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Chapter 1

Introduction

Nowadays mathematical modelling and data analytics approaches play a more and
more important role in risk management of uncertainty. Stochastic differential equa-
tions and Monte Carlo simulations constitute essential parts of any risk management
department both in insurance and banking sectors. In my thesis I aim to study and
improve current approaches often employed in the risk management practice by
using techniques from data analysis and mathematical modelling.

In mathematical terms any uncertainty about the future is modelled by stochastic
processes. An important role in this area play affine processes. They have become
very popular in financial applications due to their computational tractability and
flexibility in capturing many of the empirical features of financial time series. The
square-root process of Feller (1985) and the Ornstein-Uhlenbec process (1930) are
primary examples of the affine processes which are widely applied in financial
economics. They are used to model term structure of interest rates, instantaneous
mortality intensity or stochastic volatility of equity prices such as in the model of
Heston (1993).

In the first part of my thesis I quantitatively compare the forecasts from four
different mortality models. I consider one discrete-time model proposed by Lee and
Carter (1992) and three continuous-time models: the Wills and Sherris (2011) model,
the Feller process and the Ornstein-Uhlenbeck (OU) process. The first two models
estimate the whole surface of mortality simultaneously, while in the latter two, each
generation is modelled and calibrated separately. I calibrate the models to UK and
Australian population data and compare their performance in terms of accuracy and
precision using backtesting procedures.

In the second part I study the problem of calibrating and modelling market price
of risk in the context of stochastic volatility models. Under the Heston model it is
possible to define a price of risk in a way that the state variable follows a square-root
process under both an objective probability measure and an equivalent martingale
measure. This is a convenient framework in terms of modelling since nowadays
internal models in the context of Solvency II are required to produce both risk-
neutral and real-world simulations – in particular, for calculation of the Solvency
Capital Requirement (SCR). The problem of calibrating the price of risk is crucial
in this setting. I propose a calibration procedure based on the maximum likelihood
approximation approach of Ait-Sahalia and Kimmel (2007). The developed algorithm
iteratively finds the parameters of the Heston model using two criteria – the minimal
prediction error and the maximum likelihood approach. The procedure is calibrated
using the data on the Eurostoxx50 index and its options for the last 17 years. This part
of my thesis was developed at the department of Mathematics and Actuarial science
of the Université Libre de Bruxelles under the supervision of Dr. Céline Azizieh.

The third part of the thesis, except for the notion of uncertainty in finance, also
deals with the notion of interdependency. After the economic crises it became evident



2 Chapter 1. Introduction

that a high degree of interdependence within the financial system increases the
systemic risk which can not be disregarded in credit assessment. I study how network
theory can be used to improve the assessment of default credit models, both in the
setting of structural and reduced-form models. In particular, I describe how to
use a network effect for a bank which holds a portfolio of SME clients who are
interconnected due to the trade credit relations between them. Under the reduced-
form approach I have used the methods of spatial econometrics and network analysis
to allow the inclusion of the network effect in the classical Z-score model. The results
of the experiments proof the potential power of the network effect in the improvement
of bunckrupcy prediction. In this paper I also describe other possible applications
of the network constructed. Such, in the settings of the Merton (1974) model the
network can be used to calculate the probability of default by pricing an option when
the asset is correlated with other assets in the economy. The data was made available
by a leading Italian institution and it was collected as part of a scientific project at the
IGIER-Bocconi research centre where I was a part of the research team.
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Chapter 2

Predicting Human Mortality:
Quantitative Evaluation of Four
Stochastic Models

2.1 Introduction

One of the main issues facing financial and governmental institutions, within the
current economic climate, is the forecasting of mortality among an elderly population.
Within a vast list of effected parties are public pension policies, private pension funds
and life insurance businesses. They face the greatest risk, due to an increasing life
expectancy across developed countries.

Over the last few decades it has become widely accepted that mortality can be
more accurately measured by the use of stochastic models (see [25]), since they are
better able to capture the uncertainty inherent within the problem. For any given
individual, the probability of death naturally increases with age, however, as life
expectancy increases over time, we observe improvements in mortality rates. Due to
these effects, “dynamic mortality” has been introduced to produce models with age
and time dependence. One of the seminal works, which became a benchmark within
the industry, is the model of Lee and Carter [73] who model the central death rate
as a two variable function. Since the publication of their work, several extensions of
the Lee-Carter model have been proposed. For example, Renshaw-Haberman [87]
considered a model that allows for a cohort effect and Blake and Dowd [26] proposed
a two-factor model for mortality rates. Traditionally mortality models are used for
forecasting mortality for older generations (ages over 50) since these mostly affect
the uncertainty in the value of financial instruments offered by pension funds due
to improvements in mortality and longer life expectancy (phenomena referred to in
the literature as longevity risk). However, Plat [86] has recently suggested a model
that can fit mortality to a wider range of ages (20–89). In [85] this model has been
extended to fit even younger ages (5–89).

A fairly recent stream of actuarial literature has dealt with the phenomenon of
stochastic mortality by modelling the instantaneous mortality intensity as a stochastic
process. Recent works include Milevsky and Promislow [80], Dahl [32], Biffis [13],
Denuit and Devolder [34], Luciano and Vigna [77], Shrager [89]. The mathematical
framework in these models has been adapted from the credit risk literature to value
securities subject to risk to default. Similarities between the time to default and
remaining lifetime and between short-term interest rate and the force of mortality
are exploited in this approach. Moreover, if the intensity process is affine, then the
survival function for an individual can be derived in a closed form. This is extremely
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useful when pricing mortality-linked financial products, such as endowments, annu-
ities, variable annuities and other forms of mortality-linked financial securities.

Luciano and Vigna [77] have studied the applicability of the affine processes, such
as Ornstein-Uhlenbeck and Feller, for modelling mortality intensities. The approach
is focused on fitting the survival curve for which closed-form solutions are available.
The future projections for survival probabilities are made, their closeness to the
historical values is discussed, but not evaluated quantitatively.

Another continuous-time mortality model we consider in this work is the one
proposed by Wills and Sherris (2011) [95] for the Australian population. As with the
Lee and Carter (1992) [73] model, it is able to capture the whole “mortality surface”
across age and period. Moreover, it takes account of the correlation structure between
different generations. This is important for life offices portfolios which often have
contracts written on individuals from different cohorts. The authors have shown that
the multiple risk factors implied by the model reflect the actual correlation structure
between generations inferred from the data and that the model is suitable for pricing
financial instruments (see Wills and Sherris [95, 94]).

The advantages of continuous time mortality models mean that it is important
to study how well continuous time processes can predict future mortality. There are
numerous papers comparing the performance of mortality models. Nevertheless,
most of them have focused on discrete stochastic mortality models. For example,
Cairns et al. [24] examined the in-sample fits of eight different discrete time stochastic
mortality models. However, as noted in Dowd et al. [35], it is quite possible for a
model to provide a good in-sample fit to historical data and produce forecasts that
appear plausible ex ante, but still produce poor ex-post forecasts, that is, forecasts
that differ significantly from the subsequently realised outcomes. Consequently, a
“good” model should produce forecasts that perform well out-of-sample which can
be evaluated using backtesting methods.

Lee and Miller [74] evaluated the performance of the Lee-Carter model by exam-
ining the behaviour of forecast errors and plots of “percentile error distributions”,
although they did not report any formal test results. In contrast, Dowd et al. [35]
formally evaluate the forecasting performance of six different stochastic mortality
models applied to male mortality data for England and Wales. They use a backtesting
procedure to test the stability of forecasts over different time horizons and conclude
that the investigated models perform adequately, and that there is little difference
between them.

The framework for backtesting stochastic mortality models in Dowd et al. [35] is
a very general one. The “backtests” might involve the use of plots whose goodness
of fit is interpreted informally, as well as formal statistical tests of predictions. The
evaluation can be done for different metrics (the forecasted variable) of interest –
possible metrics include mortality rates, life expectancy, future survival rates, the
prices of annuities and other life-contingent financial instruments.

This paper focuses on the forecasting performance of several continuous-time
models, making a novel contribution to the literature. More specifically, we concen-
trate on the following continuous-time mortality models: the Ornstein-Uhlenbeck
process, the Feller process and the Wills and Sherris model.

To compare the performance of these models to a benchmark, we also include
the Lee and Carter model in our experiments. We evaluate the in-sample goodness
of fit by using statistical techniques including the BIC criteria and an analysis of the
fitted residuals. To assess the forecasting performance of each model we employ
out-of-sample back-testing methods using mortality rates as the metric. This is done
first by computing the relative error between the forecast and actual mortality rates
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and then by looking at the percentage of observed mortality rates which fall within a
prediction interval. However, the same backtesting procedure using different metrics
might be relevant for different purposes.

For our analysis we employ the data of the British and Australian population as
they are among the countries where the market for mortality derivatives has started
to emerge. According to [83], the annuity markets are relatively well developed in
the UK and US. Some product innovations, such as variable annuities with guar-
anteed withdrawal lifetime benefits have been introduced in Australia, Japan and
Europe. Multiple mortality and longevity derivatives (such as q-forwards, s-forwards,
longevity and survivor bonds and swaps) have been suggested in the literature as
well, see [94, 14]. In [94, 83] the authors study the securitisation of longevity risk
for the Australian pension industry. In [76] natural hedging of longevity risk with
application to the UK population is analysed.

This paper is organised as follows: in Section 2.2 we present some notation and
description of the data that will be used in the subsequent analysis. In Section 2.3 we
provide an overview of the Lee-Carter model, which we will use as a benchmark for
our comparisons. Section 2.4 provides the Wills and Sherris model setup. Section 2.5
describes time-homogeneous affine processes. Section 2.6 calibrates the four models
to the UK female dataset and Section 2.7 compares the results of this calibration for
the four models. Section 2.8 discusses the robustness of the simulation results on
the male and female datasets for the British and Australian populations. Section 2.9
concludes.

2.2 Notation and Data Description

Throughout the paper we use the following notation. Define m(x, t) to be the observed
central death rate in year t for lives initially aged x as a number of deaths divided by
the population exposure:

m(x, t) =
D(x, t)
E(x, t)

, (2.1)

Here E(t, x) is the average size of the population aged x last birthday during year
t and D(t, x) is the number of deaths during year t recorded as age x last birthday at
the date of death. The observed central death rate can be calculated directly from the
data.

Another measure of mortality is the force of mortality µ(x, t). It is interpreted as
the instantaneous death rate at exact time t for individuals aged exactly x at time
t. The probability of death between t and t + dt for small t is then approximately
µ(x, t)× dt. Thus, assuming that the force of mortality remains constant over a year:
µ(x + s, t + u) = µ(x, t) for 0 ≤ s, u < 1, we can approximate the force of mortality
µ(x, t) with the mortality rate m(x, t).

A typical dataset consists of a number of deaths, D(x, t), and the corresponding
exposures, E(x, t), over a range of years t and ages x. The data for the UK we use in
this study contains the number of deaths and the population exposure. It was taken
from the Human Mortality Database 1. We consider female population aged 50–99
(which is relevant to the pension fund industry) during the years 1970–2009.

1Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany)
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2.3 Lee-Carter Model

In this section we describe general characteristics of the famous Lee Carter model
[73] and its estimation process and forecasting technique. Lee-Carter mortality model
is used widely in academia, as well as industry. It has been proposed by Lee and
Carter in 1992 specifically for US mortality data covering years 1933-1987. However
it has been used as a benchmark model to mortality data from many countries and
time-periods. It has been shown (see [40]) that the Lee-Carter model is a special type
of multivariate random walk with a drift (RWD), in which the covariance matrix
depends on the drift vector. For estimation of the model parameters, principle
component analysis (PCA) with a single component is applied to the census data.

Let mxt denote the log of the mortality rate in an age group x (x = 1, ..., A) and
time t (t = 1, ..., T) for one country. The mortality rate is modelled as follows:

mxt = αx + βxκt + εxt (2.2)

where εxt is a set of random disturbances and αx, βx and κt are parameters to be
estimated:

– αx is the average mortality curve across ages;

– βx is a set of parameters representing the sensitivity of the mortality rate at age
x to changes in κt;

– κt is a time-varying parameter representing a common risk factor;

– εxt is a zero mean Gaussian error N(0,σ2).

The parametrisation in (2.2) is not unique, since the likelihood function associated
with the model above has an infinite number of equivalent maxima, each of which
would produce identical forecasts, see Lee and Carter [73]. In practice, model identifi-
cation implies imposing constrains. Lee and Carter adopt the constraints ∑t κt = 0
and ∑x βx = 1.

The constraint ∑t κt = 0 implies that the parameter αx is simply the empirical
average over time of the age profile in age group a: αx = m̄x. We can therefore rewrite
the model in terms of the mean centered log-mortality rate, m̃xt = mxt − m̄x. Thus,
we can rewrite Equation (2.2) as a multiplicative fixed effects model for the centered
age profile:

m̃xt ∼ N(µ̄xt,σ2),
E(m̃xt) = µ̄xt = βxκt.

(2.3)

As a result, we use A + T parameters (with A and T being the total number ages
and the total number of years considered) to approximate the A × T elements of
the mortality matrix, where each row represents the age of the population and each
column represents the year of the observation, with the age-specific parameter βx
which is fixed over time for all x and the time-specific parameter κt which is fixed
over age groups for all t.

The parameters βx and κt in the model can be found easily using singular value
decomposition (SVD) of the matrix of centered age profiles, m̃ = BLU′ = Z, which
we denote by Z. Then the estimate for βx is the first column of B, b1 (normalised
eigenvector of the matrix ZZ′) and the estimate for κt is λ1u1, where u1 is the first
column of the matrix U (normalised eigenvector of the matrix Z′Z) and λ1 is the
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first element of the diagonal matrix L (the largest eigenvalue corresponding to the
eigenvectors). Typically, for low-mortality populations, the approximation Z ≈
λ1b1u′1 accounts for more than 90% of the variance of mxt, see Girosi and King [40].

To forecast future mortality, Lee and Carter assume that αx and βx remain constant
over time and the time factor γt is viewed as a stochastic process. They find that a
random walk with drift is the most appropriate model for their data:

κ̂t = κ̂t−1 + θ+ ξt;

ξt ∼ N(0,σ2
rw),

(2.4)

where θ is known as the drift parameter and its maximum likelihood estimate is
simply θ̂ = (κ̂T − κ̂1)/(T − 1), which only depends on the first and last components
of the κt vector.

We can forecast κ̂t at time T + h with data available up to period T, as follow:

κ̂T+h = κ̂T + hθ̂+
h

∑
l=1

ξT+l−1. (2.5)

From this model, we can obtain forecast point estimates, which follow a straight
line as a function of h with slope θ̂:

E[κ̂T+h|κ̂1, . . . , κ̂T] = κ̂T + hθ̂. (2.6)

To make a point estimate forecast for log-mortality we plug the obtained expres-
sion for κ̂T+h into the vectorised version of expression (2.3):

µT+(∆t) = m̄ + β̂xκ̂T+h = m̄ + β̂x[κ̂T + hθ̂], (2.7)

where β̂x = b1 and κ̂T = λ1u1 are the estimates of βx and κT respectfully obtained
using SVD.

2.4 Wills and Sherris Model

Wills and Sherris suggested a stochastic longevity model where the force of mortality
for age x at time t has the following dynamics (see [95, 94]):

dµ(x, t) = (a(x + t) + b)µ(x, t)dt + σµ(x, t)dW(x, t),
0 < x < ω, 0 < t < ω− x.

(2.8)

In the above expression the drift parameter is an affine function of the current
age (x + t), while volatility function is a constant. Using Ito’s formula, we find the
solution to the SDE (2.8):

µ(x, t) = µ(x, 0) exp
[

a
2

t2 + (ax + b− 1
2
σ2)t + σW(x, t)

]
,

which can be written as follows:

ln
[
µ(x, t)
µ(x, 0)

]
=

[
a
2

t + ax + b− 1
2
σ2
]

t + σW(x, t).
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For all ages x1, . . . xN , we consider a multivariate random vector of mortality
rates:

µ(x, t) =


µ(x1, t)

...

µ(xN , t)


The dynamics dµ(x, t) are assumed to be driven by the multivariate Wiener

process dW(x, t), with mean zero and the instantaneous correlation matrix given by:

D =


δ11 . . . δ1N

...
. . .

...

δN1 . . . δNN


This means that the Wiener processes are independent between time periods,

but correlated between ages and the multivariate Wiener process dW(x, t) can be
expressed in terms of independent Wiener process dZ(x, t) = [dZ1(t), . . . , dZN(t)]′

as dW(x, t) = DdZ(x, t).
Thus, the model described by Equation (2.8), becomes a system of equations

where the dependence between the ages is captured by the δx,i term:

dµ(x, t) = (a(x + t) + b)µ(x, t)dt + σµ(x, t)
N

∑
i=1
δx,idZi(t) ∀x = x1, . . . , xN .

Using the fact that the distribution of the changes in the force of mortality follows
a normal distribution, we can find the parameters â, b̂ and σ̂ by means of maximum
likelihood estimation. In particular,

∆µ(x, t) ∼ N((a(x + t) + b)µ,σµ)

To estimate the covariance matrix of dW(x, t), we apply Principle Component
Analysis (PCA) to the standardised residuals of the model. For each year, they are
the realisations of the random vector dW(x, t):

r(x, t) =
∆µ̂(x, t)/µ̂(x, t)− (â(x + t) + b̂)

σ̂

2.5 Time-Homogeneous Affine Processes

Mortality intensity since recently has been modelled as a stochastic process, (see
Cairns [25]). In this field, an important stream of literature focuses on describing
death arrival as the first jump time of a Poisson process with stochastic intensity. This
approach is named doubly stochastic. Milevsky and Promislow [80] have used a
stochastic force of mortality, whose expectation at any future date has a Gompertz
specification. Dahl [32], Biffis [13], Denuit and Devolder [34] and Schrager [89] in
modelling the stochastic force of mortality have applied the same mathematical tools
used in the credit risk literature to model the time to default. Under this setting,
the remaining lifetime of an individual, τ, is a doubly stochastic stopping time with
intensity λ.

Let the mortality process µx(t) represent the mortality intensity of an individual
belonging to the generation x at (calendar) time t and τ be the time of death of an
individual of generation x. Then the survival probability from time t to time T ≥ t is
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defined as a function of τ, Sx(t, T), under the probability measure P, conditional on
the survivorship up to time t:

Sx(t, T) = P(τ ≥ T|τ > t), (2.9)

A doubly stochastic stopping time is the analogue of the first jump time of a
Poisson process, where the intensity is a stochastic process. If τ is the first jump time
of a Poisson process with parameter µ, then

P(τ > t) = e−µt (2.10)

Similarly, if τ is doubly stochastic with intensity µ, then the individual’s survival
function Sx(t) is given by

Sx(t, T) = P(τ > t|Fs) = E
(

e−
∫ t

s µ(u)du|Fs

)
(2.11)

In general, the expectation in (2.11) is not easy to calculate. However, if the
intensity process is affine (see Duffie, Filipovic and Schachermayer [38]), then it is
possible to provide the closed form for the survival probability:

Sx(t, T) = eα(T−t)+β(T−t)µx(t). (2.12)

where the functions α(·) and β(·) satisfy generalised Riccati ODEs, which can be
solved analytically or at least numerically. The closed-from expression of survival
probabilities (2.12) in affine framework allows to price financial instruments written
on the underlying population, such as endowments, annuities, variable annuities and
other forms of mortality-linked financial securities. Due to this result, in applications
the processes selected for the mortality intensity are typically affine.

Luciano and Vigna [77] proposed and tested time-homogeneous non-mean revert-
ing affine processes for the intensity of mortality, which are natural generalisation of
the Gompertz law of mortality. They consider Ornstein Uhlenbeck process, Ornstein
Uhlenbeck process with jumps and the Feller process. They provide the analytical
solutions for survival function (2.12) for these processes and discuss the appropriate-
ness of using them in modelling mortality. Calibrations on historical data show that
despite their simple form, these processes fit mortality intensity dynamics very well.
Another study shows how to use these processes to delta-gamma hedge mortality
and interest rate risk, see Luciano, Regis and Vigna [76] .

2.5.1 The Ornstein-Uhlenbeck Processes

The SDE for the Ornstein-Uhlenbeck (OU) process without mean-reversion, with the
associated solutions of the Riccati ODE α(·) and β(·), is the following:

dµx(t) = aµx(t)dt + σdWx(t),

α(t) =
σ2

2a2 t− σ
2

a3 eat +
σ2

4a3 e2at +
3σ2

4a3 ,

β(t) =
1
a
(1− eat),

(2.13)

where a > 0, σ > 0.
We calibrate the parameters of the OU process by means of Maximum Likelihood

method applied to the mortality intensities.
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Assume that the dynamics of the mortality intensity is described by the OU pro-
cess without mean reversion as given by SDE (2.13). Then, the conditional probability
density of an observation µi+1, given a previous observation µi (with a δ time step
between them), has a form (here we omit x which symbolises a certain generation):

f (µi+1|µi; a, σ̂) =
1√

2πσ̂2
e−

(µi+1−µi eaδ)2

2σ̂2 ,

where σ̂2 = σ2 1−e2aδ

2a .
The log-likelihood function of a set of observations µ̄ = (µ1,µ2, . . . ,µn) can be

derived from the conditional density function:

L(µ̄; a, σ̂) =
n

∑
i=1

ln f (µi+1|µi; a, σ̂) =

= −n
2

ln(2π)− n ln(σ̂)− 1
2σ̂2

n

∑
i=1

(µi+1 − µieaδ)2.
(2.14)

From the Maximum Likelihood conditions we find the following equations for
the parameters:

a =
1
δ

∑n
i=1 µi+1µi

∑n
i=1 µ

2
i

σ̂2 =
∑n

i=1(µi+1 − µie−aδ)2

n

(2.15)

The OU process in general can produce negative paths. The probability of λx
turning negative is

P(µx(t) ≤ 0) = Φ

− µx(0)eat

σ

√
e2at−1

2a

 = Φ (ζ(σ, a)) , (2.16)

where Φ is the distribution function of a standard normal.
In fact, the function ζ(σ, a) = − µx(0)eat

σ

√
e2at−1

2a

is increasing in σ and decreasing in a, as

well as the probability of negative values of µ. In mortality modelling applications
the probability that µ(t) takes negative values is very small, because in practice the
obtained value of σ is small enough and the value of a, on the contrary, is high enough.
In our calibration we check that the values of the obtained parameters are such that
there are no negative intensities. Otherwise, to keep mortality intensity positive, it is
possible to impose a restriction using Equation (2.16) during the parameter search,
such that probability (2.16) is negligible (see Luciano and Vigna [77] for more details).
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2.5.2 The Feller Process

The fourth model is the Feller process which is described by the following SDE with
the associated solutions of the Riccati ODEs α(·) and β(·):

dµ(t) = aµ(t)dt + σ
√
µ(t)dW(t),

α(t) = 0,

β(t) =
1− ebt

c + debt ,

(2.17)

where a > 0, σ ≥ 0, the boundary conditions are α(0) = 0 and β(0) = 0, and the
coefficients are:

b = −
√

a2 + 2σ2

c =
b + a

2
,

d =
b− a

2
.

(2.18)

The solution to the Equation (2.17) has the form:

µ(t) = µ(0)eat + σ
∫ t

0
ea(t−u)dW(u) (2.19)

The Feller process is a type of the Cox, Ingersoll, Ross (1985) process [31] without
mean reversion. It was proposed as a model of a short rate for financial market,
referred to as the CIR model. This model is described by the following SDE:

dr(t) = a(b− r(t))dt + σ
√

r(t)dW(t), (2.20)

where b > 0 is the mean-reversion level. Thus, the model suggests that the r(t) is
pulled towards b at a speed controlled by a. If condition 2ab > σ2 holds and r(0) > 0,
then the CIR process remains strictly positive, almost surely, and the state (marginal)
distribution of the process is steady. The marginal density is gamma-distributed. The
maximum likelihood estimation of the parameter vector θ = (a, b, σ) is based on the
transition density. Given rt at time t the density of rt+∆t at time t + ∆t is

p(rt+∆t|rt; θ) = ce−u−v
( v

u

) q
2

Iq(2
√

uv), (2.21)

where

c =
2a

σ2(1− e−a∆t)

u = crte−a∆t,
v = crt+∆t,

q =
2ab
σ2 − 1,

(2.22)

and Iq(2
√

uv) is modified Bessel function of the first kind and of order q. Then the like-
lihood function of the time series (r1 . . . rN) with the time between two observations
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∆t = 1 is

L(θ) =
N−1

∏
i=1

p(ri+1|ri; θ), (2.23)

from which the log-likelihood function of the CIR process is derived:

ln L(θ) = (N − 1) ln c +
N−1

∑
i=1

[
−ui − vi+1 + 0.5q ln

(
vi+1

ui

)
+ ln(Iq(2

√
uivi+1))

]
,

(2.24)
where ui = crie−a∆t and vi+1 = cri+1.

