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MUTUAL ESTIMATES OF TIME-FREQUENCY

REPRESENTATIONS AND UNCERTAINTY PRINCIPLES

ANGELA A. ALBANESE, CLAUDIO MELE AND ALESSANDRO OLIARO

Abstract. In this paper we give different estimates between Lebesgue norms of
quadratic time-frequency representations. We show that, in some cases, it is not
possible to have such bounds in classical Lp spaces, but the Lebesgue norm needs
to be suitably weighted. This leads to consider weights of polynomial type, and,
more generally, of ultradifferentiable type, and this, in turn, gives rise to use as
functional setting the ultradifferentiable classes. As applications of such estimates
we deduce uncertainty principles both of Donoho-Stark type and of local type for
representations.

Keywords: Quadratic forms, time-frequency representations, uncertainty princi-
ples, ultradifferentiable spaces.
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1. Introduction

The classical Fourier analysis on RN is based on the Fourier transform, defined as

f̂(ξ) :=

∫

RN

e−ixξf(x) dx,

for f ∈ L1(RN), with standard extension to more general spaces of functions and
distributions. In signal analysis the Fourier transform is interpreted as an instru-
ment showing the frequencies that a certain signal f contains. A drawback is that
the information on when different frequencies occur in a (non-stationary) signal f

is hidden in the complex phase of f̂ , and this has led, in the last decades, to the
proposal of several different time-frequency representations, in order to make this
information more readable and clear. A time-frequency representation of a signal f
is a function (or distribution) of (x, ξ) ∈ R2N , giving the energy of the signal at time
x and frequency ξ; it is usually a quadratic form of f , and it is not uniquely chosen.
There are in fact many different representations, each one with good features and
disadvantages, and different representations better address different problems. This
of course has to do with the use of such tools in applications, but also with their more
abstract mathematical properties, as well as with the role that such representations
have in other fields of Mathematics, such as partial differential equations, group rep-
resentations, operator theory and so on. Since all such representations have common
aims and meanings, it is reasonable to investigate in which aspects they are linked
and how they can be, in some sense, controlled one each other. Of course there are
several well-known connections between different representations; there are classes of
time-frequency distributions underlying common structures, and many comparisons
have been made in the literature, showing similarities and differences.
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In this paper we consider a new perspective, that has to do with the possibility to
estimate the (weighted) Lp-norm of a time-frequency representation by a (weighted)
Lq-norm of another one. This is motivated by the observation that the Donoho-Stark
uncertainty principle for the short-time Fourier transform can be rephrased in terms
of estimates between Lebesgue norms of the spectrogram and the Rihaczek form.
We consider then the general problem of giving mutual estimates of couples of time-
frequency representations. We prove that some of these estimates are not true when
considering usual Lp spaces, but are fulfilled when considering weighted Lp spaces,
for weights of polynomial type or more generally of exponential (ultradifferentiable)
type. As an application, we prove new uncertainty principles of Donoho-Stark type
involving time-frequency representations, as well as uncertainty principles of local
type for quadratic forms.

In order to better explain motivations and results of this paper we recall some basic
facts.

The classical Donoho-Stark uncertainty principle is based on the definition of ε
concentration; we say that a function g ∈ L2(RN ) is ε-concentrated on a measurable
set V ⊂ RN , ε ∈ [0, 1], if ∫

V

|f(x)|2 dx ≥ (1− ε2)‖f‖22.

Theorem 1.1 (Donoho-Stark uncertainty principle [13]). Let T,Ω ⊂ RN be measur-
able sets, and εT , εΩ ≥ 0 with εT + εΩ ≤ 1. If there exists f ∈ L2(RN), f 6= 0, such

that f is εT -concentrated on T and f̂ is εΩ-concentrated on Ω, then

m(T )m(Ω) ≥ (2π)N(1− εT − εΩ),

where m(·) indicates the Lebesgue measure of the corresponding set.

There is a corresponding version of the Donoho-Stark principle for the short-time
Fourier transform. Recall that the short-time Fourier transform is defined as

Vgf(x, ξ) :=

∫

RN

f(y)g(y − x)e−iyξ dy, (1.1)

for f ∈ S(RN ), with standard extensions to more general spaces of functions and
distributions. We refer to [14, Chapter 3] for a complete treatment of the basic
results on this transformation. Here we just recall that from Hölder inequality, if
f, g ∈ L2(RN ) we immediately have that Vgf ∈ L∞(R2N) and

‖Vgf‖∞ ≤ ‖f‖2‖g‖2, (1.2)

where the norm in the left-hand side is in R2N and the ones in the right-hand side
are in RN . An uncertainty principle of Donoho-Stark type can be proved for the
short-time Fourier transform, in the following form ([14, Proposition 3.3.1]).

Theorem 1.2. Let E ⊂ R2N be a measurable set and ε > 0. Suppose that there exist
f, g ∈ L2(RN ), f, g 6= 0, such that∫

E

|Vgf(x, ξ)|2 dx dξ ≥ (1− ε)‖f‖22‖g‖22. (1.3)

Then m(E) ≥ 1− ε.
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An inspection of the proof of Theorem 1.2 reveals that such a result is strictly
related to (1.2). Both (1.2) and (1.3) can be easily rewritten in terms of time-frequency
representations. In Section 2 we give more information, and we analyze the main
representations used in the literature. Here we just recall that the most natural
representation is the so-called Rihaczek form, defined as

Rf(x, ξ) := e−ixξf(x)f̂(ξ);

moreover, a widely used time-frequency representation, related to the short-time
Fourier transform, is the spectrogram, defined as

Spgf(x, ξ) := |Vgf(x, ξ)|2. (1.4)

Now, since ‖Spgf‖∞ = ‖Vgf‖2∞ and ‖Rf‖2 = ‖f‖2‖f̂‖2 = (2π)N/2‖f‖22, we have that
(1.2) can be rewritten as

‖Spgf‖∞ ≤ (2π)−N‖Rf‖2‖Rg‖2, (1.5)

where in this last estimate all the norms are in R2N . Furthermore, the Donoho-Stark
type uncertainty principle of Theorem 1.2 can be rephrased as follows.

Theorem 1.2′. Let E ⊂ R2N be a measurable set and ε > 0. Suppose that there exist
f, g ∈ L2(RN ), f, g 6= 0, such that

∫

E

|Spgf(x, ξ)| dx dξ ≥ (1− ε)(2π)−N‖Rf‖2‖Rg‖2. (1.6)

Then m(E) ≥ 1− ε.

Taking a window g such that ‖g‖2 = 1, this result, roughly speaking, says that if
the (L1) contents of the spectrogram of some signal f in a set E is larger than a
fraction of the whole (L2) contents of the Rihaczek of f , then the measure of E must
be sufficiently large. A natural question is if we can replace in (1.6) the spectrogram
and the Rihaczek with other time-frequency representations. This, in turn, depends
on which kind of estimates of the type (1.5) we can prove on different couples of
representations.

In this paper we then investigate estimates between different representations in the
frame of (weighted) Lp-spaces, and deduce different kind of uncertainty principles. It
is usually not difficult to estimate a representation by the Rihaczek, since (as in the
case of the spectrogram) this can often be obtained as a consequence of the mapping
properties in Lebesgue spaces of the representation itself. On the other hand, when in
the right-hand side we want to put something different from the Rihaczek, the things
become much more difficult, and some estimates are not true anymore for Lp norms.
For instance, we prove that for p ≥ 2 there does not exist a constant D > 0 such that

‖Rf‖∞ ≤ D‖Wig(f)‖p (1.7)

for every f ∈ S(RN ), where

Wig(f)(x, ξ) :=

∫

RN

e−itξf

(
x+

t

2

)
f

(
x− t

2

)
dt (1.8)
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is the classical Wigner transform. On the other hand, (1.7) becomes true if we consider
weighted Lebesgue norms instead of unweighted ones; for instance, fixed 1 ≤ p ≤ ∞,
there exist C, µ > 0 such that for every f ∈ S(RN ) we have

‖Rf‖∞ ≤ C‖(1 + |x|2 + |ξ|2)µWig(f)‖p.

More generally, it turns out that ultradifferentiable weights allow us to obtain good
estimates between Lebesgue norms of different representations, so a natural functional
setting is given by ultradifferentiable spaces. We then consider weight functions in
the sense of Braun-Meise-Taylor [9] and corresponding (global) spaces of rapidly de-
creasing ultradifferentiable functions as defined in [4]; weighted Lp-norms become, in
fact, seminorms in the corresponding ultradifferentiable class (see [8]), and we prove
mutual estimates on weighted Lp-norms of different time-frequency representations.

Besides the interest that such estimates have in themselves, they have different
applications. We prove indeed that they can be used to obtain uncertainty prin-
ciples of Donoho-Stark type for different time-frequency representations, where the
hypothesis (1.6) is substituted by the request that the contents of a time-frequency
representation in some Lebesgue measurable set E is greater than a fraction of the
whole contents of another representation.

