweight technique

for multiclass classification of malaria parasite type and life

cycle stage. Our proposed architecture achieves better

results than the state of the art on four benchmark malaria

datasets. It also focuses on the classes with low counts,

making it an ideal choice for unbalanced datasets. More-

over, our architecture is light enough to be embedded in

mobile applications which will be very beneficial for the

understaffed hospitals of the developing countries that lack

advanced computer tools to support heavy deep learning

models. To the best of our knowledge, this is the most vast

and diverse study conducted for both multiclass malaria

Table 7 Comparison malaria-type classification accuracy of the

proposed and other deep learning architectures on MP-IDB dataset

Model Accuracy Flops Inference Parameters

batch=1

ResNet18 0.98 1.82G 0.43s 11,178,564

DenseNet121 0.95 2.88G 0.28s 7,978,856

SqueezeNet 0.86 743.36M 0.08s 1,248,424

AlexNet 0.93 711.47M 0.95s 57,020,228

VGG11 0.98 7.64G 1.70s 128,788,228

InceptionV3 0.90 5.73G 0.49s 24,354,536

Proposed 0.99 256.01M 0.03s 393,636

� The input image size of 224� 224 is used for all models other than

Inception V3, and an input size of 299� 299 is used for Inception V3

Table 8 Impact of input

resolution on the computational

complexity in terms of FLOPS

(floating point operations per

second), and accuracy. Note: K

and M denote 103 and 106,

respectively

Input Size: 224� 224 Input Size: 112� 112

Dataset Accuracy #Params FLOPS Accuracy #Params FLOPS

MP-IDB 0.99 393K 256 M 0.93 393K 60 M

MP-IDB2 0.96 393K 256 M 0.95 393K 60 M

IML_Malaria 0.92 393K 256 M 0.91 393K 60 M

Malaria-Detection 2019 0.82 393K 256 M 0.81 393K 60 M
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parasite type and life cycle stage classification on different

datasets using a novel cost-efficient model. However, it can

be observed from the results that the proposed life cycle

classification approach struggles to achieve the desired

accuracy in the Schizont and Trophozoite stages. From the

initial investigations, we observed that the reasons for this

limiting performance are the limited or biased dataset

which results in restricted learning of the model. Further-

more, these two types appear visually similar, particularly

under low-resolution imaging systems and the model fails

to distinguish them. We believe that this limitation can be

overcome if a sufficient dataset for training is available. In

future, we would like to add more balanced datasets to our

experiments to eliminate any accidental bias and embed

our architecture in mobile applications and CAD systems.
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