2%, UNIVERSITA
%5 DEGLISTUDI
éE=" DITORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Jason+BSPL: Including Communication Protocols in Jason

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/2028593 since 2024-10-28T07:59:33Z

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

07 January 2025

Jason+BSPL: Including Communication
Protocols in Jason

Matteo Baldonil [0000—0002—9294—0408]
Samuel H. Christie V2[0000-0008-1341-0087]
Amit K. Choprai’;[00700037462977594]’ and
Munindar P. Smgh2 [0000—0003—3599—3893]

1 Universita di Torino, Torino, Italy
2 North Carolina State University, Raleigh, NC, USA
3 Lancaster University, Lancaster, United Kingdom

Abstract. Current BDI-based programming models for agents lack sup-
port for engineering protocol-based agents. We propose Jason+BSPL, an
extension of Jason for communicating agents based on protocols that is
compatible with the BDI style of programming agents. Whereas Jason
is focused on reactions to handle incoming messages, Jason+BSPL sup-
ports organizing the business logic of an agent based on its goals. We
describe its implementation and we demonstrate how Jason+BSPL sim-
plifies the programming of decentralized multiagent systems compared
to the reactive programming model.

Keywords: Jason - BSPL - Engineering MAS - Interaction Protocols.

1 Introduction

Interaction protocols are crucial to engineering multiagent systems (MAS) com-
prised of autonomous and heterogeneous agents. Specifically, protocols enable
realizing MAS as decentralized software systems, that is, as systems without a
distinguished locus of state or control.

Although the value of protocols is widely recognized, established MAS pro-
gramming models and frameworks lack adequate protocol-based programming
abstractions. Cognitive (BDI-based) programming models, as exemplified by Ja-
son [28/7], support sending and receiving messages but not implementing agents
based on protocols. JaCaMo [5] includes Jason; however, it deemphasizes mes-
saging in favor of operations on centralized artifacts reminiscent of Web ser-
vices. Notably, JaCaMo acknowledges the lack of protocol-based programming
abstractions. JADE [3] supports implementing MAS based on the FIPA inter-
action protocols [16]; however, the vast majority of applications would require
custom, that is, unsupported, protocols.

Protocols promise several benefits to engineering MAS. One, protocols enable
realizing MAS in a decentralized manner, that is, without relying on a distin-
guished locus of state or control. Two, protocols enable structuring an agent’s
implementation by cleanly separating the reasoning about its communication

2 M. Baldoni et al.

state (local state) from its private internal business logic. Three, protocols help
avoid errors as an agent programmer does not have to implement reasoning about
the communication state. Fourth, protocols support loose coupling by enabling
the implementation of an agent without knowledge of other agents’ implemen-
tations.

Clearly, any MAS implements some conceptual protocol. What is lacking are
protocol-based programming abstractions that make realizing a decentralized
MAS (via the implementation of its agents) convenient.

The common programming model for dealing with messages is reactive. Here,
the idea is to write a message handler for each incoming message. This approach
goes back to programming message-oriented middleware [I8] and was adopted
in early work on programming protocols [I5]. However, despite its longevity, the
approach has the shortcoming that it largely ignores the structuring provided
by a protocol and considers each message independently. However, the messages
are generally related to each other and an agent usually needs to act based on
its state, which depends on the related messages received or sent. Thus, in the
reactive model, the agent code reconstructs the necessary state computation (1)
tied up with the requisite business reasoning and (2) in more than one place,
based on what message emissions and receptions can lead to that state.

In contrast, Jason+BSPL develops an enablement-based programming model
that (1) applies the protocol semantics to automate part of the state construction
and (2) facilitates an agent program to capture the requisite business reasoning.

1.1 Contributions

We contribute Jason+BSPL, a novel protocol-based programming model for
multiagent systems. Jason+BSPL brings together two important aspects of au-
tonomy. One, cognitive autonomy, as reflected in an agent’s goals and emphasized
by approaches in the cognitive paradigm. Two, social autonomy, as reflected in
an agent’s dependence upon others and emphasized in the interaction-oriented
paradigm [249]. Specifically, Jason+BSPL’s abstractions enable structuring and
implementing an agent as a goal-driven entity that performs communication ac-
tions (sends messages) in pursuit of its goals.

As an exemplar of interaction orientation, we adopt the Blindingly Sim-
ple Protocol Language (BSPL) [25], a declarative, information-based protocol
language that supports decentralized enactments. An advantage of BSPL over
alternative languages is that it enables specifying flexible protocols [10]. As an
exemplar of cognitive programming models, we adopt Jason. Specifically, we im-
plement a BSPL adapter in Jason that supports selecting and performing the
enabled communicative acts (given the state of protocol enactments). Jason’s
rule-based nature accords well with BSPL’s declarative information-based ap-
proach.