Moreover, mutual estimates between representations constitute the basic tool to
prove uncertainty principles of local type, in the spirit of [17], [5], for different time-
frequency distributions. We recall that, for the Fourier transform, the local uncer-
tainty principle as formulated in [17] is an inequality that, in its simplest version in
dimension 1, reads as ∫

E

|f̂(ξ)|2 dξ < K ′m(E)∆(f) (1.9)

for every measurable set E ⊂ R and f ∈ L2(R) with ‖f‖2 = 1, where K ′ does not
depend on E and f , m(E) is the Lebesgue measure of E, and

∆(f) = ‖(t− µ(f))f(t)‖2

is the dispersion associated with f , for µ(f) =
∫
R
t|f(t)|2 dt. Then (1.9) says that

f̂ cannot show, locally in a measurable set E, a large amount of energy if E has
small measure and/or f is very concentrated. Results of this type are proved in [5] in
the frame of time-frequency analysis. In this paper we prove uncertainty principles
of local type for time-frequency representations, giving limitations of the amount of
energy that a time-frequency representation of f may have on a measurable set E in
terms of quantities measuring the size of E and the dispersions of f and/or f̂ ; we also

give analogous results where the role of f , f̂ , and the time-frequency representation
of f are interchanged. Moreover, the fact that all estimates are proved in weighted
spaces implies that weights appear in the quantities measuring the size of E, too; in
some cases this weighted measure of E may be finite even when the Lebesgue measure
of E is infinite, enlarging then the class of sets E for which our results are meaningful.

The paper is organized as follows. In Section 2 we recall definitions and basic prop-
erties of time-frequency representations and of ultradifferentiable spaces. In Section 3
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we prove different estimates between weighted norms of representations, and the cor-
responding uncertainty principles of Donoho-Stark type. Finally, Section 4 is devoted
to the study of local uncertainty principles.

2. Definitions and preliminary results

Definition 2.1. A weight function is a continuous increasing function ω : [0,∞) →
[0,∞) satisfying the following properties:

(α) there exists K ≥ 1 such that ω(2t) ≤ K(1 + ω(t)) for every t ≥ 0;
(β) ω(t) = o(t) as t → ∞;
(γ) there exist a ∈ R, b > 0 such that ω(t) ≥ a + b log(1 + t) for every t ≥ 0;
(δ) ϕω(t) := ω(et) is a convex function.

Given a weight function we can extend ω : R → [0,∞) by defining ω(x) = ω(|x|)
for all x ∈ R (of course, in the same way we could extend ω to RN for every N). The

condition (β) is weaker than the condition of non-quasianalyticity
∫∞

1
ω(t)
1+t2

dt < ∞.
When the latter condition is satisfied, the spaces that we are going to define shall
contain non trivial compactly supported functions. Most of the results of this paper
hold under condition (β), i.e., both in the non-quasianalytic and in the quasianalytic
case. When necessary, we will specify whether the weight has to be considered non-
quasianalytic.

Sometimes, we assume that the weight ω satisfies the additional condition log(1 +
t) = o(ω(t)) as t → ∞, called condition (γ′), which is stronger than condition (γ).

We recall some known properties of the weight functions that shall be useful in the
following (the proofs can be found in the literature):

(1) Condition (α) implies for every t1, t2 ≥ 0 that

ω(t1 + t2) ≤ K(1 + ω(t1) + ω(t2)). (2.1)

Observe that this condition is weaker than subadditivity (i.e., ω(t1 + t2) ≤ ω(t1) +
ω(t2)). The weight functions satisfying (α) are not necessarily subadditive in general.

(2) Condition (α) implies that there exists L ≥ 1 such that for every t ≥ 0

ω(et) ≤ L(1 + ω(t)).

(3) By condition (γ) we have for every λ > N
bp

that

e−λω(t) ∈ Lp(RN), 1 ≤ p < ∞. (2.2)

Given a weight function ω, we define the Young conjugate ϕ∗
ω of ϕω as the function

ϕ∗
ω : [0,∞) → [0,∞),

ϕ∗
ω(s) := sup

t≥0
{st− ϕω(t)}, s ≥ 0.

There is no loss of generality to assume that ω vanishes on [0, 1]. We have that ϕ∗
ω is

convex and increasing, ϕ∗
ω(0) = 0 and (ϕ∗

ω)
∗ = ϕω.

Now, we introduce the ultradifferentiable function space Sω(R
N) in the sense of

Björk [4].
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Definition 2.2. Let ω be a weight function. We denote by Sω(R
N) the set of all

functions f ∈ L1(RN) such that f, f̂ ∈ C∞(RN) and for each λ > 0 and α ∈ NN
0 we

have
‖eλω∂αf‖∞ < ∞ and ‖eλω∂αf̂‖∞ < ∞ , (2.3)

where f̂ denotes the Fourier transform of f . The elements of Sω(R
N) are called ω-

ultradifferentiable rapidly decreasing functions of Beurling type. We denote by S ′
ω(R

N)
the dual of Sω(R

N) endowed with its strong topology.

Now, we recall some properties of Sω(R
N).

Remark 2.3. Let ω be a weight function.
(1) The condition (γ) of Definition 2.1 implies that Sω(R

N) ⊆ S(RN ) with contin-
uous inclusion. The spaces coincide when ω(t) = log(1 + t), for t ≥ 0. Accordingly,
we can rewrite the definition of Sω(R

N) as the set of all the Schwartz functions that
satisfy the condition (2.3).

(2) The space Sω(R
N) is closed under convolution and under point-wise multipli-

cation.
(3) Let us denote by Tx,Mξ and Π(z), respectively, the translation, the modulation

and the phase-space shift operators, defined by

Txf(y) := f(y − x),

Mξf(y) := eiyξf(y),

Π(z)f(y) := MξTxf(y) = eiyξf(y − x)

for x, y, ξ ∈ RN and z = (x, ξ). The space Sω(R
N) is closed under translation and

modulation, and hence under the action of the phase-space shift operator.
(4) The Fourier transform F : Sω(R

N) → Sω(R
N) is a continuous isomorphism.

The space Sω(R
N) is a Fréchet space, and we can give different equivalent systems

of seminorms. We refer to [2, 8] for more results in this direction; here we just recall
the following proposition.

Proposition 2.4. Let ω be a weight function and consider f ∈ S(RN ). Fix 1 ≤ p ≤
∞. Then f ∈ Sω(R

N) if, and only if, one of the following conditions is satisfied.

(1) (i) ∀λ > 0, α ∈ NN
0 ∃Cα,λ,p > 0 such that ‖eλω∂αf‖p ≤ Cα,λ,p, and

(ii) ∀λ > 0, α ∈ NN
0 ∃Cα,λ,p > 0 such that ‖eλω∂αf̂‖p ≤ Cα,λ,p.

(2) (i) ∀λ > 0 ∃Cλ,p > 0 such that ‖eλωf‖p ≤ Cλ,p, and

(ii) ∀λ > 0 ∃Cλ,p > 0 such that ‖eλωf̂‖p ≤ Cλ,p.

Now, we recall the definition of the spaces OM,ω(R
N) and OC,ω(R

N), that have
been introduced in [1, 2].

Definition 2.5. Let ω be a non-quasianalytic weight function.
(a) We denote by OM,ω(R

N) the set of all functions f ∈ C∞(RN) such that for all
m ∈ N there exist C > 0 and n ∈ N such that for every α ∈ NN

0 and x ∈ RN we have

|∂αf(x)| ≤ Cenω(x)emϕ∗
ω(

|α|
m ).

The elements of OM,ω(R
N) are called slowly increasing functions of Beurling type.
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(b) We denote by OC,ω(R
N) the set of all functions f ∈ C∞(RN) for which there

exists n ∈ N such that for all m ∈ N there exists C > 0 so that for every α ∈ NN
0 and

x ∈ RN we have

|∂αf(x)| ≤ Cenω(x)emϕ∗
ω(

|α|
m ).

The elements of OC,ω(R
N) are called very slowly increasing functions of Beurling type.

The space OM,ω(R
N ) is the space of multipliers of Sω(R

N) and of its dual space
S ′
ω(R

N) as proved in [1], i.e., f ∈ OM,ω(R
N), if and only if fg ∈ Sω(R

N) for all
g ∈ Sω(R

N ) if and only if fT ∈ S ′
ω(R

N ) for all T ∈ S ′
ω(R

N).
The space O′

C,ω(R
N) is the space of convolutors of Sω(R

N), as the following result
shows.

Proposition 2.6 ([2, Theorem 5.3]). Let ω be a non-quasianalytic weight function
and T ∈ S ′

ω(R
N). Consider the following properties:

(1) T ∈ O′
C,ω(R

N).

(2) For every f ∈ Sω(R
N), we have T ⋆ f ∈ Sω(R

N).

Then (1) ⇒ (2). If, in addition, the weight function ω satisfies the stronger condition
(γ′), then (2) ⇒ (1).

