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1 – Introduction 

1.1 A brief historical perspective on connectomics 
The omic perspective is nowadays widespread and consolidated in many fields 

of biological sciences. In general terms, this refers to the attempt to comprehensively 
map and analyze the interactions happening between the fundamental elements of a 
system (Bedia, 2018). Despite the etymology of the suffix “–ome” being far from 
certainty (Lederberg & McCray, 2001), with one of the most fascinating hypothesis 
pointing to the Sanskrit intonation “Aum” (a mantra with the meaning of fullness) 
(Yadav, 2007), it is part of the terms used to define a multitude of scientific concepts. 
Among the most common: genome, proteome, microbiome. But one term from this 
family represents a central concept for contemporary neuroscience: connectome. 
This word was first used 15 years ago by Olaf Sporns to define the “comprehensive 
structural description of the network of elements and connections forming the 
human brain” (Sporns, Tononi, & Kötter, 2005). As per many other ideas in science, 
this intuition can be traced back to the ancient centuries. In fact, representations of 
proto-connectomes can already be found in fourteenth century books (Figure 1), 
following the so called “ventricular theory” (Catani, Thiebaut de Schotten, Slater, 
& Dell'Acqua, 2013). 

 

 

 

 

 

 

 

In more recent times, the idea of tracing neural connections was initiated by Cajal 
(Swanson & Lichtman, 2016), and the first complete mapping of a brain 
connectome, that of Caenorhabditis elegans, was completed in 1986 (White, 

Figure 1: A representation of the ventricular theory in an illustration      
dating from about 1310 (from Clarke and Dewhurst, 1972) 
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Southgate, Thomson, & Brenner, 1986) after more than ten years of efforts. Even 
though the current technical resources could significantly simplify what was a 
gargantuan endeavour at that time (Lichtman & Sanes, 2008), mapping the whole 
human connectome is still dramatically challenging at this time. Nonetheless, 
multiple projects had been founded in this field. Among others, the 10-years 
“Human Brain Project” was funded by European Commission in 2013, and has 
among its main objectives the simulation of a real human brain. It brings together 
around 500 researchers from more than 100 European research institutions. On the 
other side of the ocean, the “Human Connectome Project” was originally awarded 
by NIH in 2011 with the aim of studying in depth the connectome of 1200 healthy 
young adult participants. Over the years, it had evolved to include now tens of 
satellite projects focused on both healthy and pathological brains, across the almost 
whole lifespan. There is no lack of criticism in the neuroscientific community 
toward this kind of approaches. However, as pointed out by Lichtman and Sanes, 
similar objections had been risen in the first days of the race to the mapping of the 
human genome, but the meaningfulness of its results is currently widely 
acknowledged (Lichtman & Sanes, 2008). The presence of more than 3500 
connectomics studies indexed in PubMed from 2005 to now suggests the fecundity 
of this research field. 

1.2 One brain, many connectomes 
If mapping the whole human connectome still represents a complex challenge, it 

is also true that bringing the task to a different level of resolution allows to solve 
technical and computational issue, yet providing meaningful information. Based on 
a very coarse classification, it is possible to distinguish between micro-
connectomics, that observes neural networks at cellular scale (Schröter, Paulsen, & 
Bullmore, 2017), and macro-connectomics, tracing instead interregional pathways 
between brain regions (Sporns, 2016). These main modalities rely on different 
technical solutions as well: while the former benefits from invasive techniques like 
tracers injection and post-portem histological staining, the latter takes advantages of 
non-invasive imaging based approaches (Behrens & Sporns, 2012). Leveraging the 
recent and ongoing multiplication of neuroimaging sequences allowing to detect 
different kinds of signal, macro-connectomes can now describe more than one 
connectivity modality, focusing on structural or functional properties.  

Structural connectivity aims to reconstruct anatomical connections between brain 
regions (Huang & Ding, 2016), and is technically based on diffusion tractography. 
The principle behind this type of MRI acquisition is the isotropic/anisotropic 
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diffusion of water in brain tissues (Moseley et al., 1990). The voxel-wise 
observation of the peak diffusion orientations allows to estimate the tracks of 
bundles of axons across white matter (Tuch, Reese, Wiegell, & Wedeen, 2003). 

Functional connectivity implies instead a statistical relationship between voxels. 
Brain regions are, in fact, considered functionally connected when the time series of 
their activity are statistically correlated one to each other (van den Heuvel & 
Hulshoff Pol, 2010). This estimation is based on the detection of the so-called 
BOLD (Blood Oxygention Level Dependent) effect, described by Seiji Ogawa in 
early 90s (Ogawa et al., 1993). This signal originates from the change of 
concentration of hemoglobin and deoxyhemoglobin in the blood, that is related with 
oxygen consumption and, in turn, with local brain activity (Logothetis & Wandell, 
2004). Functional connectivity is thus based on an indirect measurement of the 
underlying phenomenon. 

As mentioned before, functional connectivity is based on statistical correlation. 
For this reason, it does not provide any information about the direction of the 
interaction, and does not allow causal interpretations (Schiefer et al., 2018). Several 
techniques had been proposed to try to overcome this issue (Havlicek et al., 2017; 
J. F. Smith, Pillai, Chen, & Horwitz, 2010; Ting, Seghouane, Salleh, & Noor, 2015), 
leading to what is referred as effective connectivity (Friston, 2011). The effort of 
improving our knowledge about the actual connectivity of the brain can benefit from 
the combined observation of structural and functional profiles (Schiefer et al., 2018). 
In some sense, this can be situated in the never solved psychological and 
philosophical debate on the relationship between structure and function in general. 
Neuroimaging studies that reconstructed the two kinds of connectomes on a same 
sample of subjects (Honey et al., 2009; Skudlarski et al., 2008) highlighted a good 
coherence between them, although without coming out in favour of an hard 
reductionism. Increasing evidences of multiscale functional connectivity (Liu, Song, 
Liang, Knöpfel, & Zhou, 2019; Song, Tin, & Poon, 2015), together with plasticity 
phenomena involving the structural pathways, challenge the clear identification of 
a unique and stable connectome (Behrens & Sporns, 2012). 

1.3 The analysis of abnormal brain networking: Pathoconnectomics 
The main lesson of these first fifteen years of connectomics is probably the 

meaningfulness of looking at the brain-networks to improve our understanding of 
cognitive and perceptual brain functions. As the classic neuropsychological 
perspective attempted to assign functions to each brain region, connectomics puts 
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functions into relationship with complex brain networks instead (Seung, 2013). 
During last years, more and more evidences have been suggesting that the analysis 
of brain networks could provide insight to the comprehension of neuropsychiatric 
disorders (Mohan et al., 2016; van den Heuvel & Fornito, 2014), leading to the birth 
of pathoconnectomics (Rubinov & Bullmore, 2013). Inside this framework, a 
disruptive hypothesis reached, proposing that the alteration associated with brain 
diseases does not spread randomly, but it “follows disease-specific patterns that 
resemble the architecture of brain connectivity networks” (Raj, Kuceyeski, & 
Weiner, 2012; Yates, 2012; Zhou, Gennatas, Kramer, Miller, & Seeley, 2012). Thus, 
the aim of pathoconnectomics is not only to investigate changes occurring to 
canonical brain networks in concomitance with disease progression, but trying to 
understand if the detected patterns of alteration exhibit network-like properties. This 
approach benefits from network analysis methods (Bullmore & Sporns, 2009; 
Rubinov & Sporns, 2010), in many cases preexisting this specific field. Some of 
them will be briefly discussed in the published papers included in this thesis. Hence 
pathoconnectomics has the premises for significantly contribute to a better 
comprehension of the nature and development of brain disorders, both 
neurodegenerative and psychiatric (Rubinov & Bullmore, 2013). 

1.4 Possible mechanisms behind alteration patterns 
Besides detecting networks of alteration and analyzing their properties, 

pathoconnectomics is enhanced by the production of hypotheses concerning 
possible mechanisms behind their formation. This is supported by the integration of 
neuroimaging and network analysis with evidences from biology, physiology and 
genetics, making this framework highly multidisciplinary. Thus far, three main 
mechanisms have been hypothesized: transneuronal spread, nodal stress, and shared 
vulnerability. 
Transneuronal spread mechanism is based on the propagation of toxic agents along 
neuronal connections (Clavaguera, Grueninger, & Tolnay, 2014; Clavaguera et al., 
2013; Goedert, Clavaguera, & Tolnay, 2010; Goedert, Masuda-Suzukake, & Falcon, 
2017; Jucker & Walker, 2013; Korth, 2012; Kraus, Groveman, & Caughey, 2013; 
Soto & Estrada, 2008; Walker, Diamond, Duff, & Hyman, 2013). This phenomenon 
is often referred as “prion-like diffusion” and is particularly fitting for misfolded 
proteins capable to move along brain axonal fibers (Chevalier-Larsen & Holzbaur, 
2006; Clavaguera et al., 2009) inducing a cascade phenomenon of corruptive 
templating (J. Hardy & Revesz, 2012; Jucker & Walker, 2011). Although prion 
infections actually cause lethal damages to the brain (Aguzzi, Nuvolone, & Zhu, 
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2013) this mechanism has been mainly associated with tauopathies (Bourdenx et al., 
2017). 
Nodal stress hypothesizes that the so-called hubs of functional connectomes may be 
prone to excessive stress in virtue of their interaction with an high number of brain 
regions (Crossley et al., 2014; Zhou et al., 2012). Mechanisms of excitotoxicity 
could in turn induce neuronal damage (Olloquequi et al., 2018), and in recent years 
excitotoxic-related mechanisms have been targeted to develop treatment strategies 
against neurodegeneration (Binvignat & Olloquequi, 2020).  
Shared vulnerability relies on the hypothesis that common vulnerability to 
neuropathology of a set of brain regions mainly depends on shared gene expressions 
(French & Pavlidis, 2011; French, Tan, & Pavlidis, 2011). Supporting evidence was 
found for schizophrenia (Romme, de Reus, Ophoff, Kahn, & van den Heuvel, 2017), 
and coherent proteomic changes had been recently analyzed in Alzheimer’s disease 
progression (Mendonça et al., 2019). It should be noted that in addition to disease 
specific effects, genetics could in turn influence the development of functional and 
structural healthy connectome (Barabási & Barabási, 2020; Cioli, Abdi, Beaton, 
Burnod, & Mesmoudi, 2014; Thompson, Hibar, Stein, Prasad, & Jahanshad, 2016). 
These proposed mechanisms are not to be thought as mutually exclusive. Rather, 
they likely act with different weights depending on the pathology analyzed. 

1.5 The need for a meta-analytic approach 
Gray matter alterations have been reported in association with a variety of both 

psychiatric and neurodegenerative disorders (Lee et al., 2018; Matsuda, 2016; 
Muñoz-Ruiz et al., 2012; Niu et al., 2017; Pereira et al., 2018; van Haren et al., 
2011), and generally considered as a valid marker of atrophy (Frisoni, Fox, Jack, 
Scheltens, & Thompson, 2010). Among other techniques to analyze structural MRI 
data, Voxel Based Morphometry (VBM) allows to implement “a voxel-wise 
comparison of the local concentration of gray matter between two groups of 
subjects” (Ashburner & Friston, 2000). In clinical studies, this involves a group of 
patients and the matched healthy controls group, or two groups of patients with 
different disorders to be compared, or groups of subjects with the same disorder but 
at different timepoints. Briefly, VBM consists of three main steps: first, images are 
registered to a common stereotactic space; then segmentation is used to separate 
brain tissues; lastly, voxel-wise statistic between the groups is performed (Good et 
al., 2001). One main advantage of this technique is that it does not require a priori 
hypotheses concerning the expected localization of the possible effect (Ashburner 
& Friston, 2001). However, discrepancies between results of different investigations 
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on a same disorder may emerge, probably due to different age of disease, or different 
criteria used to define the experimental samples. As per many other scientific 
domains, a meta-analytic approach can help to overcome the issue, estimating an 
overall effect (Wager, Lindquist, & Kaplan, 2007; Wager, Lindquist, Nichols, 
Kober, & Van Snellenberg, 2009). In the field of neuroimaging, it is possible to 
distinguish two main categories: image-based meta-analyses (IBMA) and 
coordinate-based meta-analyses (CBMA) (Müller et al., 2018). The main difference 
between the two is the level of detail used for the experiment in the pool. While 
IBMA methods directly analyze the final results maps of each experiment (Salimi-
Khorshidi, Smith, Keltner, Wager, & Nichols, 2009), CBMA take as input the peaks 
of effect, as they are usually reported in literature through their stereotactic 
coordinates (Caspers, Zilles, Beierle, Rottschy, & Eickhoff, 2014). Of note, 
differently from standard meta-analyses that aim to estimate the effect size, CBMA 
are focused on effect location (Fox, Parsons, & Lancaster, 1998). Among the 
methodologies that have been developed in this framework, the most used are 
multilevel kernel density analysis (MKDA) (Wager et al., 2009), signed differential 
mapping (SDM) (Radua & Mataix-Cols, 2009), parametric voxel-based meta-
analysis (PVM) (Costafreda, David, & Brammer, 2009), gaussian-process 
regression (GPR) (Salimi-Khorshidi, Nichols, Smith, & Woolrich, 2011), and 
activation likelihood estimation (ALE) (Turkeltaub, Eden, Jones, & Zeffiro, 2002). 
If IBMA allow to take advantage of the full information provided in the original 
experiments (Salimi-Khorshidi et al., 2009), it should be considered that the final 
whole-brain maps of the results are rarely available for other researchers (Müller et 
al., 2018). By contrast, peaks coordinates can be easily obtained for the majority of 
published papers by means of established resources as PubMed, Web of Science, 
Scopus (Tahmasian et al., 2019). In addition to these multidisciplinary databases, a 
neuroimaging dedicated tool called BrainMap was originally conceived in 1988 and 
constantly developed through the years (Fox & Lancaster, 1994; Fox & Lancaster, 
2002). Its characteristic feature is the combined availability of peaks coordinates 
and metadata, following an articulate taxonomy of cognitive domains and research 
design details (Fox et al., 2005). More than 16900 experiments of functional 
neuroimaging are currently retrievable (November 2020). Together with the 
database, the BrainMap project also developed a specific freeware tool for data 
search called Sleuth (Laird, Lancaster, & Fox, 2005), and a second one 
implementing the ALE method named GingerALE (Eickhoff et al., 2009). Of note, 
among the various CBMA techniques, ALE was found to be the one to produce the 
most similar results to IBMA, thus suggesting a limited loss of information when 
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shifting from whole-brain maps to peaks coordinates (Salimi-Khorshidi et al., 2009). 
Moreover, based on a literature overview, it also resulted to be the most used (Acar, 
Seurinck, Eickhoff, & Moerkerke, 2018). In light of all these elements, BrainMap 
can be considered a leading resource in the framework of CMBA. 

1.6 Detecting co-occurrence patterns 
The ALE methodology had been originally devised to analyze functional 

neuroimaging data. However, in recent years it was proved to be equally applicable 
to structural data, in particular when processed through VBM (Vanasse et al., 2018). 
A technical description of the ALE algorithm is provided in the published papers 
included in this thesis. Briefly, it aims to assess whether the spatial coherence of the 
peaks of effect across the experiments in the pool is larger than what could be 
expected by chance (Eickhoff et al., 2016). To do so, for every experiment a 0/1 
binary map is built reflecting the stereotactic coordinates of the reported peaks. 
Subsequently, Gaussian spatial smoothing is applied to each active voxel. Of note, 
the kernel size depends on the sample size of the experiment thus modelling the 
spatial uncertainty (the smaller the N the larger the kernel). These maps (technically 
called MA maps) are combined into the final ALE map, computing the union of 
probabilities (Acar et al., 2018). Voxel-wise thresholding based on Family Wise 
Error (FEW) rate is recommended, possibly complemented by cluster-level 
correction (Eickhoff et al., 2016).  

The ALE method hence depicts the overall spatial distribution of the investigated 
effect. When the dataset consists of task-based fMRI experiments the final ALE map 
can be interpreted in terms of co-activations (Robinson, Laird, Glahn, Lovallo, & 
Fox, 2010). When performing a meta-analysis on structural data instead, originally 
processed through VBM, ALE results describe patterns of co-alteration (Vanasse et 
al., 2018) (with ALE more correctly meaning anatomical likelihood estimation). In 
this latter case, the effect of interest can follow two opposite directions, reflected in 
the contrasts design of VBM technique: decrease or increase. Decrease is found 
when the VBM analysis shows lower values of GM volume/density in pathological 
subjects compared against healthy controls. This is often considered a marker of 
brain atrophy, both in neurological and psychiatric disorders (Du et al., 2012; 
Fornito, Yücel, Patti, Wood, & Pantelis, 2009; Frisoni et al., 2010; Hallahan et al., 
2011; Lin, Lee, & Weng, 2016; Stoodley, 2014). On the contrary, the identification 
of greater GM volume/density in pathological subjects (vs healthy controls) is 
termed increase. The clinical meaning of this phenomenon is much less clear, with 
hypothesis concerning synaptogenesis (Sarrazin et al., 2019), modifications of the 
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glia (Rocha, Achaval, Santos, & Rodnight, 1998), hypertrophic effect of 
medications (Torres, Portela-Oliveira, Borgwardt, & Busatto, 2013), or 
compensatory mechanisms in brain disorder (Mancuso et al., 2020). It should be 
noted that although the ALE method detects patterns of co-activation (or co-
alteration), nothing is known about the actual concomitant involvement of specific 
brain regions at the level of each single experiment (Caspers et al., 2014). In other 
words, an ALE map showing blobs A, B, and C could originate from a set of 
experiments reporting co-occurrence of the effect between A and B, and a second 
set describing the interaction between A and C. In this case, the apparent relationship 
between B and C would not be backed by experiments actually showing that. In 
order to solve this issue, a method called PaMiNi (Pattern Mining in NeuroImaging) 
had been proposed, based on the combination of Gaussian mixture modeling and 
association analysis (Caspers, Zilles, Eickhoff, & Beierle, 2012). Its rationale was 
to identify underlying patterns of co-activation actually observed in multiple 
experiments. This approach indeed allows to detect at least some macro-level 
spurious apparent co-occurrences between brain regions (i.e. none of the identified 
patterns includes both blobs B and C). However, the existing relationships between 
brain regions composing a same pattern are still undescribed. It follows that 
potential non-direct co-occurrences previously appearing in the final ALE results 
are still possible in each pattern. In addition to allowing their detection, knowing the 
existing interactions between each element of a map is particularly meaningful when 
dealing with brain disorders. In fact, this could open the way to the understanding 
of the development of patterns of structural alteration across the brain during the 
progression (and worsening) of the pathology. 

1.7 The analysis of structural co-alteration networks 
The main aim of my PhD project was thus to develop and apply a method to 

detect and analyze networks of GM structural co-alteration associated with brain 
disorders, capable to describe the interaction between each couple of brain regions 
(or even their parcels) involved. The technical details of this new approach are 
provided in the published papers included in this thesis. However, a brief outline of 
the main aspects follows below. 

The proposed technique consists of four main steps: 

1. Data selection 
2. Effect estimation 
3. Nodes definition 
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4. Edges computation 

Although originally intended and optimized to analyze GM structural data at a 
meta-analytic level, our methodology is flexible enough to be adapted to different 
scenarios. This is mainly due to the adoption of a network analysis perspective, and 
obtainable by means of different decisions at each step. 

1.7.1 Data selection 
In its standard use, data selection considers previously published VBM 

experiments investigating differences between pathological subjects and healthy 
controls. A first element of arbitrariness concerns the number of disorders to be 
included. If the detection of the co-alteration network associated with a single 
disease could allow to consolidate clinical evidence, or discover previously hidden 
interactions between brain regions, a transdiagnostic approach could highlight 
pathological processes in common among different disorders. A second decision 
concerns the direction of the effect, namely increase or decrease. When focusing on 
the latter, it is possible to specifically define a co-atrophy network (rather than a 
more general co-alteration one). The decision on the effect can be influenced by the 
disorder investigated, making sensible or not expecting either atrophy or growth. 
Due to the issues described in section 1.6 it is generally recommended to avoid 
mixing the two effects. A better option is to obtain separate networks for increase 
and decrease, and then compare them. Interestingly, Mancuso et al. (2020) recently 
adapted our approach to analyze the relationship between co-occurrent increase and 
decrease on a same set of studies. A third relevant criterion is the imposition of a 
specific brain region of interest (or more generally a ROI). This way allows to limit 
the selection to experiments reporting at least one focus of alteration in that brain 
region. Of note, this doesn’t turn the investigation into a ROI study. The final ALE 
map will be whole-brain, as whole-brain results are still searched in step 1, but they 
must include the selected region. 

Data search can be performed on any database (PubMed, Scopus or similar), 
provided that it allows to obtain the list of peaks as reported in each paper. As 
mentioned before, Sleuth (searching on BrainMap) is the optimal solution, allowing 
to easily manage all the here mentioned options and more. 
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As an example, criteria to perform in Sleuth data selection needed to build the co-
atrophy network of Alzheimer’s disease are shown in figure 2. The key “Observed 
Changes is Control > Patients” is set to limit the inclusion to decrease effect.  

At the end of the search, irrespective of the tool used, the list of the stereotactic 
coordinates of the peaks arranged in a way that allows the identification of the 
different experiments has to be generated (Figure 3). 

 

 

 

 

 

 

 

 

Figure 2: The GUI of Sleuth 3.0.4 showing search criteria for the VBM section 
of the BrainMap database. 
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1.7.2 Effect estimation 
The second step performs a CBMA based on the peaks list previously obtained. 

Our approach was developed using the ALE algorithm at this stage. This implies 
that in step 1 the number of subjects in each experiment has to be recorded, together 
with the peaks, as this is fundamental for the ALE implementation. However, other 
CBMA techniques could be used as long as they produce a whole brain map for each 
experiment in addition to the final map describing the overall effect. All of them 
will be needed in the following steps. In light of this, our approach can manage 
IBMA too, since original maps for each experiment could be entered at this step in 
place of the corresponding MA maps.   

Figure 3: The list of peaks, as generated through Sleuth. 
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1.7.3 Nodes definition 
What described so far allowed to identify a pattern of co-alteration. However, in 

order to be able to analyze the relationships between the involved brain regions (or 
parcels of them) it is necessary to transform the pattern into a network. To do so, it 
is first needed to define a set of nodes. As a default in the present methodology, this 
is obtained by means of a peaks detection algorithm, so that nodes are placed in 
correspondence with the local maxima of the ALE map. Hence, each node represents 
a brain site where the effect had been coherently reported by the experiments in the 
data set. More than one node can be placed in a same brain region, allowing the 
identification of different involvement of its parcels. Of note, it is more advisable to 
impose a minimum interpeak distance of 10 mm, to avoid excessive overlap between 
the nodes (Eickhoff et al., 2009). This data-driven approach is particularly adequate 
in absence of a priori information, or hypothesis. Nonetheless, many other strategies 
can be easily implemented in our framework at this stage. A possible one is to 
impose a pre-determined set of nodes derived on a different dataset. This could be 
useful to compare different disorders (e.g. observe how nodes describing the co-
alteration pattern of MCI are “wired” in Alzheimer’s disease), or different stages 
along the disease progression. Nodes could also represent the functional profile of a 
cognitive domain, to be matched with the alteration caused by brain pathology. An 
opposite approach would be using a grid of equidistant nodes, in order to make this 
step less dependent on the identified ALE map, and completely unbiased by a priori 
knowledge. 

1.7.4 Edges computation 
Finally, the network is completed with the edges, expressing the frequency (or 

likelihood) of co-alteration between the nodes. In a really simplistic way this could 
simply reflect the raw count of the number of experiments (i.e. the MA maps) in 
which the two nodes are both altered. A more sophisticated solution is the Jaccard 
index, then thresholded as in Toro et al., (2008). Alternatively, the Patels’ k 
Bayesian index allows to compute the probability of co-alteration of nodes a and b 
against the probability of their independent alteration (Patel, Bowman, & Rilling, 
2006; S. M. Smith et al., 2011). All the three methods mentioned are based on the 
observation of the states of the nodes in each MA map, and this is the reason why 
the CBMA algorithm selected in step 2 has to provide a map for each experiment.  
Interestingly, the Patel’s tau could be easily introduced in our framework allowing 
to estimate the directed edges, however the soundness of this index to analyze 
neuroimaging data is still debated (Wang, David, Hu, & Deshpande, 2017).  
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Of note, the identification of a set of nodes in step 3 does not imply the 
subsequent detection of a dense network. In fact, some nodes could remain without 
any edge. When the same set of experiments had been used in step 2, 3, and 4, an 
isolated node could spot a region often found altered (otherwise discarded by ALE), 
but not coherently in a pattern, so that no other nodes are co-altered with it often 
enough to determine an edge. If nodes are based on an external source, the lack of 
edges between two of them could also mean that no co-alteration was found at all 
based on the experiments selected in step 1 and used in steps 3 and 4. 

1.7.5 Post-hoc analyses 
The method developed combines the advantages of meta-analysis, allowing to 

consider the contribution of thousands of subjects without the need for new data 
acquisition, and network analysis, with its wide range of techniques now usable after 
the transition from patterns to networks. Among many indexes, node degree and 
edge betweenness are particularly useful to characterize the co-alteration networks. 
The former, simply defined as the number of edges linked to a node, allows to 
identify potential hubs of the co-alteration networks. When one (or more) of these 
high degree nodes are affected it is highly probable that many other regions are also 
found to be altered, maybe describing a later stage of the disease progression. A 
strong hub could also be considered as the element in common between existing 
sub-networks (i.e. different patterns of alteration consistently associated with a same 
disorder, all involving the node with high-degree). The edge betweenness offers a 
similar insight for the connections, being defined as the number of shortest paths 
going through an edge (Girvan & Newman, 2002). Using a road metaphor, this index 
identifies the avenue that if closed imposes an unusually long way to go from home 
to work. When the data set consists of tens of experiments, the obtained co-alteration 
network is often really dense (with more than one hundred edges). In these cases, it 
can be of help the identification of a core sub-network. This is achievable by means 
of a sparsity criterion, or directly setting an arbitrary Patel’s k cut-off value to 
threshold the edges matrix. Values close to +1 characterize couple of nodes for 
which co-alteration is considerably more likely than independent alteration. 
Alternatively, node degree can be used, as in the case of the k-core algorithm 
(Alvarez-Hamelin, Dall'asta, Barrat, & Vespignani, 2005; Bader & Hogue, 2003) 
allowing to identify a sub-network of nodes with degree equal or greater than k (not 
to be confused with the Patel’s k). As mentioned before, the creation of networks 
allows the comparison between multiple conditions. Interestingly, these can even 
represent different imaging modalities. Provided that a common set of nodes is used, 
the edges can express whatever kind of relationship among them (e.g. co-alteration, 
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co-activation, structural connectivity, similarity of genes expression, synchrony of 
maturation during development, comparable vascularization).  

The code behind the method described was developed in Matlab. For the 
implementation of the ALE the java version of the algorithm was used, freely 
distributed by the BrainMap project. Results of step 2 are thus fully comparable with 
those of a CBMA performed using GingerALE tool. Specific elements of the output 
were designed to allow visualization and post-hoc analyses in Cytoscape (Shannon 
et al., 2003) and BrainNet Viewer (Xia, Wang, & He, 2013). 

1.8 Phenotyping of gray matter networks 
The method developed and here described allows to detect networks of GM 

regions showing structural differences between pathological subjects and healthy 
controls. However, no other features of the subjects included can be used to better 
characterize the network, as their age, sex, score on clinical scales, or further medical 
and demographic variables. This is mainly due to the meta-analytic nature of the 
approach, not allowing to model the effect deeper than the experiment level. Other 
strategies exist to analyze the relationship between imaging (i.e. a GM network) and 
non-imaging properties (i.e. a phenotype) (Congdon, Poldrack, & Freimer, 2010). 
In general terms, two main scenarios can be distinguished, depending on the 
direction of the research hypothesis. In one case, one (or more) non-imaging feature 
of interest has been selected, and the aim is to identify where in the brain the 
presence of structural (or functional) differences between subjects could be related 
to difference on that phenotype. As an example, trying to locate brain differences 
related with smoke habits. This approach could be summarized as going from 
features to network. In the opposite scenario, starting from an already known GM 
network you want to identify external factors the variation of which is related with 
differences in the network. This could be the case of an investigation on the 
relationship between variability of the default mode network and different lifestyles. 
This second approach could be summarized as going from network to features. Since 
in many cases it is not possible (or ethical) to setup an experimental design to 
actively modify the feature of interest, this kind of studies are mainly correlational 
(Aggarwal & Ranganathan, 2016). For this reason, a great sample size can improve 
the interpretability, and reliability, of the results. In some sense, the co-alteration 
detection method developed could be seen as a “from features to network” case, 
since it describes where in the brain differences related with the presence/absence 
of a given disorder exist. However, the diagnostic label is the only feature used, so 
treat our approach as a real phenotyping would result circular to some extent. For 
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this reason, part of my PhD project was dedicated to the learning and application of 
other phenotyping strategies to characterize GM networks in healthy subjects, and 
to identify brain structural differences associated with medical features. 
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2 – Scientific works 
The present section includes a selection of papers I co-authored during my PhD 

career. They were chosen because the most effective to describe the path followed, 
and the rationale behind the research hypothesis addressed. 

The first three papers concern the analysis of GM networks in the pathological 
brain, and specifically depict the development and application of the co-alteration 
network analysis. The first one is dedicated to the co-atrophy network of 
Alzheimer’s disease, and it also was the first work in which our methodology has 
been described. The clear neurodegenerative nature made this disorder a perfect 
candidate. Moreover, the wide literature on the topic would have been of help to 
interpret and validate the results, besides ensuring a considerable data availability. 
The second study adopted instead a transdiagnostic approach, to investigate possible 
pathological processes shared by different disorders, both neurological and 
psychiatric. Moreover, it aimed to understand the relationship between the 
development of the co-alteration networks and the functional, structural and genetic 
connectivity of the healthy brain. Finally, the third work changed the focus toward 
a specific brain region, the insula. This structure was selected in virtue of previous 
literature showing its alteration in a wide variety of disorders. The aim was to 
analyze and compare the co-alteration networks associated with different sub-
regions of the insula. This group of studies illustrates the above-mentioned 
flexibility of the method developed across three scenarios: whole brain and one 
disorder (study 1), whole brain and many disorders (study 2), one brain region and 
many disorders (study 3). 

The fourth study is related with the analysis of GM networks in healthy subjects. 
It was realized in collaboration with the University of Granada and began during my 
internship under the supervision of Dr. Juan Verdejo-Roman (PNinsula research 
group, CTS-581). It is based on the PREOBE trial, a prospective observational 
cohort study designed to investigate early programming with a specific focus on 
maternal metabolic pathologies. Along four years of recruitment, a cohort of 331 
mother-child pairs was built, to analyze both short-term and long-term effects of 
maternal overweight, obesity and gestational diabetes in the mother and her 
offspring (Berglund et al., 2016). The PREOBE trial was included in the 
DynaHEALTH project (Sebert et al., 2019), funded by Horizon2020. The specific 
aim of the here included study was to assess possible relationship between structural 
brain differences in 6 years old children and the presence of gestational diabetes and 
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excess-weight in their mothers. Hence, the research followed a transgenerational 
design, and fall under the “from features to network” case.  

A further study followed instead the “from network to features” logic, and began 
during my internship at the University of Oxford under the supervision of Prof. 
Gwenaëlle Douaud (Translational Image Analysis Group). It is based on a sample 
of 39,676 subjects from the UK Biobank cohort, and analyzed possible relationship 
between a set of modifiable risk factors (accounting for smoking habits, alcohol 
consumption, sleep, hearing, inflammation, diabetes, cholesterol, blood pressure, 
exposure to pollution, depression, body size measurements, diet, exercise and 
socialization) and structural differences in a GM transmodal network originally 
described in Douaud et al. (2014). UK Biobank is probably the largest ongoing 
prospective epidemiological study, with 500,000 participants recruited between 
2006 and 2010 in the age range 40-69. In addition to thousands of medical and 
demographic variables, genotyping has been undertaken on each of them, and 
imaging of brain, heart, abdomen, bones, and carotid artery is planned for 100,000 
subjects. The final goal of UK Biobank is the improvement of prevention, diagnosis 
and treatment of a variety of diseases. In addition to the MRFs analysis, the project 
I was involved in included a genome-wide association study (GWAS) performed for 
the same mentioned GM network. The subjects’ allele counts for two specific 
significant variants of the sex chromosomes were further associated with 16,924 
non-imaging variables of UK Biobank, in a sample of 374,230 participants (not 
including those who were previously considered for the GWAS analysis). This last 
project is still in its final stage, and it was therefore not possible to include a detailed 
description in this thesis.   
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2.1 The Pathoconnectivity Profile of Alzheimer’s Disease: A 
Morphometric Coalteration Network Analysis 
This study was published in Frontiers in Neurology in 2018, as part of the special 
issue “Network Spread Models of Neurodegenerative Diseases” 
(doi:10.3389/fneur.2017.00739). 

Authors: Manuello J., Nani A., Premi E., Borroni B., Costa T., Tatu K., Liloia D., 
Duca S., Cauda F. 

Abstract 
Gray matter alterations are typical features of brain disorders. However, they do not 
impact on the brain randomly. Indeed, it has been suggested that neuropathological 
processes can selectively affect certain assemblies of neurons, which typically are 
at the center of crucial functional networks. Because of their topological centrality, 
these areas form a core set that is more likely to be affected by neuropathological 
processes. In order to identify and study the pattern formed by brain alterations in 
patients’ with Alzheimer’s disease (AD), we devised an innovative meta-analytic 
method for analyzing voxel-based morphometry data. This methodology enabled us 
to discover that in AD gray matter alterations do not occur randomly across the brain 
but, on the contrary, follow identifiable patterns of distribution. This alteration 
pattern exhibits a network-like structure composed of co-altered areas that can be 
defined as co-atrophy network. Within the co-atrophy network of AD, we were able 
to further identify a core subnetwork of co-altered areas that includes the left 
hippocampus, left and right amygdalae, right parahippocampal gyrus and right 
temporal inferior gyrus. In virtue of their network centrality, these brain areas can 
be thought of as pathoconnectivity hubs. 

Introduction 
Widespread alterations of gray matter commonly characterize brain disorders. It has 
been suggested that neuropathological processes can selectively affect certain 
assemblies of neurons (Saxena and Caroni, 2011), which typically are at the center 
of crucial functional networks (Saxena and Caroni, 2011; Cauda et al., 2012; Raj et 
al., 2012; Zhou et al., 2012; Fornito et al., 2015; Iturria-Medina and Evans, 2015; 
Cauda et al., 2017). Because of their topological centrality, these areas or network 
hubs form a core set that is more likely to be affected by neuropathological processes 
(Etkin and Wager, 2007; Ellison-Wright and Bullmore, 2010; Saxena and Caroni, 
2011; Hamilton et al., 2012; Jagust, 2013; Menon, 2013; Baker et al., 2014; Crossley 
et al., 2014; Douaud et al., 2014; Goodkind et al., 2015). In particular, 
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neurodegenerative diseases exhibit structural alterations that seem to distribute 
across the brain in network-like patterns (Yates, 2012; Warren et al., 2013). These 
patterns, which we propose to call morphometric co-alteration networks or, in the 
case of gray matter decreases, co-atrophy networks, can be thought of as a form of 
pathological anatomical covariance (Mechelli et al., 2005; Evans, 2013) and appear 
to develop according to the organization of brain connectivity (Raj et al., 2012; Zhou 
et al., 2012; Cauda et al., 2017). Studies aiming to investigate the networks formed 
by co-altered cerebral areas in the pathological brain are providing new insight for 
a better transdiagnostic and neurobiological understanding of the mechanisms at the 
root of brain disorders (Buckholtz and Meyer-Lindenberg, 2012; McTeague et al., 
2016; Sprooten et al., 2017). 

This is particularly true in the case of AD. So far great efforts have been made in 
order to identify a prototypical pattern of gray matter atrophy due to AD, and to put 
it into correlation with clinical symptoms (Du et al., 2007). It is now known that 
cortical thinning of specific brain sites can be already detected even before the 
appearance of the symptomatology and that the atrophy tends to increase when the 
condition worsens (Dickerson et al., 2009). Although the cortical reduction is 
commonly found in normal ageing (Fjell et al., 2014; Minkova et al., 2017), the 
pathological fingerprints of AD are mainly observed in a temporo-parietal set of 
brain areas, including hippocampus, entorhinal cortex, precuneus and posterior 
cingulate cortex (Head et al., 2005; Chapleau et al., 2016). The involvement of these 
regions has been repeatedly confirmed by meta-analytical studies, which have 
additionally found the alteration of the right superior frontal gyrus (Wang et al., 
2015a). According to Ferreira et al. (2011) the left medial temporal lobe is the most 
impaired area in AD, even in the preclinical phases of the disease, so much so that 
the impairment of this area can be a good predictor of the clinical worsening of AD. 
A study of the relationship between the cortical thinning in AD and large-scale 
structural organization of the brain has revealed that AD reduces both the nodal 
centrality of temporal and parietal heteromodal association cortices and the positive 
correlation of thickness values normally found bilaterally between the parietal 
regions. In contrast, authors reported an increase of positive correlation among brain 
areas that are part of the default mode network (He et al., 2008). 

Recently, investigations into the cognitive deficits caused by AD have taken 
advantage of the methodology of network analysis (Tijms et al., 2013; Matsuda, 
2016). According to this approach, altered brain areas can be represented by means 
of a set of nodes, linked together by means of edges representing different statistical 
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values. Studies in this line of research have found that AD increases the correlation 
between the values of cortical thickness of the fusiform gyrus, temporal pole, 
parahippocampal gyrus and cingulum, which are all in proximity to each other. 
Conversely, a decrease of the correlation has been observed between distant areas 
(Yao et al., 2010). Of note, it has been suggested that, by combining different 
sources of information: i) large-scale structural networks data, ii) values of cortical 
thickness and iii) the pace of cortical thinning along time, it could be possible to 
distinguish patients with AD from healthy controls with an accuracy of 96.1%, as 
well as predict the conversion of MCI into AD 6 months before its clinical onset (Li 
et al., 2012). These studies raise the issue of moving from group analysis to single-
subject results, which is an essential aspect when dealing with potential biomarkers 
for diagnostic purposes and surrogate endpoints for disease-modifying clinical 
trials. Recent methods of single-subject graph measurements have allowed to link 
network alterations and cognitive decline. For instance, it has been showed that the 
more the network becomes disorganized, the worse the clinical condition is (Tijms 
et al., 2014). Moreover, even in healthy subjects, it has been found an association 
between Aβ42 CSF low levels and alteration of network properties, which might be 
interpreted as a very early indication of an underlying pathological process (Tijms 
et al., 2016). All these results provide evidence that the approach based on network 
analysis can bring valuable insight to clinical practice (Tijms et al., 2013). 

So far, at least four important mechanisms have been proposed to account for the 
distribution of brain alterations: transneuronal spread, nodal stress, shared 
vulnerability, and trophic failure (Zhou et al., 2012; Fornito et al., 2015). 

The first mechanism suggests that misfolded proteins (native peptides with an 
incomplete or incorrect folding, as well as de novo polypeptides that become prone 
to self-aggregation) can diffuse along neuronal pathways (Goedert et al., 2010; 
Warren et al., 2013; Iturria-Medina et al., 2014; Brettschneider et al., 2015). 
Increasing evidence indicate that the spread of misfolded proteins presents several 
similarities to the plasma membrane prion protein intercellular transfer, along 
axonal fibers, potentially contributing to disease progression (Chevalier-Larsen and 
Holzbaur, 2006). This mechanism has been demonstrated in neurodegenerative 
diseases, such as Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic lateral 
sclerosis and tauopathies (Clavaguera et al., 2013; Bourdenx et al., 2017); more 
recently it has been also generalized to other brain disorders (Guest et al., 2011). 
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The second mechanism hypothesizes that the functional stress of the network hubs  
may result in a greater vulnerability of these areas (Buckner et al., 2005; Saxena and 
Caroni, 2011; Zhou et al., 2012; Crossley et al., 2014). This susceptibility has been 
supported in human beings with in vivo neuroimaging techniques and voxel-based 
meta-analyses (Crossley et al., 2014). 

The third mechanism suggests that certain brain regions sharing gene or protein 
expressions may be more vulnerable to neuropathology (Lichtman and Sanes, 2008; 
Prieto et al., 2008; French et al., 2011; Wolf et al., 2011; Zhou et al., 2012; Cioli et 
al., 2014), with a potential relationship between gene expressions and connectivity 
patterns (French and Pavlidis, 2011; Cioli et al., 2014). 

Finally, the fourth mechanism hypothesizes a disruption in the production of trophic 
factors, which could bring about the deterioration of neural wiring (Appel, 1981; 
Salehi et al., 2006; Zhou et al., 2012; Fornito et al., 2015). 

If we consider the case of Alzheimer’s disease (AD), neuropathological signatures, 
namely amyloid-β (Aβ) plaques and neurofibrillary tangles, are already present in 
the preclinical phase of the disease, with further spreading during progression. In 
fact several years before the clinical onset of AD, Aβ and tau progressively 
accumulate in the brain with a certain degree of spatial specificity as well as a partial 
overlap among the two deposits (Goedert, 2015). The relationship between tau and 
amyloid deposits in the cerebral cortex seems to have a hierarchical organization, 
with tau and Aβ clusters exhibiting distinctive intramodal and intermodal 
characterizations (Sepulcre et al., 2017). These findings would support the view of 
AD as an amyloid-facilitated tauopathy (Braak et al., 2000). Furthermore, Aβ and 
tau propagation and the subsequent deposition and cytotoxicity effects appear to 
occur mainly between anatomically interconnected areas, thus affecting the 
functional communication among them (Weiler et al., 2017). 

The concept of a gradual spread of pathological signs is a crucial aspect put forward 
by recent theoretical models. Raj et al. (2012) have proposed a network diffusion 
model of disease progression in dementia, according to which the propagation of 
pathogenic proteins follows the regional concentration gradients under the spatial 
constraints defined by brain connectivity. Other authors have proposed a stochastic 
epidemic spreading model to describe intra-brain Aβ propagation and deposition 
processes, according to which regions with a higher connectivity degree are the main 
target of Aβ, thus suggesting that brain hubs are the more exposed to the negative 
effects of these aberrant proteins (Iturria-Medina et al., 2014). Finally, in addition 
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to focusing on misfolded proteins and propagation pathways, a further interesting 
approach suggests the need to investigate the relationship between these two factors 
(Warren et al., 2013). This model considers molecular nexopathies as conjunctions 
of pathogenic protein and brain networks. Key factors are therefore supposed to be 
structural/functional developmental factors and differential vulnerability of neural 
connections. Accordingly, long-range axonal connections may be more vulnerable 
to Aβ, so that functional and structural alterations could occur within the large-scale 
distributed fronto-temporo-parietal network, such as the one that supports the 
default mode network (DMN) processing. 

In order to identify and study the co-atrophy network of AD, we devised an 
innovative meta-analytic method for analyzing voxel-based morphometry (VBM) 
data. This methodology enabled us to address the following issues: 

a. How do gray matter alterations distribute across the brain affected by AD? 

b. Is it possible to recognize a network-like structure in the pattern formed by 
these co-altered areas? 

c. Can specific clusters of co-altered areas be identified within the co-atrophy 
network of AD? 

Material and methods 
Selection	of	studies	
On March 2017 we performed with the software Sleuth an extensive meta-analytic 
search in the BrainMap VBM database (www.brainmap.org) (Fox and Lancaster, 
2002; Laird et al., 2005; Laird et al., 2009). All the studies that fulfilled the following 
criteria were retrieved: “Contrast is Gray Matter”; “Context is Disease Effect”; 
“Observed Changes is Controls > Patients” and “Diagnosis is Alzheimer’s Disease”. 
Results were controlled so as to keep only experiments comparing subjects 
diagnosed with AD against healthy controls. Our search focused on gray matter 
decreased values only, as the development of AD is strongly characterized by axonal 
deterioration and neuronal loss that result in brain atrophy (Teipel et al., 2013). 
Furthermore, thus far just a few VBM studies have investigated gray matter increase 
in AD, so that these data were not sufficient for obtaining reliable results with our 
meta-analytical methods. 
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To ensure a transparent description of the selection process, we followed the 
“PRISMA Statement” international guidelines (Liberati et al., 2009; Moher et al., 
2009) (Fig. S1). The characteristics of the sample can be viewed in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Anatomical	likelihood	estimation	and	the	creation	of	modeled	activation	maps		
VBM data were statistically elaborated with the procedure of the anatomical 
likelihood estimation (ALE). ALE is a voxel-based meta-analytical technique that 
models the spatial coherence of different results (Eickhoff et al., 2009; Eickhoff et 
al., 2012; Turkeltaub et al., 2012). A 3-dimensional Gaussian probability 
distribution is then centered on each focus of every experiment, using the following 
formula: 

  

Table 1: Selected studies for the meta-analysis. 
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in which d refers to the Euclidean distance between voxels and the considered focus, 
while e refers to the spatial uncertainty. The standard deviation can be obtained by 
means of the full-width half-maximum (FWHM), such as: 

 

 

The combination of these Gaussian distributions constructs a modeled activation 
(MA) map for each experiment. The definite ALE map is finally generated by 
uniting the MA maps. ALE maps were thresholded at a voxel-level FWD p<0.05, in 
line with Eickhoff et al. (2012; 2016; 2017). Given a specific threshold for cluster 
forming, a null distribution of cluster sizes was derived by simulating a long series 
of experiments with the same characteristics of real data and then by generating an 
ALE map. The score histogram so obtained was eventually employed to assign a 
threshold P values. 