Jason+BSPL: Including Communication Protocols in Jason 3

1.2 Novelty

We demonstrate a new protocol-based programming model that builds on Jason
and provide an implementation that realizes the model in Jason. This approach
demonstrates

— Responsiveness to arbitrary events, upon which we check the enablement of
potential actions.

— Structuring code so that the programmer focuses on the business logic to
take actions in a decentralized setting.

— Loose coupling between the protocol and the business logic by modularly
and reusably capturing the reasoning about protocol state.

— Generating rules corresponding to message semantics based solely on mes-
sage specifications (protocol).

— Ability to handle composite keys to support automatically identifying and
correlating information. By using “semantic” keys (i.e., from the application
domain), Jason+BSPL makes it easier to apply the logic programming model
underlying Jason to capture business logic.

Organization The rest of this paper is organized as follows. Sections [2] and [3]
introduce information protocols and Jason. Section [4] introduces our proposed
architecture and programming model. Section [5] describes a conceptual evalu-
ation of our approach, showing key distinctions and how it meets important
criteria. Sections [] present a review of the related work, our conclusions, and a
discussion of the future work.

2 Background: Information Protocols

An information protocol, as in the Blindingly Simple Protocol Language (BSPL)
[25], specifies communication in a multiagent system and provides a basis for
implementing its agents in a loosely coupled manner. Listing |1} illustrates the
main features of BSPL via our running example.

Listing 1. The initial NetBill Protocol (goods before pay)

1 NetBill {

2 role (M)erchant, (C)ustomer

3 parameter out ID key, out item, out outcome

4

5 C —> M: request[out ID key, out item]

6 M—> C: quote[in ID key, in item, out price]

7 C —> M: accept[in ID key, in item, in price, out decision, out outcome]
8 C —> M: reject[in ID key, in item, in price, out decision, out done]
9 M—> C: goods[in ID key, in item, in outcome, out shipped]

10 C —> M: epo[in ID key, in item, in shipped, out cc]

11 M —> C: receipt[in ID key, in price, in cc, out receipt, out done]

A protocol specifies roles and message schemas exchanged by them. A mes-
sage schema has a name, a sender, a receiver, and one or more parameters, some
of which are designated "key'. A message instance is a tuple of bindings of that
schema. The "key™ parameters of a schema form a composite key and uniquify
its instances.

4 M. Baldoni et al.

A role knows bindings for some parameters if it has observed (sent or re-
ceived) messages with bindings for those parameters. Parameters adorned "in™
must have bindings known to the sender when emitting a message. Parameters
adorned "out™ and "nil T (not shown) must not have bindings known to the sender
when emitting a message; parameters with "out' become known then, but those
with Tnil do not. By uniqueness, no two message instances with the same bind-
ings for overlapping "key™ parameters may have distinct bindings for common
non-key parameters. Since bindings are introduced through "out™ parameters,
no two message instances may have overlapping key parameter bindings as well
as a binding of the same "out™ parameter. BSPL thus captures causality and
integrity through information.

Message emissions are constrained solely by their information constraints,
not by any arbitrary control flow constraints. ID identifies enactments of NetBill.
CUSTOMER may send a request at any time by generating a new binding for ID
and some binding for item. To send an instance of the quote message, MERCHANT
must know the bindings of ID and the correlated item and not know the binding
of the correlated price; however, upon emitting the quote, it knows the binding
of price. In Listing |1} epo (payment) may only happen after goods because epo
has an information dependency on goods via shipped.

Notably, a message may be received at any time in any relative order with re-
spect to other messages, obviating the need for ordered-delivery communication
services.

3 Background: Agent Programming in Jason

Jason implements in Java, and extends, the agent programming language AgentS-
peak(L) [7]. Jason agents have a BDI architecture. Each has a belief base, and a
plan library. It is possible to specify achievement (operator ‘!’) and test (oper-
ator ‘?7’) goals. Each plan has a triggering event (causing its activation), which
can be either the addition or the deletion of some belief or goal. The syntax is
declarative.

A Jason plan is specified as triggering event : (context) < (body), where
triggering event denotes the event the plan handles, the context specifies the
circumstances when the plan could be used, the body is the course of action
that should be taken. The context and the body can be true or omitted when
necessary. Jason extends AgentSpeak(L) by introducing annotations for beliefs,
goals, and plans, strong negations, personalization for selection functions, and
other functionalities useful to programmers [7]. Listing [2[reports a snippet of
NetBill protocol implementation in Jason.

Listing 2. Snippet of NetBill implementation in Jason.
1 +request(ld, ltem)[source(Customer)]
2 : price (ltem, Price)
3 <— +nbp_ state(ld, quoting);
4 .send (Customer, tell , quote(ld, Item, Price)).
5
6
7

+accept(ld, Item, Price)[source(Customer)]
nbp state(ld, quoting) &

Jason+BSPL: Including Communication Protocols in Jason 5

8 goods (Item, Goods)

9 <— —nbp_ state(ld, quoting);

10 +nbp state(ld, shipping);

11 .send (Customer, tell , goods(ld, Item, Price, Goods)).

