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The two-parameter Poisson–Dirichlet diffusion takes values in the infinite ordered

simplex and extends the celebrated infinitely-many-neutral-alleles model, having

a two-parameter Poisson–Dirichlet stationary distribution. Here we identify a

dual process for this diffusion and obtain its transition probabilities. The dual

is shown to be given by Kingman’s coalescent with mutation, conditional on a

given configuration of leaves. Interestingly, the dual depends on the additional

parameter of the stationary distribution only through the test functions and

not through the transition rates. After discussing the sampling probabilities

of a two-parameter Poisson–Dirichlet partition drawn conditionally on another

partition, we use these notions together with the dual process to derive the

transition density of the diffusion. Our derivation provides a new probabilistic

proof of this result, leveraging on an extension of Pitman’s Pólya urn scheme,

whereby the urn is split after a finite number of steps and two urns are run

independently onwards. The proof strategy exemplifies the power of duality and

could be exported to other models where a dual is available.

Keywords: Pólya urn; Kingman’s coalescent; lines of descent; Pitman sampling

formula; transition density.
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1 Introduction

The two-parameter Poisson–Dirichlet diffusion (later simply two-parameter diffusion), was

introduced by [59] and extends the celebrated infinitely-many-neutral-alleles model of [19]

(here obtained when α = 0) to the case of two parameters α ∈ [0, 1) and θ > −α. This

diffusion takes values in the closure of the infinite-dimensional ordered simplex, taken with

respect to the product topology of [0, 1]∞, namely

∇∞ :=

{

x ∈ [0, 1]∞ : x1 ≥ x2 ≥ · · · ≥ 0,
∑

i≥1

xi ≤ 1

}

,

and has infinitesimal operator

(1) Lα,θ =
1

2

∞
∑

i,j=1

xi(δij − xj)
∂2

∂xi∂xj

−
1

2

∞
∑

i=1

(θxi + α)
∂

∂xi

.

The domain of Lα,θ is taken to be the algebra generated by constants and functions ϕk(x) =
∑∞

i=1 x
k
i for k ≥ 2. This is a dense subalgebra of C(∇∞) (cf., e.g., [19], end of page 435),

and [59] showed that the closure of Lα,θ in C(∇∞) generates a Feller semigroup.

The two-parameter diffusion is stationary and reversible with respect to the two-parameter

Poisson–Dirichlet distribution PDα,θ, with (α, θ) as above. This distribution was introduced

by [58, 60, 63] as an extension of Kingman’s celebrated Poisson–Dirichlet distribution [48].

It can be viewed as the law of the limit ranked frequencies of types appearing in a sequence

Y1, Y2, . . . of observations sampled from Pitman’s [61] extension of the Blackwell–MacQueen

urn Pólya urn scheme [8], hereby recalled: for a non-atomic probability measure P0 on an

uncountable state space S, it is assumed that P(Y1 ∈ A) = P0(A) and for n ≥ 1, after the

first n observations y(n) := (y1, . . . , yn),

(2) P(Yn+1 ∈ A|y(n)) =
θ + αk

θ + n
P0(A) +

1

θ + n

k
∑

j=1

(nj − α)δy∗j (A),

for every Borel set A of S, where k is the number of distinct values y∗j in y(n), with

j = 1, . . . , k, with respective observed multiplicities nj . The scheme reduces to the original

Blackwell–MacQueen generalized Pólya urn scheme when α = 0. The distribution PDα,θ and

its corresponding urn scheme (2) have found numerous applications in a variety of fields. We

refer the reader to the following monographs, and references therein: [6] for fragmentation
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and coalescent theory, [62] for excursion theory and combinatorics, [53] for Bayesian infer-

ence, [67] for machine learning, [23] for stochastic population dynamics. Probably owing to

the popularity of the two-parameter Poisson–Dirichlet distribution, since the contribution of

[59] there has been a continuous and renewed interest in understanding the finer properties

of the two-parameter diffusion, together with other closely related dynamical structures. See

[11, 17, 24, 26, 27, 29–32, 64, 65]. Here it is important to recall that the infinitely-many-

neutral-alleles model, corresponding to (1) with α = 0, can be seen as the unlabeled version

of a Fleming–Viot diffusion, where the labels that represent the information on individual

values in the underlying evolving population are lost, and only the relative frequencies of

types (arranged in decreasing order) are retained. Cf. [21], Theorem 9.2.1, or [23], Theorem

5.6. A similar correspondence for the two-parameter diffusion is still object of investigation

today, and while [29–32] have recently provided advancements, many aspects are still to be

fully understood.

This paper investigates the dual process of the two-parameter diffusion, and aims to shed

some further light on the role of the parameter α. Informally, two Markov processes Xt and

Dt taking values in two corresponding state spaces E and F , are said to be dual to each

other with respect to a function h(x, d) (that belongs to the domain of both generators) if

the identity

(3) Ex[h(Xt, d)] = Ed[h(x,Dt)]

holds for all x ∈ E, d ∈ F and t ≥ 0. See [47] for a review. In the above identity, the

expectation on the left hand side is taken with respect to the law of Xt, conditional on

X0 = x, while that on the right hand side is taken with respect to the law of Dt, conditional

on D0 = d. The function h(x, d) satisfying the identity is referred to as the duality function

between X and D. Duality is an important tool in the theory of stochastic processes [13, 20],

which has found widespread applications, among other areas, in mathematical population

genetics [1, 4, 7, 9, 10, 14, 15, 22, 25, 46, 54], in statistical physics and interacting particle

systems [33–36, 45, 55], and in statistical inference [2, 3, 51, 52, 56, 57]. Knowledge of

the dual process and of its properties therefore has key implications, which range from the

study of the well-posedness of the martingale problem associated to Xt, to the possibility of

conducting sequential inference on Xt given a finite computational budget, to the ability of

deriving the transition function of Xt through limit arguments. The latter will also be the

main application of our results.

