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Abstract. We complete the classification, initiated by the second named author, of homo-
geneous singular Riemannian foliations of spheres that are lifts of foliations produced from
Clifford systems.

A singular Riemannian foliation of a Riemannian manifold M is, roughly
speaking, a partition F of M into connected complete submanifolds, not nec-
essarily of the same dimension, that locally stay at a constant distance one
from another. Singular Riemannian foliations of round spheres (Sn,F) are of
special importance since, other than producing submanifolds with interesting
geometrical properties, they provide local models around a point of general
singular Riemannian foliations.

The special case of singular Riemannian foliations in spheres whose leaves of
maximal dimension have codimension 1 is better known as the case of isopara-
metric foliations, and its study dates back to É. Cartan, who showed the
existence of a number of nontrivial examples. However, his examples were all
homogeneous, i.e., given as orbits of isometric group actions on S

n. The first
inhomogeneous examples were found much later by Ozeki and Takeuchi [16].
A while later, Ferus, Karcher and Münzner [6] developed an algebraic frame-
work based on Clifford algebras (or, equivalently, Clifford systems, see Sec-
tion 1.3) to construct a large family of examples of isoparametric foliations
(so-called of FKM type), including many inhomogeneous examples, and com-
pletely classified the homogeneous ones.

Whereas the theory and classification of isoparametric foliations of spheres
are by now rather well understood, the situation of singular Riemannian folia-
tions in higher codimensions is still largely terra incognita. In [18], inspired by
the ideas in [6], two new classes of foliations were introduced. Namely, the class
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of Clifford foliations, and the class of composed foliations which properly con-
tains the first one. A Clifford foliation (Sn,FC) is constructed from a Clifford
system C, and a composed foliation (Sn,F0 ◦ FC) is constructed from C and
a singular Riemannian foliation (Sm,F0) of a lower-dimensional sphere. The
natural question of determining which ones are homogeneous was also solved
in [18], with the exception of composed foliations based on Clifford systems of
type C8,1 and C9,1 (see Section 1.3). The goal of the present work is to deal
with these two remaining, more involved cases.

Theorem 0.1. Let (Sn,F0 ◦ FC) be a homogeneous composed foliation, with
either C = C8,1 or C = C9,1.

• If C = C8,1, then n = 15, and there are exactly six examples of homogeneous
foliations (S15,F0 ◦ FC8,1

), listed in Tables 1 and 2.

• If C = C9,1, then n = 31, and the only homogeneous foliation (S31,F0 ◦
FC9,1

) is the isoparametric one induced by the action of Spin(10) on S31 via
the spin representation. In this case, m = 9 and the corresponding foliation
(S9,F0) consists of one leaf.

There is a general idea that it should be possible to recover many geomet-
ric properties of the singular Riemannian foliations from the geometry of the
underlying leaf (or quotient) space, compare, e.g., [13, 14, 21, 8, 7, 9, 1]. In
this regard, it was shown in [18] that Clifford foliations are characterized as
those singular Riemannian foliations of spheres whose leaf space is isometric to
either a sphere or a hemi-sphere of constant curvature 4. More generally, it was
believed that any foliation whose leaf space has constant curvature 4 should
be a composed foliation. Our result shows that this belief is now dismissed.
Comparing our Main Theorem with [20, Tab. II] and [8, Tab. 1], we observe
that there are exactly two homogeneous foliations on S31 whose quotient space
has constant sectional curvature 4 and which are not composed, namely, those
given by the orbits of Spin(9) and Spin(9) ·SO(2) actions on S31 with quotient
a quarter of a round sphere 1

2S
3
++ and an eighth of a round sphere 1

2S
3
+++,

respectively. Together with results in [18, 8] this implies:

Corollary 0.2. The foliations given by the Spin(9) and Spin(9)·SO(2) actions
on S31 are the only homogeneous foliations of spheres whose leaf space has
constant curvature 4 and which are not composed.

The case of composed foliations (S15,F0 ◦ FC8,1
) is also very interesting,

as they coincide with those foliations that contain the fibers of the octonionic
Hopf fibration S15 → S8. Based on the fact that the Cayley projective plane
OP 2 is the mapping cone of S15 → S8, it was shown in [18] that there corre-
sponds to any singular Riemannian foliation (S8,F0) a singular Riemannian

foliation (OP 2, F̃0) which is homogeneous if and only if F0 ◦ FC8,1
is homoge-

neous. It thus follows from our Main Theorem that there is a large amount of
inhomogeneous foliations of OP 2:

Corollary 0.3. The foliation (OP 2, F̃0) is inhomogeneous for any foliation
(S8,F0) except for those six (homogeneous) examples listed in Tables 1 and 2.
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About this paper: After a section on preliminaries, we first consider the case
of foliations with closed leaves and treat the cases C9,1 and C8,1 in separate
sections, as they have very different features. The short, last section is devoted
to foliations with nonclosed leaves.

1. Preliminaries

In this section, we quickly review some definitions and results from [18].

1.1. Singular Riemannian foliations.

Definition 1.2. Let M be a Riemannian manifold, and F a partition of M
into complete, connected, injectively immersed submanifolds, called leaves.
The pair (M,F) is called:

• a singular foliation if there is a family of smooth vector fields {Xi} that
spans the tangent space of the leaves at each point.