Construction	of	the	morphometric	co-atrophy	network	
To identify the distribution of gray matter alterations we have developed a novel 
methodology capable of constructing the morphometric co-alteration networks 
associated with brain disorders. Our analysis can in fact discover whether an altered 
brain area, say A, is statistically related to the alteration of one or more other brain 
areas (B, C, etc.). Thus, our analysis can construct the morphometric co-atrophy 
network composed of the areas occurring to be altered together and, subsequently, 
investigate within the co-atrophy network i) how an altered region is statistically 
associated with other altered regions and ii) which regions are likely to be involved 
in a more widespread net of alterations. 

Node	creation	and	labeling	
We superimposed the ALE map on the Talairach atlas so as to distinguish 
automatically the anatomical regions identified by the ALE algorithm. If (at least) 
20 voxels of the ALE map were found to be inside a certain area of the atlas, then 
this area was considered to be altered. We chose this cluster threshold so that less 
relevant regions could be excluded. We employed a peak detection algorithm to 
identify the local maxima of the ALE map, and we subsequently selected only those 
peaks that were greater than the 90 percentile of the value distribution. This set was 
further reduced by applying a minimum inter-peak distance of 10 mm. Finally, we 
positioned a node, labeled on the basis of the Talairach atlas, in correspondence of 
every survived peak. 
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Thresholding	values	applied	during	nodes	creation	and	their	rationale	
As described in the previous paragraph, three thresholds were applied during the 
nodes creation procedure. 

The first threshold regulates the minimum number of voxel (i.e. 20 voxels) 
necessary to consider a brain area as altered. The rationale behind this threshold is 
to exclude from the co-atrophy network nodes representing minimally (or, from a 
meta-analytical point of view, rarely) altered brain areas, thus improving and 
simplifying the interpretability of the results without losing highly relevant 
information. However, even considering brain areas in which only one voxel is 
altered, the results would have not been spurious, since ALE maps were voxel-level 
thresholded, which implies that each single voxel contains statistically significant 
information (Eickhoff et al., 2016) (see Fig. S2 for the visualization of the network 
obtained with different threshold values). This choice, however, would have 
unnecessarily increased the complexity of the co-atrophy network. 

The second threshold, applied to the peaks-value distribution, allowed us to include 
in the network only nodes representing those areas for which there is a very high 
consensus between different experiments (i.e. high ALE value) (Eickhoff et al., 
2016). Even in this case, this threshold could have been removed; all the nodes that 
can be created with the present methodology represent statistically significant 
effects, since they can only lie inside the anatomical regions identified by the ALE 
algorithm, which already has its own statistical thresholding step (see Fig. S3 for the 
visualization of the network obtained with different threshold values). 

Finally, the inter-peaks distance was chosen considering the mean value (10.2 mm; 
SD = 0.4 mm) of uncertainty in spatial location associated with the reported 
coordinate discussed in Eickhoff, et al. (2009). 

Therefore, the only effect of those thresholds on our data is to decrease the 
redundancy of the network, so as to obtain clearer results to be visualized and further 
analyzed, minimizing the information loss. 

Co-atrophy	distribution	
From the set of the nodes as defined in the previous paragraph, we constructed a 
NxM matrix or a co-alteration matrix, in which each row referred to an experiment, 
whereas each column referred to a network node. On the basis of a Bernoulli 
generation data model, we constructed a probability distribution of joint alteration 
values for each pair of nodes. In other words, for any couple of nodes (a and b), we 
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were able to describe their four conjoint states of alteration by means of two binary 
variables: 1) a and b both altered; 2) a and b both unaltered; 3) a altered and b 
unaltered; 4) a unaltered and b altered. Consequently, the following four 
probabilities were obtained by the frequencies of the different combinations of all 
experiments: 

𝜃" = 𝑃(𝑎 = 1, 𝑏 = 1) 

𝜃+ = 𝑃 𝑎 = 1, 𝑏 = 0  

𝜃- = 𝑃 𝑎 = 0, 𝑏 = 1  

𝜃. = 𝑃(𝑎 = 0, 𝑏 = 0) 

These formulas refer to the conjoint frequencies of a couple of nodes (a and b) in all 
their four possible combinations. Table 2 shows the marginal probabilities for each 
couple of nodes. 

 

 

 

 

 

 

 

On the grounds of these four probabilities, we have applied the Patel’s k index (Patel 
et al., 2006) – which has been validated with simulated data by Smith et al. (2011) 
– in order to calculate the degree of co-alteration between nodes. This index can 
measure the probability that two nodes (a and b) are actually co-altered against the 
probability that node a and node b are altered independently of each other. Patel’s k 
is calculated as follows: 

𝜅 = (𝜗" − 𝐸)/(𝐷(max	(𝜗"	) − 𝐸) + (1 − 𝐷)(𝐸 − min	(𝜗")	)	) 

where 

Table 2: Marginal probabilities between altered and  
unaltered nodes. 
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𝐸 = (𝜗" + 𝜗+)(𝜗" + 𝜗-) 

max 𝜗" = min	(𝜗" + 𝜗+, 𝜗" + 𝜗-) 

min 𝜗" = max	(0,2𝜗" + 𝜗+ + 𝜗- − 1) 

The numerator refers to the difference between the probability that a and b are 
altered together and the expected probability that a and b are altered independently 
of each other. The denominator refers to a weighted normalizing constant. Min(ϑ_1 
)  refers to the maximum value of the conjoint probability P(a,b), given P(a) and 
P(b), whereas max(ϑ_1 )  refers to the minimum value of P(a,b), given P(a) and P(b). 
Patel’s k index has values that range from –1 to 1. A value of |k| that is close to 1 
indicates a high degree of connectivity between nodes. The statistical significance 
of this index was assessed with a Monte Carlo algorithm that simulated a 
multinomial, generative model, which took into consideration the alteration of all 
nodes. This statistical procedure obtained an estimation of p(k│z) by sampling a 
Dirichlet distribution and by calculating the samples’ amount for which k>e, where 
e was the threshold of statistical significance set at p<0.01. 

Topological	analysis		
We defined our system of interconnected nodes as a network of co-atrophy areas 
and examined it with the network analyzer included in Cytoscape 3.5.1 (Shannon et 
al., 2003; Smoot et al., 2011). We were therefore able to achieve a good and reliable 
description of the net formed by the co-atrophy areas under both the aspects of brain 
structure and functional organization. 

Node	degree	and	edge	betweenness		
The node degree was defined as the number of edges linked to a node. We employed 
this parameter in order to detect the nodes that were more connected within the 
network, which are commonly considered as brain hubs. In turn, the parameter of 
edge betweenness was defined as the number of the shortest routes that go through 
an edge in a graph or a network (Girvan and Newman, 2002). Thus, edges exhibiting 
high values of betweenness are supposed to be involved in a large number of shortest 
routes, so that their elimination is likely to have an impact on communication 
between many couples of nodes. 

Network	clustering		
Given the great number of nodes as well as the high density of edges within the co-
atrophy network, we used the k-core decomposition algorithm (Bader and Hogue, 
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2003; Alvarez-Hamelin et al., 2005) – as it is implemented in the clusterMaker 
plugin for Cytoscape – to detect a central sub-network of highly interconnected 
nodes. This algorithm eliminates all the nodes showing a degree that is lesser than a 
user-defined k, thus deriving from the original network the highest connected 
subgraph. 

Results 
Common	patterns	of	morphometric	alterations		
The ALE performed on all the data retrieved by our search (57 experiments, 883 
subjects, and 691 foci) showed that gray matter alterations caused by AD are mainly 
located in the right medial frontal gyrus, the right inferior frontal gyrus, the left 
inferior parietal lobule, the right midcingulate gyrus, the left supramarginal gyrus, 
the right angular gyrus, the bilateral fusiform gyrus, the right precuneus, the bilateral 
insula, the right thalamus, the bilateral superior temporal gyrus, the bilateral superior 
temporal pole, the bilateral hippocampus, the bilateral parahippocampal gyrus, the 
bilateral amygdala and the left caudate nucleus (Fig. 1). 
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Morphometric	co-atrophy	network	
The left panel of Figure 2 illustrates the 40 nodes used to build the co-atrophy 
network, while the heat map in Figure 2 shows the relationship between the elements 
of each possible couple of nodes measured by Patel’s k index. Figure 3 illustrates 
the whole co-atrophy network: the colors’ scale ranges from blue to red for the 146 
edges and indicates an increase in k values. Edges are to be assumed as undirected. 

  

Figure 1: Gray matter anatomical likelihood estimation (ALE) results. The 
image summarizes the results of all the experiments considered in 
this meta-analysis. Colors from red to green show gray matter 
decreases [ALE maps were thresholded using voxel-level FWD p 
< 0.05 and visualized using Brainvoyager QX]. 
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Figure 2: The left panels shows the nodes that entered the coatrophy 
calculation. The right panel shows the coatrophy matrix. Colors 
from blue to red indicate increasing Patel’s k values (i.e., increasing 
coalteration probabilities). 

Figure 3: Morphometric coatrophy network results. Colors from blue to red 
indicate increasing Patel’s k values (i.e., increasing coalteration 
probabilities). 
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Many nodes densely interconnected characterize the temporal lobe, especially the 
hippocampus and the parahippocampal gyrus. In contrast, only one node 
characterizes other brain areas, such as the cingulate cortex and precuneus. Although 
all the edges that are shown are statistically significant, the ones with the highest k 
value are those involving the left hippocampus, bilateral amygdala, right 
parahippocampal gyrus and right inferior temporal lobe (Tab. S1 and Tab. S2). 

Figure 4 reports the organic option of the yFiles Layouts available in Cytoscape 
3.5.1 (based on a spring-embedded algorithm) attributed to the co-atrophy network. 
Thick links connect the nodes located in the temporal cortex, parahippocampal 
gyrus, amygdala, and thalamus. The right precuneus is connected to the rest of the 
network just through one edge projecting to the left hippocampus, whereas the right 
cingulate cortex is connected to the network core through the right hippocampus and 
the right parahippocampal gyrus. In figure 4 colors and dimensions of nodes are 
proportional to their network degree values. In particular, Amyg_L_1 shows the 
highest degree value (17), followed by Temp_Inf_R (16). In turn, Fusiform_L, 
Amyg_L, Temp_Pole_Sup_R, SupraMarginal_L and Cingulum_Mid_R exhibit the 
lowest degree value (1). The edges’ thickness is proportional to their degree of edge 
betweenness. The edge linking the nodes Hipp_R_2 and ParaHipp_R_2 shows the 
highest value, while the edge between Amyg_R and ParaHipp_L_1 shows the 
lowest one. 

 

 

 

 

 

 

 

 

 

 



 32 

 

 

 

 

 

 

 

 

 

 

Figure 5 shows the nodes according to their anatomical position. In order to simplify 
the visual interpretation, we have merged two or more nodes referring to the same 
brain area; however, we have kept the edges unchanged. It is worth noting that the 
co-atrophy network of AD is composed of more inter-hemispheric (75) than intra-
hemispheric edges (71). Apart from the hippocampus, most of the inter-hemispheric 
connections link structures in the medial temporal lobes. Furthermore, unilateral 
nodes in the right inferior temporal gyrus and right precuneus are linked to areas of 
both hemispheres. 

 

 

 

Figure 4: Topological analysis of the coatrophy network of Alzheimer’s 
disease (organic yFiles Layout). Colors and dimensions of nodes 
indicate their topological degree (smaller node = lower degree; 
from green to red = from lower to higher values). Thickness of 
edges indicate the degree of edge betweenness (smaller edge = 
lower degree). 
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As many nodes populate the hippocampi, we projected them on a 2D template in 
order to better clarify their spatial localization (Fig. 6). Five out of the 6 nodes in the 
left hippocampus were found to be located in the anterior part, while the remaining 
one was found to be located in the posterior section. In contrast, the right 
hippocampus exhibits a more uniform pattern, with 2 anterior nodes and 1 posterior. 

 

  

Figure 5: Topological analysis of the coatrophy network of Alzheimer’s 
disease. Nodes referring to the same brain areas or strictly close one 
to the other have been collapsed in a single node. 
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We also analyzed the connectivity profile of the hippocampi within the co-atrophy 
network so as to better understand their relationship with the other nodes of the 
network (Fig. 7). Even though hippocampi have a lot of connections, they are 
scarcely interconnected (red edges) and, in particular, between the nodes of the right 
hippocampus there are no direct paths linking them to each other. What is more, the 
left hippocampus presents a greater number of edges (45) than the right 
hippocampus (15); however, these edges are generally characterized by a low degree 
of edge betweenness. In contrast, the 15 edges linking the right hippocampus to the 
other nodes of the co-atrophy network are characterized by a high degree of edge 
betweenness. Overall, considering the anatomical topology of nodes (Fig. 6), the left 
anterior hippocampus appears to be the most densely connected. 

 

 

 

Figure 6: Anatomical localization of the nodes in the hippocampi. Coordinates 
refers to Talairach space (right sagittal slice x = 25, left x = 30). 
Nodes are numerically labeled according to a rostrocaudal 
criterion. 
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Given the great number of nodes and the high density of edges of the co-atrophy 
network, we used the k-core algorithm to identify the most connected components 
of the network. The analysis reported a core subnetwork formed by 8 inter-
hemispheric nodes (Fig. 8), including the left and right amygdalae, left 
hippocampus, right parahippocampal gyrus, and right temporal inferior gyrus. The 
bilateral presence of nodes within this core subnetwork is consistent with the finding 
that the co-atrophy network is characterized by a large number of inter-hemispheric 
edges. 

  

Figure 7: Detailed illustration of the role of the hippocampi in the coatrophy 
network of Alzheimer’s disease. Green edges are intrahemispheric, 
while red edges are interhemispheric. 
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Discussion 
With an innovative voxel-based meta-analytic method, this study aimed to find out 
whether gray matter decreases caused by AD distribute throughout specific and 
identifiable areas rather than affect randomly the whole brain. After constructing a 
morphometric co-atrophy network, we intended to identify which brain areas are 
more likely to be altered in conjunction with other ones rather than alone. Finally, 
we examined the potential existence of relevant subcomponents within the co-
atrophy network. 

Figure 8: Network clustering with k-core decomposition algorithm. Colors 
and dimensions of nodes indicate their topological degree (smaller 
node = lower degree; from green to red = from lower to higher 
values). Thickness of edges indicate the degree of edge 
betweenness (smaller edge = lower degree). Both node degree and 
edge betweenness values refer to the original coatrophy network. 
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The gray matter decreases evaluated by ALE involve limbic and temporal areas, in 
particular the hippocampus and parahippocampal gyrus. This finding is in 
accordance with most of previous research (Yang et al., 2012; Wang et al., 2015a). 
Nine out of 40 nodes of the co-atrophy network are localized within the 
hippocampus. Specifically, 6 nodes are in the left hippocampus (5 in its anterior 
part, 1 in its posterior part) and 3 in the right one (2 anterior, 1 posterior). This is 
consistent with the neuropathological studies suggesting that AD is characterized by 
an earlier and greater involvement of anatomical structures (including hippocampus) 
in the left hemisphere (Thompson et al., 2007; Woolard and Heckers, 2012; Long et 
al., 2013). Although there is still debate about the exact functional organization of 
the hippocampus (Strange et al., 2014), the neuroscientific community has achieved 
a substantial consensus on its role in learning and memory (Zeidman and Maguire, 
2016), which are both deteriorated cognitive functions in AD. According to Thal et 
al. (2014) the hippocampus (in particular the subfields CA1 and subiculum), along 
with the amygdala, are pretty soon affected by Aβ plaques during AD evolution 
(Pievani et al., 2011). In line with AD diagnostic criteria (McKhann et al., 2011) 
hippocampal and mesial temporal lobe atrophy have been considered as biomarkers 
of neuronal degeneration, potentially increasing the probability of an underlying AD 
pathophysiological process. Currently, however, the routinely utilization of 
hippocampal atrophy in clinical practice is not fully standardized, but preferentially 
applied in investigational studies and clinical trials. Furthermore, hippocampal 
atrophy rate could be better accounted for as a sensitive marker of disease 
progression (Apostolova et al., 2010; Sabuncu et al., 2011), being able to trace AD 
natural development and potentially representing an interesting surrogate marker for 
disease-modifying clinical trials (Schuff et al., 2009; Whitwell, 2016). Interestingly, 
an increased hippocampus and an asymmetry in the shape of the amygdala during 
the development of AD have been recently demonstrated, with significant 
correlation to cognitive impairment (Wachinger et al., 2016). 

According to our analysis, the gray matter co-atrophy network of AD appears to be 
densely interconnected, as suggested by the presence of 146 edges and 40 nodes, 39 
of which have at least one connection. The existence of a set of nodes (altered areas) 
is not a proof per se that the disease is spreading. In fact, generally speaking, Patel’s 
k is not always able to identify edges between nodes, which means that, even though 
some areas are altered, there is no apparent temporal coherence in their capitulation 
to the disease. The fact, though, that our analysis was able to discover a significant 
number of edges between nodes is proof of the good reliability of our results 
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pointing out that the alteration co-occurrence really happens, as well as of the 
consistency of our sample. 

Our analysis suggests that AD tends to target a somewhat limited set of brain 
regions, rather than randomly affecting distinct sites. Furthermore, the left 
hippocampus, bilateral amygdala, right parahippocampal gyrus and right inferior 
temporal lobe seem to follow a very similar pace of degeneration (Fig. S4). 

In order to evaluate the likelihood of each node of the co-atrophy network to be co-
altered with other ones rather than as an individual spot we calculated their node 
degree. The highest value pertains to the node of the left amygdala, which is reached 
by 17 edges, but we found other 13 nodes with at least 10 edges. These nodes are 
localized in the temporal lobes, right amygdala, parahippocampal gyrus, left 
hippocampus and right thalamus. The high degree of pathoconnectivity of these 
nodes suggests that, when gray matter alteration affects one of them, it is highly 
probable that many other regions are also found to be altered. It is also true the other 
way round, that is, when nodes characterized by low degree show atrophy, it is very 
likely that this process co-occurs in one of the high-degree nodes, rather than in 
another low-degree node. These results, as well as the k-core decomposition, 
provide evidence that in the co-atrophy network of AD certain nodes have the 
characteristic of being pathoconnectivity hubs. Furthermore, the values of the edge 
betweenness distribution indicate the existence of a dense subnetwork, which is 
composed of the nodes with the higher degree of pathoconnectivity. 

The paucity of connections linking the two hippocampi suggests a limited co-
occurrence of alterations between them. The hippocampus is known to be greatly 
affected by AD, and the MRI volume estimation of this structure is currently 
considered one of the most reliable in vivo biomarker of this disease (Teipel et al., 
2013). Our results suggest that both the hippocampi are substantially altered, albeit 
somewhat independently. According to previous studies, certain molecular 
alterations typical of AD are more evident in the left hippocampus compared to the 
right one (Hovorkova et al., 2008; Kristofikova et al., 2008). This discovery might 
explain the abundance of edges connecting the nodes in the left hippocampus, as 
well as support the transneuronal spread mechanism in AD. The nodal stress 
hypothesis could also play a role in virtue of the intense functional activity of this 
region. Finally, our finding that the anterior part of the hippocampus exhibits a 
greater number of edges than the posterior part seems consistent with the suggestion 
that the deterioration of CA1 and subiculum appears to be more correlated with the 
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development of AD than the deterioration of CA3, which appears to be more 
correlated with healthy aging (Pievani et al., 2011; Jagust, 2013). Recently, the 
presubicular-subicular complex has been described as one of the earliest site of 
atrophy in AD, with a significant correlation with memory performances (even in 
MCI phase), potentially reflecting the ongoing degenerative process through the 
subiculum passing from entorhinal cortex to dentate gyrus (Carlesimo et al., 2015; 
Hirjak et al., 2017). 

In addition to the interpretation of the co-atrophy network as a whole, some specific 
aspects deserve a detailed consideration. The first is the relationship between 
hippocampus and precuneus. In the co-atrophy network of AD these regions are 
linked through an edge exhibiting a very high degree of edge betweenness, which 
reveals a direct interaction. According to the “hippocampus disconnection 
hypothesis” proposed by Tahmasian et al. (2015), the disruption of functional 
connectivity between hippocampus and precuneus could induce the characteristic 
alterations in the hippocampus that we find in AD. Tahmasian et al. (2015) have in 
fact demonstrated that in AD the hippocampus is much less inhibited, and this 
disinhibition may result in its hyper-metabolism. A similar situation could induce 
neurotoxicity, which might be one of the causes behind gray matter decrease 
measured with VBM, thus explaining the identification of a significant number of 
nodes in the hippocampus. 

 A second interesting aspect is the relationship between the left hippocampus and 
right inferior temporal gyrus, which was highlighted by k-core decomposition. This 
result is in agreement with the study of Wang et al. (2013), which found that the 
interaction between these two areas is typical of AD. Of note, Wang et al. (2013) 
examined 80 pathological subjects using Bayesian network analysis and prior-
defined regions of interest, while the present study has applied a meta-analytical 
approach on a substantially bigger VBM database of 883 patients diagnosed with 
AD. This agreement supports the sensitivity of our novel methodology. 
Furthermore, the slight prevalence of inter-hemispheric connections in the co-
atrophy network of AD (see Fig. S5) is consistent with the deterioration of white 
matter bundles in AD, in particular concerning the corpus callosum (Teipel et al., 
2002; Ardekani et al., 2014; Bachman et al., 2014; Walterfang et al., 2014; Fischer 
et al., 2015). Callosal atrophy has been associated with cognitive decline rate as well 
as to disease progression (Wang et al., 2014; Wang et al., 2015b). 
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Gray matter alterations found in the hippocampus, precuneus, and inferior parietal 
cortex can be ascribed to the general disruption of the DMN in patients with AD 
(Greicius et al., 2004; Weiler et al., 2017). Recently, a study has showed that the 
DMN dysfunction, as well as the disruption of the interaction between different 
resting state functional networks, can be attributed to amyloid burden (Weiler et al., 
2017). What is more, Chang et al. (2015) have found that amyloid burden in the 
cingulate cortex might promote gray matter atrophy in the other areas constituting 
the DMN. 

Overall, the crucial role played by pathological proteins in AD supports the 
transneuronal spread hypothesis at the basis of gray matter alterations’ distribution 
(Chevalier-Larsen and Holzbaur, 2006; Goedert et al., 2010; Guest et al., 2011; 
Zhou et al., 2012; Iturria-Medina et al., 2014; Fornito et al., 2015). However, the 
complex relationship among different factors (such as amyloid burden, Tau 
deposition, gray matter atrophy, and disrupted functional connectivity) and the 
presence of several hub nodes within the co-atrophy network of AD suggest that the 
nodal stress mechanism could as well be involved in the development of the disease 
(Jack et al., 2013). Therefore, it is extremely likely that different spreading 
mechanisms, which are not mutually exclusive, may be involved in the etiology of 
AD. 

Limitations and future directions 
The present investigation and the methodology on which it is based aim to better 
understand the nature of AD by examining its pathological fingerprints over the 
brain. To do so, we were able to get access to a very large sample size of patients. If 
this is an advantage on the one hand, it can also be a limitation on the other, as within 
this sample it was not possible to determine the average duration of disease, due to 
unavailability of information in the original studies. This aspect makes it difficult to 
associate the co-atrophy network with a specific stage of AD progression. However, 
the methodological procedure for defining the areas to be included in the co-atrophy 
network considers primarily the frequency of every single area to be found altered. 
In case of a neurodegenerative condition such as Alzheimer’s we could imagine, 
generally speaking, a group of patients with a recent diagnosis exhibiting alterations 
in area A, another group with an intermediate development of the disease exhibiting 
alterations in areas A-B, and another group with an advanced development of the 
disease exhibiting alterations in areas A-B-C. Since our methodology privileges the 
frequency of each area to be found altered, in the final network area A will be more 
likely to be represented, while area C may be even excluded. Moreover, even if the 
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group of patients exhibiting alterations in A-B-C were greater than the other groups, 
the pattern A-B-C would be less likely to be represented than the sole area A. For 
this reason, even if our input data could contain an overrepresented sample of 
patients in a specific stage of the disease, the resulting co-alteration network would 
not represent the pattern of altered areas which is typical of that stage. 

Future studies on longitudinal data analyzed by different methods are needed in 
order to investigate the sequential formation of the co-atrophy network identified in 
this study, so as to achieve a more detailed picture of the temporal evolution of AD. 

Conclusion 
This meta-analysis was able to address the following important issues. 

a. In AD, gray matter alterations do not occur randomly across the brain but, 
on the contrary, follow identifiable patterns of distribution. 

b. This alteration pattern exhibits a network-like structure composed of co-
altered areas that can be defined as co-atrophy network. 

c. Within the co-atrophy network of AD, certain brain areas, in virtue of their 
node degree and values of edge betweenness, can be considered as 
pathoconnectivity hubs. The alteration of these areas is supposed to imply a wider 
distribution of gray matter abnormalities across the brain. 

d. Within the co-atrophy network we can identify a core subnetwork of co-
altered areas that includes the left hippocampus, left and right amygdalae, right 
parahippocampal gyrus and right temporal inferior gyrus. 

The innovative methodological analysis developed in this study for constructing the 
morphometric co-atrophy network of an important neurodegenerative disease such 
as AD opens a new window into the comprehension of the pathological brain. 
Increasing evidence is supporting the idea that brain alterations distribute according 
to a network-like structure. The analysis carried out in this study not only provides 
support for this hypothesis but also puts forward the significant finding that certain 
nodes of the co-atrophy network may play the role of pathoconnectivity hubs. What 
is more, our methodology can be equally applicable to study the morphometric co-
alteration network of any other neuropathological condition. Future investigations 
into this line of research on databases of different diseases promise to provide 
valuable insight to the study of the dynamics of brain disorders, so as to achieve a 
better predictive diagnostic power as well as to improve medical care and treatment. 
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Supplementary material 
Selection	of	studies	
The BrainMap database was employed for the retrieval of relevant brain imaging 
experiments carried out with the voxel-based morphometry (VBM) technique. As 
reported in the User Manual, BrainMap uses a structured standardized coding 
scheme that describes published human neuroimaging experimental results. This 
taxonomy has been used to describe over 3600 publications and 15000 experiments, 
drawing upon over 110000 subjects and reporting over 120000 coordinates. The 
main division of the coding scheme is between structural (VBM) and functional 
data. For this meta-analysis only papers labeled as “Structural” have been used. So, 
considering only the studies in this category, the database consists of 980 papers, 
3093 experiments, 73938 subjects and 21481 locations. 

The software application “Sleuth” has been used to search the database for 
experiments of interest and view the relevant search results in a standard brain space. 
This procedure allowed us to identify 42 studies about Alzheimer’s disease (AD) 
for a total of 72 experiments. 

Two expert researchers have reviewed all the experiments, so as to ensure: (1) both 
the presence of the healthy control group and the pathological sample; (2) that 
results describe differences between subjects diagnosed with AD and healthy 
controls, and not between AD and other pathologies or between subcategories of 
AD; (3) that results concern VBM parameters (See Fig. S1 [PRISMA flow chart] 
and Table 1). 

All the selected experiments that did not meet the inclusion criteria were excluded.  

Relevant descriptive information was extracted from each article. After this 
searching procedure, 36 papers were included in the meta-analysis, for a total of 57 
experiments and 883 subjects. Table S1 provides a detailed description of the sample 
of the selected studies. 
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Supplementary	figures	
 

 

 
Figure S1: Overview of the selection strategy. Numbers refer to experiments. 

Figure S2: The co-alteration network obtained with different values for the 
minimum number of voxels threshold. Colors from blue to red 
indicate increasing Patel’s k values (i.e., increasing co-alteration 
probabilities). 
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Figure S3: The co-alteration network obtained with different values for the 
peaks’ values percentile threshold. Colors from blue to red indicate 
increasing Patel’s k values (i.e., increasing co-alteration 
probabilities). 

Figure S4: Results of the morphometric co-atrophy network of AD. Colors 
from blue to red indicate increasing Patel’s k values (i.e., increasing 
co-alteration probabilities). Only edges with k > 0.7 are shown. 
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Supplementary	tables	
 

Node	Name	 Corresponding	brain	area	

Node	Talairach	
coordinates	 Node	

Degree	
X	 Y	 Z	

Amyg_L_1	 Left	Amygdala	 -22	 -2	 -24	 17	

Temp_Inf_R	
Right	 Inferior	 Temporal	
Gyrus	

54	 -64	 -10	 16	

Amyg_R	 Right	Amygdala	 16	 -8	 -10	 15	

ParaHipp_R	
Right	 Parahippocampal	
Gyrus	

24	 -6	 -32	 15	

Hipp_L_2	 Left	Hippocampus	 -30	 -10	 -18	 14	

Temp_Pole_Sup_
L	 Left	Superior	Temporal	Pole	

-40	 4	 -16	 14	

Thal_R	 Right	Thalamus	 0	 -8	 -2	 13	

Figure S5: Distribution across hemispheres of the co-atrophy network of AD. 
Violet edges are intra-hemispheric, while blue edges are inter-
hemispheric. 
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ParaHipp_L	
Left	 Parahippocampal	
Gyrus	

-32	 -12	 -10	 12	

ParaHipp_R_2	
Right	 Parahippocampal	
Gyrus	

16	 -14	 -14	 12	

Temp_Sup_L_1	
Left	 Superior	 Temporal	
Gyrus	

-46	 0	 -10	 12	

Temp_Sup_L_2	
Left	 Superior	 Temporal	
Gyrus	

-38	 6	 -16	 12	

ParaHipp_L_1	
Left	 Parahippocampal	
Gyrus	

-28	 -12	 -10	 11	

Temp_Sup_R_1	
Right	 Superior	 Temporal	
Gyrus	

46	 -6	 -10	 11	

Temp_Mid_L	 Left	Middle	Temporal	Gyrus	 -54	 -24	 -8	 10	

Amyg_R_1	 Right	Amygdala	 22	 -8	 -10	 8	

Hipp_L	 Left	Hippocampus	 -20	 -10	 -22	 8	

Hipp_L_3	 Left	Hippocampus	 -34	 -18	 -14	 8	

Hipp_L_4	 Left	Hippocampus	 -30	 -18	 -14	 8	

Temp_Inf_R_1	
Right	 Inferior	 Temporal	
Gyrus	

52	 -52	 -10	 8	

Fusiform_L_2	 Left	Fusiform	Gyrus	 -42	 -34	 -20	 7	

Hipp_L_5	 Left	Hippocampus	 -30	 -32	 -8	 7	

Hipp_R_1	 Right	Hippocampus	 24	 -14	 -18	 7	

Thal_R_1	 Right	Thalamus	 0	 -18	 2	 6	

Hipp_R	 Right	Hippocampus	 22	 -8	 -22	 5	

ParaHipp_R_1	
Right	 Parahippocampal	
Gyrus	

24	 -8	 -26	 5	
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Temp_Sup_R	
Right	 Superior	 Temporal	
Gyrus	

44	 -6	 -10	 4	

Caudate_L	 Left	Caudate	Nucleus	 -6	 2	 4	 3	

Front_Inf_R	 Right	Inferior	Frontal	Gyrus	 28	 16	 -10	 3	

Fusiform_L_1	 Left	Fusiform	Gyrus	 -32	 -12	 -32	 3	

Hipp_L_1	 Left	Hippocampus	 -18	 -12	 -18	 3	

Hipp_R_2	 Right	Hippocampus	 30	 -26	 -12	 3	

Temp_Sup_L	
Left	 Superior	 Temporal	
Gyrus	

-48	 0	 -10	 3	

Precuneus_R	 Right	Precuneus	 6	 -54	 16	 2	

SupraMarginal_L
_1	 Left	Supramarginal	Gyrus	

-56	 -50	 28	 2	

Amyg_L	 Left	Amygdala	 -28	 -2	 -24	 1	

Cingulum_Mid_R	 Right	Midcingulate	cortex	 8	 -36	 34	 1	

Fusiform_L	 Left	Fusiform	Gyrus	 -30	 -6	 -36	 1	

SupraMarginal_L	 Left	Supramarginal	Gyrus	 -56	 -52	 28	 1	

Temp_Pole_Sup_
R	

Right	 Superior	 Temporal	
Pole	

22	 8	 -20	 1	

Fusiform_R	
Right	 Fusiform	
Gyrus	

28	 -2	 -42	 0	

Table S1: Names, Talairach coordinates and node degree of nodes. 
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		 Node	 Node	 Patel's	K	

1	 ParaHipp_L_1	 Hipp_L_5	 0.8743	

2	 Temp_Sup_L_2	 Amyg_R_1	 0.8727	

3	 Temp_Inf_R_1	 ParaHipp_L_1	 0.8606	

4	 Amyg_R	 Thal_R	 0.8602	

5	 ParaHipp_R	 Temp_Sup_R_1	 0.8592	

6	 Fusiform_L_2	 Hipp_L_4	 0.8574	

7	 ParaHipp_R	 Temp_Sup_L_1	 0.8499	

8	 Temp_Sup_L_2	 Hipp_L_5	 0.8435	

9	 Hipp_L	 Temp_Mid_L	 0.8142	

10	 Temp_Inf_R	 Thal_R	 0.8065	

11	 Temp_Pole_Sup_L	 Hipp_L_4	 0.7943	

12	 Temp_Pole_Sup_L	 Thal_R	 0.7943	

13	 Fusiform_L_2	 Thal_R	 0.7804	

14	 Hipp_L_3	 Temp_Inf_R	 0.7747	

15	 Hipp_L	 Thal_R	 0.7630	

16	 Temp_Pole_Sup_L	 Hipp_L_3	 0.7606	

17	 ParaHipp_R_1	 Temp_Sup_L_1	 0.7598	

18	 Temp_Inf_R	 Temp_Mid_L	 0.7493	

19	 ParaHipp_R_1	 Temp_Sup_R_1	 0.7483	

20	 Hipp_L_4	 Temp_Inf_R	 0.7359	

21	 Temp_Pole_Sup_L	 Temp_Mid_L	 0.7338	

22	 Hipp_R_1	 ParaHipp_R_2	 0.7267	

23	 Fusiform_L_2	 Temp_Mid_L	 0.7164	
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24	 Temp_Sup_L_2	 ParaHipp_L	 0.7029	

25	 Temp_Pole_Sup_L	 Amyg_R	 0.6901	

26	 ParaHipp_R_1	 Amyg_L_1	 0.6778	

27	 Fusiform_L_1	 ParaHipp_L	 0.6771	

28	 Hipp_L_3	 ParaHipp_R_2	 0.6763	

29	 Hipp_L_2	 Hipp_L_5	 0.6763	

30	 Amyg_L_1	 Temp_Pole_Sup_L	 0.6476	

31	 ParaHipp_R_1	 Hipp_R	 0.6366	

32	 Temp_Inf_R	 Amyg_R	 0.6282	

33	 Amyg_L_1	 Fusiform_L_2	 0.6274	

34	 Hipp_L_2	 Hipp_L_4	 0.6238	

35	 Hipp_L_4	 ParaHipp_R_2	 0.6238	

36	 Hipp_L	 Precuneus_R	 0.6221	

37	 ParaHipp_L_1	 Temp_Sup_R_1	 0.6213	

38	 Thal_R_1	 Caudate_L	 0.6202	

39	 Temp_Sup_L_2	 Amyg_R	 0.6039	

40	 Fusiform_L_1	 Temp_Sup_R_1	 0.6027	

41	 Hipp_L_2	 Temp_Pole_Sup_L	 0.6023	

42	 ParaHipp_R_2	 Amyg_R_1	 0.6023	

43	 ParaHipp_R_2	 Hipp_R_2	 0.6018	

44	 ParaHipp_R_2	 Front_Inf_R	 0.6018	

45	 ParaHipp_R	 Temp_Inf_R_1	 0.6014	

46	 Temp_Sup_L_1	 Hipp_L_5	 0.6000	

47	 Hipp_R	 SupraMarginal_L_1	 0.5824	
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48	 Thal_R_1	 SupraMarginal_L_1	 0.5824	

49	 ParaHipp_R	 Temp_Inf_R	 0.5822	

50	 Amyg_L_1	 Hipp_L_3	 0.5790	

51	 Fusiform_L_2	 Hipp_L_2	 0.5782	

52	 Hipp_L_2	 Temp_Sup_R_1	 0.5777	

53	 Amyg_L	 Amyg_L_1	 0.5774	

54	 ParaHipp_L	 Temp_Sup_L	 0.5773	

55	 Fusiform_L_2	 Amyg_R	 0.5761	

56	 Hipp_L_2	 ParaHipp_L_1	 0.5717	

57	 Amyg_R	 Temp_Sup_L_1	 0.5702	

58	 Hipp_R_2	 SupraMarginal_L	 0.5650	

59	 Hipp_R_2	 Cingulum_Mid_R	 0.5650	

60	 ParaHipp_R	 ParaHipp_R_1	 0.5648	

61	 ParaHipp_R	 Thal_R_1	 0.5648	

62	 ParaHipp_R	 Temp_Sup_L_2	 0.5611	

63	 ParaHipp_R	 Amyg_R_1	 0.5611	

64	 Hipp_L_2	 Amyg_R	 0.5510	

65	 Hipp_L_2	 Temp_Sup_L_1	 0.5505	

66	 Amyg_L_1	 Hipp_R_1	 0.5417	

67	 Amyg_L_1	 Temp_Inf_R_1	 0.5390	

68	 Fusiform_L_1	 Temp_Sup_L_1	 0.5289	

69	 ParaHipp_R_2	 Temp_Inf_R_1	 0.5281	

70	 Hipp_L_4	 Temp_Sup_R_1	 0.5269	

71	 ParaHipp_R	 Hipp_L_2	 0.5260	
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72	 ParaHipp_L	 Thal_R	 0.5236	

73	 Hipp_L_3	 Thal_R	 0.5224	

74	 Hipp_L_1	 Hipp_L_2	 0.5195	

75	 Hipp_R_1	 Hipp_L_3	 0.5188	

76	 Hipp_R_1	 ParaHipp_L_1	 0.5188	

77	 Amyg_L_1	 Temp_Inf_R	 0.5161	

78	 Hipp_L_2	 ParaHipp_R_2	 0.5147	

79	 Amyg_R	 Amyg_R_1	 0.5137	

80	 Hipp_L	 Temp_Sup_R	 0.5123	

81	 ParaHipp_L	 ParaHipp_L_1	 0.5093	

82	 Amyg_L_1	 Hipp_L_2	 0.5082	

83	 Amyg_L_1	 ParaHipp_R_2	 0.5082	

84	 ParaHipp_R	 Hipp_L_3	 0.5077	

85	 ParaHipp_R	 ParaHipp_L_1	 0.5077	

86	 Fusiform_L	 Hipp_R_1	 0.5048	

87	 Hipp_L	 Temp_Pole_Sup_L	 0.5029	

88	 Hipp_L	 Temp_Sup_L_2	 0.5029	

89	 Hipp_L_2	 Temp_Inf_R	 0.5029	

90	 Hipp_L_4	 Thal_R	 0.5027	

91	 Hipp_L_4	 Temp_Sup_L_1	 0.5025	

92	 Temp_Inf_R	 Temp_Sup_L_1	 0.5025	

93	 Temp_Sup_L_1	 Thal_R	 0.5025	

94	 Amyg_L_1	 Thal_R_1	 0.4994	

95	 ParaHipp_L_1	 Amyg_R	 0.4955	
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96	 ParaHipp_L	 Temp_Sup_R	 0.4946	

97	 Temp_Sup_L_1	 Temp_Mid_L	 0.4944	

98	 ParaHipp_L	 Amyg_R_1	 0.4941	

99	 Amyg_L_1	 Temp_Sup_L_2	 0.4907	

100	 Amyg_L_1	 Amyg_R_1	 0.4907	

101	 Temp_Sup_R_1	 Temp_Sup_L	 0.4906	

102	 Temp_Pole_Sup_L	 Temp_Sup_R_1	 0.4897	

103	 Hipp_R	 Front_Inf_R	 0.4859	

104	 Hipp_R_1	 Amyg_R	 0.4856	

105	 Hipp_L_1	 Temp_Inf_R	 0.4756	

106	 Thal_R	 Thal_R_1	 0.4756	

107	 ParaHipp_L	 Temp_Mid_L	 0.4755	

108	 Temp_Sup_L_2	 ParaHipp_R_2	 0.4747	

109	 ParaHipp_R	 Amyg_R	 0.4741	

110	 Hipp_L_2	 Hipp_L_3	 0.4687	

111	 Temp_Sup_L_2	 Temp_Sup_R	 0.4681	

112	 ParaHipp_R_2	 Temp_Sup_R_1	 0.4681	

113	 Temp_Sup_L_2	 Thal_R	 0.4679	

114	 Fusiform_L_2	 Temp_Sup_R_1	 0.4645	

115	 Temp_Pole_Sup_L	 Temp_Sup_L_1	 0.4645	

116	 Temp_Pole_Sup_L	 Caudate_L	 0.4645	

117	 Hipp_R_1	 Hipp_L_1	 0.4619	

118	 Temp_Pole_Sup_R	 Precuneus_R	 0.4619	

119	 Temp_Sup_R_1	 Hipp_L_5	 0.4576	
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120	 Amyg_L_1	 ParaHipp_L_1	 0.4550	

121	 Temp_Inf_R_1	 ParaHipp_L	 0.4546	

122	 Hipp_R	 Thal_R_1	 0.4545	

123	 Temp_Sup_L	 Temp_Sup_L_1	 0.4519	

124	 Temp_Pole_Sup_L	 Temp_Inf_R_1	 0.4441	

125	 Temp_Sup_L_2	 Temp_Mid_L	 0.4411	

126	 ParaHipp_R	 Temp_Mid_L	 0.4386	

127	 Temp_Inf_R	 ParaHipp_L_1	 0.4315	

128	 Temp_Inf_R	 Hipp_L_5	 0.4315	

129	 ParaHipp_L_1	 Thal_R	 0.4315	

130	 Hipp_R	 Caudate_L	 0.4312	

131	 Amyg_L_1	 Amyg_R	 0.4311	

132	 ParaHipp_R	 ParaHipp_R_2	 0.4273	

133	 Temp_Inf_R	 ParaHipp_L	 0.4225	

134	 Hipp_L	 Temp_Inf_R	 0.4150	

135	 Amyg_R	 Hipp_L_5	 0.4128	

136	 ParaHipp_R	 Thal_R	 0.4127	

137	 Hipp_L	 ParaHipp_L	 0.4104	

138	 Amyg_L_1	 Front_Inf_R	 0.4053	

139	 Temp_Inf_R_1	 Amyg_R	 0.4038	

140	 Temp_Pole_Sup_L	 Temp_Sup_L_2	 0.4006	

141	 Temp_Pole_Sup_L	 Amyg_R_1	 0.4006	

142	 Amyg_L_1	 Temp_Mid_L	 0.3987	

143	 ParaHipp_L	 Amyg_R	 0.3917	
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144	 Temp_Inf_R	 Temp_Inf_R_1	 0.3914	

145	 Temp_Inf_R	 Amyg_R_1	 0.3749	

146	 Temp_Sup_R	 Temp_Mid_L	 0.3666	

  

Table S2: Patel’s k values of the edges linking each pair of nodes. 
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2.2 Brain structural alterations are distributed following functional, 
anatomic and genetic connectivity 
This study was published in Brain in 2018, and was selected as editor’s choice 
(doi.org/10.1093/brain/awy252). 

Authors: Cauda F., Nani A., Manuello J., Premi E., Palermo S., Tatu K., Duca S., 
Fox. P.T., Costa T. 

Abstract 
The pathological brain is characterized by distributed morphological or structural 
alterations in the grey matter, which tend to follow identifiable network-like 
patterns. We analysed the patterns formed by these alterations (increased and 
decreased grey matter values detected with the voxel-based morphometry 
technique) conducting an extensive transdiagnostic search of voxel-based 
morphometry studies in a large variety of brain disorders. We devised an innovative 
method to construct the networks formed by the structurally co-altered brain areas, 
which can be considered as pathological structural co-alteration patterns, and to 
compare these patterns with three associated types of connectivity profiles 
(functional, anatomical, and genetic). Our study provides transdiagnostical evidence 
that structural co-alterations are influenced by connectivity constraints rather than 
being randomly distributed. Analyses show that although all the three types of 
connectivity taken together can account for and predict with good statistical 
accuracy, the shape and temporal development of the co-alteration patterns, 
functional connectivity offers the better account of the structural co-alteration, 
followed by anatomic and genetic connectivity. These results shed new light on the 
possible mechanisms at the root of neuropathological processes and open exciting 
prospects in the quest for a better understanding of brain disorders. 

Introduction 
Brain disorders are characterized by diffuse alterations of grey matter. Especially in 
neurodegenerative diseases, neuroanatomical abnormalities have been found to 
spread from one brain area to another according to distinctive network-like patterns 
(Yates, 2012; Pandya et al., 2017). These patterns of pathological structural co-
alterations seem to develop along pathways that are influenced by the organization 
of brain connectivity (Raj et al., 2012; Zhou et al., 2012; Iturria-Medina and Evans, 
2015; Oxtoby et al., 2017; Yuan et al., 2017; Cauda et al., 2018; Manuello et al., 
2018; Tatu et al., 2018). Indeed, patterns of brain atrophy caused by 
neurodegenerative diseases appear to somewhat resemble the patterns of neuronal 
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connections (Warren et al., 2013). Furthermore, brain disorders selectively target 
certain subpopulations of neurons that often lie at the centre of important functional 
networks (Saxena and Caroni, 2011). Arguably, their high topological centrality 
makes those areas brain hubs and, as a consequence, more likely to be affected by 
pathological processes (Crossley et al., 2014; Cope et al., 2018). 