There are two approaches to calibrating affine mortality processes to the historical
data. One is to match the survival function (Equation (2.12)) using the solutions of the
Riccati ODEs for the OU (Equation (2.13)) and the Feller (Equation (2.17)) processes
to the set of observed survival probabilities. Another approach is to maximise the
likelihood function of the transition density. In this work we employ the second
approach as both for the OU process and the Feller process the transition density is
known in closed-form.

2.6 Models Calibration

In this section we work with the UK female dataset which describes the mortality
in population aged 50–99 for the years 1970–2009. First, we divide the data in two
data sets: the estimation data set, containing 30 years of observations, from 1970 until
1999; and the backtesting data set containing the last 10 years of observations, from
2000 till 2009. First we estimate the model parameters on the estimation data set, then
we make 10-years predictions of mortality rates and calculate how well the forecast is
compared with actual mortality rates for the period 2000–2009.

For the Lee and Carter and the Wills and Sherris models we use the whole surface
of mortality to calibrate the models. Then, to compare the performance of the models
between each other, we chose 19 generations. To have reliable estimation results and
to make the comparison between the models which simulate the whole mortality
surface (the Lee Carter and the Wills and Sherris models) and the ones which model
each generation separately (the OU and the Feller processes) fairer, we take all possible
generations from the data, which satisfy the criteria that the length of the backtesting
period would not be less than 10 years. This results in 19 generations—aged 42–
60 in the year 1970. We obtain the mortality rates for corresponding generations
from the surface by taking the relative diagonal of the matrix. For the OU and the
Feller processes, however, we calibrate the parameters for each of the 19 generations
separately. We calculate the parameters on the estimation time period (1970–1999)
and then use them to make forecasts of mortality for the next 10 years. Thus, we build
forecasts for these generations and compute the relative error of prediction, as well
as the percentage value of the actual mortality rates which fall within the prediction
interval in the test period 2000–2009.

2.6.1 Calibration of the Lee-Carter Model

First of all, we compute the average of the log mortality mxt for every age over time
period 1970-1999 for the estimation dataset and subtract it in order to obtain mean
centered log-mortality rates, m̃xt = mxt − m̄x. The average of the log mortality for
the whole dataset is shown in Figure 3.1. Then, we perform SVD on m̃xt matrix and
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obtain estimates for parameters – two vectors β̂x and κ̂t. The actual centered mortality
and its SVD approximation are illustrated in Figure 3.2.

The obtained ML estimates for the drift and the variance of the innovations are
θ̂ML = −0.5992 and σ̂2rw = 0.9154, respectively. Using these parameters we can
compute the forecast for κt as given by Equation (2.4) and its forecast point estimate
as described in Equation (2.6). In Figure 2.3a the estimated vector of κt and its forecast
obtained for the next 10 years (in red) are shown. Then, we calculate the forecast for
log-mortality as given in Equation (2.7). Figure 2.3b shows the mortality for the 10
years forecasted by the Lee-Carter. The forecast corresponds well to the observed
mortality rates for the UK female population presented in Figure 3.1b. However, we
can see that the cohort effect (diagonal trends in the data present in Figure 3.1b) is
not captured by the Lee-Carter forecast of mortality.

(a) (b)

FIGURE 2.1: Observed mortality rates for the UK female population.
(a) Estimation data set, 1970–1999; (b) Backtesting data set, 2000–2009

(a) (b)

FIGURE 2.2: Actual centered mortality and its approximation. (a)
Mean centered log-mortality rate; (b) Approximation by 1-factor SDV.
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(a) (b)

FIGURE 2.3: Results of the Lee-Carter model. (a) Estimation and
forecast of κt; (b) Lee-Carter forecast for 2000–2009.

2.6.2 Calibration of the Wills and Sherris Model

The analysis of the fit is based on the assumption that the residuals are independent
and identically distributed normal variables with mean 0 and standard deviation
1. Figure 2.4a shows the graph of residuals for the UK female population aged 50–
99, years 1970–1999 (the estimation dataset). The plot, together with the residuals
descriptive statistics in Table 2.1, supports the hypothesis that the residuals follow a
standard normal distribution with mean close to zero and standard deviation very
close to one. The table also contains the value of the log likelihood function, the BIC
criteria and the value of the χ-square statistics.

The Bayesian information criteria (BIC) is defined as

BIC = −2 ln(L̂) + k ln(n),

where:

n – the number of observations (sample size);

k – the number of free parameters to be estimated.

L̂ – the maximized value of the likelihood function of the model.

Pearson’s chi-square statistics, defined as χ2 = ∑observations
(Oi−Ei)

2

Ei
, allows us

to evaluate the goodness of fit by testing wether or not an observed frequency
distribution differs from the theoretical one. We compare weather the computed
value of χ2 with the critical value of the statistic with degree of freedom defined as

d f = number of observations− number of independent parameters− 1.

The obtained value of the χ2 is 1.5835. This is compared to the chi-square distribu-
tion with 217 degrees of freedom (49 ∗ 29− (492/2 + 3)− 1). Higher values of the χ2

statistic suggest a poorer fit. Since the calculated value is very low, the test confirms a
very good fit to the data.
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(a) (b)

FIGURE 2.4: Results of the Wills and Sherris model. (a) UK female
1970-1999 fitted residual; (b) Mortality forecast for the test period.

Parameter Estimates

a 0.0007032
b 0.0850
σ 0.0385
Log-likelihood 7246.4
BIC-criteria −14480

Residual Descriptive Statistics

mean 1.3192 ∗ 10−15

Minimum −5.1384
Maximum 2.9886
Standard Deviation 1.0004
Standard Error 0.0125
Confidence Level 0.0003
χ2 1.5835

TABLE 2.1: Parameter estimates and residual descriptive statistics for
the Wills and Sherris model fit to UK female mortality rates 1970–1999.

To capture the correlation structure between ages we calculate eigenvectors of
the matrix of the obtained residuals using Principal Component Analysis. Table 2.2
summarises the percentage of the observed variation explained by these vectors. The
observed age-correlation matrix has a total of 49 eigenvalues. In our experiments we
take first 30 eigenvectors to approximate the correlation matrix as they account for
98.9% of the variation.
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Number of Eigenvectors % of Observed Variation

1 28.1
5 55.8
10 75.4
15 86.5
20 93.1
25 96.8
30 98.9
35 100

TABLE 2.2: Percentage of the observed variation in residuals explained
by the eigenvectors using PCA.

Figure 2.4b shows the mortality surface for the test period built with the Wills and
Sherris model using the parameters obtained on the estimation dataset. By comparing
the forecast with the actual mortality rates (Figure 3.1b), we can see that the model
gives projections which are similar to the real data, although we see more variation in
the simulated mortality intensities. In order to obtain a reliable prediction of mortality
rates for a particular generation, we perform Monte Carlo simulations of the mortality
surface for the test period and extract from the surface a diagonal corresponding to a
specific generation. Then we estimate the mean of the Monte Carlo simulations for a
given generation, together with the 90% prediction interval.

2.6.3 Calibration of the OU-Process

We calibrate the model on 19 generations and evaluate the goodness of fit by means of
the BIC criteria and analysis of the residuals. For each generation x, having a series of
length N we use n = N − 10 observations (first n years of the sample) to estimate the
parameters a and σ and last 10 observation for backtesting the results. For instance,
for the UK data, if we consider individuals who were 50 in the year 1970, and we
have the data until the year 2009, we have 40 years of observations. Then the first
thirty years of observations (1970–1999) is the estimation data and the last ten years
of observations (2000–2009) is the backtesting data.

After obtaining the parameters we use the following simulation equation to
generate paths of the mortality intensities. This expression is an exact solution of the
SDE (2.13):

µi−1 = µieaδ + σ

√
1− e2aδ

−2a
N0,1. (2.25)

From the mortality intensities one can easily obtain the survival probabilities
by means of the analytical formula 2.12 with t = Tj+1 − Tj = 1. In this way the
expression for a one-year survival curve with α and β being constants is:

Sx(Tj+1, Tj) = eα+βµx j ,

α =
σ2

2a2 −
σ2

a3 ea +
σ2

4a3 e2a +
3σ2

4a3 ,

β =
1
a
(1− ea),

(2.26)
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However, in our study we focus on mortality intensities. We obtain the parameters
using the estimation dataset as described above, after which we use them to generate
paths and to forecast mortality intensities. Finally, we calculate the error between the
forecasted mortality curve and the actual mortality rates.

The residuals of the model are the realisations of the random component dW(t)
which should follow the standard normal distribution if the parameters are estimated
correctly:

∆µ− aµ
σ

∼ N(0, 1).

We use Kolmogorov-Smirnov statistic to test hypothesis that the errors come from
a standard normal distribution.

Taking the mortality intensities for the 7 generations we obtain the parameters
presented

In Table 2.3 we report the obtained parameters for selected 7 generations. As
expected, the a parameter is increasing with age, which means that the average
mortality intensity is larger for older generations. The σ parameter is also growing
with age. This proves the fact that there is more uncertainty in mortality rates for
older ages.

Figure 3.8a represents the residuals of the model. According to the Kolmogorov-
Smirnov test, the errors of the model are confirmed to be standard normal at 5%
significance level. Figure 3.8b illustrates historical mortality intensities (in blue), 1000
MC simulations (in yellow), average among simulations (in red) and confidence
intervals (in green) for the entire period (1970–2009). This graph is done for the
generation aged 51 in the year 1970.

(a) (b)

FIGURE 2.5: Results of the OU-process for UK female generation aged
51 in the year 1970. (a) Fitted residuals of the model (1971–2009); (b)

Historical mortality and simulated paths (1971–2009).
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Generation Age in 1970 a σ MaxLogLikelihood BIC

60 0.1024 0.0020 138.1895 −269.5766
57 0.0999 0.0015 146.5591 −286.3159
54 0.0951 0.0008 164.1945 −321.5865
51 0.0894 0.0008 165.3501 −323.8979
48 0.0845 0.0004 168.9370 −331.2095
45 0.0841 0.0004 155.7339 −305.0300
42 0.0815 0.0004 136.3726 −266.5631

TABLE 2.3: ML parameters of the OU-process and maximised log-
likelihood.

2.6.4 Calibration of the Feller Process

We have maximised the log-likelihood function as it is stated in Equation (3.25) as-
suming that the mean-reversion parameter is zero. Table 2.4 reports the obtained
parameters and the value of the maximazed log-likelihood function for each genera-
tion. The obtained parameter values correspond well with the previous work, such
as in Luciano and Vigna [77] .

Generation Age in 1970 a σ MaxLogLikelihood BIC

60 0.0984 0.0073 147.1586 −287.5148
57 0.0955 0.0061 156.6162 −306.4299
54 0.0922 0.0043 171.9529 −337.1034
51 0.0869 0.0046 172.7420 −338.6817
48 0.0833 0.0036 170.9023 −335.1403
45 0.0826 0.0034 155.2175 −303.9972
42 0.0801 0.0031 139.2860 −272.3900

TABLE 2.4: ML parameters of the Feller process and maximised log-
likelihood.

The simulation of the future mortality is performed by discretising Equation (2.17)
with time step equal to one year:

µt+1 = µt + aµt + σ
√
µtN(0,1). (2.27)

2.7 Comparison of the Four Models

To compare the performance of the models for the 19 generations based on their age
in 1970. For each, we forecast mortality rates in the period 2000–2009 and compute
the relative error of prediction, as well as the percentage of the observed mortality
rates in the test period which fall within the prediction interval. The forecast and the
prediction bounds are obtained using 15,000 Monte Carlo simulations.

In this section we define the tests of the mean relative error and the prediction
intervals. A model can perform very well with respect to the percentage of the
mortality rates which fall within the prediction bounds, while at the same time
having a high relative error, if its variance grows rapidly and, therefore, the model
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produces wide prediction bounds. We say that a model is precise if its forecasts of
mortality are consistent with respect to the prediction interval and that a model
is accurate if its mean absolute forecast errors are small. Of course, it is desirable
for a good model to be both accurate and precise. To interpret the results of the
experiments, it is important to understand the form of the variance implied by each
model which we discuss in this section as well.

2.7.1 Relative Error

For each x, t the relative error is defined as follows:

errorx(t) =
µ

predicted
x (t)− µactual

x (t)
µactual

x (t)
∀x, t.

Since the longevity risk corresponds to lower-than-expected mortality rates, we
define the error so that it is positive if the forecast of mortality exceeds the historical
values (actual values are lower-than-expected), and negative in the opposite case.

We compute the relative error for 19 generations—they are female aged 42–60 in
the base year 1970. Thus, in the test period, for which the graphs of error are plotted,
they are 30 years older—72–90 years, respectively.

The results of the experiments are presented in Figures 2.6 and 2.7 and Tables 2.5
and 2.6. The graphs of the mean absolute errors in Figure 2.7 illustrate the results
shown in Tables 2.5 and 2.6. We can see that most of the errors fall in the range
[−0.1; 0.1]. The exception is the OU process for the generation aged 60 in 1970,
especially for later years of projections. The error for this generation in the Feller
process forecast is also large – its absolute mean for generation aged 60 in 1970 is
0.0427 (Table 2.5). This increases the mean absolute errors for this generation for these
processes shown in Table 2.5. Figure 2.7b shows the relative absolute error for each
year in the test period average over 19 generations. We see that the error is smaller
for younger ages . All the models show a high error for the generation aged 50 in the
year 1970. This might be due to the cohort effect which is generally present in the UK
data. The biggest error for this generation is produced by the Lee-Carter model. The
graph of the relative absolute errors averaged over generations by year (Figure 2.7a)
shows an increasing trend for all 4 models, especially for the Lee and Carter model
(red line). This effect is due to the fact that the variances of the projected mortality
rates increase with projection time. However, this does not happen at the same rate
in different models.

The errors of the Lee-Carter model are mostly positive (Figure 2.6a) and we can
observe a relative increase of the errors in time for each generation, indicating that
the Lee-Carter model has tended to predict mortality rates that are too high. The
errors of the Wills and Sherris model exhibit two patterns for different generations
(Figure 2.6c). They are negative for the older generations (aged 60, 57, 54, 51 and 48
in 1970) and positive for the two youngest ones (45, 42 in 1970). We note that the
older generations belong to the lower diagonal of the initial mortality matrix, while
the younger two belong – to the upper diagonal of the matrix. Thus, it may be that
Wills and Sherris model has a tendency to overestimate the mortality for younger
generations and underestimates the mortality for the older ones.

According to the Tables 2.5 and 2.6, the OU process exhibits the lowest mean
absolute error, followed by the Feller process, Wills and Sherris model and Lee and
Carter model for the UK female data.
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Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.0383 0.0387 0.0837 0.0428
59 0.0346 0.0245 0.0543 0.0251
58 0.0396 0.0232 0.0562 0.0248
57 0.0457 0.0256 0.0430 0.0269
56 0.0374 0.0313 0.0573 0.0218
55 0.0420 0.0611 0.0209 0.0313
54 0.0515 0.0599 0.0220 0.0376
53 0.0379 0.0965 0.0160 0.0383
52 0.0362 0.0696 0.0260 0.0320
51 0.0320 0.0337 0.0169 0.0404
50 0.1008 0.1630 0.0919 0.1164
49 0.0388 0.0249 0.0256 0.0405
48 0.0353 0.0441 0.0383 0.0588
47 0.0258 0.0406 0.0257 0.0393
46 0.0212 0.0258 0.0251 0.0409
45 0.0279 0.0296 0.0263 0.0298
44 0.0267 0.0299 0.0193 0.0228
43 0.0312 0.0509 0.0221 0.0285
42 0.0334 0.0611 0.0232 0.0220

Mean (Rank) 0.0388 (3) 0.0492 (4) 0.0365 (1) 0.0379 (2)

TABLE 2.5: Mean (over 10 years) of the absolute errors for each gener-
ation, UK female data.

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0314 0.0380 0.0379 0.0318
2001 0.0248 0.0417 0.0367 0.0247
2002 0.0267 0.0320 0.0191 0.0187
2003 0.0493 0.0316 0.0241 0.0462
2004 0.0332 0.0473 0.0321 0.0204
2005 0.0409 0.0401 0.0254 0.0311
2006 0.0326 0.0642 0.0405 0.0281
2007 0.0457 0.0537 0.0366 0.0475
2008 0.0626 0.0479 0.0483 0.0690
2009 0.0403 0.0951 0.0645 0.0614

Mean (Rank ) 0.0388 (3) 0.0492 (4) 0.0365 (1) 0.0379 (2)

TABLE 2.6: Mean (over 19 generations) of the absolute errors for each
year, UK female data.
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(a) (b)

(c) (d)

FIGURE 2.6: Relative error of each model for every generation (a)–(d).
(a) Lee-Carte model; (b) OU-process; (c) Wills-Sherris model; (d) Feller

process.

(a) (b)

FIGURE 2.7: Mean relative absolute error of each model, UK female
data. (a) Relative absolute error, average by year; (b) Relative absolute

error, average by generation.

2.7.2 Discussion on the Variances

As it has been stated in the description of the model, the variance of the mortality
intensity µ(t), conditional on time 0, in the OU specification has a form σ2 e2at−1

2a ,
where t is the time elapsed. For the Feller process, when intensity µ(t) is specified by
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the CIR process of the form:

dµ(t) = (b + aµ(t))dt + σ
√

µ(t)dW(t),

with a > 0, b > 0, σ > 0, the conditional distribution of the mortality intensity at time
t, conditional on time 0 is given by a non-central chi-square distribution:

µ(t) ∼ σ2(eat − 1)
4a

χ2
d(ν),

where χ2
d(ν) denotes the density of a non-central chi-square random variable with d

degrees of freedom:

d =
4b
σ2 ,

and the non-centrality parameter ν is

ν =
4aeat

σ2(eat − 1)
µ(0).

The χ2
d(ν) distribution, has a variance Varχ2

d(ν)
= 2(d + 2ν). Thus, intensity µ(t)

has a variance :
σ2(eat − 1)

2a

(
4b
σ2 +

8aeat

σ2(eat − 1)
µ(0)

)
In the Feller specification, parameter b is not defined and, hence, the number

of degrees of freedom d is not defined either. However, we can see that, other
parameters being equal, the variance of the OU process should grow faster in time
than the variance of the CIR process, as it has e2at term rather than eat.

The Wills and Sherris model assumes that the distribution of the changes in the
force of mortality follows a normal distribution:

∆µ(x, t) ∼ N((a(x + t) + b)µ, σµ).

Thus, the variance of the mortality intensity grows in time as at each time install-
ment it is multiplied by the mortality rate from the year before.

For the Lee Carter model, the variance of the logarithm of the mortality rate
at time t for each age x, is βxσ̂2

rw
√

t, where σ̂rw is the variance of the random walk
process κt, in our case equal to 0.9154, and t is the time passed.
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(a) (b)

(c) (d)

FIGURE 2.8: Standard deviation of each model for every generation
(a–d). (a) Lee-Carte model; (b) OU-process; (c) Wills-Sherris model;

(d) Feller process.

Regarding the covariance/correlation across generations and ages, all models
employ a different structure. Lee-Carter is a one-factor model, which results in
mortality improvements at all ages being perfectly correlated. Wills and Sherris
model is designed to capture correlation between the ages. In practice it amplifies
the effect of the variance growth over time since in reality the correlation increases
with age (see Wills and Sherris [95]). In fact, in the simulation procedure the Wiener
process is multiplied by the instantaneous correlation matrix D which describes the
correlation structure between ages. The OU and the Feller processes in the current
study do not take into account the correlation between generations. However, they
can also be extended to the case of multiple generations. In [61] it is described how
the OU process can be extended to the case of two generations, whose changes in
mortality intensities are correlated with an instantaneous correlation coefficient.

2.7.3 Discussion on the Number of Parameters

The number of estimated parameters is different for each procedure. The Wills and
Sherris model estimates only 3 parameters for the whole dataset plus eigenvectors to
approximate the correlation matrix (in our case we take 30 eigenvectors), while both
the OU and the Feller processes fit 2 parameters for each generation. To calibrate the
Lee-Carter model, we have to estimate A + T = 50 + 30 = 80 parameters. To predict
mortality for each generation in the dataset for which the size of the estimation part
would be not be less that 10 years, we have to estimate the OU and the Feller processes
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for 19 generations resulting in 38 parameters each, for the Wills and Sherris model
we have used 3 + 30 = 33 parameters.

2.7.4 Prediction Intervals

Note, that although the variances of the Lee Carter model is smaller than the ones
produced by the OU-process and the Feller process, the first model shows better
results.

(a) (b)

(c) (d)

FIGURE 2.9: Actual mortality rate and 90% prediction intervals for
generation aged 57 for each model. (a) Lee-Carte model; (b) OU-

process; (c) Wills-Sherris model; (d) Feller process.
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Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 1.0000 0.5000 0.2000 0.7000
59 1.0000 0.9000 0.3000 0.8000
58 1.0000 0.9000 0.3000 0.8000
57 1.0000 0.9000 0.5000 0.8000
56 1.0000 0.8000 0.1000 0.9000
55 1.0000 0.3000 0.6000 0.8000
54 1.0000 0.7000 0.8000 0.7000
53 1.0000 0.2000 0.8000 0.7000
52 1.0000 0.6000 0.5000 0.7000
51 1.0000 0.9000 0.8000 0.7000
50 0.5000 0 0 0
49 0.9000 1.0000 0.7000 0.5000
48 1.0000 0.7000 0.4000 0.5000
47 1.0000 0.9000 0.8000 0.8000
46 1.0000 1.0000 0.4000 0.5000
45 1.0000 1.0000 0.6000 0.9000
44 1.0000 1.0000 0.7000 1.0000
43 0.9000 0.8000 0.7000 0.8000
42 0.9000 0.7000 0.9000 0.9000

Mean (Rank) 0.9579 (1) 0.7263 (2) 0.5316 (4) 0.7105 (3)

TABLE 2.7: Percentage of the actual mortality rates which falls within
a 90% prediction interval, UK female data.

2.8 Robustness of Simulation Results

Here we evaluate the performance of the approach described above on the 4 datasets.
They are:

1. UK Females

2. UK Males

3. Australian Females

4. Australian Males

The experiments in this section are made using the same time and the age periods—
1970–2009 and 50–99. The generations aged 42–60 in the year 1970 are chosen in the
same manner as in Sections 2.6 and 2.7.

The results of the estimation are presented in Tables 2.8 and 2.9. More detailed
results of the estimation for the 4 datasets are included in the Appendix A as tables
and plots of the errors for each of the 19 generations. According to the Tables 2.8
and 2.9, the results for the UK males data with regard to accuracy are the same as for
the UK females—the OU and the Feller processes produce the smallest error, while
the Lee-Carter and the Wills and Sherris model show the largest error. However, the
mean of the absolute error for the Lee-Carter model in this case is 3 times larger in
comparison to the error of the UK females estimation. This model also shows very
bad result according to precision (with the percentage of the actual mortality within
prediction interval being only 4.21%).
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Model; Dataset UK, Females UK, Males Australia, Females Australia, Males

Wills and Sherris 0.0388 (3) 0.0580 (3) 0.1368 (4) 0.0787 (3)
Lee-Carter 0.0492 (4) 0.1252 (4) 0.0380 (1) 0.0712 (1)

OU-process 0.0365 (1) 0.0470 (2) 0.1046 (2) 0.0767 (2)
Feller 0.0379 (2) 0.0391 (1) 0.1326 (3) 0.0840 (4)

TABLE 2.8: Mean of the absolute errors for each dataset over 19 gener-
ations (rank of accuracy).