Given a non-quasianalytic weight function ω, the Fourier transform F : O′
C,ω(R

N) →
OM,ω(R

N) is well-defined. Moreover, for every T ∈ O′
C,ω(R

N) and f ∈ Sω(R
N), the

convolution T ⋆ f satisfies the following property:

F(T ⋆ f) = f̂F(T ). (2.4)

If, in addition, the weight ω satisfies the stronger condition (γ′), then F is a topological
isomorphism from O′

C,ω(R
N) onto OM,ω(R

N), as shown in [2, Theorem 6.1].
The short-time Fourier transform (1.1) can be easily extended to ultradistributions;

indeed, let us consider a window function g ∈ Sω(R
N), g 6= 0. The short-time Fourier

transform (briefly STFT) of f ∈ S ′
ω(R

N) is defined, for z = (x, ξ) ∈ R2N , by:

Vgf(z) := 〈f,Π(z)g〉 =
∫

RN

f(y)g(y − x)e−iyξ dy, (2.5)

where the bracket 〈·, ·〉 and the integral in (2.5) denote the conjugate linear action of
S ′
ω(R

N) on Sω(R
N), consistent with the inner product (·, ·)2 on L2(RN). The definition

is well posed, because if g ∈ Sω(R
N), then Π(z)g ∈ Sω(R

N) for each z = (x, ξ) ∈ R2N .
For basic properties of the STFT in ultradifferentiable spaces see [15]. We recall the
inversion formula:

f(y) =
1

(2π)N‖g‖22

∫

R2N

Vgf(z)(Π(z)g)(y) dz. (2.6)

The STFT is also well-defined and continuous on Sω(R
N ), as the following results

contained in [15] shows.

Theorem 2.7. Let ω be a weight function and consider g ∈ Sω(R
N), g 6= 0. Then

for f ∈ S ′
ω(R

N ) the following conditions are equivalent:

(1) f ∈ Sω(R
N).
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(2) For each λ > 0 there exists a constant Cλ > 0 such that

|Vgf(z)| ≤ Cλe
−λω(z)

for each z ∈ R2N .
(3) Vgf ∈ Sω(R

2N ).

Therefore, we can deduce the following result.

Proposition 2.8. Let ω be a weight function and consider g ∈ Sω(R
N), g 6= 0. Then

Vg : Sω(R
N) → Sω(R

2N)

is continuous.

The STFT also provides new equivalent systems of seminorms for Sω(R
N) (see [8]).

Proposition 2.9. Let ω be a weight function and consider g ∈ Sω(R
N), g 6= 0. Then

f ∈ Sω(R
N) if and only if one of the following conditions is satisfied:

(1) For all λ ≥ 0

‖eλωVgf‖∞ = sup
z∈R2N

|Vgf(z)|eλω(z) < ∞.

(2) There exists 1 ≤ p < ∞ such that for all λ ≥ 0

‖eλωVgf‖pp =
∫

R2N

|Vgf(z)|pepλω(z) dz < ∞.

Now, we recall the definition of further time-frequency representations that we shall
treat in the following, and that are widely used in the literature, see, for instance,
[10, 14] and the references therein.

Definition 2.10. For τ ∈ [0, 1] and f ∈ S(RN ), we define the τ -Wigner transform
as

Wigτ (f)(x, ξ) :=

∫

RN

e−itξf(x+ τt)f(x− (1− τ)t) dt

for (x, ξ) ∈ R2N .

If τ = 1
2
, we get the classical Wigner transform (1.8). In the cases τ = 0 and τ = 1,

we get the Rihaczek and conjugate Rihaczek forms, given by

Rf(x, ξ) := e−ixξf(x)f̂(ξ),

R∗f(x, ξ) := eixξf(x)f̂(ξ),

respectively, for (x, ξ) ∈ R2N . We have already defined the spectrogram (1.4); it is
known that the spectrogram and the τ -Wigner transform are linked. In fact, given
f, g ∈ Sω(R

N ), g 6= 0, we have

Spgf = Wig1−τ (g̃) ⋆Wigτ (f), (2.7)

where g̃(t) := g(−t), t ∈ RN . For more details we refer the reader to [6, 7, 14].
The τ -Wigner transform and the spectrogram are particular cases of a large class

of covariant quadratic representations, the so-called Cohen class.
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Definition 2.11. Let ω be a weight function. Given a kernel σ ∈ S ′
ω(R

2N), we define

Qσf := σ ⋆Wig(f),

for each f ∈ Sω(R
N). We say that Qσ is a time-frequency representation in the Cohen

class with kernel σ.

Of course, by [2, Proposition 5.2] every time-frequency representation in the Cohen
class with kernel in S ′

ω(R
2N ) is well-defined for f ∈ Sω(R

N ). Moreover, if we consider
the weight ω(t) = log(1 + t), we recover the classic time-frequency representation in
the Cohen class with kernel in S ′(R2N).

When the kernel σ is given by

σBJ(x, ξ) := Ft→x
η→ξ

(
2 sin(tη/2)

tη

)

the corresponding Cohen class form is the so-called Born-Jordan representation

BJ(f) := σBJ ⋆Wig(f), (2.8)

that has many interesting properties (see, for instance, [11, 12, 18] and the references
therein). The Born-Jordan representation is linked to the τ -Wigner; it can, indeed,
be written as

BJ(f) =

∫ 1

0

Wigτ (f) dτ, (2.9)

for every f ∈ S(RN ), see, for instance, [6].

3. Estimates on time-frequency representations and Donoho-Stark

uncertainty inequalities

In this section we give some estimates between different time-frequency representa-
tions in the Cohen class (STFT, spectrogram, Rihaczek form, τ -Wigner transform);
moreover, we prove that, given two time-frequency representations Qσ1 and Qσ2 in
the Cohen class, under suitable conditions on the kernels σ1 and σ2, it is possible
to estimate one representation with the other. Such estimates are in the form of a
control of the (weighted) L∞-norm of a representation by (weighted) Lp-norms of
another representation; this gives as a consequence new inequalities of Donoho-Stark
type.

Throughout this section K and b always indicate the constants of conditions (α)
and (γ) of Definition 2.1, respectively. Moreover, we use as standard the notation p′

to indicate the conjugate exponent of p ∈ [1,∞], in the sense that 1
p
+ 1

p′
= 1; with

this notation, (2p)′ is the number such that 1
2p

+ 1
(2p)′

= 1, and for p = ∞ we intend

(2p)′ = 1. The norms in Lp are indicated as ‖ · ‖p. Sometimes they are norms in
Lp(RN) and sometimes in Lp(R2N ), and it is clear from the context which is the case;
when this is not clear, we specify by writing ‖ · ‖Lp(RN ) or ‖ · ‖Lp(R2N ).

The next result gives a mutual control between the Spectrogram and the Rihaczek
form.

Theorem 3.1. Let ω be a weight function, g ∈ Sω(R
N), g 6= 0, and 1 ≤ p ≤ ∞.
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(i) For every λ ≥ 0 and f ∈ Sω(R
N) we have

‖eλωSpgf‖∞ ≤ D
(1)
λ ‖e2K2λωRf‖p‖e2K

2λωRg‖p′, (3.1)

where D
(1)
λ = (2π)−NeK(1+2K)λ.

(ii) For every λ ≥ 0, µ > 2N
b(2p)′

and f ∈ Sω(R
N ) we have

‖eλωRf‖∞ ≤ D
(2)
λ,µ‖e2(K

2λ+µ)ωSpgf‖p, (3.2)

where

D
(2)
λ,µ =

eK(1+2K)λ‖eK2λωg‖∞‖eK2λω ĝ‖∞‖e−µω‖2
L(2p)′ (R2N )

(2π)2N‖g‖42
.

Proof. (i) We first observe that, for f ∈ Sω(R
N), by Hölder’s inequality and (2.1), for

every µ ≥ 0 we have

|eµω(x)Vgf(x, ξ)| ≤
∫

RN

eµω(x)|f(t)||g(t− x)| dt

≤
∫

RN

|f(t)||g(t− x)|eKµ(1+ω(t)+ω(x−t)) dt

≤ eKµ‖eKµωf‖p‖eKµωg‖p′. (3.3)

Recall the fundamental identity of the STFT

Vgf(x, ξ) = (2π)−NVĝf̂(ξ,−x); (3.4)

the same calculations as above then give

|eµω(ξ)Vgf(x, ξ)| ≤ (2π)−NeKµ‖eKµωf̂‖p‖eKµωĝ‖p′ (3.5)

for every µ ≥ 0. By (3.3) and (3.5) we get

eλω(x,ξ)|Vgf(x, ξ)|2 ≤ eKλeKλ(ω(x)+ω(ξ))|Vgf(x, ξ)|2

≤ eKλe2K
2λ

(2π)N
‖eK2λωf‖p‖eK

2λωg‖p′‖eK
2λωf̂‖p‖eK

2λω ĝ‖p′. (3.6)

Observe that, by definition of Rihaczek form,

‖eK2λωf‖p‖eK
2λωf̂‖p = ‖eK2λ(ω(x)+ω(ξ))Rf(x, ξ)‖p ≤ ‖e2K2λωRf‖p, (3.7)

where the norms in the left-hand side are in Lp(RN) while the ones in the right-hand
side are in Lp(R2N ); the same holds for g, and so by (3.6) the proof of point (i) is
complete.