Thus far, at least four important mechanisms (not necessarily mutually exclusive) 
have been invoked to explain the spread of brain alterations: transneuronal spread, 
nodal stress, shared vulnerability, and trophic failure (Zhou et al., 2012; Fornito et 
al., 2015). The first mechanism is based on the involvement of certain toxic agents 
that propagate along neuronal connections (Soto and Estrada, 2008; Goedert et al., 
2010; Korth, 2012; Jucker and Walker, 2013; Kraus et al., 2013; Walker et al., 2013; 
Clavaguera et al., 2014). A growing body of evidence indicates that misfolded 
proteins may spread in a prion-like way along brain axonal fibres (Chevalier-Larsen 
and Holzbaur, 2006) throughout a corruptive templating as a cascade phenomenon 
of misfolded protein propagation (Jucker and Walker, 2011; Hardy and Revesz, 
2012; Warren et al., 2013). Borrowed from prion diseases (Aguzzi et al., 2007), this 
mechanism has been subsequently explored in neurodegenerative diseases such as 
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral 
sclerosis and tauopathies (Clavaguera et al., 2013; Bourdenx et al., 2017), and more 
recently has been tentatively generalized to other brain disorders (Guest et al., 2011). 
However, the application of the prion-like mechanism to neurodegenerative diseases 
is still an open field of research. 

The second mechanism (Zhou et al., 2012) is based on the hypothesis that the most 
active brain regions (i.e. network hubs) may also be the most functionally stressed 
(Crossley et al., 2014) and, as a result, susceptible to be structurally altered (Buckner 
et al., 2005; Saxena and Caroni, 2011). This phenomenon has been confirmed in 
humans by using in vivo neuroimaging techniques and voxel-based meta-analyses 
(Crossley et al., 2014). The third mechanism relies on the hypothesis that certain 
areas with shared gene or protein expressions may exhibit common vulnerability to 
neuropathology (Zhou et al., 2012). This phenomenon could be partially mediated 
by the relationship between expression of genes and patterns of brain connectivity 
(French and Pavlidis, 2011; Cioli et al., 2014). The fourth mechanism invokes a 
failure in the process of trophic factors production, which can lead to the 
pathological deterioration of neural wiring (Zhou et al., 2012; Fornito et al., 2015). 
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Studies analysing the networks formed by cerebral regions that appear to be co-
altered in the pathological brain are guiding research to a new perspective, which 
claims a neurobiological and transdiagnostic approach for a better understanding of 
how the brain responds in a variety of both neurological and psychiatric conditions 
(Buckholtz and Meyer-Lindenberg, 2012; Raj et al., 2012; Zhou et al., 2012; Fornito 
et al., 2015; Goodkind et al., 2015; Iturria-Medina and Evans, 2015; McTeague et 
al., 2016; Sprooten et al., 2017; Cauda et al., 2018). This view may be counter-
intuitive, as we are inclined to think that brain disorders have specific aetiological 
and pathogenetic mechanisms, which, in turn, produce peculiar patterns of neuronal 
alterations. However, a growing body of evidence points out that, apart from some 
pathology-specific alterations, a ‘core set’ of co-altered cerebral areas is frequently 
involved in the majority of brain diseases (Etkin and Wager, 2007; Ellison-Wright 
and Bullmore, 2010; Saxena and Caroni, 2011; Hamilton et al., 2012; Jagust, 2013; 
Menon, 2013; Baker et al., 2014; Douaud et al., 2014; Goodkind et al., 2015; Cauda 
et al., 2018). 

This ‘core set’ is generally composed of areas that are related to important 
associative and cognitive functions, among which the insular and anterior cingulate 
cortices are the most prominent. These regions are essential parts of the cognitive 
control system, which is supposed to monitor a host of higher brain functions (Cauda 
et al., 2012b). Thus, for both its topological and functional features, the activity of 
the cognitive control system may be affected by a wide variety of brain disorders 
(McTeague et al., 2016). This would make it more difficult to differentiate 
neuropathological conditions solely based on structural or functional alterations 
exhibited by the areas constituting this system (Sprooten et al., 2017). 

The contamination between neurodegenerative and psychiatric disorders may be 
highlighted by a number of studies. Genetic studies in neurodegenerative dementias 
show how brain abnormalities antedate the onset of symptoms by many years 
(Quiroz et al., 2015; Rohrer et al., 2015; Chhatwal et al., 2018), suggesting a less 
defined border between neurodegenerative and neurodevelopmental disorders 
(Zawia and Basha, 2005; Lahiri and Maloney, 2010; Warren et al., 2013). Moreover, 
a growing body of literature, demonstrating structural and functional brain changes 
in psychiatric illnesses, is bringing psychiatry and the study of neurological 
conditions together (Douaud et al., 2014; Gupta et al., 2015; Du et al., 2017). 

The lack of direct correspondence between the development of neuropathological 
processes and the manifestation of brain alterations implies an overlap of symptoms 
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that strictly depends on the disruption of large-scale networks. What is more, 
transdiagnostic symptoms are often produced by genetic and environmental risk 
factors that affect system-level circuits for many dimensions of cognitive functions. 
The impairment of these circuits brings about vulnerability to vast domains of 
psychopathology rather than distinct diseases (Buckholtz and Meyer-Lindenberg, 
2012). 

Given that the spread of brain alterations is likely to be non-random in both 
neurological and psychiatric diseases (Cauda et al., 2018; Tatu et al., 2018), an 
important and as yet unresolved issue is the prevalence of one or more mechanisms 
at the root of the propagation in different brain disorders. To our knowledge, thus 
far only one study (Cope et al., 2018) has tried to estimate, with the help of in vivo 
techniques, which mechanism is mostly associated with the distribution patterns of 
two neurodegenerative diseases (i.e. Alzheimer’s disease and progressive 
supranuclear palsy). Indeed, if neuronal alterations follow the patterns of brain 
connectivity, it should be possible to predict their spread based on brain connectivity 
profiles (Raj et al., 2012; Robinson, 2012; Zhou et al., 2012; Iturria-Medina et al., 
2014). It should also be possible to simulate the temporal evolution of these 
alterations and to infer which of the different connectivity profiles (i.e. functional, 
anatomic, and genetic) can better explain the development of a certain structural co-
alteration pattern. In light of this, it is reasonable to hypothesize that the different 
contributions of the aforementioned propagation mechanisms might lead to typical 
patterns of structural co-alterations (Cope et al., 2018). For instance, the prevalence 
of a pattern composed of anatomically connected areas may be better explained by 
the mechanism of the transneuronal spread, which implies a propagation across 
more contiguously and directly connected areas. By contrast, the prevalence of a 
pattern composed of functionally connected regions suggests that the mechanism of 
the nodal stress may be more effective in generating this network of co-alterations 
(Biswal, 2011, 2012; Buckner et al., 2013). In turn, the shared vulnerability 
hypothesis implies that structurally co-altered areas may be characterized by similar 
gene co-expression patterns (Stuart et al., 2003). 

To address these important questions, we recently developed a methodology to 
estimate how each type of brain connectivity can predict the pattern formed by 
neuropathological co-alterations (Cauda et al., 2018). Herein, this methodology has 
been applied transdiagnostically so as to have a great deal of meta-analytical data to 
work on and, at the same time, to provide proof of concept. We would like to show 
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that this method is applicable to every brain disorder and, in the future, we plan to 
use it for the analysis of specific neurological or psychiatric conditions. 

To this aim, we began by examining the whole BrainMap (Fox and Lancaster, 2002; 
Fox et al., 2005; Laird et al., 2005b) voxel-based morphometry (VBM) database of 
brain MRI studies to construct the most comprehensive transdiagnostic map of 
pathological structural co-alterations. To do so we used the grey matter alterations 
detected by VBM as a proxy for the morphological brain abnormalities. Given a 
brain area (say, ‘A’) that is altered, our method was able to detect if other areas 
appeared to be altered together with ‘A’ (i.e. co-altered) (Cauda et al., 2018; 
Manuello et al., 2018; Tatu et al., 2018). 

The result of this analysis was the creation of undirected co-alteration graphs 
showing the brain areas forming the structural co-alteration patterns. Then, to assess 
which of the three different connectivity profiles could account better for the 
structural co-alteration patterns, we calculated the anatomical, resting state 
functional, and genetic (i.e. the correlated gene expression pattern) connectivity 
networks using the brain most altered areas as starting points (i.e. nodes). The 
comparison of the different network matrices to the structural co-alteration patterns 
allowed us to find out the contribution of each connectivity profile to the co-
alteration pattern and, consequently, to better understand its development through 
the spread of alterations [for the relationship between co-alteration patterns and the 
concept of propagation or spread, see Cauda et al. (2018)]. On these grounds, we 
also estimated—with simulation techniques—both the spatial and temporal 
progression of the distribution of alterations, so as to find out how the patterns of 
structural co-alterations could be predictable in terms of functional, anatomic, and 
genetic connectivity. 

This method allowed us to address the following issues. How are structural co-
alteration patterns distributed across the pathological brain? Since neuronal 
alterations seem to spread from one cerebral region to another, do these propagation 
patterns follow the routes of brain connectivity? Which type of connectivity 
(anatomic, functional, or genetic) is most involved in the generation of structural co-
alterations? What is the temporal evolution of these co-alteration patterns? 
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Materials and methods 
Selection	of	studies	
We queried the VBM BrainMap database (Fox and Lancaster, 2002; Fox et al., 
2005; Laird et al., 2005b; Vanasse et al., 2018) (December 2017) using the following 
search criteria: (i) decreases: Experiments Context is Disease AND Experiment 
Contrast is Gray Matter AND Experiments Observed Changes is Controls>Patients; 
and (ii) increases: Experiments Context is Disease AND Experiment Contrast is 
Gray Matter AND Experiments Observed Changes is Patients>Controls. 

We retrieved 912 experiments and 350 experiments for the first and the second 
query, respectively. All the retrieved experiments with a sample size smaller than 
eight subjects were excluded. The identification of this lower bound is in accordance 
with the work of Scarpazza et al. (2015), which showed that VBM experiments 
based on an equivalent sample should not be biased by an increased false positive 
rate. We further decided to exclude all the experiments not clearly comparing 
pathological population with healthy controls, as well as considering subjects ‘at 
risk’. The remaining items were then coded according to the ICD-10 system. As a 
further criterion, all the experiments not coded with F (i.e. mental, behavioural and 
neurodevelopmental disorders) or G (i.e. diseases of the nervous system) labels were 
excluded. From the remaining records, we also expunged those related to codes that 
could not be considered as primary brain disorders (i.e. F10: Alcohol related 
disorders; F15: Other stimulant related disorders; F28: Other psychotic disorder not 
due to a substance or known physiological condition; F91: Conduct disorders; G11: 
Hereditary ataxia; G43: Migraine; G44: Other headache syndromes; G47: Sleep 
disorders; G50: Disorders of trigeminal nerve; and G71: Primary disorders of 
muscles). At the end of this procedure the 642 remaining experiments from the first 
query (for 15 820 subjects, and 7704 foci) and the 204 remaining experiments from 
the second query (for 4966 subjects, and 2244 foci) were used for the analyses. 

For the first query, most studies explored F20: Schizophrenia (17.9%); F32-F33: 
Major depressive disorder, single episode/recurrent (9.8%); G40: Epilepsy and 
recurrent seizures (8.7%); G30: Alzheimer’s disease (8.3%) and G31: Other 
degenerative diseases of the nervous system (8.1%). For the second query, most 
studies explored F20: Schizophrenia (16.2%); G40: Epilepsy and recurrent seizures 
(12.7%); F84: Pervasive developmental disorders (11.3%); F31: Bipolar disorder 
(9.8%) and F32-F33: Major depressive disorder, single episode/recurrent (9.3%). 
The complete overview of the diagnostic spectra distribution is reported in 
Supplementary Table 1. 
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The overview of data search strategy and datasets is reported in the Supplementary 
material. A flow chart of key steps (used to generate the dataset of information, 
analyse data and obtain several levels of results) is also reported in Supplementary 
Fig. 1. The full list of the studies designated as suitable for meta-analysis, are 
reported in Supplementary Tables 2 and 3. 

To calculate the pattern of structural co-alterations we used the same methodology 
previously applied in Cauda et al. (2018), Manuello et al. (2018) and Tatu et al. 
(2018). 

Anatomical	likelihood	estimation	and	modelled	alteration	creation	
First, we performed an anatomical likelihood estimation (ALE) (Eickhoff et al., 
2009, 2012; Turkeltaub et al., 2012) to summarize the results of the retrieved 
experiments statistically using an in-house developed MATLABr script following 
both the algorithms used in Gingerale 2.3.6 (Eickhoff et al., 2009, 2012; Turkeltaub 
et al., 2012) and the recommendation of Eickhoff et al. (2017). Results are clustered 
at a level of P < 0.05, family-wise error (FWE)-corrected for multiple comparisons, 
with a cluster-forming threshold of P < 0.001 (Eickhoff et al., 2016). 

The ALE is a quantitative voxel-based meta-analysis technique able to give 
information about the anatomical reliability of results through a comparison by 
using a sample of reference studies from the existing literature (Laird et al., 2005a). 
An ALE meta-analysis considers each focus of every experiment as a Gaussian 
probability distribution:   

 

[1] 

 

where d is the Euclidean distance between the voxels and the focus taken into 
account and σ is the spatial uncertainty. 

A modelled alteration (MA) map was calculated for each experiment as the union 
of the Gaussian probability distribution of each focus present in the experiment 
itself. Then the ALE map was determined as the union of the MA maps. 
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The significance of alteration values within the ALE map was calculated by a 
permutation test, in which we redistributed the same number of foci across the brain 
and recalculated an ALE map as described before. The histogram of the obtained 
score was used to assign a threshold P-value. 

Creation	of	nodes	
The creation of nodes was obtained from the ALE map using a peak detection 
algorithm that returns the set of local maxima. A local peak is a voxel whose ALE 
value is higher than the values of its neighbouring voxels. We selected the voxels 
with a peak value greater than a given threshold, which was set at the 75th 
percentiles of the peak values distribution. Then we created a distance matrix 
calculating the Euclidean distance between peaks. To avoid overlaps between 
regions of interest, we excluded all the peaks within a distance of 10 mm from the 
other peaks. Around each of those peaks we designed a 10 mm2 region of interest, 
which was used for the subsequent analysis (see Fig. 1 for a schema depicting the 
node detection pipeline; see Supplementary Tables 6 and 7 for the coordinates of 
nodes). For a detailed discussion of the rationales at the basis of our methodological 
choices, see Cauda et al. (2018). 
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The	structural	co-alteration	network	
To trace the distribution of brain alterations we used a methodology aimed to 
characterize the structural co-alterations in the evolution of brain disorders (Cauda 
et al., 2015, 2018; Manuello et al., 2018; Tatu et al., 2018). This method can 
establish whether the alteration of a brain area statistically co-occurs with the 
alteration of one or more other brain areas. Specifically, we created a co-alteration 
matrix using the previously defined set of nodes. In the matrix of N × M dimension, 
the N rows represent experiments and the M columns the network nodes. For each 
pair of nodes of the co-alteration matrix, it is possible to obtain the strength of their 
co-alteration using the Jaccard index, which is defined as the number of experiments 
(rows) activating both the nodes divided by the union of the experiments activating 
the two nodes independently. 

The obtained Jaccard matrix was thresholded at P < 0.01 using the method proposed 
by Toro et al. (2008). Given two nodes A and B, the null hypothesis states that the 
probability of B being altered does not depend on the value observed for A; by 

Figure 1: Node detection pipeline. Left: The schema illustrates the pipeline 
utilized for the detection of the regions of interest (i.e. nodes). 
Right: The obtained nodes for the decrease (top) and increase 
(bottom) conditions. See Supplementary Tables 6 and 7 for the 
node coordinates. 
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contrast, the alternative hypothesis states that a relationship of dependence between 
A and B exists. This can be expressed formally as:   

p0=Prob(B=1|A=0) 
[2] 

 
p1=Prob(B=1|A=1) 

[3] 
 

H0:p0=p1=p 
[4] 

 
H1:p0≠p1 

[5] 
 

We can obtain from the data an estimate pˆ under the null hypothesis as pˆ=m/N, 
where m is the number of experiments in which node B is altered and N the total 
number of experiments. Similarly, we can obtain the estimated probabilities under 
the alternative hypothesis as:   

pˆ0=(m−k)/(N−n) 

[6] 

and 

pˆ1=k/n 

[7] 

where n is the number of experiments in which the node A is altered and k is the 
number of experiments in which both nodes A and B are altered. The likelihood-
ratio test is calculated with the following formula:   

λ=L(H1)/L(H0) 

[8] 

This formula is used to evaluate the alternative hypothesis H1 with respect to the 
null hypothesis H0. 
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The likelihood of the null hypothesis is defined as follows: 

L(H0)=B(k;n,p)B(m−k;N−n,p) 

[9] 

where B is the binomial distribution in which n is the number of contrasts that alters 
the second node, m is the number of contrasts that alters the first node, N is the total 
number of contrasts, and p=m/N and k are the numbers of contrasts that alter both 
nodes. 

The likelihood of the alternative hypothesis is defined as follows:   

L(H1)=B(k;n,p1)B(m−k;N−n,p0) 

[10] 

The λ distribution is shaped by a χ2 function with one degree of freedom. 
Connection at P < 0.01 corrected for false discovery rate (FDR) was maintained, 
otherwise discarded. 

Functional	connectivity	matrix	
For the same set of nodes considered in the previous analysis we calculated the 
functional connectivity matrix using resting state data (minimally preprocessed and 
ICA-FIX de-noised) from 200 healthy adult subjects in the 22–35 age range, 
obtained from the Human Connectome Project (2015 Q4, 900-subject release). For 
further details on the preprocessing of these data see Glasser et al. (2013) and Van 
Essen et al. (2012). 

The matrix was constructed in the following manner. The previously determined 
nodes were used to create a spatial map and to generate subject-specific associated 
time series of the functional data, using the dual regression approach (Beckmann et 
al., 2009; Filippini et al., 2009). For each subject, the spatial map is regressed (as 
spatial regressors in a multiple regression) into the subject’s 4D space-time dataset. 
This results in a set of subject-specific time series. The output of the dual regression 
was a set of 200 matrices, one for each subject, where each column represents the 
time series of the corresponding node. Starting from these matrices we calculated 
the partial correlation between the nodes for each subject and then we mediated to 
obtain a final partial correlation matrix of the subjects’ group. This group 
connectivity matrix was then thresholded (α < 0.05) with a one sample permutation 
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test (5000 permutation) using the FSL randomise program (Smith and Nichols, 
2009; Winkler et al., 2014). 

Anatomical	connectivity	matrix	
The anatomical connectivity matrix was constructed using diffusion tensor imaging 
(DTI) data of 842 subjects in the 22–35 age range. These data were retrieved from 
the Human Connectome Project (2015 Q4, 900-subject release) (Van Essen et al., 
2013). The diffusion images were acquired using a multishell diffusion scheme. The 
b-values were 1000, 2000 and 3000 s/mm2. The numbers of the diffusion sampling 
directions were 90, 90 and 90. The in-plane resolution was 1.25 mm. The slice 
thickness was 1.25 mm. The diffusion data were reconstructed in the MNI space 
using the q-space diffeomorphic reconstruction (Yeh and Tseng, 2011) to obtain the 
spin distribution function (Yeh et al., 2010). A diffusion sampling length ratio of 
1.25 was used, and the output resolution was 1 mm. The atlas was constructed by 
averaging the spike density functions of the 842 subjects. 

A deterministic fibre tracking algorithm (Yeh et al., 2013) was used to reveal the 
brain anatomical connections. The parameters were the following: whole brain 
seeding region method; angular threshold of 60°; step size of 0.5 mm; the anisotropy 
threshold was determined automatically by DSI Studio (Yeh et al., 2016). Tracks 
with length less than 30 mm were discarded. A total of 5000 seeds were placed in 
the brain. The nodes, obtained from the meta-analysis, were used to calculate the 
connectivity matrix by using the numbers of tracts passing between two nodes 
normalized by the median length of the connecting tracks. 

Genetic	co-expression	matrix	
Differently to the gene co-expression networks (Zhang and Horvath, 2005) that can 
quantify gene-to-gene relationships across different anatomical samples, the 
correlated ‘gene expression network’ proposed by Richiardi et al. (2015) is a form 
of genetic connectivity that quantifies anatomical region to anatomical region (i.e. 
region of interest to region of interest) across genes. This network has been obtained 
by using the complete microarray datasets of six brains, available for download from 
the Human Brian Atlas Project (Hawrylycz et al., 2012). The datasets contain values 
of gene expression that are normalized across all brains with an improved 
normalization process—for further information about the sample normalization see 
ALLEN Human Brain Atlas (2013). The downloaded files contain normalized 
microarray expression values as well as probe and sample metadata necessary for 
analysis. 
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It should be noted that the Allen Brain Atlas has some idiosyncrasies. For example, 
only two of the individuals whose data are stored in the database have bi-
hemispheric samples. Moreover, the samples of brain areas were obtained with 
different stereotactic coordinates so that the variability among them is high. To 
address these issues, we used a method based on the Voronoi tessellation (Cauda et 
al., 2012a). Voronoi tessellation (Voronoi, 1907) is a specific decomposition of a 
metric space based on a finite set of points. In a 3D space, a given set of points S is 
a partition that associates a volume V(p) with every point p∈S so that all the points 
of the surface of V(p) are closer to p than to any other point in S. With this method, 
for each subject, we were able to create a parcellation of the brain based on the 
position of the samples, which are considered as the barycentres of the Voronoi 
polygons. We then assigned to all the voxels encompassed in a specific polygon the 
gene expression pattern of the sample located in the barycentre of that polygon. 

Six parcellations were then constructed, one for each individual of the Allen project. 
In every parcellation, each voxel was characterized by a gene expression vector 
related to its closer sample. With regard to the four individuals with samples coming 
from one hemisphere, only one half brain was parcellated. Afterwards, we averaged 
the gene expressions of the six subjects voxel-wise. Gene expressions that are 
reported as non-statistically significant in the Allen database were excluded from 
the averaging process. This method made it possible to reduce the variance among 
the gene expression patterns of the six individuals, thus minimizing the weaknesses 
of the Allen database as much as possible. 

The result was a tessellation of the brain in which every Voronoi polygon contains 
the mean gene expression of the six individuals (Cauda et al., 2012a). Subsequently, 
this information has been used to create the genetic co-expression matrix based on 
the set of nodes obtained from the meta-analysis. To every node we assigned the 
gene expression related to the Voronoi polygon associated with that node. We then 
constructed a matrix in which rows represent the gene expressions and columns 
represent the nodes. From this matrix we calculated the full and partial correlation 
of the mean gene expression between the nodes, so as to obtain a partial correlation 
matrix. This final matrix was probabilistically thresholded (α < 0.05) with a 
permutation test (5000 permutations). 

Reliability	measures	
To assess the consistency of our measures (reliability) we used a Spearman-Brown 
split half methodology (or Spearman-Brown prediction formula) (Stanley, 1971; 
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Allen and Yen, 2001). We divided each dataset (meta-analytic, functional, and 
genetic) into even and odd groups; for each group, we calculated the corresponding 
connectivity matrices. We then calculated the correlation between these connectivity 
matrices applying the Spearman-Brown correction (Allen and Yen, 2001) to get a 
better estimate of the reliability, as follows:   

ρ=2r/(1+r) 

[11] 

where r is the classical Spearman correlation. 

Since DTI data were provided by the Human Connectome Project as ‘mean 
connectivity matrices’, we used a different approach to calculate the reliability of 
the anatomical connectivity measures. We used another mean DTI connectivity 
matrix obtained from a different dataset as a replication dataset. The replication 
dataset consisted of a different structural connectivity matrix that was constructed 
using a total of 842 subjects’ diffusion MRI data, in the 22–35 age range, obtained 
from the Human Connectome Project (2015 Q4, 900-subject release) (Van Essen et 
al., 2013). Finally, we calculated the correlation between the anatomical 
connectivity matrix derived from the primary dataset and the one derived from the 
replication dataset. 

Comparison	between	connectivity	matrices	
The comparison between the different matrices (co-alteration, anatomical, 
functional, and genetic) was done using the Mantel test (Mantel, 1967; Glerean et 
al., 2016). In the Mantel test the correlation between two matrices was determined 
with a permutation test (5000 permutations). We calculated the correlation between 
the matrices by randomly permutating rows and columns. We subsequently obtained 
the distribution of the different correlations and calculated the P-value. 

Diffusion	connectivity	matrix:	spatial	and	temporal	evolution	
To assess the temporal evolution of the different types of connectivity, we developed 
a simple diffusion model. We considered the spread of neuronal alterations as a 
diffusion process by using a brain network-based model G={N,E} where nodes 
ni∈N, which represents the cortical and subcortical structure as obtained from our 
meta-analysis, while edges eij∈E, which represents the connection strength linking 
node i and node j. We used three types of connection strength for each model 
obtained from the anatomical, functional and genetic connectivity matrices. 
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Following Abdelnour et al. (2014) and Kondor and Lafferty (2002), we modelled 
the diffusion process using the heat equation, defined as:   

dx(t)/dt=−βℒx(t) 

[12] 

where the matrix ℒ	is the following Laplacian graph:   

�ℒ	=I−Δ−1/2EΔ1/2 

[13] 

in which Δ is the diagonal matrix with δi = ∑jeij as the ith diagonal element. The heat 
Equation 12 can be solved explicitly as follows: 

x(t)=exp(−βℒt)x0 

[14] 

This formula defines the evolution of the initial configuration x0. We hypothesized 
an initial configuration in which the disease factor was uniform in all the nodes, thus 
obtaining the following equation:   

Cov(t)=exp(−βℒt) 

[15] 

which, having as free parameters the diffusion factor β and time t, can express the 
covariance of the system at each time of its evolution. 

In our case we had the covariance matrix (the meta-analytic data) and the Laplacian 
matrices obtained from the resting state data, the anatomical data and genetic data, 
respectively. We estimated therefore the diffusion factor β and obtained the 
evolution of the diffusion for the functional, anatomical and genetic data. The best 
estimate of the parameter β and the time evolution of the diffusion were determined 
using a grid search on the parameter β, ranging between (0,1) with a step of 0.1. For 
each β-value, the matrix obtained from this simulation was correlated with the meta-
analytic covariance matrix. With a Mantel test we assessed the significance of this 
correlation. Finally, the β-value that could maximize the correlation was chosen. 
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Contribution	 of	 the	 different	 kind	 of	 connectivity	 profiles	 to	 the	 structural	 co-
alteration	patterns	
To find out the contribution of the different types of connectivity to the structural 
co-alteration patterns, we developed the following model: 

D=αMF−Conn+βMA−Conn+γMG−Conn 

[16] 

where D is the structural co-alteration matrix and MF−Conn is the functional 
connectivity matrix, MA−Conn is the anatomical connectivity matrix, and MG−Conn is 
the genetic connectivity matrix, respectively. 

Using an unconstrained non-linear optimization, we found the minimum of a scalar 
function of several variables. The algorithm was the simplex search method of 
Lagarias et al. (1998):   

minα,β,γ∣∣(D−αMF−Conn−βMA−Conn−γMG−Conn)2∣∣	

[17] 

The final results are the coefficients that minimize the square difference norm 
between the structural co-alteration matrix and the other matrices. The algorithm 
was executed 1000 times with different initial conditions, each time to check the 
stability of the obtained minimum (Fig. 2, bottom). 
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Network	analysis	techniques	
We analysed the co-alteration patterns further using a network-based analysis 
technique. 

 

Figure 2: ALE results and cost functions. Top: ALE results for decreased (left) 
and increased foci (right). ALE results are clustered at the level of 
P < 0.05 and family-wise error-corrected for multiple comparisons, 
with a cluster-forming threshold of P < 0.001. Bottom: The schema 
illustrates the evolution of the cost function of the minimization 
algorithm for predicting the distribution of the structural co-
alteration patterns. 
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The node degree is the number of connections that the node has with the other nodes. 
We used the degree distribution to compare the node degree of the nodes of different 
networks. It was therefore possible to compare the structural co-alteration network 
with random networks. The degree distribution is the fraction of nodes with degree 
k, defined as follows: 

P(k)=nk/n 

[18] 

The average shortest path length is defined as the average number of steps along the 
shortest paths for all pairs of nodes of the network under consideration. For an 
unweighted graph G with n vertices, the average path length is defined as follows:   

lG=1/(n(n−1))*∑i≠jd(vi,vj) 

[19] 

where d is the shortest distance between node vi and node vj, with d = 0 if vj cannot 
be reached from vi. 

This is one of the most robust measures in network topology and is inversely related 
to efficiency, which is a measure of how efficiently the network exchanges 
information. In particular, the local efficiency quantifies the network resistance 
when a failure occurs within it. 

Data	availability	
The datasets we used in this study are from publicly available sources: 

BrainMap (meta-analytic datasets) http://brainmap.org/. 

Allen Brain Atlas (gene expression datasets) http://human.brain-
map.org/static/download. 

Human Connectome Project (resting state connectivity and DTI anatomical 
connectivity datasets) http://www.humanconnectomeproject.org/data/. 

Above, we describe in detail which parts of these datasets were used or how we 
queried the BrainMap database. 

A complete list of the literature involved in the meta-analytic analyses is provided 
in the Supplementary material. 
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Results 
The	‘core	set’	of	altered	brain	areas	
Figure 2 (top) shows the brain areas that appear to be altered in the VBM studies 
retrieved from our search. These areas form the ‘core set’ that is likely to be 
frequently affected by brain diseases. Areas showing significant statistical decreases 
are the insulae, anterior cingulate cortices, superior and middle temporal gyri, 
superior, middle and inferior frontal, pre- and postcentral gyri. Areas showing 
significant statistical increases are the right anterior and posterior insula, left middle 
insula, right pre- and postcentral gyri, right superior frontal gyrus, right superior 
temporal gyrus, left inferior temporal and inferior frontal gyri (see also 
Supplementary Tables 4 and 5). 

Node	creation	and	structural	co-alteration	network	
Our automatic node creation procedure derived 277 nodes from the core set of 
decreased areas and 271 nodes from the core set of increased areas. These nodes are 
illustrated in the right panel of Fig. 1 (see also Supplementary Tables 6 and 7). 

Given the nodes previously designed, we constructed the structural co-alteration 
networks for both the VBM datasets (decreases and increases). These networks are 
visualized in Fig. 3. 
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Interestingly, the two structural co-alteration networks are topologically different 
(Fig. 3, middle and bottom). The one formed by decreased areas is more restricted 
and principally involves the insulae and the anterior cingulate cortices. These 
regions exhibit the nodes with the highest values of degree. In turn, the other 
network formed by increased areas is more widespread and less anatomically 
defined, albeit it includes parts of the insulae and is slightly prevalent in subcortical 
regions. 

Anatomical,	functional	and	genetic	connectivity	
For the same sets of nodes, we calculated the resting state functional, anatomical 
and genetic networks. These networks are visualized in Figs 4 and 5. In line with 
the previous literature (Gong et al., 2014; Huang and Ding, 2016), functional and 
anatomical connectivity appear to be correlated (decreased nodes r = 0.14, P < 2.383 
× 10−5; increased nodes r = 0.12, P < 2.421 × 10−5). Notably, the genetic connectivity 
also appears to correlate with both anatomical (decreased nodes r = 0.21, P < 2.195 
× 10−5; increased nodes r = 0.18, P < 3.028 × 10−5) and functional connectivity 
(decreased nodes r = 0.18, P < 3.021 × 10−5; increased nodes r = 0.14, P < 2.359 × 
10−5). 

  

Figure 3: Co-alteration networks. Top: The decrease-related (left) and 
increase-related (right) structural co-alterations. Only for 
visualization purposes, the matrices were thresholded at the 95th 
percentile. Colours ranging from magenta to green represent lower 
to higher correlation values. Middle: Topological analysis of the 
structural co-alteration network, using a force directed spring 
embedded layout. Smaller nodes show lower average shortest path 
length. Colour tones from magenta to green indicate lower to 
greater degree values. Bottom: A geotagged layout of the networks. 
Node dimension and colour tones from green to red indicate lower 
to greater degree values. 
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Figure 4: Connectivity networks. The functional connectivity (F-Conn) 
network (top), the anatomical connectivity (A-Conn) network 
(middle), and the genetic connectivity (G-Conn) network or genetic 
co-expression network (bottom). Only for visualization purposes 
the matrices were thresholded at the 95th percentile. Colours 
ranging from blue to red represent lower to higher correlation 
values. For anatomical connectivity, colour ranging from blue to 
red represent lower to higher fibre density values. 
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Reliability	
Our connectivity matrices present a good reliability (Spearman-Brown split half 
test). Indeed, we have obtained mean values of 0.80, 0.72, 0.80, and 0.75 for the 
structural co-alteration, the functional, the gene co-expression and the anatomical 
connectivity matrices, respectively. These values indicate a good internal 
consistency of measures. In particular, the Spearman-Brown formula is related to 
the Cronbach’s alpha (Nunnally and Bernstein, 1994; Carlson et al., 2009); both 
formulas measure the ratio of the true-score and total-score variances. As suggested 
by Nunnally and Bernstein (1994), the rule of thumb for that measure usually 
considers a good internal consistency of data with values of >0.7. 

Correlational	analyses	
As our experimental question is to investigate whether and how neuropathological 
co-alterations (independently related to both grey matter decreases and grey matter 
increases) are influenced by different types of normal brain connectivity (i.e. 
functional, anatomical, and genetic connectivity), we compared neuropathological 
co-alteration patterns with normal patterns of brain connectivity as they are 
measured in healthy individuals. 

The statistical comparison between the structural co-alteration matrix and the other 
matrices (functional, anatomical, and genetic) shows that each of the three 
connectivity profiles is statistically correlated with the structural co-alteration 
patterns associated with grey matter decreases and grey matter increases, that is, 
each type of connectivity explains a statistically significant portion of those patterns. 

Figure 6 (top left) illustrates the correlation between the structural co-alteration 
matrix and the other three connectivity matrices. While the decrease-related 
structural co-alteration is better explained by functional connectivity (r = 0.28), 
followed by anatomical and genetic connectivity (r = 0.19 and r = 0.18, 
respectively), the increase-related structural co-alteration is better explained by 
functional connectivity (r = 0.26), followed by genetic and anatomical connectivity 
(r = 0.23 and r = 0.22, respectively). 

 

Figure 5: Distance matrices regarding the structural co-alteration, functional, 
anatomical and genetic connectivity. Colours ranging from blue to 
red represent lower to higher correlation values. 
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However, as these three types of connectivity are known to be correlated with each 
other and exhibit a shared variance, as we previously mentioned, we decided to 
calculate the partial correlation between the three connectivity matrices and the 
structural co-alteration matrix with the aim to report how each type of connectivity 
correlates with the structural co-alteration pattern with the exclusion of their 
common shared variance. This analysis is described in Fig. 6 (top right), and 
provides further evidence that the decrease-related structural co-alteration correlates 
more with functional connectivity (r = 0.24), followed by anatomical (r = 0.14) and 
genetic (r = 0.11) connectivity. In turn, the increase-related structural co-alteration 
appears to correlate in a similar way with the three types of connectivity; it is slightly 

Figure 6: Results of the correlational and predictive tests. The top panel shows 
the correlational results (the left panel illustrates the full 
correlation, while the right panel illustrates the partial correlation). 
The bottom panel shows the predictive results. 
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better explained by functional connectivity (r = 0.22), followed by genetic and 
anatomical connectivity (r = 0.17 and r = 0.16, respectively). Of note, all the partial 
and full correlation results are statistically significant: P-values < 2 × 10−7 for the 
partial correlation results, and P-values < 3 × 10−4 for the full correlation results. 
Overall, this indicates that structural co-alterations are in part explained by all these 
three types of connectivity. 

Spatial	and	temporal	progressions	
Our model is able to predict the propagation patterns of neuronal alterations with 
good statistical confidence (all predictions survive the conservative statistic 
threshold of P < 10−5). 

Figure 7 illustrates the temporal evolution of the structural co-alteration patterns 
(expressed in arbitrary units) as it is predicted by every β-value, used in the grid 
search, of the model. For each β-value we calculated the temporal evolution of the 
diffusion process and for each time we correlated the diffusion matrix derived from 
the distribution model of co-alterations and the co-alteration matrix obtained from 
the meta-analysis. What is clear is that around 30 temporal steps, all the connectivity 
models predict the complete diffusion of brain alterations. However, within the 
initial steps, only the genetic model can substantially show a prediction of how 
structural co-alterations are expected to develop. This result provides evidence that 
with the help of genetic connectivity, it is possible to predict a substantial portion of 
the pattern formed by neuropathological alterations in a variety of brain disorders 
just based on its initial manifestation. The chart in Fig. 7 illustrates how the average 
temporal evolution of structural co-alterations, calculated by the model based on 
grey matter increases, is characterized by a faster development compared with that 
calculated by the model based on grey matter decreases. 
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The model of the distribution of the structural co-alteration patterns (D = αMF–Conn 

+ βMA–Conn + γMG–Conn) shows that it is possible to describe the meta-analytic 
structural co-alteration matrix as a weighted sum of the functional, anatomical and 
genetic connectivity matrices. After the optimization procedure for the three 
parameters, we correlated the D matrix of the model with the co-alteration matrix 
obtained from the meta-analytical data and found a variance explained for the grey 
matter decreases of R2 = 0.77 (P < 0.0012) and for the grey matter increases of R2 = 
0.72 (P < 0.0025). Furthermore, all the three matrices appear to contribute 
significantly to the description of the meta-analytic structural co-alteration matrix 
(Table 1 and Fig. 6, bottom). It is worth noting that, in our model, with regard to 
both grey matter decreases and increases the major contribution is made by the 
functional connectivity matrix, followed by anatomic and genetic connectivity. 

  

Figure 7: Model's temporal evolution. Top: This series of maps shows the 
correlations of the functional, anatomical and genetic matrices with 
the structural co-alteration matrix for different beta values as a 
function of time (arbitrary units), as described in Equation 12. 
Colours ranging from blue to red represent lower to higher 
correlation values. Bottom: The chart summarizes the time in 
which the diffusion of brain alterations reaches the steady state as 
a function of the beta rate for the decrease and increase conditions. 
Note that the average temporal evolution of structural co-
alterations calculated by the model based on grey matter increases 
is characterized by a faster development compared with that 
calculated by the model based on grey matter decreases.  



 91 

 

Discussion 
The analyses carried out in this study provide support for the following points: (i) 
brain areas affected by neuropathological processes form typical patterns of 
structural co-alterations; (ii) the development of these transdiagnostic structural co-
alterations is not random but preferentially follows the routes of brain connectivity; 
(iii) anatomical, functional and genetic connectivity are differently involved in 
shaping structural co-alterations; and (iv) starting from the brain connectivity 
matrices, it is possible to create a model that allows us to predict with relatively high 
accuracy the development of the structural co-alteration patterns and, based on this 
model, to estimate the evolution of how structural co-alterations are distributed 
across the brain in terms of the involvement of the type of brain connectivity. To the 
best of our knowledge, this is the first time that these issues have been addressed in 
humans using in vivo approaches. 

Our results provide evidence that brain morphological alterations are distributed 
according to a statistically significant pattern: alterations are distributed across brain 
areas so as to form a network of pathological nodes. This pattern of structural co-
alteration exhibits a topological definite structure and includes some regions (the 
insular and anterior cingulate cortices) that are thought to be important functional 
hubs of the brain. 

We performed a predictive analysis of the structural co-alteration patterns by 
creating a model that, based on brain connectivity matrices, attempts to estimate the 
development of the co-alteration patterns; this model was able to explain the 77% 

Table 1: Parametric values of correlation between the three connectivity 
matrices and the meta-analytic structural co-alteration matrix 
constructed with either grey matter increase or decrease data. The 
total R2 value is the result of the correlation between the diffusion 
matrix obtained from the model and the co-alteration matrix 
obtained from the meta-analytic data. In this way we calculated the 
contribution of each connectivity profile to the variance explained, 
determining the R2 of each network profile with the diffusion 
matrix obtained from the model. A-Conn = anatomical connectivity 
matrix; F-Conn = functional connectivity matrix; G-Conn = genetic 
connectivity matrix. 
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and the 72% of the variance in the decrease and increase structural co-alteration 
patterns, respectively. This finding supports the idea that the two structural co-
alteration patterns, as well as their temporal development (Cauda et al., 2018), are 
strictly associated with the brain connectivity patterns. Specifically, our model 
shows that, based on functional and anatomical connectivity, more consecutive steps 
are needed to completely predict the propagation of structural co-alterations. On the 
other hand, this is not the case for a model based on genetic connectivity, which is 
able to predict the propagation of structural co-alterations just at its early stages. 

Our analysis proposes to take into consideration the contribution of three (i.e. 
transneuronal spread, nodal stress, and shared vulnerability) of the four possible 
mechanisms so far hypothesized for the spread of brain alterations (Saxena and 
Caroni, 2011; Zhou et al., 2012; Fornito et al., 2015), each of which with its typical 
temporal evolution. Future studies will be able to apply our model in order to better 
understand which mechanisms are more specifically involved in particular brain 
disorders. 

With regard to both grey matter decreases and increases, the functional connectivity 
appears to be the best predictor of the pattern of structural co-alterations. Although 
a certain type of connectivity seems to play a prevalent role in both grey matter 
decreases and increases, it is worth noting that the other types of connectivity are 
also important factors in the generation of structural co-alterations; their 
contribution, however, is characterized by different timings. This result is consistent 
with the fact that we worked on a cross-diagnostic dataset (Goodkind et al., 2015), 
which includes a wide range of brain disorders. As recently demonstrated by Cope 
et al. (2018), certain brain disorders can be characterized by the prevalence of 
specific mechanisms. 

The	distribution	of	brain	alterations	
Our analysis of the VBM studies about a great variety of brain disorders, especially 
regarding grey matter decreases, shows that a core set of cerebral areas appears to 
be frequently altered in a large number of neuropathological conditions (for a review 
of this transdiagnostic approach see Buckholtz and Meyer-Lindenberg, 2012; 
McTeague et al., 2016). This finding confirms a similar result obtained by other 
meta-analyses, which, however, were only restricted to three (Cauda et al., 2017) or 
six psychiatric diseases (Goodkind et al., 2015). 

The recurrence of this common alteration pattern is well illustrated by the ALE 
analysis (Fig. 2). Interestingly, this peculiar pattern overlaps to a great extent with 
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those areas that have been proposed to be part of the cognitive control network 
(Cauda et al., 2012b, 2017; McTeague et al., 2016). It must be highlighted that the 
finding of a common alteration pattern in a vast number of brain diseases does not 
rule out the possibility that each disorder may be characterized by its own typical 
alterations (Crossley et al., 2015). However, here our aim was to investigate how 
alterations are generally spread across the pathological brain so as to achieve an 
overarching analysis supported by the most numerous sample of studies we could 
retrieve. Future studies will be needed to understand how the structural co-alteration 
patterns found in this meta-analysis differ with regard to each brain disorder 
independently considered. 

A number of studies (Pearson et al., 1985; Saper et al., 1987; Braak and Braak, 1991; 
Brooks, 1991; Weintraub and Mesulam, 1996; Braak et al., 2011; Raj et al., 2012; 
Cauda et al., 2014; Iturria-Medina et al., 2014; Ravits, 2014; Fornito et al., 2015; 
Iturria-Medina and Evans, 2015) have proposed that the spread of neuronal 
alterations caused by neuropathological processes is not random but, rather, 
associated with typical network-like patterns. These data were already supported 
(Seeley et al., 2006, 2009; Zhou et al., 2012) and now receive further support from 
our study: brain alterations are distributed according to a statistically significant 
‘neurodegenerative networking’ (Yates, 2012) or, as we have called it, 
‘morphometric co-alteration network’ (Cauda et al., 2018); this broader term has the 
advantage to refer to all types of disorders capable of producing neuronal alterations, 
without committing to just the neurodegenerative factors, which consists of cerebral 
regions with pathologically grey matter increases or decreases. 

Grey matter decreased areas are largely parts of the cognitive control network 
(Goodkind et al., 2015; McTeague et al., 2016) and include the insulae, anterior 
cingulate cortices, superior and middle temporal gyri, superior, middle and inferior 
frontal, pre- and postcentral gyri. In turn, grey matter increased areas include the 
right anterior and posterior insula, left middle insula, right pre- and postcentral gyri, 
right superior frontal gyrus, right superior temporal gyrus, left inferior temporal and 
inferior frontal gyri. The minor involvement of the precuneus in the co-alterations 
patterns may be viewed as counter-intuitive, given that this area is highly connected 
and is a central hub of the default mode network. Probably, because of the 
transdiagnostic approach of this study, similarities between brain disorders are likely 
to be highlighted and, though in some diseases the precuneus appears to be altered, 
the frequency of this alteration is not sufficient for being statistically relevant. 
Moreover, it must be considered that a high number of alterations in a certain brain 
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area does not necessarily imply for this area to be co-altered with other ones. With 
regard to this point, a recent study by our group (Manuello et al., 2018) has 
investigated the co-alterations of Alzheimer’s disease and found out only a 
significant node of strong co-alterations within the precuneus. Even in the case of 
Alzheimer’s disease, therefore, the precuneus level of co-alteration appeared to be 
less significant than theoretically thought. 