Model; Dataset UK, Females UK, Males Australia, Females Australia, Males

Wills and Sherris 0.9579 (1) 0.9105 (1) 0.7789 (2) 1.0000 (1)
Lee-Carter 0.7263 (2) 0.0421 (4) 0.8368 (1) 0.3053 (4)

OU-process 0.7105 (3) 0.4000 (3) 0.2947 (4) 0.4421 (3)
Feller 0.5316 (4) 0.7158 (2) 0.3474 (3) 0.5737 (2)

TABLE 2.9: Percentage within a 90% prediction interval for each
dataset (rank of precision).

Australian females data is the only dataset which shows good results using the
Lee Carter model, both according to precision and accuracy. The OU and the Feller
processes, on the contrary, produce large errors for this dataset, especially for the
generations aged 45–55. This may be explained by the fact that mortality in Australia
is lower for people in their 40s and 50s in comparison to their UK counterparts, and, as
a consequence, mortality intensities are larger for older ages. This can be seen from the
plots of mortality curves for generations aged 51 and 54 in the year 1970 (Figure 2.10).
More prominent convex form of the mortality curves for Australian population makes
the error (which is calculated for the last 10 years of the observations) larger as the
prediction of mortality underestimates the actual mortality intensity. We would
suggest that the inclusion of the correlation coefficient for the OU and the Feller
processes to describe the dependence between the generations could improve the
calibration results for these procedures by taking into account the fact that if mortality
of the generations aged 45–55 is rather low, it would imply an increase in the mortality
intensity for the older ages.

It is worth noting that for all datasets the errors produced by the Wills and Sherris
model, the OU process and the Feller process exhibit similar patterns (Figure 2.7b,
2.11b, 2.13b and 2.12b), while the errors produced by the Lee-Carter model have a
different pattern. This may be explained by the fact that the first three procedures
model the advances (changes) in mortality intensity for a cohort, while the Lee-Carter
models the central mortality rate itself.

On the whole, we can say that the results are data dependent. However, from the
estimation results on the four datasets, we can conclude that the Wills and Sherris
model performs best in terms of precision, but it is one of the worst in terms of
accuracy. The Lee Carter model shows better fit to the Australian population dataset
rather that to the British one, both for males and females. The OU process and the
Feller process provide rather good results in terms of accuracy, while they have often
get low ranks in terms of precision.
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(a) (b)

FIGURE 2.10: Observed mortality curves for the UK and Australian
generations aged 51 (a) and 54 (b). (a) Generation aged 51 in the year

1970; (b) Generation aged 54 in the year 1970.

(a) (b)

FIGURE 2.11: Mean relative absolute error of each model, UK male
data. (a) Relative absolute error, average by year; (b) Relative absolute

error, average by generation.

(a) (b)

FIGURE 2.12: Mean relative absolute error of each model, Australian
male data. (a) Relative absolute error, average by year; (b) Relative

absolute error, average by generation.
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(a) (b)

FIGURE 2.13: Mean relative absolute error of each model, Australian
female data. (a) Relative absolute error, average by year; (b) Relative

absolute error, average by generation.

2.9 Conclusions

In this study we have calibrated 4 mortality models to the UK and Australian popula-
tions and have quantitatively compared their accuracy and precision in forecasting
mortality rates. To evaluate this we have used two measures – first, we looked at the
relative errors between the forecasted and the observed mortality rates and second,
we investigated the percentage of the observed mortality rates which fell within the
projected prediction intervals. Our experiments compare one discrete-time model,
proposed by Lee and Carter, and three continuous-time models—the Wills and Sherris
model, the Ornstein-Uhlenbeck process and the Feller process. The first two models
estimate the whole surface of mortality across ages and years simultaneously, while
the latter two model each generation separately. One major advantage of the OU and
the Feller processes is that they belong to the affine class of mortality models and so
allow closed-form expressions for survival probabilities, which is useful for pricing
many financial securities. On the other hand, the Wills and Sherris model allows
the dependencies between generations to be captured, which may be useful for life
offices who have portfolios written on multiple cohorts.

The choice of the model may depend on the goal and the data available. As a result
of our experiments with the UK female, the Wills and Sherris model performs best in
terms of the prediction interval, followed by the Lee-Carter model. In terms of the
mean absolute error, the OU and the Feller processes are better. Thus, for the UK data
models which capture the whole mortality surface are more precise, meaning that
their forecast prediction intervals are more likely to include the observed mortality
rates. Models for a single generation, on the other hand, tend to be more accurate,
meaning that their mean absolute errors between the forecast and observed mortality
are smaller. For the UK male data the results are rather similar—the main difference
here is that the LC model in this case provides much worst result both in terms of
precision and accuracy.

However, the results are different for the Australian dataset. In this case, the
Lee-Carter model and the OU process are the best in terms of accuracy, both for males
and females. The Wills and Sherris model shows good result with respect to the
precision measure for Australia as well, followed by the LC for the females and the
Feller process for the males.
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Based on our experiments, different models appear to be preferred for specific
generations and years. We believe that our analysis and the results discussed in this
paper are useful for the insurance industry. In particular, we provide potentially
useful insights into different mortality modelling frameworks and allow practitioners
to chose a model that suits their specific needs.
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Chapter 3

Estimation of the price of risk in
the Heston mode

3.1 Introduction

In this paper we study the problem of calibrating and modelling market price of
risk in the context of stochastic volatility models. The Heston model (1993) has been
widely used for equity option pricing purposes which is done under a risk-neutral
measure. In the context of Solvency II internal models are required to produce both
risk-neutral and real-world simulations – in particular, for calculation of the Solvency
Capital Requirement (SCR). Under the Heston model it is possible to define a price
of risk in a way that the state variable follows a square-root process under both
an objective probability measure and an equivalent martingale measure. This is a
convenient framework in terms of modelling. The problem of calibrating the price of
risk is crucial in this setting. We propose a calibration procedure based on the work
of Ait-Sahalia and Kimmel (2007). Their methodology involves approximating the
unknown likelihood function and identifying the unobserved volatility state variable
by inverting option prices under the Heston model. Based on their approach we
develop a procedure which allows to find a set of parameters that would be stable
in terms of estimation error and coherent according to both criteria – the minimal
prediction error and the maximum likelihood approach, as neither of the methods
by itself can identify the price of risk parameters. Using joint observations of the
Eurostoxx50 index and its options for the last 17 years we study the stability of the
obtained market price of risk parameters and the coherence of the solution with
respect to the risk-neutral valuation. Using Monte Carlo simulations we compute a
yearly VaR which is crucial for SCR.

Stochastic volatility models were developed to overcome the drawbacks of the
Black-Scholes formula in option pricing. Black-Scholes formula is based on the
assumptions of log-normal stock diffusion with constant volatility. It is well-known
that the model-implied volatilities for different strikes and maturities of options are
not constant and tend to be smile shaped, see Weron and Wystup (2005). Such models
as Hull and White [55], deterministic time-varying model for implied volatilities
of Dupire [39], stochastic volatility models of Stein and Stein [91] and of Heston
[88] relax the assumption of constant volatility. Heston model (1993) is a two-factor
stochastic volatility model with one of the factors being responsible for the dynamics
of the volatility coefficient.

Heston’s model has become particularly popular in the industry for the two main
reasons: (i) the process for the volatility is non-negative and mean-reverting, which is
what we observe in the markets, and (ii) there exists a semi closed-form solution for
vanilla options. It was one of the first models that was able to explain the smile and
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simultaneously allow a front-office implementation and a market consistent valuation
of many exotics.

Estimation of stochastic volatility models poses some challenges. First, due to the
fact that the volatility dynamics are not entirely observable. To overcome this fact
market-based perspectives are adopted. From optimization point of view estimation
of stochastic volatility models is also difficult since the likelihood function is not
known explicitly. Calibration can be done in two conceptually different ways. One
way is to look at a historical time series of the underlying. Estimation methods such
as Generalized, Simulated, and Efficient Methods of Moments (respectively GMM,
SMM, and EMM), as well as Bayesian MCMC have been extensively applied, for a
review see Chernov and Ghysels (2000) [29]. Fitting the empirical distributions of
returns to the marginal distributions via a minimization scheme can also be used.
However, none of the historical approaches allows for estimation of the market price
of volatility risk, while multiple studies find evidence of a non-zero volatility risk
premium. Thus, observing only the underlying spot price and estimating stochastic
volatility models with this information does not deliver correct derivative security
prices. The second estimation approach instead of using the spot data, calibrates the
model to derivative prices. These type of methods produce more reliable results, but
they still fail to estimate price of the volatility risk in explicit manner.

Ait-Sahalia and Kimmel [3] have suggested a method to estimated the Heston
model under the objective measure. This procedure is based on approximating
the unknown likelihood function and identifying the unobserved volatility state by
inverting option prices. However, Ait-Sahalia and Kimmel [3] report large standard
errors for the price of risk parameters based on the estimation performed on a
synthetic dataset. Based on their approach we develop a procedure which allows to
find a set of parameters that would be stable in terms of estimation error and coherent
according to both criteria – the minimal prediction error and the maximum likelihood
approach, as neither of the methods by itself can identify the price of risk parameters.

Calibration of the Heston model under the risk-neutral measure is generally done
using joint observations of the stock and derivatives such as call options or swaps.
Usually five parameters are fitted to the observations: initial variance, volatility of
volatility, a long-run variance, a mean reversion, and a correlation coefficient such
as in [93]. The parameters are found by an optimisation procedure which minimises
the prediction error between mathematical Heston prices and the market prices.
Using the characteristic function conditioned on the initial values of the underlying
diffusion processes. In our case this approach is modified to take into account a
time-dependent process for the unobserved variance. On each iteration, we infer
the process given parameter vector considered during the estimation procedure
by equating the mathematical Heston call price with the market price at each time
instalment.

The main contribution of this work is the empirical. It provides an improved
estimation of the price of risk parameters in the Heston model based on the Ait-
Sahalia and Kimmel approach [3]. It also provides analysis of the estimation of the
unobserved variance process. We find that our procedure allows to reduce the error
between the actual and the model price in comparison to the standard estimation
approach of the Heston model by identifying iteratively the unobserved variance
process and by correcting the parameters on each step. The estimated parameters
tend to converge to a stable value when the number of iterations increases. Regarding
the simulation part, the estimated parameters provide more prudent estimation of
the future VaR in comparison to the parametric and historical approach.
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3.2 The Heston model

Heston (1993) [88] assumed that the spot price follows a diffusion process resembling
a geometric Brownian motion (GBM) with a non-constant instantaneous variance Yt
while the variance itself is driven by a mean reverting stochastic process:

dSt = St(µdt +
√

YtdW̃1
t ),

dYt = κ′(γ′ −Yt)dt + σ
√

YtdW̃2
t .

(3.1)

The two Wiener processes are correlated with each other:

dW̃2
t dW̃2

t = ρdt.

The model of Black and Scholes (1973) is a special case of the model of Heston
(1993) [88], in which σ = 0 and v0 = γ′ so that vt is a constant.

The variance process {Yt}t≥0 is a square root mean reverting process, first intro-
duced by Cox, Ingersoll and Ross (1985) [31] for modelling the short term interest
rate. It is defined by three parameters: γ′, κ′ and σ, where γ′ is a long-run mean, κ′ is
a rate of mean reversion to the long term variance and σ is referred to as the volatility
of the variance (often called the vol of vol).

Several empirical and economical studies suggest that the Heston model fits better
to the real-world financial applications. It does not have the flaw of the Black and
Scholes model which assumes that an assets’s log-return distribution is Gaussian.
According to empirical observations, it is characterised by heavy tails (skewness) and
high peaks (leptokurtosis). There is also empirical evidence and economic arguments
that suggest that equity returns and implied volatility are negatively correlated (also
termed as “the leverage effect”), see Cont (2001) [30]. In contrast, the Heston’s model
can imply a number of different distributions. ρ, which can be interpreted as the
correlation between the log-returns and volatility of the asset, affects the heaviness
of the tails of the distribution. Intuitively, if ρ > 0, then volatility will increase as
the asset price/return increases. This will spread the right tail and squeeze the left
tail of the distribution creating a fat right-tailed distribution. Conversely, if ρ < 0,
then volatility will increase when the asset price/return decreases, thus spreading
the left tail and squeezing the right tail of the distribution creating a fat left-tailed
distribution (emphasising the fact that equity returns and its related volatility are
negatively correlated). ρ, therefore, affects the skewness of the distribution. In
addition, the effect of changing the skewness of the distribution has an impact on the
shape of the implied volatility surface. Hence, it addresses another shortcoming of
the Black-Scholes-Merton model which assumes constant volatility across different
strike levels.

The volatility of the volatility parameter σ affects the kurtosis (peak) of the dis-
tribution. When σ is 0 the volatility is deterministic and, hence, the log-returns will
be normally distributed. Increasing σ will then increase the kurtosis only, creating
heavy tails on both sides. Again, the effect of changing the kurtosis of the distribution
has an impact on the implied volatility. Higher σ makes the volatility process more
volatile and the skew/smile of the implied volatility more prominent. This means
that the market has a greater chance of extreme movements. In this situation writers
of puts must charge more and those of calls, less, for a given strike.

The mean reversion parameter, γ′, can be interpreted as the degree of “volatility
clustering”. This property of the asset returns has been observed in the market data
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meaning that large price variations are more likely to be followed by large price
variations.

A computationally convenient feature of the model is that it provides a semi-
closed solution for European options, making it more tractable and easier to imple-
ment than other stochastic volatility models. However, the likelihood function of the
model of Heston is not known in a closed form. System of equations (3.1) defines a
two-dimensional stochastic process for the variables St and Yt. The model given in
(3.1) is not in the class of affine processes, whereas under the log transform for the
stock, it is. By setting st = ln(St), we can express it in terms of the logarithmic asset
price st and Yt:

dst = (µ− 1
2

Yt)dt +
√

YtdW̃1
t ,

dYt = κ′(γ′ −Yt)dt + σ
√

YtdW̃2
t .

(3.2)

Suppose that st and Yt follow the (risk-neutral) process defined in equation (3.2).
Then the drift µ of the stock process must be equal to the risk-free rate r (in case of no
dividends).

A model for asset prices must specify not only the stochastic process followed by
a set of underlying factors, but also the attitude of investors towards the risk of those
factors. Since the pioneering work of Harrison and Kreps (1979) [49] and Harrison
and Pliska (1981) [50], this task is often accomplished by specifying the behaviour of
the state variable(s) under both an objective probability measure and an equivalent
martingale measure. A common practice is to have the state variables follow a Feller
square-root process under both probability measures, but with different governing
parameters by assigning to each state variable a market price of risk process that is
proportional to the square root of that state variable. Since the instantaneous volatility
of each state variable is also proportional to its square root, the product of the market
price of risk and volatility is proportional to the state variable itself. Subtraction of
this product from the drift under the objective probability measure therefore results
in a drift under the equivalent martingale measure that is also affine. The definition
of the affine processes can be found in Appendix B.

We use the following specification for the market price of risk

Λ = [λ1

√
(1− ρ2)Yt, λ2

√
Yt]
′

The joint dynamics of st and Yt under the objective measure P are then derived
using the Girsanov’s theorem for a two-dimensional case:

dWP
i = dWQ

i −Λidt.

In our case we get:

dWP
1 = dWQ

1 − λ1

√
(1− ρ2)Ytdt,

dWP
2 = dWQ

2 − λ2
√

Ytdt,
(3.3)

Substituting the expressions for dWP
1 , dWP

2 obtained from 3.3 into 3.2 and as-
suming independence between the two Brownian motions (by using a transform
W2(t) = W̃2(t), W1(t) = α1W̃1(t) + α2W̃2(t) with α2

1 + α2
2 = 1, α2 = ρ), we get the
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expression for the dynamics of st and Yt under the objective measure P:

d
[

st
Yt

]
=

[
r + bYt

κ(γ−Yt)

]
dt +

(√
(1− ρ2)Yt ρ

√
Yt

0 σ
√

Yt

)
d
[

WP
1 (t)

WP
2 (t),

]
(3.4)

where b = λ1(1− ρ2) + λ2ρ− 1
2 , κ = κ′ − λ2σ, γ = κ+λ2σ

κ γ′.
We obtain that the state variable follow a Feller square-root process under both

probability measures, but with different governing parameters. Thus, Yt is a restricted
state variable as it is bounded below by zero. The boundary value zero cannot be
achieved if the Feller condition 2κγ ≥ σ2 is satisfied. The log stock price has a
volatility which is an affine function of Yt, and the covariance between st and Yt is
also affine in Yt. The parametrization for the price of risk vector we consider belongs
to the class of essentially affine models where the price of risk is restricted to ensure
that if the volatility of any linear combination of state variables approaches zero,
the risk premium of that linear combination also approaches zero, see Duffie (2002)
[38]. Such market price of risk implies a an interplay between the parameters under
the objective measure and the equivalent martingale measure in a way that only the
speed of mean reversion for the restricted state variables can differ independently
between the two measures, while the term in the drift depends these two parameters.
Now we can rewrite the system 3.2 incorporating the price of risk:

dst = (µ− 1
2

Yt)dt +
√

YtdW̃1
t ,

dYt = (κγ− (κ + λ2σ)Yt)dt + σ
√

YtdW̃2
t .

(3.5)

As in [88], consider any twice-differentiable function f (s, Y, t) that is a conditional
expectation of some function of s and Y at a later date, T, g(s(T), Y(T)):

f (s, Y, t) = E
[
g(s(T), Y(T))|s(t) = s, Y(t) = Y

]
. (3.6)

Ito’s lemma shows that

d f =

(
1
2

Y
∂2 f
∂s2 + ρσY

∂2 f
∂s∂Y

+
1
2

σ2Y
∂2 f
∂2Y

+ (r− 1
2

Y)
∂ f
∂s

+[κγ− (κ + λ2σ)Y]
∂ f
∂Y

+
∂ f
∂t

)
dt

+(r− 1
2

Y)
∂ f
∂s

dW̃1 + [κγ− (κ + λ2σ)]
∂ f
∂Y

dW̃2.

(3.7)

By iterative expectations, f must be a martingale:

E
[
d f
]
= 0.

Applying this fact to equation (3.7) yields the Fokker-Planck (or forward Kol-
mogorov) equation:

1
2

Y
∂2 f
∂s2 + ρσY

∂2 f
∂s∂Y

+
1
2

σ2Y
∂2 f
∂2Y

+ (r− 1
2

Y)
∂ f
∂s

+[κγ− (κ + λ2σ)Y]
∂ f
∂Y

+
∂ f
∂t

= 0.
(3.8)
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Equation (3.6) imposes the terminal condition:

f (s, Y, T) = g(s, Y).

Thus, if g(s, Y) is the Dirac delta function g(s, Y) = δ(s − s∗) (which can be
presented in the integration form as g(s, Y) = 1

2π

∫ +∞
−∞ eiω(s−s∗)dω), then the solution

is the conditional probability density at time t that s(T) = s∗. If g(s, Y) = 1s≥ln K,
then the solution is the conditional probability at time t that s(T) is greater than ln K
which is interpreted as a probability of finishing in the money referring to the call
option . And if g(s, Y) = eiφs, then the solution is the characteristic function.

3.2.1 Option pricing

Under the risk-neutral valuation under a martingale measure Q, the price of a contin-
gent claim is evaluated as its expected discounted payoff. For the option value, we
have:

Call = EQ
t [e

r(T−t)Payo f f (T)] = EQ
t [e

r(T−t)(esT − K)+|st, Yt], (3.9)

where K is the strike of the option.
By analogy with the Black-Scholes formula, Heston (1993) makes a guess about

the solution in the form:

C(St, Yt, t) = StP1 − Ke−r(T−t)P2. (3.10)

Here the first term is the present value of the spot asset upon optimal exercise,
and the second term is the present value of the strike-price payment. Let us denote by
U(S, Y, t) the value of any contingent claim. Introducing the price of volatility risk,
the value of the contingent claim must satisfy equation (3.8).

1
2

Y
∂2U
∂s2 + ρσY

∂2U
∂s∂Y

+
1
2

σ2Y
∂2U
∂2Y

+ (r− 1
2

Y)
∂U
∂s

+{κγ− (κ + λ2σ)Y}∂U
∂Y

+
∂U
∂t

= 0.
(3.11)

In logarithmic terms, the terminal condition for a call option with a strike price K
and maturity T is C∗(st, Yt, T) = max(0, es − K). This means that the PDEs for Pj are
subject to the terminal condition:

Pj(s, Y, T) = 1s≥ln K

Thus, they may be interpreted as “risk-neutral” probabilities. Pj corresponds to
the conditional probability that the option expires in-the-money:

Pj(s, Y, t) = Pr[s(T) ≤ ln K|s(t) = s, Y(t) = Y].

The probabilities are not immediately available in closed from. However, their
characteristic functions satisfy the same PDEs (3.8), subject to the terminal condition:

f j(s, Y, t; φ) = eiφs.
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Both of the terms P1 and P2 in solution (3.10) must satisfy equation (3.8):

1
2

Y
∂2Pj

∂s2 + ρσY
∂2Pj

∂s∂Y
+

1
2

σ2Y
∂2Pj

∂2Y
+ (r + ujY)

∂Pj

∂s

+(aj − bjY)
∂Pj

∂Y
+

∂Pj

∂t
= 0,

(3.12)

for j = 1, 2, where

u1 =
1
2

, u2 = −1
2

, a = κγ, b1 = κ + λ2σ− ρσ, b2 = κ + λ2σ.

Heston (1993) makes the following assumption on the form of the characteristic
function, which exploits the linearity of the coefficients in the PDE (3.7) (characteristic
function is conditioned on the initial values s0, Y0 of the underlying diffusion process
):

f j(st, Yt, t) = exp{Cj(T − t) + Dj(T − t)Yt + iφst}, (3.13)

Substituting this functional form (3.13) into PDE (3.7), reduces it to two ordinary
differential equations:

−1
2

σ2φ2 + ρσφiD +
1
2

D2 − ujφi− bjD +
∂D
∂t

= 0,

rφi + κγD +
∂C
∂t

= 0,
(3.14)

subject to
C(0) = 0, D(0) = 0.

Solving the system (3.14) gives the solution:

Cj(τ; φ) = rφiτ +
a

σ2

{
(bj − ρσφi + d)τ − 2 ln

[
1− gedτ

1− g

]}

Dj(τ; φ) =
(bj − ρσφi + d)

σ2

[
1− edτ

1− gedτ

]
,

(3.15)

with

g =
(bj − ρσφi + d)
(bj − ρσφi− d)

d =
√
(ρσφi− bj)2 − σ2(2ujφi− φ2)

(3.16)

The characteristic function is essentially the Fourier transform of the density gen-
erated by the underlying process (can be of diffusion or of a Lévy type) conditioned
on the initial state of the process. The physical variable s has been integrated out,
leaving the frequency variable φ in the equation.

One can invert the characteristic function to get the desired probabilities:

Pj(s, Y, T; ln K) =
1
2
+

1
π

∫ ∞

0
Re

(
e− ln(K)iφ f j(φ; st, Yt)

iφ

)
dφ (3.17)

However, due to the form of the characteristic function, we can not get its inverse
analytically and a numerical method for integration has to be used, see, for instance,
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[27], [41], [73], [75]. We employ the approach of Carr and Madan which is described
in Appendix B.

3.3 Calibration

In the financial industry calibration of the parameters for pricing products with
future uncertainty is based on the market data. This “market implied approach”
assumes that the current market prices are the truthful information source and that
they represent the relevant information available about a stochastic model for the
underlying asset. The market is assumed to be a perfect informational machine,
which absorbs all the relevant information about the unknown “stock” process, and
produces consistent option prices. Efficient Market Hypothesis (EMH) is at the core
of the informationally efficient financial market assumption. The EMH requires that
all economic agents are fully informed and perfectly rational. The objective function
used to find the model parameters is defined as a minimal prediction error between
mathematical model and market prices. On the first step the mathematical model of
the underlying stock process is implemented and option prices are calculated based
on “guessed parameters”. If these computed model option prices are not coherent
with the model, then the model parameters are improved by calibrating until some
pre-defined criteria on the quality of fit is met.