(ii) We start by proving that for every λ ≥ 0

‖eλωRf‖∞ ≤ eK(1+2K)λ‖eK2λωg‖∞‖eK2λω ĝ‖∞
(2π)2N‖g‖42

‖eK2λωVgf‖21. (3.8)

We have indeed that, from the inversion formula (2.6), it follows that for every y ∈ RN

and λ ≥ 0,

eλω(y)f(y) =
1

(2π)N‖g‖22

∫

R2N

Vgf(x, ξ)e
λω(y)+iyξg(y − x) dxdξ.
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Applying (2.1), we get for every y ∈ RN and λ ≥ 0

‖eλωf‖∞ ≤ sup
y∈RN

[
1

(2π)N‖g‖22

∫

R2N

|Vgf(x, ξ)|eKλ(1+ω(x)+ω(y−x))|g(y − x)| dxdξ
]

≤ eKλ‖eKλωg‖∞
(2π)N‖g‖22

∫

R2N

|Vgf(x, ξ)|eKλω(x,ξ) dxdξ

=
eKλ‖eKλωg‖∞‖eKλωVgf‖1

(2π)N‖g‖22
. (3.9)

Now we observe that, applying the Fourier transform to both sides of (2.6) we get

f̂(y) =
1

(2π)N‖g‖22

∫

R2N

Vgf(x, ξ)e
ixξM−xTξĝ(y) dxdξ;

hence proceeding as before we obtain

‖eλωf̂‖∞ ≤ eKλ‖eKλωĝ‖∞‖eKλωVgf‖1
(2π)N‖g‖22

. (3.10)

Since

‖eλωRf‖∞ ≤ ‖eKλ(1+ω(x)+ω(ξ))f(x)f̂(ξ)‖∞ = eKλ‖eKλωf‖∞‖eKλωf̂‖∞,

by (3.9) and (3.10) with Kλ instead of λ we then obtain (3.8).

Fix now p ∈ [1,∞]. For every λ ≥ 0 and µ > 2N
b(2p)′

we get by Hölder inequality

‖eλωVgf‖21 =
(∫

R2N

e(λ+µ)ω(x,ξ)−µω(x,ξ)|Vgf(x, ξ)|dxdξ
)2

≤ ‖e−µω‖2
L(2p)′ (R2N )

‖e(λ+µ)ωVgf‖22p
= ‖e−µω‖2

L(2p)′(R2N )
‖e2(λ+µ)ωSpgf‖p. (3.11)

The conclusion then follows from (3.8) and (3.11). �

Remark 3.2. The estimate (3.1) extends (1.5), that is obtained by taking λ = 0
and p = 2 in (3.1). We observe moreover that the case λ = 0 in Theorem 3.1 gives
estimates where ‘pure’ (unweighted) Lebesgue norms appear everywhere except in
the right-hand side of (3.2), where the weight e2µω with µ sufficiently large remains.
In this sense there is a lack of symmetry in estimates (3.1) and (3.2); we shall show in
Remark 3.6 below that this cannot be avoided, in the sense that (3.2) with µ = 0 is
not true for every λ ≥ 0, 1 ≤ p ≤ ∞, and f ∈ Sω(R

N) (even with a constant greater

than D
(2)
λ,µ).

We can now prove an uncertainty principle of Donoho-Stark type related to Theo-
rem 3.1.

Proposition 3.3 (Spectrogram vs. Rihaczek Donoho-Stark principle). Let ω be a
weight function, E ⊂ R2N be a Lebesgue measurable set, 1 ≤ p ≤ ∞ and ε ∈ (0, 1).
Suppose that one of the following conditions holds:
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(a) There exist f, g ∈ Sω(R
N), f, g 6= 0 and λ ≥ 0 such that

∫

E

eλω(x,ξ)|Spgf(x, ξ)| dxdξ ≥ (1− ε)D
(1)
λ ‖e2K2λωRf‖p‖e2K

2λωRg‖p′,

where D
(1)
λ is the constant in (3.1).

(b) There exist f, g ∈ Sω(R
N), f, g 6= 0, λ ≥ 0 and µ > 2N

b(2p)′
such that

∫

E

eλω(x,ξ)|Rf(x, ξ)| ≥ (1− ε)D
(2)
λ,µ‖e2(K

2λ+µ)ωSpgf‖p,

where D
(2)
λ,µ is the constant in (3.2).

Then m(E) ≥ 1− ε, where m(E) is the Lebesgue measure of E.

Proof. (a) From Theorem 3.1(i) we have
∫

E

eλω(x,ξ)|Spgf(x, ξ)| dx dξ ≤ m(E)‖eλωSpgf‖∞

≤ m(E)D
(1)
λ ‖e2K2λωRf‖p‖e2K

2λωRg‖p′.
Since f, g 6= 0 we have that both Rf , Rg, and Spgf are different from 0; then by
hypothesis (a) we have m(E) ≥ 1− ε. The proof of point (b) is analogous. �

The previous result says, roughly speaking, that in a set E with small measure the
spectrogram of a signal f cannot show too large time-frequency contents when com-
pared to the total time-frequency contents measured by the Rihaczek form; similarly,
in a small set E the Rihaczek form cannot show too large time-frequency contents
when compared to the total time-frequency contents measured by the spectrogram.
In the following we see that this is true when spectrogram and Rihaczek are substi-
tuted by couples of the most common time-frequency representations, as well as by
couples of more general representations in the Cohen class.

Now we consider the τ -Wigner transform (cf. Definition 2.10). Observe that,

denoting by T
[τ ]
z the operator acting on a function F on R2N as

T
[τ ]
z F (x, t) := F (x+ τt, x− (1− τ)t),

for f ∈ S(RN ) and τ ∈ [0, 1] we can write

Wigτ (f)(x, ξ) = Ft→ξ

(
T

[τ ]
z (f ⊗ f)

)
.

Since both the (partial) Fourier transform and T
[τ ]
z can be extended in a standard

way to (ultra)distributions, we can extend Wigτ to S ′
ω(R

N), and from [16, Theorem
3.4], we get that

Wigτ : Sω(R
N ) → Sω(R

2N )

Wigτ : S ′
ω(R

N ) → S ′
ω(R

2N ).

We introduce now the following notations for the dilation of a function. For G =
G(x, ξ), x, ξ ∈ RN , and ν1, ν2 ∈ R \ {0} we write

(
D[1]

ν1
D[2]

ν2
G
)
(x, ξ) := G(ν1x, ν2ξ)
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for a dilation by ν1 in the first half of variables and a dilation by ν2 in the second
half. Moreover, we write Dν for a dilation by the same ν in all variables, in the sense
that for a function F = F (z), z ∈ RM , and ν ∈ R \ {0} we write

(DνF )(z) := F (νz).

In the discussion about τ -Wigner transform below we need some particular dilations
(for τ 6= 0, 1), that we write for convenience in the following way:

(Aτh)(t) := (D τ−1
τ
h)(t) = h

(
τ − 1

τ
t

)
,

for a function h on RN , and

V τ
g f(x, ξ) :=

(
D

[1]
1

1−τ

D
[2]
1
τ

Vgf
)
(x, ξ) = Vgf

(
x

1− τ
,
ξ

τ

)

for the STFT Vgf , whenever it is defined. With these notations we have that, for
τ ∈ (0, 1), the following identity holds (see [6, Lemma 6.2]):

Wigτ (f)(x, ξ) =
1

τN
e

ixξ

τ V τ
Aτff(x, ξ). (3.12)

We can now prove the following result, giving a mutual control between the τ -Wigner
transform and the Rihaczek form.

Theorem 3.4. Let ω be a weight function, 1 ≤ p ≤ ∞, and τ ∈ (0, 1).

(i) For every λ ≥ 0 and f ∈ Sω(R
N) we have

‖eλωWigτ (f)‖2∞ ≤ D
(3)
λ ‖e4K2λωRf‖p‖e4K

2λωRf‖p′, (3.13)

where

D
(3)
λ =

eK(1+2K)λ

(2π)N(τ − τ 2)N
.

(ii) For every λ ≥ 0, µ > 2N
b(2p)′

and f ∈ Sω(R
N ) we have

‖eλωRf‖∞ ≤ D
(4)
λ,µ‖e2K(K2λ+µ)ωWigτ (f)‖p, (3.14)

where

D
(4)
λ,µ = inf

g∈Sω(RN )
g 6=0

[
D

(2)
λ,µe

2K(K2λ+µ)‖e2K(K2λ+µ)ωWig1−τ (g̃)‖1
]
;

here D
(2)
λ,µ is the constant in (3.2) and g̃(t) := g(−t), t ∈ RN .

Proof. (i) We first observe by (3.12) that

‖eλωWigτ (f)‖2∞ =
1

τ 2N
‖eλωV τ

Aτff‖2∞ =
1

τ 2N
‖eλD

[1]
(1−τ)

D
[2]
τ ωVAτff‖2∞.

Then, proceeding as in (3.6) we get

‖eλωWigτ (f)‖2∞ ≤ eK(1+2K)λ

(2π)Nτ 2N
‖e2K2λD(1−τ)ωf‖p‖e2K

2λD(1−τ)ωAτf‖p′×

× ‖e2K2λDτωf̂‖p‖e2K
2λDτωÂτf‖p′.