Here we relate the dual process of (1) to Kingman’s coalescent [50]. The literature on

Kingman’s coalescent and its extensions is vast, and here we simply refer the reader to the
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reviews [5, 41] and references therein. As shown later (cf. Theorem 3.3) the dual process

to the two-parameter diffusion turns out to coincide with the process that counts, in King-

man’s coalescent, the number of non-mutant lineages ancestral to a sample from the current

generation, conditionally given the sample’s unlabelled allelic partition. In particular, the

dual transition rates still depend only on the parameter θ, like for the α = 0 model, while

the dependence on the additional parameter α is through the test (or duality) functions.

This fact may somewhat be surprising. Indeed, it is well-known that a Kingman’s coales-

cent tree with n leaves can be realised by sampling lineages sequentially, starting from the

root, according to the Blackwell–MacQueen Pólya urn scheme, i.e., (2) with α = 0. Given

the connection between (2) and the stationary distribution of the two-parameter diffusion,

it would thus be natural to expect that α plays a role in the law of the dual process. In

fact, this parameter has been shown to have a key role in the construction of the diffusion

[11, 65] or of its labelled counterpart [32]. One would then expect α to influence the deletion

of groups both through mutation and coalescence. Our results instead indicate that these

two effects of α on the block-counting rates balance each other out perfectly, giving a zero

net effect. A possible explanation is related to the fact that the dual process describes the

conditional genealogy of a sample given its allelic partition. As an effect of exchangeability,

conditionally on the frequencies, the parameters only contribute to the law of the coalescent’s

block-counting process, keeping track of the total number of surviving lineages, regardless of

their types.

The paper is organized as follows. In Section 2 we collect some notation together with

some necessary preliminary notions. In Section 3 we fully characterize the dual process of

the two-parameter diffusion. In Section 4 we discuss the sampling distributions related to

drawing a partition from the two-parameter Poisson–Dirichlet model conditional on another,

already observed, partition. These distributions, together with the dual process, are then

used in Section 5 where we derive the transition density of the two-parameter diffusion using

the identified dual. This transition density was found in [28] through analytical tools. Our

derivation uses instead a probabilistic approach, which exploits a “split”version of Pitman’s

two-parameter urn scheme (2), namely is a system of two such urns that grow conditionally

independently given the same vector of initial observations. The split urns give, in the limit,

a bivariate distribution with identical PDα,θ marginal laws, whereby the size of the common

initial sample measures the strength of the dependence between the two coordinates. It

turns out that the transition density of the two-parameter diffusion can be interpreted as

the conditional distribution of one urn composition given the other in such a construction,

where the size of the initial sample is random and its distribution is given by the block-
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counting process of the dual. Our probabilistic derivation of the transition density therefore

exemplifies the power of duality and could be reproduced, at least in principle, to identify

the transition density for models when this is unknown, but a dual is nonetheless available,

e.g., for coupled Wright–Fisher diffusions [22].

2 Preliminaries

A vector η = (η1, · · · , ηd) ∈ N
d, d ∈ Z+, is called an integer partition of n ∈ Z+ if η1 ≥ · · · ≥

ηd > 0 and |η| :=
∑d

i=1 ηi = n. When useful to make explicit, the length of η will also be

denoted as l(η) = d. Define Γ := ∪n≥0Γn, where Γ0 = {∅} and Γn is the set of all integer

partitions of n. It will be convenient to view a partition η as an infinite vector obtained by

appending an infinite sequence of zero coordinates to the l(η)-th part of η. For ω, η ∈ Γ,

we say that ω ⊂ η if and only if ωi ≤ ηi for all i ≥ 1, so that (Γ,⊂) becomes a partially

ordered set. Throughout the paper, we will have n = |η| and ℓ = |ω|. Given η ∈ Γ and

x ∈ ∇∞ := {x ∈ ∇∞ :
∑

i≥1 xi = 1}, define now

(4) Pη(x) :=
∑

1≤i1 6=···6=id<∞

xη1
i1
· · ·xηd

id
,

so that in particular when η is given by a singleton we have P(1) = 1, and for definiteness

we also set P∅(x) := 1 (note however that η = ∅ will not be needed; cf. Section 3). Let also

(5) ~Pη(x) :=

(

n

η

)

1

a1(η)! · · ·an(η)!
Pη(x),

(

n

η

)

:=
n!

η1! · · · ηd!
,

where ak(η) is the number of groups in η with size k, so that
∑n

k=1 ak(η) = d and
∑n

k=1 kak(η) =

n. Note that for every x, ~Pη(x) is a symmetric function in η, and for every η, it is a symmetric

function in x. Here and throughout we adopt the same convention used in [19, 59], whereby

both functions Pη(x) and ~Pη(x) can be extended continuously from ∇∞ to ∇∞, since ∇∞ is

dense in ∇∞. So for example P(1) equals 1 and not
∑

i≥1 xi, which is not continuous on ∇∞.

With a slight abuse of notation, we will use the same symbols to denote their continuous

extensions onto ∇∞.

Here x ∈ ∇∞ may be regarded as the vector of relative frequencies in an infinite population

with potentially infinitely-many types, or of color frequencies for balls in an urn. If we

sample with replacement n items from the population or n balls from the urn, given x, then
~Pη(x) is the probability that the sample features η1 items/balls of one type/color (regardless

of which), η2 items/balls of a different type/color, etc.
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These function assume a prominent role in the framework of partition structures. A partition

structure is a family of distributions {Mn(η), η ∈ Γn} for n ≥ 1, that satisfies the consistency

condition whereby, for ω ∈ Γn−1,

(6) Mn−1(ω) =
∑

η∈Γn:η⊃ω

(

n−1
ω

)

χ(ω, η)
(

n
η

) Mn(η),

where χ(ω, η) equals aηi(η) if ηi − ωi = 1 and ηj − ωj = 0 for j 6= i, and zero elsewhere.