There are two plans, the triggering events are the adding of the beliefs request
and accept, respectively, when the source is a message from CUSTOMER. In the
case of adding a request, the offer Price is determined by the predicate price
and, if this succeeds, the quote is sent. The progressed state of the protocol is
recorded in the belief base by adding the predicate nbp _state.

Listing [2] exemplifies the reactive programming model: a plan is executed to
handle each received message, resulting typically in the emission of a message
(unless the received message is the last in a protocol enactment).

The reactive programming model couples messages with the agent implemen-
tation, forcing the developer to remember their causal relationships. Notably, the
protocol itself does not feature any message-to-message coupling; when a mes-
sage may be emitted depends purely upon information.

4 Proposed Programming Model

Moving away from the reactive model, we propose an information-based pro-
gramming model in which the protocol-related state of an agent is captured via
the set of messages it is enabled to send in that state. The enablement-based
programming model supports programming a Jason agent by focusing the rea-
soning on what is needed to emit messages while avoiding recapitulating the
protocol in each agent’s internal implementation. Below, we describe the main
ideas of the programming model.

4.1 System Architecture

We describe the main elements of the Jason+BSPL architecture.

Figure[I] shows a Jason agent under Jason+BSPL. The local state comprises
beliefs about observed messages and represents the protocol state. It is used
for computing enabled messages and validating messages before emission or re-
ception. The internal state comprises beliefs about whatever is relevant to the
agent’s reasoning and not included in the protocol. There are no other beliefs.
The adapter applies the protocol specification to validate messages and update
the local state. Each agent has plans and a reasoner who executes its plans. Its
control state is given by its current intentions and associated objects.

4.2 Representing the Local State
Jason+BSPL preserves agent autonomy by separating each agent’s local state

(shared between agents who communicate with each other) from its internal
state (not shared).

6 M. Baldoni et al.

BDI Agent BDI Agent
Plans Plans
Beliefs Beliefs
Internal State Internal State
************* | e e
. Local State | | Local State !

‘Jason—l—BSPL Adapter}i Information Protocol 4{Jason+BSPL Adapter‘

Asynchronous Communication Infrastructure

Fig. 1. Each agent has an Jasons+BSPL adapter generated for the roles it plays in the
information protocol. The adapter computes enabled messages and validates incoming
and outgoing messages against the protocol and updates the local state. The local state
is maintained as a set of beliefs in Jason.

In Jason+BSPL, a valid message observation (emission or reception) is repre-
sented as a belief and added to the local state. For example, assuming agents Al-
ice and Bob as CUSTOMER and MERCHANT, respectively, the message request|[1,
“fig”], if it passes validation, is constructed as the Jason term request(“Alice”,
“Bob”, 1, “fig”) and is added to the local state.

Each message observation affects the agent’s local state. Given key param-
eters, additional parameters are deemed known, if the bindings of these pa-
rameters exist in the belief base. And, parameters are deemed unknown if their
bindings are not already known. An incoming message is compatible with the lo-
cal state if it is consistent (with respect to its key parameters) with the bindings
already present in the local state.

4.3 Enablement

A full instance of a message schema is a tuple of bindings for the "in™? and
Tout™ parameters ("nil™ parameters of the schema must have no bindings in an
instance). Valid full instances may be emitted. An enabled instance is a partial
instance in that its "in' parameters are bound because their bindings are known
and its "out ' parameters are not bound because they are not known. The idea
is given a local state, one can compute the enabled instances, which capture the
possible emissions of the agent in that local state.

For example, let MERCHANT’s local state contain request[1, “fig”] meaning
that it has received that request from the CUSTOMER. Then, the MERCHANT has
two enabled instances in that state: request[ID, item] and quote[1, “fig”, price].

4.4 Programming Model

To avoid the message-to-message coupling induced by the traditional reactive
programming model, Jason+BSPL supports a novel programming model based

Jason+BSPL: Including Communication Protocols in Jason 7

on message enablement, in which the developer specifies plans for each of the
messages being emitted instead of those received. The basic idea of the program-
ming model is captured by the plan pattern in Listing [} To achieve some agent-
specific goal g, the agent queries if there are enabled instances corresponding to
the messages it wants to send, and if there are, it completes them by produc-
ing bindings for their "out™ parameters, and then attempts to send them all in
one fell swoop. The goals g and lcomplete are agent-specific; in particular, the
agent programmer must define the plan corresponding to the business logic of
completing enabled instances into full instances. However, the agent program-
mer does not have to implement the enabled queries or write the plan to achieve
lattempt; they are supported by a generic protocol adapter corresponding to the
MERCHANT role (Listing |5)).

Listing 3. Agent plan pattern in Jason+BSPL.

1 +!g

2 : enabled(m;) &...& enabled(my) & context
3 <— lcomplete mi(01),...,mq(0q);

4 lattempt (mq,...,mgq) .