The structural co-alteration pattern differs significantly for decreased and increased 
VBM values. With regard to grey matter decreases, it appears to be more 
concentrated in insular, cingulate and prefrontal cortices (areas of the cognitive 
control/salience network) (Seeley et al., 2007; Cauda et al., 2011, 2012a, 2013), 
whereas with regard to grey matter increases it appears to be slightly more uniformly 
distributed, albeit with a little prevalence in subcortical regions (Fig. 3). This 
differentiation is likely to be because of the different factors at the root of the 
development of grey matter increases and decreases in brain density. In fact, grey 
matter decreased areas are generally associated with neurodegenerative processes, 
while grey matter increased areas are generally associated with compensatory 
mechanisms (Lin et al., 2013; Premi et al., 2014, 2016), which are supposed to occur 
at the initial phases of brain deterioration. This interpretation is consistent with the 
temporal evolution shown by our predictive model, according to which patterns of 
grey matter increased values present a faster temporal development than patterns of 
grey matter decreased values (Fig. 7, bottom). 

From the viewpoint of the topological analysis, when altered, the brain areas 
showing a higher node degree and/or less average shortest path length are likely to 
play a central role in the spread of neuronal alterations. Their greater number of 
connections as well as their more intense activity may enhance the mechanisms 
hypothesized to be the causes of alterations, especially the nodal stress and the 
transneuronal spread mechanisms. As suggested by our predictive model, these two 
mechanisms are supposed to be more involved in the formation of the structural co-
alterations (both increase-related and decrease-related), which seems to be more 
influenced by both functional and anatomical connectivity. However, as the 
hypothesized causal mechanisms are not mutually exclusive, they are all likely 
involved in the formation of structural co-alterations, each with distinctive temporal 
patterns. 
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The	 relationship	 between	 the	 spread	 of	 neuronal	 alterations	 and	 brain	
connectivity	
All three types of connectivity taken into consideration in this meta-analysis 
(functional, anatomical, and genetic) account well for a substantial part of the 
variance of the development of structural co-alterations (see Supplementary Fig. 2 
for an infographic). 

In particular, functional connectivity is able to explain a greater part of the structural 
co-alteration patterns than the other matrices, followed by anatomic and genetic 
connectivity. This result has also been achieved by determining the partial 
correlation between the structural co-alteration matrix and each connectivity matrix 
excluding the contribution of the other connectivity matrices. This procedure was 
required because both functional and anatomical connectivity profiles are known to 
be partially correlated (Skudlarski et al., 2008; Honey et al., 2009; van den Heuvel 
et al., 2009; Misic et al., 2016) and because both these connectivity profiles have 
also been found to be associated with patterns of genetic co-expressions (Lichtman 
and Sanes, 2008; French and Pavlidis, 2011; French et al., 2011; Wolf et al., 2011; 
Cioli et al., 2014; Goel et al., 2014; Richiardi et al., 2015). 

It is worth noting that the temporal evolution of the alterations’ spread predicted by 
our model, based on the functional and anatomical connectivity profiles, needs 
numerous steps (between 30 and 40, arbitrary units) before reaching completion. On 
the contrary, the prediction based on the genetic connectivity profile requires a 
shorter time: between 10 and 20 units. This interesting finding is consistent with the 
shared vulnerability hypothesis, according to which the spread of alterations caused 
by dysfunction in the co-expression of certain genes is supposed to need a shorter 
accretion time than when the other mechanisms are involved. Already at the early 
phases of neuropathological processes, many brain areas with similar genetic 
patterns can be altered. What is more, the genetic risk for brain disorders is 
pleiotropic and, thereby, can affect broad and transdiagnostic dimensions 
(Buckholtz and Meyer-Lindenberg, 2012) of symptomatically-related diseases 
(Gejman et al., 2011), thus disrupting brain connectivity patterns of core networks 
associated with fundamental cognitive functions (Cauda et al., 2012b). Our 
predictive model could therefore suggest that a chain of pathological factors is likely 
involved in a variety of neuropathological processes represented or better explained 
by different kinds of brain connectivity profiles (Supplementary Fig. 2). In other 
words, pathological patterns of gene co-expressions may lead to a neuronal shared 
vulnerability, which, in turn, may engender the alteration of important brain 
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networks, with the subsequent involvement of abnormal functional and anatomical 
connectivity patterns. As highlighted by Buckholtz and Meyer-Lindenberg (2012), 
‘genetic factors shape connectivity in networks linked to symptom domains, and 
imply that connectivity changes observed in mental disorders reflect a cause, rather 
than a consequence, of being ill’. The same authors remark that ‘the latent structure 
of psychopathology may reflect, in part, a genetically determined latent structure of 
brain connectivity’. 

The result achieved by our predictive model—i.e. that functional and anatomical 
connectivity seem to better account for the development of structural co-alterations 
in a longer run than the genetic one—is consistent with the fact that the nodal stress 
and the transneuronal spread mechanisms need time to make their effects. The nodal 
stress implies a progressive intensification of excitotoxicity factors, whereas the 
transneuronal spread implies the transport of pathological substances through axons 
or the extracellular liquid. All these processes need time to exert disruption and this 
point is well illustrated by the temporal evolution of the structural co-alteration 
patterns (Fig. 7). 

It is worth suggesting that the three mechanisms taken into consideration in the 
present work (transneuronal spread, nodal stress and shared vulnerability) may play 
a synergistic role not only in the pathogenesis of neurodegenerative diseases but 
also, to some extent, in psychiatric as well as in neurodevelopmental disorders. 
Although these conditions are not directly related to the presence of a defined brain 
proteinopathy, structural and functional alterations are not randomly distributed 
across the brain, following specific connectivity constraints that produce identifiable 
morphometric co-atrophy patterns, as already shown by our group in 
neurodevelopmental (autistic spectrum disorder) and psychiatric (schizophrenia 
spectrum disorder and obsessive-compulsive spectrum disorder) conditions (Cauda 
et al., 2018). Furthermore, from a speculative perspective, it has been proposed that 
it would be more appropriate to view schizophrenia as a failure of communication 
between critical nodes of large neuronal networks rather than a dysfunction of 
separate areas, thus suggesting the expression of ‘spatiotemporal psychopathology’ 
to describe this condition (Kasparek et al., 2010; Northoff and Duncan, 2016). In 
this sense, different pathogenic mechanisms (i.e. pathogenic proteins propagating 
preferentially based on intrinsic network vulnerabilities—molecular nexopathies—
for neurodegenerative diseases, and genetic/environmental interactions for both 
psychiatric and autistic spectrum disorders) may be at play. Overall, these 
pathological mechanisms can ‘stress’ the brain networks and ‘shape’ the grey matter 
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alterations in a network-based fashion, as described by the present work and others 
already cited. As defined for neurodegenerative proteinopathies (Warren et al., 
2013), in other disorders (like psychiatric and autistic) the pathological and complex 
interaction between neurodevelopmental alterations and environmental/genetic 
modulators might trigger brain dysfunction (both functional and structural), even 
without a detectable proteinopathy (as in neurodegenerative diseases) but with a 
similar impact on brain connectivity and functioning, thus accounting for the good 
degree of concordance of the present findings. 

Thus, given that the transneuronal spread mechanisms (Zhou et al., 2012; Fornito et 
al., 2015) implies a form of propagation along structural (axonal) pathways, that the 
nodal stress mechanism implies a form of common activity between altered brain 
areas, and that the shared vulnerability mechanism implies common gene 
expressions between cerebral regions, it is possible to advance the hypothesis that, 
based on our analysis, the decrease-related and increase-related structural co-
alterations might be more shaped, in order, by nodal stress, transneuronal spread, 
and shared vulnerability mechanisms. Especially taking into consideration the 
transdiagnostic nature of our data, this finding suggests that the prevalence of a 
particular type of connectivity in the production and development of structural co-
alterations leaves open the possibility that the other two types of connectivity could 
play a significant role as well. Indeed, this phenomenon may also be due to the fact 
that the data retrieved from BrainMap are about a great variety of brain disorders, 
which are likely to be originated by different combinations of the hypothesized 
factors underlying the formation of structural co-alterations. 

Brain	connectivity	can	predict	the	distribution	of	alterations	
Taken together in a conjoint model, the three connectivity matrices are able to 
account for the development of structural co-alterations with good accuracy. This is 
a remarkable finding for the comprehension of how the pathological brain responds 
to diseases, as it allows one to predict the evolution of grey matter alterations from 
changes of the neurobiological substrate. Our result provides further support for the 
important role played by brain connectivity in the neuropathological processes and 
sheds new light on its involvement in their development and progression (Iturria-
Medina and Evans, 2015). With the help of analyses based on brain connectivity 
profiles, we could achieve an in-depth understanding of the mechanisms at the root 
of brain disorders. Some suggestions along this line of research have already been 
proposed. For instance, in patients with Alzheimer’s disease, functional alterations 
and grey matter decreases within different brain areas reflect covariance patterns of 
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part of the default mode network, thus indicating that these atrophic regions are not 
independently affected; rather, the primary deterioration in one of these areas might 
lead to a secondary deterioration in other connected areas (Wang et al., 2013, 2015). 
The cognitive decline would progress via sequential increases in connectivity, 
bringing about a functional overload. For example, in the case of Alzheimer’s 
disease increased connectivity in frontal areas (especially those associated with the 
salience network) seems to have a compensatory role, representing the other side of 
the coin. Interestingly, this pattern of complex functional alterations appears to 
largely mirror the one that can be highlighted in frontotemporal dementia, which 
involves primarily frontal regions and the salience network (Zhou et al., 2010). 

Two important points need to be clarified. First, although brain connectivity profiles 
seem to guide the development of structural co-alterations, this does not imply that 
each brain disorder is expected to produce similar structural co-alterations, for as 
regards to each brain disorder, as well as to the particular patients involved, different 
network nodes can be altered. Moreover, given a final set of altered nodes, the foci 
from which alterations began to spread might have been different and, as a result, 
different temporal progressions might have occurred. 

The second point is a methodological caveat and concerns the relationship between 
our co-alteration network analysis and the anatomical covariance (Mechelli et al., 
2005). Anatomical covariations are defined as ‘the covariance of morphological 
metrics derived from morphological MRI’ (Evans, 2013). Apparently, then, the 
morphological co-alterations studied here may be thought of as a type of anatomical 
covariance. However, anatomical covariance is always derived from single-subject 
data, whereas our meta-analytic approach works on data originated from a statistical 
comparison between pathological and healthy subjects. Therefore, from the 
methodological point of view, the two approaches, albeit similar, are different and 
should not be confused (for a more detailed discussion about this similarity see 
Cauda et al., 2018). 

Limitations	and	future	directions	
The pathological structural co-alterations have been studied with a method that uses 
meta-analytic data, which, compared to their original quality, are known to be 
affected, to some extent, by deterioration. This loss of quality increases the degree 
of spatial uncertainty and, therefore, can influence the detection of alterations by 
reducing the likelihood of statistical co-occurrences between the nodes. Therefore, 
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future investigations with native data, possibly obtained from the same group of 
individuals, are needed. 

VBM studies are at the basis of the methodology proposed here. Although being a 
widely used and well-validated technique, there are a number of procedural aspects 
that could influence the results of every single VBM experiment (e.g. field strength 
of the scanner, software used for the analysis, smoothing amount). However, since 
different combinations of these parameters had been used in the experiments 
considered for our research, it is unlikely that some of them can affect the results in 
a systematic way. Moreover, it has been recently suggested that possible false 
positive findings in VBM tend to be distributed randomly across the brain rather 
than accumulate in specific sites (Scarpazza et al., 2015); this aspect should prevent 
the spurious inclusion of nodes of alteration in the detected co-alteration networks. 
However, it is not possible to completely rule out this kind of inclusion. 

To address the issue of heterogeneity due to studies with low sample sizes we 
decided to establish a lower bound of eight subjects for sample size and, 
consequently, all the retrieved experiments with a sample size smaller than eight 
subjects were excluded. As already mentioned, the identification of this lower bound 
is in line with the work of Scarpazza et al. (2015), which found that the use of 
balanced small samples in the VBM studies does not influence the false positive 
rate, even when considering only eight subjects. Thus, this suggests that our results 
should not be biased by the presence in our database of heterogeneous sample sizes. 
Moreover, since our methodology reveals the co-occurrences between alterations 
across the studies, experiments on small samples reporting different results from the 
others tend to bring about a sort of ‘random noise’ that is likely to increase the false 
negatives rather than the false positives (Acar et al., 2017). This consideration 
should lead us to think that, even though we cannot completely rule out the bias 
potentially caused by the inclusion of studies with a limited sample size, it is much 
more likely that we missed to detect real co-alterations rather than we identified 
false ones. However, to address this issue properly, future investigations on these 
data are needed as soon as larger and more controlled samples are available in the 
literature. 

The ALE approach is one of the most used methods in the field of coordinate-based 
meta-analysis. One of the main concerns with this methodology is the possibility of 
the results to be driven by one, or a few, experiments, thus reflecting a specific case 
among the ones pooled for the meta-analysis rather that an overall representative 
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effect. However, a minimum amount of 20 experiments is usually thought to be 
sufficient to resolve this issue (Eickhoff et al., 2016), so that analyses based on large 
databases, as the one used here, should not be so much biased as to produce invalid 
results. 

The genetic matrix, too, is characterized by spatial uncertainty and other 
idiosyncrasies. First, the sample used for this analysis is made of six human brains 
only. So, the results obtained with this analysis can hardly be generalized to the 
whole population. Second, not all of the six brains were sampled completely. Third, 
the samples are not evenly spaced but have different stereotactic coordinates in each 
of the six brains. Although our methodology has tried to address these issues, 
especially the inhomogeneity of the samples, the results of the genetic analysis are 
to be interpreted cautiously and need to be supported by further evidence. However, 
to date the complex procedure and costs of the acquisition of gene expressions data 
do not allow better precision. 

Spatial and temporal errors, related to specific aspects of the functional MRI and 
DTI procedures, may affect both functional and anatomical connectivity patterns. 
Still, it is worth noting that, with regard to correlation and prediction results, such 
errors are supposed to increase more the number of false negatives than the number 
of false positives, thus reducing the correlation values between matrices. Therefore, 
given the good statistical significance achieved by our model, we are inclined to 
think that the results are not caused by spatial or temporal errors but describe real 
phenomena. To support our findings further, the reliability values of the connectivity 
matrices are very good; this leads us to believe that the difficulties inherent in the 
neuroimaging procedures are not likely to undermine the conclusions reached in this 
study. However, we hope that future studies will be carried out with different 
statistical techniques and on wider and better samples so as to find out whether or 
not our results can be further supported. 

Finally, this study focused on mixed data, coming transdiagnostically from a variety 
of brain disorders as well as from heterogeneous patients investigated in different 
time courses of their symptomatology. The aim was (i) to provide a proof of concept 
of our method; and (ii) to get the broadest retrievable sample to achieve a good 
statistical significance for the detection of structural co-alterations. We therefore 
obtained mean alteration patterns, which are not specifically related to one or 
another brain disorder, so as to study globally how neuronal alterations are 
distributed across the brain. Future investigations are needed to look into more 
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specific patterns of structural co-alterations with regard to specific diseases. In 
particular, it would be interesting to calculate the co-alteration patterns starting from 
native single subject data stored in publicly available MRI datasets (e.g. ADNI) and 
to compare the results of this analysis with longitudinal data. It is also of primary 
importance to understand how each connectivity profile (functional, anatomical, and 
genetic) contributes in shaping the structural co-alterations of different brain 
disorders. An intriguing topic in this line of research could be the study of how 
structural co-alterations differ in patients’ population with fast or slow cognitive 
deterioration. Furthermore, it would be of great interest to understand which gene 
co-expressions play a major role in the developments of structural co-alterations 
associated with different brain disorders. 

Conclusion 
This study has investigated fundamental issues about how the brain is affected by 
pathological processes that were still unresolved in humans. Our research 
investigated which one among three types of connectivity profiles (functional, 
anatomical, and genetic) could shape and explain better the distribution of structural 
co-alterations. Intriguingly, our prediction model suggests that in our 
transdiagnostic sample, all three types of connectivity are involved and can 
statistically account for a very good portion of the pattern variance of structural co-
alterations for both grey matter increases and grey matter decreases (72% and 77%, 
respectively) (Table 1). In addition, it shows that the three patterns of brain 
connectivity need different timings to play their role in the development of the co-
alteration networks. 

These results shed new light on the possible mechanisms at the root of 
neuropathological processes. Our analysis points out that three (i.e. nodal stress, 
shared vulnerability, and transneuronal spread) of the four mechanisms put forward 
so far (Saxena and Caroni, 2011; Zhou et al., 2012; Fornito et al., 2015) are likely 
to play a role with different temporal progressions in the formation and development 
of structural co-alterations. In particular, we found that functional connectivity 
offers the better account of the structural co-alteration patterns, followed by 
anatomic and genetic connectivity. Although one type of connectivity can be 
prevalent in the co-alteration patterns, it must be noted that all these three types are 
significantly involved in the progression of brain alterations. This is consistent with 
the cross-diagnostic nature of data used in this study (Goodkind et al., 2015). 



 102 

Overall, the three different types of brain connectivity can account extremely well 
for the distribution and evolution of structural co-alterations across the human brain. 
This finding presents an exciting prospect for future research in the quest for a better 
understanding of brain disorders. 

Supplementary material 
Overview	of	data	analysis	strategy	and	datasets	
Figure S1 summarizes the analysis strategy and datasets used in our study. The 
studies included in the meta-analysis were collected from the BrainMap database 
(http://www.brainmap.org/). This is an open access database of published functional 
and structural neuroimaging experiments with coordinate-based results (x,y,z) in 
Talairach or MNI space. BrainMap uses a structured standardized coding scheme 
which describes published human neuroimaging experimental results. This 
taxonomy has been used to describe over 3600 publications and 15000 experiments, 
drawing upon over 110.000 subjects and reporting over 120.000 coordinates as 
results. This has been estimated to be 20-30% of the compliant literature in the field. 
The quality of the coding of each of these papers has been verified by a BrainMap 
taxonomy expert. 

The papers have to respond to the following inclusion criteria: 

1) For the decreases: Experiments Context is Disease AND Experiment Contrast is 
Gray Matter AND Experiments Observed Changes is Controls>Patients;  

2) For the increases: Experiments Context is Disease AND Experiment Contrast is 
Gray Matter AND Experiments Observed Changes is Patients>Controls. 

All the retrieved experiments with a sample size smaller than 8 subjects were 
excluded. The same was done for experiments not clearly comparing pathological 
population with healthy controls, as well as considering subjects “at risk”. The 
remaining items were then coded according to the ICD-10 system. As a further 
criterion, all the experiments not coded with F (i.e. Mental, Behavioral and 
Neurodevelopmental disorders) or G (i.e. Diseases of the nervous system) labels 
were excluded. From the remaining records, we also expunged those experiments 
related to codes that could not be considered as primary brain disorders (i.e. F10: 
Alcohol related disorders; F15: Other stimulant related disorders; F28: Other 
psychotic disorder not due to a substance or known physiological condition; F91: 
Conduct disorders; G11: Hereditary ataxia; G43: Migraine; G44: Other headache 
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syndromes; G47: Sleep disorders; G50: Disorders of trigeminal nerve; G71: Primary 
disorders of muscles). 

 

BrainMap	Dataset	4

First	Query
(642	exps,	n	=	15820,	foci	=	7704)

ALE	meta-analysis	and	creation	of	the	structural	co-alteration	network

Altered	pattern

Source	and	Research [Pubmed] Action	Initiative	to	
avoid	Selection	Bias

Input Second	Query
(204	exps,	n	=	4966,	foci	=	2244)

Algorithm

Structural,	Functional,	and	Genetic	Connectivity	Matrix

Reliability	Measures Action	Initiative	to	
avoid	Outcome	Bias

Mantel	Test

Connectivity	Matrix	predictions Action	Initiative	to	
avoid	Outcome	Bias

Prediction	of	propagation	of	co-alteration	patterns

Network	Analysis	Tecniques

Outcome Node	creation Co-alteration	Network

Structural,	Functional,	and	
Genetic	Connectivity	Matrix

Comparison	Between	Connectivity	Matrices Spatial	And	Temporal	Progressions

First	Query
(912	exps)

Second	Query
(350	exps)

Experiments	excluded

65	less	than	8	subjects
35	not	pathology	vs	HC
170	non-relevant	disorders	

Experiments	excluded

24	less	than	8	subjects
34	not	pathology	vs	HC
88	non-relevant	disorders	

Figure S1: Flow chart of key steps used to generate the dataset of information, 
analyzed data and obtain several levels of results. 
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Figure S2: This figure depicts the relationship between the three types of 
connectivity taken into consideration in this meta-analysis 
(functional, anatomical, and genetic) and the development of 
structural co-alterations. 
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Table S1: Synopsis of the diagnostic spectra in the database used for the 
analyses. Exp (n) = number of experiments; Exp (%) = percentage 
of the total of the experiments; Subj (n) = number of subjects. 
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  Year	 1st	Author	 Medline		 ICD-10	Code	

1	
2010	 Abe	O	 -	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

2	 1999	 Abell	F	 10501551	 F84:	Pervasive	Developmental	Disorders	

3	 2012	 Adleman	N	E	 3472043	 F31:	Bipolar	Disorder	

4	 2005	 Adler	C	M	 15922309	 F31:	Bipolar	Disorder	

5	
2007	 Agosta	F	 17370339	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

6	
2010	 Agosta	F	 20597976	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

7	 2011	 Agosta	F	 21177393	 G30:	Alzheimer's	Disease	

8	
2011	 Agosta	F	 21177393	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

9	
2012	 Ahmed	F	 22948482	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

10	
2011	 Ahrendts	J	 20879808	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

11	
2013	 Alemany	S	 -	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

12	 2009	 Almeida	J	R	C	 19101126	 F31:	Bipolar	Disorder	

13	 2016	 Alonso_Lana	S	 4957815	 F31:	Bipolar	Disorder	

14	 2013	 Ambrosi	E	 -	 F31:	Bipolar	Disorder	

15	 2002	 Ananth	H	 12202269	 F20:	Schizophrenia	

16	 2005	 Antonova	E	 16039619	 F20:	Schizophrenia	

17	
2009	 Arnone	D	 -	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	
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18	
2013	 Arnone	D	 23128153	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

19	 2009	 Asami	T	 19560907	 F41:		Other	Anxiety	Disorders	

20	
2011	 Ash	S	 21689852	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

21	 2004	 Audoin	B	 15503338	 G35:	Multiple	Sclerosis	

22	 2006	 Audoin	B	 17093899	 G35:	Multiple	Sclerosis	

23	 2010	 Audoin	B	 20392976	 G35:	Multiple	Sclerosis	

24	 2007	 Audoin	B	 17463071	 G35:	Multiple	Sclerosis	

25	
2008	 Barbeau	E	 18191160	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

26	 2001	 Baron	J	C	 11467904	 G30:	Alzheimer's	Disease	

27	 2007	 Bassitt	D	P	 16960651	 F20:	Schizophrenia	

28	 2006	 Baxter	L	C	 16914835	 G30:	Alzheimer's	Disease	

29	
2005	 Bell-McGinty	S	 16157746	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

30	 2011	 Bergè	 21054282	 F20:	Schizophrenia	

31	
2009	 Bergouignan	L	 19071222	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

32	 2008	 Berlingeri	M	 18413913	 G30:	Alzheimer's	Disease	

33	 2004	 Bernasconi	N	 15488421	 G40:	Epilepsy	and	Recurrent	Seizures	

34	 2013	 Bertsch	K	 23381548	 F60:	Specific	Personality	Disorders	

35	 2008	 Beste	C	 17497629	 G10:	Huntington's	Disease	

36	 2007	 Beyer	M	K	 17028119	 G20:	Parkinson's	Disease	

37	 2011	 Biundo	R	 21862438	 G20:	Parkinson's	Disease	
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38	
2005	 Boccardi	M	 15585344	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

39	 2009	 Bodini	B	 19172648	 G35:	Multiple	Sclerosis	

40	 2011	 Boghi	A	 21546219	 F50:	Eating	Disorders	

41	 2011	 Bonavita	S	 21239414	 G35:	Multiple	Sclerosis	

42	 2008	 Bonilha	L	 18164594	 F20:	Schizophrenia	

43	 2004	 Bonilha	L	 15364683	 G40:	Epilepsy	and	Recurrent	Seizures	

44	 2010	 Borgwardt	S	J	 20006324	 F20:	Schizophrenia	

45	
2008	 Borroni	B	 18541800	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

46	 2009	 Bose	S	K	 19450953	 F20:	Schizophrenia	

47	 2008	 Bouilleret	V	 18195263	 G40:	Epilepsy	and	Recurrent	Seizures	

48	
2006	 Boxer	A	L	 16401739	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

49	 2003	 Boxer	A	L	 12873851	 G30:	Alzheimer's	Disease	

50	
2003	 Boxer	A	L	 12873851	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

51	
2006	 Boxer	A	L	 16401739	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

52	 2006	 Bozzali	M	 16894107	 G30:	Alzheimer's	Disease	

53	
2006	 Bozzali	M	 16894107	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

54	
2009	 Brambati	S	M	 17604879	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

55	 2009	 Brazdil	M	 18609565	 G40:	Epilepsy	and	Recurrent	Seizures	

56	
2004	 Brenneis	C	 14742598	

G23:	Other	degenerative	diseases	of	basal	
ganglia	
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57	 2004	 Brenneis	C	 15257132	 G30:	Alzheimer's	Disease	

58	
2004	 Brenneis	C	 15257132	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

59	
2003	 Brenneis	C	 14534916	

G90:	 Disorders	 Autonomic	 Nervous	
System	

60	
2006	 Brenneis	C	 16161039	

G90:	 Disorders	 Autonomic	 Nervous	
System	

61	 2007	 Brieber	S	 -	 F84:	Pervasive	Developmental	Disorders	

62	
2007	 Brieber	S	 -	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

63	 2010	 Brunner	R	 19660555	 F60:	Specific	Personality	Disorders	

64	 2004	 Burton	E	J	 14749292	 G20:	Parkinson's	Disease	

65	
2002	 Burton	E	J	 12377138	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

66	 2015	 Cai	Y	 25502401	 F31:	Bipolar	Disorder	

67	
2015	 Cai	Y	 25502401	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

68	 2009	 Camicioli	R	 18573676	 G20:	Parkinson's	Disease	

69	 2010	 Canu	E	 21074899	 G30:	Alzheimer's	Disease	

70	
2005	 Carmona	S	 16129560	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

71	 2007	 Caroli	A	 17990057	 G30:	Alzheimer's	Disease	

72	 2010	 Cascella	N	 20452187	 F20:	Schizophrenia	

73	 2009	 Castro-Fornieles	J	 18486147	 F50:	Eating	Disorders	

74	 2011	 Castro-Manglano	P	D	 22017223	 F20:	Schizophrenia	

75	 2009	 Ceccarelli	A	 19172642	 G35:	Multiple	Sclerosis	

76	 2008	 Ceccarelli	A	 18501636	 G35:	Multiple	Sclerosis	
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77	
2010	 Celle	S	 19768657	

G25:	Other	extrapyramidal	and	movement	
disorders	

78	 2013	 Ceresa	A	 23271221	 G35:	Multiple	Sclerosis	

79	 2006	 Chan	C	H	 16499767	 G40:	Epilepsy	and	Recurrent	Seizures	

80	
2014	 Chaney	A	 23900024	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

81	
2009	 Chang	C	C	 19486137	

G90:	 Disorders	 Autonomic	 Nervous	
System	

82	
2005	 Chang	J	L	 16009889	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

83	
2012	 Chao	L	L	 22453299	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

84	
2009	 Chen	S	 19538748	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

85	
2006	 Chen	S	 16371250	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

86	 2007	 Chen	X	 17464719	 F31:	Bipolar	Disorder	

87	
2012	 Chen	Y	 23155380	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

88	
2015	 Cheng	B	 26347628	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

89	
2010	 Cheng	Y	 20594947	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

90	 2011	 Cheng	Y	 21541322	 F84:	Pervasive	Developmental	Disorders	

91	 2002	 Chetelat	G	 12395096	 G30:	Alzheimer's	Disease	

92	
2002	 Chetelat	G	 12395096	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

93	 2011	 Chow	E	W	 21362743	 F20:	Schizophrenia	
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94	 2007	 Chua	S	E	 17098398	 F20:	Schizophrenia	

95	 2012	 Compta	Y	 22595621	 G20:	Parkinson's	Disease	

96	 2008	 Cooke	M	A	 18539438	 F20:	Schizophrenia	

97	
2005	 Corbo	V	 16038682	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

98	 2005	 Cordato	N	J	 15843423	 G20:	Parkinson's	Disease	

99	
2005	 Cordato	N	J	 15843423	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

100	 2005	 Cormack	F	 16006149	 G93:	Other	disorders	of	brain	

101	
2012	 Cosottini	M	 22226599	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

102	 2007	 Craig	M	C	 17766762	 F84:	Pervasive	Developmental	Disorders	

103	
2003	 Critchley	H	D	 12725766	

G90:	 Disorders	 Autonomic	 Nervous	
System	

104	 2011	 Cui	L	 21138758	 F20:	Schizophrenia	

105	 2011	 Cui	L	 21138758	 F31:	Bipolar	Disorder	

106	 2009	 de	Araujo-Filho	G	M	 19303459	 G40:	Epilepsy	and	Recurrent	Seizures	

107	 2008	 de	Oliveira-Souza	R	 18289882	 F60:	Specific	Personality	Disorders	

108	 2007	 Delmaire	C	 17646630	 G24:	Dystonia	

109	 2009	 Deng	M	Y	 19641900	 F20:	Schizophrenia	

110	 2007	 Di	Paola	M	 17404777	 G30:	Alzheimer's	Disease	

111	 2005	 Dickstein	D	P	 15997014	 F31:	Bipolar	Disorder	

112	 2004	 Doris	A	 15033185	 F31:	Bipolar	Disorder	

113	 2007	 Douaud	G	 17698497	 F20:	Schizophrenia	

114	 2003	 Draganski	B	 14610125	 G24:	Dystonia	
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115	 2010	 Ebdrup	B	H	 20184807	 F20:	Schizophrenia	

116	
2011	 Eckart	C	 21118656	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

117	 2012	 Ecker	C	 22310506	 F84:	Pervasive	Developmental	Disorders	

118	 2010	 Ecker	C	 19683584	 F84:	Pervasive	Developmental	Disorders	

119	
2008	 Egger	K	 19013058	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

120	
2001	 Ellis	C	M	 11706094	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

121	 2014	 Eshaghi	A	 3898881	 G35:	Multiple	Sclerosis	

122	
2005	 Etgen	T	 15670702	

G25:	Other	extrapyramidal	and	movement	
disorders	

123	 2009	 Euler	M	 19775870	 F20:	Schizophrenia	

124	 2005	 Farrow	T	F	D	 15993858	 F31:	Bipolar	Disorder	

125	 2011	 Focke	N	K	 21246668	 G20:	Parkinson's	Disease	

126	 2001	 Foong	J	 11335691	 F20:	Schizophrenia	

127	 2012	 Friedrich	H	C	 21967727	 F50:	Eating	Disorders	

128	 2002	 Frisoni	G	B	 12438466	 G30:	Alzheimer's	Disease	

129	
2008	 Frodl	T	 18838632	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

130	 2013	 Gao	W	 -	 F31:	Bipolar	Disorder	

131	 2008	 Garcia-Marti	G	 17716795	 F20:	Schizophrenia	

132	 2011	 Gaudio	S	 21081268	 F50:	Eating	Disorders	

133	 2007	 Gavazzi	C	 17882035	 G10:	Huntington's	Disease	

134	
2012	 Ghosh	B	C	 22637582	

G23:	Other	degenerative	diseases	of	basal	
ganglia	
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135	 2008	 Gilbert	A	R	 18342953	 F42:	Obsessive	Compulsive	Disorder	

136	
2013	 Giordano	A	 23477861	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

137	 2005	 Giuliani	N	R	 15721994	 F20:	Schizophrenia	

138	 2014	 Gobbi	C	 23812284	 G35:	Multiple	Sclerosis	

139	
2010	 Gold	B	T	 20063353	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

140	
2011	 Gong	Q	 21134472	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

141	 2011	 Granert	O	 21705464	 G24:	Dystonia	

142	 2012	 Gregory	S	 22566562	 F60:	Specific	Personality	Disorders	

143	
2013	 Grieve	S	M	 24273717	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

144	
2010	 Gross	RG	 20299856	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

145	
2006	 Grosskreutz	J	 16638121	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

146	
2009	 Guedj	E	 19224210	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

147	
2014	 Guo	W	 24863419	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

148	 2010	 Guo	X	 19879920	 G30:	Alzheimer's	Disease	

149	 2004	 Ha	T	H	 15664796	 F20:	Schizophrenia	

150	 2010	 Ha	T	H	 19429131	 F31:	Bipolar	Disorder	

151	
2007	 Hakamata	Y	 17923164	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

152	 2008	 Haldane	M	 18308812	 F31:	Bipolar	Disorder	

153	 2008	 Hall	A	M	 18631978	 G30:	Alzheimer's	Disease	
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154	 2011	 Haller	S	 21284917	 F31:	Bipolar	Disorder	

155	 2007	 Hamalainen	A	 16997428	 G30:	Alzheimer's	Disease	

156	
2007	 Hamalainen	A	 16997428	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

157	 2009	 Henley	S	M	 19266143	 G10:	Huntington's	Disease	

158	 2009	 Herold	R	 19016669	 F20:	Schizophrenia	

159	
2012	 Herringa	R	 23021615	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

160	 2008	 Hirao	K	 18774263	 F20:	Schizophrenia	

161	 2006	 Hirao	K	 16404228	 G30:	Alzheimer's	Disease	

162	 2008	 Honea	R	A	 17689500	 F20:	Schizophrenia	

163	 2009	 Honea	R	A	 19812458	 G30:	Alzheimer's	Disease	

164	 2009	 Horn	H	 19182174	 F20:	Schizophrenia	

165	 2010	 Horn	H	 20418073	 F20:	Schizophrenia	

166	
2009	 Huey	E	D	 19822784	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

167	 2001	 Hulshoff	Pol	H	E	 11735840	 F20:	Schizophrenia	

168	 2004	 Hulshoff	Pol	H	E	 14741639	 F20:	Schizophrenia	

169	 2006	 Hulshoff	Pol	H	E	 16497519	 F20:	Schizophrenia	

170	
2010	 Hwang	J	 -	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

171	 2010	 Hyde	K	L	 19790171	 F84:	Pervasive	Developmental	Disorders	

172	 2011	 Ille	R	 21406159	 G10:	Huntington's	Disease	

173	
2011	 Inkster	B	 20977527	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

174	 2005	 Ishii	K	 15800784	 G30:	Alzheimer's	Disease	
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175	 2008	 Janssen	J	 18827723	 F20:	Schizophrenia	

176	
2008	 Janssen	J	 18827723	

F28:	Other	psychotic	disorder	not	due	to	a	
substance	 or	 known	 physiological	
condition	

177	 2008	 Janssen	J	 18827723	 F31:	Bipolar	Disorder	

178	 2005	 Jayakumar	P	N	 15866362	 F20:	Schizophrenia	

179	 2010	 Joos	A	 20400273	 F50:	Eating	Disorders	

180	 2008	 Kanda	T	 18661129	 G30:	Alzheimer's	Disease	

181	
2008	 Kanda	T	 18661129	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

182	
2008	 Kasai	K	 17825801	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

183	 2010	 Kasparek	T	 19777553	 F20:	Schizophrenia	

184	 2007	 Kasparek	T	 17011096	 F20:	Schizophrenia	

185	 2009	 Kasparek	T	 19647777	 F20:	Schizophrenia	

186	 2005	 Kassubek	J	 15459079	 G10:	Huntington's	Disease	

187	 2004	 Kassubek	J	 14742591	 G10:	Huntington's	Disease	

188	
2007	 Kassubek	J	 17332050	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

189	 2012	 Kato	S	 21850388	 G20:	Parkinson's	Disease	

190	 2006	 Kawachi	T	 16550383	 G30:	Alzheimer's	Disease	

191	 2009	 Kawada	R	 19625009	 F20:	Schizophrenia	

192	 2004	 Kawasaki	Y	 15538599	 F20:	Schizophrenia	

193	 2007	 Kawasaki	Y	 17045492	 F20:	Schizophrenia	

194	 2008	 Ke	X	 18520994	 F84:	Pervasive	Developmental	Disorders	

195	 2007	 Keller	S	S	 17412561	 G40:	Epilepsy	and	Recurrent	Seizures	
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196	 2002	 Keller	S	S	 12438464	 G40:	Epilepsy	and	Recurrent	Seizures	

197	 2007	 Khaleeli	Z	 17566765	 G35:	Multiple	Sclerosis	

198	 2013	 Kim	D	 23769608	 F31:	Bipolar	Disorder	

199	
2007	 Kim	E	J	 17615169	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

200	 2007	 Kim	J	H	 17689105	 G40:	Epilepsy	and	Recurrent	Seizures	

201	
2008	 Kim	M	J	 18930633	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

202	 2011	 Kim	S	 21570296	 G30:	Alzheimer's	Disease	

203	
2010	 Kobel	M	 20702071	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

204	 2009	 Koprivova	J	 19666084	 F42:	Obsessive	Compulsive	Disorder	

205	 2010	 Kosaka	H	 20123027	 F84:	Pervasive	Developmental	Disorders	

206	 2009	 Koskenkorva	P	 19704079	 G40:	Epilepsy	and	Recurrent	Seizures	

207	 2008	 Koutsouleris	N	 18054834	 F20:	Schizophrenia	

208	 2002	 Kubicki	M	 12498745	 F20:	Schizophrenia	

209	
2002	 Kubicki	M	 12498745	

F28:	Other	psychotic	disorder	not	due	to	a	
substance	 or	 known	 physiological	
condition	

210	 2011	 Kurth	F	 21531390	 F84:	Pervasive	Developmental	Disorders	

211	 2004	 Kwon	H	 15540637	 F84:	Pervasive	Developmental	Disorders	

212	 2010	 Labate	A	 19780790	 G40:	Epilepsy	and	Recurrent	Seizures	

213	 2008	 Ladoucer	C	D	 18356765	 F31:	Bipolar	Disorder	

214	
2013	 Lagarde	J	 24278277	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

215	
2013	 Lagarde	J	 24278277	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	
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216	
2015	 Lai	C	H	 -	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

217	 2015	 Lai	C	H	 -	 F41:		Other	Anxiety	Disorders	

218	 2012	 Lai	C	H	 22386047	 F41:		Other	Anxiety	Disorders	

219	
2011	 Lee	H	Y	 21546094	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

220	
2009	 Leung	K	K	 18945378	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

221	
2010	 Li	C	T	 19931620	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

222	
2006	 Li	L	 16838824	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

223	 2011	 Li	M	 21236649	 F31:	Bipolar	Disorder	

224	
2009	 Libon	D	J	 19687454	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

225	 2013	 Lin	A	 25206504	 G35:	Multiple	Sclerosis	

226	 2013	 Lin	C	H	 23785322	 G20:	Parkinson's	Disease	

227	
2013	 Lin	C	H	 23785322	

G25:	Other	extrapyramidal	and	movement	
disorders	

228	 2009	 Lin	K	 19570650	 G40:	Epilepsy	and	Recurrent	Seizures	

229	
2014	 Liu	C	H	 24406440	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

230	 2011	 Liu	M	 22092238	 G40:	Epilepsy	and	Recurrent	Seizures	

231	
2010	 Lu	C	 19375076	

F80:	 Specific	Developmental	Disorders	 of	
Speech	and	Language	

232	 2006	 Ludolph	A	G	 16648537	 F95:	Tic	Disorder	

233	 2009	 Lui	S	 18981063	 F20:	Schizophrenia	

234	 2004	 Lyoo	I	K	 15013835	 F31:	Bipolar	Disorder	
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235	 2012	 Mainz	V	 22511729	 F50:	Eating	Disorders	

236	
2009	 Mak	A	K	 19596037	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

237	 2013	 Mak	E	 24133286	 G20:	Parkinson's	Disease	

238	
2003	 Marcelis	M	 12694890	

F28:	Other	psychotic	disorder	not	due	to	a	
substance	 or	 known	 physiological	
condition	

239	 2007	 Marti-Bonmati	L	 17641373	 F20:	Schizophrenia	

240	 2003	 Massana	G	 12611840	 F41:		Other	Anxiety	Disorders	

241	 2002	 Matsuda	H	 11884488	 G30:	Alzheimer's	Disease	

242	 2010	 Matsumoto	R	 20923432	 F42:	Obsessive	Compulsive	Disorder	

243	 2007	 Matsunari	I	 18006622	 G30:	Alzheimer's	Disease	

244	 2008	 Mazere	J	 18191587	 G30:	Alzheimer's	Disease	

245	 2005	 McAlonan	G	M	 15548557	 F84:	Pervasive	Developmental	Disorders	

246	 2002	 McAlonan	G	M	 12077008	 F84:	Pervasive	Developmental	Disorders	

247	 2008	 McAlonan	G	M	 18673405	 F84:	Pervasive	Developmental	Disorders	

248	
2007	 McAlonan	G	M	 17291727	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

249	 2004	 McIntosh	A	M	 15476683	 F20:	Schizophrenia	

250	 2004	 McIntosh	A	M	 15476683	 F31:	Bipolar	Disorder	

251	 2004	 McMillan	A	B	 15325363	 G40:	Epilepsy	and	Recurrent	Seizures	

252	 2008	 Meda	S	A	 18378428	 F20:	Schizophrenia	

253	 2008	 Meisenzahl	E	M	 18703313	 F20:	Schizophrenia	

254	 2011	 Mengotti	P	 21146593	 F84:	Pervasive	Developmental	Disorders	

255	 2011	 Meppelink	A	M	 20922809	 G20:	Parkinson's	Disease	
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256	 2008	 Mesaros	S	 18272867	 G35:	Multiple	Sclerosis	

257	
2007	 Mezzapesa	D	M	 17296989	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

258	 2011	 Miettinen	P	S	 21692882	 G30:	Alzheimer's	Disease	

259	
2011	 Miettinen	P	S	 21692882	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

260	 2005	 Milham	M	P	 15860335	 F41:		Other	Anxiety	Disorders	

261	
2007	 Minnerop	M	 17512219	

G90:	 Disorders	 Autonomic	 Nervous	
System	

262	 2011	 Molina	V	 21188405	 F20:	Schizophrenia	

263	 2010	 Molina	V	 20153145	 F20:	Schizophrenia	

264	 2011	 Molina	V	 21188405	 F31:	Bipolar	Disorder	

265	 2005	 Moorhead	T	W	 16085427	 F20:	Schizophrenia	

266	 2006	 Morgen	K	 16360321	 G35:	Multiple	Sclerosis	

267	 2006	 Mueller	S	G	 16686655	 G40:	Epilepsy	and	Recurrent	Seizures	

268	 2007	 Muhlau	M	 17024326	 G10:	Huntington's	Disease	

269	 2013	 Muhlau	M	 23462349	 G35:	Multiple	Sclerosis	

270	 2009	 Muller-Vahl	K	R	 19435502	 F95:	Tic	Disorder	

271	 2013	 Na	K	S	 -	 F41:		Other	Anxiety	Disorders	

272	 2005	 Nagano-Saito	A	 15668417	 G20:	Parkinson's	Disease	

273	
2013	 Nardo	D	 23113800	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

274	 2011	 Narita	K	 21115089	 F31:	Bipolar	Disorder	

275	 2006	 Neckelmann	G	 -	 F20:	Schizophrenia	

276	
2003	 Nestor	P	J	 12902311	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	
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277	 2013	 Niedtfeldl	I	 23776553	 F60:	Specific	Personality	Disorders	

278	 2010	 Nishio	Y	 20298422	 G20:	Parkinson's	Disease	

279	 2006	 Nugent	A	C	 16256376	 F31:	Bipolar	Disorder	

280	 2007	 O'Daly	O	 17720459	 F20:	Schizophrenia	

281	 2011	 O'Muircheartaigh	J	 21205693	 G40:	Epilepsy	and	Recurrent	Seizures	

282	 2007	 Obermann	M	 17443700	 G24:	Dystonia	

283	 2006	 Ohnishi	T	 16330500	 F20:	Schizophrenia	

284	 2001	 Ohnishi	T	 11673161	 G30:	Alzheimer's	Disease	

285	 2011	 Ortiz-Gil	J	 21727234	 F20:	Schizophrenia	

286	
2001	 Overmeyer	S	 11722157	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

287	
2006	 Padovani	A	 16306152	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

288	 2010	 Pail	M	 19817822	 G40:	Epilepsy	and	Recurrent	Seizures	

289	 2001	 Paillere-Martinot	M	L	 11378311	 F20:	Schizophrenia	

290	 2011	 Pantano	P	 20947646	 G24:	Dystonia	

291	
2009	 Pardini	M	 19139305	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

292	 2014	 Parisi	L	 24952616	 G35:	Multiple	Sclerosis	

293	 2005	 Peinemann	A	 16185716	 G10:	Huntington's	Disease	

294	 2008	 Pell	G	S	 18042496	 G40:	Epilepsy	and	Recurrent	Seizures	

295	
2010	 Peng	J	 20466498	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

296	
2005	 Pennanen	C	 15607988	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

297	 2009	 Pereira	J	B	 19349926	 G20:	Parkinson's	Disease	
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298	
2009	 Pereira	J	M	 19433738	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