Here M0(∅) = M1((1)) = 1. A similar consistency property holds for functions η 7→ ~Pη(x),

given x ∈ ∇∞, as well, which are also partition structures. By Kolmogorov’s consistency

condition, we can establish a probability measure M(·) on integer partitions Γ. We say that

a Γ-valued stochastic process {Dn, n ≥ 1} has distribution M, if Dn ∈ Γn and has marginal

distribution Mn(η).

By Kingman’s Representation Theorem [49], any exchangeable partition structure {Mn(η), n ≥

1} admits the representation

(7) Mn(η) := Eµ[~Pη(X)] =

∫

∇∞

~Pη(x)µ(dx),

where µ is a probability measure on ∇∞, called representing measure. Furthermore, if

{Dn, n ≥ 1} is a family of random partitions with distributions {Mn, n ≥ 1}, then Z :=

limn→∞Dn/n exists almost surely and has distribution µ. For ease of later reference, we

state without proof the following Lemma, which is an immediate consequence of the above.

Lemma 2.1. Let {Mn, n ≥ 1} be a partition structure with representing measure µ. Then

µn(dx) =
∑

η∈Γn

Mn(η)δη/n(dx)

converges weakly to µ as n → ∞.

When partitions are generated by two-parameter Poisson–Dirichlet distributions, (7) holds

with µ given by PDα,θ, and Mn(η) is the probability of observing a partition η of n from a

sample of size n drawn from the two-parameter Chinese restaurant process. This is the law

of the unlabelled empirical frequencies induced by the generalized Pólya urn scheme (2), and

yields the Ewens–Pitman sampling formula [60]

(8) Mn(η) = Eα,θ[~Pη(X)] =

(

n

η

)

1

a1(η)! · · ·an(η)!

∏d−1
l=0 (θ + lα)

θ(n)

d
∏

i=1

(1− α)(ηi−1).
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where a(n) = a(a+ 1) · · · (a+ n− 1), a(0) = 1. The expectation of Pη with respect to PDα,θ

yields instead the so-called exchangeable partition probability function [60]

Eα,θ[Pη(X)] =

∏d−1
l=0 (θ + lα)

θ(n)

d
∏

i=1

(1− α)(ηi−1).

Cf. also (36) and (42) in [61]. Later we will use the shorter notation Eα,θ[Pη] and Eµ[~Pη].

3 The dual process

In this section we fully characterize a dual process for the two-parameter diffusion induced by

symmetric monomial functions. This is shown to be a pure-death continuous-time Markov

chain on integer partitions which coincides with the process counting the number of surviving

lineages of each type in a Kingman’s coalescent tree, going backward in time, conditional on

a starting unlabelled partition of “leaves”. The dual process does not depend on α through

its transition rates, but only through the duality functions. In particular, the block-counting

process is the same as the known block-counting process dual to any reversible, neutral

Wright–Fisher-type diffusion. The dual we describe in this Section will be used in Section

5 for deriving the transition density of the two-parameter diffusion, after providing some

additional results in Section 4 on the sampling distribution Mn(η) conditional on a partially

observed partition.

The duality identity (3), under reasonably general conditions, can be verified through a

similar identity involving the corresponding infinitesimal generators acting on appropriate

test functions, which is the object of the next two Lemmas, i.e., Lh(·, d)(x) = Ah(x, ·)(d)

where L is the generator of Xt and A that of the dual. See [47], Proposition 1.2. To this

end, note first that the family of functions {Pη(x), η ∈ Γ,mini ηi > 1}, with Pη as in (4),

are a linear basis for the algebra taken as the domain of Lα,θ. Cf. [59], Section 2. Recall

that these functions are intended as their continuous extension from ∇∞ to ∇∞, i.e., they

are evaluated on ∇∞ and extended to ∇∞ by continuity. Hence P(1)(x) = 1, which for

example implies that 1 = P(1)(x)P(1)(x) = P(2)(x) + P(1,1)(x), from which one finds that

P(1,1)(x) := 1 − P(2)(x). More generally, we would like to compute Lα,θ on all Pη, which

the following lemma allows. Denote by ei the canonical vector in the i-th direction, and let

η− ei, when ηi = 1, indicate (η1, . . . , ηi−1, ηi+1, . . . , ηd). In the next two Lemmas, we assume

for simplicity of exposition that η is unranked, which has the only purpose of avoiding to
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account for multiplicity constants. The actual value of Pη is unaffected since it is symmetric

in the η components.

Lemma 3.1. For d = l(η) > 1, let ηi = 1. Then

(9) Pη(x) = Pη−ei(x)−
∑

1≤j≤d,j 6=i

Pη−ei+ej(x), x ∈ ∇∞.

Proof. By pre-multiplying Pη(x) by P(1)(x) = 1, we find

Pη(x) =

∞
∑

k=1

xk

∑

i1 6=···6=id

xη1
i1
· · ·xηd

id

=
∑

i1 6=···6=id 6=k

xη1
i1
· · ·xηd

id
xk +

d
∑

j=1

∑

i1 6=···6=id

xη1
i1
· · ·x

ηj+1
ij

· · ·xηd
id

=P(η,1)(x) +
d
∑

j=1

Pη+ej (x).

The result is now obtained by letting η in the claim be (η, 1) and i = d+ 1.

Note that Pη−ei and Pη−ei+ej in the above Lemma are well defined since Pη is symmetric in

η. The next Lemma, key in identifying the dual process, makes use of (9) to show how the

operator Lα,θ acts on all functions Pη.

Lemma 3.2. Lα,θ is well defined on all Pη in the system of equations (9), recursive on a1(η).

In particular Lα,θ1 = 0, and if n = |η| and d = l(η),

(10) Lα,θPη =
1

2

∑

i:ηi>1

ηi(ηi − 1− α)Pη−ei +
1

2
(θ + (d− 1)α)

∑

i:ηi=1

Pη−ei −
1

2
n(n + θ − 1)Pη.

Proof. This was first proved by [59], Proposition 3.1. In the appendix we provide an inde-

pendent proof based on (9). Note in particular that Lα,θPη = 0 when η = (1), which uses

the extension by continuity from ∇∞ to ∇∞ recalled in the introduction.