• a transnormal system if any geodesic starting perpendicular to a leaf stays
perpendicular to all the leaves it meets. Such geodesics are called horizontal
geodesics.

• a singular Riemannian foliation if it is both a singular foliation and a trans-
normal system.

Given a singular foliation (M,F), the space of leaves, denoted by M/F ,
is the set of leaves of F endowed with the topology induced by the canonical
projection π : M → M/F that sends a point p ∈ M to the leaf Lp ∈ F contain-
ing it. If in addition the leaves of F are closed, then M/F inherits the structure
of a Hausdorff metric space, by declaring the distance d(π(p), π(q)) to be equal
to the distance d(Lp, Lq) in M between the corresponding leaves. Moreover,
M/F is stratified by smooth Riemannian manifolds, and the projection π is
global submetry, and a Riemannian submersion along each stratum.

1.3. Clifford systems and Clifford foliations. A Clifford system, denoted
by C, is an (m + 1)-tuple C = (P0, . . . , Pm) of symmetric transformations of
a Euclidean vector space V such that

P 2
i = Id for all i

and
PiPj = −PjPi for all i 6= j.

Two Clifford systems (P0, . . . , Pm), (Q0, . . . , Qm) are called geometrically equiv-
alent if there exists an element A ∈ O(V ) such that (AP0A

−1, . . . , APmA−1)
and (Q0, . . . , Qm) span the same subspace in Sym2(V ). Geometric equivalence
classes of Clifford systems are completely classified, and the following state-
ments hold.

• A Clifford system {P0, . . . , Pm} on V exists if and only if dimV = 2kδ(m),
where k is a positive integer and δ(m) is given by:

m 1 2 3 4 5 6 7 8 8 + n
δ(m) 1 2 4 4 8 8 8 8 16δ(n)
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Given integers m, k, we denote by Cm,k any Clifford system consisting of
m+ 1 symmetric matrices on a vector space of dimension 2kδ(m).

• If m 6≡ 0 mod 4, there exists a unique geometric equivalence class of Clifford
system of type Cm,k, for any fixed k.

• Ifm≡ 0 mod 4, there exist exactly ⌊k
2⌋+1 equivalence classes of Clifford sys-

tems of type Cm,k. They are distinguished by the invariant |tr(P0P1 · · ·Pm)|.

Given a Clifford system C = (P0, . . . , Pm) on R2l, l = kδ(m), we can define
a map

πC : S2l−1 ⊂ R
2l → R

m+1,

x 7→ (〈P0x, x〉, . . . , 〈Pmx, x〉).

The Clifford foliation (S2l−1,FC) associated to C is given by the preimages of
the map πC . This foliation is a singular Riemannian foliation, it only depends
on the geometric equivalence class of C, and its quotient is isometric to either
a round sphere 1

2S
m if l = m, or a round hemisphere 1

2S
m+1
+ if l ≥ m+ 1.

1.4. Composed foliations. Fix a Clifford system C = Cm,k = (P0, . . . , Pm)
with associated Clifford foliation (Sn,FC), and fix a singular Riemannian foli-
ation (Sm,F0). Alternatively, we can view F0 as:

• a foliation of the boundary of the leaf space of FC , namely ∂(Sn/FC) =
∂(12S

m+1
+ ), in case l ≥ m+ 1,

• a foliation of 1
2S

m in case l = m.

Such a foliation can be extended by homotheties to a foliation (12S
m+1
+ ,Fh

0 ).
The composed foliation (Sn,F0◦FC) is then defined by taking the πC -preimages
of the leaves of Fh

0 .
Given any Clifford system C = Cm,k and any singular Riemannian folia-

tion (Sm,F0), the composed foliation (Sn,F0 ◦ FC) is a singular Riemannian
foliation.

1.5. Homogeneous composed foliations. Recall that a singular Riemann-
ian foliation (M,F) is called homogeneous if its leaves are orbits of an isometric
Lie group action G → Isom(M). In [18] appears a complete classification of
homogeneous Clifford foliation and a partial classification of composed folia-
tions:

Theorem 1.6 ([18]). Let C = Cm,k = (P0, . . . , Pm) be a Clifford system on R2l

and let (Sm,F0) be a singular Riemannian foliation. Then:

(1) The Clifford foliation (S2l−1,FC) is homogeneous if and only if m = 1, 2
or m = 4 and P0P1 · · ·P4 = ±Id, in which cases it is respectively spanned
by the orbits of the diagonal action of SO(k) on Rk × Rk (m = 1), SU(k)
on Ck × Ck (m = 2) or Sp(k) on Hk ×Hk (m = 4).

(2) If C 6= C8,1, C9,1, then (S2l−1,F0 ◦ FC) is homogeneous if and only if both
F0 and FC are homogeneous. If C = C9,1 and (S2l−1,F0 ◦ FC) is homo-
geneous, then F0 is homogeneous.
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By the classification of Clifford systems, both C8,1 and C9,1 consist of a
unique geometric equivalence class of Clifford systems. Moreover, for C = C8,1

the corresponding Clifford foliation (S15,FC) is given by the fibers of the
octonionic Hopf fibration S

15 → 1
2S

8, while for C = C9,1 the Clifford folia-

tion (S31,FC) is given by the fibers of πC : S31 → 1
2S

10
+ .