(3.15)
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Suppose first that p > 1. Since

Âτf =
|τ |N

|τ − 1|N D τ
τ−1

f̂ ,

we have

‖e2K2λDτωÂτf‖p
′

p′ =
|τ |p′N

|τ − 1|p′N ‖e2K2λDτωD τ
τ−1

f̂‖p′p′

=
|τ |(p′−1)N

|τ − 1|(p′−1)N

∫

RN

e2p
′K2λω((τ−1)y)|f̂ (y) |p′dy

=
|τ |(p′−1)N

|τ − 1|(p′−1)N
‖e2K2λDτ−1ωf̂‖p′p′. (3.16)

Analogously, we get

‖e2K2λD(1−τ)ωAτf‖p
′

p′ =
|τ |N

|τ − 1|N ‖e2K2λD−τωf‖p′p′. (3.17)

From (3.15), (3.16) and (3.17) we obtain

‖eλωWigτ (f)‖2∞ ≤ eK(1+2K)λ

(2π)N(τ − τ 2)N
‖e2K2λD(1−τ)ωf‖p‖e2K

2λD−τωf‖p′×

× ‖e2K2λDτωf̂‖p‖e2K
2λDτ−1ωf̂‖p′.

(3.18)

If p = 1, similarly we get (3.18), since

‖e2K2λDτωÂτf‖∞ =
|τ |N

|τ − 1|N ‖e2K2λDτ−1ωf̂‖∞,

‖e2K2λD(1−τ)ωAτf‖∞ = ‖e2K2λD−τωf‖∞.

Observe now that if τ ∈ (0, 1), then D(1−τ)ω ≤ ω and Dτω ≤ ω, since ω is increasing;
moreover, Dτω = D−τω and Dτ−1ω = D1−τω. Hence, from (3.18) and (3.7) we get
(3.13).

(ii) By (3.2) and (2.7), for f ∈ Sω(R
N) and λ ≥ 0 we have that, for every g ∈

Sω(R
N), g 6= 0,

‖eλωRf‖∞ ≤ D
(2)
λ,µ‖e2(K

2λ+µ)ωSpgf‖p = D
(2)
λ,µ‖e2(K

2λ+µ)ω(Wig1−τ (g̃) ⋆Wigτ (f))‖p,

with µ > 2N
b(2p)′

. We observe that by (2.1)

e2(K
2λ+µ)ω(z)|Wig1−τ (g̃) ⋆Wigτ (f)|(z) ≤

≤
∫

R2N

e2(K
2λ+µ)ω(z)|Wig1−τ (g̃)(y)||Wigτ (f)(z − y)|dy

≤
∫

R2N

e2K(K2λ+µ)(1+ω(y)+ω(z−y)) |Wig1−τ (g̃)(y)||Wigτ (f)(z − y)|dy

= e2K(K2λ+µ)
(
e2K(K2λ+µ)ω|Wig1−τ (g̃)|

)
⋆
(
e2K(K2λ+µ)ω|Wigτ (f)|

)
(z). (3.19)
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Therefore, by Young’s inequality we get

‖eλωRf‖∞ ≤ D
(2)
λ,µ‖e2(K

2λ+µ)ω(Wig1−τ (g̃) ⋆Wigτ (f))‖p
≤ D

(2)
λ,µe

2K(K2λ+µ)
∥∥∥
(
e2K(K2λ+µ)ω|Wig1−τ (g̃)|

)
⋆
(
e2K(K2λ+µ)ω|Wigτ (f)|

)∥∥∥
p

≤ D
(2)
λ,µe

2K(K2λ+µ)
∥∥∥e2K(K2λ+µ)ωWig1−τ (g̃)

∥∥∥
1

∥∥∥e2K(K2λ+µ)ωWigτ (f)
∥∥∥
p
.

Making the inf on all g ∈ Sω(R
N) \ {0}, we then obtain (3.14). �

Similarly as in Proposition 3.3 we have the following uncertainty principle of
Donoho-Stark type related to Theorem 3.4. The proof is analogous as the one of
Proposition 3.3 and it is omitted.

Proposition 3.5 (τ -Wigner vs. Rihaczek Donoho-Stark principle). Let ω be a weight
function, E ⊂ R2N be a Lebesgue measurable set, 1 ≤ p ≤ ∞, τ ∈ (0, 1) and ε ∈ (0, 1).
Suppose that one of the following conditions holds:

(a) There exist f ∈ Sω(R
N), f 6= 0, and λ ≥ 0 such that

∫

E

eλω(x,ξ)|Wigτ (f)(x, ξ)| dxdξ ≥ (1− ε)

√
D

(3)
λ ‖e4K2λωRf‖1/2p ‖e4K2λωRf‖1/2p′ ,

where D
(3)
λ is the constant in (3.13).

(b) There exist f ∈ Sω(R
N), f 6= 0, λ ≥ 0, and µ > 2N

b(2p)′
such that

∫

E

eλω(x,ξ)|Rf(x, ξ)| dxdξ ≥ (1− ε)D
(4)
λ,µ‖e2K(K2λ+µ)ωWigτ (f)‖p,

where D
(4)
λ,µ is the constant in (3.14).

Then m(E) ≥ 1− ε, where m(E) is the Lebesgue measure of E.

Remark 3.6. As already observed in Remark 3.2, in Theorems 3.1 and 3.4, when we
estimate the Rihaczek form by the spectrogram and the τ -Wigner, a weight of the
kind eµω appears in the right-hand side of (3.2) and (3.14), with µ sufficiently large,
and this constitutes a lack of symmetry with respect to (3.1) and (3.13). We show
now that this cannot be avoided in general. Consider for instance (3.14) for λ = 0
and τ = 1/2:

‖Rf‖∞ ≤ D
(4)
0,µ‖e2KµωWig(f)‖p

for µ > 0 sufficiently large. Consider now p ≥ 2 and suppose that there exists D > 0
such that

‖Rf‖∞ ≤ D‖Wig(f)‖p
for every f ∈ Sω(R

N). Since Wig : L2(RN ) × L2(RN) → Lp(R2N ) is bounded for
every p ≥ 2, we would obtain

‖f‖∞‖f̂‖∞ = ‖Rf‖∞ ≤ C‖f‖22
for some C > 0. Then in particular the function F (f) := ‖f‖∞‖f̂‖∞

‖f‖22
would be bounded,

but this is in contradiction with [19, Theorem 4.12]. Observe that also (3.2) cannot
be satisfied in general for µ = 0; indeed, if that were the case, then the proof of
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Theorem 3.4(ii) would give (3.14) with µ = 0, that we have already shown that in
general is not true.

From the results that we have proved till now we easily obtain the following mu-
tual control between the spectrogram and the τ -Wigner, together with corresponding
uncertainty principle of Donoho-Stark type.

Corollary 3.7. Let ω be a weight function, 1 ≤ p ≤ ∞, τ ∈ (0, 1) and g ∈ Sω(R
N),

g 6= 0.

(i) For every λ ≥ 0 and f ∈ Sω(R
N) we have

‖eλωSpgf‖∞ ≤ D
(5)
λ ‖eKλωWigτ (f)‖p, (3.20)

where D
(5)
λ = eKλ‖eKλωWig1−τ (g̃)‖p′, with g̃(t) := g(−t).

(ii) For every λ ≥ 0, µ > 2N
b
(K2 + 2

(2p)′
) and f ∈ Sω(R

N) we have

‖eλωWigτ (f)‖∞ ≤ D
(6)
λ,µ‖e(8K

4λ+µ)ωSpgf‖p, (3.21)

where

D
(6)
λ,µ =

e
K
2
(1+2K)λ

(2π)
5
2
N (τ − τ 2)

N
2 ‖g‖42

inf
µ′,µ′′:

2(K2µ′+µ′′)=µ

µ′>N/b, µ′′> 2N
b(2p)′

[
eK(1+2K)(4K2λ+µ′)‖eK2(4K2λ+µ′)ωg‖∞

×‖eK2(4K2λ+µ′)ω ĝ‖∞‖e−µ′ω‖2‖e−µ′′ω‖2
L(2p)′ (R2N )

]
.

Proof. (i) By (2.7), proceeding as in (3.19) we easily obtain the desired estimate by
Young’s inequality.

(ii) By (3.13) with p = 2 we obtain

‖eλωWigτ (f)‖∞ ≤
√

D
(3)
λ ‖e4K2λωRf‖2 ≤

√
D

(3)
λ ‖e−µ′ω‖2‖e(4K

2λ+µ′)ωRf‖∞
for every µ′ > N

b
. We then get the conclusion by applying (3.2) to ‖e(4K2λ+µ′)ωRf‖∞.

�

Similarly as in Proposition 3.3, from Corollary 3.7 we can deduce the following
“spectrogram vs. τ -Wigner Donoho-stark principle”. The proof is left to the reader.

Corollary 3.8. Let E ⊂ R2N be a Lebesgue measurable set, ε ∈ (0, 1), 1 ≤ p ≤ ∞,
and suppose that one of the following conditions holds:

(a) There exist f, g ∈ Sω(R
N), f, g 6= 0, and λ ≥ 0 such that∫

E

eλω(x,ξ)|Spgf(x, ξ)| dxdξ ≥ (1− ε)D
(5)
λ ‖eKλωWigτ (f)‖p

where D
(5)
λ is the constant in point (i) of Corollary 3.7.

(b) There exist f, g ∈ Sω(R
N), f, g 6= 0, λ ≥ 0 and µ > 2N

b
(K2 + 2

(2p)′
) such that

∫

E

eλω(x,ξ)|Wigτ (f)(x, ξ)| dxdξ ≥ (1− ε)D
(6)
λ,µ‖e(8K

4λ+µ)ωSpgf‖p,

where D
(6)
λ,µ is the constant in point (ii) of Corollary 3.7.
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Then m(E) ≥ 1− ε, where m(E) is the Lebesgue measure of E.