Define now

(11) gη(x) :=
Pη(x)

Eα,θ[Pη]
=

~Pη(x)

Eα,θ[~Pη]
,

8



which are going to be our duality functions. Let also

(12) λn :=
1

2
n(θ + n− 1).

The following theorem identifies the dual process of the two-parameter diffusion.

Theorem 3.3. Let X be the diffusion process corresponding to Lα,θ, and let {Dt}t≥0 be a

continuous-time death process on Γ, with transition rates

(13) λ|η|p
↓(η, ω), p↓(η, ω) :=

ηiaηi(η)

|η|
, |η| > 1,

when ω is the descending arrangement of η − ei, and zero elsewhere. Then, for every η ∈ Γ

and x ∈ ∇∞, we have

(14) E
[

gη(X(t))|X0 = x] = E
[

gDt
(x)|D0 = η].

Proof. The proof essentially follows from Lemma 3.2 together with an argument along the

lines of that in Section 2 of [4]. Since gη(x) is symmetric with respect to η, from Lemma 3.2

we have

Lα,θgη(x) =
1

2

∑

i:ηi>1

ηi(ηi − 1− α)
Eα,θ[Pη−ei ]

Eα,θ[Pη]
gη−ei(x)

+
1

2
(θ + (d− 1)α)

∑

i:ηi=1

Eα,θ[Pη−ei ]

Eα,θ[Pη]
gη−ei −

1

2
n(n+ θ − 1)gη(x)

=
1

2

∑

i:ηi>1

ηi(ηi − 1− α)
θ(n)(1− α)(ηi−2)

θ(n−1)(1− α)(ηi−1)

gη−ei(x)

+
1

2
(θ + (d− 1)α)

∑

i:ηi=1

θ(n)
θ(n−1)[θ + (d− 1)α]

gη−ei −
1

2
n(n + θ − 1)gη(x)

=λ|η|

∑

i:ηi>1

ηi
n
gη−ei(x) + λ|η|

∑

i:ηi=1

1

n
gη−ei − λ|η|gη(x),

If we now let

p↓(η, ω) =

(

|ω|
ω

)

(

|η|
η

)χ(ω, η) =
ηiχ(ω, η)

n
, χ(ω, η) = aηi(η), i = 1, . . . , l(η),

when ω is the descending arrangement of η − ei, and zero otherwise, we can write

(15) Lα,θgη(x) = λ|η|

∑

ω∈Γ|η|−1: ω⊂η

[gω(x)− gη(x)]p
↓(η, ω).

9



If we now define Aθ to be the operator on the right hand side of (15) acting on gη(x) as a

function of η, it is plain that Aθ defines a pure-death process Dt with rates as in the claim.

Note that when |η| = 1 the rate is null, as gη ∝ 1 and Lα,θgη = 0 by Lemma 3.2. Now the

fact that Lα,θgη(x) = Aθgη(x) implies (14) follows from Corollary 4.4.13 in [20] in light of

the boundedness of gη(x) (cf. also Proposition 1.2 in [47]).

Here Dt is the process describing the group sizes in Kingman’s coalescent with mutation at

time t. The transition rates only depend on the parameter θ as in the one-parameter model,

while the dependence on the second parameter α is only through (11).

The next proposition identifies the transition function of the dual. To this end, let

(16) Dt := |Dt|

be a death process on Z+ that counts the number of groups in Dt. This jumps from n to

n− 1 at rate λn as in (12), and it is well known [38, 66] that its transition probabilities are

(17) dθnl(t) =

n
∑

k=l

e−λkt(−1)k−l (2k + θ − 1)(l + θ)(k−1)

l!(k − l)!

n[k]

(θ + n)(k)
, 1 ≤ l ≤ n,

where a[k] = a(a − 1) · · · (a− k + 1) for k ∈ N, a[0] = 1, and dθn0(t) = 1 −
∑

l≥1 d
θ
nl(t). Note

here that λk > 0 for k ≥ 2 even when −1 < θ ≤ 0, and so dθnl(t) > 0 for 2 ≤ l ≤ n.

In the limit when n → ∞, the last factor on the right in (17) is replaced by 1, yielding

(18) dθl (t) =
∑

k≥l

e−λkt(−1)k−l (2k + θ − 1)(l + θ)(k−1)

l!(k − l)!
, l ≥ 1.

See, e.g., [39]. This process first appeared in [38], and counts the number of non-mutant

edges back in time from the leaves towards the root in a Kingman’s coalescent tree, when

the mutation rate is θ/2 ≥ 0 along edges of the tree. It is also commonly known as block-

counting process of Kingman’s coalescent with mutation. Moreover, it indexes a mixture

expansion for the transition function of the Fleming–Viot process with parent independent

mutation, a measure-valued (labelled) version of (1) when α = 0. See [18], Theorem 1.1.

In our setting, we show it plays a key role in the transition function expansion of the two-

parameter diffusion, a key argument of which is given by the next proposition.

Define the hypergeometric probabilities

(19) H(ω|η) =
∑

1≤i1···≤iℓ(ω)

∑

(κ(1),...,κ(ℓ(ω)))=ω

(

ηi1
κ1

)

· · ·
(

ηiℓ(ω)
κiℓ(ω)

)

(

|η|
|ω|

) , ω ⊂ η.

10



Here H(ω|η) is the probability of obtaining an unlabelled colour configuration ω when sam-

pling |ω| balls without replacement uniformly from an urn containing a colour configuration

η. The |ω| balls may be sampled all at once or one by one.

Proposition 3.4. Let Dt be as in Theorem 3.3. Then its transition probabilities are

(20) qθηω(t) := P(Dt = ω|D0 = η) = H(ω|η)dθ|η||ω|(t), ω ⊂ η, |η| > 1,

and zero otherwise, with dθnm(t) for n ≥ m ≥ 1 as in (17). In particular, η = (1) is an

absorbing state.