In this setting, calibration of the Heston model under the risk-neutral measure
is generally done using joint observations of the stock and derivatives such as call
options or swaps. Usually five parameters are fitted to the observations: initial
variance Y0, volatility of volatility σ, a long-run variance γ′, a mean reversion κ′, and
a correlation coefficient ρ, see [93] for a detailed calibration procedure. The parameters
are found by an optimisation procedure which minimises the prediction error between
mathematical Heston prices and the market prices. Using the formula (B.7) of the call
price under the Heston model and using equation (3.13) for the characteristic function,
we can obtain the Heston call price. In this way, the characteristic function (3.13) is
conditioned on the initial values s0, Y0 of the underlying diffusion process. In our
case this approach is modified to take into account a time-dependent Yt process for
the unobserved variance. On each iteration, we infer the Yt process given parameter
vector considered during the estimation procedure by equating the mathematical
Heston call price with the market price at each time instalment t.

The objective function is defined as the Sum of Squared Errors (SSE) between the
Heston model prices, which are obtained from equations (3.10), (3.13) and (3.17), and
the market prices:

SSE(κ′, γ′, σ, ρ|Yt) =
n

∑
i=1
{CM

i − CH
i (κ′, γ′, σ, ρ|Yt)}2 (3.18)

subject to

2κ′γ′ ≥ σ2, −1 < ρ < 1, κ′ > 0, 0 < γ′ < 1, 0 < σ < 1.

where CM
i , CH

i (κ′, γ′, σ, ρ|Yt) are the ith option prices from the model and market,
respectively. N is the number of options used for calibration. The market prices
CM

i are the option prices we obtained with the Black-Scholes formula and implied
volatility values taken from the market. They are At-the-money call options with a 3
month tenor.



3.3. Calibration 39

We calibrate the model defined by the system of equations (3.4). Equation (3.18)
defines a non-linear least-squares optimisation problem which allows to identify a set
of “average risk-neutral” parameters κ′, γ′, σ, ρ and the unobserved Yt process. We
incapsulate the constrain of the feasible set of parameters 2κ′γ′ ≥ σ2 by taking the
first parameter equal to 2κ′γ′ − σ2 with a low bound of zero. Thus, actual vector of
parameters used in the optimization is [2κ′γ′ − σ2, γ, σ, ρ].

At the last stage of the calibration procedure we identify the price of risk param-
eters λ1, λ2 and we obtain a more precise estimation of the ρ using the likelihood
expansion method proposed by Ait-Sahalia and Kimmel [3] and the extracted Yt
process coupled with the stock process St. The likelihood expansion technique is
summarised in the next section.

Once the risk-neutral parameters are obtained by minimising SSE defined in
(3.18), we optimize the likelihood function w.r.t. 3 parameters: (ρ, λ1, λ2). The risk-
neutral parameters κ′∗, γ′∗ and the value of σ∗ we fix with the values obtained from
the previous step and we explicitly define the relationship between the parameters
under the risk-neutral and the objective measures as in the system of equations (3.4):
κ = κ′∗ − λ2σ∗ and γ = κ+λ2σ∗

κ γ′∗.
To summarise, the calibration procedure involves the following steps:

1. Phase 1: parameters initialisation.

1.1. Guess the four initial parameters κ′0, γ′0, σ0, ρ0 based on the estimates from
the data

1.2. For each t find Y0
t s.t. CM

i = CH
i (κ′0, γ′0, σ0, ρ0, Yt)

2. Phase 2: parameters estimation.

2.1. Given [κ′0, γ′0, σ0, ρ0] and Y0
t , find the four parameters as:

[κ′∗, γ′∗, σ∗, ρ∗] = arg min
κ′,γ′,σ,ρ

SSE(κ′, γ′, σ, ρ|Y0
t ).

2.2. Find λML
1 , λML

2 , ρML = arg min
λ1,λ2,ρ

− Ln(λ1, λ2, ρ|κ′∗, γ′∗, σ∗), where Ln is the

log-likelihood function as defined by Ait-Sahalia and Kimmel [3]

2.3. Obtain κ∗ = κ′∗ − λML
2 σ∗ and γ∗ =

κ∗+λML
2 σ∗

κ∗ γ′∗

2.4. Repeat the procedure from step 1.2 using the real-world parametrization:

κ∗, γ∗, σ∗, ρML, λML
2 .

The goal of this procedure is to find a set of parameters which would be stable
in terms of estimation error and coherent according to both criteria – the minimal
prediction error and the maximum likelihood approach, as neither of the methods by
itself can identify the price of risk parameters in a stable manner. Such, Ait-Sahalia
and Kimmel [3] report large standard errors (reported value is 3.9) for the price of
risk parameters based on the estimation performed on a synthetic dataset, while the
minimisation procedure itself suffers from a so-called “curse of dimensionality" prone
to optimisation methods.

The standard errors of the MLE are the square roots of the diagonal elements of
the inverse of the observed Fisher information matrix (the Hessian):

F(θ) =
∂2lX

∂θ∂θT , SE(θ̂ML) =
1√

F(θ̂ML)
.
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The optimization problem (3.18) is ill-posed since the parameter space, over
which the minimization is performed, is neither convex no does it have any particular
structure. This poses some complications. Finding the minimum is not as simple
as finding those parameter values that turn the gradient into zero. Hence, finding a
global minimum is difficult (and very dependent on the optimisation method used).
Unique solutions do not need to necessarily exist, in which case only local minima
can be found. To overcome this problem, we need a set of initial parameters which is
close enough to the “real" ones. To get a good estimate of the initial parameters we
analyse the historical data. This analysis is described in the Phase 1 of the parameters
estimation procedure.

3.3.1 Likelihood expansion

Ait-Sahalia and Kimmel [3] have suggested a method to estimated the Heston model
under the objective measure. This procedure is based on approximating the unknown
likelihood function and identifying the unobserved volatility state by inverting option
prices.

Consider the SDE describing the dynamics of the state vector Xt under the mea-
sure P, as specified by (B.1) in C. Let pX(∆, x|x0; θ) denote the transition function, that
is, the conditional density of Xt+∆ = x given Xt = x0 as a function of x, where θ de-
notes the vector of parameters for the model. The log-likelihood function lX = ln pX
is approximated using closed-from expansions. It is obtained using Hermite poly-
nomials and it takes the form of the power-series (with ∆ being the time interval
separating observations):

l(J)
X (∆, x|x0; θ) = −m

2
ln(2π∆)− Dν(x; θ) +

C−1
X (x|x0; θ)

∆
+

J

∑
k=0

C(k)
X (x|x0; θ)

∆k

k!
,

(3.19)
where

Dν(x; θ) =
1
2

ln(det[ν(x; θ)]) and ν(x) = σ(x)σ′(x).

The coefficients C(k)
X corresponding to ∆k, k = 1, . . . , J are the unknowns here. First,

Taylor series in (x− x0), denoted by Cjk ,k
X , of each coefficient ∆k at order jk are calcu-

lated. The resulting expansion is then

l̃(J)
X (∆, x|x0; θ) = −m

2
ln(2π∆)− Dν(x; θ) +

C(j−1,−1)
X (x|x0; θ)

∆
+

J

∑
k=0

C(jk ,k)
X (x|x0; θ)

∆k

k!
,

The coefficients C(jk ,k)
X are then obtained by forcing the expansion 3.19 to satisfy,

to order ∆J , the forward and backward Fokker-Planck-Kolmogorov equations. Then
the corresponding system of linear equations is solved and the coefficients C(jk ,k)

X are
obtained. Such, the forward equation for the ln pX has a form:

∂lX

∂∆
=−

m

∑
i=1

∂µP
i (x)
∂x

+
1
2

m

∑
i=1

m

∑
j=1

∂2vij(x)
∂xi∂xj

−
m

∑
i=1

µP
i (x)

∂lX

∂xi
+

m

∑
i=1

m

∑
j=1

∂vij(x)
∂xi

∂lX

∂xj

+
1
2

m

∑
i=1

m

∑
j=1

vij(x)
∂2lX

∂xi∂xj
+

1
2

m

∑
i=1

m

∑
j=1

∂lX

∂xi
vij(x)

∂lX

∂xj

(3.20)
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From there, the joint likelihood function of the observations Gt = [St, Ct]′ is ob-
tained by multiplying the likelihood of Xt = [St, Yt]′ by Jacobian term. The likelihood
function of the observed stock and option prices Gt = [St, Ct]′ is obtained from equa-
tion (3.19) using the Jacobian term which in our case (when for each time instalment
there taken only one stock and one option price) is simply the first derivative of the
option price with respect to the additional state variable Yt (it is similar to the Vega of
the call option):

Jt =
∂Ct

∂Yt

Let pG(∆, g|g0; θ) similarly denote the transition function of the vector of asset
prices G observed ∆ units apart. Due to the Markovian property, the log-likelihood
function of the asset prices gt sampled at dates t0, . . . , tn has a form:

Ln(θ) = n−1
n

∑
i=1

lG(ti − ti−1, gt,i|gt,i−1; γ) (3.21)

where

lG(∆, g|g0; θ) = ln pG(∆, g|g0; θ) = − ln Jt(∆, g|g0; θ) + lX(∆, f−1(g, θ)| f−1(g0; θ); θ).

with lX obtained from equation (3.19) and f−1(Gt+∆; θ) = Xt+∆ being the inverse
function to express the state as a function of the observed asset prices. Thus, we
aim to maximise the likelihood expressed in the equation (3.21) on the bases of the
daily/weekly data.

3.4 Experiments

3.4.1 Data description

We take time series observations of the Eurostoxx 50 Index for the years 2000-2016. To
obtain the time series for the prices of the corresponding call options, we calculate the
Black and Scholes call prices from their implied volatilities captured by a volatility
index. As an input to the Black and Scholes formula, we use 3 months Euribor rate
and the Euro Stoxx 50 Volatility Index (VSTOXX), also for the maturity of 3 months.
The VSTOXX Indices are based on the Euro Stoxx 50 realtime options prices and are
designed to reflect the market expectations of near-term up to long-term volatility by
measuring the square root of the implied variance across all options of a given time
to expiration.

Since different indices are sometimes quoted on different dates, before calculating
option prices, we match the dates of the Euribor interest rates, VSTOXX Indices and
the Eurostoxx 50 Indices. The deduced call prices we further use as a market data
in our experiments. For the 17 yeas (2000-1016) we get 4236 daily observations. It
results in 847 weekly observations.

The series of the observed Eurostoxx 50 Index, Euribor rate, Euro Stoxx 50 Volatil-
ity Index (VSTOXX) and the obtained ATM call prices with 3 months maturity are
shown in Figure 3.1.

3.4.2 Parameters estimation: phase 1.

To find the initial parameters for the optimisation routine, we first pre-estimate them
on the historical time series of the logarithmic returns. The log return is defined
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(A) Euribor rate, 3m (B) VSTOXX Volatiltiy Index, 3m

(C) Eurostoxx 50 Index (D) ATM 3m call options

FIGURE 3.1: Time series of the (a) Euribor rate, (b) Volatility Index (VS-
TOXX), (c) Eurostoxx 50 Index and (d) deduced call option prices; 2000-2016

daily data
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as x = ln
[

S(t+1)
S(t)

]
. Unconditional long-term variance target (reversion level of the

variance), γ, is estimated (per year) as the standard deviation of the log returns
multiplied by the square root of the length of the time period (

√
50 for the weekly

data and
√

250 for the daily data), squared. Correlation coefficient between the log
returns and the changes in volatility is estimated based on the realized volatility of
the Eurostoxx50 Index. We use a window of different length (5,10 and 20) to calculate
the realized volatility series. Then we find the correlation coefficient between the
time series of the differences in realized volatility and the log returns. In addition we
have calculated the correlation coefficient between the differences in the Volatility
Index (VSTOXX) and the log returns of the Eurostoxx50. Estimated statistics are
summarized in Table 3.1.

It is well known that the mean reversion level of the variance is much lower when
it is estimated based on the volatility of the Eurostoxx50 log returns rather than when
it is estimated based on the VSTOXX Index (based on the VSTOXX Index it is 7.23%
for the weekly data and 7.21% for the daily data while the γ̂ estimated based on the
realised volatility is 4.79% and 5.87% for the weekly and daily data respectfully). This
fact is confirmed by the graphs in Figure 3.2 – the level of the VSTOXX Index exceeds
the level of the realized volatility. However, their dynamics are similar.

The correlation coefficient is much more prominent between the log returns and
the VSTOXX Index rather than between the log returns and the realized volatility.
Moreover, it is larger in absolute value for the weekly data rather than for the daily
data.

In practice, different approaches are used for estimation of the unobserved
variance process Yt. For instance, Moody’s Analytics report on equity volatility
(Hibbert and Manning (2014), [52]) estimates the unobserved variance process as
Y = (C ∗VSTOXX)2, where C is a constant coefficient obtained by running a linear
regression between the realized volatility and the market volatility Index. This is a
very trivial approach which basically assumes that the unobserved volatility process
is a multiple of the market implied volatility. Ait-Sahalia and Kimmel [3] estimate all
the coefficients of the stock and volatility process simultaneously by approximating
the unknown likelihood function of the joint diffusion process. This is an appealing
technique and we use it in our estimations, however, as we find out in our experi-
ments, the parameters obtained using likelihood function approximation technique,
strongly depend on the initial parameters. Thus, the question of finding good initial
parameters is crucial.

Estimation of the CIR parameters. To get an idea on the parameters estimates
for the γ, κ and σ of the unobserved variance process Y, we use the time series of the
realized volatility and the VSTOXX Index. We calibrate the parameters γ, κ and σ of
the CIR process to the realized variance process and the VSTOXX2. The maximum
likelihood estimation of the parameter vector [γ, κ, σ] of the CIR process is based on
the transition density. Given Yt at time t, the density of Yt+∆t at time t + ∆t is

p(Yt+∆t|Yt; [γ, κ, σ]) = ce−u−v
( v

u

) q
2

Iq(2
√

uv), (3.22)
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Parameter Weekly data Daily data

γ̂ 0.0479 0.0587
mean(VSTOXX2) 0.0723 0.0721

ρ̂x,VSTOXX -0.7622 -0.7749
ρ̂x,Vol5 -0.1250 -0.0789
ρ̂x,Vol10 -0.1493 -0.0960
ρ̂x,Vol20 -0.1607 -0.0717

mean(Euribor) 0.0207 0.0207
mean(logReturns) −4.7017 ∗ 10−4 −9.2427 ∗ 10−5

TABLE 3.1: Parameters’ statistics

where

c =
2κ

σ2(1− e−κ∆t)

u = cYte−κ∆t,
v = cYt+∆t,

q =
2κγ

σ2 − 1,

(3.23)

and Iq(2
√

uv) is a modified Bessel function of the first kind and of order q. Then
the likelihood function of the time series (Y1 . . . YN) with the time between two
observations of one unit is

L([γ, κ, σ]) =
N−1

∏
i=1

p(Yi+1|Yi; [γ, κ, σ]), (3.24)

from which the log-likelihood function of the CIR process is derived:

ln L([γ, κ, σ]) = (N− 1) ln c+
N−1

∑
i=1

[
−ui − vi+1 + 0.5q ln

(
vi+1

ui

)
+ ln(Iq(2

√
uivi+1))

]
,

(3.25)
where ui = cYie−a∆t and vi+1 = cYi+1.

Table 3.2 and Table 3.3 summarise the calibrated parameters for the weekly and
daily data. In addition, they contain the information on the moments of the Yt. The
moments are computed as follows (see [60]):

E[Yt] = γ + (Y0 − γ)e−κt,

Var[Yt] =
σ2

κ
(1− e−κt)[Y0e−κt +

γ

2
(1− e−κt)].

(3.26)

First, let us look at the parameters obtained for the VSTOXX2. The mean reversion
level γ̂ based on the daily and the weekly data is almost the same (0.0715 and 0.0713
respectfully) with the γ̂ for the daily data higher by 0.23%. As expected, the volatility
of the volatility parameter σ̂ is higher for the daily data in comparison to the weekly
data by 14.19% (0.5769 vs. 0.5052). The speed of the mean reversion κ̂ is higher for
the daily data as well – by 33.88% (6.0887 vs. 4.5479). This relation between the
parameters of the weekly data and the daily data holds also for the realized volatility
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(A) Daily data - 5 days window (B) Weekly data - 5 weeks window

(C) Daily data - 10 days window (D) Weekly data - 10 weeks window

(E) Daily data - 20 days window (F) Weekly data - 20 weeks window

FIGURE 3.2: The VSTOXX Index and the realized volatility

Process (κ̂, γ̂, σ̂) E(Yt), Var(Yt) σ2 /κ

VSTOXX2 (4.5479, 0.0713, 0.5052) 0.0713, 0.0040 0.05612
Vol5 (5.3724, 0.0483, 0.6229) 0.0483, 0.0028 0.07222
Vol10 (2.1409, 0.0472, 0.3298) 0.0472, 0.0036 0.05080
Vol20 (0.8280, 0.0442, 0.1802) 0.0442, 0.0048 0.03922

TABLE 3.2: CIR-parameters of the volatility processes, weekly data
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Process (κ̂, γ̂, σ̂) E(Yt), Var(Yt) σ2/κ

VSTOXX2 (6.0887, 0.0715, 0.5769) 0.0715, 0.0034 0.05466
Vol5 (26.9250, 0.0601, 1.59789) 0.0601, 0.0018 0.09482
Vol10 (9.2070, 0.0592, 0.8313) 0.0592, 0.0027 0.07506
Vol20 (2.9596, 0.0580, 0.4423) 0.0580, 0.0043 0.06610

TABLE 3.3: CIR-parameters of the volatility processes, daily data

given a fixed length of the window. For both datasets, the mean reversion level γ̂, the
speed of the mean reversion κ̂ and the volatility of the volatility parameter σ̂ decrease
as the length of the window increases. The latter two observations can be explained
by the fact that the dispersion range of the volatility for a smaller window is wider.
However, if we look at the variance of the process, Var(Yt) – it, on the contrary, grows
as the length of the window increases. We can conclude that the variance of the
implied volatility processes is in the same range as the variance of the VSTOXX2

process, both for the daily and the weekly data, while κ̂ and σ̂ vary more for the
implied volatility process depending on the length of the window. The ratio of σ2/κ,
however, is closer to the one of the VSTOXX2 process for the 10-days window for
the weekly data and for the 20-days window for the daily data.

The coefficient β̂ of the linear regression between the implied volatility and the
VSTOXX Index is significant for each time series of the implied volatility. However,
the R2 coefficient is higher for the daily data. The result based on the daily data also
corresponds better with the Moody’s Analytics report on equity volatility (Hibbert
and Manning (2014)) [52] where the authors obtain β̂ = 0.92.

We think that the presented analysis of the obtained CIR parameters gives a sound
idea on the range in which the real-world parameters of the unobserved variance
process should lie. While running the optimization routine we use the triples [κ, γ, σ]
obtained based on the implied volatility process (Tables 3.1, 3.2 and 3.3 ) as the initial
ones.

3.4.3 Parameters estimation: phase 2.

After the parameters are initialised (with the results of the phase 1), we proceed
with the calibration of the model. For the Step 2.1 of the calibration procedure –
minimising the SSE w.r.t. four parameters, we use the MATLAB’s least-squares,
non-linear optimiser, a function lsqnonlin(fun, x0, lb, ub). It minimises the vector-
valued function, fun, using the vector of initial parameter values, x0, where the lower
and upper bounds of the parameters are specified in vectors lb and ub, respectively.
lsqnonlin uses an interior-reflective Newton method. The result produced by the
lsqnonlin is dependent on the choice of x0, the initial estimate. This is, therefore,
not a global optimiser, but rather, a local one. We have no way of knowing whether
the solution is a global/local minimum, but we report the SSE value for each set of
optimal parameters. Thus, lsqnonlin can only be used when one is confident that the
solution to (3.18) is not very far from the initial estimates. We do not use the ASA
algorithm on the Step 3 of the calibration procedure for the reason that it requires
more time in this case than the MATLAB’s least-squares lsqnonlin functions which is
able to provide good results as a local optimiser.

Using parameters obtained during the Phase 1 as the initial ones with an upper
bound and a lower bound taken close to them, we run the first step of the calibration
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procedure and infer the variance process Yt. The resulting option prices and the
volatility process are depicted in Figure 3.3. The initial parameters used are [κ =
4.5479, θ = 0.0713, σ = 0.5052, ρ = −0.7622]. We find that on the first step the
parameters estimated based on the VSTOXX Index provide the best fit. The resulting
error on the first step between the model prices and the market prices is SSE =
6.7879 ∗ 105. As we can see, the fitting is already quite good with visible error
occurring only in the events of distress – when the market is more volatile the options
are undervalued by the model. This might be due to the variance process inferred as
during such periods the inferred volatility is lower than the market has experienced.

For the Step 2.2 of the calibration procedure – minimising the minus likelihood
function, we use the Adaptive Simulated Annealing algorithm. Since we do not have
an idea on the range of the parameters of the risk vector λ1 and λ2, it is important
to use an algorithm which is able to find a global minima, rather than a local one.
ASA was developed by the theoretical physicist Lester Ingber [56]. The simulation
of annealing as an approach that reduces a minimisation of a function of large
number of variables to the statistical mechanics of equilibration (annealing) of the
mathematically equivalent artificial multiatomic system. ASA is similar to SA except
that it uses statistical measures of the algorithm’s current performance to modify
its control parameters. A proof is provided by Ingber shows that ASA is a global
optimiser. He also provides arguments in favour of ASA’s computational efficiency
and accuracy. The initial point of the algorithm is taken and a random combination
between the upper and the lower bound on ache parameter introduced by the user.

Tables 3.4 - 3.7 report the resulting parameters starting from different values of λ
(0)
2

and using different bounds on the parameters during the Step 3 of the optimisation
procedure. The standard errors reported for λ1 and λ2 of the MLE are the square roots
of the diagonal elements of the inverse of the observed Fisher information matrix (the
Hessian):

F(θ) =
∂2lX

∂θ∂θT , SE(θ̂ML) =
1√

F(θ̂ML)
.

The price of risk following from the model which has an economical interpretation
as a risk premium per unit of volatility is expressed as λ1(1− ρ2) + λ2ρ. It is reported
in the tables as Risk premia.

Results of the parameters estimation by the iterative procedure are depicted in
figures 3.5 and 3.6 and in the Tables 3.4-3.7. We can see that the real-world parameter
(κ) standing for the speed of mean reversion of the variance is smaller than the risk-
neutral (κ′) for all initial values of λ

(0)
2 tested. The parameter of the mean reversion

level of the variance (γ) is on the contrary larger under the objective measure rather
than under the risk-neutral measure (γ′).

The parameters obtained are coherent with the historical estimate presented in
Tables 3.1 and 3.2 – such, the correlation coefficient is close to the one estimated from
the VSTOXX Index (Table 3.1 indicates that the correlation coefficient estimated from
the weekly data is -0.7622). In the iterative procedure the correlation coefficient is
either converging to the lower bound of -0.9 or it is estimated at the level of -0.8039.
This result is coherent with the “the leverage effect” – the fact that the equity returns
and implied volatility are negatively correlated.