Listing [shows an application of the pattern in Listing [3]in an implementa-
tion of a NetBill MERCHANT from Listing[I] It shows a plan for sending quotes;
it is triggered whenever the goal of sending a quote is asserted; if there is an
enabled quote; it computes a binding for the "out™ parameter price in quote; and
sends it (via the attempt).

Listing 4. Snippet of NetBill implementation in Jason+BSPL.
Q@quote—plan [atomic]
+!send quote(ld, Item, Customer)
: enabled (quote(id(Ild), item(ltem), price(out))) &
price (ltem, Price)
<— lattempt (quote(id(Id), item(ltem),
price(Price))[receiver (Customer)]) .

6

7 @quote—plan[atomic]

8 +!send goods(Id, Item, Customer)

9 : enabled (goods(id(ld), item(ltem), outcome(Outcome),
shipped (out)) &

10 shipped (ltem, Shipped)

11 < lattempt (goods(id(ld), item(ltem), outcome(Outcome),
shipped (Shipped))[receiver (Customer)]) .

Listing [5| shows a snippet from the NetBill protocol adapter. It receives mes-
sages and adds them to the local state after checking consistency, computes
enabled predicates, and translates attempts into actual emissions if they pass

consistency. This is the code the agent programmer doesn’t have to write since
it can be generated from Listing [T}

Listing 5. Protocol adapter for MERCHANT role in NetBill. Agent programmer does

not have to write the adapter. Any MERCHANT agent can use the adapter in its plans.
14m //If message m passes consistency, add it to local state
2 : consistent (m)

<— +m[Istate].

3

4

5 enabled (quote (id (Key), item(ltem), price(out))[receiver (Customer)])
6 = request (id (Key), item(ltem))[source(C), Istate] &

7 not sent(quote(id(Key), ,))[source(myself), Istate].

8

8 M. Baldoni et al.

9 enabled(goods...) //Analogous to enabled(quote) above
10 3= coo
11 enabled(receipt...) //Analogous to enabled (quote) above
12 T—...

13

14 +'!attempt (Messages)

15 : compatible(Messages)

16 <— for (.member(Message[receiver(R)], Messages) {
17 .send (R, tell , Message);

18 ¥

Messages in an attempt are compatible if there are no two messages that are
correlated (are in the same enactment) and share the same "out” parameter. If
there were two such messages, that would mean that in one enactment, two bind-
ings for an "out™ parameter have been generated, which as explained in Section[2]
is not allowed by BSPL semantics. So messages are only emitted via the Jason
.send action if they are compatible. For example, by the protocol in Listing
in any enactment, accept and reject will be simultaneously enabled. Therefore,
an agent programmer may write a plan that attempts to send both. Since they
share decision, that means both feature a binding for decision, and therefore ac-
tually sending them would violate the protocol. Therefore, the attempt to send
both fails. Together, the ideas of enablement and attempt support compliance
with the protocol.

5 Evaluation

We now describe our approach in additional detail, weaving in an evaluation with
respect to our motivating criteria. Our overarching claim is that Jason+BSPL to
better structured agent code that contributes to more loosely coupled systems,
meaning that changes to various system components can be made more easily
without changing other components. We support this claim by demonstrating
several examples.

Listing [2] shows the typical features of a Jason implementation of a NetBill
MERCHANT from Listing [T}

Listing [2] contains two different coordination patterns: subjective and objec-
tive [22]. Subjective coordination concerns how the MERCHANT drives its inter-
actions with others in view of its own goals. In Listing [2] this is represented by
the computation of the price of an item (the predicate price(Item, Price)) and
the computation of the goods starting from the item (the predicate goods(Item,
Goods)). In Figure [2] this is represented by the process activity in the lifeline
(in blue color). Objective coordination concerns how the interaction between an
agent and its environment (in our case, other agents) is governed so that the
MAS has desirable global properties. In the listing and in the Figure [2, objective
coordination is represented by the sequence of message exchange, the proto-
col specification. For example, the reception of accept can be processed in the
protocol state where MERCHANT has sent quote and results in the sending of
goods and the corresponding state change. request can be received in any state
(due to the lack of state guard) and results in the sending of a quote and the
corresponding state change.

Jason+BSPL: Including Communication Protocols in Jason 9

[Customer } [Merchant }
| |
|
«request» |

I l
| «quote»
!

alt

«goods»

I
«epo» |
‘ .
| «receipty»
I
[[
I I

Fig. 2. The UML Sequence Diagram of the NetBill Protocol.

An explicit environment model [29/238] that encodes the objective coordina-
tion is not suitable for decentralized MAS. The agents must interact directly with
each other and agent programmers must ensure that they will behave as expected
to ensure global properties (e.g., protocols) [27]. For decentralized settings, [22]
motivate agent platforms that provide abstractions that support conveniently en-
gineering MAS in a manner that supports global properties. In particular, they
argue for high cohesion and low coupling of the software in order to facilitate
maintenance and reuse. Cohesion captures the unity of purpose of a component,
and coupling captures interdependence between components.