2. The case C = C9,1

In this section we will show that there are no new examples of homoge-
neous composed foliations originating from the Clifford system C = C9,1.
More precisely, we will see that a composed foliation (S31,F0 ◦ FC) is homo-
geneous if and only if Fh

0 is the codimension-one foliation of S10+ consisting
of concentric 9-spheres; recall that in that case, the composed foliation is the
isoparametric foliation F̃C of FKM type given by the orbits of the spin rep-
resentation Spin(10) → SO(32) (see [6]). Recall also that the maximal con-

nected Lie subgroup of SO(32) whose orbits coincide with the leaves of F̃C is
Spin(10) ·U(1) = Spin(10)×Z4

U(1) (see [3, 5]).
In this section we will only consider closed Lie subgroups of SO(32), which

correspond to proper isometric actions on S31, and postpone the case of non-
closed Lie subgroups to Section 4. So suppose the leaves of F0 ◦ FC are orbits
of a closed connected Lie subgroup G of SO(32). Since F0 ◦ FC is contained

in F̃C , i.e., the leaves of F0 ◦ FC are contained in those of F̃C , G preserves
each leaf of F̃C . By the above maximality property, G ⊂ Spin(10) ·U(1).

Lemma 2.1. The foliation (S31,F) induced by a given G ⊂ Spin(10) ·U(1) is
of the form F0 ◦ FC if and only if FC is contained in F .

Proof. The only if part is clear. Suppose now that the orbits of G contain
the leaves of FC . Any element in Spin(10) ·U(1) preserves the submanifold
M+ ⊂ S

31 defined as the preimage of the north pole of S31/FC = 1
2S

10
+ , and

therefore so does G. Since G acts by isometries, the projection of any G-orbit
to the quotient 1

2S
10
+ is either entirely contained in the interior of 1

2S
10
+ or

entirely contained in the boundary. It follows that for every leaf L of F , the
restriction (L,FC |L) is a regular foliation, and its quotient L/FC ⊂ 1

2S
10
+ is

a submanifold. The partition {L/FC}L∈F is easily seen to form a singular
Riemannian foliation Fh

0 on 1
2S

10
+ with the north pole as a 0-dimensional leaf

and, by the Homothetic Transformation Lemma (see, e.g., [17, Lem. 1.1]), this
foliation is determined by its restriction F0 on the boundary 1

2S
9. By the

definition of composed foliation, F is of the form F0 ◦ FC . �

It follows from Lemma 2.1 that we need only consider maximal connected
closed subgroups of Spin(10) · U(1).

The orbital geometry of the spin representation Spin(10) → SO(32) (or its
extension to Spin(10)·U(1)) is well understood. The orbit space S31/Spin(10) is
isometric to an interval of length π/4, where the endpoints parametrize singular
orbits M+, M− of dimensions 21 and 24 (cf. [11, p. 436]; see also [2, pp. 8–9]
for a more elementary discussion). The orbit M+ is particularly interesting, as
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it is also a leaf of F0 ◦ FC for any homogeneous foliation F0 of 1
2S

10
+ , namely,

the πC -fiber over the origin of 1
2S

10
+ . As a homogeneous space,

M+
∼= Spin(10)/SU(5) ∼= Spin(10) · U(1)/U(5)

(this also follows from the fact that M+ is the orbit of a highest weight vector of
the spin representation). As G is transitive on M+, we must have dimG ≥ 21.

The maximal connected closed subgroups of Spin(10) ·U(1) are, up to con-
jugacy,

Spin(10), U(5) · U(1), Spin(10− k) · Spin(k) · U(1)

for k = 1, . . . , 5, and

ρ(H) ·U(1),

where H is simple and ρ is irreducible of real type and degree 10 (cf. [4]; see
also [12, Prop. 8]). We have already remarked that Spin(10) is an orbit equiv-
alent subgroup of Spin(10) · U(1); we shall not need to discuss its subgroups,
because they are subgroups of the other maximal subgroups of Spin(10) ·U(1).
In the sequel, we will first analyze which of the other maximal subgroups of
Spin(10) ·U(1) can act transitively on M+.

The group U(5) · U(1) cannot act transitively on M+ since its semisimple
part SU(5) is coincides with an isotropy subgroup of Spin(10) on M+.

The simply-connected compact connected simple Lie groups H of rank at
most 5 and dimension between 20 and 44 are Spin(7), Spin(8), Spin(9), Sp(3),
Sp(4), SU(5) and SU(6); none admits irreducible representations of real type
and degree 10.

In order to determine if the groups Spin(10 − k) · Spin(k) · U(1) can act
transitively on M+, one can compute the intersection of the Lie algebra so(10−
k)⊕ so(k) with the so(10)-isotropy subalgebra su(5). It does not matter that
the subalgebras are defined only up to conjugacy (corresponding to the fact
that one can choose a different basepoint in M+). We view su(5) inside so(10)
as consisting of matrices of the form

(

A B
−B A

)

,

where A and B are real 5 × 5 matrices, A is skew-symmetric, B is symmetric
of trace zero. A standard choice of embedding of so(10−k)⊕ so(k) into so(10)
is given by matrices of the form

(

C 0
0 D

)

,

where C andD are skew-symmetric (10−k)×(10−k), resp. k×k, matrix blocks.
Then their intersection is isomorphic to su(5 − k) ⊕ so(k). Therefore the di-
mension of the Spin(10−k)·Spin(k)-orbit through the basepoint is 21− k(k−1)