299	 2010	 Pomarol-Clotet	E	 20065955	 F20:	Schizophrenia	

300	 2010	 Prakash	R	S	 19560443	 G35:	Multiple	Sclerosis	

301	 2016	 Preziosa	P	 26833969	 G35:	Multiple	Sclerosis	

302	 2010	 Price	G	 19632338	 F20:	Schizophrenia	

303	 2004	 Pujol	J	 15237084	 F42:	Obsessive	Compulsive	Disorder	

304	 2011	 Qiu	L	 21991357	 F20:	Schizophrenia	

305	
2008	 Quattrone	A	 18653686	

G25:	Other	extrapyramidal	and	movement	
disorders	

306	 2007	 Rabinovici	G	D	 18166607	 G30:	Alzheimer's	Disease	

307	
2007	 Rabinovici	G	D	 18166607	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

308	 2009	 Rami	L	 19259976	 G30:	Alzheimer's	Disease	

309	
2009	 Rami	L	 19259976	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

310	 2007	 Ramirez-Ruiz	B	 17594330	 G20:	Parkinson's	Disease	

311	 2015	 Ranjeva	J	P	 15661713	 G35:	Multiple	Sclerosis	

312	 2014	 Redlich	R	 25188810	 F31:	Bipolar	Disorder	

313	
2014	 Redlich	R	 25188810	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

314	 2005	 Remy	F	 15734360	 G30:	Alzheimer's	Disease	

315	 2012	 Riccitelli	G	 22422807	 G35:	Multiple	Sclerosis	

316	 2008	 Riederer	F	 18678824	 G40:	Epilepsy	and	Recurrent	Seizures	

317	
2009	 Ries	M	L	 19701486	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	
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318	 2011	 Riva	D	 21700792	 F84:	Pervasive	Developmental	Disorders	

319	 2014	 Rocca	M	A	 24927473	 G35:	Multiple	Sclerosis	

320	
2012	 Rocha-Rego	V	 22952599	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

321	 2012	 Rossi	R	 23146251	 F31:	Bipolar	Disorder	

322	 2012	 Rossi	R	 23146251	 F60:	Specific	Personality	Disorders	

323	 2004	 Rusch	N	 15260365	 G40:	Epilepsy	and	Recurrent	Seizures	

324	 2003	 Salgado-Pineda	P	 12814586	 F20:	Schizophrenia	

325	 2004	 Salgado-Pineda	P	 15006650	 F20:	Schizophrenia	

326	 2011	 Salgado-Pineda	P	 21095105	 F20:	Schizophrenia	

327	 2007	 Salmond	C	H	 17710821	 F84:	Pervasive	Developmental	Disorders	

328	
2011	 Salvadore	G	 21073959	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

329	 2016	 Sanchis-Segura	C	 27436479	 G35:	Multiple	Sclerosis	

330	 2010	 Santana	M	 20223639	 G40:	Epilepsy	and	Recurrent	Seizures	

331	 2015	 Saricicek	A	 26233321	 F31:	Bipolar	Disorder	

332	
2010	 Sasayama	D	 20546170	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

333	
2006	 Saykin	A	J	 16966547	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

334	
2010	 Scheuerecker	J	 20569645	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

335	 2013	 Schiffer	B	 23015687	 F20:	Schizophrenia	

336	 2007	 Schiffer	B	 16876824	 F65:	Paraphilias	

337	
2009	 Schmidt-Wilcke	T	 19442751	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	
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338	 2012	 Schuster	C	 21205677	 F20:	Schizophrenia	

339	
2008	 Seeley	W	W	 18268196	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

340	
2011	 Senda	J	 21271792	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

341	 2006	 Sepulcre	J	 16908748	 G35:	Multiple	Sclerosis	

342	
2013	 Serra-Blasco	M	 23620451	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

343	
2012	 Shad	M	U	 22537357	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

344	
1998	 Shah	P	J	 9828995	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

345	 2002	 Shapleske	J	 12427683	 F20:	Schizophrenia	

346	 2006	 Shiino	A	 16904912	 G30:	Alzheimer's	Disease	

347	
2006	 Shiino	A	 16904912	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

348	 2012	 Shin	S	 22933812	 G20:	Parkinson's	Disease	

349	 2001	 Sigmundsson	T	 11156806	 F20:	Schizophrenia	

350	 2012	 Singh	M	K	 3433284	 F31:	Bipolar	Disorder	

351	 2010	 Smesny	S	 20478385	 F20:	Schizophrenia	

352	 2010	 Sobanski	T	 20056020	 F41:		Other	Anxiety	Disorders	

353	
2011	 Soriano-Mas	C	 20875637	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

354	 2010	 Spano	B	 20007429	 G35:	Multiple	Sclerosis	

355	
2003	 Specht	K	 14568814	

G90:	 Disorders	 Autonomic	 Nervous	
System	

356	
2005	 Specht	K	 15734363	

G90:	 Disorders	 Autonomic	 Nervous	
System	
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357	 2006	 Spencer	M	D	 16996749	 F84:	Pervasive	Developmental	Disorders	

358	 2009	 Stanfield	A	C	 19267696	 F31:	Bipolar	Disorder	

359	
2014	 Stratmann	M	 25051163	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

360	 2010	 Suchan	B	 19729041	 F50:	Eating	Disorders	

361	
2010	 Sui	S	G	 -	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

362	 2005	 Summerfield	C	 15710857	 G20:	Parkinson's	Disease	

363	 2002	 Suzuki	M	 11955962	 F20:	Schizophrenia	

364	 2008	 Szeszko	P	R	 18413702	 F42:	Obsessive	Compulsive	Disorder	

365	 2006	 Tae	W	S	 16969045	 G40:	Epilepsy	and	Recurrent	Seizures	

366	 2010	 Tae	W	S	 20046492	 G40:	Epilepsy	and	Recurrent	Seizures	

367	
2011	 Takahashi	R	 22187545	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

368	 2010	 Takahashi	R	 20634303	 G30:	Alzheimer's	Disease	

369	
2010	 Takahashi	R	 20634303	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

370	
2005	 Taki	Y	 16150493	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

371	 2014	 Tang	L	R	 25218414	 F31:	Bipolar	Disorder	

372	
2012	 Tavanti	M	 21710131	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

373	
2012	 Tavazzi	E	 25228014	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

374	 2012	 Tessitore	A	 22538070	 G20:	Parkinson's	Disease	

375	 2007	 Theberge	J	 17906243	 F20:	Schizophrenia	
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376	
2007	 Thivard	L	 17635981	

G12:	Spinal	Muscular	Atrophy	and	Related	
Syndromes	

377	
2010	 Thomaes	K	 20673548	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

378	 2011	 Tian	L	 22174900	 F20:	Schizophrenia	

379	 2008	 Tiihonen	J	 18662866	 F60:	Specific	Personality	Disorders	

380	 2009	 Tir	M	 19194988	 G20:	Parkinson's	Disease	

381	
2009	 Tir	M	 19194988	

G90:	 Disorders	 Autonomic	 Nervous	
System	

382	 2010	 Toal	F	 19891805	 F84:	Pervasive	Developmental	Disorders	

383	 2010	 Togao	O	 20833001	 F42:	Obsessive	Compulsive	Disorder	

384	 2009	 Tomelleri	L	 19717283	 F20:	Schizophrenia	

385	 2010	 Tost	H	 19419772	 F31:	Bipolar	Disorder	

386	 2007	 Tregallas	J	R	 17890058	 F20:	Schizophrenia	

387	
2010	 Tzarouchi	L	C	 19187475	

G90:	 Disorders	 Autonomic	 Nervous	
System	

388	 2008	 Uchida	R	R	 18417322	 F41:		Other	Anxiety	Disorders	

389	 2005	 Valente	A	A	Jr	 15978549	 F42:	Obsessive	Compulsive	Disorder	

390	 2015	 van	de	Pavert	S	H	 25926483	 G35:	Multiple	Sclerosis	

391	 2009	 van	den	Heuvel	O	A	 18952675	 F42:	Obsessive	Compulsive	Disorder	

392	
2013	 van	Eijndhoven	P	 23929204	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

393	
2010	 van	Tol	M	J	 20921116	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

394	
2013	 van	Tol	M	J	 24176247	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

395	 2010	 van	Tol	M	J	 20921116	 F41:		Other	Anxiety	Disorders	
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396	
2008	

Venkatasubramanian	
G	

19019637	 F20:	Schizophrenia	

397	 2008	 Voets	N	L	 18793730	 F20:	Schizophrenia	

398	
2008	 Wagner	G	 18592043	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

399	
2011	 Wagner	G	 20832482	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

400	 2011	 Wang	F	 21666263	 F31:	Bipolar	Disorder	

401	
2007	 Wang	J	 1735333	

F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

402	 2009	 Waragai	M	 19552926	 G30:	Alzheimer's	Disease	

403	
2002	 Watkins	K	E	 11872605	

F80:	 Specific	Developmental	Disorders	 of	
Speech	and	Language	

404	 2012	 Watson	D	R	 22056751	 F20:	Schizophrenia	

405	 2012	 Watson	D	R	 22056751	 F31:	Bipolar	Disorder	

406	 2016	 Wei	W	 26962820	 G40:	Epilepsy	and	Recurrent	Seizures	

407	 2006	 Whitford	T	J	 16677830	 F20:	Schizophrenia	

408	
2013	 Whitwell	J	L	 23078273	

G23:	Other	degenerative	diseases	of	basal	
ganglia	

409	 2007	 Whitwell	J	L	 16797786	 G30:	Alzheimer's	Disease	

410	
2005	 Whitwell	J	L	 16157747	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

411	
2007	 Whitwell	J	L	 16797786	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

412	
2007	 Whitwell	J	L	 17240166	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

413	 2001	 Wilke	M	 11304078	 F20:	Schizophrenia	
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414	
2010	 Wilson	S	M	 20542982	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

415	 2000	 Woermann	F	G	 10644781	 G40:	Epilepsy	and	Recurrent	Seizures	

416	 2008	 Wolf	R	C	 18434103	 F20:	Schizophrenia	

417	 2009	 Wolf	R	C	 18172852	 G10:	Huntington's	Disease	

418	 2006	 Xie	S	 16801648	 G30:	Alzheimer's	Disease	

419	 2009	 Xu	L	 18266214	 F20:	Schizophrenia	

420	 2007	 Yamada	M	 17240165	 F20:	Schizophrenia	

421	 2010	 Yasuda	C	L	 20350980	 G40:	Epilepsy	and	Recurrent	Seizures	

422	 2003	 Yoneyama	E	 14531753	 F60:	Specific	Personality	Disorders	

423	 2005	 Yoo	H	K	 16262646	 F41:		Other	Anxiety	Disorders	

424	 2008	 Yoo	S	Y	 18303194	 F42:	Obsessive	Compulsive	Disorder	

425	 2008	 Yoshihara	Y	 19102744	 F20:	Schizophrenia	

426	 2005	 Zahn	R	 16253483	 G30:	Alzheimer's	Disease	

427	
2008	 Zamboni	G	 18765649	

G31:	 Other	 Degenerative	 Diseases	 of	
Nervous	System	

428	
2011	 Zhang	J	 21498053	

F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

429	
2009	 Zhang	T	 19211150	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

430	
2012	 Zhang	X	 22129771	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	

431	 2016	 Zhang	X	 28035997	 G35:	Multiple	Sclerosis	

432	
2010	 Zou	K	 19897176	

F32-F33:	Major	depressive	disorder.	single	
episode/recurrent	
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		 Year	 1st	Author	 Medline		 ICD-10	Code	

1	 1999	 Abell	F	 10501551	
F84:	 Pervasive	 Developmental	
Disorders	

2	 2005	 Adler	C	M	 15922309	 F31:	Bipolar	Disorder	

3	 2007	 Adler	C	M	 17027928	 F31:	Bipolar	Disorder	

4	 2011	 Amico	F	 20964952	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

5	 2004	 Antonini	G	 15489397	
G12:	 Spinal	 Muscular	 Atrophy	 and	
Related	Syndromes	

6	 2005	 Antonova	E	 16039619	 F20:	Schizophrenia	

7	 2009	 Arnone	D	 -	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

8	 2013	 Arnone	D	 23128153	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

9	 2009	 Asami	T	 19560907	 F41:		Other	Anxiety	Disorders	

10	 2007	 Bassitt	D	P	 16960651	 F20:	Schizophrenia	

11	 2006	 Baxter	L	C	 16914835	 G30:	Alzheimer's	Disease	

12	 2007	 Beal	D	S	 17632278	
F80:	 Specific	 Developmental	
Disorders	of	Speech	and	Language	

13	 2006	 Betting	L	E	 16702001	 G40:	Epilepsy	and	Recurrent	Seizures	

14	 2015	 Biederman	S	V	 25809140	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

15	 2004	 Bonilha	L	 15364683	 G40:	Epilepsy	and	Recurrent	Seizures	

16	 2008	 Bonilha	L	 18362056	
F84:	 Pervasive	 Developmental	
Disorders	

Table S2: Selected studies for the meta-analysis of the First Query. 
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17	 2007	 Bonilha	L	 17012334	 G40:	Epilepsy	and	Recurrent	Seizures	

18	 2007	 Brieber	S	 -	
F84:	 Pervasive	 Developmental	
Disorders	

19	 2007	 Brieber	S	 -	
F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

20	 2011	 Brown	G	G	 21924872	 F20:	Schizophrenia	

21	 2011	 Brown	G	G	 21924872	 F31:	Bipolar	Disorder	

22	 2009	 Butler	C	R	 19073652	 G40:	Epilepsy	and	Recurrent	Seizures	

23	 2012	 Calderoni	S	 21896334	
F84:	 Pervasive	 Developmental	
Disorders	

24	 2006	 Calhoun	V	D	 16108017	 F20:	Schizophrenia	

25	 2009	 Carrion	V	G	 19349151	
F43:	 Reaction	 to	 Severe	 Stress	 and	
Adjustment	Disorders	

26	 2009	
Castro-Fornieles	

J	
18486147	 F50:	Eating	Disorders	

27	 2010	 Celle	S	 19768657	
G25:	 Other	 extrapyramidal	 and	
movement	disorders	

28	 2006	 Chan	C	H	 16499767	 G40:	Epilepsy	and	Recurrent	Seizures	

29	 2014	 Chaney	A	 23900024	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

30	 2007	 Chen	X	 17464719	 F31:	Bipolar	Disorder	

31	 2012	 Chen	Z	 22119745	 F31:	Bipolar	Disorder	

32	 2011	 Cheng	Y	 21541322	
F84:	 Pervasive	 Developmental	
Disorders	

33	 2008	 Christian	C	J	 18938065	 F42:	Obsessive	Compulsive	Disorder	

34	 2011	 Cui	L	 21138758	 F20:	Schizophrenia	

35	 2011	 Cui	L	 21138758	 F31:	Bipolar	Disorder	
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36	 2009	
de	Araujo-Filho	G	

M	
19303459	 G40:	Epilepsy	and	Recurrent	Seizures	

37	 2011	
de	Castro-
Manglano	P	

21316203	
F28:	 Other	 psychotic	 disorder	 not	
due	 to	 a	 substance	 or	 known	
physiological	condition	

38	 2009	 Deng	M	Y	 19641900	 F20:	Schizophrenia	

39	 2012	 Ecker	C	 22310506	
F84:	 Pervasive	 Developmental	
Disorders	

40	 2010	 Ecker	C	 19683584	
F84:	 Pervasive	 Developmental	
Disorders	

41	 2007	 Egger	K	 17588241	 G24:	Dystonia	

42	 2005	 Etgen	T	 15670702	
G25:	 Other	 extrapyramidal	 and	
movement	disorders	

43	 2012	 Frangou	S	 3277296	 F31:	Bipolar	Disorder	

44	 2006	 Garraux	G	 16437578	 F95:	Tic	Disorder	

45	 2004	 Garraux	G	 15122716	 G24:	Dystonia	

46	 2003	 Gee	J	 14697007	 G30:	Alzheimer's	Disease	

47	 2008	 Gilbert	A	R	 18342953	 F42:	Obsessive	Compulsive	Disorder	

48	 2005	 Giuliani	N	R	 15721994	 F20:	Schizophrenia	

49	 2011	 Gong	Q	 21134472	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

50	 2011	 Granert	O	 21705464	 G24:	Dystonia	

51	 2013	 Grieve	S	M	 24273717	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

52	 2004	 Grossman	M	 14761903	 G30:	Alzheimer's	Disease	

53	 2004	 Grossman	M	 14761903	
G31:	Other	Degenerative	Diseases	of	
Nervous	System	

54	 2010	 Ha	T	H	 19429131	 F31:	Bipolar	Disorder	
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55	 2004	 Ha	T	H	 15664796	 F20:	Schizophrenia	

56	 2008	 Haldane	M	 18308812	 F31:	Bipolar	Disorder	

57	 2007	 Hamalainen	A	 17683950	
G31:	Other	Degenerative	Diseases	of	
Nervous	System	

58	 2006	 Hendry	J	 16214373	
F84:	 Pervasive	 Developmental	
Disorders	

59	 2009	 Henley	S	M	 19266143	 G10:	Huntington's	Disease	

60	 2008	 Honea	R	A	 17689500	 F20:	Schizophrenia	

61	 2007	 Hornyak	M	 17512782	
G25:	 Other	 extrapyramidal	 and	
movement	disorders	

62	 2001	 Hulshoff	Pol	H	E	 11735840	 F20:	Schizophrenia	

63	 2010	 Hwang	J	 -	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

64	 2010	 Hyde	K	L	 19790171	
F84:	 Pervasive	 Developmental	
Disorders	

65	 2008	 Hyde	T	M	 18669483	 F20:	Schizophrenia	

66	 2010	 Kasparek	T	 19777553	 F20:	Schizophrenia	

67	 2004	 Kawasaki	Y	 15538599	 F20:	Schizophrenia	

68	 2008	 Ke	X	 18520994	
F84:	 Pervasive	 Developmental	
Disorders	

69	 2007	 Keller	S	S	 17412561	 G40:	Epilepsy	and	Recurrent	Seizures	

70	 2002	 Keller	S	S	 12438464	 G40:	Epilepsy	and	Recurrent	Seizures	

71	 2009	 Kempton	M	J	 19726644	 F31:	Bipolar	Disorder	

72	 2007	 Kim	J	H	 17689105	 G40:	Epilepsy	and	Recurrent	Seizures	

73	 2001	 Kim	J	J	 11581113	 F42:	Obsessive	Compulsive	Disorder	

74	 2010	 Kostic	V	S	 20686125	 G20:	Parkinson's	Disease	
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75	 2013	 Kozicky	J	M	 23919287	 F31:	Bipolar	Disorder	

76	 2008	 Ladoucer	C	D	 18356765	 F31:	Bipolar	Disorder	

77	 2013	 Lee	S	H	 23474765	 G20:	Parkinson's	Disease	

78	 2009	 Leung	K	K	 18945378	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

79	 2013	 Lin	C	H	 23785322	 G20:	Parkinson's	Disease	

80	 2013	 Lin	C	H	 23785322	
G25:	 Other	 extrapyramidal	 and	
movement	disorders	

81	 2009	 Lin	K	 19570650	 G40:	Epilepsy	and	Recurrent	Seizures	

82	 2010	 Lu	C	 19375076	
F80:	 Specific	 Developmental	
Disorders	of	Speech	and	Language	

83	 2006	 Ludolph	A	G	 16648537	 F95:	Tic	Disorder	

84	 2015	 Mallik	S	 4390521	 G35:	Multiple	Sclerosis	

85	 2003	 Marcelis	M	 12694890	
F28:	 Other	 psychotic	 disorder	 not	
due	 to	 a	 substance	 or	 known	
physiological	condition	

86	 2005	 McDonald	C	 15863740	 F20:	Schizophrenia	

87	 2011	 Mengotti	P	 21146593	
F84:	 Pervasive	 Developmental	
Disorders	

88	 2011	 Molina	V	 21188405	 F20:	Schizophrenia	

89	 2010	 Moriya	J	 19854618	 F20:	Schizophrenia	

90	 2007	 O'Daly	O	 17720459	 F20:	Schizophrenia	

91	 2007	 Obermann	M	 17443700	 G24:	Dystonia	

92	 2011	 Perico	C	A	M	 21320250	 F31:	Bipolar	Disorder	

93	 2011	 Perico	C	A	M	 21320250	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

94	 2013	 Prell	T	 24131497	 G24:	Dystonia	
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95	 2010	 Price	G	 19632338	 F20:	Schizophrenia	

96	 2004	 Pujol	J	 15237084	 F42:	Obsessive	Compulsive	Disorder	

97	 2014	 Qiu	L	 24713859	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

98	 2009	 Raji	C	A	 19846828	 G30:	Alzheimer's	Disease	

99	 2007	 Ramirez-Ruiz	B	 17594330	 G20:	Parkinson's	Disease	

100	 2008	 Riederer	F	 18678824	 G40:	Epilepsy	and	Recurrent	Seizures	

101	 2015	 Rocca	M	A	 26348234	 G35:	Multiple	Sclerosis	

102	 2002	 Rosen	H	J	 11805245	
G31:	Other	Degenerative	Diseases	of	
Nervous	System	

103	 2004	 Rusch	N	 15260365	 G40:	Epilepsy	and	Recurrent	Seizures	

104	 2003	 Salgado-Pineda	P	 12814586	 F20:	Schizophrenia	

105	 2007	 Salmond	C	H	 17710821	
F84:	 Pervasive	 Developmental	
Disorders	

106	 2015	 Saricicek	A	 26233321	 F31:	Bipolar	Disorder	

107	 2010	 Schafer	A	 20035881	 F50:	Eating	Disorders	

108	 2010	 Scheuerecker	J	 20569645	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

109	 2013	 Schiffer	B	 23015687	 F20:	Schizophrenia	

110	 2006	 Schmitz	N	 16140278	
F84:	 Pervasive	 Developmental	
Disorders	

111	 2002	 Shapleske	J	 12427683	 F20:	Schizophrenia	

112	 2010	 Smesny	S	 20478385	 F20:	Schizophrenia	

113	 2002	 Suzuki	M	 11955962	 F20:	Schizophrenia	

114	 2008	 Szeszko	P	R	 18413702	 F42:	Obsessive	Compulsive	Disorder	

115	 2014	 Tang	L	R	 25218414	 F31:	Bipolar	Disorder	
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116	 2010	 Tanskanen	P	 19015212	 F20:	Schizophrenia	

117	 2012	 Tavazzi	E	 25228014	 G35:	Multiple	Sclerosis	

118	 2007	 Theberge	J	 17906243	 F20:	Schizophrenia	

119	 2010	 Toal	F	 19891805	
F84:	 Pervasive	 Developmental	
Disorders	

120	 2013	 Truong	W	 24099630	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

121	 2008	 Uchida	R	R	 18417322	 F41:		Other	Anxiety	Disorders	

122	 2005	 Valente	A	A	Jr	 15978549	 F42:	Obsessive	Compulsive	Disorder	

123	 2013	 van	Eijndhoven	P	 23929204	
F32-F33:	Major	depressive	disorder.	
single	episode/recurrent	

124	 2004	 Waiter	G	D	 15193590	
F84:	 Pervasive	 Developmental	
Disorders	

125	 2007	 Wang	J	 1735333	
F90:	 Attention	 Deficit/Hyperactivity	
Disorder	

126	 2002	 Watkins	K	E	 11872605	
F80:	 Specific	 Developmental	
Disorders	of	Speech	and	Language	

127	 2012	 Watson	D	R	 22056751	 F20:	Schizophrenia	

128	 2012	 Watson	D	R	 22056751	 F31:	Bipolar	Disorder	

129	 2009	 Wattendorf	E	 20007465	 G20:	Parkinson's	Disease	

130	 2006	 Whitford	T	J	 16677830	 F20:	Schizophrenia	

131	 2004	 Whitwell	J	L	 16908994	
G31:	Other	Degenerative	Diseases	of	
Nervous	System	

132	 2001	 Wilke	M	 11304078	 F20:	Schizophrenia	

133	 1999	 Woermann	F	G	 10545395	 G40:	Epilepsy	and	Recurrent	Seizures	

134	 2010	 Yasuda	C	L	 20350980	 G40:	Epilepsy	and	Recurrent	Seizures	

135	 2008	 Yoo	S	Y	 18303194	 F42:	Obsessive	Compulsive	Disorder	
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Table S3: Selected studies for the meta-analysis of the Second Query. 

Table S4: Clusters of GM Decrease 



 137 

 

Record number X Y Z Side Label BA 
1 -4 -4 12 L Thal / 
2 6 -16 14 R VLN / 
3 -8 -12 20 L Thal / 
4 14 -40 -6 R Culm / 
5 -52 38 -2 L IFG BA 10 
6 -24 -4 -34 L Uncus BA 36 
7 -34 -10 -34 L Uncus BA 20 
8 40 52 0 R IFG / 
9 46 14 38 R MFG BA 9 

10 54 -2 12 R PrecG BA 6 
11 40 4 0 R Ins BA 13 
12 -46 18 34 L MFG BA 9 
13 -54 -4 -30 L ITG BA 20 
14 -50 10 -28 L MTG BA 21 
15 -60 -32 -2 L MTG BA 39 
16 26 -82 -34 R Pyr / 
17 -30 -34 -14 L PHG BA 36 
18 50 -30 18 R Ins BA 13 
19 -44 2 -22 L MTG BA 21 
20 30 -42 -10 R PHG BA 37 
21 -28 48 28 L SFG BA 9 
22 -8 54 28 L SFG BA 9 
23 54 -8 32 R PrecG BA 6 
24 -40 46 -14 L MFG BA 11 
25 42 -4 -4 R Ins BA 13 
26 42 -30 50 R PostcG BA 40 
27 -52 -8 34 L PrecG BA 6 
28 46 4 34 R PrecG BA 6 
29 -42 10 -4 L Ins BA 13 
30 58 -14 42 R PrecG BA 6 
31 8 2 6 R Cau Body / 
32 -52 2 36 L PrecG BA 6 

Table S5: Clusters of GM Increase 
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33 -38 18 6 L Ins BA 13 
34 52 -48 24 R SMG BA 40 
35 54 8 -20 R MTG BA 21 
36 -58 -50 -10 L MTG BA 37 
37 -10 8 10 L Cau Body / 
38 38 16 6 R Ins BA 13 
39 42 -6 6 R Ins BA 13 
40 42 -14 12 R Ins BA 13 
41 -48 -52 28 L SMG BA 40 
42 50 -24 6 R STG BA 41 
43 -48 -30 10 L STG BA 41 
44 44 -12 0 R Ins BA 13 
45 -42 -10 12 L Ins BA 13 
46 -12 -58 8 L PCC BA 30 
47 6 24 20 R ACC BA 24 
48 0 -34 44 L PCun BA 7 
49 10 10 12 R Cau Body / 
50 -4 26 20 L ACC BA 24 
51 -42 -4 4 L Ins BA 13 
52 -56 -4 -20 L MTG BA 21 
53 -38 6 6 L Ins BA 13 
54 6 24 -24 R RG BA 11 
55 40 12 -34 R STG BA 38 
56 -40 16 -28 L STG BA 38 
57 32 14 -24 R STG BA 38 
58 -10 0 16 L Cau Body / 
59 -2 14 26 L Cing BA 24 
60 38 4 10 R Ins BA 13 
61 -10 -22 36 L Cing BA 31 
62 10 -22 40 R Cing BA 31 
63 0 -18 34 L Cing BA 24 
64 -8 -12 38 L Cing BA 24 
65 50 12 6 R PrecG BA 44 
66 -2 10 50 L SFG BA 6 
67 16 6 64 R SFG BA 6 
68 56 -16 12 R TTG BA 41 
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69 40 8 -22 R STG BA 38 
70 0 40 38 L MedFG BA 8 
71 -40 0 14 L Ins BA 13 
72 -12 -28 44 L Cing BA 31 
73 36 -24 -22 R PHG BA 36 
74 -34 10 -22 L STG BA 38 
75 40 16 -16 R IFG BA 47 
76 -40 8 -14 L STG BA 38 
77 -46 10 38 L MFG BA 8 
78 38 22 12 R Ins BA 13 
79 -38 12 14 L Ins BA 13 
80 -6 28 -20 L RG BA 11 
81 14 -72 32 R Cun BA 7 
82 4 -70 32 R Cun BA 7 
83 -2 -50 32 L PCun BA 31 
84 38 -10 16 R Ins BA 13 
85 -8 -2 36 L Cing BA 24 
86 -48 -20 14 L TTG BA 41 
87 -12 -74 38 L PCun BA 7 
88 42 4 -12 R STG BA 38 
89 -62 -32 12 L STG BA 22 
90 46 12 -6 R STG BA 38 
91 -10 -52 38 L PCun BA 7 
92 -62 -22 -14 L MTG BA 21 
93 24 -8 -14 R PHG / 
94 -58 -54 14 L STG BA 22 
95 -8 20 -4 L Cau Head / 
96 -6 66 -4 L MedFG BA 10 
97 -4 58 2 L MedFG BA 10 
98 -48 -36 20 L Ins BA 13 
99 10 -30 46 R PCL BA 31 

100 -20 -64 14 L PCC BA 31 
101 18 -60 16 R PCC BA 31 
102 4 0 46 R Cing BA 24 
103 -28 28 40 L MFG BA 8 
104 0 0 -6 L ACC BA 25 
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105 34 -36 -18 R FFG BA 20 
106 10 20 -6 R Cau Head / 
107 52 -22 -14 R MTG BA 21 
108 24 -72 24 R PCun BA 31 
109 -26 18 46 L MFG BA 8 
110 -46 -8 -16 L ITG BA 20 
111 -26 6 -30 L Uncus BA 28 
112 -52 -14 14 L PostcG / 
113 -46 -76 10 L MTG BA 39 
114 62 -6 16 R PostcG BA 43 
115 -6 10 0 L Cau Head / 
116 0 40 6 L ACC BA 32 
117 44 -18 22 R Ins BA 13 
118 -22 -4 -12 L PHG / 
119 2 -48 42 R Cing BA 31 
120 56 -4 -12 R MTG BA 21 
121 0 -14 8 L MDN / 
122 -52 0 -12 L MTG BA 21 
123 -6 50 10 L MedFG BA 10 
124 -42 0 -8 L Ins BA 13 
125 -48 14 10 L IFG BA 44 
126 -48 6 16 L IFG BA 44 
127 -8 -20 14 L Thal / 
128 14 -34 10 R Pulv / 
129 12 -24 10 R Pulv / 
130 58 -12 -10 R MTG BA 21 
131 -54 -64 -4 L MOG BA 19 
132 -30 -86 18 L MOG BA 19 
133 -22 2 -20 L Uncus BA 34 
134 38 -84 18 R MOG BA 19 
135 -30 -42 -8 L PHG BA 37 
136 0 26 -12 L MedFG BA 11 
137 -48 -62 28 L MTG BA 39 
138 -56 -18 42 L PostcG BA 4 
139 -8 22 6 L Cau Body / 
140 12 20 4 R Cau Head / 
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141 28 -16 -20 R PhG BA 28 
142 52 -30 -6 R MTG BA 21 
143 -60 -18 -6 L MTG BA 21 
144 -60 -46 -4 L MTG BA 21 
145 4 48 12 R MedFG BA 10 
146 -8 60 14 L MedFG BA 10 
147 0 36 -8 L ACC BA 32 
148 -60 -10 24 L PostcG BA 3 
149 -50 -10 44 L PrecG BA 4 
150 -28 -12 -16 L PHG / 
151 -62 -52 4 L MTG BA 21 
152 -22 10 -8 L LentN / 
153 44 44 -6 R MFG BA 10 
154 2 32 12 R ACC BA 24 
155 2 34 46 R SFG BA 8 
156 -50 30 18 L MFG BA 46 
157 34 -28 -12 R Hip / 
158 -24 2 -2 L Put / 
159 -28 -74 40 L PCun BA 19 
160 -4 2 4 L Cau Head / 
161 0 4 -16 L SubcallG BA 25 
162 -34 -24 48 L PrecG BA 4 
163 -34 -26 -8 L Hip / 
164 -20 8 6 L Put / 
165 -26 26 -20 L IFG BA 11 
166 52 -34 6 R MTG BA 22 
167 -30 50 -4 L MFG BA 10 
168 -30 56 4 L MFG BA 10 
169 60 -24 44 R PostcG BA 2 
170 58 -20 -22 R FFG BA 20 
171 2 16 -12 R SubcallG BA 25 
172 4 -26 -6 R RedN / 
173 -24 -20 -8 L PHG BA 28 
174 32 -34 -4 R Hip / 
175 4 -16 -6 R RedN / 
176 -18 -34 -16 L Culm / 
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177 -46 -38 -24 L Culm / 
178 -60 -38 6 L MTG BA 22 
179 -40 28 -12 L IFG BA 47 
180 50 -20 -4 R STG BA 22 
181 42 -4 -18 R Fus BA 20 
182 12 -32 0 R PHG BA 27 
183 -14 -34 0 L PHG BA 27 
184 48 32 24 R MFG BA 46 
185 -28 -34 -2 L Hip / 
186 -16 -42 -8 L Culm / 
187 -26 -30 -24 L Culm / 
188 50 6 22 R IFG BA 44 
189 8 -40 -20 R Culm / 
190 -58 -4 -4 L MTG BA 21 
191 8 -6 14 R Thal / 
192 -6 44 -4 L ACC BA 32 
193 52 20 24 R IFG BA 9 
194 -38 22 -20 L IFG BA 47 
195 -62 -24 6 L STG BA 22 
196 56 8 14 R IFG BA 44 
197 -26 56 20 L MFG BA 10 
198 38 42 22 R MFG BA 10 
199 38 -6 -38 R ITG BA 20 
200 28 -4 -32 R Unc BA 36 
201 -42 54 2 L IFG BA 10 
202 -2 42 16 L MedFG BA 9 
203 -52 4 26 L IFG BA 9 
204 -54 -60 -14 L Fus BA 37 
205 -46 -20 8 L STG BA 13 
206 50 20 12 R IFG BA 45 
207 -48 24 10 L IFG BA 45 
208 54 -10 6 R STG BA 22 
209 4 -32 -14 R Culm / 
210 -52 -20 -32 L ITG BA 20 
211 6 52 -8 R MedFG BA 10 
212 -2 34 26 L Cing BA 32 
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213 24 -14 -30 R Unc BA 28 
214 6 20 30 R Cing BA 32 
215 52 28 18 R MFG BA 46 
216 -8 10 36 L Cing BA 32 
217 58 6 28 R IFG BA 9 
218 -2 -4 -14 L HypoThal / 
219 34 28 -12 R IFG BA 47 
220 42 -16 -32 R ITG BA 20 
221 -46 46 -4 L IFG BA 10 
222 -30 60 -6 L SFG BA 10 
223 -54 -10 -28 L ITG BA 20 
224 58 -10 -20 R ITG BA 20 
225 58 -52 -14 R ITG BA 20 
226 30 58 -4 R SFG BA 10 
227 -56 -46 36 L IPL BA 40 
228 4 24 42 R Cing BA 32 
229 26 58 6 R SFG BA 10 
230 -24 4 -12 L SubcallG BA 34 
231 26 6 -30 R Unc BA 28 
232 -24 -8 -28 L Unc BA 28 
233 -50 24 26 L MFG BA 46 
234 -2 52 20 L MedFG BA 9 
235 26 -16 -8 R LentN / 
236 28 50 14 R SFG BA 10 
237 12 16 -22 R RG BA 11 
238 -50 16 20 L IFG BA 9 
239 -40 18 -10 L IFG BA 47 
240 4 30 34 R MedFG BA 6 
241 -26 46 18 L SFG BA 10 
242 -48 36 -10 L IFG BA 47 
243 -34 36 -8 L MFG BA 11 
244 38 20 -6 R IFG BA 47 
245 26 4 -20 R Unc BA 28 
246 -56 -32 -12 L ITG BA 20 
247 -36 24 -2 L IFG BA 47 
248 16 30 -24 R OrbG BA 47 
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249 28 38 -20 R MFG BA 11 
250 -10 -10 48 L MedFG BA 6 
251 -2 38 -18 L MedFG BA 11 
252 6 46 -16 R MedFG BA 11 
253 26 2 -10 R SubcallG BA 34 
254 22 -6 -24 R PhG BA 35 
255 56 -20 24 R IPL BA 40 
256 4 -14 52 R MedFG BA 6 
257 -4 48 -14 L MedFG BA 11 
258 48 38 2 R IFG BA 46 
259 -50 24 0 L IFG BA 47 
260 -28 -22 -18 L PhG BA 35 
261 -42 6 48 L MFG BA 6 
262 -54 -4 8 L PrecG BA 6 
263 -32 34 -18 L MFG BA 11 
264 38 24 0 R IFG BA 47 
265 44 14 28 R MFG BA 9 
266 -40 -54 44 L IPL BA 40 
267 -50 36 10 L IFG BA 46 
268 -58 -16 32 L PostcG BA 3 
269 44 38 -14 R MFG BA 11 
270 18 36 28 R MedFG BA 9 
271 44 32 -6 R MFG BA 47 
272 -18 -28 -8 L PHG BA 28 
273 -28 -18 -28 L PhG BA 36 
274 48 38 12 R IFG BA 46 
275 -2 44 28 L MedFG BA 9 
276 -46 42 18 L MFG BA 46 
277 -44 10 28 L IFG BA 9 

 

  

Table S6: Synopsis of decrement nodes 
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Record Number X Y Z Side Label BA 
1 34 -44 -40 R CerTons / 
2 -22 -70 -40 L Inf_Semi-lunar_Lob / 
3 14 -68 -40 R Inf_Semi-lunar_Lob / 
4 -52 -12 -38 L ITG BA 20 
5 -34 -16 -38 L Uncus BA 20 
6 46 -44 -34 R CerTons / 
7 -42 0 -30 L MTG BA 21 
8 -24 -2 -30 L Uncus BA 36 
9 38 2 -30 R MTG BA 21 

10 -48 -16 -28 L ITG BA 20 
11 -30 -10 -30 L Uncus BA 28 
12 28 -22 -26 R PHG BA 36 
13 24 -8 -26 R Uncus BA 28 
14 22 2 -26 R Uncus BA 28 
15 2 -36 -24 R Culm / 
16 -46 -34 -24 L FFG BA 20 
17 -30 -30 -24 L Culm / 
18 -52 -26 -24 L FFG BA 20 
19 34 -14 -24 R Uncus BA 20 
20 -24 -12 -22 L PHG / 
21 -24 4 -22 L Uncus BA 28 
22 34 -38 -22 R Culm / 
23 -16 -24 -22 L Culm / 
24 -30 -18 -20 L PHG / 
25 38 -4 -22 R MTG BA 21 
26 24 10 -20 R IFG BA 47 
27 8 28 -20 R RG BA 11 
28 8 38 -20 R RG BA 11 
29 18 40 -20 R MFG BA 11 
30 -8 20 -18 L RG BA 11 
31 24 28 -18 R IFG BA 11 
32 -20 42 -18 L SFG BA 11 
33 36 -80 -16 R Declive / 
34 34 -46 -16 R Culm / 
35 6 -30 -16 R Culm / 



 146 

36 32 -28 -18 R PHG BA 36 
37 28 -14 -16 R PHG / 
38 20 -6 -16 R Amyg / 
39 -16 4 -16 L PHG BA 34 
40 38 16 -16 R IFG BA 47 
41 -22 28 -20 L IFG BA 11 
42 34 32 -18 R IFG BA 47 
43 36 -70 -14 R FFG BA 19 
44 -36 -66 -16 L Declive / 
45 -26 -38 -14 L Culm / 
46 -34 -28 -14 L PHG BA 36 
47 -64 -22 -14 L MTG BA 21 
48 -52 -22 -14 L MTG BA 21 
49 40 4 -14 R STG BA 38 
50 10 20 -14 R MedFG BA 25 
51 -36 -86 -12 L IOG BA 18 
52 50 -56 -12 R FFG BA 37 
53 -12 -18 -12 L SN / 
54 -26 -12 -12 L PHG / 
55 -48 -4 -14 L MTG BA 21 
56 20 4 -12 R SubcallG BA 34 
57 -18 12 -10 L LentN / 
58 -42 12 -12 L STG BA 38 
59 -6 30 -14 L MedFG BA 11 
60 -12 40 -12 L MedFG BA 10 
61 56 -48 -10 R ITG BA 20 
62 28 -38 -10 R PHG BA 36 
63 -6 -28 -6 L Thal / 
64 -20 -26 -12 L PHG BA 35 
65 50 -22 -10 R STG BA 22 
66 -4 -8 -12 L MammB / 
67 22 16 -12 R SubcallG BA 47 
68 34 24 -10 R IFG BA 47 
69 6 30 -10 R ACC BA 32 
70 -28 34 -10 L MFG BA 11 
71 26 -92 -10 R FFG BA 18 
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72 -14 -48 -10 L Culm / 
73 -54 -44 -8 L MTG BA 20 
74 -28 -46 -6 L PHG BA 19 
75 26 -8 -8 R Amyg / 
76 -42 2 -8 L Ins BA 13 
77 -10 18 -8 L Cau Head / 
78 -20 22 -6 L LentN / 
79 -36 40 -8 L MFG BA 11 
80 34 48 -10 R MFG BA 11 
81 40 -78 -6 R IOG BA 19 
82 40 -64 -6 R FFG BA 19 
83 -44 -62 -10 L FFG BA 37 
84 12 -38 -6 R Culm / 
85 28 -26 -8 R Hip / 
86 40 -12 -6 R Ins BA 13 
87 -30 -4 -6 L Put / 
88 -18 -4 -6 L LGP / 
89 8 -2 -8 R HypoThal / 
90 36 10 -6 R Ins BA 13 
91 -36 20 -8 L IFG BA 47 
92 -10 48 -4 L MedFG BA 10 
93 30 62 -6 R SFG BA 10 
94 38 -90 -4 R IOG BA 18 
95 16 -48 -6 R Culm / 
96 -26 -32 -6 L PHG Hip 
97 10 8 -4 R Cau Head / 
98 48 -56 0 R ITG BA 19 
99 -14 -40 -4 L PHG BA 30 

100 12 -24 -2 R MGB / 
101 -28 -16 0 L LentN / 
102 52 -14 -4 R STG BA 22 
103 12 -12 -2 R SN / 
104 48 -4 -4 R STG BA 22 
105 -18 6 -2 L LentN / 
106 22 6 -2 R Put / 
107 -40 10 -2 L Ins BA 13 



 148 

108 -8 24 0 L Cau Head / 
109 10 36 0 R ACC / 
110 -40 58 -4 L MFG BA 10 
111 20 -92 -2 R LG BA 17 
112 58 -36 -2 R MTG BA 21 
113 -40 -24 -2 L Ins BA 13 
114 40 -24 -2 R Ins BA 13 
115 -8 -10 0 L VLN / 
116 -40 -4 0 L Ins BA 13 
117 -10 8 0 L Cau Head / 
118 -10 40 4 L ACC BA 32 
119 6 -56 2 R Culm / 
120 -48 -36 2 L STG BA 22 
121 -16 -32 2 L Pulv / 
122 2 -14 0 R Thal / 
123 28 -8 2 R Put / 
124 40 -2 2 R Ins BA 13 
125 42 18 2 R Ins / 
126 -44 22 2 L IFG BA 47 
127 10 46 0 R ACC BA 32 
128 26 52 2 R SFG BA 10 
129 14 -36 4 R PHG BA 30 
130 -18 -18 4 L VPLN / 
131 -28 -8 4 L Put / 
132 -20 -2 4 L Put / 
133 10 12 4 R Cau Head / 
134 -46 32 4 L IFG BA 47 
135 -32 56 2 L MFG BA 10 
136 -8 -56 6 L PCC BA 30 
137 -64 -30 4 L MTG BA 22 
138 12 -18 6 R Pulv / 
139 44 -16 4 R Ins BA 13 
140 -42 4 6 L PrecG BA 44 
141 44 8 4 R Ins BA 13 
142 -24 12 6 L Put / 
143 -6 18 8 L Cau Body / 
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144 24 0 12 R LentN / 
145 28 46 10 R MFG BA 10 
146 20 60 6 R SFG BA 10 
147 24 -90 8 R MOG BA 18 
148 10 6 8 R Cau Body / 
149 32 30 8 R IFG BA 45 
150 -36 40 10 L MFG BA 10 
151 32 58 10 R MFG BA 10 
152 -32 -92 12 L MOG BA 18 
153 36 -78 12 R MOG BA 19 
154 -10 -50 12 L PCC BA 30 
155 -46 -40 12 L STG BA 41 
156 -16 -30 12 L Pulv / 
157 16 -22 14 R LPN / 
158 30 -14 12 R Put / 
159 6 -10 12 R MDN / 
160 38 -8 10 R Ins BA 13 
161 -22 4 12 L Put / 
162 -48 10 12 L PrecG BA 44 
163 52 12 10 R IFG BA 44 
164 -4 28 10 L ACC BA 24 
165 40 38 10 R MFG BA 10 
166 -32 50 10 L MFG BA 10 
167 -26 -10 14 L Put / 
168 38 2 12 R Ins BA 13 
169 46 20 12 R IFG BA 45 
170 12 28 14 R ACC BA 24 
171 -44 34 14 L MFG BA 46 
172 20 54 14 R SFG BA 10 
173 -36 -82 16 L MOG BA 19 
174 -56 -30 16 L STG BA 42 
175 -8 48 16 L MedFG BA 10 
176 34 -86 18 R MOG BA 19 
177 44 -34 18 R Ins BA 13 
178 56 -26 18 R PostcG BA 40 
179 12 -18 18 R LDN / 
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180 18 -6 18 R Cau Body / 
181 20 64 16 R SFG BA 10 
182 22 -90 20 R Cun BA 18 
183 -10 -42 18 L PCC BA 29 
184 -50 -22 20 L Ins BA 13 
185 56 -6 18 R PrecG BA 4 
186 -18 -8 20 L Cau Body / 
187 -52 4 20 L IFG BA 44 
188 -46 16 20 L IFG BA 9 
189 -52 34 16 L MFG BA 46 
190 -38 -72 18 L MTG BA 39 
191 -8 24 20 L ACC BA 32 
192 12 -48 24 R PCC BA 31 
193 -48 -32 24 L IPL BA 40 
194 48 -60 26 R STG BA 39 
195 -12 -56 26 L Pcun BA 31 
196 48 -40 26 R IPL BA 40 
197 56 -20 24 R IPL BA 40 
198 54 14 26 R IFG BA 9 
199 -44 -78 26 L SOG BA 19 
200 -38 -58 28 L STG BA 39 
201 56 -30 28 R IPL BA 40 
202 -4 -28 28 L Cing BA 23 
203 -52 -16 28 L PostcG BA 4 
204 -44 -2 26 L IFG BA 9 
205 -46 12 28 L IFG BA 9 
206 -2 14 26 L ACC BA 24 
207 -48 24 26 L MFG BA 46 
208 12 -90 28 R Cun BA 19 
209 8 -56 28 R PCC BA 31 
210 -60 -56 30 L SMG BA 40 
211 -8 -38 28 L PCC BA 31 
212 -56 2 32 L PrecG BA 6 
213 -12 56 32 L SFG BA 9 
214 40 -62 34 R AngG BA 39 
215 -48 -26 32 L PostcG BA 2 
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216 32 -80 34 R Pcun BA 19 
217 -10 -62 34 L Pcun BA 7 
218 -36 -50 34 L IPL BA 40 
219 8 -36 32 R PCC BA 31 
220 52 -8 34 R PrecG BA 6 
221 -52 -68 36 L AngG BA 39 
222 -34 -66 36 L PCun BA 19 
223 38 -42 36 R SMG BA 40 
224 58 -26 34 R IPL BA 40 
225 6 -12 36 R ACC BA 24 
226 50 4 38 R MFG BA 6 
227 -44 6 36 L PrecG BA 9 
228 -46 16 34 L MFG BA 9 
229 22 46 34 R SFG BA 9 
230 48 -70 38 R AG BA 39 
231 -34 -42 40 L IPL BA 40 
232 -50 -18 38 L PostcG BA 3 
233 -52 -8 38 L PrecG BA 6 
234 -8 -54 40 L Pcun BA 7 
235 -8 48 38 L SFG BA 8 
236 -32 -58 42 L IPL BA 7 
237 -48 -30 40 L IPL BA 40 
238 58 -18 40 R PrecG BA 4 
239 32 18 42 R MFG BA 8 
240 12 -46 46 R PCun BA 7 
241 -44 12 44 L MFG BA 8 
242 -44 -44 44 L IPL BA 40 
243 -22 20 46 L MFG BA 8 
244 -2 -42 46 L PCun BA 7 
245 44 -40 46 R IPL BA 40 
246 -32 -36 48 L PostcG BA 3 
247 -46 -26 50 L PostcG BA 2 
248 48 -26 46 R PostcG BA 2 
249 -38 -20 46 L PostcG BA 3 
250 -52 -16 48 L PostcG BA 1 
251 -52 -6 48 L PrecG BA 4 
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252 8 6 44 R ACC BA 24 
253 32 24 50 R SFG BA 8 
254 22 -26 48 R PostcG BA 3 
255 16 -4 50 R ACC BA 24 
256 30 10 50 R MFG BA 6 
257 -34 -52 52 L SPL BA 40 
258 20 12 50 R SFG BA 6 
259 4 -50 52 R PCun BA 7 
260 46 -18 52 R PostcG BA 3 
261 0 -68 54 L PCun BA 7 
262 -30 -30 56 L PrecG BA 4 
263 -20 -50 56 L PCun BA 7 
264 -12 -42 56 L PCun BA 7 
265 2 -40 56 R ParacLob BA 5 
266 12 -54 58 R PCun BA 7 
267 10 -32 62 R PostcG BA 3 
268 -6 -48 66 L PostcG BA 7 
269 -18 -44 64 L PostcG BA 5 
270 6 6 66 R SFG BA 6 
271 16 -48 66 R PostcG BA 7 

 

  

Table S7: Synopsis of increment nodes 



 153 

References 
Abdelnour F, Voss HU, Raj A. Network diffusion accurately models the relationship between 
structural and functional brain connectivity networks. Neuroimage 2014; 90: 335–47. 