Existing programming models, such as Jason [6] and JADE [2], don’t provide
adequate support for objective coordination. As Listing [2| shows, using Jason,
the logic corresponding to objective and subjective coordination is entangled
and must be implemented by the agent programmer in an ad hoc manner. This
leads to tighter coupling between components and lower cohesion within.

As Listing [2] shows, sending quote and goods are tightly coupled to receiv-
ing request and accept, respectively. Such tight coupling is the hallmark of the
reactive way of implementing protocols. But what if sending a message depends
on the receipt of multiple messages? A possible way is to add constraints on the
plan (for example, by some conditions in the context). However, doing so mixes
the subjective and objective coordination even further, causing tighter coupling
and lower cohesion. We discuss this in Section 5.4l

Jason+BSPL offers a way to introduce such abstractions and mechanisms
into agent platforms with the ambition of realizing fully decentralized MAS. It

10 M. Baldoni et al.

separates the subjective coordination from the objective coordination into differ-
ent modules. Whereas subjective coordination is specific to the agent, objective
coordination, being based on a protocol, is neatly encapsulated in an automati-
cally generated protocol adapter that provides enabled messages. From the agent
(programmer’s) point of view, the set of enabled messages at any point captures
its protocol state, decoupling its history of emissions and receptions from future
emissions, and thus avoiding the limitations of the reactive paradigm. The sub-
jective coordination lies in agent-specific goals and plans that pick some enabled
messages to flesh out (by binding their Tout™ parameters) and send them. In
a nutshell, sending a message is not necessarily a reaction to the reception of
a message. Instead, it is a consequence of the agent pursuing its own goals by
taking the enabled messages into account.

In Listing [4] the enabled predicate and the attempt goal neatly encapsulate
the objective coordination and separative it from the subjective aspects (when to
send a quote and with what price). This contributes to conveniently engineering
agents in a manner that supports low coupling and high cohesion.

Below, we show in more detail how Jason+BSPL supports loose coupling and
high cohesion by focusing on how it accommodates changes to the three main
conceptual artifacts in a decentralized MAS: (1) the protocol, (2) agents, and
(3) the communication service that agents use to exchange messages.

5.1 Changes to Protocol

Listing [1| shows a NetBill protocol in which goods must happen before epo (pay-
ment). Listing |§| shows a NetBill-Mod protocol in which epo must happen before
goods.

Listing 6. The NetBill Protocol

1 NetBill =Mod {

2 role (M)erchant, (C)ustomer

3 parameter out ID key, out item, out outcome

4

5 C —> M: request[out ID key, out item]

6 M—> C: quote[in ID key, in item, out price]

7 C —> M: accept[in ID key, in item, in price, out decision, out outcome]
8 C —> M: reject[in ID key, in item, in price, out decision, out done]
9 M—> C: goods[in ID key, in item, in cc, out shipped]

10 C —> M: epo[in ID key, in item, in outcome, out cc]

11 M —> C: receipt[in ID key, in price, in cc, out receipt, out done]

Listing [] shows a plan for !send _goods. Given NetBill-Mod, the only mod-
ification we would have to make to Listing [4] to make it work would be in the
signatures of the enabled predicate and the attempt goal. Specifically, we need to
only replace outcome(Outcome) by shipped(Shipped). The change of the order-
ing between goods and epo is neatly encapsulated in NetBill-Mod’s adapter and
enablement. Thus the impact of the changes in the specification of the protocol
is fairly limited on the agent code. By contrast, under the reactive model, the
changes are more extensive. For the original NetBill, one would have written a
plan to process accept by sending goods. For NetBill-Mod, that plan would have
to be replaced by a plan that processes epo by sending goods.

Jason+BSPL: Including Communication Protocols in Jason 11

5.2 Changes to Agent Logic

If the protocol remains the same, under Jason+BSPL, changes to an agent’s
business logic will tend to be highly localized. For example, plan !send _goods in
Listingcould be modified to ship only to friendly customers (via an appropriate
query). Such changes would also be relatively straightforward in a reactive model
except for the fact that the protocol logic and the agent’s business logic would
be mixed.

5.3 Changes to Communication Infrastructure

Jason+BSPL accommodate changes to the communication infrastructure more
easily. A fairly drastic change would be switching from an ordered communica-
tion service such as TCP to an unordered service such as UDP. The motivation to
do so could be high performance or settings such as the IoT, where TCP is unde-
sirable. Jason+BSPL agents can handle messages in whatever order they arrive:
they are simply added to the agent’s local state and may contribute to the en-
ablement or disablement of other messages. However, all this is abstracted away
in the local state. So even without ordering guarantees, Jason-+BSPL agents
work without needing any change.