2
for k ≤ 4, and 10 for k = 5. We deduce that Spin(9) and Spin(9) · U(1) act
transitively on M+; besides those, only Spin(8) · SO(2) · U(1) has a chance
of acting transitively on that manifold. In order to discard the latter group,
we choose a different embedding of so(8) ⊕ so(2) into so(10), namely, that in
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which the (i, j)-entry is zero if i ∈ {1, 2, 3, 4, 6, 7, 8, 9} and j ∈ {5, 10} or j ∈
{1, 2, 3, 4, 6, 7, 8, 9} and i ∈ {5, 10}. Now (so(8)⊕so(2))∩su(5) ∼= s(u(4)⊕u(1))
and the corresponding Spin(8) ·SO(2)-orbit has dimension 29− 16 = 13, show-
ing that Spin(8) · SO(2) · U(1) is not transitive on M+.

Finally, we need to show that the Spin(9) ·U(1)-orbits cannot coincide with
the leaves of F0 ◦ FC for any F0 consisting of more than one leaf. Suppose
the contrary. Since πC : S31 → 1

2S
10
+ is equivariant with respect to the double

covering Spin(10) → SO(10), we see that SO(9) preserves the leaves of F0.
We already know that F0 is homogeneous (Theorem 1.6 (2)), and SO(9) is
a maximal connected subgroup of SO(10). Therefore F0 must be given by the
orbits of SO(9). It follows that the leaf space of F0 ◦FC is 1

2S
10
+ /SO(9), which

is isometric to 1
2S

2
++. On the other hand, the quotient space S31/Spin(9) ·U(1)

is one-eighth of a round sphere 1
2S

2
+++ (see [20, Tab. II, Type III4]). We reach

a contradiction and deduce that (S31,F0 ◦ FC) cannot be homogeneous under
Spin(9) · U(1).

Remark 2.2. Let (S9,F0) denote the homogeneous foliation given by the
orbits of SO(9), and let (S31,F0◦FC) be the corresponding composed foliation.
By the result above, F0 ◦ FC is not homogeneous and, in particular, it is
different from the homogeneous foliation induced by the orbits of Spin(9)·U(1).
Nevertheless, both foliations have cohomogeneity 2, and both have quotients of
constant curvature 4. Moreover, they both contain the homogeneous foliation
induced by the orbits of Spin(9). Since S31/Spin(9) = 1

2S
3
++, it follows that the

orbits of Spin(9) have codimension 1 in the leaves of F0 ◦ FC , which makes
F0 ◦ FC very close to a homogeneous foliation.

3. The case C = C8,1

In this section, we determine the list of homogeneous composed foliations
originating from the Clifford system C = C8,1. Namely, we determine the orbit
equivalence classes of the isometric group actions that yield such foliations. In
this section we only consider closed subgroups of SO(16) and defer the analysis
of nonclosed Lie subgroups to Section 4. The foliation FC is given by the fibers
of the inhomogeneous octonionic Hopf fibration S15 → 1

2S
8. Fix a singular

Riemannian foliation (S8,F0), and suppose that F0◦FC is homogeneous, given
by the orbits of a closed connected subgroup G of SO(16). Recall that if X
denotes the leaf space

X = S
8/F0,

then the orbit space S15/G is isometric to 1
2X . In particular, the sectional

curvature of (the regular part of) S15/G is everywhere ≥ 4 and hence G cannot
act polarly, unless it acts with cohomogeneity 1.

3.1. Criteria to recognize composed foliations. Before we start the classi-
fication in detail, we want to present some results that will be helpful to identify
foliations that can be written as F0 ◦ FC , where C = C8,1. We start with the
straight-forward remark that a foliation F can be written in the form F0 ◦FC
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if and only if every fiber of the Hopf fibration S15 → S8 is contained in a leaf
of F (compare Lemma 2.1). In particular, if F is a homogeneous composed
foliation induced by the action of a group G ⊂ SO(16), then any other group
G with G ⊂ G ⊂ SO(16) will also generate a homogeneous composed foliation.

As a special case of the above situation, which will be useful later on, suppose
that (S15,F0 ◦ FC) is homogeneous given by the orbits of G ⊂ SO(16), and
suppose that (S8,F0) is homogeneous given by the orbits of H ⊂ SO(9). Then
for any group H ⊂ SO(9) containing H , there is a canonical enlargement
G ⊂ SO(16) of G whose orbits yield a composed foliation, as follows. Since
the Hopf fibration S15 → S8 is equivariant with respect to the covering map
Spin(9) → SO(9), we can lift H to a group H̃ ⊂ Spin(9) ⊂ SO(16). Now G is

defined as the closure of the subgroup in SO(16) generated by G and H̃ . By
the discussion above, the orbits of G define a homogeneous composed foliation
on S15.

Next we prove a criterion to distinguish some foliations that cannot be
written in the form F0 ◦ FC .

Proposition 3.2. Let (S15,F) denote the homogeneous, codimension-one foli-
ation given by the orbits of Sp(2) · Sp(2), under the representation ν2 ⊗̂H ν∗2 .
Then any foliation (S15,F) which is contained in F (i.e., every leaf of F is
contained in a leaf of F) cannot be written in the form F0 ◦ FC8,1

.

Proof. If F could be written as F0 ◦ FC8,1
, by the remarks above, so could F .