Acar F, Seurinck R, Eickhoff SB, Moerkerke B. Assessing robustness against potential publication 
bias in coordinate based fMRI meta-analyses using the Fail-Safe N bioRxiv 2017, 189001. doi: 
10.1101/189001. 

Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev 
Mol Cell Biol 2007; 8: 552–61. 

ALLEN Human Brain Atlas. Technical white paper: microarray data normalization, v.1. Seattle, 
WA: Allen Institute; 2013. 

Allen MJ, Yen WM. Introduction to measurement theory Long Grove, IL: Waveland Press; 2001. 

Baker JT, Holmes AJ, Masters GA, Yeo BT, Krienen F, Buckner RL,et al. . Disruption of cortical 
association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 2014; 71: 
109–18. 

Beckmann CF, Mackay CE, Filippini N, Smith SM. Group comparison of resting-state FMRI data 
using multi-subject ICA and dual regression. Neuroimage 2009; S39–41. 

Biswal BB. Resting state functional connectivity In: Biological psychiatry New York, NY: Elsevier 
Science Inc; 2011. p. 200S.  

Biswal BB. Resting state fMRI: a personal history. Neuroimage 2012; 62: 938–44. 

Bourdenx M, Koulakiotis NS, Sanoudou D, Bezard E, Dehay B, Tsarbopoulos A. Protein aggregation 
and neurodegeneration in prototypical neurodegenerative diseases: examples of amyloidopathies, 
tauopathies and synucleinopathies. Prog Neurobiol 2017; 155: 171–93. 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 
1991; 82: 239–59. 

Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer 
disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960–9. 

Brooks B. The role of axonal transport in neurodegenerative disease spread: a meta-analysis of 
experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can J Neurol 
Sci 1991; 18 (3 Suppl): 435–8. 

Buckholtz JW, Meyer-Lindenberg A. Psychopathology and the human connectome: toward a 
transdiagnostic model of risk for mental illness. Neuron 2012; 74: 990–1004. 

Buckner RL, Krienen FM, Yeo BT. Opportunities and limitations of intrinsic functional connectivity 
MRI. Nat Neurosci 2013; 16: 832–7. 

Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF,et al. . Molecular, structural, 
and functional characterization of Alzheimer’s disease: evidence for a relationship between default 
activity, amyloid, and memory. J Neurosci 2005; 25: 7709–17. 



 154 

Carlson N, Buskist W, Heth CD, Schmaltz R. Psychology: the science of behaviour. 4th Canadian 
edn. Toronto: Pearson Education Canada; 2009. 

Cauda F, Costa T, Fava L, Palermo S, Bianco F, Duca S,et al. . Predictability of autism, schizophrenic 
and obsessive spectra diagnosis. toward a damage network approach bioRxiv 2015, 014563. doi: 
10.1101/014563. 

Cauda F, Costa T, Nani A, Fava L, Palermo S, Bianco F,et al. . Are schizophrenia, autistic, and 
obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings?. A 
voxel-based meta-analysis. Autism Res 2017: 10: 1079–95. 

Cauda F, Costa T, Palermo S, D’Agata F, Diano M, Bianco F,et al. . Concordance of white matter 
and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study. Hum 
Brain Mapp 2014; 35: 2073–98. 

Cauda F, Costa T, Torta DM, Sacco K, D’Agata F, Duca S,et al. . Meta-analytic clustering of the 
insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active 
tasks. Neuroimage 2012a; 62: 343–55. 

Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the 
insula in the resting brain. Neuroimage 2011; 55: 8–23. 

Cauda F, Nani A, Costa T, Palermo S, Tatu K, Manuello J,et al. . The morphometric co-atrophy 
networking of schizophrenia, autistic and obsessive spectrum disorders. Hum Brain Mapp 2018; 39: 
1898–928.  

Cauda F, Torta DM, Sacco K, D’Agata F, Geda E, Duca S,et al. . Functional anatomy of cortical 
areas characterized by Von Economo neurons. Brain Struct Funct 2013; 218: 1–20. 

Cauda F, Torta DM, Sacco K, Geda E, D’Agata F, Costa T,et al. . Shared “core” areas between the 
pain and other task-related networks. PLoS One 2012b; 7: e41929.  

Chevalier-Larsen E, Holzbaur EL. Axonal transport and neurodegenerative disease. Biochim 
Biophys Acta 2006; 1762: 1094–108.  

Chhatwal JP, Schultz AP, Johnson KA, Hedden T, Jaimes S, Benzinger TLS,et al. . Preferential 
degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain 2018; 141: 
1486–500. 

Cioli C, Abdi H, Beaton D, Burnod Y, Mesmoudi S. Differences in human cortical gene expression 
match the temporal properties of large-scale functional networks. PLoS One 2014; 9: e115913. 

Clavaguera F, Grueninger F, Tolnay M. Intercellular transfer of tau aggregates and spreading of tau 
pathology: implications for therapeutic strategies. Neuropharmacology 2014; 76 (Pt A): 9–15. 

Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M. “Prion-like” templated misfolding 
in tauopathies. Brain Pathol 2013; 23: 342–9.  

Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K,et al. . Tau burden and the 
functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain 2018; 141: 
550–67. 



 155 

 Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P,et al. . The hubs of the human 
connectome are generally implicated in the anatomy of brain disorders. Brain 2014; 137 (Pt 8): 2382–
95. 

Crossley NA, Scott J, Ellison-Wright I, Mechelli A. Neuroimaging distinction between neurological 
and psychiatric disorders. Br J Psychiatry 2015; 207: 429–34.  

Douaud G, Groves AR, Tamnes CK, Westlye LT, Duff EP, Engvig A,et al. . A common brain 
network links development, aging, and vulnerability to disease. Proc Natl Acad Sci USA 2014; 111: 
17648–53.  

Du Y, Fryer SL, Fu Z, Lin D, Sui J, Chen J,et al. . Dynamic functional connectivity impairments in 
early schizophrenia and clinical high-risk for psychosis. Neuroimage 2017; 180 (Pt B): 632–45.  

Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis 
revisited. Neuroimage 2012; 59: 2349–61. 

Eickhoff SB, Laird AR, Fox PM, Lancaster JL, Fox PT. Implementation errors in the GingerALE 
software: description and recommendations. Hum Brain Mapp 2017; 38: 7–11. 

Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation 
likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on 
empirical estimates of spatial uncertainty. Hum Brain Mapp 2009; 30: 2907–26.  

Eickhoff SB, Nichols TE, Laird AR, Hoffstaedter F, Amunts K, Fox PT,et al. . Behavior, sensitivity, 
and power of activation likelihood estimation characterized by massive empirical simulation. 
Neuroimage 2016; 137: 70–85.  

Ellison-Wright I, Bullmore E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. 
Schizophr Res 2010; 117: 1–12. 

Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing 
in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007; 164: 1476–88. 

Evans AC. Networks of anatomical covariance. Neuroimage 2013; 80: 489–504. 

Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM,et al. . Distinct patterns 
of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 2009; 106: 
7209–14. 

Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci 2015; 
16: 159–72. 

Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M,et al. . BrainMap taxonomy of 
experimental design: description and evaluation. Hum Brain Mapp 2005; 25: 185–98. 

Fox PT, Lancaster JL. Opinion: mapping context and content: the brainmap model. Nat Rev Neurosci 
2002; 3: 319–21.  

French L, Pavlidis P. Relationships between gene expression and brain wiring in the adult rodent 
brain. PLoS Comput Biol 2011; 7: e1001049.  



 156 

French L, Tan PP, Pavlidis P. Large-scale analysis of gene expression and connectivity in the rodent 
brain: insights through data integration. Front Neuroinform 2011; 5: 12. 

Gejman PV, Sanders AR, Kendler KS. Genetics of schizophrenia: new findings and challenges. Annu 
Rev Genomics Hum Genet 2011; 12: 121–44.  

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL,et al. . The minimal 
preprocessing pipelines for the Human Connectome Project. Neuroimage 2013; 80: 105–24.  

Glerean E, Pan RK, Salmi J, Kujala R, Lahnakoski JM, Roine U,et al. . Reorganization of 
functionally connected brain subnetworks in high-functioning autism. Hum Brain Mapp 2016; 37: 
1066–79. 

Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in 
neurodegenerative diseases. Trends Neurosci 2010; 33: 317–25.  

Goel P, Kuceyeski A, LoCastro E, Raj A. Spatial patterns of genome-wide expression profiles reflect 
anatomic and fiber connectivity architecture of healthy human brain. Hum Brain Mapp 2014; 35: 
4204–18. 

Gong X, Lu W, Kendrick KM, Pu W, Wang C, Jin L,et al. . A brain-wide association study of DISC1 
genetic variants reveals a relationship with the structure and functional connectivity of the precuneus 
in schizophrenia. Hum Brain Mapp 2014; 35: 5414–30. 

Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB,et al. . Identification of 
a common neurobiological substrate for mental illness. JAMA Psychiatry 2015; 72: 305–15.  

Guest WC, Silverman JM, Pokrishevsky E, O’Neill MA, Grad LI, Cashman NR. Generalization of 
the prion hypothesis to other neurodegenerative diseases: an imperfect fit. J Toxicol Environ Health 
A 2011; 74: 1433–59.  

Gupta CN, Calhoun VD, Rachakonda S, Chen J, Patel V, Liu J,et al. . Patterns of gray matter 
abnormalities in schizophrenia based on an international mega-analysis. Schizophr Bull 2015; 41: 
1133–42.  

Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of 
major depressive disorder: a meta-analysis and new integration of base line activation and neural 
response data. Am J Psychiatry 2012; 169: 693–703.  

Hardy J, Revesz T. The spread of Neurodegenerative disease. N Engl J Med 2012; 366: 2126–8.  

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA,et al. . An anatomically 
comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489: 391–9.  

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R,et al. . Predicting human resting-
state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 2009; 106: 2035–
40.  

Huang H, Ding M. Linking functional connectivity and structural connectivity quantitatively: a 
comparison of methods. Brain Connect 2016; 6: 99–108. 

Iturria-Medina Y, Evans AC. On the central role of brain connectivity in neurodegenerative disease 
progression. Front Aging Neurosci 2015; 7: 90.  



 157 

Iturria-Medina Y, Sotero RC, Toussaint PJ, Evans AC. Epidemic spreading model to characterize 
misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Comput 
Biol 2014; 10: e1003956. 

Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. 
Neuron 2013; 77: 219–34.  

Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative 
disorders. Ann Neurol 2011; 70: 532–40.  

Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative 
diseases. Nature 2013; 501: 45–51.  

Kasparek T, Marecek R, Schwarz D, Prikryl R, Vanicek J, Mikl M,et al. . Source-based morphometry 
of gray matter volume in men with first-episode schizophrenia. Hum Brain Mapp 2010; 31: 300–10.  

Kondor RI, Lafferty J. Diffusion kernels on graphs and other discrete input spaces. In: Proceedings 
of the nineteenth international conference on machine learning (ICML). Morgan Kaufmann 
Publishers Inc.; 2002. p. 315–22.  

Korth C. Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. 
Prion 2012; 6: 134–41.  

Kraus A, Groveman BR, Caughey B. Prions and the potential transmissibility of protein misfolding 
diseases. Annu Rev Microbiol 2013; 67: 543–64.  

Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the nelder–mead simplex 
method in low dimensions. SIAM J. Optim 1998; 9: 112–47.   

Lahiri DK, Maloney B. The “LEARn” (Latent Early-life Associated Regulation) model integrates 
environmental risk factors and the developmental basis of Alzheimer’s disease, and proposes 
remedial steps. Exp Gerontol 2010; 45: 291–6. 

Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL,et al. . ALE meta-analysis: 
controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 2005a; 25: 
155–64.  

Laird AR, Lancaster JL, Fox PT. BrainMap: the social evolution of a human brain mapping database. 
Neuroinformatics 2005b; 3: 65–78.   

Lichtman JW, Sanes JR. Ome sweet ome: what can the genome tell us about the connectome?. Curr 
Opin Neurobiol 2008; 18: 346–53. 

Lin CH, Chen CM, Lu MK, Tsai CH, Chiou JC, Liao JR,et al. . VBM reveals brain volume 
differences between Parkinson’s disease and essential tremor patients. Front Hum Neurosci 2013; 7: 
247.  

Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res 
1967; 27: 209–20.   

Manuello J, Nani A, Premi E, Borroni B, Costa T, Tatu K,et al. . The pathoconnectivity profile of 
alzheimer’s disease: a morphometric coalteration network analysis. Front Neurol 2018; 8: 739.  



 158 

McTeague LM, Goodkind MS, Etkin A. Transdiagnostic impairment of cognitive control in mental 
illness. J Psychiatr Res 2016; 83: 37–46. 

Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J 
Neurosci 2005; 25: 8303–10. 

Menon V. Developmental pathways to functional brain networks: emerging principles. Trends Cogn 
Sci 2013; 17: 627–40.  

Misic B, Betzel RF, de Reus MA, van den Heuvel MP, Berman MG, McIntosh AR,et al. . Network-
level structure-function relationships in human neocortex. Cereb Cortex 2016; 26: 3285–96.  

Northoff G, Duncan NW. How do abnormalities in the brain’s spontaneous activity translate into 
symptoms in schizophrenia? From an overview of resting state activity findings to a proposed 
spatiotemporal psychopathology. Prog Neurobiol 2016; 145–6: 26–45.   

Nunnally JC, Bernstein IH. Psychometric theory. 3rd edn. New York: McGraw-Hill; 1994.  

Oxtoby NP, Garbarino S, Firth NC, Warren JD, Schott JM, Alexander DC. Data-driven sequence of 
changes to anatomical brain connectivity in sporadic Alzheimer’s disease. Front Neurol 2017; 8: 580.  

Pandya S, Mezias C, Raj A. Predictive model of spread of progressive supranuclear palsy using 
directional network diffusion. Front Neurol 2017; 8: 692. 

Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP. Anatomical correlates of the 
distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci 
USA 1985; 82: 4531–4. 

Premi E, Cauda F, Costa T, Diano M, Gazzina S, Gualeni V,et al. . Looking for neuroimaging 
markers in frontotemporal lobar degeneration clinical trials: a multi-voxel pattern analysis study in 
granulin disease. J Alzheimers Dis 2016; 51: 249–62. 

Premi E, Cauda F, Gasparotti R, Diano M, Archetti S, Padovani A,et al. . Multimodal FMRI resting-
state functional connectivity in granulin mutations: the case of fronto-parietal dementia PLoS One 
2014; 9: e106500. 

Quiroz YT, Schultz AP, Chen K, Protas HD, Brickhouse M, Fleisher AS,et al. . Brain imaging and 
blood biomarker abnormalities in children with autosomal dominant Alzheimer disease: a cross-
sectional study. JAMA Neurol 2015; 72: 912–19. 

Raj A, Kuceyeski A, Weiner M. A network diffusion model of disease progression in dementia. 
Neuron 2012; 73: 1204–15.  

Ravits J. Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp Neurol 
2014; 262 (Pt B): 121–6.  

Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T,et al. . Brain 
networks. correlated gene expression supports synchronous activity in brain networks. Science 2015; 
348: 1241–4. 

Robinson PA. Interrelating anatomical, effective, and functional brain connectivity using propagators 
and neural field theory. Phys Rev E Stat Nonlin Soft Matter Phys 2012; 85 (1 Pt 1): 011912.  



 159 

Rohrer JD, Nicholas JM, Cash DM, van Swieten J, Dopper E, Jiskoot L,et al. . Presymptomatic 
cognitive and neuroanatomical changes in genetic frontotemporal dementia in the genetic 
frontotemporal dementia initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 2015; 
14: 253–62. 

Saper CB, Wainer BH, German DC. Axonal and transneuronal transport in the transmission of 
neurological disease: potential role in system degenerations, including Alzheimer’s disease. 
Neuroscience 1987; 23: 389–98.  

Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor 
thresholds to degeneration. Neuron 2011; 71: 35–48.  

Scarpazza C, Tognin S, Frisciata S, Sartori G, Mechelli A. False positive rates in voxel-based 
morphometry studies of the human brain: should we be worried?. Neurosci Biobehav Rev 2015; 52: 
49–55.  

Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL,et al. . Early frontotemporal 
dementia targets neurons unique to apes and humans. Ann Neurol 2006; 60: 660–7. 

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target 
large-scale human brain networks. Neuron 2009; 62: 42–52. 

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H,et al. . Dissociable intrinsic 
connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 2349–56.  

Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G. Measuring 
brain connectivity: diffusion tensor imaging validates resting state temporal correlations. 
Neuroimage 2008; 43: 554–61. 

Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, 
threshold dependence and localisation in cluster inference. Neuroimage 2009; 44: 83–98. 

Soto C, Estrada LD. Protein misfolding and neurodegeneration. Arch Neurol 2008; 65: 184–9. 

Sprooten E, Rasgon A, Goodman M, Carlin A, Leibu E, Lee WH,et al. . Addressing reverse inference 
in psychiatric neuroimaging: meta-analyses of task-related brain activation in common mental 
disorders. Hum Brain Mapp 2017; 38: 1846–64.  

Stanley J. Educational measurement Washington, DC: American Council on Education; 1971. 

Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of 
conserved genetic modules. Science 2003; 302: 249–55. 

Tatu K, Costa T, Nani A, Diano M, Quarta DG, Duca S,et al. . How do morphological alterations 
caused by chronic pain distribute across the brain? A meta-analytic co-alteration study. Neuroimage 
2018; 18: 15–30.  

Toro R, Fox PT, Paus T. Functional coactivation map of the human brain. Cereb Cortex 2008; 18: 
2553–9. 

Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing within-experiment 
and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 2012; 
33: 1–13.  



 160 

van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state 
networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain 
Mapp 2009; 30: 3127–41.  

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K. The wu-minn human 
connectome project: an overview. Neuroimage 2013; 80: 62–79.  

Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R,et al. . The human 
connectome project: a data acquisition perspective. Neuroimage 2012; 62: 2222–31. 

Vanasse TJ, Fox PM, Barron DS, Robertson M, Eickhoff SB, Lancaster JL,et al. . BrainMap VBM: 
an environment for structural meta-analysis. Hum Brain Mapp 2018; 39: 3308–25.  

Voronoi G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J 
Reine Angew Math 1907: 97–178.   

Walker LC, Diamond MI, Duff KE, Hyman BT. Mechanisms of protein seeding in 
neurodegenerative diseases. JAMA Neurol 2013; 70: 304–10.  

Wang WY, Yu JT, Liu Y, Yin RH, Wang HF, Wang J,et al. . Voxel-based meta-analysis of grey 
matter changes in Alzheimer’s disease. Transl Neurodegener 2015; 4: 6. 

Wang Y, Chen K, Yao L, Jin Z, Guo X. Structural interactions within the default mode network 
identified by bayesian network analysis in Alzheimer’s disease. PLoS One 2013; 8: e74070.  

Warren JD, Rohrer JD, Schott JM, Fox NC, Hardy J, Rossor MN. Molecular nexopathies: a new 
paradigm of neurodegenerative disease. Trends Neurosci 2013; 36: 561–9.  

Weintraub S, Mesulam MM. From neuronal networks to dementia: four clinical profiles In: La 
Demence: Pourquoi? Paris: Foundation Nationale de Gerontologie; 1996.   

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the 
general linear model. Neuroimage 2014; 92: 381–97.  

Wolf L, Goldberg C, Manor N, Sharan R, Ruppin E. Gene expression in the rodent brain is associated 
with its regional connectivity. PLoS Comput Biol 2011; 7: e1002040.  

Yates D. Neurodegenerative networking. Nat Rev Neurosci 2012; 13: 288.  

Yeh FC, Badre D, Verstynen T. Connectometry: a statistical approach harnessing the analytical 
potential of the local connectome. Neuroimage 2016; 125: 162–71. 

Yeh FC, Tseng WY. NTU-90: a high angular resolution brain atlas constructed by q-space 
diffeomorphic reconstruction. Neuroimage 2011; 58: 91–9. 

Yeh FC, Verstynen TD, Wang Y, Fernandez-Miranda JC, Tseng WY. Deterministic diffusion fiber 
tracking improved by quantitative anisotropy. PLoS One 2013; 8: e80713. 

Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med Imaging 2010; 
29: 1626–35. 

Yuan B, Fang Y, Han Z, Song L, He Y, Bi Y. Brain hubs in lesion models: predicting functional 
network topology with lesion patterns in patients. Sci Rep 2017; 7: 17908. 



 161 

Zawia NH, Basha MR. Environmental risk factors and the developmental basis for Alzheimer’s 
disease. Rev Neurosci 2005; 16: 325–37. 

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat 
Appl Genet Mol Biol 2005; 4: Article 17.   

Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration 
from the healthy brain functional connectome. Neuron 2012; 73: 1216–27. 

Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD,et al. . Divergent 
network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s 
disease. Brain 2010; 133 (Pt 5): 1352–67. 

 

 

 

 

 

 

 
  



 162 

2.3 The Pathoconnectivity Network Analysis of the Insular Cortex: 

A Morphometric Fingerprinting 
This study was published in NeuroImage in 2020 
(doi.org/10.1016/j.neuroimage.2020.117481). 

Authors: Nani A., Manuello J., Mancuso L., Liloia D., Costa T., Vercelli A., Duca 
S., Cauda F. 

 

Abstract 
Brain disorders tend to impact on many different regions in a typical way: alterations 
do not spread randomly; rather, they seem to follow specific patterns of propagation 
that show a strong overlap between different pathologies. The insular cortex is one 
of the brain areas more involved in this phenomenon, as it seems to be altered by a 
wide range of brain diseases. On these grounds we thoroughly investigated the 
impact of brain disorders on the insular cortices analyzing the patterns of their 
structural co-alteration. We therefore investigated, applying a network analysis 
approach to meta-analytic data, 1) what pattern of grey matter alteration is 
associated with each of the insular cortex parcels; 2) whether or not this pattern 
correlates and overlaps with its functional meta-analytic connectivity; and, 3) the 
behavioral profile related to each insular co-alteration pattern. All the analyses were 
repeated considering two solutions: one with two clusters and another with three. 
Our study confirmed that the insular cortex is one of the most altered cerebral 
regions among the cortical areas, and exhibits a dense network of co-alteration 
including a prevalence of cortical rather than sub-cortical brain regions. Regions of 
the frontal lobe are the most involved, while occipital lobe is the less affected. 
Furthermore, the co-alteration and co-activation patterns greatly overlap each other. 
These findings provide significant evidence that alterations caused by brain 
disorders are likely to be distributed according to the logic of network architecture, 
in which brain hubs lie at the center of networks composed of co-altered areas. For 
the first time, we shed light on existing differences between insula sub-regions even 
in the pathoconnectivity domain. 

Introduction 
Connectomics is “a comprehensive structural description of the network of elements 
and connections forming the human brain” (Sporns et al., 2005). This approach has 
led to a picture of cerebral functioning in terms of networks and has emphasized the 
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great need for an overarching mapping of the whole structure of connections that 
shapes the human brain (the so-called connectome). 

Recent studies provide evidence that brain disorders cause rarely alterations on a 
single cerebral site; rather, they tend to impact on many different regions. Moreover, 
converging findings suggest that pathological alterations of neuronal assemblies do 
not occur randomly but follow specific patterns of propagation based on anatomical 
and functional pathways (Cauda et al., 2017; Cauda et al., 2018b; Crossley et al., 
2014; Fornito et al., 2015; Manuello et al., 2018b; McTeague et al., 2016; Menon, 
2013). 

A certain set of co-altered brain areas, which can subserve several cognitive 
processes, has been suggested to overlap in different diseases (Crossley et al., 2014). 
With regard to mental illness, for instance, it has been proposed that abnormalities 
in a certain set of brain areas might be frequently associated with a wide spectrum 
of psychiatric conditions (Crossley et al., 2016b; Goodkind et al., 2015). Another 
recent meta-analysis provides further evidence for overlapping patterns of brain 
alterations in certain neuropsychiatric disorders – i.e., autism spectrum disorder, 
schizophrenia, and obsessive spectrum disorder (Cauda et al., 2017; Cauda et al., 
2012b). 

These findings may be counterintuitive, as we are inclined to think that each brain 
disorder should exhibit a specific pattern of brain alterations, related to both its 
pathogenesis and development. Indeed, intriguing results from animal models 
indicate that degenerative pathologies principally impact on the network hubs that 
are more vulnerable to disruption by virtue of their extensive connections and 
activity (Crossley et al., 2014; Raj et al., 2012; Seeley et al., 2009). As a result, a 
small set of brain regions may be more likely to be frequently affected by a large 
number of brain disorders (Cauda et al., 2019; Ellison-Wright and Bullmore, 2010; 
Goodkind et al., 2015; Liloia et al., 2018; Menon, 2013; Saxena and Caroni, 2011). 

The propagation of neuronal alterations within brain areas might form recognizable 
networks that depend on the structure of brain connectivity (Cauda et al., 2018b; 
Manuello et al., 2018b; Raj et al., 2012; Tatu et al., 2018; Yates, 2012; Zhou et al., 
2012). This aspect is so important that it could generate a new perspective as to how 
clinicians are used to consider brain disorders (Buckholtz and Meyer-Lindenberg, 
2012; Caspi et al., 2014; Cole et al., 2014). Finding out what kind of patterns are 
associated to the alteration of different brain sites is the first fundamental step in 
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order to reach a comprehensive understanding of how brain disorders impact on the 
connectome. 

The co-alteration network analysis, which can be considered as a fascinating new 
subfield of pathoconnectomics, can be defined as the description of networks formed 
by co-altered brain areas. This type of analysis can describe the undirected (non-
causal) propagation patterns of alterations produced by brain disorders. If certain 
brain areas – typically those playing a functional central role (brain hubs) – are 
thought to be frequently affected in brain deterioration (Cole et al., 2014; Crossley 
et al., 2016a; Crossley et al., 2014), then it can also be hypothesized that each hub 
may form typical connecting patterns with other altered cerebral areas.  

In principle, the method we are proposing could be equally applied to the study of 
any brain region, whether a hub or not. However, several elements made us identify 
the insular cortex as a particularly suitable candidate. Among the brain hubs, the 
insula has vast and extensive connections to many regions of the cortex and limbic 
system (Cauda et al., 2011; Cauda et al., 2013; Cauda and Vercelli, 2013; Chang et 
al., 2013; Kelly et al., 2012; Stephani et al., 2011; Uddin, 2015; Vercelli et al., 2016). 
The insular cortex has been associated with a variety of important functions, ranging 
from pain perception and speech production to social emotions (Cauda et al., 
2012b), including the conscious monitoring of the body’s condition via the 
integration of different unconscious stimuli (both external and internal) with 
emotional processes, as well as the conscious detection of error (Cauda et al., 2012a; 
Cauda et al., 2011; Klein et al., 2013; Nieuwenhuys, 2012; Vercelli et al., 2016; 
Wylie and Tregellas, 2010). The integration of external sensory stimuli with inputs 
coming from the limbic system has led to suggest that the insula may play a 
fundamental role in the generation and maintenance of a state of awareness related 
to the body’s condition (Cauda et al., 2011; Manuello et al., 2018a). These relevant 
roles put the insula at the interface between the inner and the external worlds, thus 
making it a pivotal center within the brain functional architecture (Ahmed et al., 
2016; Douaud et al., 2014; Fjell et al., 2015; Jagust, 2013; Jones et al., 2016; Klein 
et al., 2013; Voytek and Knight, 2015). 

It has been shown by several researches that the insula is among the most 
anatomically and functionally altered regions of the brain across psychiatric and 
neurological disorders (Crossley et al., 2014; Crossley et al., 2015; Goodkind et al., 
2015; McTeague et al., 2016; McTeague et al., 2017; Namkung et al., 2017; 
Sprooten et al., 2017). Critically, previous work from our group has highlighted that 
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the insula is not only one of the areas that are more affected across the literature, but 
also one of those involved by the majority of brain disorders (Cauda et al., 2019; 
Liloia et al., 2018). This suggests that the insular cortex may have as yet an unknown 
role in the development of alterations caused by brain disorders. Moreover, this 
heterogeneity with respect of disease affection, made the insula the perfect focus for 
a transdiagnostic approach, allowing in principle to account for different 
pathological processes behind the development of the co-alteration network. As a 
further element, and coherently with all this, as pointed out by Behrens and 
colleagues in 2013, the insula is among the most often investigated brain regions. 
Based on this, and considering the equal suitability of any brain region to our 
approach, we therefore decided to direct our attention to a structure of potential 
interest for a wide part of neuroscience researchers. Finally, given the importance 
of the insula as a brain hub, we thought it to be ideal in order to also test the 
hypothesis that, when a crucial brain hub is affected by pathology, the associated 
co-alteration network may largely reflect its functional connectivity.  

It is well known that the insular cortex exhibits a marked heterogeneity both in 
functional and cytoarchitectonical aspects (Cauda et al., 2012a; Cauda et al., 2011). 
For this reason, this brain area can be better described adopting some kind of 
parcellation. However, no consensus has been reached on the number of parcels to 
be used (Cauda and Vercelli, 2013), nor on the modalities better capturing 
differences between sub-regions. We decided to follow the solution proposed by 
Kelly et al. (2012), based on multi-modal convergence criterion and non-
hierarchical clustering. Among the various dimensionality options (i.e., from 2 to 15 
clusters), we selected those showing the best cross-model agreement for both the 
hemispheres (i.e., 2, 3 and 9 clusters), as highlighted by Cauda and Vercelli (2013). 
Since a number of clusters over 3 was not sufficient to guarantee reliable amount of 
data for statistical results (for an explanation of this aspect see (Cauda et al., 2018a), 
we focused on the bipartite (labeled as K2 throughout the text) and tripartite (labeled 
as K3 throughout the text) solutions (Fig. S2). The bipartite option follows the 
anterior-posterior distinction (Cauda et al., 2011; Cauda and Vercelli, 2013; Tian 
and Zalesky, 2018). Following the behavioral domain analysis described in the 
original work by Kelly et al. (2012), the anterior parcel is associated with language 
and memory functions, while the posterior one is associated with action execution, 
somesthesis and sexuality. The tripartite option consists, coherently between 
hemispheres, of an anterior dorsal parcel, a middle parcel covering both ventral and 
dorsal insula, and a dorsal posterior parcel. According to literature, the dorsal 
portion of the anterior insula is mainly involved in salience evaluation (Menon and 
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Uddin, 2010; Xue et al., 2018), while the dorsal posterior region is classically 
described as the seat of interoceptive representation (Craig, 2003). The ventral 
insula is described as associated with emotion and empathy processing, especially 
in its anterior part, while the central insula is mainly involved in interoception and 
somatosensation (Kurth et al., 2010). The related regions of interest (ROIs) where 
available on http://fcon_1000.projects.nitrc.org. 

The aim of this study was to investigate: 1) what pattern of neuronal alterations’ 
distribution is associated with different portions of the insula; 2) whether or not the 
insula meta-analytic co-activation patterns can provide meaningful elements to 
interpret the co-alteration patterns; and 3) the behavioral profile associated with the 
areas of the insular co-alteration patterns. To do so, we used the voxel-based 
morphometry (VBM) data of the BrainMap database.  

Studies of brain morphometry with the help of the VBM technique have been 
performed by many researchers as structural magnetic resonance imaging-based 
measures of decreased values are considered as valid markers of atrophy which can 
describe disease state and development (Frisoni et al., 2010). Furthermore, the VBM 
approach is such that it is not biased to one specific brain structure but gives a 
comprehensive evaluation of anatomical differences throughout the brain 
(Ashburner and Friston, 2001). A number of studies show that gray matter 
abnormalities are associated with many psychiatric diseases. For instance, cortical 
thickness has been found to be variously reduced in patients with major depressive 
disorder and bipolar disorder (Niu et al., 2017), schizophrenia (Kuperberg et al., 
2003; van Haren et al., 2011), borderline personality disorder (Soloff et al., 2008), 
autism spectrum disorder (Pereira et al., 2018), obsessive-compulsive spectrum 
disorder (van den Heuvel et al., 2008), and neurodegenerative diseases such as 
Alzheimer’s (Manuello et al., 2018; Matsuda, 2013), frontotemporal dementia 
(Muñoz-Ruiz et al., 2012), Parkinson’s disease (Lee et al., 2018), dementia with 
Lewy bodies (Burton et al., 2002), Huntington’s disease (Mühlau et al., 2009). As 
VBM can be applied regardless of the type of neuropathological condition in a 
transdiagnostic approach (Cauda et al., 2019; McTeague et al., 2016), we decided 
to use the data obtained from all brain disorders that were present in the BrainMap 
VBM database, with the aim to achieve the most overarching analysis of how 
pathological processes affect the insular cortex. 
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Materials and methods 
Selection	of	studies	
We conducted an extensive meta-analytic search using the software Sleuth to query 
the VBM database of BrainMap (Fox et al., 2005; Fox and Lancaster, 2002; Laird 
et al., 2005b). BrainMap is one of the largest international repositories of 
neuroimaging data (Vanasse et al., 2018). It comprises a database of thousands of 
brain imaging studies (functional and structural MRI data), from which data on 
regional effects can be retrieved (in our case, regions of altered gray matter density, 
volume or concentration). Data are reported in MNI/Talairach coordinates and are 
ideal to conduct meta-analyses from a large subject pool, by making meta-analytic 
morphologic queries. At the moment of the search (February 2018), the BrainMap 
VBM database contained 994 articles, for a total of 3151 experiments, 75727 
subjects, and 21827 locations. 

In order to assess the impact of brain disorders on the insular cortex, we performed 
a first search capable of retrieving all the VBM studies that matched the following 
query: 

 

Search 1: 

 

[Experiments Contrast is Gray Matter] AND [Experiment Context is Disease 
Effects] AND [Observed Changes is Controls>Patients] AND [Locations TD Label 
is Gyrus Insula]. 

 

(see section 1 of Supplementary methods for details of the literature search process). 
We decided to focus on decreased values only. From a theoretical point of view, 
there is general agreement in the neuroscientific literature that decreased values can 
be seen as density reduction or atrophy of GM. 

Additionally, we performed a second search using the following criteria: 

 

Search 2: 
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[Experiments Contrast is Gray Matter] AND [Experiment Context is Disease 
Effects] AND [Observed Changes is Controls>Patients] AND [Locations MNI 
image is *] 

 

where the MNI images represent each of the parcels selected from the work of Kelly 
et al. (2012). The two searches were designed to retrieve foci of alteration from both 
the hemispheres, although every extracted experiment could report an effect either 
in both hemispheres or in only one of the two. Search 2 was repeated twice to 
retrieve the data related to the K=2 segmentation (i.e. K2_ant and K2_post) and 3 
times for what concerns the K=3 segmentation (i.e. K3_ant, K3_mid, K3_post) (See 
section 3 in the Supplementary methods for details of the alteration density 
analysis). 

Anatomical	likelihood	estimation	on	co-alteration	and	co-activation	data	
The VBM data retrieved were statistically elaborated with the method of the 
anatomical likelihood estimation (ALE) (Eickhoff et al., 2012; Eickhoff et al., 2009; 
Turkeltaub et al., 2012), so as to obtain modeled anatomical effect maps 
representing the overall distribution of gray matter co-alterations with the insula. 
ALE is a quantitative method that can be used for estimating consistent 
morphological alterations across several neuroimaging studies (Laird et al., 2005a; 
Laird et al., 2009; Turkeltaub et al., 2002) (See section 4 of the Supplementary 
methods and Fig.S3 for the estimation of possible selection bias). 

ALE maps showed the brain areas in which multiple studies reported statistically 
significant alteration peaks (i.e., foci of interest) Since we analyzed locations with 
morphologic alterations, ALE maps revealed the brain regions that were likely to be 
altered together (Cauda et al., 2018a; Manuello et al., 2018b; Tatu et al., 2018).The 
ALE map derived from the analysis of the whole insula (obtained through Search 1) 
was thresholded at a voxel-level (FWE p < 0.05) (Eickhoff et al., 2017; Eickhoff et 
al., 2016), while the maps related to Search 2 were thresholded at a cluster-level 
(FWE p < 0.01).  

In order to provide a further element to improve the interpretation of the co-
alteration networks, we finally performed an ALE analysis on data derived from the 
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BrainMap functional repository in order to construct the meta-analytic co-activation 
pattern of each of the five bilateral parcels of the insula (Robinson et al., 2010).  A 
third search was performed based on the following criteria: 

 

Search 3: 

 

[Experiments Context is Normal Mapping] AND [Experiment Activation is 
Activations Only] AND [Locations MNI image is *] 

 

where the MNI images represent each of the bilateral parcels selected from the work 
of Kelly et al. (2012), as it was in Search 2. Search 3 was thus repeated 5 times. 

According to ALE literature, brain areas exhibiting common activation patterns are 
considered to be connected.  

Comparison	between	co-alteration	and	co-activation	patterns	
In order to inspect the similarities and divergences between the couples of co-
alteration and co-activation patterns originating from a same bilateral parcel (i.e. 
results of Search 2 and Search 3), the following analyses were performed. First, we 
ran Pearson’s correlation between each couple of maps. Second, we computed the 
extension of the co-alteration map being in overlap with the corresponding co-
activation map. In this second analysis the insula was excluded from the maps. 

Analysis	of	behavioral	profile	
To associate specific psychological functions with the areas forming the co-
alteration patterns related to the five bilateral parcels, we performed on the VBM 
ALE maps only (data from Search 2) an analysis of behavioral profile using the 
behavioral analysis plug-in for the software Mango (Lancaster et al., 2012). This 
tool is based on the BrainMap functional database and provides a quantitative 
association between a user defined ROI (i.e., each of the ALE maps) and 51 
behavioral sub-domains, organized in 5 classes: action, cognition, emotion, 
interoception, and perception. In accordance with Lancaster et al. (2012), only sub-
domains with a z-score ≥ 3 were maintained. An average value was obtained for 
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each of the 5 classes, by computing the mean of the related sub-domains with above 
threshold z-score. 

Construction	of	the	morphometric	co-alteration	networks	
In order to describe in detail the statistical relationship between the insula and the 
co-altered regions, we constructed the anatomical co-alteration networks of the 
bilateral insulae, applying a methodology recently developed by our group to the 
data obtained through Search 1. This kind of analysis can determine whether or not 
the alteration of the insula is statistically related to the alteration of other brain areas. 
In the output produced, nodes represent altered regions, whereas edges link couples 
of nodes which are more likely to be altered together rather than one independently 
from the other. This particular dependency was computed using the Patels’ κ  index 
(Patel et al., 2006) (for a more detailed description of this approach, see Cauda et al. 
(2018a) and Manuello et al. (2018b)). From this complete whole brain network we 
extracted one sub-network for each of the selected Kelly’s unilateral parcels (a total 
of 4 sub-networks for the K2 solution, and 6 sub-networks for the K3 solution). This 
was achieved with a three-steps procedure. First, the nodes anatomically located 
inside the given parcel of interest were identified and considered as roots. Second, 
only the first neighbors of the root nodes (i.e., nodes directly linked with at least one 
node located in the parcel) were preserved. Third, all the edges between non-roots 
nodes were eliminated (See Figure 1 for a graphic summary of this procedure, as 
well as of the other analyses performed). For each of the obtained sub-networks, we 
calculated the total number of nodes and edges. In order to describe the spatial 
pattern of co-alteration of each parcel at macro-level, we distinguished the location 
of the non-root nodes in 7 groups: frontal lobe, parietal lobe, temporal lobe, occipital 
lobe, midbrain, subcortical areas and insula. Of note, non-root nodes located in the 
insulae were counted separately from the other lobes, in order to highlight the co-
alteration between them. The repartition of the nodes was based on the Talairach 
Client tool (Lancaster et al., 2000) and refined by two expert researchers. To 
estimate the strength of co-alteration of each insula parcel with every lobe, for every 
sub-network the values of the edges connecting the root nodes with the nodes in a 
same lobe were summed, and then divided for the summed values of all the edges 
of the sub-network. Values were then expressed as percentages. We interpreted this 
measure as the strength of the co-alteration of each insula parcel with each lobe. 
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Data	and	code	availability	
Both VBM and functional meta-analytic data are freely available as part of the 
BrainMap database. 

Kelly’s insula ROIs can be freely downloaded from 
http://fcon_1000.projects.nitrc.org. 

Figure 2: A graphic summary of the analyses performed. Top row: from 
Search 1 on VBM data, the co-alteration pattern was obtained. 
Based on this, we generated the whole brain co-alteration 
network, that was then broken up into one unilateral sub-
network for each unilateral insula parcel (networks shown in 
this figure were built for visualization purpose only). Middle 
row: from Search 2 on VBM data we obtained five bilateral co-
alteration patterns, one for each insula sub-parcel. On each co-
alteration pattern the behavioral analysis was performed. 
Bottom row: from Search 3 on functional data we obtained five 
bilateral co-activation patterns, one for each insula sub-parcel. 
The corresponding co-alteration and co-activation patterns 
where then compared. 
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No specific tools where developed to perform the analyses described.  