5.4 Correlation

Correlation refers to the situation where an agent may wish to combine infor-
mation from multiple messages to decide its action. In BSPL, such interactions
are indicated by a protocol (and some of its messages) having a composite key.
We adopt a logistics scenario from [IT] to highlight the potential for correlation.

We first describe the scenario, which concerns the handling of purchase or-
ders (POs) once they have been placed (by customers) with a MERCHANT. The
other roles involved are WRAPPER, LABELER, and PACKER. A PO may have sev-
eral items, each of which may have its own wrapping requirements. MERCHANT
sends each item in a PO separately to WRAPPER, who sends wrapped items to
PACKER. MERCHANT also sends the PO’s shipping address to LABELER, who
sends the corresponding shipping label to PACKER. If PACKER has received a
PO’s label, then for every wrapped item it has received for that PO, it may send
a notification to the MERCHANT that it is packed. Figure [3] shows the flow of
communication between the roles and Listing [7] captures the protocol in BSPL.
Notice the composite key (oID,ilD): oID identifies POs and ilD identifies items
within a PO.

Listing 7. The Logistics Protocol [II]
Logistics
role (M)erchant, (W)rapper, (L)abeler, (P)acker

1

2

3

4 parameter out olD key, out ilD key, out item,
5 out status
6
7
8

M —> L: labelRequest[out olD key, out address]

12 M. Baldoni et al.

Merchant
e N
Address Items
e N
Labeler Items packed Wrapper

~ ~
Shipping label Items wrapped

N e

Packer

Fig. 3. Logistics scenario, schematically, relative to a PO.

9 M —>W: wrappingRequest[in olD key, out ilD key,

10 out item]

11

12 W —> P: wrapped[in olD key, in ilD key, in item,
13 out wrapping]

14

15 L —> P: labeled[in olD key, in address, out label]
16

17 P —> M: packed[in olD key, in ilD key, in wrapping,
18 in label , out status]

Listing 8. An Jason+BSPL plan for sending packed messages. Notice the absence of

programmer-written logic to correlate label with item.
1 @quote—plan[atomic]
2 +!send packed

3 : enabled(packed(olD(OID), iID(IID) ,item(ltem),
wrapping (Wrapping) ,label (Label),status(out))

4 <— lcompletePacked(, , , ,status(Status));

5 lattempt (packed(olD(OID), ilID(IID), item(ltem),

wrapping (Wrapping) ,label (Label), status(Status)).

6

7 +!completePacked(_, , , ,status(Status))

8 <— Status = true.

Listing [9] shows, in contrast, the logic a Jason programmer would have to
write. Notice that the programmer must implement the correlation via two rules,
which leads to complexity.

Listing 9. Jason plans for sending packed messages. The programmer would write
two plans to capture the orders in which Labeled and Wrapped messages may arrive.
Notice that the programmer must write these plans even if pairwise FIFO messaging

is assumed between the agents.
1 +labeled (OID, ,Label)
wrapped (OID, [ID, ,Wrapping)
& packingdone(OID, IID, Status)
<— .send (packed (OID, IID, Wrapping, Label, Status))

+wrapped (OID, IID, ,Wrapping)
: labeled (OID, ,Label)
& packingdone(OID, IID, Status)
<— .send (packed (OID, IID, Wrapping, Label, Status))

© 00O Uk WN

Jason+BSPL: Including Communication Protocols in Jason 13

6 Related Work and Conclusions

We demonstrated Jason+BSPL, a programming model that combines BDI-based
and protocol-based abstractions and as such addresses a crucial gap in multiagent
programming models. We demonstrated that Jason+BSPL leads to better code
structure by encapsulating the protocol logic in a generic adapter based on the
protocol and letting the programmer use it to encode the agent’s business logic.
We demonstrated that Jason+BSPL leads to less complex code than the tra-
ditional reactive model. Further, we demonstrated that Jason+BSPL supports
looser coupling and higher cohesion in agents, desirable properties in any soft-
ware. Finally, whereas traditionally objective coordination has been embodied in
the environment, Jason+BSPL shows how it can be embodied in decentralized
agents in a modular form separately from subjective coordination.

Jason+BSPL shares some difficulties with rules-based programming with Ja-
son. Errors involving pattern matching are easy to make and hard to find. For
example, an enablement handler must exactly match the message schema. Any
difference in parameter ordering would bind parameters to the wrong values,
and missing or extra parameters would silently prevent the plan from matching
at all. These problems can be alleviated by tooling for generating agent stubs
and warning about schema mismatches. Ideally, the programming model should
make it clear—via some form of typing—the parameters of an enabled message
a plan needs to bind.

[19] propose enhancements to Jason to tackle plan failures atomically. These
are interesting improvements but not directly related to our present research
questions. Yet, the idea of fault handling in the Jason+BSPL programming
model, possibly in conjunction with protocol-based fault handling [12] would be
a valuable future direction.