Therefore it is enough to prove the proposition for F and, to do so, it is enough
to provide a leaf of F that cannot be foliated by totally geodesic 7-spheres. We
thus consider the singular orbitM+ containing the point Id ∈ HomR(H

2,H2) ∼=
H2 ⊗H H2∗, which is diffeomorphic to Sp(2).

Suppose now that M+ = Sp(2) is foliated by totally geodesic S7. Then the
leaves are all simply connected, which implies that there is no leaf holonomy,
and thus the quotient M+/F is a manifold B and M+ → B is a Riemannian
submersion with totally geodesic fibers. Then it is also a fibration, and from the
long exact sequence in homotopy, B is simply connected (and 3-dimensional).
Therefore it must be B = S3, and we have a fibration

S
7 → Sp(2) → S

3.

Again from the long exact sequence in homotopy, we have

π6(Sp(2)) → π6(S
3) → π5(S

7) = 0.

However, on the one hand π6(Sp(2)) = 0 (for example, compare [15]), and on
the other π6(S

3) 6= 0, which gives a contradiction. �

As an application of Proposition 3.2, consider the Clifford foliation FC̄

generated by C̄ = (P0, . . . , P4) with P0P1P2P3P4 =±Id. This foliation is homo-
geneous and given by the orbits of the diagonal action of Sp(2) on H2 ⊕ H2

(Theorem 1.6) and thus, by Proposition 3.2, it cannot be written as F0 ◦FC8,1
.

In fact, this is the only Clifford foliation of S15 with this property.
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Proposition 3.3. For any Clifford system C′ on R16 with C′ 6= C̄, the folia-
tion FC′ can be written in the form FC′ = F0◦FC8,1

, for some foliation (S8,F0).

Proof. Let C8,1 = (P0, . . . , P8) and, for every i = 1, . . . , 7, let Ci denote the
sub-Clifford system (P0, . . . , Pi). Since FCi

is given by the preimages of the
map

πCi
: S15 → R

i+1, πCi
(x) = (〈P0x, x〉, . . . , 〈Pix, x〉),

it is clear that πCi
factors as πi ◦ πC8,1

, where πC8,1
: S15 → S8 is the Hopf

fibration, and πi : S
8 ⊂ R9 → Di+1 ⊂ Ri+1 is the projection onto the first i+1

components. In particular, FCi
can be written as F0 ◦FC8,1

, where (S8,F0) is
given by the fibers of πi. Notice that F0 in this case is homogeneous and given
by the orbits of SO(8− i), embedded in SO(9) as the lower diagonal block.

Moreover, any Clifford system C′ = Cm,k on R16 must satisfy the equation
kδ(m) = 8, and the only possibilities are

(m, k) = (8, 1), (7, 1), (6, 1), (5, 1), (4, 2), (3, 2), (2, 4), (1, 8).

For anym 6≡ 0 mod 4 there is only one geometric equivalence class of Clifford
systems, and therefore Cm,k can be identified with the sub-Clifford system

Cm ⊂ C8,1. For m ≡ 0 mod 4 there are exactly ⌊k
2 ⌋+ 1 geometrically distinct

Clifford systems of type Cm,k. Therefore, there is a unique C8,1, and two
distinct classes of type C4,2. One of them is C4 ⊂ C8,1, which is composed
by the discussion above, and the other is C̄. Since this exhausts all possible
Clifford systems on R16, it follows that all of them are composed, with the
exception of C̄. �

Gathering all the information together, we obtain the following corollary.

Corollary 3.4. A composed foliation (S15,F0 ◦ FCm,k
) can also be written as

F ′
0 ◦ FC8,1

for some (S8,F ′
0), if and only if Cm,k 6= C̄.

Proof. If Cm,k 6= C̄, then, by Proposition 3.3, FCm,k
can be written as F ′

0◦FC8,1

and, by the initial remark, the same holds for F0◦FCm,k
since it contains FCm,k

.
On the other hand, any composed foliation F0◦FC̄ is contained in the foliation
F1 ◦ FC̄ , where (S8,F1) is the trivial foliation with one leaf. Since F1 ◦ FC̄

coincides with the foliation F of Proposition 3.2, it follows that F0◦FC cannot
be written as F ′

0 ◦ FC8,1
for any (S8,F ′

0). �

We can now proceed with the classification of composed foliations of S15

homogeneous under a closed Lie group G. The diameter of X = S
8/F0 is either

equal to π, or it is at most π/2. We will consider these two cases separately.

3.5. Case I: diamX = π. Suppose first that the diameter of X is π. Then
there is a copy of S0 ⊂ S8 consisting of 0-dimensional leaves, and (S8,F0)
decomposes as a spherical join

(S8,F0) = S
0 ⋆ (S7,F1),
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for some foliation F1. In particular, X is isometric to a spherical join S0 ⋆ Y ,
where Y = S7/F1. In this case, 1

2X has diameter π/2 (thus G acts reducibly)
and it contains two points x+, x− at distance π/2. Moreover, any unit speed
geodesic in 1

2X starting from x− meets x+ at the same time t = π/2. Therefore
the preimages S± of x± are orthogonal round spheres of curvature 1, i.e., they
are the unit spheres of subspaces V± of R16 such that R16 = V+ ⊕ V−. Since
we are assuming that the G-orbits contain the fibers of the Hopf fibration, it
must be dimS± ≥ 7. Therefore equality must hold, and dimV+ = dimV− = 8.
Moreover, G acts transitively on S±. Given p ∈ S+, the isotropy Gp acts on
the unit sphere in the normal space νpS+, which is isometric to S− via the map
v 7→ expp

π
2 v. Moreover, the foliation (S−, Gp) coincides with the infinitesimal

foliation of F0 at πC(p) ∈ S8, which in turn coincides with (S7,F1). In partic-
ular, F0 is homogeneous and given by the action of Gp on R9 = R⊕ V− given
by ǫ⊕ λ|Gp

, where ǫ : G → R is the trivial representation, and λ : G → SO(8)
denotes the representation of G on V− (or V+).