It is interesting to note, that the risk neutral level of mean reversion γ′ is close to
the estimated one obtained from the log returns. The level of the real-world value of γ
is close to the one obtained form the VSTOXX Index, while the level of the risk-neutral
value of γ′ is close to the estimates obtained from the realized volatility (Table 3.2).
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(A) Inferred
√

Y-process (B) Heston options prices

FIGURE 3.3: Results of the calibration Step 1, weekly data; SSE = 6.7879 ∗
105

(A) Inferred
√

Y-process (B) Heston options prices

FIGURE 3.4: Results of the full calibration procedure, weekly data; SSE =
1.9064 ∗ 104

While the former observation can be expected as the VSTOXX Index should translate
the real-world dynamics, the latter might be specific to the data set employed in the
experiments and further quantitative experiments would be needed to investigate if
the observed dependency holds for other equity indexes. Regarding the Standard
Errors of the price of risk parameters and the correlation coefficient, the standard
error of the correlation coefficient is always zero and, therefore, not reported in the
tables. As for the price of risk, we obtain much lower standard error for λ1 than
reported by Ait-Sahalia and Kimmel [3] – 1.2 vs. 4.3. The SE corresponding to λ2
is not reported in [3] since no experiments are performed on the real data with λ2.
In absence of λ2, the reported value of λ1 for the S&P 500 Index is 3.9, while in our
iterative procedure λ1 either converges to the upper bound of 10 or it is estimated at
the level of 7.8264. Therefore, the associated risk premium per unit of volatility in [3]
would be approximately -1.6 (as the correlation coefficient is estimated at -0.767 level).
We see our result to be coherent with the one obtained in [3] since the risk premium
per unit of volatility in our case fluctuates around -1 and the equity index considered
is a different one.
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Parameter Optimal Bounds (L, U)

κ′(κ) 3.4865 (2.1088) [1.6250, 15.7500]
γ′(γ) 0.0516 (0.0854) [0.06, 0.08]

σ 0.4 [0.4, 1.3]
ρ -0.8039 [−0.9,−0.5]

λ1 (SE) 7.8264 (1.2162) [−10, 10]
λ2 (SE) 3.4437 (0.8960) [−10, 10]

SSE 1.9064 ∗ 104 -
Risk premia −9.1434 ∗ 10−5 -

TABLE 3.4: Results of the full calibration procedure,λ(0)
2 = −1 weekly

data;

Parameter Optimal Bounds (L, U)

κ′(κ) 2.9137 (1.9300) [0.0950, 15.7500]
γ′(γ) 0.0543 (0.0819) [0.06, 1.00]

σ 0.3409 [0.3, 1.3]
ρ -0.9 [−0.9,−0.5]

λ1 (SE) 10 (1.2175) [−10, 10]
λ2 (SE) 2.8855 (1.0126 ) [−10, 10]

SSE 461.3809 -
Risk premia −0.6969 -

TABLE 3.5: Results of the full calibration procedure, λ
(0)
2 = −1 weekly

data;

Parameter Optimal Bounds (L, U)

κ′(κ) 3.1776 (2.0162) [0.0950, 15.7500]
γ′(γ) 0.0531 (0.0837) [0.06, 0.08]

σ 0.3709 [0.3, 1.3]
ρ -0.9000 [−0.9,−0.5]

λ1 (SE) 10 (1.2172) [−10, 10]
λ2 (SE) 3.1309 (1.0077) [−10, 10]

SSE 755.2722 -
Risk premia −0.9178 -

TABLE 3.6: Results of the full calibration procedure, λ
(0)
2 = 6, weekly

data;
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(A) γ′ (B) γ

(C) κ′ (D) κ

(E) σ (F) ρ

FIGURE 3.5: Results of the parameters estimation by the iterative procedure
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(A) λ1 (B) λ2

(C) SSE (D) Log Likelihood

(E) Price of risk components (F) Financial price of risk

FIGURE 3.6: Results of the parameters estimation by the iterative procedure
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Parameter Optimal Bounds (L, U)

κ′(κ) 3.3181(2.0136) [0.0950, 15.7500]
γ′(γ) 0.0516 (0.0850) [0.06, 0.08]

σ 0.3800 [0.3, 1.3]
ρ -0.9000 [−0.9,−0.5]

λ1 (SE) 10 (1.2163) [−10, 10]
λ2 (SE) 3.4333 (1.0050) [−10, 10]

SSE 775.0003 -
Risk premia −1.1900 -

TABLE 3.7: Results of the full calibration procedure, λ
(0)
2 = 1, weekly

data;

3.4.4 Monte Carlo simulations

We simulate the Heston model as it is given in equation (3.4) under the objective
measure P using the parameters obtained in the previous chapter. First, the state
volatility process is simulated using the transition density which is known for the
CIR-type processes. The distribution of Yt given Yu for some u < t is a non-central
chi-square distribution. The transition law of Yt can be expressed as

Y(t) =
σ2(1− e−κ(t−u))

4κ
χ2

d

(
4κe−κ(t−u)

σ2(1− e−κ(t−u))
Y(u)

)
,

where d = 4κγ
σ2 is the degree of freedom. This says, that, given Y(u), Y(t) is

distributed as σ2(1−e−κ(t−u))
4κ times a non-central chi-square random variable with d

degrees of freedom and non-centrality parameter:

λ =
4κe−κ(t−u)

σ2(1− e−κ(t−u))
Y(u).

Thus, we can simulate the process Yt on a discrete time grid by sampling from a
non-central chi-square distribution (see Glasserman (2003) [47] for more details).

Simulation of the logarithm of the stock process st under the objective measure P
is done by discretising equation for st as it is specified in the system (3.4) with a time
step δ:

st+1 = st +

[
r− d + λ1(1− ρ2) + λ2ρ− 1

2

]
Ytδ + [

√
1− ρ2Z1 + ρZ2]

√
Yt
√

δ, (3.27)

where Z1 and Z2 are two independent standard normal random variables.
We simulate trajectories of the variance process and the stock process weekly

taking a horizon of one year. As a result of the simulations we compute the yearly
VaR. To compare the characteristics of the distribution of the logarithmic returns
with the actual one obtained from the history, we also compute the skewness and
the kurtosis of the distributions. In addition we fit the Student’s and the Normal
distribution to the resulting distribution of returns to be able to compare the value of
VaR with the standard parametric approach.
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Data VAR-05 VAR-1 VAR-5 Mean Std Skewness Kurtosis
HistDaily -0.6332 -0.5972 -0.4697 -0.0322 0.2201 -0.7458 2.7512

HistWeekly -0.6374 -0.6046 -0.4713 -0.0322 0.2205 -0.7508 2.7536
Sim ρ = −0.8039 -1.0112 -0.8243 -0.5581 -0.0701 0.2702 -0.8980 4.5850

Sim Student -0.8791 -0.7627 -0.5049 -0.0576 0.2371 - -
Sim Normal N -0.7993 -0.7296 -0.5394 -0.08011 0.2792 - -

Sim ρ = −0.7622 -0.9093 -0.7905 -0.4876 -0.0249 0.2587 -0.8201 4.3536
SimStudent -0.7545 -0.6549 -0.4269 -0.0096 0.2263 - -

SimNormal N -0.6912 -0.6267 -0.4504 -0.0249 0.2587 - -

Sim ρ = −0.1607 -0.5522 -0.4868 -0.2908 0.1169 0.2494 0.0356 3.5222
SimStudent -0.5670 -0.4874 -0.2906 0.1166 0.2325 - -
SimNormal -0.5257 -0.4634 -0.2934 0.1169 0.2494 - -

TABLE 3.8: Characteristics of the log-returns distribution, simulation
for the weekly data

The results of the simulation are summarised in Table 3.8. The parameters used are
from Table . However, we make additional simulations using correlation coefficient
obtained from estimation on the historical data . Since the value of the correlation
coefficient is always difficult to estimate, we want to see how different values of ρ
effect the result. As expected, the value of ρ estimated from the realized volatility
(ρ = −0.1607), does not produce simulations coherent with historical data (the
skewness of the distribution is positive) as it is too low.

On the contrary, the value of ρ = −0.7622 estimated as correlation between the
stock log returns and the differences in the VSTOXX Index provides results coherent
with history, as well as the value of ρ = −0.8039 obtained via ML estimation. We can
conclude that the parameters obtained with the the iterative procedure provide more
prudent estimates of VaR due to fact that the resulting distribution exhibits higher
level of kurtosis and skewness. As we can see from Figure 3.7 and 3.8, the resulting
simulations are coherent with the history.

3.5 Conclusions

In this paper we have proposed a methodology to couple a standard technique of
risk-neutral valuation of equity options based on the minimization procedure with
the approach of Ait-Sahalia and Kimmel (2007) [3] which invloves approximating the
unknown likelihood function. We showed that the standard errors of the estimated
price of risk parameters are smaller than those reported by Ait-Sahalia and Kimmel
(2007). We find that our procedure allows to reduce the error between the actual and
the model price in comparison to the standard estimation approach of the Heston
model by identifying iteratively the unobserved variance process and by correcting
the parameters on each step. Although there are instabilities in the algorithm, with a
large number of iterations the estimated parameters tend to converge to stable values.
Simulations show that the calibrated parameters produce equity trajectories coherent
with the history. The VaR value computed using obtained parameters tend to provide
more prudent estimates compared to the historical and parametric approach. Future
work could involve an extension to the state vector with an additional stochastic state
variable representing an interest rate component.
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(A) Historical yearly log-returns (B) One year log-returns, 15,000 MC simulations

(C) Distribution of the historical yearly log-
returns

(D) Distribution of the one year log-returns,
15,000 MC simulations

(E) Fitted Normal distribution (F) Fitted Student distribution

FIGURE 3.7: Simulated and historical yearly log-returns, weekly data;
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(A) Simulated variance process (B) Inferred variance process and simulation

(C) Simulated stock process (D) History and silmulations

FIGURE 3.8: 15,000 MC simulations, weekly data;
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Chapter 4

Network-based approach in
modelling credit defaults

4.1 Introduction

This work studies how network theory can be used to improve the assessment of
default credit models, both in the setting of structural and reduced-form models. In
particular, we describe how to use a network effect for a bank who holds a portfolio
of SME clients who are interconnected due to trade credit relations through a Supply
Chain Network (SCN).

A Supply Chain Network (SCN) is an evolution of the basic supply chain which
is defined as “a network used to deliver products and services from raw materials
to end customers through an engineered flow of information, physical goods and
cash” [90]. Nowadays organisations with a basic supply chain can develop this
chain into a more complex structure involving a higher level of interdependence and
connectivity between more organisations, this constitutes a supply chain network.
SCNs can be used to show the flow of information and materials across organisations.
Supply chain networks are typically structured with five key areas: external suppliers,
production centres, distribution centres, demand zones, and transportation assets
[68]. Thus, it involves direct supplier-customer connections together with indirect
connections such as marketing and logistic services, financial and consultancy firms.

Trade credit is one of the most important source of external finance within SCN.
It appears on every balance sheet and represented companies’ short term liabilities.
Firms simultaneously grant and receive trade credits, which therefore appear on both
sides of their balance sheet. Trade credits are not well diversified at the firm level,
as firms’s customers tend to belong to a specific sector. In [64] a theoretical model
of systemic risk propagation in credit chains is described. It is shown that a small
liquidity shock may cause a chain reaction in which other firms get into financial
difficulties, thus, generating a large persistent fall in aggregate activity. They model
a set of small enterprises run by entrepreneurs who are unable to raise funds from
investors, but an entrepreneur can borrow from its suppliers.

Recent studies highlight the importance of understanding the structural connec-
tions across companies and the implications of these connections for cross relations.
Boissay and Gropp (2013) [17] document that trade creditors are likely to respond to
late trade debtor payments by, in turn, postponing their own trade credit payments.
A negative liquidity shock is transmitted along the trade credit chain until it reaches
a trade creditor with access to external financing, or sufficient cash-holdings, in order
to absorb the liquidity shock. Their result suggests that trade credit chains function
as an insurance mechanism by allocating liquidity from unconstrained to constrained
firms. Jacobson and von Schvedin (2015) [57] document the dark side of trade credit
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by providing insights on its role as propagator of corporate failure. The results docu-
mented above offer a solid empirical indication about the relevance of interfirm credit
relationships as drivers of distress propagation.

Given this framework, we would like to investigate three main question: 1. Can
the inclusion of the network effect improve the bunckrupcy prediction ? 2. To which extend
the network of firms as a whole is vulnerable to liquidity shocks? 3. What are the implications
for the bank lending policy and its credit assessment strategy?

To address these question we apply methods from graph theory, network analysis
and spatial econometrics to model a default score. The Altman’s Z-score model
(1968) [5] is the first, pioneering approach to use financial ratios to identify or predict
company bankruptcy. Since that time, it has been considered that the evaluation
and apply of financial ratios has become a vital component for failure prediction
techniques. In addition, Altman’s Z-score model (1968) [5] is commonly utilised
to assess company insolvency. His model composed of five linear combinations of
business ratios, which used a multivariate approach, MDA, in order to measure the
business performance or competence of a firm. For instance, financial ratios can
be calculated as a criterion of company performance; those involving profitability,
liquidity, capital structure and efficiency [5].

To include the interaction between the firms into assessment of the Z-score we
adopt methods of spatial econometrics which is a set of statistical models and tech-
niques which allows for the interaction of the variables within general linear re-
gression models. In the spatial literature a widely used approach to model spatial
interactions is through spatial lags. Dynamic panel data models that allow for spatial
interactions in terms of spatial lags have recently been considered, see Kuersteiner
and Prucha (2018) [69].

To estimate the panel spatial econometric model we reconstruct the spatial matrix
of the dependencies between the firms by looking at the historical data on inferfirm
transactions. The data is made available by a large anonymous bank. In order to
achieve this we reconstruct relevant industrial and financial interactions among any
pair of firms. To assess the use of working capital to sustain trade relationships, we
analyse cash transactions between the firms and characterise them according to their
volume and volatility. In time of distress, the survival of the chain will depend on the
quality of the cash flows generated by the seller of the final good and by the capacity
to access external financing sources by firms along the chain. This allows us to set up
a simulation framework where an idiosyncratic shock originating within a certain
company or industry transmits along the network in a contagious manner. The shock
may be of different type. The primary type of shock we consider is a liquidity shock,
since it has a direct link to transactions between the firms. Of course, the events which
cause the liquidity shock may be of different origin – either systemic or idiosyncratic
nature, such as a change in a macro economic environment, change in a policy or
regulation related to a particular industry, technological innovation or operational
shock such as a strike or change of company’s management.

In order to quantify the direct and indirect relevance of firm payments within the
network, we adapt methods from graph theory and network analysis. We assume that
when modelling a network of interconnected firms the exposure to the idiosyncratic
shock is given by the firm’s position in the network. The adjacency matrix of interfirm
connections is built for each period of time. The matrix itself can be constructed
in multiple ways – it can reflect the intensity, relative weight or the volume of
interactions.

The motivation to the banking industry is twofold. First, to assess the overall
quality of its loan portfolio, a bank needs to understand the interactions among



4.1. Introduction 59

its borrowers. In particular, the interaction between the prospective and existing
borrowers should be an important factor in a bank’s lending decisions. A more
extended network of firms connected by cash transactions implies a higher amount
of private information that the bank may use to assess the spillover effect that any
decision about a credit policy toward a given firm may cause to other firms in the
bank portfolio. A higher degree of connectivity will in general imply a lower level of
diversification. Therefore the bank could explore the optimal tradeoff between the
increase of information acquired when well connected firms become customers and
the necessity to keep a well-diversified loan portfolio. Second, for risk management
purposes, the effect on the expected credit looses of the portfolio can be quantified
by simulating scenarios when the major clients experience financial destress. The
outcomes of this experiment can be used to correspondingly adjust stand-alone credit
ratings.

Computation of firm distress probability in reduced form credit risk forecasting
models often relies on conditional independence assumptions. From an economic
point of view this approach relies on the questionable assertion that the effects of a
firm’s financial distress do not reflect firms that have industrial or financial relation-
ships with the defaulted entity. In fact there are many counterfactuals that indicate
that such modeling approach needs to be improved. For example, the historical time
series of observed defaults give evidence of distress events clustering, i.e. default
event concentrate in time and localise over space and economic sectors. This simple
observation confirms the necessity to extend current models introducing some form
of dependence among the firm distress probabilities in order to improve prediction
accuracy. Mainstream research in credit risk assessment, see e.g. Azizpour, Giesecke,
Schwenkler (2015) [9], has identified two potential drivers of clustering: dynamic
frailties or contagion. Frailty attributes clustering to the presence of some additional
(unobserved) dynamic factor that drives up the distress transition intensities. Conta-
gion channels impute clustering to the direct and indirect impact of defaults on the
likelihood of other firm defaults.

In [96] the supplier-customer relation is examined from the perspective of an
economic supply chain network, with each relation serving as a directed node of
the network. The performance of several centrality measures is studied in capturing
the major determinants of the supply chain network. It concludes that the supplier-
customer centrality pair defined based on Kleinberg [66] algorithm brings the most
value. They argue that the closure or production delay of a major supplier can cause
significant issues for the company’s production, while the changing demand of the
customer influences the company’s sales projection. They conclude that supplier
central portfolios tend to be more volatile than customer central portfolios.

For listed companies the correlation structure is often obtained by performing
PCA analysis on the matrix of returns. In [12] a PCA is performed on the returns
of financial intermediaries to analyze systemic risk in the financial sector. They
calculate eigenvector centrality using the variance-covariance matrix of asset returns
as a measure of connectedness. For the companies which are not listed on the market,
time series of returns are not available, however it is possible to use other type of data
which the banks collects on its clients. In this work we use data on cash transactions
happening between the companies to reconstruct the unobserved variance-covariance
matrix.

This paper primary relates to recent work that studies networks in finance. Most
of the work in this area focuses on interbank contagion or dependencies within
financial institutions, such as in [11] and [12], while trade credit is an important
part of commercial life and constitutes a significant fraction of total borrowing and
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lending. Systemic risk is just as important for inter-firm lending as it is for interbank
lending. The papers which study the propagation of distress among SME segment
focus on the set of listed companies such as in [18] or [9] or use publicly available
aggregate statistics [1], while we focus on the corporate segment of the bank which
includes both listed and non-listed companies.

The innovation of this paper is to apply methods of graph theory and network
analysis to a SME segment in order to provide a quantitative insight into the conse-
quences of chain reactions. We aim to study how the network effect can be used to
improve bank’s lending decisions policy and credit risk assessment. To do so, we
aim to calibrate the Altman’s Z-score model in the setting of a spatial econometric
approach using, first, standard financial ratios and, second, a historical data of the
bank on the transactions between the companies. The results of the experiments
statistically proof the potential of the network effect in prediction of financial distress
since all the aggregate measures of the models performance (R2, AUC, Accuracy and
F-score) are higher for the models which include the network effect.

Although the experimental part of the paper covers only the prediction of bankruptcy
in settings of the reduced from models, we also describe how the network effect can
be incorporated into the Structural form models. Finally, we discuss possible applica-
tions of the constructed network useful for risk management purposes to support the
bank in its lending decisions. Simulation of the shock is then equivalent to modelling
network traffic [16] with an intensity of the shock decreasing with respect to distance
from its origination.

4.2 Credit default models

For modelling credit risk two classes of models have been studied in the literature:
structural and reduced-form. Structural models view a firm’s liabilities as put options
on the firm’s assets. The firm’s liability structure and the firm’s asset value process
are the key variables modelled in this approach. This methodology originated with
Black and Scholes [15] and Merton [78].

In these models, the default time is usually characterized as the first hitting time
of the firm’s asset value to a given boundary determined by the firm’s liabilities.
As such, if the firm’ asset value process follows a diffusion, then the default time is
usually a predictable stopping time. The difficulties with the structural approach
are twofold: first, the firm’s asset value process is not directly observable, making
empirical implementation difficult; and second, a predictable default time implies
credit spreads should be near zero on short maturity debt. This second implication is
well known to be inconsistent with historical market credit spread data, see [58].

The reduced-form approach was developed to avoid modeling the firm’s unob-
servable asset value process. This approach was originated by Jarrow and Turnbull
[59] and Duffie and Singleton [38]. Typically, reduced-form models characterize
default as the first jump time of a point process, often a Cox process (i.e., a doubly
stochastic Poisson process). As such, the default time is usually a totally inaccessible
stopping time, implying non-zero credit spreads for short maturity debt.

The two types of models are viewed as competing with a reference to default
prediction and/or hedging performance. However, it is noted that they are actually
the same model containing different informational assumptions [58]. Such, structural
models assume complete knowledge of a set comparable to that held by the firm’s
managers which implies that a firm’s default time is predictable. In contrast, reduced
form models assume knowledge of a less detailed information set as that observed
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by the market. Which model is preferred depends on the purpose for which the
model is being used. If one is using the model for risk management purposes, such
as pricing and hedging, then the reduced form perspective is the correct one to take
[58]. In marking-to-market, or judging market risk, reduced form models are the
preferred modeling methodology. Instead, if one represents the management within
a firm, judging its own firm’s default risk for capital considerations, then a structural
model may be preferred, but this is not the approach one wants to take for pricing a
firm’s risky debt or related credit derivatives. If one is interested in pricing a firm’s
risky debt or related credit derivatives, then reduced form models are the preferred
approach.

Assume we are in a settings of a standard Black-Scholes model, i.e. we analyse a
market with continuous trading which is frictionless and competitive in the sense
that

• agents are price takers, i.e. trading in assets has no effect on prices,

• there are no transactions costs,

• there is unlimited access to short selling and no indivisibilities of assets, and

• borrowing and lending through a money-market account can be done at the
same riskless, continuously compounded rate r.

Merton’s model assumes the firm’s assets at time t to follow a geometric Brownian
motion:

dVt = Vtµdt + σVtdWt.

with drift µ and volatility σ, Wt is a standard Brownian motion.
Assume that there exists a money-market account with a constant riskless rate r

whose price evolves deterministically as βt = ert. In an economy consisting of these
two assets, the price C0 at time 0 of a contingent claim paying C(VT) at time T is equal
to

C0 = EQ[e−rtCT],

where Q is the equivalent martingale measure under which the dynamics of V are
given as

dVt = Vtrdt + σVtdWQ
t .

Here, WQ is a Brownian motion under which the drift µ has been replaced by r .
A critical assumption is that this asset-value process is given and will not be

changed by any financing decisions made by the firm’s owners. Now assume that the
firm at time 0 has issued two types of claims: debt and equity. In the simple model,
debt is a zero-coupon bond with a face value of K and maturity date T. Hence, the
default time τ is a discrete random variable given by:

τ =

{
T, if VT < K
∞, if else

Figure 4.1 depicts the situation graphically as described in [45].
Since WT is normally distributed with mean zero and variance T, default proba-

bilities p(T) are given by

p(T) = P[VT < K] = P
[
σWT < log

K
V0
− (r− 1

2
σ2)T

]
= Φ

( log K
V0
− (r− 1

2 σ2)T

σ
√

T

)
.
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FIGURE 4.1: Default in a classical approach

Assets Bonds Equity
No Default VT ≤ K K VT − K
Default VT < K VT 0

TABLE 4.1: Payoffs at maturity under the classical approach

With this assumption, the payoffs to debt, BT , and equity, ST , at date T are given
as

BT = min(K, VT) = K−max(K−VT, 0),
ST = max(VT − K, 0).

(4.1)

If assets are worth less than K, equity owners do not want to pay K, and since they
have limited liability they do not have to either. Bond holders then take over the
remaining asset and receive a “recovery” of VT instead of the promised payment
K. The firm’s equity is viewed as a European call option on the firm’s assets with
maturity T and a strike price equal to the face value of the debt. The debt can be
viewed as the difference between a riskless bond and a put option. The payoffs to the
firm’s liabilities at debt maturity T are as summarized in Table 4.1.

Applying the Black-Scholes formula to price these options, we obtain the Merton
model for risky debt. The values of debt and equity at time t are

St = CBS(Vt, K, σ, r, T − t) = V0Φ(d+)− e−rTKΦ(d−),

Bt = De−r(T−t) − PBS(Vt, K, σ, r, T − t) = V0 −V0Φ(d+) + e−rTKΦ(d−),
(4.2)

where CBS, PBS are the Black-Scholes European call and put option formulas and

d± =
(r± 1

2 σ2)T − log K
V0

σ
√

T

Based on the Merton model there has been developed a wide range of modifications
incorporating stochastic interest rates, jumps in the assets dynamics or different levels
of the debt seniority [70].

While the option-based approach provides a consistent way of thinking about
default probabilities and prices of corporate bonds, it seems implausible that a single
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value, the value of the firm’s assets, is the sole determinant of default probabilities.
Such indicators as the liquidity of assets and restrictions on asset sales are the key
factors as well, see [70]. Reduced form models have been constructed specifically to
be based on the information available to the market. In the reduced-form models
the default time is modelled as a stopping time generated by a Cox process with a
specified intensity. In this formulation, the stopping time is totally inaccessible. The
liability structure of the firm is usually not continuously observable, whereas the
resulting recovery rate process is. Thus, the recovery process is exogenously supplied.
In this setting, many statistical methods which can be applied to the market data
have been developed, including logistic regression, discriminant analysis, hazard
regression, survival methods and Markov chains [70].

From a legal point of view, the concept of business failure can be defined in
different ways. The bankruptcy process begins when firms are incapable of paying
back their obligations to banks, suppliers, tax authorities and employees. When
aggregate liabilities of firm override the face value of the company’s assets, this leads
to bankruptcy, whereupon the assets are utilised to repay a portion of outstanding
debt. In contrast, insolvency is a case in which the company is no longer able to
meet its financial obligations when debts become payable. Insolvency happens when
current assets are less than current liabilities (Ahn, 2001 [2] ).