Remark 3.9. The estimates (3.13) and (3.21) can be easily extended, in the case
N = 1, to the Born-Jordan representation (2.8). For instance, from (2.9) and (3.13)
we have

‖eλωBJ(f)‖∞ ≤
∫ 1

0

‖eλωWigτ (f)‖∞ dτ

≤
[
e

K
2
(1+2K)λ

√
2π

∫ 1

0

1√
τ − τ 2

dτ

]
‖e4K2λωRf‖1/2p ‖e4K2λωRf‖1/2p′ .

(3.22)

Since the τ -integral in the right-hand side of (3.22) is convergent we have

‖eλωBJ(f)‖2∞ ≤ D
(7)
λ ‖e4K2λωRf‖p‖e4K

2λωRf‖p′ (3.23)

for every 1 ≤ p ≤ ∞, λ ≥ 0 and f ∈ Sω(R). Similarly, from (3.21) we get

‖eλωBJ(f)‖∞ ≤ D
(8)
λ,µ‖e(8K

4λ+µ)ωSpgf‖p
for every 1 ≤ p ≤ ∞, g ∈ Sω(R) \ {0}, λ ≥ 0, µ > 2

b
(K2 + 2

(2p)′
) and f ∈ Sω(R).

The next aim is to prove other results where a representation is controlled by
another one; as in the previous cases, each time we have such a control we also have a
corresponding uncertainty principle of Donoho-Stark type, similarly as in Propositions
3.3, 3.5 and Corollary 3.8. Since there are no substantial differences with respect to
those cases, from now on we only give the estimates involving the representations;
the statement of the corresponding uncertainty principles is left to the reader. We
want to analyze representations in the Cohen class (cf. Definition 2.11). First of all,
from the previous results it is not difficult to control a representation in the Cohen
class by the Wigner transform, the Rihaczek form and the Spectrogram.

Corollary 3.10. Let ω be a weight function and 1 ≤ p ≤ ∞.

(i) Fix a kernel σ ∈ S ′
ω(R

2N) satisfying ‖eνωσ‖p′ < ∞ for every ν ≥ 0. Then for
every λ ≥ 0 and f ∈ Sω(R

N) we have

‖eλωQσf‖∞ ≤ D
(9)
λ ‖eKλωWig(f)‖p, (3.24)

where D
(9)
λ = eKλ‖eKλωσ‖p′.

(ii) Let σ ∈ S ′
ω(R

2N) satisfy ‖eνωσ‖1 < ∞ for every ν ≥ 0. Then for every λ ≥ 0,
µ > 2N

b(2p)′
and f ∈ Sω(R

N) we have

‖eλωQσf‖2∞ ≤ D
(10)
λ ‖e4K3λωRf‖p‖e4K

3λωRf‖p′, (3.25)

where D
(10)
λ = ( 4

2π
)NeK(2+K+2K2)λ‖eKλωσ‖21.

(iii) Let σ be as in point (ii) and g ∈ S(RN ), g 6= 0. Then for every λ ≥ 0,
µ > 2N

b
(K2 + 2

(2p)′
) and f ∈ Sω(R

N) we have

‖eλωQσf‖∞ ≤ D
(11)
λ,µ ‖e(8K5λ+µ)ωSpgf‖p, (3.26)

where D
(11)
λ,µ = eKλD

(6)
λ,µ‖eKλωσ‖1 and D

(6)
λ,µ is the constant in Corollary 3.7 for

τ = 1
2
.
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Proof. (i) Arguing as in the proof of Theorem 3.4 we have

‖eλωQσf‖∞ ≤ eKλ‖(eKλωσ) ⋆ (eKλωWig(f))‖∞
≤ eKλ‖eKλωσ‖p′‖eKλωWig(f)‖p.

The points (ii) and (iii) are an easy consequence of point (i) for p = ∞ and (3.13)
and (3.21), respectively. �

Remark 3.11. As examples of kernels that satisfy ‖eνωσ‖p < ∞ for every ν ≥ 0 and
1 ≤ p ≤ ∞, we can take ω-ultradifferentiable rapidly decreasing functions of Beurling
type.

Finally, we give estimates between two general time-frequency representations in
the Cohen class.

Theorem 3.12. Let ω be a non-quasianalytic weight function and consider 1 ≤ p ≤
∞. Fix two kernels σ1, σ2 ∈ S ′

ω(R
2N) such that σ2 ∈ O′

C,ω(R
2N ) with 0 /∈ Im(σ̂2),

and σ1 ∈ Sω(R
N). For every λ ≥ 0 there exists a positive constant D

(12)
λ such that for

every f ∈ Sω(R
N)

‖eλωQσ1f‖∞ ≤ D
(12)
λ ‖eKλωQσ2f‖p. (3.27)

Proof. We observe that since σ2 ∈ O′
C,ω(R

N), then σ̂2 ∈ OM,ω(R
N) (see [2, Theorem

6.1]). The fact that σ̂2 is a multiplier of Sω(R
N) together with the assumption 0 /∈

Im(σ̂2) implies that 1
σ̂2

∈ OM,ω(R
N) (for a proof in the classical case see [3, Lemma

3.1]).
Now, fixed f ∈ Sω(R

N) and λ ≥ 0, using (2.4) we have

Qσ1f = σ1 ⋆Wig(f) = F−1(σ̂1Ŵig(f)) = F−1

(
σ̂1σ̂2

σ̂2

Ŵig(f)

)

= F−1

(
σ̂1

σ̂2

)
⋆ Qσ2f.

Arguing as in the proof of Theorem 3.4, we get

‖eλωQσ1f‖∞ ≤ eKλ

∥∥∥∥eKλωF−1

(
σ̂1

σ̂2

)∥∥∥∥
p′
‖eKλωQσ2f‖p, (3.28)

where p′ is the conjugate exponent of p. Setting D
(12)
λ := eKλ

∥∥∥eKλωF−1
(

σ̂1

σ̂2

)∥∥∥
p′
, we

get (3.27). Observe that D
(12)
λ < ∞ since σ̂1 ∈ Sω(R

N) and 1
σ̂2

∈ OM,ω(R
N). �

Example. As examples of kernels σ2 satisfying the hypotheses of Theorem 3.12, we
can consider the following.

(1) Let

σ2(t, η) = aδ + e−ct2−dη2 ,

where c, d > 0, a ∈ R \ [−1, 0], and δ is the Dirac distribution in R2N . We
have

σ̂2(x, ξ) = a+

(
π2

cd

)N/2

e−
x2

4c
− ξ2

4d
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and the requested conditions are satisfied; then for every σ1 ∈ Sω(R
N ), we

have that (3.27) holds for all f ∈ Sω(R
N).

(2) Let

σ2(x, ξ) = F−1p(x, ξ),

where F−1 is the inverse Fourier transform in R2N and p(x, ξ) is a non van-
ishing polynomial, say,

p(x, ξ) =
∑

|α|+|β|≤m

cαβx
αξβ.

If p(x, ξ) 6= 0 for every (x, ξ) ∈ R2N , we have, indeed, that the condition

0 /∈ Im(σ̂2) is satisfied, and moreover, σ2 ∈ O′
C,ω(R

2N ). Observe that in this
case

Qσ2f(x, ξ) = σ2 ⋆Wig(f)(x, ξ)

=
∑

|α|+|β|≤m

cαβD
α
xD

β
ξ (Wig(f))(x, ξ) = p(Dx, Dξ)Wig(f)

is the differential operator of symbol p applied to Wig(f). Then for every
σ1 ∈ Sω(R

N) we have

‖eλωQσ1f‖∞ ≤ D
(12)
λ ‖eKλωp(Dx, Dξ)Wig(f)‖p

for every f ∈ Sω(R
N).

Remark 3.13. In the estimates between representations that we have proved, we
have always considered in the left-hand sides the sup norm ‖ · ‖∞, since this is what
is needed for the corresponding Donoho-Stark type uncertainty principles. Observe
however that we can easily get estimates with Lq-norms in the left-hand side by
increasing λ in the exponential containing the weight ω; indeed, given 1 ≤ q < ∞
and a function F on R2N , we have for every λ ≥ 0

‖eλωF‖q = ‖e−µωe(λ+µ)ωF‖q ≤ ‖e−µω‖q‖e(λ+µ)ωF‖∞,

with µ > 2N
bq

, using (2.2).

4. Local uncertainty principles for representations in Sω(R
N)

As applications of the estimates proved in Section 3, we can give uncertainty prin-
ciples of local type for time-frequency representations in the space Sω(R

N). We start
by recalling the Price local uncertainty principle for the Fourier transform, cf. [17].

Theorem 4.1. Let E ⊂ RN be a Lebesgue measurable set and α > N
2
. Then for every

f ∈ L2(RN), f 6= 0, and t, ξ ∈ RN we have
∫

E

|f̂(ξ)|2 dξ < K ′m(E)‖f‖2−
N
α

2 ‖|t− t|αf‖
N
α

2 (4.1)

∫

E

|f(t)|2 dt < K ′m(E)‖f̂‖2−
N
α

2 ‖|ξ − ξ|αf̂‖
N
α

2 , (4.2)
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where m(E) is the Lebesgue measure of the set E and

K ′ :=
π

N
2

α

(
Γ

(
N

2

))−1

Γ

(
N

2α

)
Γ

(
1− N

2α

)(
2α

N
− 1

) N
2α

(
1− N

2α

)−1

, (4.3)

where Γ is the Euler function given by Γ(x) :=
∫∞

0
tx−1e−t dt. The constant K ′ is

optimal, and equality in (4.1)-(4.2) is never attained for f 6= 0.