Remark 3.6. Since the infinitesimal foliation of F0 ◦ FC at any point of S−

coincides with the infinitesimal foliation at a point in S+ (because they both
coincide with (S7,F1)), the slice representations at S+ and S− must be orbit
equivalent.

If the G action on S± is not effective, then the kernels K± of G → SO(V±)
are normal subgroups of G with K+∩K− = {e}. Since G is compact, it admits
a normal subgroup L such that G = K+ ·L ·K−, where K+ ·L acts effectively
on S− and L ·K− acts effectively on S+. Let k+, k−, l denote the Lie algebras
of K+, K−, L respectively. From the list of all groups acting transitively on
the 7-sphere, we get the following possibilities:
Case 1: k+ = k− = 0. Then G = L up to a finite cover, and the possible such
representations are:

Type G G → SO(16)

I.1 SO(8) ρ8 ⊕ ρ8

I.2 SU(4) µ4 ⊕ µ4

I.3 U(4) µ4 ⊕ µ4

II.1 Spin(8) ∆+
8 ⊕∆−

8

II.2 Spin(7) ∆7 ⊕∆7

II.3 SU(4) · U(1) µ4 ⊗̂ (µr
1 ⊕ µs

1) (r 6= s)

III.1 Sp(2) ν2 ⊕ ν2

III.2 Sp(2) · Sp(1) (ν2⊗̂ν1)
⊕2

III.3 Sp(2) · U(1) ν2⊗̂(µr
1 ⊕ µs

1)

The actions of type I induce the Clifford foliations FC1,8
and FC2,4

respec-
tively (actions I.2 and I.3 are orbit equivalent) and, by Proposition 3.3, they
indeed can be written as F0 ◦ FC8,1

. Therefore, the same is true for the foli-
ations coming from actions of type II, since each of them contains a foliation
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G for F0 ◦ FC G → SO(16) H for F0 H → SO(9) X

Spin(8) ∆+

8 ⊕∆−

8 Spin(7) ǫ⊕∆7 [0, π]

SO(8) ρ8⊕ρ8 SO(7) ǫ2⊕ρ7 S
2
+

Spin(7) ∆7⊕∆7 G2 ǫ2⊕φ7

SU(4) µ4⊕µ4 SU(3) ǫ3⊕µ3 S
3
+

U(4) µ4⊕µ4 U(3) ǫ3⊕µ3

SU(4) · U(1) µ4 ⊗̂ (µr

1⊕µs

1) (r 6= s) U(3) ·U(1) ǫ⊕µr−s

1 ⊕µ3 ⊗ µ−s

1 S
2
++

Table 1. diamX = π, and k+ = k− = 0.

of type I. On the other hand, the foliations of type III are contained in the
orbits of the representation of Sp(2) · Sp(2) given by ν2 ⊗̂H ν∗2 , and therefore
are not of the form F0 ◦FC8,1

by Proposition 3.2. Therefore, the homogeneous
composed foliations in this case are in number of four and given by the orbits of
the groups listed in Table 1, where we have grouped together orbit equivalent
actions since these give rise to the same foliation. As we have seen, the folia-
tion (S8,F0) is also homogeneous, given by the orbits of the isotropy group H
of G at a certain point.

Remark 3.7. Any pair of equivalent or inequivalent 8-dimensional irreducible
representations of Spin(8) could occur in the table, but some are not listed since
they differ from the two listed by an outer automorphism of Spin(8). In partic-
ular, those representations are not only orbit equivalent to a representation in
the list, but their image in SO(16) is the same as the image of a representation
in the list.

Case 2: l = 0. Then G = K+ · K−, and each K± acts transitively on S7. All
these cases are orbit equivalent among themselves, and also to the first entry
in Table 1, so we get no new examples.
Case 3: l 6= 0 and k+ 6= 0. Since L · K+ is a nontrivial product, and it acts
effectively and transitively on S−, it must be

L ·K+ ∈ {Sp(2) · Sp(1), SU(4) · U(1), Sp(2) ·U(1)}.

If L = Sp(2), then the foliation is contained in the foliation of Proposi-
tion 3.2, so it is not composed.

If L = SU(4), then we have that K+ = U(1), and K− can be either U(1) or
trivial. Then G is given by U(1) · SU(4) ·U(1), resp., U(1) · SU(4), and it acts
via (µ1⊗̂µ4)⊕(µ4⊗̂µ1), resp., (µ1⊗̂µ4)⊕µ4. Those actions are orbit equivalent
to the representation of SU(4) · U(1) in Table 1 given by µ4⊗̂(µr

1 ⊕ µs
1) with

r 6= s (including the case (r, s) = (1, 0)).
Finally, if L = Sp(1) or U(1), then we have K+, K− ∈ {Sp(2), SU(4)} and

the action has cohomogeneity 1, and they are all orbit equivalent to the first
entry in Table 1.