Some examples of business failure are bankruptcy, bond defaults, bank loan
defaults, insolvency, the delisting of a firm, liquidation and government interference
through special financing (Altman and Narayanan, 2007 [7]). Financial distress is a
term that is utilised excessively in the financial studies available. Levratto (2013) [71]
defines it as whenever a company’s liabilities exceed its book value of assets which
predominantly leads to financial distress.

From a statistical point of view, firm default is an example of a qualitative response.
We simply observe a firm’s characteristics and whether it defaults or not. Thus, in
this work, we do not differentiate between different types of financial failures and
assume that any type of financial distress is considered to be a default state.

To find the most accurate model for prediction of default, a variety of financial
ratios and failure prediction models have been applied. Multiple discriminate analysis
(MDA) approach, the logit regression analysis (LRA), the artificial neural networks
(ANN) model are the most popular models in this area. Among these models, the
Altman Z-score has become a benchmark since it is widely used among researchers,
academics and practitioners in various countries, see, for instance, [20], [92]. It is
accepted to be the most accurate and most reliable model for predicting corporate
failure. The Altman Z-score model consists of five financial rations based on the
multivariate approach, Multiple Discriminate Analysis (MDA)

4.2.1 The Altman Z-score

The Altman Z-score model (1968) was the first study that identified companies as
failed and non-failed companies. Altman’s study (1968) [5] analysed 33 inactive
and 33 active companies using MDA. Ultimately, Altman’s Z-score results found
that the accuracy of the first and the second year prior to failure was 95% and 72%,
respectively. In the original Altman Z-score model (1968) for predicting bankruptcy
public manufacturing firms were utilised. Later, private manufacturing firms were
employed in the revised Altman Z-score model (1983) [6]. The accuracy of this last
model was demonstrated by the 95% and 73% accuracy at year one and year two
prior to failure, respectively.
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Five financial variables (ratios) have been chosen by Altman based on their ca-
pacity to predict for company bankruptcy. They are liquidity, profitability, leverage,
solvency and activity. Altman’s original Z-score model (1968) [5] equation is:

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5 (4.3)

Based upon Altman’s formula, the firms were classified into three categories
according to the company’s sustainability. For instance, if the firm is in the distress
area then there is a strong probability of failures when the Z-score index of the
company is below 1.8. On the other hand, when the Z-score index exceeds 2.99, it is
considered that the enterprise is in the safe zone, with a low percentage of company
failure. Moreover, when the value of the Z-score index is greater than 1.80 and less
than 2.99, there is no strong evidence to specify the financial condition of the company;
that is, the results cannot precisely ascertain whether the company is in the safe or
distressed zone [5].

Z < 1.80− DistressZone,
Z > 2.99− Sa f eZone,

1.8 < Z < 2.99− GreyZone.
(4.4)

The Altman Z-score model (1968) [5] and the Ohlson’s model (1980) [84] are two
models that are well accepted and commonly used at present [92]. Below we describe
the financial ratios of the Z-score regression:

X1, Working Capital to Total Assets The working capital to total assets ratio is one
of the commonly found ratios in the research of firm issues. It is a measure of
the net liquid assets of the corporate in comparison to the overall capitalisation.
The differences between current liabilities and current assets are considered
as working capital. Obviously, size and liquidity features should be taken
into consideration. Generally speaking, current assets are found to be low in
comparison to total assets, when a company undergoing consistent operations
fails.

X2, Retained Earnings to Total Assets The overall amount of reinvested losses or/and
earnings of a corporate during its whole life can be obtained by retaining earn-
ings. This is also called earned surplus. It is worth noting that an earned surplus
account is subject to manipulation by stock dividend announcements. This ratio
is found to be implicitly affected by the age of a company and an old company
might have higher retained earnings/total assets ration than a young company.
This is because the younger company has not had enough time to increase its
cumulative profits. Therefore, this analysis is argued not to be appropriate for
young companies because their chance of being classified as a failed company
is higher compared to the chance of older company.

X3, Earnings Before Interest and Taxes toTotal Assets The true productivity of a
company’s assets is measured by the EBITDA/TA ratio without taking into
consideration leverage or tax factors. This ratio is believed to be extremely
appropriate for investigating firm bankruptcy because the ultimate existence of
the company depends on earning power [5].

X4, Equity to Book Value of Total Liabilities Liabilities is the measuring of both
the long and current term, while equity is found to be the market value of all the
shares of common, preferred and stock. This measure demonstrates how much
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the firm’s assets might decline in value before the assets become lower than
liabilities and the company goes bankrupt. In other words, a firm with a market
value of its debt of 500 and its equity of 1000 might experience a two third
decrease in asset value prior to bankruptcy. Nevertheless, if assets decrease one
third in value, the same company with 250 equity will failed.

X5, Sales/Total Assets Ratio is the well-known ratio showing the sales generating
efficiency of the company’s assets. It is widely used for dealing with competitive
situations. This ratio is considered to be the least considerable ratio on an
individual basis. Consequently, it is found to be quite an important ratio.
It is ranked as the second most important ratio for contributing to the total
discriminate ability of the model because it has a unique and quite significant
association to other variables in the model [5].

4.2.2 Spatial Linear Regression Model

This chapter discusses different specifications of linear spatial econometric models
that can be considered once the hypothesis of no spatial autocorrelation in the dis-
turbances is violated. A general form to take into account the violation of the ideal
conditions for the applicability of OLS is given by the following set of equations [8]:

y = ρWy + Zβ + u
u = αWu + ε,

(4.5)

where X is a matrix of regressors, W is a weight matrix exogenously given,
ε|X ∼ N(0, σ2

ε I), β, ρ and λ are the parameters to be estimated with |λ| < 1 and
|ρ| < 1. Z = [X, WX] the matrix of all regressors, current and spatially lagged. The
first equation considers the spatially lagged variable of the dependent variable y as
one of the regressors and may also contain spatially lagged variables of some or all
of the exogenous variables (the term WX). The second equation considers a spatial
model for the stochastic disturbances.

This model was termed SARAR (acronym for Spatial AutoRegressive with ad-
ditional AutoRegressive error structure) by Kelejian and Prucha (1998) [63] and
encompasses several spatial econometric models. In particular, we have five cases:

1. β = 0 and either ρ or λ = 0, known as the pure spatial autoregressive model

2. ρ = λ = 0, known as the Lagged independent variable model

3. ρ = 0, λ 6= 0 known as Spatial Lag Model (SLM)

4. ρ 6= 0, λ = 0 known as Spatial Error Model (SEM)

5. ρ 6= 0, λ 6= 0 the complete model (SARAR)

With respect to out data, the y variable is the credit rating of the firm, X is
the matrix of independent Z-score variables described in 4.3 and W is the matrix
describing connections between the firms.

4.2.3 Relationship between Supply Chain Network, credit chains and cash
transactions

Here we describe how the data on transactions between the firms relates to the the
credit chains in the customer-supply network.



66 Chapter 4. Network-based approach in modelling credit defaults

B

B

C

A

100

100

200

FIGURE 4.2: A supply chain: D and C supply to B; B supplies to A
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FIGURE 4.3: A credit chain: A is in debt to B; B is in debt to D and C

Each entrepreneur simultaneously lends to his customers (other entrepreneurs)
and borrows from his suppliers. Because his balance sheet has financial assets (ac-
count receivable from his customers) and liabilities (account payable to his supplies),
he is exposed to credit risk of his debtors/customers. Such, if his customers ex-
perience a negative liquidity shock and default, he himself may run into financial
difficulties and may have to default agains his suppliers causing further difficulties
along the credit chain.

To illustrate the concept, consider the following example in spirit of [64]. Suppose
an entrepreneur A has ordered 200 units of specific goods from an entrepreneur B at
1 dollar per unit. That is, A now owes 200 to B to be paid at the delivery date. At the
delivery date A expects to have 200 to pay to be. At the same time B has ordered 100
units of specific input from entrepreneur C and 100 – from entrepreneur D: B owes
100 to each at delivery. B has no cash of his own, but expects to use the 200 that A
owes to him to pay his debt to C and D. This may be a link in a longer supply chain,
which in turn might be part of a larger network. The supply chain of intermediate
product is illustrated in Figure 4.2 and the corresponding credit chain in Figure 4.3.

Now suppose that A finds her cash holding only at 120 rather than the 200 she
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FIGURE 4.4: Transactions happened between the firms

expected. She is unable to meet her obligations to B. If, following A’s default, B
continues to charge 1 dollar for each unit, A can only afford to take 120 units. B can
liquidate the remaining units, but since they are specific to A, they fetch less than 1
dollar, but 0.5 for instance. As a result, B get 160 in total: 120 in cash from A plus 40
in liquidation receipts. 160 is less than 200 B had to pay to his supplies D and C. He
pays 80 to D and 80 to C. If each of them liquidates the remaining 20 at 0.5 per unit, D
receives 90 and C receives 90. If D and C are debtors, there may be further default
along the credit chain. The transactions happened in the trade chain are illustrated in
Figure 4.4

These links are part of an intricate network of such credit/supply relationship: B
has many customers like A and many suppliers like C and D. Note that the figures
here may be misleading as the actual credit/supply network consists of combinations
of bilateral trade. They are used only for illustrative purposes.

If we now assume that the four companies have a long history of trade between
each other with a stable flow – in our illustrative examples it would mean, that A
in fact needs the same input goods from B and it orders the same 200 amount every
month, while B orders every month 100 form C and 100 from 100. Thus, having time
series on cash transactions between the firms we would be able to identify that at
time t, when A paid only 120 in cash instead of 200, there was a liquidity shock.

Note, that the initial lack of liquidity may be caused by both systemic or idiosyn-
cratic risk factors.

Example of the spread of industrial risk is the recent hurricanes in the US (Sandy
and Irma): the storm basically stopped and damaged the oil production and pro-
cessing in the Gulf of Mexico. This affected the energy industry and the insurance
industry. The energy industry doesn’t have any oil supplies so needs constant influx
of oil from the oil companies themselves. While the insurance industry had to pay
out 95 billion US dollars in insurance claims to the oil industry in the Gulf of Mexico.
Therefore, the all needed to re-insure themselves at SwissRE. Because of the premi-
ums they had to pay on their re-insurance, the premiums of their customers had to
go up, including construction companies and retailers who have to rebuild all the
damaged properties. This had lead to a cool-down in the economic growth of the
US, especially the Southern states along the Mexican Gulf. Half of the S&P 500 listed
firms reported losses in Q3 of 2017.
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Firm-level shock may happen due to changes into a company’s management or a
shock on operation, such as a strike.

4.2.4 Incorporating the network effect

While modelling credit risk, except for providing an adequate description of default
arrival at the single firm level, one needs to take into account dependence modelling.
Research on default dependence has been developed in the recent years. It is well
known that the defaults of different issuers are correlated through time [45]. Two
patterns have been found in the time series of spreads – that the spreads vary smoothly
with general macro-economic factors and that there are jumps in spreads. The first
factor is due to a common dependence on the economic environment, while the
second describes dynamics common to several firms or even entire market. This
suggests that the credit risk of one issuer can propagate to other issuers as well. The
reasoning behind this is that economic distress is contagious and propagate from firm
to firm. A typical channel for these effects are borrowing and lending chains. Thus,
the financial health of a firm depends on a status of other firms. Important role in
this setting play liquidity shocks in credit chains.

The importance of trade credit chains for the propagation of corporate bankruptcy
is quantified in [57] using an exhaustive data set on claims held by Swedish trade
creditors (suppliers) on failed trade debtors (customers). The propagation mechanism
explains a significant part of the aggregate bankruptcy frequency, especially during
economic downturns. More specifically, they show that the propagation mechanism
increased the overall bankruptcy frequency by around 13 percent during the Swedish
banking crisis in the early 1990s. In [17] it is documented that trade creditors are likely
to respond to late trade debtor payments by, in turn, postponing their own trade credit
payments. A negative liquidity shock is transmitted along the trade credit chain until
it reaches a trade creditor with access to external financing, or sufficient cash-holdings,
in order to absorb the liquidity shock. Their result suggests that trade credit chains
function as an insurance mechanism by allocating liquidity from unconstrained to
constrained firms. In [96] the performance of several centrality measures is studied in
capturing the major determinants of the supply chain network. It concludes that the
supplier-customer centrality pair defined based on Kleinberg [66] algorithm brings
the most value. The supplier centrality of a company is defined as the sum of the
customer centralities of all its customers and the customer centrality of a company is
defined as the sum of the supplier centrality of all its suppliers. The centralities can be
solved as the leading eigenvector of the products of the supplier-customer network
matrix. They argue that the closure or production delay of a major supplier can cause
significant issues for the company’s production, while the changing demand of the
customer influences the company’s sales projection. They conclude that supplier
central portfolios tend to be more volatile than customer central portfolios.

Below we briefly explain how the network information can be embedded in both
reduces and structural form models:

Reduced Form Models. Suppose, the distress probability is forecasted using a
classical Z-score model. Then the Spatial Econometric model setup would allow to
include the network effect in the prediction of the financial distress. If the connectivity
matrix is built from the cash transactions flowing from a firm i to firm j, it would
capture the exposure of a firm j to any of its customers/debtors. The inclusion
of the lag of the Rating variable into a Z-score regression would mean that the
rating of the customers/debtors of a firm j influences its own credit rating and the
intensity of the impact of a debtor/customer i is proportional to the weight wij of the
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matrix of connectivity. The inclusion of the lag of order two would mean that the
debtors/customers of the debtors/customers of the firm j have also an effect on the
credit rating of a firm j. This interpretation can be extended to the lag of order n. The
same holds for the independent variables X. Such, an inclusion of the lag of order
one, would mean, for instance for X1, that the decrease in Working Capital to Total
Assets ratio of the debtor/customer i of a firm j would decrease the same ratio of the
firm j proportionally to the weight wij of the matrix of connectivity.

Structural Form models. According to the Merton [78] model, debtors of a firm
own a claim on assets of the firm whose face value is equal to the face value of debt.
Firm payable and receivable modify the size and the riskiness of the assets and of
the defaultable claims of a firm. In fact, because accounts receivable are junior claims
their value is sensitive to the financial strength of the debtor firm. A distress shock on
these account receivables will unavoidably affect the creditworthiness of the creditor
firm. In other terms, the assets of a firm will have a composition depending also
on the receivable claims. Similarly, the downstream firms’ accounts payable is a
liability of the firm backed by its assets, including its own accounts receivable against
customers yet further down the chain. We may think of a firm’s payable accounts as
defaultable debt backed by its assets.

Computation of the probability of distress can be performed analyzing the prob-
ability that the asset value is sufficient to repay the claim at maturity. Standard
sensitivity analysis can be used to quantify the rise in the distress probability of Firm
A if Firm B is hit by a distress shock that lowers the probability to repay receivables
due to Firm A from Firm B. The higher the share of assets of a firm A depends on
receivables from firm B, the higher is the increase in distress probability of the firm A
implied by an increase in the probability of distress of firm B.

4.3 An introduction to network theory

Theory of networks is a relatively recent brach of science which has been rapidly
developing during the last decades [81]. Its subject of study are various systems the
elements of which are interconnected. Such systems are called networks. The study
of networks pervades all of science, from neurobiology to statistical physics. Its aim
is to understand how an enormous network of interacting dynamical systems – be
they neurones, power stations, lasers, humans or financial institutions – will behave
collectively, given their individual dynamics and coupling architecture.

Theory of social networks emerged in the 1920’s, initially as a brach of sociology
which studied personal ties among individuals. The sociologists were interested in
such questions as “Who has the most connections, and thus, the most influence?”
or “Who is transferring the information in the network and how fast?”. A famous
hypothesis in this area is the theory of Six degrees of separation. It is an idea that all
living things and everything else in the world are six or fewer steps away from each
other so that a chain of “a friend of a friend” statements can be made to connect any
two people in a maximum of six steps. This characteristic corresponds to the average
path length in the graph.

Initially emerging in sociology, theory of networks found a wide range of applica-
tions in the modern world [81]. Such, the World Wide Web is a network of web pages
connected with hyperlinks. The network theory is applied in biology, epidemiology,
for studying the spread of computer viruses and properties of natural languages.

In the financial area the network science found an application in risk management,
especially after the economic crises, when it became evident that a high degree of
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interdependence within the financial system increases the systemic risk. However,
recent studies show that while more links between banks might be expected to
increase the risk of contagion, the banking systems with a more complete set of
connections may be less susceptible to contagion than those with an incomplete
structure [67].

A network approach to financial systems is particularly important for assessing
financial stability and can be instrumental in capturing the externalities that the risk
associated with a single institution may create for the entire system. Thus, what
matters is the level of heterogeneity of the financial system – not to have too many
big players (such as “too big to fail” banks) and not to have too many isolated firms.
To measure these properties of the financial system networks metrics and techniques
for identifying central, vulnerable or systemically important institutions and markets
are employed. As a results, social network analysis may be useful for financial
institutions to make credit and investment decisions, to analyse the counterparties’
risk exposure from their interconnectivity within the financial system, as well as to
develop regulatory strategies in order to improve financial stability.

Formally, a network is usually defined with a graph G = (V, E), containing a
finite set of vertices (or nodes) V and a set of directed or undirected edges E. The
elements of the network are then the nodes of the graph, while the relationships
between the elements are edges of the graph. A mathematical model of the network
is a matrix A = aij of connections between the elements of a set V. An element of a
matrix aij = 1, if a node i is connected to the node j, and equals to zero, otherwise.
Thus, in a case of undirected edges the matrix A will be symmetrical. By convention,
entries on the main diagonal of A are set to equal to zero (self-loops are excluded).

In the last decades network theory gained a lot on the quantitative part – due to
physicists, who contrary to sociologists were looking at the macroproperties of the
networks such as average length of path in the graph, average number of connections
of an element, distribution of the indegree or outdegree of the network, centrality. We
state some of them.

Path length is the average length between any two nodes of the graph.
Degree of a node d(vi) is the number of edges adjacent to it (neighbourhood of node

vi). In a directed graph a node has in-degree and out-degree. Thus, d(vi)
in denotes

the nodes pointing to vi, while d(vi)
out denotes the set of nodes vi points to.

Degree distribution is a distribution function which for each k defines a probability
that any chosen node in a graph has k edges adjacent to it[?]:

P(k) =
Nk

N
.

Here Nk is the number of nodes in the graph with a degree equal to k.
In a large number of networks degree distribution follows the Power Law (or

Pareto Distribution Function) [82]:

P(k) = Ckα.

A large number of patterns in physics, biology, studies about the planets, eco-
nomics and finance, informatics, as well as social sciences and demographics are
described by the Power law. Such, the distribution of the size of the cities is described
by this law[82]: there are much less big cities in the world like London, New York or
Moscow, rather than smaller cities, the number of which is large. It is well known
as well that the income of the population also follows the Pareto law. The Pareto
principle is sometimes stated in popular expositions by saying 20% of the population
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has 80% of the income. This corresponds to the α = 1.16, whereas the 70-30 rule
corresponds to α = 1.42.

4.4 Experiments setup

The main objective of this experiment is, first, to verify the accuracy of the Altman
Z’-score model (1968) [5] in order to determine whether it is an optimal model for
predicting corporate failure using the data of Italian SME companies in the period
2013-2015 and, second, to study if the inclusion of the network effect in the classical
Z-score model improves the predictive power of the Z-score model.

The beginning of this chapter describes the construction process of the data used
for panel regression and the construction of the matrix of connectivity based on
the transactions data. Then, we start our experiment by first identifying a coherent
classical Z-score regression model, after which we proceed with an inclusion of the
network effect as a spatial dependency in the regression. Finally, we analyse the
performance of the models based on the information retrieval measures commonly
used in estimating performance of classification models.

4.4.1 Data description

The general architecture of the database is based on an innovative scheme where data
are categorized in two classes called node based and edge based information. The first
traditional class provides all the information relevant to a single firm on a stand alone
basis, which conceptually represents the nodes of the hypothetical network of firms.
Edge based classification of data qualifies all the available information regarding the
relationships between any fixed pair of firms present in the database. This information
is useful to reconstruct the relevant industrial and financial interactions among any
pair of firms. The constructed graph is a directed one where edge may correspond
to different types of relations. Typical data associated to edges are the bank wire
transfers and their factoring transactions, accounts payables and receivables.

The process of database construction involves several steps. First, a set of compa-
nies which are classified as SMEs is identified. The companies are selected according
to the type of portfolio they belong to. Note, that the classification of companies as
SMEs according to the definition of the Basel II capital accords is that the reported
yearly sales for the consolidated group the firm belongs to are less that 50 million
euros [22]. We collect the data for three consecutive years – 2013-2015. Such, for the
year 2015 we obtain 555,727 firms. However, the number of firms present in each of
the three years reduces to approximately 200 thousand.

On the second step potentially useful areas of the bank internal database were
identified and classified as a node or edge information. The financial balance sheet
data is commonly used to build a single-firm indicator. For this study we choose
a selection of the financial variables which are relevant for the estimation of the
Z-score model such as total assets and liabilities, short term assets and liabilities,
retained earnings, sales, EBITDA and a book value of equity. We extent this set of
indicators with information describing the use of credit by the firms – in particular,
the information provided by the Bank of Italy on the total outstanding credit exposure
in the economy. The credit registry from the Bank of Italy provides information on
the indebtedness to banks and financial companies (intermediaries) of the customers.
Intermediaries report monthly to the Bank of Italy the total amount of receivables
or credit open to their customers – in particular, receivables equal to or greater than
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Numeric Rating variable Equivalent S&P grade

1 AAA
2 AA+
3 AA
4 AA-
5 A+
6 A-
7 BBB
8 BB+
9 BB
10 BB-
11 B+
12 B
13 B-
14 CCC
15 CC
16 C
17 R
18 D

TABLE 4.2: Obtained numerical scale for the Rating variable

30,000 euros and non-performing loans of any amount. As a return information flow,
the Bank of Italy monthly provides banks and financial companies with information
on the total indebtedness towards the credit system of each customer reported.

Construction of the reliable dataset imposes several challenges such as data
clearing, keeping coherent time stamps and excluding externalities. To obtain a
reliable time-series for a period of three years, out of the identified set of companies
and variables, we keep only those firms which have the information on the credit
line utilisation present on a monthly basis. The balance sheet data is collected on
the yearly basis. Regarding the balance data, we select all companies which have
each of the cZ-score financial indicators present in each of the three years. Then, the
data is duplicated on a monthly basis for each year. The final number of firms used
in the experiments is 51,023. These firms satisfy a condition of the Rating variable
present on at least a quarterly bases and a condition of the information on the credit
line utilisation present on a monthly basis. Considering that we use the monthly data
in the estimation, we obtain 1,785,805 records. To exclude extreme values during the
estimation we replace any observation below the 1st percentile with the 1st percentile,
and any observation above the 99th percentile with the 99th percentile. The variable
Rating is the independent variable. Since not all the companies had all values of the
Rating variable present for each month, we impute the missing values. The missing
values for the Rating variable are filled with the rating of the company from the closest
previous month for which the rating is available. Since the internal rating scale of the
bank is a categorical one, we convert it to a numerical scale. The conversion of the
internal rating scale is performed based on the equivalent S&P rating gradation. The
resulting numerical scale is constructed in such a way that the higher is the numerical
Rating value, the riskier is the firm. The obtained numerical scale for rating, together
with its equivalent S&P gradation, is described in Table 4.2.

According to the internal definition of the bank, the firm is considered to be in
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FIGURE 4.5: Obtained numerical scale for the Rating variable

financial distress (we refer to this state as a default state) if its rating is CCC or worse.
Thus, we do not differentiate between different types of financial failures – it may
be bankruptcy or insolvency. The fraction of the firms which has been assigned a
default rating during the three years period is approximately 6.2185%. This suggests
that the collected data may be biased towards less risky firms since the companies in
distress might disclose less data to the bank. Moreover, out of firms which appear in
the network of payments, the rate of default is only 3.1829%. This fact suggests that
the connected companies are less risky than those which are not connected.