Results 
Results	from	the	queries	
Our first search retrieved a total of 207 papers, 277 experiments, 4213 foci, for a 
total of 14916 subjects (7218 pathological subjects) (see also Figure S1 and Table 
S1). This means that the 8.8% of VBM experiments included in the BrainMap 
database report a decrease effect in the insula. Only five brain regions obtained a 
slightly higher value (see section 2 in the Supplementary methods and Tab S4 for a 
comparison with the rest of the brain). Experiments were distributed across 23 
disorders, the most represented being schizophrenia (with 48 experiments). 51 
experiments were classified as “Other” since they investigated more than one brain 
disorder, or because less than 3 experiments retrieved in the data set investigated 
that same neuropathology (see Tab. S2 for the complete breakdown, and section 5 
of the Supplementary methods for the analysis of potential representation bias across 
disorders). Based on the spatial distribution of the foci, the alteration density of the 
insula was found to be almost three times greater than the rest of the brain. 

The	insula	co-alteration	pattern	
K2 solution 

Anterior bilateral cluster 
The related search retrieved 122 experiments and 2080 foci. Along with the insula, 
alterations affect preferentially the superior and inferior frontal gyri, anterior 
cingulate gyrus, superior temporal gyrus, caudate, thalamus, and claustrum (Fig. 2). 
 
Posterior bilateral cluster 
The related search retrieved 80 experiments and 1330 foci. Along with the insula, 
alterations affect mainly the precentral and postcentral gyri, inferior frontal gyrus, 
anterior cingulate gyrus, left hippocampus, caudate, and thalamus (Fig. 2). 
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K3 solution 

Anterior bilateral cluster 
The related search retrieved 76 experiments and 1433 foci. Along with the insula, 
alterations are mainly located in the medial frontal gyrus, middle frontal gyrus, 
anterior cingulate gyrus, right precuneus, left hippocampus, claustrum, amygdala, 
thalamus, and caudate (Fig. 3). 

Middle bilateral cluster 
The related search retrieved 87 experiments and 1317 foci. Along with the insula, 
alteration are mainly located in the left middle and inferior frontal gyri, right 
hippocampus, right claustrum, left amygdala, thalamus, and caudate (Fig. 3). 

Posterior bilateral cluster 
The related search retrieved 40 experiments and 664 foci. Along with the insula, 
alterations are mainly located in the left inferior frontal gyrus, right middle frontal 
gyrus, left anterior cingulate cortex, thalamus, and caudate (Fig. 3). 

 

  

Figure 2: The co-alteration patterns of the anterior (red) and posterior 
(blue) bilateral parcels of the K2 solution. The color scale 
represents ALE values. 
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Comparison	between	co-alteration	and	co-activation	patterns	of	the	insula	
K2 solution 

The degree of correlation between the co-alteration and the co-activation patterns of 
the anterior bilateral parcel of the insula was r = 0.56. The 54% of the co-alteration 
map was in overlap with the corresponding co-activation map. In the posterior 
bilateral cluster, the correlation between the 2 conditions was r = 0.61, and the 57% 
of the co-alteration map was in overlap with the corresponding co-activation map 
(Fig. 4 and Fig. S4) (See Tab.S3 for details of the fMRI paradigms included in the 
functional data behind the co-activation patterns). 

K3 solution 

The degree of correlation between the co-alteration and the co-activation patterns of 
the anterior bilateral parcel of the insula was r = 0.53. The 52% of the co-alteration 
map was in overlap with the corresponding co-activation map. In the middle 
bilateral cluster, the correlation between the 2 conditions was r = 0.62, and the 60% 
of the co-alteration map was in overlap with the corresponding co-activation map. 

Figure 3: The co-alteration patterns of the anterior (red), mid (green), 
and posterior (blue) bilateral parcels of the K3 solution. The 
color scale represents ALE values. 



 175 

Finally, the degree of correlation between the co-alteration and the co-activation 
patterns of the posterior bilateral parcel of the insula was r = 0.56. The 60% of the 
co-alteration map was in overlap with the corresponding co-activation map.  (Fig. 4 
and Fig. S4) (See Tab.S3 for details of the fMRI paradigms included in the 
functional data behind the co-activation patterns). 

 

	
Analysis	of	behavioral	profile		
K2 solution 

The behavioral profile of the co-alteration pattern related to the anterior parcel had 
peak score for “Emotion (z=7.1), “Interoception” (z=7) and “Perception” (z=7). In 
turn, the co-alteration pattern related to the posterior parcel had peak score for 
“Emotion” (z=8) (Fig. 5). 

K3 solution 

Figure 4: Comparison between the co-alteration (red) and co-activation (light 
blue) patterns for each bilateral parcel (both K2 and K3 solutions). 
The overlap between the two condition is in magenta, while the insula 
is in yellow. 
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The behavioral profile of the co-alteration pattern related to the anterior parcel had 
peak score for “Cognition” (z=6.5) and “Emotion” (z=6.4). Scores of the co-
alteration pattern related to the middle parcel had the highest peak for “Emotion” 
(z=6.2). Lastly, the behavioral decoding of the co-alteration pattern related to the 
posterior parcel had the peak score for “Emotion” (z=7.7) (Fig. 5). 

 

 
	

The	insula	co-alteration	network	
The complete bilateral network counts 14 nodes in the right insula and 6 in the left 
insula. Of note, none of the nodes is localized in the middle parcel of left insula 
when using the tripartite subdivision (i.e. K3 solution). Therefore, it was not possible 

Figure 5: Results of the behavioral analysis computed on the co-alteration 
bilateral patterns for both the K2 (top), and the K3 (bottom) solutions. 
Blue = anterior; orange = posterior; green = middle. 
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to create the co-alteration network for the middle parcel of the left insula 
(K3_mid_L). Coherently, the co-alteration networks for the anterior and posterior 
parcel of the left insula in the bipartite subdivision (K2_ant_L and K2_post_L) are 
identical to the co-alteration networks for the anterior and posterior parcel of the left 
insula in the tripartite subdivision (K3_ant_L and K3_post_L) respectively. When 
moving from the bipartite partition to the tripartite one, all but one of the nodes 
becoming part of the right middle partition where previously in the posterior one 
(for the Talairach coordinates of the nodes as well as their membership to Kelly’s 
parcels, please see Table 1). Details of the number of nodes and edges in each sub-
network are provided in Table 2, while the distribution of the nodes across lobes is 
described in figures 6 and 7. 
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Node 
(Name) 

TAL coordinates Kelly’s parcels 
x y z K=2 K=3 

Insula_R 28 12 -20 K2_ant_R K3_mid_R 
Insula_R_1 40 2 -14 K2_ant_R K3_mid_R 
Insula_R_2 42 -6 -10 K2_ant_R K3_mid_R 
Insula_R_3 40 0 -10 K2_ant_R K3_mid_R 
Insula_R_4 48 14 -6 K2_ant_R K3_ant_R 
Insula_R_5 44 4 -4 K2_ant_R K3_mid_R 
Insula_R_6 44 14 -4 K2_ant_R K3_ant_R 
Insula_R_7 38 22 -2 K2_ant_R K3_ant_R 
Insula_R_8 38 12 2 K2_ant_R K3_ant_R 
Insula_R_9 40 14 2 K2_ant_R K3_ant_R 
Insula_R_10 42 14 2 K2_ant_R K3_ant_R 
Insula_R_11 44 -8 4 K2_post_R K3_post_R 
Insula_R_12 34 -24 10 K2_post_R K3_post_R 
Insula_R_13 42 -24 -2 K2_post_R K3_mid_R 
Insula_L -36 16 -12 K2_ant_L K3_ant_L 
Insula_L_1 -34 16 -12 K2_ant_L K3_ant_L 
Insula_L_2 -46 -14 -10 K2_post_L K3_post_L 
Insula_L_3 -42 -14 -10 K2_post_L K3_post_L 
Insula_L_4 -32 -12 -10 K2_post_L K3_post_L 
Insula_L_5 -50 4 -4 K2_post_L K3_post_L 

 

 

 

 

 

Table 1: Talairach coordinates of the nodes and their membership to Kelly's 
parcels for both K2 and K3 solutions. 
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		 Sub-network	 n	of	root	nodes	 n	of	nodes	 n	of	edges	

K2	solution	

left	anterior	 2	 268	 449	
left	posterior	 4	 259	 871	
right	anterior	 11	 312	 2084	
right	posterior	 3	 218	 437	

K3	solution	
right	anterior	 6	 235	 1041	
right	middle	 6	 312	 1184	
right	posterior	 2	 177	 296	

 

 

 

 

Table 2: Details of the number of nodes and edges composing the co-alteration 
network of each insula parcel. 

Figure 6: Distribution of the edges’ values for each lobe/group, for the K2 
solution. Only lobes/groups accounting at least for the 2% of the total 
Patel's κ were visualized. Blue = frontal lobe, green = insula (non-
root), red = midbrain, yellow = occipital lobe, purple = parietal lobe, 
pink = subcortical regions, brown = temporal lobe. 
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Discussion 
The	insula	co-alteration	pattern	
Our analysis confirms what previously evidenced in Cauda et al. (2020; 2019; 
2014): the insular cortex is frequently and differently altered by a wide variety of 
brain disorders (Alcauter et al., 2015; Fathy et al., 2019; Igata et al., 2017; Seok and 
Cheong, 2020; Torres et al., 2016; Wang et al., 2019). Interestingly, the insula, 
together with some subcortical nuclei, appears to be one of the most altered areas of 
the brain (Cauda et al., 2019), as confirmed by the high fraction of BrainMap 
experiments reporting at least one focus of alteration in this brain region. 
Coherently, we found the insula to exhibit a density of alteration that is 
approximately three times the alteration of the whole brain. Moreover, the range of 
diseases that produce alterations in the insular cortex is highly diversified, including 
neurological and psychiatric conditions. 

Each of the obtained co-alterations patterns of the insula comprises cortical and 
subcortical areas. In particular, frontal areas (especially the inferior frontal gyrus) 

Figure 7: Distribution of the edges’ values for each lobe/group, for the K3 
solution. Only lobes/groups accounting at least for the 2% of the total 
Patel's κ were visualized. Blue = frontal lobe, green = insula (non-
root), red = midbrain, yellow = occipital lobe, purple = parietal lobe, 
pink = subcortical regions, brown = temporal lobe. 
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and subcortical regions (such as the thalamus and the caudate) are present in co-
alteration patterns based on either bipartite or tripartite parceling. On the contrary, 
the amygdala and parietal sites show to be co-altered with the insula only in patterns 
based on the tripartite parceling, which might indicate more specificity compared 
with the bipartite parceling. 

Overall, the results reflect the extensive anatomical connections of the insula with 
many brain sites (Cauda et al., 2012a; Cauda et al., 2011; Dosenbach et al., 2007; 
Mesulam and Mufson, 1982; Taylor et al., 2009; van den Heuvel et al., 2009). Parts 
of these pathways are long-range projections, as the insula has been found to be rich 
of Von Economo’s neurons (VENs), large spindle-shaped cells that appear to be 
involved in processes capable of monitoring the state of the body, such as 
interoception and proprioception (Allman et al., 2005; Cauda et al., 2014; Cauda et 
al., 2013; Medford and Critchley, 2010; Seeley et al., 2007). In particular, the 
anterior cingulate cortex (ACC) appears to be frequently co-altered with the insula. 
It is well known that these two areas are central parts of the salience network (SN), 
a disruption of which could account for the symptoms of impairment of salience 
detection and self-monitoring that can be found transdiagnostically in a variety of 
neurological and psychiatric syndromes. 

Analysis	of	edges	distribution	
It is interesting to observe that the edges connect the insula with regions tending to 
be not below the z coordinate of the insula node itself, with no co-alteration with the 
cerebellum and only few with the midbrain and subcortical regions. This observation 
suggests that the insula is co-altered by pathology only together with higher-order 
structures, especially with cortical areas. As the insula is associated with functions 
that integrate lower- and higher-order cognitive areas, evaluating sensory and limbic 
stimuli, monitoring the body and the environment to carry out error detection 
processes (Ahmed et al., 2016; Cauda et al., 2012a; Cauda et al., 2011; Cauda et al., 
2012b; Douaud et al., 2014; Fjell et al., 2015; Jagust, 2013; Jones et al., 2016; Klein 
et al., 2013; Manuello et al., 2016; Nieuwenhuys, 2012; Vercelli et al., 2016; Voytek 
and Knight, 2015; Wylie and Tregellas, 2010), it should appear surprising that it is 
not greatly co-altered with limbic and subcortical regions. As the co-activation map 
shows that the insula can be functionally connected with many extracortical 
structures, for instance, the cerebellum (Figs. 4 and S4), the co-alteration patterns of 
each insular parcel seem to suggest that the insula has a bottom-up pathoconnectivity 
profile, in which it appears to be co-altered mostly with those cortical areas with 
which it is functionally connected so as to exert a bottom-up influence (e.g. error or 
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salience detection), rather than with those lower-order regions whose information is 
thought to be subjected by an insular integration. 

Each cluster is widely connected with all the cortices, but their co-alteration edges 
are not equally distributed between the lobes (Figs. 6 and 7). The most strongly co-
altered lobe with each insular cluster is the frontal one, confirming that the insula 
tends to be altered together with higher-order and philogenetically recent areas. This 
might also be due to the anatomical proximity between the frontal cortices and the 
insula. In turn, the occipital lobe, which is far away from the insula and has chiefly 
a sensory nature, is one of the less co-altered areas with the insula. 

The lobar distribution of the edges is also different between clusters. For instance, 
the left posterior cluster is the one which is the most co-altered with the frontal lobe. 
Also in the right insula, the posterior cluster for the bipartite solution (K2_R_post) 
is slightly more strongly co-altered than the anterior (K2_R_ant), and the posterior 
cluster for the tripartite solution (K3_R_ant), even if it has overall less edges than 
other cluster, exhibits a 40% of the strength of its co-alteration directed to the frontal 
cortices. Surprisingly, posterior clusters are less associated to the occipital lobe than 
the anterior ones. These findings are unexpected, as Kelly and colleagues (2012) 
have found that the posterior clusters are preeminently associated with motor and 
perceptual functions, while the anterior ones are more related to cognition. It should 
be observed, however, that all the insular clusters have been associated to some 
extent with cognition, both in our analysis and in that by Kelly and colleagues 
(2012). Still, our results point out that the co-alteration network of the posterior 
insula might be more associated with cortices characterized by higher-order 
functions. 

Another interesting observation is that the right insula presents much more nodes 
and edges of co-alterations than the left one. This suggests that the right insula may 
be more susceptible than the left one to pathology. Finally, the distributions of the 
strength of co-alteration of each cluster for every lobe are clearly heavy-tailed (Figs. 
6 and 7), with few edges characterized by high κ values and many weak edges with 
low κ values. 

Relationship	between	co-alteration	and	co-activation	with	the	insula	
With the exception of the subcortical structures (such as the cerebellum) that are co-
activated but not co-altered with the insula, overall the insula co-alteration patterns 
correlate well with the corresponding co-activation ones, with the former widely 
being in overlap with the latter. This finding provides evidence that the brain areas 
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that are altered along with the insula are not randomly affected; rather, they tend to 
be altered in terms of their functional connectivity. This is also a significant result 
that confirms the strict relationship between anatomical and functional connectivity 
profiles (Abdelnour et al., 2014) and accords well with the line of research 
suggesting that brain connectivity might play a role in the development and 
distribution of neuronal alterations (Cauda et al., 2018b; Iturria-Medina and Evans, 
2015; Raj et al., 2012; Zhou et al., 2012). In particular, distinct structural and 
functional connectivity patterns have been associated with the spatial distribution of 
brain disorders, for instance in amyotrophic lateral sclerosis, Alzheimer’s disease 
and the behavioral variant of frontotemporal dementia (Buckner et al., 2009; Du et 
al., 2007; Ravits, 2014; Zhou et al., 2010). A relationship between dementia and 
intrinsic connectivity network has been strongly put forward (Seeley et al., 2009), 
and functional abnormal patterns related to deficits of semantic memory have been 
found in the default mode network (DMN) of patients with mild cognitive 
impairment (Gardini et al., 2015). 

All these findings support the conjecture that large functional networks involved in 
synchronous neural activity may be selectively more vulnerable and, thereby, may 
enhance the development of alterations more quickly than region-specific functional 
systems. In addition, abnormalities in functional connectivity hubs and pathways 
might couple to neurophysiological, metabolic, and genetic aspects of brain cell 
biology to increase the impact and the distribution of the alteration process (Iturria-
Medina and Evans, 2015; Saxena and Caroni, 2011). Both anatomical and functional 
connectivity seem therefore to be correlated not only in the normal and healthy brain 
(Cauda et al., 2011; Honey et al., 2009) but also in the brain that is pathologically 
affected (Crossley et al., 2016b; Gardini et al., 2015; Iturria-Medina and Evans, 
2015; Iturria-Medina et al., 2014; Seeley et al., 2009). 

Our results point out that, (at least) when the insula is altered, the co-alteration 
networks reflect the functional connectivity patterns, thus providing support for the 
nodal stress hypothesis in the development and distribution of alterations (Crossley 
et al., 2016a; Crossley et al., 2014). When impaired, the insular cortex might bring 
about hyperexcitability to its functionally connected areas, and thereby cause 
metabolic stress and disruption. 

Overall, considering the bipartite parceling the peaks of overlap between co-
alteration and co-activation patterns are mainly localized in frontal and subcortical 
areas. In the patterns based on the tripartite parceling instead, the peaks of overlap 
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are not only mainly localized in frontal and subcortical areas, but also in temporal 
and parietal sites. This may provide evidence for the more specificity of the solution 
based on the tripartite parcellation. 

However, the uncoupling between co-alteration and co-activation for what concerns 
subcortical and lower cortical regions suggests that also other mechanisms might 
take place in the distribution of co-alterations other than the influence of normative 
connectivity. A shared vulnerability factor (Zhou et al., 2012) is usually expected to 
play a role in the development of pathological alterations, for instance in the form 
of a genetic influence (Cauda et al., 2018b). However, our results indicate that such 
uncoupling might derive also from other biological factors, as the “bottom-up” 
(from the insula to cortical areas) pathoconnectivity profile is unlikely to be related 
exclusively to functional aspects of brain organization. 

The fact that the insula is more involved in co-alteration patterns with higher-order 
cortical regions rather than with lower-order areas (such as subcortical and 
hippocampal structures) deserves an explanation. If pathological alterations are 
guided by connectivity constraints, which in case of the insula co-alteration network 
are pre-eminently functional ones, why only the connections between the insula and 
higher-order areas are involved in patterns of co-alterations, and not those between 
the insula and lower-order regions? In fact, the insular cortex is strongly connected 
with both brain sites (cortical and subcortical). Are there biological factors (such as, 
for instance, cytological or genetic aspects) that make the insula more likely to be 
co-altered with the former areas rather than with the latter? The question is 
intriguing and requires further investigations. 

Analysis	of	behavioral	profile		
The behavioral profiles of the co-alteration patterns show a prevalence of labels 
related to the emotional and cognitive spheres, which is consistent with the fact that 
emotional and cognitive processes are frequently disrupted in many neurological 
and psychiatric conditions. As we have seen, the insular cortex has important 
cognitive and interoceptive functions; in particular, it is mainly involved in the 
processing of salience, attention, emotions, and in the integration of sensory and 
interoceptive stimuli. 

The insula is an essential part of the salience network (SN), along with the dorsal 
anterior cingulate cortex (dACC) and other subcorti¬cal and limbic structures 
(Seeley et al., 2007; Uddin, 2015). This important network has a pivotal role in 
processing the perception of behaviorally significant stimuli as well as in 
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coordinating the use of brain resources (Uddin et al., 2013; Uddin et al., 2011). In 
fact, being an essential hub of the SN, the insula (especially the right one) is involved 
in the dynamic coordination of two other important brain networks, the DMN and 
the central executive network (CEN) (Chen et al., 2013; Goulden et al., 2014; 
Sridharan et al., 2008; Supekar and Menon, 2012). The insular cortices seem 
therefore involved in a plurality of functions associated with subjective salience, 
independent of the nature of the stimuli, being those homeostatic, emotional or 
cognitive (Bartra et al., 2013; Craig, 2002). Also, it has been found that dysfunction 
of the SN can occur in many brain conditions, including dementia, schizophrenia, 
psychosis, bipolar disorder, addiction, anxiety, depression, obsessive-compulsive 
disorder, chronic pain, and autism spectrum disorder (Di Martino et al., 2009; Etkin 
et al., 2009; Goodkind et al., 2015; Hamilton et al., 2012; Kapur, 2003; Klin et al., 
2003; Li et al., 2010; Palaniyappan and Liddle, 2012; Schroeter et al., 2008; Seeley 
et al., 2012; Simons et al., 2014). Furthermore, the insular cortex plays a 
fundamental role in the emotional evaluation of bodily states. Specifically, the 
coordinated activity of insula, amygdala and prefrontal cortex is pivotal for 
regulating emotions, both in normal and pathological conditions (Foland et al., 2008; 
Lee et al., 2012). 

In sum, with regard to the solution based on two parcels, the anterior sub-network 
seems to be more oriented towards the processing of interoception and perception, 
whereas the posterior sub-network appears to be more associated with the 
processing of emotion. These two sub-networks show comparable scores for the 
functions of action and cognition. Instead, with regard to the solution based on three 
parcels, the anterior sub-network appears to be more oriented towards the processing 
of action and cognition, while the middle sub-network appears to be more oriented 
towards the processing of perception and interoception and the posterior sub-
network towards the emotional processing. 

Limitations	and	future	directions	
The principle limitation of our study is that we cannot say how differently brain 
disorders are supposed to impact on the insular cortex. We know that a great number 
of conditions affect this cortical area but we do not know which parts of the insula 
are the most affected and by which disorders. However, we decided to consider all 
brain disorders in the BrainMap database because the aim of this study was to 
achieve the most comprehensive investigation about the pathological processes 
affecting the insula. Indeed, the leave-one-pathology-out analysis suggested that 
none of the included disorder is guiding the results (Tab. S5). There was also the 
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methodological constraint of analyzing the most numerous sample of studies to 
achieve a better statistical outcome. As in any meta-analysis, the data selection 
procedure could be affected by biases. However, the implemented fail-safe analysis 
(Fig. S3) suggested a good robustness of the results at least to the drawer-effect.  
This approach was intended to provide useful insight for further examinations with 
more specific aims. Related to this, we could not use a more fine-grained 
parcellation, since this was not supported by a sufficient amount of data to achieve 
reliable results. The selection of any predetermined parcellation is per se a 
questionable step. However, in doing this we opted for a solution with high 
multimodal consensus, as explained above. 

Future investigations need to explore the directionality, both spatial and temporal, 
followed by alterations across the different brain areas when a pivotal hub, like the 
insula, is initially affected. Although regions presenting high node degrees are 
thought to be pathoconnectivity hubs, we cannot infer from our data whether 
alterations first originate in the insula and then propagate to other areas or vice versa. 

Conclusion 
This study performed a pathoconnectivity network analysis of the insula, one of the 
most connected and important hubs of the both health and pathological brain. Our 
findings indicate that the insula is altered by a variety of brain disorders. This result 
is in line with recent research that found the insula to be among the most affected 
brain areas by a wide range of brain diseases (Cauda et al., 2019) as well as in six 
different important psychiatric conditions – i.e., schizophrenia, bipolar disorder, 
depression, addiction, obsessive-compulsive disorder, and anxiety (Goodkind et al., 
2015). Our analysis not only confirms that finding, but provides further evidence 
that the insula is significantly affected by both neurological and psychiatric 
disorders. Its central and intense activity may account for the fact that this area 
appears to be so vulnerable to neuronal alterations. 

The insula pathoconnectivity network analysis reveals 1) that the pattern of 
distribution of GM alterations associated with the insular cortex is composed of 
areas that are mainly located in cortical rather than in subcortical sites; 2) that the 
insula co-alteration patterns correlate, and overlap, well with the corresponding co-
alteration patterns; and that 3) these co-alteration patterns may implicate the 
disruption of cognitive (i.e., salience) and emotional processes. The fact that higher-
order areas appear to contribute more to the co-alteration network of the insula than 
lower-order regions suggests that, along with functional connectivity constraints, 
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other factors (perhaps biological ones, such as cytological and genetic mechanisms) 
may play a role in the development of patterns of co-alterations. 

These findings provide evidence that the brain areas that are altered along with the 
insula are not randomly disrupted but tend to be altered on the basis of their 
functional connectivity. Finally, the significant coherence between the co-alteration 
and co-activation of the insula suggests that alterations caused by brain disorders 
can exhibit a distribution according to the logic of functional network architecture. 
This might be typical whenever brain hubs are involved in the alteration process. 
According to this view, brain hubs may lie at the center of networks composed of 
co-altered areas. If confirmed by future studies, this finding will help to better 
address the issue of how brain connectivity can predict regional alteration profiles 
and severity of symptoms in both neurological and psychiatric disorders. 

Supplementary methods 
Experiments	search		
1.1 Identification 

We adopted the definition of meta-analysis accepted by the Cochrane Collaboration 
(Green et al., 2008) and the “PRISMA Statement” international guidelines in order 
to ensure a transparent and complete report of data selection (Liberati et al., 2009; 
Moher et al., 2009).  

A systematic search strategy was used to identify relevant experiments, published 
until February 2018, across the voxel-based morphometry (VBM) database of 
BrainMap (Fox et al., 2005; Fox and Lancaster, 2002; Laird et al., 2005; Vanasse et 
al., 2018). BrainMap comprises a database of thousands of neuroimaging studies 
(functional and structural MRI data), from which data on regional effects can be 
retrieved (in our case, regions of altered gray matter density). At the moment of the 
search, the BrainMap VBM database contained 994 articles, for a total of 3151 
neuroimaging experiments, 75727 subjects, and 21827 stereotaxic locations (x, y, 
z). 

In order to assess the impact of brain disorders on the insular cortex we performed 
a systematic search using the software application Sleuth 2.4. 
(http://www.brainmap.org/sleuth/), capable of retrieving all the VBM experiments 
that matched the following query: 
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Search 1: 

[Experiments Contrast is Gray Matter] AND [Experiment Context is Disease 
Effects] AND [Observed Changes is Controls>Patients] AND [TD Label is Gyrus 

Insula] 

1.2 Screening 

Our search retrieved 207 articles, for a total of 277 experiments, 14916 subjects and 
4231 foci of alteration. Experiments were distributed as follows (see also Figures 
S1 and S3):  

schizophrenia (48), multiple sclerosis (24), Alzheimer’s disease (22), epilepsy (15), 
depression (12), frontotemporal dementia (9), bipolar disorder (9), Huntington’s 
disease (9), supranuclear palsy (9), multiple system atrophy (8), migraine (8), 
psychosis (7), mild cognitive impairment (7), Parkinson’s disease (7), post-
traumatic stress disorder (7), autism spectrum disorder (4), frontotemporal lobe 
degeneration (3), obsessive-compulsive disorder (3), Lewy body dementia (3), 
olfactory disorders (3), panic/anxiety disorder (3), at-risk mental state (3), and 
amyotrophic lateral sclerosis (3). Other papers (51) were classified as “Others” if 
they investigated more than one brain disorder or if the study was the only one 
retrieved in the data set on a certain condition. 

1.3 Eligibility 

All the selected experiments were reviewed in order to ensure:  

1) they were published in a peer reviewed English language journal; 

2) that the experiments described cerebral structural changes visible with VBM;  

3) both the presence of the healthy control group and the pathological sample; 

4) that the results were reported by using the Talairach/Tournoux or Montreal 
Neurological   Institute (MNI) coordinates. 

The meta-analysis was carried out in the Talairach (TAL) brain space. Meta-data 
reported in MNI coordinates were converted into TAL using the icbm2tal algorithm 
designed by Lancaster et al. (2007). 

1.4 Inclusion 
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For the overview of the selection strategy see Figure S1 [PRISMA flow chart]. For 
the distribution of the selected experiments see also Table S1. 

Frequency	of	alteration	analysis	
In order to compare the reporting frequency of decrease results for the insula with 
the rest of the brain, Search 1 was repeated for each of the 52 TD labels available in 
the Sleuth tool. We then computed for each brain region the percentage of BrainMap 
VBM experiments reporting alteration in it.  

The results of this analysis are reported in Table S4. 

Alteration	density	analysis	
As it was previously described in literature, the insula can be found structurally 
altered in a variety of brain disorders. This evidence suggests the role of pathological 
hub for this region in the development of co-alteration networks. However, we 
wanted to know whether or not the insula may be more densely altered than the rest 
of the brain. 

To answer this question, the following search was performed: 

Search 4: 

[Experiments Contrast is Gray Matter] AND [Experiment Context is Disease 
Effects] AND [Observed Changes is Controls>Patients] 

In this way, we retrieved all the foci (through the whole brain) in which a decrease 
was reported due to a disease effect. Based on this, the alteration density of the insula 
was computed as 

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑜𝑐𝑖	𝑖𝑛	𝑡ℎ𝑒	𝑖𝑛𝑠𝑢𝑙𝑎
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑣𝑜𝑥𝑒𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑖𝑛𝑠𝑢𝑙𝑎 

while the density of the rest of the brain was computed as 

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑜𝑐𝑖	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑏𝑟𝑎𝑖𝑛	
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑣𝑜𝑥𝑒𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑏𝑟𝑎𝑖𝑛 

where the insula was, of course, not included. 

The alteration density of the insula was then expressed as percentage of the 
alteration density of the rest of the brain. 
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Of note, the alteration density should not be confused with GM density as measured 
by VBM. The former describes the amount of foci reporting a decrease effect in a 
given area (the insula, or the whole brain), while the latter describes changes in the 
structure of GM. 

Fail-safe	analysis	
The “fail-safe” technique is a common tool to assess the robustness of results against 
potential publication bias in classical meta-analyses. Originally introduced by 
Rosenthal (1979), it was recently adapted to ALE meta-analyses by Acar et al. 
(2018). This method is based on the hypothesis that there are unpublished studies 
with contra-evidence results, and allows to estimates the amount of these studies 
that can be added to the original data set before results get invalidated. In other 
words, the procedure introduces into the sample increasing amount of noise (i.e. 
unreported experiments). In the present work, the “fail-safe” technique has been 
used to address the possibility that in BrainMap an amount of contra-evidence 
experiments has not been stored. 

Our analysis was based on the code developed by Acar et al. (2018) 
(https://github.com/NeuroStat/GenerateNull). The procedure consists of two steps: 
1) noise generation; 2) robustness estimation.  

Step 1: noise generation 

The first step generates the required amount of noise experiments. In doing this, 
the algorithm is constrained by the distributions of the number of foci and the 
number of subjects of the real meta-analytic sample, in order to lend the noise 
realistic features. The foci are then randomly localized within the same GM mask 
used in the ALE algorithm.  

Step 2: robustness estimation 

At this point the noise and original experiments are combined and fed into the 
ALE algorithm. Results were tested for statistical significance with 1000 
permutations. In other words, the second step is a replication of the meta-analysis 
now taking into account potential experiments “remained in the drawer”. This 
procedure was iterated several times adding an increasing amount of noise 
experiments (between k/2   and 3k, where k is the number of the original 
experiments). Finally, Pearson’s correlation was computed between the original 
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map and the ALE map obtained at each level of noise, in order to estimate the 
possible bias effect.  

Results show that adding increasing amount of noise Pearson’s correlation 
between the maps linearly decreases (Fig. S3). Nonetheless, even in the most 
extreme case (i.e. 300% of noise added) we still obtained r=0.65. 

Leave-one-pathology-out	analysis	
The cross-disorder approach followed in the present work has two main 
advantages. First, it allows to consider a wide variety of pathological processes 
intervening in the different clinical conditions, rather than describing a specific 
case. Second, it maximizes the statistical power, allowing a more substantial data 
set. However, computing ALE on a cross-disorder input makes difficult to estimate 
the specific weight of each pathology, and in particular to detect the possible 
predominant (and biasing) effect of the most represented ones. In order to address 
this issue, we implemented a leave-one-out strategy, called “leave one pathology 
out”. In particular, we recursively removed from the original data set all the 
experiments from a same disorder, and repeated the ALE analysis considering the 
remaining elements. Each of the obtained map was then correlated (Pearson’s r) 
with the original whole sample co-alteration pattern. A marked reduction of the r 
value in a given iteration means the removal of the respective pathology caused a 
considerable modification of the alteration pattern, revealing a predominant 
disorder. 

As showed in Table S5, the correlation values are overall strong, and the impact of 
a disorder does not seem to be related with the number of experiments removed.  

Despite schizophrenia and multiple sclerosis standing out, running the analysis on 
only one of them would have not been comparable to our cross-disorder approach. 
In fact, the correlation between the ALE map for schizophrenia only (48 
experiments) and the original co-alteration pattern was r=0.41. Coherently, the 
correlation between the ALE map for multiple sclerosis only (24 experiments) and 
the original co-alteration pattern was r=-0.14. 

Finally, we assessed the overall impact of those disorders with less than 7 
experiments, to verify if they were introducing some kind of noise to the data set. 
This implied the removal of 76 experiments (including the 51 categorized as 
‘Other’). The Pearson’s correlation between the resulting ALE map and the 
original co-alteration pattern was r=0.75.  
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In light of all these analyses, we think the cross-disorder approach originally 
adopted, that allows to maximize the statistical power, confirmed its validity. In 
fact, it is neither dominated by singular pathologies, nor biased by noise coming 
from the scarcely represented clinical conditions, which instead bring informative 
data. 

Supplementary figures 

  

Figure S1: PRISMA flow diagram illustrating the selection of articles. 
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Figure S2: Visualization of the clustering solutions, as proposed by Kelly et al. 
(2012). K2: Red=anterior cluster (K2_ant); Blue=posterior cluster 
(K2_post). K3: Blue=anterior cluster (K3_ant); Green=middle cluster 
(K3_mid); Red=posterior cluster (K3_post). 

Figure S3: Fail-safe results. The addition of an increasing amount of contra-
evidence experiments caused a linear reduction of Pearson’s 
correlation between the original co-alteration pattern and those 
accounting for the “noise” injection. 
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Supplementary tables 
ID	 First	Author	 Year	 Condition	 Subj	 Experiments	

1	 Adleman	N	E	 2012	 Bipolar	disorder	 55	 1	

2	 Agosta	F	 2010	 Supranuclear	palsy	 20	 2	

3	 Agosta	F	 2011	 Alzheimer's	disease	 15	 1	

4	 Alcauter	S	 2011	 Other	 9	 1	

5	 Antonova	E	 2005	 Schizophrenia	 40	 1	

6	 Arnone	D	 2009	 Depression	 25	 1	

7	 Asami	T	 2009	 Panic/Anxiety	disorder	 9	 1	

8	 Ash	S	 2011	 Lewy	body	dementia	 11	 1	

9	 Ash	S	 2009	 Other	 13	 2	

10	 Aubert-Broche	B	 2011	 Multiple	sclerosis	 29	 1	

11	 Audoin	B	 2007	 Multiple	sclerosis	 38	 1	

Figure S4: Overlap between co-atrophy (red) and functional MACM (blue). 
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12	 Barbeau	E	 2008	 Mild	cognitive	impairment	 16	 1	

13	 Baron	J	C	 2001	 Alzheimer's	disease	 32	 4	

14	 Bassitt	D	P	 2007	 Schizophrenia	 30	 1	

15	 Baxter	L	C	 2006	 Alzheimer's	disease	 15	 1	

16	 Bell-McGinty	S	 2005	 Mild	cognitive	impairment	 14	 2	

17	 Bendfeldt	K	 2009	 Multiple	sclerosis	 17	 1	

18	 Bernasconi	N	 2004	 Epilepsy	 45	 1	

19	 Bertsch	K	 2013	 Other	 25	 2	

20	 Bitter	T	 2010	 Olfactory	disorders	 41	 2	

21	 Bitter	T	 2011	 Olfactory	disorders	 22	 1	

22	 Boccardi	M	 2005	 Frontotemporal	dementia	 9	 1	

23	 Boddaert	N	 2004	 Other	 5	 1	

24	 Bodini	B	 2009	 Multiple	sclerosis	 23	 1	

25	 Boghi	A	 2011	 Other	 10	 1	

26	 Bonavita	S	 2011	 Multiple	sclerosis	 18	 1	

27	 Bonilha	L	 2004	 Epilepsy	 22	 1	

28	 Borgwardt	S	J	 2007	 At-risk	mental	state	 22	 1	

29	 Borgwardt	S	J	 2010	 Schizophrenia	 9	 1	

30	 Borgwardt	S	J	 2007	 At-risk	mental	state	 12	 1	

31	 Borroni	B	 2008	 Other	 20	 1	

32	 Boxer	A	L	 2006	 Supranuclear	palsy	 15	 1	

33	 Bozzali	M	 2006	
Alzheimer's	 disease	 /	 Mild	
cognitive	impairment	

62	 3	

34	 Brambati	S	M	 2004	 Other	 10	 1	
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35	 Brambati	S	M	 2009	 Other	 25	 3	

36	 Brenneis	C	 2004	 Supranuclear	palsy	 12	 1	

37	 Brenneis	C	 2007	 Multiple	system	atrophy	 14	 1	

38	 Brenneis	C	 2003	 Other	 9	 1	

39	 Brenneis	C	 2006	 Multiple	system	atrophy	 22	 2	

40	 Brenneis	C	 2003	 Multiple	system	atrophy	 12	 1	

41	 Brenneis	C	 2004	
Alzheimer's	 disease	 /	 Lewy	 body	
dementia	

20	 2	

42	 Brys	M	 2009	 Alzheimer's	disease	 8	 1	

43	 Burton	E	J	 2002	 Lewy	body	dementia	 25	 1	

44	 Burton	E	J	 2004	 Parkinson's	disease	 57	 2	

45	 Cascella	N	 2010	 Schizophrenia	 38	 2	

46	
Castro-Manglano	 P	
D	

2011	 Psychosis	 38	 2	

47	 Ceccarelli	A	 2009	 Multiple	sclerosis	 17	 1	

48	 Chang	C	C	 2009	 Multiple	system	atrophy	 46	 2	

49	 Chanraud	S	 2007	 Other	 28	 1	

50	 Chen	S	 2006	 Post-traumatic	stress	disorder	 24	 2	

51	 Chen	S	 2009	 Post-traumatic	stress	disorder	 12	 1	

52	 Chua	S	E	 2007	 Psychosis	 26	 1	

53	 Cordato	N	J	 2005	 Supranuclear	palsy	 21	 1	

54	 Critchley	H	D	 2003	 Other	 15	 1	

55	 de	Araujo-Filho	G	M	 2009	 Epilepsy	 16	 1	

56	 de	Oliveira-Souza	R	 2008	 Other	 15	 1	
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57	 Di	Paola	M	 2007	 Alzheimer's	disease	 18	 1	

58	 Douaud	G	 2007	 Schizophrenia	 25	 1	

59	 Farrow	T	F	D	 2007	 Alzheimer's	disease	 14	 2	

60	 Feldmann	A	 2008	 Alzheimer's	disease	 6	 1	

61	 Frisoni	G	B	 2002	 Alzheimer's	disease	 26	 1	

62	 Fusar-Poli	P	 2011	 At-risk	mental	state	 15	 1	

63	 Gale	S	D	 2005	 Other	 18	 2	

64	 Garcia-Marti	G	 2008	 Schizophrenia	 17	 1	

65	 Garrido	L	 2009	 Other	 17	 1	

66	 Gavazzi	C	 2007	 Huntington's	disease	 9	 1	

67	 Ghosh	B	C	 2012	 Supranuclear	palsy	 22	 1	

68	 Giuliani	N	R	 2005	 Schizophrenia	 34	 1	

69	 Gobbi	C	 2014	 Multiple	sclerosis	 336	 5	

70	 Gong	Q	 2011	 Depression	 23	 1	

71	 Gregory	S	 2012	 Other	 17	 1	

72	 Grieve	S	M	 2013	 Depression	 34	 1	

73	 Guo	X	 2010	 Alzheimer's	disease	 13	 1	

74	 Ha	T	H	 2010	 Bipolar	disorder	 23	 1	

75	 Ha	T	H	 2004	 Bipolar	disorder	 35	 1	

76	 Han	X	 2017	 Multiple	sclerosis	 20	 1	

77	 Henley	S	M	 2009	 Huntington's	disease	 20	 1	

78	 Herringa	R	 2012	 Post-traumatic	stress	disorder	 13	 1	

79	 Hoeft	F	 2008	 Other	 18	 1	
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80	 Hoeft	F	 2007	 Other	 19	 1	

81	 Honea	R	A	 2008	 Schizophrenia	 169	 1	

82	 Honea	R	A	 2009	 Alzheimer's	disease	 56	 1	

83	 Horn	H	 2009	 Schizophrenia	 13	 1	

84	 Huang	W	 2011	 Epilepsy	 31	 1	

85	 Huey	E	D	 2009	 Other	 14	 1	

86	 Hulshoff	Pol	H	E	 2001	 Schizophrenia	 158	 1	

87	 Hulshoff	Pol	H	E	 2004	 Schizophrenia	 158	 1	

88	 Ille	R	 2011	 Huntington's	disease	 18	 1	

89	 Ivo	R	 2013	 Other	 14	 1	

90	 Jang	D	P	 2007	 Other	 20	 1	

91	 Janssen	J	 2008	 Psychosis	 25	 1	

92	 Jayakumar	P	N	 2005	 Schizophrenia	 18	 1	

93	 Kasai	K	 2008	 Post-traumatic	stress	disorder	 18	 1	

94	 Kasparek	T	 2010	 Schizophrenia	 49	 1	

95	 Kassubek	J	 2004	 Huntington's	disease	 22	 1	

96	 Kassubek	J	 2007	 Amyotropic	lateral	sclerosis	 12	 1	

97	 Kaufmann	C	 2002	 Other	 12	 1	

98	 Kawachi	T	 2006	 Alzheimer's	disease	 30	 1	

99	 Kawada	R	 2009	 Schizophrenia	 26	 1	

100	 Kawasaki	Y	 2007	 Schizophrenia	 30	 1	

101	 Kawasaki	Y	 2004	 Schizophrenia	 100	 2	

102	 Kesler	S	R	 2008	 Other	 30	 4	
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103	 Kim	J	H	 2008	 Migraine	 20	 1	

104	 Kim	S	 2011	 Other	 20	 1	

105	 Kim	S	J	 2009	 Other	 17	 1	

106	 Koprivova	J	 2009	 Obsessive-compulsive	disorder	 14	 1	

107	 Kosaka	H	 2010	 Other	 32	 1	

108	 Koutsouleris	N	 2008	 Schizophrenia	 230	 4	

109	 Kubicki	M	 2002	 Schizophrenia	/	Psychosis	 32	 2	

110	 Kuchinad	A	 2007	 Other	 10	 1	

111	 Lai	C	H	 2015	 Panic/Anxiety	disorder	 53	 1	

112	 Lee	J	E	 2013	 Mild	cognitive	impairment	 30	 2	

113	 Leung	K	K	 2009	 Depression	 17	 1	

114	 Libon	D	J	 2009	 Frontotemporal	dementia	 62	 2	

115	 Lin	C	H	 2013	 Parkinson's	disease	 20	 2	

116	 Lin	K	 2009	 Epilepsy	 60	 2	

117	 Lochhead	R	A	 2004	 Bipolar	disorder	 4	 1	

118	 Lui	S	 2009	 Schizophrenia	 20	 2	

119	 Lyoo	I	K	 2004	 Bipolar	disorder	 39	 1	

120	 Maneru	C	 2003	 Other	 13	 1	

121	 Marcelis	M	 2003	 Psychosis	 58	 2	

122	 Marti-Bonmati	L	 2007	 Schizophrenia	 10	 1	

123	 Matsuda	H	 2002	 Alzheimer's	disease	 15	 1	

124	 McAlonan	G	M	 2008	 Autism	spectrum	disorder	 33	 2	

125	 McIntosh	A	M	 2004	 Bipolar	disorder	 19	 1	
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126	 Meda	S	A	 2008	 Schizophrenia	 163	 3	

127	 Meisenzahl	E	M	 2008	 Schizophrenia	 306	 4	

128	 Mesaros	S	 2008	 Multiple	sclerosis	 21	 1	

129	 Mezzapesa	D	M	 2007	 Amyotropic	lateral	sclerosis	 9	 1	

130	 Milham	M	P	 2005	 Panic/Anxiety	disorder	 17	 1	

131	 Minnerop	M	 2007	 Multiple	system	atrophy	 16	 1	

132	 Molina	V	 2011	 Schizophrenia	 30	 1	

133	 Moorhead	T	W	 2005	 Schizophrenia	 23	 1	

134	 Morgen	K	 2006	 Multiple	sclerosis	 19	 1	

135	 Muhlau	M	 2007	 Huntington's	disease	 46	 1	

136	 Muhlau	M	 2013	 Multiple	sclerosis	 49	 1	

137	 Nardo	D	 2010	 Post-traumatic	stress	disorder	 10	 2	

138	 Narita	K	 2011	 Bipolar	disorder	 14	 1	

139	 Neckelmann	G	 2006	 Schizophrenia	 12	 1	

140	 Nestor	P	J	 2003	 Other	 10	 1	

141	 O'Daly	O	 2007	 Schizophrenia	 28	 1	

142	 Obermann	M	 2013	 Other	 98	 2	

143	 Padovani	A	 2006	 Supranuclear	palsy	 14	 1	

144	
Paillere-Martinot	 M	
L	

2001	 Schizophrenia	 20	 1	

145	 Peinemann	A	 2005	 Huntington's	disease	 75	 3	

146	 Pell	G	S	 2008	 Epilepsy	 19	 1	

147	 Peng	J	 2010	 Depression	 22	 1	

148	 Pereira	J	B	 2009	 Parkinson's	disease	 20	 1	
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149	 Pereira	J	M	 2009	 Frontotemporal	dementia	/	Other	 27	 5	

150	 Petrie	E	C	 2014	 Other	 18	 1	

151	 Preziosa	P	 2016	 Multiple	sclerosis	 38	 1	

152	 Price	G	 2010	 Schizophrenia	 47	 1	

153	 Prinster	A	 2006	 Multiple	sclerosis	 34	 1	

154	 Prinster	A	 2010	 Multiple	sclerosis	 35	 1	

155	 Pujol	J	 2004	 Obsessive-compulsive	disorder	 72	 1	

156	 Quarantelli	M	 2006	 Other	 30	 1	

157	 Rabinovici	G	D	 2007	 Other	 18	 1	

158	 Riccitelli	G	 2012	 Multiple	sclerosis	 312	 4	

159	 Riederer	F	 2008	 Epilepsy	 12	 1	

160	 Riederer	F	 2012	 Migraine	 29	 1	

161	 Riva	D	 2011	 Autism	spectrum	disorder	 21	 1	

162	 Rocca	M	A	 2006	 Migraine	 45	 3	

163	 Rossi	R	 2006	 Other	 14	 1	

164	 Rossi	R	 2012	 Other	 40	 2	

165	 Rowan	A	 2007	 Other	 10	 1	

166	 Salmond	C	H	 2007	 Autism	spectrum	disorder	 9	 1	

167	 Santana	M	 2010	 Epilepsy	 90	 3	

168	 Saykin	A	J	 2006	 Mild	cognitive	impairment	 40	 1	

169	 Scheuerecker	J	 2010	 Depression	 13	 1	

170	 Schiffer	B	 2013	 Schizophrenia	 73	 3	

171	 Schmidt-Wilcke	T	 2010	 Other	 11	 1	
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172	 Schmidt-Wilcke	T	 2008	 Migraine	 31	 1	

173	 Schmidt-Wilcke	T	 2005	 Migraine	 20	 1	

174	 Schwartz	D	L	 2010	 Other	 44	 1	

175	 Seeley	W	W	 2008	
Frontotemporal	 lobar	
degeneration	

45	 3	

176	 Senda	J	 2011	 Amyotropic	lateral	sclerosis	 17	 1	

177	 Serra-Blasco	M	 2013	 Depression	 44	 2	

178	 Shad	M	U	 2012	 Depression	 22	 1	

179	 Shapleske	J	 2002	 Schizophrenia	 63	 2	

180	 Shiino	A	 2006	 Alzheimer's	disease	 40	 1	

181	 Shin	S	 2012	 Parkinson's	disease	 25	 1	

182	 Sowell	E	R	 2001	 Other	 7	 1	

183	 Spano	B	 2010	 Multiple	sclerosis	 10	 1	

184	 Stratmann	M	 2014	 Depression	 229	 2	

185	 Sydykova	D	 2007	 Alzheimer's	disease	 13	 1	

186	 Takahashi	R	 2011	
Frontotemporal	 dementia	 /	
Supranuclear	palsy	

32	 2	

187	 Tang	L	R	 2014	 Bipolar	disorder	 27	 1	

188	 Tiihonen	J	 2008	 Other	 25	 1	

189	 Tir	M	 2009	 Parkinson's	disease	 14	 1	

190	 Tregallas	J	R	 2007	 Schizophrenia	 32	 1	

191	 Tzarouchi	L	C	 2010	 Multiple	system	atrophy	 11	 1	

192	 Wang	F	 2011	 Bipolar	disorder	 41	 1	

193	 Wei	W	 2016	 Epilepsy	 30	 1	
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194	 Whitwell	J	L	 2005	 Frontotemporal	dementia	 9	 1	

195	 Whitwell	J	L	 2013	 Supranuclear	palsy	 16	 1	

196	 Wolf	R	C	 2008	 Schizophrenia	 14	 1	

197	 Wolf	R	C	 2009	 Huntington's	disease	 12	 1	

198	 Xie	S	 2006	 Alzheimer's	disease	 13	 1	

199	 Xu	L	 2009	 Schizophrenia	 120	 1	

200	 Yamada	M	 2007	 Schizophrenia	 20	 1	

201	 Yang	F	C	 2013	 Migraine	 23	 1	

202	 Yasuda	C	L	 2010	 Epilepsy	 44	 2	

203	 Yasuda	C	L	 2010	 Epilepsy	 40	 1	

204	 Yoo	S	Y	 2008	 Obsessive-compulsive	disorder	 47	 1	

205	 Zamboni	G	 2008	 Frontotemporal	dementia	 14	 1	

206	 Zhang	T	 2009	 Depression	 15	 1	

207	 Zhang	X	 2016	 Multiple	sclerosis	 29	 1	

		 		 		 Total	 7218	 277	

 

 

Condition Experimen
ts 

% of 
exp. 