Hence we get no new examples in this case.
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3.8. Case II: diamX ≤ π/2. In this case the diameter of S15/G = 1
2X is at

most π/4 and thus G acts irreducibly. We distinguish between possible cases,
according to the dimension of X .

Suppose first that dimX = 1, i.e., F0 ◦FC is an isoparametric family in S
15.

It follows from the classification of cohomogeneity-one actions in spheres that
the only possible actions on S15 with quotient of diameter at most π/4 are
given by ν2 ⊗̂ ν∗2 for G1 = Sp(2) · Sp(2), µ2 ⊗̂ µ4 for G2 = S(U(2) · U(4)), and
ρ2 ⊗̂ρ8 for G3 = SO(2) ·SO(8) (or SU(2) ·SU(4) and SO(2) ·Spin(7), which are
orbit equivalent subgroups of G2, G3, resp.). By Proposition 3.2, the action of
G1 is ruled out, but the other two actions give rise to composed foliations; in
fact, those actions yield foliations containing foliations given in Table 1. Since
G2 and G3 are contained in Spin(9), in each case they project to a subgroup H
of SO(9) which generates a codimension-one isoparametric foliation F0 in S8.
We summarize the discussion above in Table 2.

G for F0 ◦ FC G → SO(16) H for F0 H → SO(9) X

SU(2) · SU(4) µ2 ⊗̂C µ4 SO(3) · SO(6) ρ3 ⊕̂ ρ6 [0, π/2]
SO(2) · SO(8) ρ2 ⊗̂R ρ8 SO(2) · SO(7) ρ2 ⊕̂ ρ7 [0, π/2]

Table 2. diamX = π/2.

If 2 ≤ dimX ≤ 4, then G acts irreducibly on S15 with cohomogeneity ≤ 4,
and the action is not polar. From the classification of low cohomogeneity repre-
sentations in [10, 20, 7], it follows thatGmust act on S15 with cohomogeneity 2,
and there are exactly two possible actions, µ2 ⊗̂C ν2 for G1 = U(2) ·Sp(2), and
S3(µ1) ⊗̂H ν∗2 for G2 = SU(2) · Sp(2) (see [20, Tab. II]). Again these actions
are ruled out by Proposition 3.2. In fact, it is clear that G2 is contained in
Sp(2)·Sp(2). As for G1 being contained in that group, note that the Sp(2)-rep-
resentation C

4 restricts to C
2⊕C

2∗ along the embedding U(2) ⊂ Sp(2), so the
result follows from the following representation theoretic lemma.

Lemma 3.9. If V and W are representations of complex, resp., quaternionic
type, then (V ⊕ V ∗) ⊗H W ∗ is equivalent as a real representation to the reali-
fication of V ⊗C W .

Proof. The representations have equivalent complexifications. Indeed the com-
plexification of the first representation is (V ⊕ V ∗)⊗C W whereas that of the
second is (V ⊗C W )⊕ (V ⊗C W )∗, where W ∼= W ∗ over C. �

If dimX ≥ 5, then the foliation (S8,F0) has leaves of dimension ≤ 3 and,
by [17], it is homogeneous and generated by a closed connected subgroup H
of SO(9). We claim that there are no composed homogeneous foliations in
this case.

First of all, H cannot be an abelian group, for otherwise it would be con-
tained in a maximal torus of SO(9), but such tori act on S8 fixing at least two
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antipodal points. In particular, the diameter of X would be π which contra-
dicts our assumption. This already implies that the regular leaves of F0 cannot
have dimension 1 or 2 (i.e., dimX 6= 6, 7) (that H is abelian in case they have
dimension 2 is shown in [17]).

We are thus left with the case in which (S8,F0) is homogeneous under
a closed connected subgroup H of SO(9) and dimX = 5. The principal orbits
are 3-dimensional submanifolds with effective, transitive actions of H . There-
fore a principal isotropy groupHprinc does not contain a normal subgroup ofH ,
Hprinc is a subgroup of O(3), dimH ≤ 6 and equality holds if and only if H
is locally isomorphic to SU(2) × SU(2). We deduce that H is one of SU(2),
SU(2) × T 1, SU(2) × SU(2), up to cover (the first condition on Hprinc above
precludes the case H = SU(2)× T 2).

The only almost faithful 9-dimensional representation of SU(2) × SU(2)
without fixed directions is ρ3⊗̂ρ3, which has 6-dimensional principal orbits.

Assume H = SU(2) × T 1 and V is a 9-dimensional representation with
cohomogeneity 6 and no fixed directions. The identity component of Hprinc

on V is a circle with nontrivial projection into SU(2). It follows that the only
admissible irreducible components of V are (SU(2),R3), (U(2),C2), (T 1,C).
Since 9 is odd, the first representation must occur exactly once. We get two
possibilities: R3⊕C2 ⊕C and R3⊕C⊕C⊕C. The first one has trivial princi-
pal isotropy groups, so it is excluded. The second one can be extended to an
action of H = SU(2)×T 3 acting on S8 with cohomogeneity 3. If F0 ◦FC were
homogeneous, induced by some group G, then the extension H of H would
induce an extension G of G that would act on S15 with cohomogeneity 3. This
action would be non-polar and irreducible, however there is no such group
(see [7, Tab. 1]).