To estimate the Z-score we standatrise the numerical Rating variable and all
independent variable. As a result the percentage of the firms in distress correspond
to the 1.39 quantile of the standartised Rating variable. Note, that in the original
Altman Z-score regression, the cut-off point for the high risk of bunckrupcy is 1.80 [5],
while in the revised [6] it is 1.23. The histograms of the numerical Rating variable and
standatrised Rating variable are illustrated in Figure 4.5. The reader can explore the
corresponding histograms of the independent variables in Appendix C. Note that in
the classical Z-score regression, the risky firms appear in the left tail of the distribution,
while in our rating scale they appear in the right tail. Thus, the coefficients of the
Z-score regression are expected to be all negative.

To explore the discriminative power of the independent variables, we report the
statistics of the means of the initial and standartised variables within default and
non-default classes. This is summarised in Table 4.3. The first five variables are the
standard Z-score variables, while the last variable corresponds to the ratio between
the used and the allowed credit. As it is expected, statistics on the average of the
means within each class, proof that lower values of the Z-score ratios indicate financial
distress, while on the contrary, lower values of the UA Ratio indicate financial strength
of the firm.

4.4.2 Matrix of connectivity

There exist different types of transactions which connect the firms. Here we concen-
trate on the wire transactions and describe how this data can be incorporated into
a Z-score regression model. The network of interactions between customers of the
bank corporate segment is constructed using the information collected by observing
quarterly aggregated cash account transactions for each firm. Each transaction is
characterised by:

1. ID
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Variable Mean Mean of the default class Mean of the non-default class

Ratio1 0.10627 -0.16554 0.12296
Ratio2 -0.00940 -0.00946 -0.00940
Ratio3 0.05673 -0.02389 0.06168
Ratio4 0.22600 0.08774 0.23449
Ratio5 4.72113 2.329446 4.86806

UA 58.28591 744.77433 16.11250

Ratio1 std 0.00000 -0.25472 0.01565
Ratio2 std 0.00000 -0.00084 0.00005
Ratio3 std 0.00000 -0.14236 0.00875
Ratio4 std 0.00000 -0.63591 0.03907
Ratio5 std 0.00000 -0.01732 0.00106

UA std 0.00000 0.048981 -0.00300

TABLE 4.3: Statistics on the independent variables (initial variables
and standartised)

2. source

3. target

4. bonifico transactions (number of transactions)

5. bonifico total (total amount).

6. other product transaction information

Based on this, the information we collect on each firm’s transactions on a quarterly
basis is the following:

1. transactions out (number of operations)

2. transactions in (number of operations)

3. total out (total amount)

4. total in (total amount)

The final set of firms amenable to the reconstruction of the network is selected
using a minimum score threshold on its total incoming or outgoing amount. The firms
belong to the SME segment according to the internal bank classification. The nature
of the rough data describing connections between the firms requires a transformation
prior to the estimation. In particular, we need to transform it into a weighted sparse
matrix where the weights quantify the strength of links between any two firms.
In doing so, to each network edge connecting firm i to firm j, we assign a weight
corresponding to the monetary values of the payments flowing from the cash accounts
of firm i to the cash accounts of firm j over the total payments received by firm j.
The connection structure is estimated using the sum of the quarterly aggregated
payments.

The resulting weight, wij, corresponds to the ratio between the sum of monetary
cash accounts from a firm i to a firm j divided to the total monetary value of the cash
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Id N firms Mean Degree Std(Degree) Max Degree N links Density (%)

1 15,685 3.2022 13.475 811 50,227 2 ∗ 10−4

2 15,758 3.1776 13.464 877 50,072 2 ∗ 10−4

3 15,406 3.1048 13.184 830 47,832 2 ∗ 10−4

4 15,699 3.1226 13.123 833 49,022 2 ∗ 10−4

5 15,532 3.1841 13.224 808 49,456 2 ∗ 10−4

6 15,456 3.1040 13.159 853 47,976 2 ∗ 10−4

7 14,963 3.0647 13.018 781 45,857 2 ∗ 10−4

8 14,509 2.8611 11.482 674 41,512 2 ∗ 10−4

9 15,127 3.1398 13.948 797 47,496 2 ∗ 10−4

10 15,533 3.1453 13.455 804 48,856 2 ∗ 10−4

11 15,377 3.0908 13.116 758 47,527 2 ∗ 10−4

12 15,742 3.1223 13.189 770 49,151 2 ∗ 10−4

Full 30,877 7.3205 35.264 2,892 226,033 2 ∗ 10−4

TABLE 4.4: Statistics on the networks
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FIGURE 4.6: In-degree distribution of the aggregate network

transactions received by a firm j:

wij =
Aij

∑k Akj
, (4.6)

here A is the adjacency matrix with an element Aij being a sum of monetary cash
accounts from a firm i to a firm j over a quarter. Thus, this measure reflects relative
importance of a firm j to a firm i with respect to all the interactions of a firm i.

In this way we construct 12 matrices of connectivity corresponding to the 12
quarters of the three years. To obtain an aggregated matrix for the whole period of
three years we sum the normalized weights over the 12 periods and row-normalise
the final matrix. Table 4.4 summarises the statistics on the 12 quarterly networks and
the aggregated one. The aggregated network contains only 30,877 firms. Figure 4.6
illustrates the in-degree distribution of the aggregate network. As expected, it follows
a power law which proofs that the network is scale-free.
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Dependent Variable : Rating
Mean dependent var : 0.0000
S.D. dependent var : 1.0000

Number of Observations: 1785805
Number of Variables : 6
Degrees of Freedom : 1785799

R-squared : 0.2803
Adjusted R-squared : 0.2803

Sum squared residual: 1285302.511
Sigma-square : 0.720

S.E. of regression : 0.848
Sigma-square ML : 0.720

S.E of regression ML: 0.8484
F-statistic : 139079.6077

Prob(F-statistic) : 0
Log likelihood : -2240294.051

Akaike info criterion : 4480600.102
Schwarz criterion : 4480674.475

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT 0.000 6.3 ∗ 10−4 0.000 1.000
Ratio1 -0.162 6.9 ∗ 10−4 -233.998 0.000
Ratio2 0.059 6.5 ∗ 10−4 90.152 0.000
Ratio3 -0.162 6.6 ∗ 10−4 -243.068 0.000
Ratio4 -0.364 7.0 ∗ 10−4 -515.909 0.000
Ratio5 -0.172 6.4 ∗ 10−4 -264.436 0.000

TABLE 4.5: Results of the Z-score regression, estimation with OLS

4.4.3 Results of the estimation

As a first step, we estimate the classical Z-score regression with 5 ratios. For experi-
ment we use a python Pysal package 1 specifically developed for spatial regression
models. For the general OLS regression use the two-stage least squares algorithm
which allows very large sample sizes. For the combined model we use the GMM
algorithm (based on Kelejian and Prucha (1998) [63].

Estimating the OLS regression on the monthly data corresponding to 3 years and
51,023 firms (1,785,805 records), we obtain the results presented in Table 4.5 Although
all the variables are significant, the coefficient in front of the Ratio2 is positive. This
does not align with the expected result of the classical Z-score regression and, thus,
we omit this variable in the further analysis assuming that the data obtained for this
variable is not reliable enough.

Therefore, on the next step we estimate the regression with the four Z-score
variables and the Ratio UA. The results are presented in Table 4.6. On the whole, the
F-test is highly significant and leads to the acceptance of the model. Furthermore, all
parameters are significant at the usual confidence level. The output also provides the
results of several statistical tests. Both the JB (Jarque-Bera) and the BP (Breusch-Pagan)

1http : //pysal.readthedocs.io/en/latest/
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tests are significant, thus leading to the rejection of the two hypotheses of normality
and homescedasticity. Lagrange multiplier test for a spatial lag model is significant
indicating the appropriateness of the Spatial Lag Model. The Moran I test statistic
for the hypothesis of spatial correlation of the residuals is also significant showing
positive residual spatial correlation. All in all, the model is satisfactory, however,
given the evidence of a residual positive and significant spatial correlation, we have
clear indications of a Spatial Error model as an alternative framework, while the
Lagrange multiplier test allows to conclude that the Spatial Lag Model should be
used as well.

Based on the obtained tests’ statistics we decide to estimate SLM, SEM and a
combined SARAR model to assess which model provides better results in terms of fit
and accuracy of predictions. To assess the performance of the models we compute
the standard validation measures. Confusion matrix together with the Receiver
Operating Characteristic curve, the Accuracy Ratio and the F-score are commonly
used to estimate the results of the forecasts 2. One should note though, that the
unbalanced distribution of the classes in the dataset has an effect on the TPR and
FPR.

Table 4.7 summarises the results highlighting the two best models according to
each measure. It includes, for each model, the obtained statists on R2, Area Under
ROC Curve, True Positive Rate, False Positive Rate, Accuracy, Precision, Recall, F-
score and Optimal Threshold – a cut-off on the distribution of the standartised Rating
variable. The optimal threshold in information retrieval is identified by maximising
the difference between TPR and FPR.

We remind that the initial Altman’s Z-score provided the accuracy of the first and
the second year prior to failure of 95% and 72%, respectively [5]. The accuracy of
our Z-score regression is smaller with respect to the usual Z-score result. This can be
explained by the use of the monthly data.

The results of the 6 models considered are comparable to those of the general OLS
model estimated on the first step (in terms of the significance and of the sign of the
variables). The parameter ρ related to the residual spatial autocorrelation is positive
and significantly different from zero for all the spatial models considered. For all the 6
models we observe an improvement in the combined measures – Adjusted R2, AUC,
Accuracy and F-score. Although the improvement is relatively small – it quantifies
in 2.1% increase in the Adjusted R2, 0.5% increase in the AUC, 2.26% increase in the
accuracy and 1.36% – in the F-measure, the result allows to infer that the network
effect is potentially useful if the prediction of default. Additionally, we can conclude,
that among the models considered, the combined models perform better in terms of
Accuracy, Precision and F-score. However, in terms of R2 and AUC, the SLM model
with 3 lags provides as good result as the SARAR model with 3 lags. In Table 4.8 we
report the resulting parameters of the SARAR model with 3 lags.

4.4.4 Illustration of the distress propagation in the network

In this section we illustrate with the data of the bank a process of distress propagation
through a local customer-supply network of a firm which goes bankrupt. As it has

2We recall that the Receiver Operating Characteristics is a graphical plot that illustrates the perfor-
mance of a binary classifier system as its discrimination threshold is varied. The curve is created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The true-positive rate is also known as sensitivity. The false-positive rate is also known as the fall-out or
probability of false alarm. The ROC curve is thus the sensitivity as a function of fall-out. A measure that
combines precision and recall is the harmonic mean of precision and recall, the traditional F-score.
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Dependent Variable: Rating
Mean dependent var : 0.0000
S.D. dependent var : 1.0000

Number of Observations: 1785805
Number of Variables : 6
Degrees of Freedom : 1785799

R-squared : 0.4421
Adjusted R-squared : 0.4420

Sum squared residual: 996387.621
Sigma-square : 0.558

S.E. of regression : 0.747
Sigma-square ML : 0.558

S.E of regression ML: 0.747
F-statistic : 282970.3494

Prob(F-statistic) : 0
Log likelihood : -2012949.443

Akaike info criterion : 4025910.886
Schwarz criterion : 4025985.258

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT 0.000 5.6 ∗ 10−4 0.000 1.000
Ratio1 -0.071 6.2 ∗ 10−4 -114.629 0.000
Ratio3 -0.116 5.7 ∗ 10−4 -201.616 0.000
Ratio4 -0.250 6.4 ∗ 10−4 -389.168 0.000
Ratio5 -0.104 5.7 ∗ 10−4 -180.254 0.000

UA -0.453 6.2 ∗ 10−4 726.841 0.000

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 1.794

TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB

Jarque-Bera 2 183551.601 0.000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 5 35045.575 0.000

Koenker-Bassett test 5 21155.703 0.000

SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 20 66716.799 0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST MI/DF VALUE PROB

Moran’s I (error) 0.1318 157.003 0.000
Lagrange Multiplier (lag) 1 27919.008 0.000

Robust LM (lag) 1 5372.940 0.000
Lagrange Multiplier (error) 1 24648.915 0.000

Robust LM (error) 1 2102.847 0.000

TABLE 4.6: Results of the regression with Z-score four variables and
the ratio of the Allowed to Utilised credit, estimation with OLS
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Variable OLS SLM-1 SLM-2 SLM-3 SARAR 1 SARAR-2 SARAR-3

R2 0.4420 0.4504 0.4510 0.4512 0.4505 0.4510 0.4512
AUC 0.836485 0.840081 0.840414 0.840562 0.840102 0.840381 0.840526
TPR 0.738316 0.740009 0.748996 0.748816 0.736056 0.74805 0.738577
FPR 0.220036 0.216193 0.224985 0.22486 0.212401 0.22418 0.214789
ACC 0.773302 0.773899 0.773396 0.777065 0.790799 0.784756 0.774295
PR 0.978453 0.978882 0.978976 0.978705 0.977817 0.978224 0.978896
RE 0.775344 0.77564 0.775015 0.779238 0.794961 0.788026 0.77606
F-s 0.865137 0.865489 0.865137 0.867655 0.876959 0.872884 0.865756

OPT 0.45709 0.464271 0.449221 0.449857 0.4773 0.455547 0.471767

TABLE 4.7: Results of the models estimation

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT 0.0286 6.1 ∗ 10−4 46.732 1.000
Ratio1 -0.072 6.1 ∗ 10−4 -117.089 0.000
Ratio3 0.115 5.7 ∗ 10−4 -199.938 0.000
Ratio4 -0.247 6.3 ∗ 10−4 -388.607 0.000
Ratio5 -0.101 5.7 ∗ 10−4 -174.785 0.000

UA -0.444 6.2 ∗ 10−4 100.539 0.000

Instrumented: W-Rating
Instruments: W2-Ratio1, W2-Ratio3, W2-Ratio4, W2-Ratio5,

W2-UA, W3-Ratio1, W3-Ratio3, W3-Ratio4,
W3-Ratio5, W3-UA, W-Ratio1, W-Ratio3,
W-Ratio4, W-Ratio5, W-UA

TABLE 4.8: Results of the Z-score regression, estimation with OLS
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been explained in Section 4.2.3 with theoretical examples, in the same manner we
built a credit chain network from our transactions data and visualise it with a graph.
The state of the local network of the selected firm in three consecutive months is
illustrated with three graphs in Figure 4.7. For illustration we have selected a firm
which has gone bankrupt and which does not have a large number of connections –
otherwise, the graphs would become incomprehensive as the number of firms in the
local network grows exponentially with the degree of the vertex. On the figures, the
node labels are the Z-score values computed with the SLM-3 model, while the edge
labels are the weights of the connectivity matrix.

Since the suppliers of the defaulted firm are more likely to be hit by a distress of
its customer, for illustrative purposes we include in the visualisations only outgoing
cash transactions from the defaulted firm. Thus, the graphs provide a partial view
on the network of a firm. First level connections are the firms to which the defaulted
firm transfers money – thus, they are the suppliers of the defaulted firm; second level
connections are then the suppliers of the suppliers, etc. The illustrated graphs include
the connections of the firm up to a third degree.

Figure 4.7a illustrates the state of a credit chain network of the firm which had
a Z-score of 1.16 in November 2014. From the graph we can see that it has two
suppliers – one with a Z-scores of 0.64 to which it is the only customer (since the
weight of the edge is 100) and the other with a Z-score of -1.39 to which it is one of
many customers (since the weight of the edge is very small – it is only 0.306). The
last firm is also the only customer of the defaulted firm. We remind that our network
by construction includes only connections with the total amount over each quarter
exceeding a threshold and, therefore, represents only the most strong links between
customers and suppliers.

Figure 4.7b illustrates the state of the same credit chain network in December 2014
when the considered firm had been hit by default – its rating increased from 13 in
November to 18 in December. The defaulted firm is highlighted on the graph together
with its 1st and 2nd degree connections. Comparing the network in November 2014
and December 2014, we can see from the graphs that the Z-score of the defaulted
firm has increased from 1.16 to 1.24. The Z-scores of its suppliers have increased in
the next month after the default has happened. This can bee seen in Figure 4.7c in
comparison to 4.7b. The supplier to which the defaulted firm is the only customer
has been hit mostly – its Z-score has increased from 0.5 in December 2014 to 0.89
in January 2015. The Z-score of the firm to which the defaulted firm is only one of
many customers, has increased relatively smaller – from -1.24 in December 2014 to
-1.08 in January 2015. This firm itself has 5 suppliers (excluding the defaulted firm).
The Z-score of the supplier with the highest weight among the five of them has also
increased (the Z-score of the firm connected with the weight of 7.6 has increased from
-0.31 to -0.1).

The effects described above proof that the Z-score model with 3 lags captures the
propagation of distress through the supply-chain network. Moreover, we observe
that the distress indeed affects stronger the firms connected to the defaulted one (or
its direct neighbours) with a higher weight. The former proofs that the connectivity
matrix constructed from the cash transactions data reflects the actuals links between
the firms. Therefore, suppose, a certain firm defaults in the current month, then
the bank can use the constructed connectivity matrix to predict future decrease in
rating of the firms which are most strongly connected to a defaulted one or its first
and second degree connections. On the other hand, suppose, a firm which holds its
accounts in the bank requests an extension of its disposable credit or a new credit
line. Then, knowing the position of this firm in the supply-customer network –
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in particular, with respect to the recently defaulted companies, would enhance its
classical approach to credit assessment and support the bank in its lending decision
policy.

4.5 Possible applications of the network

The weight matrix can be used in different ways – first, for enhancing the prediction
of bunckrupcy as we have described in the experiments, and, second, for simulation.
In this chapter we discuss possible applications of the network.

Simulation of the assets dynamics
After the network has been built different types of stress tests useful for risk

management purposes can be performed. Further we discuss how simulations can
be done.

Suppose each firm i, i = 1, . . . , n has a single zero coupon debt, with face value
Ki which expires at maturity T as described above in the Merton model, then the
dynamics of the assets are describe by the system of SDE in a matrix form as

dVt = diag[Vt](µtdt + ΣtdWt), (4.7)

where Σ = SDS is a variance-covariance matrix with D being a correlation matrix
and S being a diagonal matrix :

D =

σ11 . . . 0
. . .

0 . . . σnn


The discrete version of the process for Si is

Vi
t+δt = Vi

t + µiVi
t δt + σiVi

t εi
√

δt, (4.8)

where εi is a random sample from a standard normal distribution with correlation ρij

between εi and εj.
The value of each asset Vi and the growth rate of the company µi we obtain

from the financial data, as well as the value of the debt. The volatility of the asset
is assumed to be proportional to the volatility of the cash flow going through node
i. The Brownian motions at each time t are characterized by a set of instantaneous
correlation coefficients incorporated in the correlation matrix. To simulate correlated
Brownian motion we must generate standard normal variables which are correlated.
We estimate the centrality ci of each company on the weights matrix built from the
cash transactions. Assuming that c is a normalised vector of centrality, such that
|c| = 1, then the correlated random variables are simulated as

εi = ciηi,

where η̄ ∼ iidN(0, I).
Since economic shocks that transmit across an economy do not have final recip-

ients and are unlikely to follow the shortest path between industries, eigenvector
centrality is the most appropriate measure for intersectoral trade networks according
to [16]. Eigenvector centrality is calculated as the principal eigenvector of the net-
work’s adjacency matrix. Nodes are more central if they are connected to other nodes
that are themselves more central.
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(A) Local network of a firm in November 2014

(B) Local network of a firm hit by a default in December 2014

(C) Local network of a firm after a default in January 2015

FIGURE 4.7: Illustration of the distress propagation though a credit chain
network
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To test the hypothesis that firms with higher average level of transactions flow
and lower level of volatility are more resistant to shocks to idiosyncratic and systemic
shocks we simulate the shock propagation through the network and we check for the
stability characteristics of the firms which would survive and the firms which would
be destroyed by the shock.

Simulation of the shock propagation in the network
Simulations can be done in two conceptually different ways – taking a global/-

macro view on the network or taking a local/micro view. By the macro view we mean
the evaluation of how a shock on a single (or several) major client would propagate
through the network and effect the default probabilities of all the other firms. This
approach fits well with the reduced-form models. For a bank it could be useful to
access the overall level of systemic risk in the portfolio. Simulating an attack on a
client would provide a view on the resistance capacity or vulnerability of the portfolio
to liquidity shocks. For performing such stress tests we would need to consider an
entire graph with the prior estimated vector of the single-firm probabilities of default
and define a function of the change in default probability as a function of a measure
of centrality.

Economic shocks that transmit across an economy do not have final recipients and
are unlikely to follow the shortest path between industries. In addition, economic
shocks are likely to have feedback effects. A supply shock in one industry could
affect the supply of downstream industries, which eventually could flow back to the
original industry. For instance, an oil shock could affect the cost of gasoline, which
affects transportation costs, which could then affect the oil industry. Thus, economic
shocks are unlikely to be restricted to follow paths or trails, in which nodes and links
are not repeated. In addition, network flow can spread through multiple paths at the
same time.

Networks containing important nodes, or hubs, are called “scale-free" [10] in the
sense that some hubs have a huge number of links and no node is typical of the other.
However, scale-free networks have a common structure and properties to a certain
extent. First, the probability that a node has exactly k links following a power-law
distribution. Another is that they are remarkably robust against accidental failures,
but extremely vulnerable to coordinated attacks. In application to the bank data,
we can expect that an attack (which is equivalent to a stress-test performed in the
financial domain) on a firm which is not strongly connected to other firms (such node
would have a low corresponding Hub and Authority measures) would not effect
many firms, while an attack on a hub will propagate through the network and effect
a large number of firms.

An attack on a hub will spread the shock through the network [10]. However, the
type of node and its properties should also be taken into account. In the financial
world such hubs will most likely have a stronger financial position and have a
better access to credit and other types of financing. This may have an opposite
effect resulting in financial hubs absorbing liquidity shocks. The outcome of such an
experiment – which effect would prevail (liquidity shock would destroy the firm or
the company would absorb the shock) would depend on the intensity of the shock and
the number of debtors affected, as well as on a general economical situation which
would effect the credit conditions and capabilities of the company. Nevertheless,
even if the company will survive, the shock will to a certain extend propagate in the
network though the company’s trade counterparties – since the firm may postpone
its own credit payments or reduce its production demands.

By the micro view, we mean a closer look at a certain client of the bank and
the trade chain it is involved into. In a simple settings we assume that the value
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FIGURE 4.8: Illustration of a trade chain of the firm B

of each company at time t is Vt and that the balance sheet can be represented as
in the Merton model. Assume a company B has A1, . . . , An debtors and C1, . . . , Cm
creditors (as depicted in Figure 4.8). Then a liquidity shock on any of Ai would
decrease its capability to repay the receivables due to B in time. This could potentially
propagate to any of Cj and further down the trade chain. Depending on a scenario,
one or several Ai can be affected by the shock. Then only a certain percentage of the
receivables of firm B would be paid. This view is more in line with the structural
models setup since it assumes that we have the information on the balance sheet of
the firms. To perform the simulations technically we would only need a function
which can reconstruct a local network up to a certain degree for a given node and
fetch all the balance sheet information about those firms. Such assessment could be
useful to support the bank in its lending decisions – when, for instance, a company B
which is already a client of the bank is requesting to open a new credit.

4.6 Conclusions

In this work we have described how the network effect can be embedded into default
prediction models both in the settings of reduced-form and structural approaches.
Under the reduced-form approach we have used the methods of spatial econometrics
and network analysis to allow the inclusion of the network effect in the classical
Z-score model. The experiments performed show that the network effect improves
the quality of predictions based on the AUC, R2, F-score and Accuracy measures
with respect to the general OLS approach. Although the increase in the measures
is marginal – around 2%, the results proof the potential relevance of the network
effect in the bunckrupcy prediction. Within the models with a spatial effect, we
observe that the AUC measure increases as we extend the number of lags considered.
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However, each additional lag provides less marginal improvement. The best models
with respect to the AUC and R2 are the SLM model with 3 lags and the combined
SARAR model with 3 lags. The inclusion of the spatial error in addition to the SLM
model does not improve the result for our dataset.

We have illustrated that the 3-lag SLM model captures the propagation of distress
through a local credit chain network of a defaulted firm. We have discussed how the
bank can use the constructed connectivity matrix to predict future decrease in rating
or embed the information on the network position of a firm in its lending policy.