The word “local” is here referred to the fact that (looking for instance at the in-

equality (4.1)) the L2 contents of f̂ in a measurable set E must be small if the measure
of E is small and/or f is “concentrated” (where concentration is measured by the dis-
persion term ‖|t − t|αf‖2). This can be seen as a sort of refinement of the classical
Heisenberg uncertainty principle; indeed, the latter says that if f is concentrated,
then f̂ must be spread out, in the sense that it must have a large variance. This does
not exclude that f̂ is concentrated in very small sets sufficiently far away from each
other; the local uncertainty principle shows that this last possibility is not allowed,
by saying that f̂ cannot be too concentrated in an arbitrary small set E.

The main tool used in [17] to prove Theorem 4.1 is the next proposition, that we
shall use in the following for time-frequency representations.

Proposition 4.2. For every α > N
2
, f ∈ L2(RN) and t ∈ RN we have

‖f‖1 ≤
√
K ′‖f‖1−

N
2α

2 ‖|t− t|αf‖
N
2α
2 ,

where K ′ is given by (4.3). In particular, if f ∈ L2(RN) and ‖|t − t|αf‖2 < ∞ for
some α > N

2
and t ∈ RN , then f ∈ L1(RN ).

In the following we prove uncertainty principles of local type involving different
time-frequency representations, where we use weighted norms and a corresponding
weighted measure of the set E. We start by proving the following result. As in the
previous section, K and b always indicate the constants of conditions (α) and (γ) of
Definition 2.1, respectively.

Proposition 4.3. Let ω be a weight function and fix g ∈ Sω(R
N), g 6= 0, z ∈ R2N ,

and α > N . Let moreover E ⊂ RN be a Lebesgue measurable set.

(i) For every λ, µ ≥ 0, µ′ > N
b

there exists Cλ,µ,µ′ > 0 such that for every f ∈
Sω(R

N)∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ Cλ,µ,µ′Dµ(E)‖eλ′ωSpgf‖
1−N

α

2 ‖|z − z|αeλ′ωSpgf‖
N
α

2 ,

where

λ′ := 2[K(λ+ µ) + µ′], Dµ(E) :=

∫

E

e−2µω(ξ) dξ.

(ii) For every λ, µ ≥ 0, µ′ > N
b

there exists Cλ,µ,µ′ > 0 such that for every f ∈
Sω(R

N)∫

E

e2λω(x)|f(x)|2 dx ≤ Cλ,µ,µ′Dµ(E)‖eλ′ωSpgf‖
1−N

α

2 ‖|z − z|αeλ′ωSpgf‖
N
α

2 ,

where λ′ and Dµ(E) are as in point (i).
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Proof. (i) Fixed f ∈ Sω(R
N), λ, µ ≥ 0 and z ∈ R2N we have∫

E

e2λω(ξ)|f̂(ξ)|2 dξ =

∫

E

e2(λ+µ−µ)ω(ξ)|f̂(ξ)|2 dξ ≤ Dµ(E)
∥∥∥e(λ+µ)ω f̂

∥∥∥
2

∞
,

with Dµ(E) :=
∫
E
e−2µω(ξ) dξ. So, by applying (3.10) and (3.11) with p = 1, we have

∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ Dµ(E)C ′
λ,µ,µ′‖e2[K(λ+µ)+µ′]ωSpgf‖1, (4.4)

where

C ′
λ,µ,µ′ :=

(
eK(λ+µ)‖eK(λ+µ)ω ĝ‖∞

(2π)N‖g‖22

)2

‖e−µ′ω‖22,

with µ′ > N
b
. Therefore, using Proposition 4.2 with α > N applied to the function

h := e2[K(λ+µ)+µ′]ωSpgf , we obtain that
∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ C ′
λ,µ,µ′Dµ(E)

√
K ′‖eλ′ωSpgf‖

1−N
α

2 ‖|z − z|αeλ′ωSpgf‖
N
α

2 ,

with λ′ := 2[K(λ+ µ) + µ′]. Setting Cλ,µ,µ′ := C ′
λ,µ,µ′

√
K ′, we get the thesis.

(ii) Fixed f ∈ Sω(R
N ), λ, µ ≥ 0 and z ∈ R2N , applying the same calculation in

point (i), we have∫

E

e2λω(x)|f(x)|2 dx = (2π)−2N

∫

E

e2λω(x)| ˆ̂f(x)|2 dx

≤ (2π)−2NC ′
λ,µ,µ′Dµ(E)

√
K ′‖eλ′ωSpĝf̂‖

1−N
α

2 ‖|z − z|αeλ′ωSpĝf̂‖
N
α

2 ,

where Dµ(E) and λ′, µ′ are as in point (i).
Now observe that, from (3.4),

(2π)−2NSpĝf̂(x, ξ) = (2π)−2N |Vĝf̂(x, ξ)|2 = |Vgf(−ξ, x)|2 = Spgf(−ξ, x);

so, since z is arbitrary, we get the thesis. �

Remark 4.4. Observe that the constant Dµ(E) in Proposition 4.3 does not need to
be finite for every measurable set E and constant µ ≥ 0. Of course, Dµ(E) < ∞
for every µ ≥ 0 if m(E) < ∞, and D0(E) is the Lebesgue measure of E. The
quantity Dµ(E) may be finite also for E with infinite Lebesgue measure; for instance,
Dµ(E) < ∞ for every E if µ > N

2b
(see (2.2)). Similar observations apply for the next

results, where other quantities (playing the role Dµ(E)) appear, representing different
kind of weighted measures of the set E.

Now we prove local uncertainty principles for the spectrogram Spgf of two functions
f, g ∈ Sω(R

N ).

Proposition 4.5. Let ω be a weight function and fix g ∈ Sω(R
N), g 6= 0, z = (x, ξ) ∈

R2N and α > N
2
. Let moreover E ⊂ R2N be a Lebesgue measurable set.

(i) For every λ ≥ 0 there exists Cλ > 0 such that for every µ ≥ 0 and f ∈ Sω(R
N)∫

E

eλω(x,ξ)|Spgf(x, ξ)|dxdξ ≤

≤ CλD
′
µ(E)‖eλ′ωf‖1−

N
2α

2 ‖eλ′ω|x− x|αf‖
N
2α
2 ‖eλ′ωf̂‖1−

N
2α

2 ‖eλ′ω|ξ − ξ|αf̂‖
N
2α
2 ,
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where

λ′ := K2(λ+ µ), D′
µ(E) :=

∫

E

e−µω(x,ξ)dxdξ.

(ii) For every λ ≥ 0 there exists Cλ > 0 such that for every µ ≥ 0 and f ∈ Sω(R
N)

∫

E

eλω(x,ξ)|Spgf(x, ξ)|dxdξ ≤ CλMµ(E)‖eλ′ωf‖2−
N
α

2 ‖eλ′ω|x− x|αf‖
N
α

2 (4.5)

where

λ′ :=
K

2
(Kλ + µ), Mµ(E) :=

∫

E

eKλω(ξ)−µω(x)dxdξ.

(iii) For every λ ≥ 0 there exists C ′
λ > 0 such that for every µ ≥ 0 and f ∈ Sω(R

N)
∫

E

eλω(x,ξ)|Spgf(x, ξ)|dxdξ ≤ C ′
λM

′
µ(E)‖eλ′ωf̂‖2−

N
α

2 ‖eλ′ω|ξ − ξ|αf̂‖
N
α

2 , (4.6)

where

λ′ :=
K

2
(Kλ + µ), M ′

µ(E) :=

∫

E

eKλω(x)−µω(ξ)dxdξ.

Proof. (i) Fixed f ∈ Sω(R
N), z ∈ R2N and λ, µ ≥ 0, applying (3.6) with p = 1 we

have∫

E

eλω(x,ξ)|Spgf(x, ξ)|dxdξ ≤ D′
µ(E)‖e(λ+µ)ωSpgf‖∞

≤ D′
µ(E)

eK(λ+µ)e2K
2(λ+µ)

(2π)N
‖eK2(λ+µ)ωf‖1‖‖eK

2(λ+µ)ωg‖∞‖eK2(λ+µ)ω f̂‖1‖eK
2(λ+µ)ω ĝ‖∞,

where D′
µ(E) :=

∫
E
e−µω(x,ξ)dxdξ. Setting

C ′
λ :=

eK(λ+µ)e2K
2(λ+µ)

(2π)N
‖eK2(λ+µ)ωg‖∞‖eK2(λ+µ)ω ĝ‖∞

and applying Proposition 4.2 to ‖eK2(λ+µ)ωf‖1 and ‖eK2(λ+µ)ωf̂‖1 for α > N
2
, we get

the thesis for Cλ = C ′
λK

′.
(ii) Fixed f ∈ Sω(R

N), z ∈ R2N and λ, µ ≥ 0, applying (3.3) with p = 1 and (2.1)
we have∫

E

eλω(x,ξ)|Spgf(x, ξ)|dxdξ ≤
∫

E

eKλ(1+ω(x)+ω(ξ))−µω(x)+µω(x) |Spgf(x, ξ)|dxdξ

≤ eKλ‖e(Kλ+µ)ω(x)Spgf‖∞
∫

E

eKλω(ξ)−µω(x)dxdξ

≤ eKλ+K
2
(Kλ+µ)‖eK

2
(Kλ+µ)ωf‖21‖e

K
2
(Kλ+µ)ωg‖2∞

∫

E

eKλω(ξ)−µω(x)dxdξ.