The only 9-dimensional representations of H = SU(2) without fixed direc-
tions are λ9, µ2 ⊕ λ5 and ρ3 ⊕ ρ3 ⊕ ρ3.

The representation ρ3⊕ρ3⊕ρ3 can be extended to an action of H = SO(3)3

via the outer sum ρ3⊕̂ρ3⊕̂ρ3, acting on S8 with cohomogeneity 2. If F0 ◦ FC

were homogeneous, induced by some groupG, then the extensionH ofH would
induce an extension G of G, that would act on S15, with quotient isometric to
1
2S

2
+++ and three most singular orbits of dimension 9 (they would be preimages

of most singular H-orbits, of dimension 2). However, from the classification of
non-polar irreducible isometric actions of cohomogeneity 2 on S

15 there is no
such group [20], and therefore F0 ◦ FC cannot be homogeneous in this case.

The representation µ2 ⊕ λ5 can be extended to an action of the group
H = SU(2) × SU(2) via the representation µ2 ⊕̂ λ5, again acting on S8 with
cohomogeneity 2. If F0◦FC were homogeneous, induced by some groupG, then
the extensionH ofH would induce an extensionG ofG, with quotient isometric
to 1

2S
8/H = 1

2 (S
2
+/D3), whereD3 denotes a dihedral group. The groupGmust

then be Sp(1) · Sp(2) (compare [20]), which is 13-dimensional and thus acts
on S

15 with finite principal isotropy. In particular, G must act with finite prin-
cipal isotropy as well, and since the cohomogeneity of H on S8 is 5, we have
dimG = 10. However, a quick check shows that there are no 10-dimensional

Münster Journal of Mathematics Vol. 9 (2016), 35–50



48 Claudio Gorodski and Marco Radeschi

groups of rank at most 3 acting irreducibly (and non-polarly) on R16. In par-
ticular, in this case F0 ◦ FC cannot be homogeneous.

The representation λ9 has isolated singular orbits, and therefore the quotient
X has no boundary (compare [7, Sec. 11.2]). Now suppose that the composed
foliation F0 ◦ FC is homogeneous, given by the action of G on S15. Since the
quotient 1

2X has no boundary, there are no nontrivial reductions of (G,R16),
i.e., there are no other representations (G′,Rn) with dimG′ < dimG such
that Sn−1/G′ is isometric to S15/G = 1

2X, compare [7, Prop. 5.2]. In parti-
cular, G must act with trivial principal isotropy, since otherwise we could
produce a nontrivial reduction [7, p. 2]. Since the principal isotropy is trivial
and dimX = 5, again it must be dimG = 10. The only 10-dimensional group
acting irreducibly (and non-polarly) on R

16 is G = SU(2)3 × U(1) acting by
⊗̂3(µ2) ⊗̂ µ1; however a pure tensor v1 ⊗ v2 ⊗ v3 has isotropy subgroup T 3, so
this action has as an orbit of dimension 7. Since λ9 has no fixed points in S8,
this shows that the G-orbits cannot yield a foliation of the form F0 ◦ FC .

4. Non-proper actions

We treat the cases of C = C9,1 and C = C8,1 simultaneously. Suppose
that F0 ◦ FC is a homogeneous composed foliation of S31, resp. S15 given by
the orbits of a nonclosed connected Lie subgroup G of SO(32), resp. SO(16).
Then the closure ofG is a closed connected subgroup whose orbits also comprise
a homogeneous composed foliation, so it is already described in Sections 2 or 3.
However, most of the groups therein listed admit no dense nonclosed connected
Lie subgroups in view of the following:

Lemma 4.1. A compact connected Lie group U with at most a 1-dimensional
center admits no dense nonclosed connected Lie subgroups.

Proof. Suppose, to the contrary, that G is a dense connected proper Lie sub-
group of U . If G is a normal subgroup of U , then either G is contained in the
semisimple part of U or it contains the center of U . Owing to [19], normal
subgroups of semisimple Lie groups are closed. It follows that G cannot be
normal in U . Let N be the normalizer of G in U . This is a proper subgroup
of U , thus cannot be closed by denseness of G. On the other hand, N must
be closed in U because it coincides with the normalizer in U of the Lie algebra
of G (here we use connectedness of G), a contradiction. �

The closed groups U yielding homogeneous composed foliations described
in Sections 2 or 3 which do not satisfy the assumptions of Lemma 4.1 occur in
case C = C8,1 only and have 2-dimensional tori as centers, and they are of the
following two types.
Case 1: U = K+ ·K−, where K± ∈ {SU(4) ·U(1), Sp(2) ·U(1)}. In both cases
there are dense connected Lie subgroupsG which however yield orbit equivalent
subactions.
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Case 2: U = K+ ·L ·K−, where K± = U(1), L = SU(4), and K+ ·L acts effec-
tively on C4 ⊕ 0 and L · K− acts effectively on 0 ⊕ C4. The nonclosed dense
connected Lie subgroups of U are of the form G = R × SU(4), where R is an
irrational line in the center T 2 of U . Note that G and U share a common sin-
gular orbit through p ∈ C4⊕0. Moreover the isotropy groups at p act with the
same orbits in 0⊕C4. It follows that G and U are orbit equivalent on C4⊕C4.

Finally, we get no homogenous composed foliations with nonclosed leaves.
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