Proof. Let n = |η|. The process Dt in Theorem 3.3 has overall rates λn and the embedded

chain has transition probabilities

(21) p↓(η, η′) =

(

n−1
η′

)

χ(η′, η)
(

n
η

) = aηi(η)
ηi
n
, η′i = ηi − 1, η′j = ηj , j 6= i.

It is easy to realize the transition probability (21) by removing uniformly at random one ball

after another, without replacement, from an urn. Let η be the initial color frequency of balls

in the urn. If one ball is randomly deleted from from the urn, then the probability that the

remaining balls have frequency η′ is aηi(η)
ηi
n
= p↓(η, η′). After n −m deletions a sample of

size m with colour configuration ω is obtained with probability
∑

ω=ωn−m⊂···⊂ω1⊂ω0=η

p↓(ω0, ω1)p
↓(ω1, ω2) · · ·p

↓(ωn−m−1, ωn−m)

=

(

n−m
ω

)

(

n
η

)

∑

ω=ωn−m⊂···⊂ω1⊂ω0=η

χ(ω, η)

=

(

n−m
ω

)

(

n
η

) dim(ω, η),

where

dim(ω, η) :=
∑

ω=ωn−m⊂···⊂ω1⊂ω0=λ

χ(ω, η).

After n deletions there will be an empty color frequency ω = ∅. Denote dim(η) = dim(∅, η)

and note that dim(η) =
(

n
η

)

in agreement with 1 =
(

n
η

)−1(0
∅

)

dim(∅, η). Sampling m balls

without replacement is equivalent to the above deletion process, and the sampling probability

is H(ω|η) as in (19). Thus

qθηω(t) =Pη(Dt = ω) = Pη(Dt = ω|Dt = |ω|)Pη(Dt = |ω|)

=Pη(Dt = ω|Dt = |ω|)dθ|η||ω|(t) = H(ω|η)d|η||ω|(t).
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Finally, the fact that η = (1) is absorbing follows immediately from Theorem 3.3 through

the fact that Lα,θPη = 0 when η = (1) in Lemma 3.2.

Note that Proposition 3.4 accommodates the full range of values for θ > −α, where 0 ≤

α < 1. In fact, even when −1 < θ < 0, the transition probabilities in (20) are positive for

any η such that |η| > 1, through (13) and specifically the fact that λn > 0 for all n > 1;

cf. (12). The fact that formally λ1 < 0 when −1 < θ < 0 is immaterial, as the dual process

is absorbed in η = (1).

4 Two-parameter conditional partition structures

In order to derive the transition density of the two-parameter diffusion through duality, we

first need to explore in some detail the conditional distribution of a partition η, generated

from the two-parameter Poisson–Dirichlet model (e.g., through (2)), conditional on having

already observed a subset partition ω ⊂ η. This can be done by appealing to the following

generalized Pólya urn scheme.

Let ℓ = |ω|, and suppose an urn contains a single white ball and ℓ non-white balls, whose

colours are denoted by Y ℓ = (Y1, · · · , Yℓ), with r ≤ ℓ different colours. Define π : Y ℓ → ω

to be the function that maps the sample Y ℓ into the partition ω = (ω1, · · · , ωr) ∈ Γℓ,

determined by the equivalence relation on colours, whereby Yi, Yj are in the same group if

Yi = Yj. For every group ωj, one ball is assigned mass 1− α and the remaining ωj − 1 balls

are assigned mass 1. The single white ball in the urn is assigned mass θ+αr. Balls are then

drawn sequentially as follows. If the white ball is drawn, a ball of a new colour is added

to the urn and assigned mass 1 − α, and the mass of the white ball is increased by α. If a

coloured ball is drawn, it is replaced in the urn together with an additional ball of mass 1 of

the same colour. This urn model is an extension of (2) and [44].

When the total number of balls in the urn is n, denote the colours of the n − ℓ new balls

by Xn−ℓ = (X1, . . . , Xn−ℓ). Let the colour configuration be denoted by π(Xn−ℓ) for the

new sample and π(Xn−ℓ, Y ℓ) for the combined sample. We are interested in the distribution

of these colour configurations conditional on Y ℓ. To this end, denote by Dir(β1, . . . , βr) a

Dirichlet distribution with parameters (β1, . . . , βr) on the (r − 1)-dimensional simplex, and

let a direct sum notation ⊕ indicate an accumulation of the points of two point processes.

Finally, denote by PDα,θ|ω a PDα,θ distribution conditional on having observed the partition

ω, and by Eα,θ|ω the corresponding expectation.

12



Proposition 4.1. Let ω ∈ Γℓ, η ∈ Γn and γ ∈ Γn−ℓ. Then PDα,θ|ω equals in distribution the

descending arrangement of

(22) Zℓ,rDir(ω1 − α, . . . , ωr − α)⊕ (1− Zℓ,r)PDα,θ+αr,

where Zℓ,r has Beta distribution Beta(ℓ − rα, θ + rα), independent of everything else. Fur-

thermore,

P(π(Xn−ℓ) = γ|π(Y ℓ) = ω) =Eα,θ|ω

[

~Pγ

]

,(23)

P(π(Xn−ℓ, Y ℓ) = η|π(Y ℓ) = ω) =H(ω|η)
Eα,θ

[

~Pη

]

Eα,θ

[

~Pω

]
,

with H is in (19).

Proof. Equations (22) and (23) follow from the exchangeability of draws in the above de-

scribed urn model, together with Corollary 20 in [61]. Consider now a path from ω to η. Let

ωi = π(X i, Y ℓ), 1 ≤ i ≤ n− ℓ, ℓi = |ωi| and ri be the number of colours in ωi. Set ω0 = ω.