Although some work combines BDI-style agent reasoning with normative
abstractions such as commitments [I7J20], agent programming languages have
generally not kept up with advances in modeling communications. As such, Ja-
son’s rule-based representations turn out to be an especially natural fit with
protocols.

JaCaMo [4] is a powerful framework for programming MAS that brings to-
gether Jason and CArtAgO. We imagine that by improving the communicative
foundation of Jason and obviating CArtAgO, Jason+BSPL can enable improve-
ments through the JaCaMo value chain. For instance, [I] show how to extend
and apply JaCaMo for commitment reasoning. Jason+BSPL could help place
such approaches in decentralized MAS, especially in the light of new results that
demonstrate how to enact commitments over protocols [26].

Information protocols provide abstractions that fit well with other data-
driven approaches for interaction and business process modeling [T42T]. Ja-
son+BSPL, by providing a connection with Jason, can further help relate data-
driven and rule-based BDI approaches. Conceivably, the more flexible parts of
agents could be realized in Jason, whereas the more streamlined computations
of the internal processes could be carried out in a classical data-driven manner.

14

M. Baldoni et al.

A better design of protocols leads to greater decoupling and avoidance of ad

hoc functions that operate outside of the BDI structure. The resulting reduction
in complexity will help address the difficult task of testing BDI programs [30].

[13] introduce Kiko, an enablement-based programming model for protocols.

Unlike Jason+BSPL, Kiko supports Python agents. A big difference is that the
Kiko adapter computes all enabled messages and returns them to the agent to
select from and complete whereas the Jason+BSPL adapter supports computing
solely the enabled messages of interest via queries, thereby avoiding unnecessary
computation. A performance evaluation of Jason+BSPL would be valuable.

References

10.

11.

12.

Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Commitment-based agent
interaction in JaCaMo+. Fundamenta Informaticae 159(1-2), 1-33 (2018). https:
//doi.org/10.3233/FI-2018-1656

Bellifemine, F.; Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester, UK (2007). https://doi.org/10.1002/9780470058411
Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley-Blackwell (2007)

Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A.: Dimensions in programming
multi-agent systems. Knowledge Engineering Review (KER) 34, €2 (Jan 2019).
https://doi.org/10.1017/5026988891800005X

Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747-761
(Jun 2013). https://doi.org/10.1016/j.scico.2011.10.004

Bordini, R.H., Hiibner, J.F.: Semantics for the Jason variant of AgentSpeak
(plan failure and some internal actions). In: Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI). Frontiers in Artificial Intelligence
and Applications, vol. 215, pp. 635-640. IOS Press, Lisbon (Aug 2010). https:
//doi.org/10.3233/978-1-60750-606-5-635

Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007)

CArtAgO: Example 05a — implementing coordination artifacts (2010), http:
//cartago.sourceforge.net/7page_id=99, common ARTifact infrastructure for
AGents Open environments. Accessed: 2021-08-31

Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence
103(1-2), 157-182 (1998)

Chopra, A.K., Christie V, S.H., Singh, M.P.: An evaluation of communication
protocol languages for engineering multiagent systems. Journal of Artificial Intel-
ligence Research 69, 1351-1393 (2020)

Christie V, S.H., Smirnova, D., Chopra, A.K., Singh, M.P.: Protocols over Things:
A decentralized programming model for the Internet of Things. IEEE Computer
53(12), 60-68 (2020)

Christie V, S.H., Chopra, A.K., Singh, M.P.: Mandrake: Multiagent systems as
a basis for programming fault-tolerant decentralized applications. Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 36(1), 16:1-16:30 (Apr
2022). https://doi.org/10.1007/510458-021-09540-8

https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.1002/9780470058411
https://doi.org/10.1002/9780470058411
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.3233/978-1-60750-606-5-635
http://cartago.sourceforge.net/?page_id=99
http://cartago.sourceforge.net/?page_id=99
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Jason+BSPL: Including Communication Protocols in Jason 15

Christie V, S.H., Singh, M.P., Chopra, A.K.: Kiko: Programming agents to enact
interaction protocols. In: Proceedings of the 22nd International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS). pp. 1154-1163. IFAAMAS,
London (May 2023). https://doi.org/10.5555/3545946.3598758

De Masellis, R., Francescomarino, C.D., Ghidini, C., Montali, M., Tessaris, S.: Add
data into business process verification: Bridging the gap between theory and prac-
tice. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
pp. 1091-1099. San Francisco (2017)

Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Transactions on Software Engineering
31(12), 1015-1027 (Dec 2005). https://doi.org/10.1109/TSE.2005. 140

FIPA: FIPA interaction protocol specifications (2003), http://www.fipa.org/
repository/ips.html, FIPA: The Foundation for Intelligent Physical Agents. Ac-
cessed 2023-02-27

Gilinay, A., Winikoff, M., Yolum, P.: Dynamically generated commitment pro-
tocols in open systems. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS) 29(2), 192-229 (Mar 2015). https://doi.org/10.1007/
s10458-014-9251-7

Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Signature Series, Addison-Wesley, Boston (2004)

Kiss, D., Madden, N., Logan, B.: Atomic intentions in Jason+. In: Proceedings of
the 8th International Workshop on Programming Multiagent Systems (ProMAS).
Lecture Notes in Computer Science, vol. 6599, pp. 79-95. Springer, Toronto (May
2010). https://doi.org/10.1007/978-3-642-28939-2_5

Meneguzzi, F., Magnaguagno, M.C., Singh, M.P., Telang, P.R., Yorke-Smith, N.:
Goco: Planning expressive commitment protocols. Journal of Autonomous Agents
and Multi-Agent Systems (JAAMAS) 32(4), 459-502 (Jul 2018). https://doi.
org/10.1007/s10458-018-9385-0

Montali, M., Calvanese, D., Giacomo, G.D.: Verification of data-aware
commitment-based multiagent system. In: Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems. pp. 157-164. IFAA-
MAS, Paris (May 2014)

Omicini, A., Ossowski, S.: Objective versus Subjective Coordination in the Engi-
neering of Agent Systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P.
(eds.) Intelligent Information Agents - The AgentLink Perspective. Lecture Notes
in Computer Science, vol. 2586, pp. 179-202. Springer (2003). https://doi.org/
10.1007/3-540-36561-3_9, https://doi.org/10.1007/3-540-36561-3_9

Ricci, A., Ciortea, A., Mayer, S., Boissier, O., Bordini, R.H., Hiibner, J.F.:
Engineering scalable distributed environments and organizations for MAS. In:
Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). pp. 790-798. IFAAMAS, Montréal (May 2019).
https://doi.org/10.5555/3306127.3331770

Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE
Computer 31(12), 40-47 (Dec 1998)

Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
Blindingly Simple Protocol Language. In: Proceedings of the 10th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 491—
498. IFAAMAS, Taipei (May 2011). https://doi.org/10.5555/2031678.2031687
Singh, M.P., Chopra, A.K.: Clouseau: Generating communication protocols from
commitments. In: Proceedings of the 34th Conference on Artificial Intelligence

https://doi.org/10.5555/3545946.3598758
https://doi.org/10.5555/3545946.3598758
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/978-3-642-28939-2_5
https://doi.org/10.1007/978-3-642-28939-2_5
https://doi.org/10.1007/s10458-018-9385-0
https://doi.org/10.1007/s10458-018-9385-0
https://doi.org/10.1007/s10458-018-9385-0
https://doi.org/10.1007/s10458-018-9385-0
https://doi.org/10.1007/3-540-36561-3_9
https://doi.org/10.1007/3-540-36561-3_9
https://doi.org/10.1007/3-540-36561-3_9
https://doi.org/10.1007/3-540-36561-3_9
https://doi.org/10.1007/3-540-36561-3_9
https://doi.org/10.5555/3306127.3331770
https://doi.org/10.5555/3306127.3331770
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2031678.2031687

16

27.

28.

29.

30.

M. Baldoni et al.

(AAAI). pp. 7244-7252. AAAT Press, New York (Feb 2020). https://doi.org/
10.1609/aaai.v34i05.6215

Tolksdorf, R.: Models of Coordination. In: Omicini, A., Tolksdorf, R., Zambonelli,
F. (eds.) Engineering Societies in the Agent World, First International Workshop,
ESAW 2000, Berlin, Germany, August 21, 2000, Revised Papers. Lecture Notes in
Computer Science, vol. 1972, pp. 78-92. Springer (2000). https://doi.org/10.
1007/3-540-44539-0_6, https://doi.org/10.1007/3-540-44539-0_6

Vieira, R., Moreira, A.F., Wooldridge, M.J., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
Journal of Artificial Intelligence Research (JAIR) 29, 221-267 (Jun 2007). https:
//doi.org/10.1613/jair.2221

Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Journal of Autonomous Agents and Multi-Agent Systems (JAA-
MAS) 14(1), 5-30 (Feb 2007). https://doi.org/10.1007/s10458-006-0012-0
Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. Journal of
Artificial Intelligence Research (JAIR) 51, 71-131 (Sep 2014). https://doi.org/
10.1613/jair.4458

https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1007/3-540-44539-0_6
https://doi.org/10.1007/3-540-44539-0_6
https://doi.org/10.1007/3-540-44539-0_6
https://doi.org/10.1007/3-540-44539-0_6
https://doi.org/10.1007/3-540-44539-0_6
https://doi.org/10.1613/jair.2221
https://doi.org/10.1613/jair.2221
https://doi.org/10.1613/jair.2221
https://doi.org/10.1613/jair.2221
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1613/jair.4458
https://doi.org/10.1613/jair.4458
https://doi.org/10.1613/jair.4458
https://doi.org/10.1613/jair.4458

	Jason+BSPL: Including Communication Protocols in Jason