Setting Mµ(E) :=
∫
E
eKλω(ξ)−µω(x)dxdξ, we get the thesis applying Proposition 4.1 to

‖eK
2
(Kλ+µ)ωf‖21 for α > N

2
.

(iii) The proof of (4.6) is analogous and so is omitted. �
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Remark 4.6. The quantities Dµ(E), D′
µ(E), Mµ(E), M ′

µ(E) in Propositions 4.3 and
4.5 give a measure of the “size” of E (observe that, in particular, for µ = 0 they
all coincide with the Lebesgue measure of E when considering λ = 0 in Proposi-
tion 4.5(ii)-(iii)); moreover, the quantities ‖|z − z|αeλ′ωSpgf‖2, ‖eλ′ω|x− x|αf‖2 and

‖eλ′ω|ξ − ξ|αf̂‖2 give (weighted) measures of the dispersions of Spgf , f , and f̂ , re-
spectively. Then we can interpret the previous results as local uncertainty principles
involving time-frequency representations, in the following sense: Proposition 4.3 says
that in a measurable set E ⊂ RN the contents of f and f̂ must be as small as the size
of E and/or the (weighted) dispersion of the spectrogram Spgf are small. Similarly,

Proposition 4.5 interchanges the roles of Spgf and f , f̂ , saying that in a measurable
set E ⊂ R2N the contents of the spectrogram Spgf must be as small as the size of E

and/or the (weighted) dispersion(s) of f and f̂ are small.

In the following we prove other results of this kind, involving the τ -Wigner trans-
form and representations in the Cohen class. We start by analyzing the τ -Wigner of
a function f ∈ Sω(R

N).

Proposition 4.7. Let ω be a weight function and fix g ∈ Sω(R
N), g 6= 0, τ ∈ (0, 1)

and z = (x, ξ) ∈ R2N .

(i) Let E ⊂ RN be a Lebesgue measurable set, and α > N . For every λ, µ ≥ 0,
µ′ > 2N

b
there exists Cλ,µ,µ′ > 0 such that for every f ∈ Sω(R

N)
∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ Cλ,µ,µ′Dµ(E)‖eλ′ωWigτ (f)‖
1−N

α

2 ‖|z − z|αeλ′ωWigτ (f)‖
N
α

2 ,

where

λ′ := 2K[K(λ+ µ) + µ′], Dµ(E) :=

∫

E

e−2µω(ξ) dξ.

(ii) Let E ⊂ R2N be a Lebesgue measurable set, and α > N
2
. For every λ, µ ≥ 0,

µ′ > 2N
b
(K2 + 2) there exists Cλ,µ,µ′ > 0 such that for every f ∈ Sω(R

N)
∫

E

eλω(x,ξ)|Wigτf(x, ξ)|dxdξ

≤ Cλ,µ,µ′D′
µ(E)‖eλ′ωf‖1−

N
2α

2 ‖eλ′ω|x− x|αf‖
N
2α
2 ‖eλ′ωf̂‖1−

N
2α

2 ‖eλ′ω|ξ − ξ|αf̂‖
N
2α
2 ,

where

λ′ := K2[8K4(λ+ µ) + µ′], D′
µ(E) =

∫

E

e−µω(x,ξ)dxdξ.

Proof. (i) We first observe that, proceeding as in the proof of (4.4), we get
∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ Dµ(E)C̃λ,µ,µ′‖e2[K(λ+µ)+µ′]ωSpgf‖∞ (4.7)

for λ, µ ≥ 0 and µ′ > 2N
b

. Then, by (3.20) we get
∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ C ′
λ,µ,µ′Dµ(E)‖eλ′ωWigτ (f)‖1,
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with λ′ = 2K[K(λ + µ) + µ′]. Therefore, using Proposition 4.2 with α > N applied
to the function eλ

′ωWigτ (f), we obtain the conclusion.
(ii) Fixed f ∈ Sω(R

N), z ∈ R2N and λ, µ ≥ 0, µ′ > 2N
b
(K2 + 2), applying (3.21)

with p = ∞ we have
∫

E

eλω(x,ξ)|Wigτf(x, ξ)|dxdξ ≤ D′
µ(E)‖e(λ+µ)ωWigτ (f)‖∞

≤ D′
µ(E)D

(6)
λ+µ,µ′‖eλ′′ωSpgf‖∞,

where D′
µ(E) :=

∫
E
e−µω(x,ξ)dxdξ and λ′′ := 8K4(λ + µ) + µ′. Proceeding as in

Proposition 4.5(i) we get the thesis. �

Finally, we give similar results for general time-frequency representation in the
Cohen class.

Proposition 4.8. Let ω be a weight function and fix g ∈ Sω(R
N), g 6= 0, and

z = (x, ξ) ∈ R2N .

(i) Let E ⊂ RN be a Lebesgue measurable set, and α > N . Fix a kernel σ ∈
O′

C,ω(R
2N) with 0 /∈ Im(σ̂). Then for every λ, µ ≥ 0, µ′ > 2N

b
there exists

Cλ,µ,µ′ > 0 such that for every f ∈ Sω(R
N)

∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ Cλ,µ,µ′Dµ(E)‖eλ̃ωQσf‖
1−N

α

2 ‖|z − z|αeλ̃ωQσf‖
N
α

2 ,

where

λ̃ := 2K[K(λ+ µ) + µ′], Dµ(E) :=

∫

E

e−2µω(ξ) dξ.

(ii) Let E ⊂ R2N be a Lebesgue measurable set, and α > N
2
. Fix a kernel σ ∈

S ′
ω(R

2N) satisfying ‖eνωσ‖1 < ∞ for every ν ≥ 0. Then for every λ, µ ≥ 0,
µ′ > 2N

b
(K2 + 2) there exists Cλ,µ,µ′ > 0 such that for every f ∈ Sω(R

N)
∫

E

eλω(x,ξ)|Qσf(x, ξ)|dxdξ

≤ Cλ,µ,µ′Dµ(E)‖eλ′ωf‖1−
N
2α

2 ‖eλ′ω|x− x|αf‖
N
2α
2 ‖eλ′ωf̂‖1−

N
2α

2 ‖eλ′ω|ξ − ξ|αf̂‖
N
2α
2 ,

where

λ′ := K2[8K5(λ+ µ) + µ′], D′
µ(E) =

∫

E

e−µω(x,ξ)dxdξ.

Proof. (i) Fixed f ∈ Sω(R
N) and λ, µ ≥ 0, by (4.7) we have

∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ C̃λ,µ,µ′Dµ(E)‖eλ′ωSpgf‖∞

= C̃λ,µ,µ′Dµ(E)‖eλ′ω (Wig(g̃) ⋆Wig(f)) ‖∞,

for µ′ > 2N
b

, where λ′ = 2[K(λ + µ) + µ′] and the last equality follows from (2.7)

with τ = 1
2
. Set σ1 := Wig(g̃) ∈ Sω(R

2N). Since σ1 and σ satisfy the hypotheses of



MUTUAL ESTIMATE OF REPRESENTATIONS AND UNCERTAINTY PRINCIPLES 25

Theorem 3.12, from (3.28) with p = 1 we then have∫

E

e2λω(ξ)|f̂(ξ)|2 dξ ≤ C̃λ,µ,µ′Dµ(E)‖eλ′ωQσ1f‖∞

≤ C̃ ′
λ,µ,µ′Dµ(E)

∥∥∥∥eKλ′ωF−1

(
σ̂1

σ̂

)∥∥∥∥
∞

‖eKλ′ωQσf‖1.

The conclusion then follows from Proposition 4.2 applied to ‖eKλ′ωQσf‖1.
(ii) Fixed f ∈ Sω(R

N) and λ, µ ≥ 0, µ′ > 2N
b
(K2 + 2), applying (3.26) with p = ∞

we have ∫

E

eλω(x,ξ)|Qσf(x, ξ)|dxdξ ≤ D′
µ(E)‖e(λ+µ)ωQσf‖∞

≤ D′
µ(E)D

(11)
λ+µ,µ′‖eλ′′ωSpgf‖∞,

where D′
µ(E) :=

∫
E
e−µω(x,ξ)dxdξ and λ′′ := 8K5(λ + µ) + µ′. Proceeding as in

Proposition 4.5(i) we get the thesis. �

Remark 4.9. Propositions 4.7 and 4.8 give, for Wigτ and Qσ, results that correspond
to Propositions 4.3(i) and 4.5(i) for the spectrogram. Proceeding in a similar way it
is not difficult to prove, for Wigτ and Qσ, results of the kind of Propositions 4.3(ii)
and 4.5(ii)-(iii).
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