When π(Xn−ℓ, Y ℓ) = η, there is a path ω = ω0 ⊂ · · · ⊂ ωn−ℓ = η. Let χB(ω
i, ωi+1) = aωi

k
(ωi)

if ωi+1 is obtained from ωi by adding 1 to an existing k-th component or χB(ω
i, ωi+1) = 1 if

a new component is added to ωi+1. Then

P(ωi+1|ωi) = χB(ω
i, ωi+1)

Eα,θ

[

Pωi+1

]

Eα,θ

[

Pωi

] =















aωi
k
(ωi)

ωi
k − α

θ + ℓi
, if a coloured ball is drawn,

θ + αri

θ + ℓi
, if the white ball is drawn.

Note that χB(ω, η) and χ(ω, η) are conjugate, i.e.

χB(ω, η) =
a1(ω)! · · ·a|ω|(ω)!

a1(η)! · · ·a|η|(η)!
χ(ω, η).

Evaluating the probability of a path from ω to η, leads to

P(η|ω) =
∑

ω=ω0⊂···⊂ωn−ℓ=η

n−ℓ−1
∏

i=0

χB(ω
i, ωi+1)

Eα,θ

[

Pωi+1

]

Eα,θ

[

Pωi

]

=





∑

ω=ω0⊂···⊂ωn−w=η

n−ℓ−1
∏

i=0

χB(ω
i, ωi+1)





Eα,θ

[

Pη

]

Eα,θ

[

Pω

]
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=
a1(ω)! · · ·aℓ(ω)! dim(ω, η)

a1(η)! · · ·an(η)!

Eα,θ

[

Pη

]

Eα,θ

[

Pω

]

=

(

ℓ
ω

)

dim(ω, η)
(

n
η

)

(

n
η

)

1
a1(η)!···an(η)!

Eα,θ

[

Pη

]

(

ℓ
ω

)

1
a1(ω)!···aℓ(ω)!

Eα,θ

[

Pω

] = H(ω|η)
Eα,θ

[

~Pη

]

Eα,θ

[

~Pω

]

which gives the second claim.

Note now that when γ gives the counts in the new sample and η the counts in the combined

sample, we have P(π(Xn−ℓ) = γ|Y ℓ) = P(π(Xn−ℓ, Y ℓ) = η|Y ℓ) and therefore

(24) Mn,ω(η) := Eα,θ|ω

[

~Pγ

]

= H(ω|η)
Eα,θ[~Pη]

Eα,θ[~Pω]
.

Hence Mn,ω(η) is also a partition structure with representing measure PDα,θ|ω. We conclude

the section with a representation of PDα,θ|ω alternative to (22).

Lemma 4.2. PDα,θ|ω in Proposition 4.1 can be written

PDα,θ|ω(dy) =
~Pω(y)

Eα,θ

[

~Pω

]PDα,θ(dy).

Proof. Let V have distribution PDα,θ and Y ℓ be a sample from the urn. By Lemma 2.1,

P(π(Y ℓ) = ω, V ∈ dy) = ~Pω(y)PDα,θ(dy). Since the marginal distribution are P(π(Y ℓ) =

ω) = Eα,θ

[

~Pω

]

, by Bayes’ theorem

P(V ∈ dy|π(Y ℓ) = ω) =
~Pω(y)

Eα,θ

[

~Pω

]
PDα,θ(dy).

From (23) in Proposition 4.1, P(V ∈ dy|π(Y ℓ) = ω) = PDα,θ|ω(dy), leading to the result.

5 Derivation of the transition density

In this section we apply the results of the previous two sections, namely the identified

dual process together with conditional two-parameter partition structures, to derive the

transition density of the two-parameter diffusion. In preparation to this task, recall that the

two-parameter diffusion is reversible with stationary distribution PDα,θ [59]. The transition

14



probability P (t, x, dy) is absolutely continuous with respect to PDα,θ, and its transition

density p(t, x, y) was shown in [28] to be

(25) p(t, x, y) = 1 +

∞
∑

m=2

e−λmtqm(x, y),

where

qm(x, y) =
2m− 1 + θ

m!

m
∑

n=0

(−1)m−n

(

m

n

)

(n+ θ)(m−1)pn(x, y), m = 2, 3, . . . ,

with p0(x, y) = 1 and

pn(x, y) =
∑

|η|=n

~Pη(x)~Pη(y)

Eα,θ

[

~Pη

]
, n ≥ 1.

The proof of this fact in [28] leverages on a spectral representation by expanding on a

proof by [16] for the the one-parameter case, i.e., the infinitely-many-neutral-alleles model.

Previously, [37] had obtained (25) in the one-parameter case as a limit from a model with

finitely-many types (cf. also Proposition 4.3 in [42]), and [18] the corresponding version for

the labelled model. Analogous transition structures also appear in a family of diffusions

defined through the Jack graph, see [69] and references therein.

Here it is useful to emphasize that there are two possible expansions for the transition den-

sity of the model at hand: a spectral expansion in terms of reproducing kernel orthogonal

polynomials on PDα,θ, and an expansion as mixture of two-parameter Poisson–Dirichlet dis-

tributions. The equivalence of the two forms was explained in [41, 43] for the one parameter

case and in [68] (cf. Theorem 2.1) for the two-parameter case. In particular, [68] showed

that (25) is the same as

(26) p(t, x, y) = d̃θ1(t) +

∞
∑

n=2

dθn(t)pn(x, y), θ > −1,

where

(27) d̃θ1(t) := 1−
∞
∑

n=2

dθn(t).

Note that algebraically d̃θ1(t) = dθ0(t) + dθ1(t) with both dθ0(t), d
θ
1(t) non-negative when θ ≥ 0,

but for −1 < θ < 0 these may not be individually non-negative.

Here we concentrate on the expansion (26) and show how this can be derived using the dual

process of Theorem 3.3. To this end, we need the following corollary of the same theorem.
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Corollary 5.1. For η ∈ Γn, we have

(28) Ex

[

Pη

(

X(t)
)]

= Eα,θ

[

Pη

]

(

d̃θn1(t) +

n
∑

ℓ=2

dθnℓ(t)
∑

|ω|=ℓ,ω⊂η

H(ω|η)
Pω(x)

Eα,θ

[

Pω

]

)

,

with d̃θn1(t) defined as in (27) in relation to (17).