It is worth mentioning that the data quality and the process of its aggregation
play a major role in the estimation of the models. In the current approach the firms
have been chosen on the criteria of the amount of information which can be collected
– both on a stand alone basis and based on the level of its connectivity in the network.
While this approach allows to identify strong financial and trade relations between
the firms, the constructed database is likely to be biased toward less risky firms since
more risky companies may disclose less information. In particular, we observe that
the default rate within the companies which appear in the network of payments is
less than the default rate of the total sample of firms. Extending the database would
require a more accurate treatment of missing values and a thorough analysis of the
companies with less interactions.

To conclude, we think that use of BigData technologies offers a number of po-
tential insights that can be profitably exploited to improve the probability of default
prediction, and has the potential to improve the management of lending policies and
the loan pricing.
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Appendix A

Appendix to Chapter 2

A.1 Results of the estimation for the 4 datasets

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.0494 0.0612 0.0758 0.0560
59 0.0445 0.0634 0.0737 0.0506
58 0.0227 0.0739 0.0320 0.0222
57 0.0288 0.0941 0.0342 0.0257
56 0.0360 0.1148 0.0425 0.0315
55 0.0602 0.1601 0.0670 0.0506
54 0.0511 0.1746 0.0549 0.0423
53 0.0583 0.2275 0.0399 0.0340
52 0.0527 0.2031 0.0368 0.0344
51 0.0536 0.1455 0.0143 0.0188
50 0.0356 0.0676 0.0249 0.0228
49 0.0408 0.1205 0.0204 0.0178
48 0.0579 0.1350 0.0347 0.0306
47 0.0585 0.1369 0.0280 0.0260
46 0.0738 0.1086 0.0456 0.0410
45 0.0680 0.1169 0.0274 0.0278
44 0.0924 0.1065 0.0659 0.0598
43 0.0976 0.1291 0.0735 0.0614
42 0.1196 0.1404 0.1007 0.0904

Mean (Rank) 0.0580 (3) 0.1252 (4) 0.0470 (2) 0.0391 (1)

TABLE A.1: Mean (over 10 years) of the absolute errors for each gener-
ation, UK male data.
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Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0318 0.0643 0.0283 0.0268
2001 0.0418 0.0790 0.0342 0.0312
2002 0.0354 0.0793 0.0268 0.0226
2003 0.0378 0.0735 0.0267 0.0271
2004 0.0621 0.1237 0.0485 0.0413
2005 0.0576 0.1248 0.0449 0.0356
2006 0.0759 0.1575 0.0611 0.0503
2007 0.0713 0.1646 0.0566 0.0449
2008 0.0632 0.1632 0.0494 0.0349
2009 0.1027 0.2224 0.0932 0.0768

Mean (Rank ) 0.0580 (4) 0.1252 (1) 0.0470 (3) 0.0391 (2)

TABLE A.2: Mean (over 19 generations) of the absolute errors for each
year, UK male data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 1.0000 0.1000 0.1000 0.5000
59 1.0000 0.1000 0.1000 0.6000
58 1.0000 0 0.6000 0.9000
57 1.0000 0 0.7000 1.0000
56 1.0000 0 0.3000 0.7000
55 1.0000 0 0 0.5000
54 1.0000 0 0.4000 0.7000
53 1.0000 0 0.6000 0.9000
52 1.0000 0 0.4000 0.7000
51 1.0000 0.1000 1.0000 1.0000
50 1.0000 0.4000 0.8000 0.9000
49 1.0000 0 0.7000 0.9000
48 1.0000 0 0.5000 1.0000
47 1.0000 0 0.5000 0.6000
46 0.9000 0 0.2000 0.6000
45 1.0000 0 0.6000 1.0000
44 0.8000 0.1000 0.1000 0.6000
43 0.5000 0 0 0.5000
42 0.1000 0 0 0

Mean (Rank) 0.9105 (1) 0.0421 (4) 0.4000 (3) 0.7158 (2)

TABLE A.3: Percentage of the actual mortality rates which falls within
a 90% prediction interval, UK male data.
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Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.1215 0.0697 0.0746 0.0983
59 0.1113 0.0386 0.0461 0.0834
58 0.1191 0.0573 0.0347 0.0777
57 0.1201 0.0368 0.0372 0.0869
56 0.1405 0.0591 0.0561 0.1049
55 0.1270 0.0198 0.0570 0.1018
54 0.1637 0.0215 0.1123 0.1490
53 0.1533 0.0229 0.1158 0.1469
52 0.1713 0.0269 0.1402 0.1709
51 0.1736 0.0253 0.1633 0.1791
50 0.1955 0.1026 0.1802 0.2019
49 0.1438 0.0255 0.1269 0.1533
48 0.1434 0.0300 0.1030 0.1390
47 0.1622 0.0344 0.1735 0.1814
46 0.1551 0.0311 0.1665 0.1839
45 0.1227 0.0151 0.1331 0.1453
44 0.0986 0.0356 0.1044 0.1206
43 0.0905 0.0331 0.0833 0.1017
42 0.0850 0.0373 0.0787 0.0944

Mean (Rank) 0.1368 (3) 0.0380 (4) 0.1046 (1) 0.1326 (2)

TABLE A.4: Mean (over 10 years) of the absolute errors for each gener-
ation, Australian female data

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0322 0.0400 0.0303 0.0308
2001 0.0436 0.0253 0.0354 0.0391
2002 0.0978 0.0394 0.0728 0.0887
2003 0.1041 0.0309 0.0710 0.0941
2004 0.1207 0.0316 0.0825 0.1110
2005 0.1284 0.0322 0.0877 0.1205
2006 0.1664 0.0358 0.1231 0.1612
2007 0.2025 0.0412 0.1588 0.2007
2008 0.2421 0.0606 0.1992 0.2441
2009 0.2296 0.0434 0.1849 0.2361

Mean (Rank ) 0.1368 (4) 0.0380 (1) 0.1046 (2) 0.1326 (3)

TABLE A.5: Mean (over 19 generations) of the absolute errors for each
year, Australian female data.
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Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 1.0000 0.4000 0.3000 0.4000
59 1.0000 0.7000 0.4000 0.4000
58 1.0000 0.4000 0.6000 0.4000
57 1.0000 0.7000 0.6000 0.5000
56 1.0000 0.6000 0.2000 0.2000
55 1.0000 1.0000 0.4000 0.3000
54 0.7000 1.0000 0.1000 0.2000
53 0.7000 0.9000 0.2000 0.2000
52 0.5000 1.0000 0.1000 0.1000
51 0.5000 1.0000 0.1000 0.2000
50 0.3000 0.4000 0 0.1000
49 0.7000 0.9000 0.1000 0.2000
48 0.6000 1.0000 0.2000 0.5000
47 0.6000 0.9000 0.2000 0.2000
46 0.6000 1.0000 0.1000 0.2000
45 0.8000 1.0000 0.2000 0.4000
44 0.8000 1.0000 0.4000 0.5000
43 1.0000 1.0000 0.7000 0.7000
42 1.0000 1.0000 0.7000 0.9000

Mean (Rank) 0.7789 (2) 0.8368 (1) 0.2947 (4) 0.3474 (3)

TABLE A.6: Percentage of the actual mortality rates which falls within
a 90% prediction interval, Australian female data.
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Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.0940 0.0930 0.0801 0.0945
59 0.0439 0.0534 0.0386 0.0346
58 0.1171 0.0553 0.0980 0.1133
57 0.0879 0.0376 0.0586 0.0783
56 0.0974 0.0231 0.0657 0.0867
55 0.1238 0.0522 0.1385 0.1357
54 0.0949 0.0622 0.0805 0.0958
53 0.1144 0.0737 0.1163 0.1257
52 0.0928 0.0860 0.0817 0.0955
51 0.0900 0.0806 0.0880 0.0968
50 0.1338 0.0179 0.1543 0.1531
49 0.0725 0.1036 0.0916 0.0906
48 0.0693 0.0807 0.0541 0.0658
47 0.0581 0.0967 0.0578 0.0663
46 0.0499 0.0874 0.0562 0.0617
45 0.0460 0.0784 0.0458 0.0500
44 0.0387 0.0860 0.0470 0.0486
43 0.0356 0.1111 0.0628 0.0591
42 0.0357 0.0742 0.0422 0.0432

Mean (Rank) 0.0787 (3) 0.0712 (1) 0.0767 (2) 0.0840 (4)

TABLE A.7: Mean (over 10 years) of the absolute errors for each gener-
ation, Australian male data.

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0279 0.0365 0.0287 0.0285
2001 0.0362 0.0516 0.0370 0.0367
2002 0.0623 0.0404 0.0590 0.0615
2003 0.0536 0.0609 0.0521 0.0525
2004 0.0615 0.0597 0.0580 0.0640
2005 0.0561 0.0970 0.0478 0.0578
2006 0.0858 0.0913 0.0825 0.0926
2007 0.1132 0.0866 0.1076 0.1239
2008 0.1526 0.0814 0.1497 0.1652
2009 0.1380 0.1067 0.1448 0.1571

Mean (Rank) 0.0787 (3) 0.0712 (1) 0.0767 (2) 0.0840 (4)

TABLE A.8: Mean (over 19 generations) of the absolute errors for each
year, Australian male data.
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Age in 1970 Wills and Sherris Lee-Carter OU-process Feller

60 1.0000 0.2000 0.4000 0.6000
59 1.0000 0.4000 0.7000 1.0000
58 1.0000 0.2000 0.2000 0.3000
57 1.0000 0.3000 0.4000 0.8000
56 1.0000 0.6000 0.4000 0.5000
55 1.0000 0.1000 0 0
54 1.0000 0.2000 0.4000 0.5000
53 1.0000 0.1000 0.2000 0.3000
52 1.0000 0 0.3000 0.4000
51 1.0000 0.2000 0.3000 0.3000
50 1.0000 1.0000 0 0.2000
49 1.0000 0 0.4000 0.7000
48 1.0000 0.2000 0.6000 0.8000
47 1.0000 0.1000 0.4000 0.6000
46 1.0000 0.5000 0.7000 0.7000
45 1.0000 0.6000 0.7000 0.8000
44 1.0000 0.4000 0.7000 0.8000
43 1.0000 0.1000 0.7000 0.7000
42 1.0000 0.6000 0.9000 0.9000

Mean (Rank) 1.0000 (1) 0.3053 (4) 0.4421 (3) 0.5737 (2)

TABLE A.9: Percentage of the actual mortality rates which falls within
a 90% prediction interval, Australian male data.



93

Appendix B

Appendix to Chapter 3

B.1 Market price of risk in affine processes

Broadly, a stochastic volatility model for a stock price is defined as a model in which
the price is a function of a vector of state variable Xt that follows a multivariate
diffusion process. Here we state the definition of the affine model as specified in [28].

1. Assume the state variable Xt under the objective probability measure P follows
the diffusion process:

dXt = µP(Xt)dt + σ(Xt)dWP
t , (B.1)

Here Xt is an N-vector of state variables, dWP
t is an N-dimensional Brownian

motion under the objective measure P, µP(Xt) is an N-dimensional function of
Xt and σ(·) is an N × N matrix-valued function of Xt.

2. The instantaneous drift (under the measure P) of each state variable is an affine
function of Xt:

µP(Xt) = aP + bPXt,

for some N-vector aP and some N × N matrix bP.

3. The instantaneous covariance between any pair of state variables is an affine
function of Xt

[σ(Xt)σ
T(Xt)]i,j = αij + βT

ijXt,

where [σ(Xt)σT(Xt)]i,j denotes the element in row i and column j of the product
σ(Xt)σT(Xt), αij is a constant and βT

ij is an N-vector for each 1 < i, j ≤ N.

4. There exists a probability measure Q, equivalent to P, such that Xt is a diffusion
under Q:

dXt = µQ(Xt)dt + σ(Xt)dWQ
t , (B.2)

where dWQ
t is an N-dimensional Brownian motion under the martingale mea-

sure Q which guarantees the absence of arbitrage, σ(·) is an N × N matrix-
valued function of Xt and the drift of each state variable is an affine function of
the state vector

µQ(Xt) = aQ + bQXt,

for some N-vector aQ and some N × N matrix bQ.

Moving from the real-world measure to an equivalent martingale measure is
achieved by Girsanov’s Theorem:
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Given a specification of the µP(Xt) and σ(Xt) such that a solution to the equation
(B.1) exists, an equivalent martingale measure Q is defined as:

Q = exp

(
−
∫ T

0
ΛT(Xu)dWP

u −
1
2

∫ T

0
ΛT(Xu)ΛT(Xu)du

)
P

by specifying a market price of risk process Λ(Xt) that satisfies the condition:

EP

[
−
∫ T

0
ΛT(Xu)dWP

u −
1
2

∫ T

0
ΛT(Xu)ΛT(Xu)du

]
= 1

It follows from Girsanov’s theorem that the process WQ
t = WP

t +
∫ t

0 Λ(Xs)ds is an
N-dimensional Brownian motion under Q, and the drift in the diffusion (B.2) is given
by:

µQ(Xt) = µP(Xt)− σ(Xt)Λ(Xt).

Thus, affine diffusion models allow to specify the behaviour of the state variable(s)
under both an objective probability measure and an equivalent martingale measure
with the drift and the diffusion coefficients being affine functions of the state variable
itself under both measures. The market price of risk is then defined as in [28]:

Λt = [σ(Xt)]
−1
[
µP(Xt)− µQ(Xt)

]
The characteristic function of an affine diffusion process has also an affine form as

stated in equation (3.13). The dimensionality of the ODE system (3.14) corresponds
to the dimensionality of the state vector Xt.

B.2 Carr and Madan Inversion

Equations (3.10), (3.13) and (3.17) give a solution for european call options. However,
numeric integration in equation (3.17) can be difficult as the characteristic function of
the option is singular at the origin. Carr and Madan (1998) [27] present an alternative
Fourier transform procedure that avoids this difficulty.

Due to (3.9) we can write the value of a European call as a function of k = lnK:

CT(k) = e−rT
∫ ∞

k
(esT − ek)qT(s)dsT, (B.3)

where qT(s) is the risk-neutral density function of st. The characteristic function
of sT has a form fT(u) = E[esT iu]. Thus, the characteristic function of a density is
defined as

fT(φ) =
∫ ∞

−∞
eiφsqT(s)ds, (B.4)

The call function in equation (B.3) is not square-integrable. To obtain a square-
integrable function, Carr and Madan (1998) consider a modified call price cT(k) with
a damping factor

cT(k) = eαkCT(k). (B.5)

For α > 0 this function will be square-integrable on the entire real line.
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Consider now the Fourier transform of cT(k):

ψT(u) =
∫ ∞

−∞
eiuscT(k)dk, (B.6)

The call prices are obtained numerically using the inverse transform and the
analytical expression for the ψ:

CT(k) =
e−αk

π

∫ ∞

0
e−iukψT(u)du, (B.7)

ψT(u) =
erTφT(u− (α + 1)i)

α2 + α− u2 + i(2α + 1)u
(B.8)

The values are obtained by substituting (B.8) into (B.7) and performing the re-
quired integration. The integral is numerically computed using the trapezoid rule
and the Simpson’s weighting is applied for the summation. For more details see Carr
and Madan (1998) [27].
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Appendix to Chapter 4

C.1 Histograms of the independent variables
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[37] Duffie, D., Filipović, D., Schachermayer, W. Affine processes and applications
in finance. Annals of applied probability 2003, 13, 984-1053.

[38] Duffie, D. and Singleton, K. Modeling Term Structures of Defaultable Bonds.
Review of Financial Studies 1999, 12, 197-226.

[39] Dupire B. Pricing with a smile, Risk 1994, 7, 18-20.

[40] Girosi F., King G Understanding the Lee-Carter Mortality Forecasting Method
2007.

[41] Fang F., Oosterlee C.W. A Novel Pricing Method for European Options Based
on Fourier-Cosine Series Expansions. SIAM Journal on Scientific Computing 2008,
31, 826-848.

[42] Feldhutter P. and Schaefer, S. The Myth of the Credit Spread Puzzle, preprint
2016.

[43] Fonseca J. D., Grasselli M., Tebaldi C.Option pricing when correlations are
stochastic: an analytical framework, Review of Derivatives Research 2007, 10,
151-180.

[44] Gao, J. The Effects of Firm Network on Banks Portfolio Consideration. SSRN
Electronic Journal 2015.

[45] Giesecke K. Credit modelling and valuation: an introduction. SSRN Electronic
Journal 2004, 2, 1-67.

[46] Giacometti R, Bertocchi M., Rachev S.T., Fabozzi F.J. A comparison of the
Lee-Carter model and AR-ARCH model for forecasting mortality rates 2009.

[47] Glasserman P. Monte Carlo methods in financial engineering. Springer 2003.

[48] Grzelak L., Oosterlee K. On the Heston model with stochastic interest rates.
Munich Personal RePEc Archive 2010, 20620.

[49] Harrison J.M., Kreps D.M. Martingale and arbitrage in multiperiod securities
markets. Journal of Economics 1979, 20, 381-408.

[50] Harrison J.M., Pliska S.R. Martingales and stochastic integrals in the theory of
continuous trading. Stochastic Processes and their Applications 1981, 11, 215-260.

[51] Heston S.L. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. A Review of Financial Studies 1993,
327-343.



104 REFERENCES

[52] Hibbert H., Manning B. Real-world equity volatility assumptions. Moody’s
Analytics Research, Assumption update 2014.

[53] Hout K, Bierkens J, Ploeg A. A semi closed-form analytic pricing formula
for call options in a hybrid Heston-Hull-While model. Proceedings of the 58th
European Study Group Mathematics with Industry 2007.

[54] Hull J., White A. Using Hull-White interest rate trees. Journal of Derivatives 1996,
4, 26-36.

[55] Hull J., White A. The pricing of options on assets with stochastic volatilities.
Journal of Finance 1987, 42, 281-300.

[56] Ingber, A. L. Adaptive simulated annealing (ASA): Lessons learned. Control
and Cybernetics 1995, 1-27.

[57] Jacobson T. and von Schvedin S. Trade credit and the propagation of corporate
failure: an american analysis. Econometrica 2015, 83, 1315-1371.

[58] Jarrow R. and P. Protter P. Structural versus reduced-form models: A new
information based perspective. Journal of Investment Management 2004, 2, 34-43.

[59] Jarrow, R. and Turnbull, S. Credit Risk: Drawing the Analogy. Risk Magazine
1992, 5.

[60] Jeanblanc M., Yor M., Chesney M. Mathematical methods for financial markets.
Springer Finance 2009.

[61] Jevtic P., Luciano E., Vigna E. Mortality surface by means of continuous time
cohort models. Insurance: Mathematics and Economics 2013, 53, 122-133

[62] Kalemli-Ozcan S., Kim S-J, Shin H.S., Sorensen B. E., Yesiltas S. Financial Shocks
in Production Chains. Princeton University preprint 2013.

[63] Kelejian, H.H. and Prucha, I. A Generalized Spatial Two-Stage Least Squares
Procedure for Estimating a Spatial Autoregressive Model with Autoregressive
Disturbances. Journal of Real Estate Finance and Economics 1998, 17, 99-121.

[64] Kiyotaki, N. and MooreJ. Credit Chains. Discussion Paper Series of the Edinburgh
School of Economics 1997, 118.

[65] Kladivko K. Maximum likelihood estimation of the Cox-Ingersoll-Ross pro-
cess: the Matlab implementation. Working paper of the Technical Computing
Conference, Prague 2007.

[66] Kleinberg, J. M. Authoritative sources in a hyperlinked environment. Journal of
the ACM 1999, 46, 604-632.

[67] Kleindorfer P. R., Wind Y. J. The network challenge. Strategy, profit and risk in
an interlinked world Wharton School Publishing 2009.

[68] Klibi, Walid K., Alain M. Scenario-based Supply Chain Network risk modeling.
European Journal of Operational Research 2012, 223, 644-658.

[69] Kuersteiner G.M. and Prucha R. Dynamic Spatial Panel Model: Networks,
Common Shocks, and Sequential Exogeneity. Cornell University Library 2018.



REFERENCES 105

[70] Lando D. Credit risk modelling. Princeton University Press 2004.

[71] Levratto, N. From failure to corporate bankruptcy: a review. Journal of Innovation
and Entrepreneurship 2013, 2, 20-42.

[72] Lee R. Option pricing by transform methods: extensions, unification, and error
control. Journal of Computational Finance 2004, 7(3): 51-86.

[73] Lee R.D., Carter, L.R. Modelling and forecasting U.S. mortality. Journal of the
American Statistical Association 1992, 87, 659-671.

[74] Lee R.D., Miller T. Evaluating the performance of the Lee-Carter method for
forecasting mortality. Demography 2001, 38, 537-549.

[75] Lewis A. Option valuation under stochastic volatility. Finance Press Newport
Beach 2001.

[76] Luciano E., Regis L., Vigna E. Delta-Gamma hedging of mortality and interest
rate risk. Insurance: Mathematics and Economics 2012, 50, 402-412.

[77] Luciano E., Vigna E. Mortality risk via affine stochastic intensities: calibration
and empirical relevance. Belgian Actuarial Bulletin 2008, 8.

[78] Merton R. C. On the pricing of corporate debt: the risk structure of interest
rates. Finance 1974, 29, 449-70.

[79] Milgram S. The Small World Problem. Psychology Today 1967, 2, 60-67.

[80] Milevsky M.A. and Promislow. Mortality Derivatives and the Option to Annu-
itize. Insurance: Mathematics and Economics 2001, 29, 299-318.

[81] Newman M. The physics of networks. Physics today 2008, 33-38.

[82] Newman M. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics 2005, 46, 323-351.

[83] Ngai N. and Sherris M. Longevity risk management for life and variable annu-
ities: The effectiveness of static hedging using longevity bonds and derivatives.
Insurance: Mathematics and Economics 2011, 49, 100-114.

[84] Ohlson, J. A. Financial ratios and the probabilistic prediction of bankruptcy.
Journal of accounting research 1980, 109-131.

[85] O’Hare C., Li Y. Explaining young mortality. Insurance: Mathematics and Eco-
nomics 2012, 50, 12-25.

[86] Plat R. On stochastic mortality modelling. Insurance: Mathematics and Economics
2009, 45, 393-404.

[87] Renshaw, A.E., and Haberman, S. A cohort-based extension to the Lee- Carter
model for mortality reduction factors. Insurance: Mathematics and Economics
2006, 38, 556-570.

[88] Rouah F.D., Heston S.L. The Heston model and its extensions in Matlab and C#.
Wiley Finance Series 2013.

[89] Schrager, D. Affine stochastic mortality. Insurance. Mathematics and Economics
2006, 38, 81-97.



106 REFERENCES

[90] Schönsleben, P. Integral Logistics Management. Auerbach Publications 2007.

[91] Stein E.M., Stein J.C. Stock price distributions with stochastic volatility: an
analytical approach. Review of Financial Studies 1993, 4, 727-752.

[92] Wang, Y., Campbell, M. Financial ratios and the prediction of bankruptcy: the
Ohlson model applied to Chinese publicly traded companies. The Journal of
Organizational Leadership and Business 2010, 1-15.

[93] Weron, R., and Wystup. U. Heston’s model and the smile. Statistical Tools for
Finance and Insurance. Springer 2005. bibitemWesserman Wesserman S., Faust
K. Social network analysis: methods and applications. Cambridge University
Press 1994. White, H., 1994, Estimation, Inference and Specification Analysis,
Cambridge University Press, New York.

[94] Wills S., Sherris, M. Securitization, Structuring and Pricing of Longevity Risk.
Insurance Math. Econom. 2010 46, 173-185.

[95] Wills S., Sherris M. Integrating Financial and Demographic Longevity Risk
Models: An Australian Model for Financial Applications. UNSW Australian
School of Business Research Paper No. 2008ACTL05 2011.

[96] Wu L. Centrality of the supply chain network. Working paper of the Chicago
Booth School of Business 2015.



 
   
 

 

 

  
UNIVERSITÀ DEGLI STUDI DI TORINO 

 

n. file contenuti:  1 
spazio su disco: 700 MB 

 

(Spazio riservato all’Ufficio:) 
 

 
prot. n. _____________ del ___ /___ /____ 