Proof. The proof is immediate by expanding the right-hand side of (14) and using (20).

Note that in light of (5), we can replace Pη and Pω with ~Pη and ~Pω in (28). In this equation

there are three sampling probabilities, namely

Mn(η) = Eα,θ[~Pη], Mn,t(η) = Ex[~Pη(X(t))], Mn,ω(η) = H(ω|η)
Eα,θ[~Pη]

Eα,θ[~Pω]
.

HereMn(η) is as in (8) and it is interpreted as the law of the partition η taken at stationarity;

Mn,t(η) is the law of η relative to the conditional distribution of X(t), given the initial state

X(0) = x; finally Mn,ω(η) is the law of η conditional of having observed ω ⊂ η, which was

the object of Section 4 (cf. (24)). Since all three are partition structures, we can define the

respective associated measures

(29)

µn(dy) =
∑

|η|=n

Mn(η)δ η
n
(dy),

µn,t,x(dy) =
∑

|η|=n

Ex[~Pη(Xt)]δ η
n
(dy),

νω,n(dy) =
∑

ω⊂η

Mn,ω(η)δη/n(dy).

Lemma 2.1 deals with the convergence of µn, while the following, which in fact is an appli-

cation of the former, with the convergence of νn,ω.

Lemma 5.2. Let νn,ω be as in (29). Then νn,ω converges weakly to PDα,θ|ω.

Proof. Recall from Section 4 that π(Xn−ℓ, Y ℓ) denotes the partition of n induced by the joint

sample (Xn−ℓ, Y ℓ). By Kingman’s representation theorem (cf. Section 2), π(Xn−ℓ, Y ℓ)
/

n

converges almost surely to a random variable Z with values in ∇∞. Because the conditional

distribution of π(Xn−ℓ, Y ℓ)
/

n is

νn,ω(dy) =
∑

|η|=n, ω⊂η

H(ω|η)
Eα,θ

[

~Pη

]

Eα,θ

[

~Pω

]δη/n(dy),
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we know that νn,ω(dy) converges weakly to the conditional distribution P(Z ∈ dy|Y ℓ). Con-

ditioning on Y ℓ, we know π(Xn−ℓ)
/

n and π(Xn−ℓ, Y ℓ)
/

n will both converge to Z almost

surely. Then Z has distribution PDα,θ|ω due to Lemma 2.1 and equation (23).

The following Proposition uses the above results to obtain the transition function of the

diffusion.

Proposition 5.3. Given X(0) = x, X(t) has distribution

(30) P (t, x, dy) = d̃θ1(t)PDα,θ(dy) +
∞
∑

ℓ=2

dθℓ(t)
∑

ω:|ω|=ℓ

PDα,θ|ω(dy)~Pω(x),

with d̃θ1(t) as in (27).

Proof. From Corollary 5.1 we have

µn,t,x(dy) =d̃θn,1(t)µn(dy) +

n
∑

ℓ=2

dθnℓ(t)
∑

|ω|=ℓ

~Pω(x)νω,n(dy).

Then for any bounded continuous function f on ∇∞, we have

∫

∇∞

f(y)µn,t,x(dy) = d̃θn,1(t)

∫

∇∞

f(y)µn(dy) +

n
∑

ℓ=2

dθnℓ(t)
∑

|ω|=ℓ

~Pω(x)

∫

∇∞

f(y)νω,n(dy).

We also know that µn converges weakly to PDα,θ from Lemma 2.1 and νω,n converges weakly

to PDα,θ|ω from Lemma 5.2. Then the bounded convergence theorem implies

lim
n→∞

∫

∇∞

f(y)µn,t,x(dy) = d̃θ1(t)

∫

∇∞

f(y)PDα,θ(dy)

+

∞
∑

ℓ=2

dθℓ(t)
∑

|ω|=ℓ

~Pω(x)

∫

∇∞

f(y)PDα,θ|ω(dy).

Since Lemma 2.1 also implies that µn,t,x(dy) converges weakly to P (t, x, dy), we can conclude

that

P (t, x, dy) = d̃θ1(t)PDα,θ(dy) +

∞
∑

ℓ=2

dθℓ(t)
∑

|ω|=ℓ

~Pω(x)PDα,θ|ω(dy)

giving the result.
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The transition function obtained in Proposition 5.3 can be interpreted in terms of Pólya urn

schemes. More specifically, we can exploit the Pólya urn representation discussed in Section

4 to construct, for each t ≥ 0, a random variable X(t) with distribution P (t, x, dy) as in

Proposition 5.3. In short, this is obtained by branching the urn scheme after the observation

of a sequence that generates a configuration ω, and letting the two resulting split urns evolve

independently onwards. This approach is inspired by a similar construction in [42] for the

one-parameter case (see also [40] for a connection with Wright–Fisher diffusion bridges).

Let {Un, n ≥ 1} be the process driven by the Pólya urn scheme described in Section 4, where

the urn starts with a single white ball and Un is the configuration of balls after n draws. The

urn scheme is run for a random number of draws Dt to obtain a configuration UDt
, where

P(Dt = ℓ) = dθℓ(t), ℓ ≥ 1, and Dt is as in (16) and dθℓ(t) as in (18). The urn is then split

and two urns are run independently for n−Dt additional draws, for n > Dt, both beginning

at UDt
. This produces two random partitions η and η̃, induced by the two resulting urn

configurations. Conditional on the partition ω obtained at step Dt, these partitions are

independent and with common distribution (24), namely

(31) P(Un = η|UDt
= ω) = H(ω|η)

Eα,θ

[

~Pη

]

Eα,θ

[

~Pω

]
.

The two urns, denoted {(Un, U
′
n), n ≥ 1}, are thus coupled, with joint distribution

P(Un = η, U ′
n = η′) =

∞
∑

ℓ=1

dθℓ(t)
∑

|ω|=ℓ

Eα,θ

[

~Pω

]

P(η|ω)P(η′|ω),

where P(η|ω) is a shorthand notation for (31) and we set P(η|ω) = 0 if |ω| > |η|, and similarly

for η′. Consider now the measure on ∇∞ ×∇∞

νn(dx, dy) =
∑

|η|=n

∑

|η′|=n

P(Un = η, U ′
n = η′)δ η

n
(dx)δ η′

n

(dy).

By another application of Lemma 2.1, νn(dx, dy) converges weakly to

∞
∑

ℓ=1

dθℓ(t)pℓ(x, y)PDα,θ(dx)PDα,θ(dy).

This probabilistic construction shows that the conditional distribution of X(t) given X(0),

where X is the two-parameter diffusion, is the same as (26), at a fixed time t.
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A Appendix

A.1 Proof of Lemma 3.2

In this proof η and the modifications made to it are not ranked, however it is assumed that

singletons are arranged to be at the right end of η. Let d = l(η). The proof that (10) holds

is by induction on l(η). If a1(η) = 0 then Pη ∈ C and

Lα,θPη = −
1

2
n(n + θ − 1)Pη +

1

2

∑

i:ηi>1

ηi(ηi − 1− α)Pη−ei

by simply applying Lα,θ. If a1(η) > 0 Pη can be recursively expressed as linear combinations

of functions in C which can then be acted on by the differential operator (1). Recall that Pη

is exchangeable in the elements of η so it is possible to rearrange the elements so that the

a1(η) singletons are the last entries of η. Suppose that ηd = 1. Then we use the notation

that η− = η − ed = (η1, . . . , ηd−1), where the final component of η is removed. Consider (9)

with i = d, then

(32) Pη = Pη− −
d−1
∑

j=1

Pη−+ej .

Suppose that (10) holds for l(η) ≤ d − 1. First use the induction hypothesis on the second

term on the right of (32). Denote d◦ = d− a1(η). For 1 ≤ j ≤ d◦,

Lα,θPη−+ej = −
1

2
n(n + θ − 1)Pη−+ej

+
1

2

d◦
∑

i=1

(ηi + δij)(ηi + δij − 1− α)Pη−−ei+ej +
1

2
(θ + (d− 2)α)(a1(η)− 1)Pη−−+ej

= −
1

2
n(n + θ − 1)Pη−+ej +

1

2

d◦
∑

i=1

ηi(ηi − 1− α)Pη−−ei+ej +
1

2
(2ηj − α)Pη−

+
1

2
(θ + (d− 2)α)(a1(η)− 1)Pη−−+ej

If a1(η) = 1 the last term in the equation above with a factor (a1(η) − 1) is taken to

be zero, and similarly in equations that follow. Denote η∗ = (η1, . . . , ηd◦ , 2, 1, . . . , 1) with

a1(η
∗) = a1(η)− 2. For d◦ < j ≤ d− 1, Pη−+ej = Pη∗ and

Lα,θPη−+ej =Lα,θPη∗
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= −
1

2
n(n+ θ − 1)Pη∗ +

1

2

d◦
∑

i=1

ηi(ηi − 1− α)Pη∗−ei +
1

2
2(1− α)Pη−

+
1

2
(θ + (d− 2)α)(a1(η)− 2)Pη∗− ,

A term on the right comes from ηi = 2, when i = d◦+1. Then ηi(ηi−1−α)Pη− = 2(1−α)Pη− .

Summing, recalling that η∗ = η− + ej , and using (32) for identities, where 1 ≤ i ≤ d◦,

d−1
∑

j=1

Pη−+ej = Pη− − Pη,
d−1
∑

j=1

Pη−−ei+ej = Pη−−ei − Pη−ei,
d−2
∑

j=1

Pη−−+ej = Pη−− − Pη− ,

gives

(33)

d−1
∑

j=1

Lα,θPη−+ej = −
1

2
n(n + θ − 1)(Pη− − P̂η)

+
1

2

d◦
∑

i=1

ηi(ηi − 1− α)(Pη−−ei − Pη−ei)

+
1

2
(2(n− a1(η))− (d− a1(η)))αPη− +

1

2
2(1− α)(a1(η)− 1)Pη−

+
1

2
(a1(η)− 1)(θ + (d− 2)α)(Pη−− − Pη−),

Now use the induction hypothesis on the first term on the right of (32).

Lα,θPη− = −
1

2
(n− 1)(n+ θ − 2)Pη−

+
1

2

d◦
∑

i=1

ηi(ηi − 1− α)Pη−−ei +
1

2
(θ + (d− 2)α)(a1(η)− 1)Pη−−

= −
1

2
n(n+ θ − 1)Pη− +

1

2
(2n− 2 + θ)Pη−

+
1

2

d◦
∑

i=1

ηi(ηi − 1− α)Pη−−ei +
1

2
(θ + (d− 2)α)(a1(η)− 1)Pη−−

Subtracting (33) from the previous yields

Lα,θP̂η =Lα,θPη− −
d−1
∑

j=1

Lα,θPη−+ej

= −
1

2
n(n+ θ − 1)P̂η +

1

2

d◦
∑

i=1

ηi(ηi − 1− α)Pη−ei +R(η),
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where

(34)
R(η) =

1

2
(2(n− 1) + θ)Pη− −

1

2
(2(n− a1(η))− (d− a1(η)))αPη−

−
1

2
2(1− α)(a1(η)− 1)Pη− +

1

2
(a1(η)− 1)(θ + (d− 2)α)Pη−

The coefficient of 1
2
a1(η)Pη− in (34) is

2− α− 2(1− α) + θ + (d− 2)α = θ + (d− 1)α

and the terms not involving a1(η) are one-half times

2(n− 1) + θ − 2n+ dα + 2(1− α)− (θ + (d− 2)α) = 0.

Therefore, correctly, R(η) = 1
2
(θ + (d− 1)α)Pη− and the induction is completed.
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[43] Griffiths, R. C., Spanò D.(2013). Orthogonal Polynomial Kernels and Canonical Corre-

lations for Dirichlet measures. Bernoulli 19, 548–598.
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