Subject
s 

% of 
subj. 

Schizophrenia 48 17.3 2094 29.1 
Multiple sclerosis 24 8.6 1072 14.8 

Table S1: Selected studies for the meta-analysis. The items shown in the table 
are the result of the entire selection process (Search 1) as shown in 
the PRISMA flow chart (Figure S1) and in the supplementary 
literature analysis. The starting point for the selection can be traced in 
the algorithms and in the additional considerations previously 
proposed. The number of subjects refers to the pathological samples 
only. 
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Alzheimer's disease 22 7.9 396 5.5 
Epilepsy 15 5.4 409 5.7 
Depression 12 4.3 444 6.1 
Frontotemporal dementia 9 3.2 131 1.8 
Bipolar disorder 9 3.2 257 3.6 
Huntington's disease 9 3.2 202 2.8 
Supranuclear palsy 9 3.2 136 1.9 
Multiple system atrophy 8 2.9 95 1.3 
Migraine 8 2.9 168 2.3 
Psychosis 7 2.6 163 2.2 
Mild cognitive impairment 7 2.6 122 1.7 
Parkinson's disease 7 2.6 136 2 
Post-traumatic stress disorder 7 2.6 77 1 
Autism spectrum disorder 4 1.4 63 0.9 
Frontotemporal lobe 
degeneration 

3 1.1 45 0.6 

Obsessive-compulsive disorder 3 1.1 133 1.8 
Lewy body dementia 3 1.1 46 0.6 
Olfactory disorders 3 1.1 63 0.9 
Panic/Anxiety disorder 3 1.1 79 1.1 
At-risk mental state 3 1.1 49 0.7 
Amyotrophic lateral scerosis 3 1.1 38 0.5 
Other 51 18.4 800 11.1 

Total 277 100 7218 100 
 

 

Paradigm	Class	 K2_ant	 K2_post	 K3_ant	 K3_mid	 K3_post	

Acupuncture	 5	 6	 5	 5	 3	

Affective	pictures	 17	 10	 15	 6	 5	

Table S2: Details of the repartition of experiments and pathological subjects 
across the disorders represented in the dataset. The percentages are 
based on the total number of experiments and subjects in the dataset 
respectively. 
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Affective	words	 2	 1	 2	 0	 1	

Anti-saccades	 1	 0	 1	 0	 0	

Chewing/swallowing	 12	 4	 7	 8	 3	

Classical	conditioning	 13	 4	 10	 3	 4	

Competition/cooperation	 3	 0	 3	 0	 0	

Counting/calculation	 23	 5	 22	 3	 3	

Cued	explicit	recognition/recall	 25	 13	 21	 9	 8	

Deception	 3	 1	 2	 1	 1	

Delay	discounting	 0	 2	 0	 0	 2	

Delayed	match	to	sample	 27	 5	 26	 5	 2	

Divided	auditory	attention	 5	 1	 4	 2	 0	

Drawing	 1	 2	 1	 0	 2	

Driving	 1	 1	 1	 1	 0	

Emotion	induction	 27	 18	 22	 18	 8	

Emotional	body	language	perception	 3	 0	 3	 0	 0	

Encoding	 13	 3	 13	 1	 2	

Episodic	recall	 5	 4	 5	 3	 1	

Face	monitoring/discrimination	 37	 26	 24	 27	 12	

Figurative	language	 0	 1	 0	 1	 0	

Film	viewing	 36	 16	 26	 24	 5	

Finger	tapping/button	press	 107	 48	 96	 39	 24	
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Fixation	 1	 2	 0	 2	 1	

Flanker	 4	 1	 4	 1	 0	

Flexion/extension	 10	 11	 5	 8	 8	

Fluency	induction	 0	 0	 0	 0	 0	

Free	list	word	record	 1	 2	 0	 1	 2	

Gambling	 18	 5	 15	 4	 4	

Go/No	go	 41	 18	 40	 12	 11	

Grasping	 2	 1	 2	 0	 1	

Hand-Eye	coordination	 0	 2	 0	 1	 1	

Hypercapnia/air	hunger	 4	 0	 1	 3	 0	

Imagined	movement	 8	 1	 7	 3	 0	

Imagined	objects/scenes	 4	 4	 4	 3	 1	

Induced	panic	 0	 1	 0	 1	 0	

Isometric	force	 3	 3	 3	 2	 1	

Lexical	decision	 2	 1	 2	 1	 0	

Magnitude	comparison	(distance)	 0	 1	 0	 1	 0	

Magnitude	comparison	(luminance)	 1	 0	 1	 0	 0	

Magnitude	comparison	(symbolic)	 2	 0	 2	 0	 0	

Meditation	 2	 5	 1	 5	 1	

Mental	rotation	 1	 1	 1	 0	 1	

Micturition	 5	 2	 5	 1	 1	
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Motor	learning	 3	 0	 3	 0	 0	

Multi	tasking	 1	 0	 1	 0	 0	

Music	comprehension	 29	 11	 24	 12	 5	

Music	production	 6	 1	 5	 2	 0	

N-back	 23	 2	 23	 0	 2	

Naming	(covert)	 11	 0	 10	 1	 0	

Naming	(overt)	 6	 3	 5	 1	 3	

Oddball	discrimination	 8	 2	 8	 2	 1	

Olfactory	monitoring/discrimination	 11	 8	 7	 10	 2	

Orthographic	discrimination	 8	 1	 7	 2	 0	

Pain	monitor/discrimination	 116	 77	 93	 57	 56	

Paired	associate	recall	 7	 4	 7	 1	 3	

Passive	listening	 7	 5	 6	 4	 2	

Passive	viewing	 42	 26	 28	 25	 13	

Phonological	discrimination	 17	 0	 15	 2	 0	

Pitch	monitor/discrimination	 8	 4	 7	 3	 2	

Reading	(covert)	 7	 2	 6	 1	 2	

Reading	(overt)	 13	 4	 13	 0	 4	

Reasoning/problem	solving	 14	 5	 12	 4	 3	

Recitation/repetition	(covert)	 3	 0	 2	 1	 0	

Recitation/repetition	(overt)	 9	 4	 5	 5	 3	
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Rest	 0	 2	 0	 2	 0	

Reward	 89	 23	 81	 17	 14	

Saccades	 5	 2	 4	 2	 1	

Self-reflection	 3	 0	 3	 0	 0	

Semantic	monitor/discrimination	 45	 11	 37	 12	 8	

Sequence	recall/learning	 6	 1	 5	 1	 0	

Sexual	arousal/gratification	 22	 14	 16	 14	 6	

Stroop	-	color	 12	 4	 12	 0	 4	

Stroop	-	emotional	 0	 1	 0	 0	 1	

Stroop	-	spatial	 1	 0	 1	 0	 0	

Syntactic	discrimination	 1	 0	 0	 1	 0	

Tactile	monitor/discrimination	 11	 16	 7	 10	 10	

Task	switching	 4	 5	 4	 3	 2	

Taste	 14	 5	 13	 5	 3	

Theory	of	mind	 6	 7	 5	 4	 5	

Thirst	induction	 0	 1	 0	 0	 1	

Tone	monitor/discrimination	 18	 4	 16	 7	 0	

Tower	of	London	 3	 0	 1	 2	 0	

Transcranial	magnetic	stimulation	 3	 3	 2	 1	 3	

Trauma	recall	 1	 0	 0	 1	 0	

Vestibular	stimulation	 1	 2	 1	 0	 2	
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Vibrotactile	monitor/discrimination	 0	 1	 0	 0	 1	

Video	games	 1	 1	 1	 1	 0	

Visual	motion	 3	 0	 3	 1	 0	

Visual	object	identification	 12	 7	 10	 4	 5	

Visual	pursuit/tracker	 5	 1	 5	 1	 0	

Visuospatial	attention	 30	 7	 25	 11	 2	

Wisconsin	card	sorting	test	 4	 0	 4	 0	 0	

Word	generation	(covert)	 14	 3	 14	 2	 1	

Word	generation	(overt)	 10	 4	 10	 0	 4	

Word	stem	completion	(covert)	 2	 0	 2	 0	 0	

Word	stem	completion	(overt)	 1	 0	 1	 0	 0	

Total	 1151	 516	 972	 440	 293	

 

 

Brain region % of experiments 
Middle frontal gyrus 10.1 
Superior temporal gyrus 9.5 
Parahippocampal gyrus 9.5 
Medial frontal gyrus 9.0 
Inferior frontal gyrus 8.9 
Insula 8.8 
Thalamus 8.1 
Middle temporal gyrus 7.8 
Precentral gyrus 7.7 
Superior frontal gyrus 7.5 

Table S3: Details of the fMRI paradigms included in the functional data 
retrieved through Search 3. 



 210 

Cingulate gyrus 6.4 
Caudate 6.3 
Postcentral gyrus 5.4 
Anterior cingulate 5.0 
Precuneus 5.0 
Inferior parietal lobule 4.9 
Lentiform nucleus 4.4 
Sub-gyral 4.3 
Inferior temporal gyrus 3.8 
Claustrum 3.6 
Culmen 3.5 
Fusiform Gyrus 3.4 
Uncus 3.3 
Cuneus 3.2 
Middle occipital gyrus 3.0 
Cerebellar tonsill 2.9 
Posterior cingulate 2.5 
Declive 2.4 
Lingual gyrus 2.3 
Superior parietal lobule 1.7 
Paracentral lobule 1.5 
Inferior semi-lunar lobule 1.3 
Subcallosal gyrus 1.3 
Supramarginal gyrus 1.1 
Transverse temporal gyrus 1.1 
Inferior occipital gyrus 1.0 
Angular gyrus 1.0 
Pyramis 0.9 
Tuber 0.7 
Rectal gyrus 0.7 
Extra-nuclear 0.6 
Uvula 0.6 
Orbital gyrus 0.4 
Superior occipital gyrus 0.4 
Cerebellar lingual 0.2 
Fastigium 0.1 
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Culmen of vermis 0.1 
Nodule 0.1 
Declive of vermis 0.0 
Pyramis of vermis 0.0 
Tuber of vermis 0.0 
Uvula of vermis 0.0 

 

 

Removed Disorder r n Of Removed Experiments 
Schizophrenia 0.63 48 
Multiple sclerosis 0.65 24 
Other 0.80 51 
Alzheimer's disease 0.81 22 
Epilepsy 0.85 15 
Huntington's disease 0.87 9 
Frontotemporal lobar degeneration 0.88 3 
Depression 0.89 12 
Multiple system atrophy 0.89 8 
Supranuclear palsy 0.89 9 
Migraine 0.89 8 
Parkinson's disease 0.90 7 
Mild cognitive impairment 0.90 7 
Bipolar disorder 0.91 9 
Frontotemporal dementia 0.91 9 
Post traumatic stress disorder 0.91 7 
Lewy body dementia 0.91 3 
Psychosis 0.91 7 
Olfactory disorders 0.92 3 
Obsessive compulsive disorder 0.92 3 
Autism spectrum disorder 0.92 4 
At risk mental state 0.92 3 

Table S4: Results of the frequency of alteration analysis. Frequency of 
alteration for each brain region listed in the BrainMap database. The 
percent is computed with respect to the total number of VBM 
experiments included in BrainMap at the moment of the analysis. 
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Amyotropic lateral sclerosis 0.92 3 
Panic/Anxiety disorder 0.93 3 

  
Table S5: Results of the leave-one-pathology-out analysis. Pearson’s 

correlation between the original co-alteration pattern and the co-
alteration patterns obtained after the removal of all the experiments of 
a given disorder. 
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2.4 Influence of gestational diabetes and Pre-gestational maternal BMI 
on the brain of six years old offspring 
This study is in preparation for submission to International Journal of Obesity. 

Abstract 
Gestational diabetes (GD) and maternal excess weight are common pregnancy 
conditions which increase the risk of future complications for both the mother and 
her offspring. Their consequences on neurodevelopment are widely described in 
literature, but less is known concerning the potential transgenerational influence on 
the brain structure. We thus used a combination of support vectors machine and 
hierarchical clustering to investigate the potential presence of anatomical brain 
differences in a sample of 109 children aged 6 years, related to the diagnosis of GD 
during pregnancy and to the BMI of their mothers before pregnancy. Results showed 
that possible effects of GD are visible for the children of mothers with excess weight, 
and especially for mothers with overweight rather than those with obesity. On the 
contrary, no detectable differences emerged when considering mothers with normal 
weight. Relationships with maternal BMI were only found for the offspring of 
mothers with GD. Our study highlights the need for clinical attention of mothers 
with excess weight, in particular for those with overweight, diagnosed with GD, 
since this status was found to be associated with detectable transgenerational brain 
signs.   

Introduction 
Gestational diabetes (GD) is a serious pregnancy complication affecting 16.5% of 
pregnancies worldwide (Benhalima, et al., 2015; International Diabetes Federation, 
2019), with long-term health consequences. The most relevant are Type 2 diabetes 
(T2DM) and cardiovascular diseases in both mother and offspring, macrosomia, 
future obesity and/or GD in the child (Benhalima, et al., 2015; Pintaudi, et al., 2018; 
Plows, et al., 2018). Pre-pregnancy excess weight has been also linked to several 
health consequences and long-term increased risk in the offspring, including child 
obesity, diabetes and cardiovascular diseases (Chu, et al., 2007; Reynolds, et al., 
2013; Whitaker, 2004). 

The effects of GD, as well as maternal excess weight, on the offspring 
neurodevelopment are widely investigated and well known (Adane, et al., 2016; 
Brinciotti, et al., 2011; Deardorff, et al., 2017; Sousa, et al., 2018; Torres-Espinola, 
et al., 2015; Yeung, et al., 2017). However, to the best of our knowledge, sparse 
researches addressed potential transgenerational effects on the brain function and 
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structure of those conditions (Li, et al., 2016; Ou, et al., 2015; Page, et al., 2019; 
Salzwedel, et al., 2018; Verdejo-Román, et al., 2019). Although clinical and 
sociological studies pointed out the relevance of environmental factors and 
domestics habits for the emergence of excess weight and even Type 2 diabetes 
(Bellou, et al., 2018; Solmi, et al., 2018) the identification of further associations 
between maternal health condition and brain structural characteristics in their 
offspring could help to consolidate a still developing research topic. To this aim, we 
investigated the potential presence of anatomical brain differences in a cohort of 6 
years old children possibly related to the presence/absence of GD and to the BMI of 
their mothers before pregnancy (M_BMI). 

To do so, we adopted a combined use of supervised and unsupervised learning 
methodologies. As pointed out by Koul et al. (2018), this twofold approach allows 
to address two different kinds of research questions. By means of supervised 
learning, and in the present case Support Vector Machine (SVM), it is possible to 
determine whether data have discriminatory information. In other words, SVM can 
answer to the question: are offspring’s brains different enough to correctly assign 
each of them to the group it belongs to? (e.g.: child born to mother with GD or 
without GD). Unsupervised learning, and in the present case Hierarchical 
Clustering, allows to analyze the variability of the data (Koul, et al., 2018). This 
method can answer to the questions: can the subjects be organized into groups based 
on the characteristics of their brain? How many groups must be created? Who enters 
each of the groups? 

In the present work, the variables of interest analyzed to answer to those range of 
questions are the structural properties of the 6 years old children’s brains. Potential 
differences on these properties were not put into relationship with non-brain 
characteristics of the children themselves, but with the presence or absence of GD 
and to the pre-pregnancy maternal BMI. To evaluate whether results came from the 
whole brain characteristics or if they were due to specific tissues, analyses had been 
repeated on the whole brain, and using gray or white matters only.  

Based in the previous research that found brain differences linked to both GD and 
prepregnancy excess weight, we hypothesized that SVM and HC methods will 
detect differences in the anatomical offspring characteristics based on maternal 
status. 
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Materials and methods 
Selection	of	Subjects	
The present study is based on the PREOBE (Berglund, et al., 2016) study, a 
prospective observational cohort study, designed to explore peri- and postnatal 
influence of maternal overweight, obesity and GD in the mothers and their offspring. 
Mothers were recruited between 2008 and 2012 in the Clinical University Hospital 
San Cecilio and the Mother-Infant University Hospital of Granada (Granada, Spain) 
and their peripheral health centers. Briefly, the database consists of medical and 
sociocultural information concerning 331 pregnant women aged between 18 and 45 
years and their offspring. Full general inclusion and exclusion criteria can be found 
in Berglund, et al. (2016). In the present work we focused on the structural MRI 
images acquired up until October 2017 for 155 healthy children at the age of 6 years. 
12 subjects were excluded because their mothers had been already diagnosed with 
diabetes before the beginning of pregnancy. The remaining 143 subjects were then 
divided into 6 groups, on the bases of their calculated maternal BMI (M_BMI) at 
the recruiting session (between week 12 to 20 of pregnancy) and the 
presence/absence of GD at 34 week of gestation. Cutoff points for M_BMI were 
taken as follows: 18.5<M_BMI<25 = normal weight group (NW); 25<M_BMI<30 
= overweight group (OW); M_BMI>30 = obesity group (OB) (see Table 1 for 
groups details). The study was approved by the Human Research Ethics Committee 
of the Universidad de Granada and conducted in accordance with the Helsinki 
Declaration for human research studies. Written informed consent forms were 
obtained from all participants at the beginning of the study and before the magnetic 
resonance session. 

MRI	acquisition	and	preprocessing	
Prior to the MRI session, the children participated in a practice session. They were 
familiarized with the MRI environment, and they were introduced in a mock scanner 
and listened to the real scanner’s noise. Additionally, to reassure them and keep 
them from movement and falling asleep, the children watched a cartoon film during 
acquisition. Furthermore, a foam system was located around the participant's head. 

T1 images were acquired for each participant, using a 3T Magnetom Trio scanner 
(Siemens Medical System, ERLANGEN, Germany), located at Mind, Brain and 
Behavior Research Centre (CIMCYC). A high resolution T1-weighted 3D 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence was acquired 
with the following parameters: Repetition Time (TR)=2.3 ms, Echo Time (TE)=3.1 
ms, flip angle=9º, Field of View (FOV)=256x256 mm, matrix size=320x320, 
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number of slices=208, resulting an isotropic resolution of 0.8x0.8x0.8 mm. 
Acquisition time was 6 min 35 sec. Of note, this scanner provides images on which 
field inhomogeneity correction has already been performed. These images were 
independently checked by two expert researchers, in order to detect artifacts due to 
motion of participants during acquisition or other causes. 34 subjects were excluded 
at this point, after convergent judgment (see Tab. S1 for details on the group 
subdivision). 

T1 images were preprocessed and segmented into grey matter and white matter 
using DARTEL (Ashburner, 2007) as implemented in DBAPI 2.3 (Yan, et al., 
2016). In order to obtain additional tissue segmentation maps with intensity values 
in it (instead of probability values as provided by DARTEL), the whole brain T1 of 
each subject was multiplied for either the binarized grey matter (GM) or binarized 
white matter (WM) DARTEL maps of the same subject.  

	
Preliminary	confounding	interaction	assessment	
In order to exclude potential confounding effects, we performed linear regression 
between relevant couples of variables. These analyses were performed on GD 
groups and non-GD groups separately. In details, we contrasted: maternal BMI at 
the beginning of pregnancy (M_BMI) vs gestational weight gain (GWG); GWG vs 
BMI of the children at the moment of the evaluation; M_BMI vs birth weight of the 

 Non-gestational diabetes 
(N = 78) 

Gestational Diabetes 
(N=31) 

 Normal 
weight 
 (NW; 
n=44) 

Overweight 
(OW; n=19) 

Obesity 
(OB; 
n=15) 

Normal 
weight 

(NWGD; 
n=12) 

Overweight 
(OWGD; 

n=10) 

Obesity 
(OBGD; 

n=9) 

Maternal 
BMI 
(kg/m2) 

22.50 
(1.65) 27.00 (1.25) 31.96 

(1.28) 
22.06 
(2.01) 27.53 (1.15) 35.96 

(4.86) 

GWG (kg) 12.93 
(5.73) 10.10 (6.67) 9.34 

(6.52) 
10.10 
(7.63) 7.14 (4.25) 1.74 

(10.15) 
Birth 
weight 
(gr) 

3246.36 
(399.92) 

3468.95 
(574.30) 

3382.67 
(514.94) 

3459.17 
(514.94) 

3056.00 
(347.63) 

3454.44 
(418.81) 

BMI at 
MRI 
(kg/m2) 

16.00 
(1.50) 17.09 (2.29) 17.28 

(2.51) 
16.82 
(2.60) 17.72 (2.85) 17.00 

(2.30) 

Table 1: Socio-demographic and anthropometric details of the sample analyzed. 
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children; M_BMI vs BMI of the children at the moment of the evaluation. Moreover, 
we performed a one-way ANOVA on the BMI of the children at the moment of the 
evaluation. 

Neuroimaging	analyses	
	
Support	vector	machine	analyses	
In order to investigate whether brain data contained discriminatory information, we 
performed classification task between the experimental groups, using PRONTO tool 
(Schrouff, et al., 2013). We used a binary support vector machine (SVM), with leave 
one subject out as Cross-Validation method, and no hyper-parameter optimization. 
SVM is one of the most widely used classification algorithm in the field of 
neuroimaging (Orrù, et al., 2012). In this class of algorithms, a hyperplane is 
searched so to optimally separate the items into two, or more, classes (Cortes and 
Vapnik, 1995). As a result of this, the best solution is based only on those items in 
the proximity of the hyperplane, rather than on the whole sample of items (Khosla, 
et al., 2019). Several comparisons were realized, in order to separately analyze the 
effect of GD and the effect of BMI (see Table 2 for an overview of the comparisons). 
The results were evaluated considering total accuracy (TA), balanced accuracy (BA) 
and area under curve (AUC). Chance level cutoffs for SVM accuracy were set in 
accordance with the work of Combrisson and Jerbi (2015) considering p<0.05 and 
two classes. This cut-off is dependent of the number of subjects included in each 
analysis, and critical cut-off for each one is specified in the results section.  SVM 
was applied to the whole brain T1, and to GM and WM separately. 

Hierarchical	clustering	analyses	
In order to further verify the statistically significant SVM results, we performed 
hierarchical clustering analysis, using Orange 2.7 (Demsar, et al., 2013). Clustering 
algorithms are abundantly used in MRI research (Mirzaei and Adeli, 2019), and, 
generally speaking, they organize items into a set of nested partitions (Khosla, et al., 
2019). Hierarchical clustering does not require the definition of a predetermined 
number of clusters, as it is instead necessary for the widely-used k-means clustering 
(Khosla, et al., 2019). In the present case, a NxM matrix was created, in which each 
row represented a different subject, and each column a same voxel through all the 
subjects. Non-brain voxels were excluded from the matrix by means of a group 
mask. Distances between rows (i.e. between subjects) were calculated using 
Euclidean metric, and Ward’s linkage was used to build the dendrogram. Ward’s 
linkage try to minimize the variability inside each cluster (Khosla, et al., 2019; 
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Ward, 1963). Hierarchical clustering was performed separately for GM and WM, 
due to computational constraints. Results were evaluated as a ratio between the 
majority class and the total number of items in each cluster. In other words, we 
observed if the majority of subjects in every given cluster belonged to the same study 
group. 

Results 
Confounding	interaction	analyses	
Overall none of the linear regression analyses correlating variables related to the 
mothers with variables related to the offspring highlighted marked confounding 
effects (Fig. S1, Fig. S3, Fig. S4, Fig. S6-S9). The only relevant interaction was 
found between maternal BMI at the beginning of pregnancy (M_BMI) and GWG 
for the mothers with GD (R2=0.4) (Fig. S1 and Fig. S2). The higher the BMI was, 
the lesser the kg gained during the pregnancy. However, GWG does not seem to 
influence the BMI of the children at the moment of the evaluation (R2=0.07) (Fig. 
S3 and Fig. S4). The one-way ANOVA on the BMI of the subjects at the moment 
of the evaluation did not show statistically significant differences (see fig. S5).  

Gestational	diabetes	effect	
 

GD	groups	vs	non-GD	groups		
 

SVM	analyses	
In order to assess the effect of GD, independently from maternal BMI, NW, OW 
and OB groups (N=78) and NWGD, OWGD and OBGD groups (N=31) were 
collapsed into two macro-groups. The SVM analysis at this macro-groups level 
(N=109), on whole brain data, showed TA=73.39%. However, due to the marked 
unbalance between the two classes, the BA=58.09% (critical cutoff of reference = 
58%) must be considered a more reliable indicator (Fig. 1). The AUC was equal to 
0.79. Our result could be interpreted as a moderate evidence of discriminability 
between the two groups (i.e.: mothers with GD vs. without GD). At the same time, 
it suggests the need of a set of more accurate analyses with a subtler subdivision of 
the groups. The SVM analysis of both WM and GM alone did not produce 
statistically significant results (see Tab. S2 and Tab. S3).  
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Hierarchical	clustering	analyses	
Coherently with the around-threshold SVM result, the dendrograms obtained on 
both GM and WM data did not showed a net separation between the GD groups and 
the non-GD groups. 

In other words, the brain structural properties did not allow to clearly discriminate 
between children of mothers with GD and children of mothers without GD.  

Figure 1: Results of the comparison between GD groups and non-GD groups. 
Left: details of subjects’ discrimination based on whole brain images. Blue 
squares = GD subjects, red circles = non-GD subjects. Right: Area Under the 
Curve. 

Total	N Critical	cutoff Total	accuracy Balanced	accuracy AUC
NW	vs	NWGD 56 60% 76.79% 48.86% 0.66
OW	vs	OWGD 29 70% 89.66% 87.37% 0.88
OB	vs	OBGD 24 70% 54.17% 47.78% 0.50
EW	vs	EWGD 53 60% 75.47% 70.43% 0.76
non-GD	vs	GD 109 58% 73.39% 58.09% 0.79

NWGD	vs	OWGD 22 70% 72.73% 73.33% 0.69
OWGD	vs	OBGD 19 70% 63.16% 62.22% 0.78
NWGD	vs	OBGD 21 70% 52.38% 47.22% 0.42
NWGD	vs	EWGD 31 62.50% 64.52% 58.77% 0.64

NW	vs	OW 63 60% 68.25% 48.86% 0.30
OW	vs	OB 34 62.50% 29.41% 26.32% 0.10
NW	vs	OB 59 60% 74.58% 50% 0.35
NW	vs	EW 78 58.70% 44.87% 41.11% 0.46

GD	effect

BMI	effect	(GD	groups)

BMI	effect	(non-GD	groups)

Table 2: Results of the SVM analyses based on whole brain images. Critical cutoff 
is based on Combrisson and Jerbi (2015), considering p<0.05 and two classes. 
Significant accuracy results are in bold.. 
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Excess-weight_GD	groups	vs	Excess-weight_non-GD	groups		
 
SVM	analyses	
The around-threshold results obtained in previous analyses on the whole GD groups 
could have been at least in part due to the underlying effect of maternal BMI. To 
verify this hypothesis, we proceeded focusing on excess weight groups only. We 
hence collapsed OW and OB groups (EW group, N=34) and OWGD and OBGD 
groups (EWGD group, N=19), and let apart normal weight groups. The SVM 
analysis at this level (N=53), on whole brain data, showed TA=75.47%. Again, due 
to the marked unbalance between the two classes, the BA=70.43% (critical cutoff 
of reference = 60%) must be considered a more reliable indicator (Fig. 2). The AUC 
was equal to 0.76. Hence, our result can be interpreted as a quite strong evidence of 
discriminability between the two groups. The SVM analysis of both WM and GM 
alone produced statistically significant and comparable results as well (see Tab. S2 
and Tab. S3). 

Hierarchical	clustering	analyses	
The dendrogram obtained on GM data shows the presence of two main clusters, one 
including 39 subjects, the second one including 14 subjects. 31 out 39 subjects 
(79.5%) in the first cluster belong to the excess-weight_non-GD group, while 11 out 
14 subjects (78.6%) in the second cluster belong to the excess-weight_GD group 
(Fig. 2). Coherently with the SVM results, the clustering analysis showed a net 
separation between the two groups. On the contrary, the dendrogram obtained on 
WM data did not showed a net separation between the groups. 

These results suggest that when focusing on mothers with excess-weight offspring 
only, the separation between children of mothers with GD and children of mothers 
without GD became clearer.  
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Group	by	group	comparisons		
 

SVM	analyses	
In order to further refine the focus of the analyses, we then moved to the comparison 
between couples of groups with same BMI. The only condition to produce 
statistically significant results was OW group (N=19) vs OWGD group (N=10). The 
SVM analysis at this level (N=29), on whole brain data, showed TA=89.66% and 
BA=87.37% (critical cutoff of reference = 70%) (Fig. 3). The AUC was equal to 

Figure 2: Results of the comparison between excess-weight_GD group excess-
weight_non-GD group. Top left: details of subjects’ discrimination based on 
whole brain images. Blue squares = GD subjects, red circles = non-GD subjects. 
Top right: Area Under the Curve. Bottom: hierarchical clustering results for GM. 
The blue cluster mainly includes excess-weight_non-GD subjects, while the red 
cluster mainly includes excess-weight_GD subjects. The squares on the right 
side of the dendrogram mark subjects not belonging to the majority group in that 
cluster. 
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0.88. Our results can be interpreted as a marked evidence of discriminability 
between the two groups. The SVM analysis of both WM and GM alone produced 
statistically significant and comparable results as well (see Tab. S2 and Tab. S3). 

 

Of note, the SVM comparison for NW vs NWGD did not produce significant results 
(TA=76.79%, BA=48.86%, AUC=0.66). This suggests that the barely significant 
results obtained when comparing all the groups without GD against all the groups 
with GD could be masked by the similarity among normal weight groups. After 
removing them, limiting the groups to excess weight condition, results became 
significant. However, while the comparison between overweight groups (OW vs 

Figure 3: Results of the comparison between overweight_GD group and 
overweight_non-GD group. Top left: details of subjects’ discrimination based 
on whole brain images. Blue squares = GD subjects, red circles = non-GD 
subjects. Top right: Area Under the Curve. Bottom left: hierarchical clustering 
results for GM. The blue cluster mainly includes excess-weight_non-GD 
subjects, while the red cluster mainly includes excess-weight_GD subjects. The 
squares on the right side of the dendrogram mark subjects not belonging to the 
majority group in that cluster. Bottom right: hierarchical clustering results for 
WM. Color scheme was used as described for GM. 
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OWGD) resulted into statistically significant results, the comparison for OB vs 
OBGD did not produced significant results (TA=54.17%, BA=47.78%, AUC=0.50). 
Therefore, it probably was the discriminability between overweight groups to drive 
the results for excess weight groups. 

Hierarchical	clustering	analyses	
The dendrogram obtained on GM data for the OW vs OWGD comparison shows the 
presence of two main clusters, one including 21 subjects, the second one including 
8 subjects. 18 out 21 subjects (85.7%) in the first cluster belong to the OW group, 
while 7 out 8 subjects (87.5%) in the second cluster belong to the OWGD group. 
The dendrogram obtained on WM data shows the presence of two main clusters, one 
including 15 subjects, the second one including 13 subjects. One subject from the 
OW group remained outside from the two clusters, appearing as an outlier. 13 out 
15 subjects (86.7%) in the first cluster belong to the OW group, while 8 out 13 
subjects (61.5%) in the second cluster belong to the OWGD group. Coherently with 
the SVM results, the clustering analysis showed a net separation between these two 
groups. 

 

Maternal	BMI	effect	
  

SVM	analyses	
To explore the effect of maternal BMI the same approach used for GD was followed, 
but in this case BMI groups without GD and BMI groups with GD were tested 
separately. In this context, the only comparison which produced statistically 
significant results was the one testing NWGD group (N=12) vs OWGD group 
(N=10). The SVM analysis at this level (N=22), on whole brain data, showed 
TA=72.73% and BA=73.33% (critical cutoff of reference = 70%) (Fig. 4). The AUC 
was equal to 0.69. Our result could be interpreted as a moderate evidence of 
discriminability between the two groups. The SVM analysis of both WM and GM 
alone produced statistically significant and comparable results as well (see Tab. S2 
and Tab. S3). 
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All the other comparisons focused on maternal BMI effect did not produce 
statistically significant results (see Tab. 2 and Tab. S2 for an overview). 

Hierarchical	clustering	analyses	
Despite the statistically significant SVM result, the dendrograms obtained on both 
GM and WM data did not showed a net separation neither between BMI groups with 
GD nor between BMI groups without GD. 

Additional SVM comparisons focused on OWGD, evaluating the interaction 
between BMI and GD, are described in the supplementary material (see also Tab. 
S4). 

Discussion 
Gestational diabetes (GD) and maternal excess weight are common pregnancy 
conditions which can have a negative impact for both the mother and her offspring. 
In the present study, we tried to understand if these clinical variables can be put into 
relationship with the structural properties of the offspring’s brains, using a 
combination of supervised and unsupervised learning methods. We found overall 
moderate evidence of differences on the brain of children born from mothers with 
and without GD. More in details, this effect is stronger when focusing on mothers 
with excess weight before pregnancy, especially overweight, but it was not found in 
children born from mothers with normal weight. 

Figure 4: Results of the comparison between normal weight GD group and 
overweight GD group. Left: details of subjects’ discrimination based on whole 
brain images. Black crosses = overweight subjects, red circles = normal weight 
subjects. Right: Area Under the Curve. 
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Based on the results, the effect of GD at increasing maternal BMI seems to follow a 
bell-shaped distribution. In fact, GD seems to play a relevant role especially in the 
case of children of mothers with overweight. On the contrary, there was no evidence 
of significant differences between the offspring of mothers with normal weight 
without GD and those of mothers with normal weight with GD. Similarly, no 
significant differences were detected between the offspring of mother with obesity 
without GD and those of mother with obesity mothers with GD.  

To the best of our knowledge there is only one previous study that explored the 
additive association of GD and maternal prepregnancy BMI on children brains 
(Page, et al., 2019). The results showed a linear relation between maternal BMI and 
hypothalamic dysfunction, but the statistical significance of this effect disappeared 
when adjusting for GD exposition. Authors suggest that GD mediates the association 
between maternal BMI and brain function. These results could appear as conflicting 
with ours. However, some elements should be noted. First, the authors investigated 
a functional dysregulation limited to the hypothalamus, while the present study 
focused on whole brain structural properties. Second, the PREOBE children were 
scanned at the age of six years, while the sample analyzed in Page et al. (2019) 
ranged between 7 and 11 years. Lastly, our findings suggest a non-linear interaction, 
while Page and colleagues only tested a linear relationship. Other previous studies 
that found significant relationships between GD and offspring’s neurodevelopment 
(Linder, et al., 2015; Torres-Espinola, et al., 2015) did not explore the additive 
impact of excessive maternal weight before pregnancy. 

Our findings are in consonance with a previous study conducted on this same cohort 
that reported an additive effect of GD and maternal BMI on latencies of visual 
evoked potentials at 18 months of age (Torres-Espínola, et al., 2018). A similar bell-
shaped relation was in fact found between maternal BMI and latencies for the GD 
group. Authors claimed that poorer myelination process of the auditory system may 
explain that results. However, previous analyses (Ou, et al., 2015), including one 
conducted on the PREOBE cohort (Verdejo-Román, et al., 2019) failed to find a 
significant association of WM with maternal BMI at 6 years old. Coherently, in the 
present study hierarchical clustering results gave better separation when applied to 
GM rather than WM, possibly suggesting that GD and maternal BMI could 
influence mainly GM at this stage. Nevertheless, the SVM analyses suggested that 
GM and WM are substantially equally informative to discriminate between groups. 
Further research at different development phases will help to elucidate the possible 
different role of these tissues. 
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Off note, the offspring of mothers with overweight and GD were not only found to 
differ from those of mothers with comparable BMI but no GD. They were also 
different from the offspring of mothers with normal weight, with or without GD, as 
well as from the offspring of mothers with obesity without GD. Hence, the co-
occurrence of overweight and GD resulted in being the more effective condition. 
This aspect deserves further clinical consideration in light of the documentes 
increased risk of GD with increasing BMI (Kim, et al., 2012) On the contrary, the 
maternal BMI alone was not found to be associated with differences in offspring of 
mothers without GD. 

The observed bell-shaped effect could also be influenced by different maternal 
conduct depending on group membership. If, on the one hand, prepregnancy normal 
weight could act as a protecting factor, on the other hand mothers with obesity could 
be more aware of the risks related to their BMI. In virtue of this, they could adopt 
special preventive measures. Conversely, mothers with overweight are still on the 
way to potentially enter obesity. As a consequence, they could still have those 
negative habits which were already abandoned (or at least mitigated) by mothers 
with obesity. Moreover, if the latter are likely to be followed by a specialist, the 
former could even not be aware of the risks they are exposed to. This hypothesis is 
supported by a qualitative survey realized on a sample of Latinas women, showing 
that mothers with overweight rarely gave importance to body weight, and 
underestimated the role of diet, compared to both healthy weight women and those 
with obesity (Wang, et al., 2015). More generally, Shub, et al. (2013) found that the 
majority of the interviewed mothers with prepregnancy excess weight had limited 
knowledge of the risk associated with maternal obesity. In light of this, it is not 
possible to exclude that mothers enrolled in PREOBE could have adopted more 
responsible behaviours for the fact of being part of a research project (a kind of 
Hawthorne effect). This could be reflected in the negative linear relation between 
prepregnancy BMI and gestational weight gain, especially marked for mothers with 
GD. Consequently, the influence between GD/BMI and offspring’s brain structural 
properties in the real population could be more evident.  

Finally, it is fundamental to note that at the moment of the evaluation there were no 
statistically significant differences for the BMI of the children. Coherently, no 
relationship was found between the maternal BMI during pregnancy and the BMI 
of their children at the age of 6. Therefore, the results are unlikely attributable to 
differences in build or development of the subjects. 
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Limitations	and	future	directions	
One potential limitation of the present work is the sample composition. Although 
quite consistent as a whole size, the decomposition into 6 sub-groups, and the data 
quality assessment, generated reduced cardinalities. Moreover, some of the 
comparisons involved unbalanced groups. However, this aspect, that reflects at least 
in part the rate of incidence of GD (Mack and Tomich, 2017; Rojo-Martínez, et al., 
2020), was taken into consideration when evaluating the results. Head movement is 
a second relevant problematic, common to all the MRI research field, and 
particularly marked when working with children. In order to try to limit the influence 
on data, specific procedures were followed, as explained in the methods section. In 
addition to this precaution, data were subjected to manual screening and discarded 
when corrupted. Although many variables were collected and considered as 
controls, it is not possible to exclude confounding effects due to uninvestigated 
parameters. Lastly, hierarchical clustering had been performed for GM and WM 
separately, but it was not possible to jointly analyze the two for computational 
constraints. Of note, future studies could benefit from the addition of information 
concerning the fathers. Although the present study suggests the existence of 
structural brain differences, the analysis of cortical parameters, such as cortical 
thickness and gyrification, could help to clarify the contribution of specific regions. 
At the same time, the investigation of the functional counterpart would be 
meaningful. Finally, a longitudinal approach would allow to follow the temporal 
evolution of the transgenerational influences. 

Conclusions 
In the present paper we analyzed the potential transgenerational signs of maternal 
GD and excess-weight before pregnancy detectable on the offspring’s brains at the 
age of 6 years. Results showed that the relationship with GD is visible for the 
children of mothers with excess-weight, and in particular those with overweight. On 
the contrary, no detectable differences emerged when considering mothers with 
normal weight. Relationship with BMI were only found for GD positive groups, 
suggesting that maternal BMI alone is not associated with transgenerational signs. 
From the clinical point of view, our study highlights the need for specific care of 
mothers with excess weight diagnosed with GD, since the combination of these two 
factors seems to have the capability to induce transgenerational brain signs.   
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Supplementary results 
Additional	SVM	analyses	on	OWGD	group	
Seeing as how the OWGD group showed discriminability from OW group and from 
NWGD group, additional SVM comparisons were designed to investigate possible 
differences with the remaining groups, although these could be due to the interaction 
between BMI and GD. The comparison between OWGD group (N=10) and NW 
group (N=44) (TOT N= 54), on whole brain data, showed TA=85.19% and 
BA=67.73% (critical cutoff of reference = 62.5%). The AUC was equal to 0.90. Our 
results can be interpreted as a marked evidence of discriminability between the two 
groups. However, the SVM analysis of both WM and GM alone did not produce 
statistically significant results (see Tab. X). The comparison between OWGD group 
(N=10) and OB group (N=15) (TOT N= 25), on whole brain data, showed TA=80% 
and BA=80% (critical cutoff of reference = 70%) (Fig. SX). The AUC was equal to 
0.90. Our results can be interpreted as a quite strong evidence of discriminability 
between the two groups. The SVM analysis of both WM and GM alone produced 
statistically significant and comparable results (see Tab. S3). 

Supplementary tables 
 

 

 Non-gestational diabetes 
(N = 78) 

Gestational Diabetes 
(N=31) 

 NW; 
n=44 

 OW; 
n=19 

 OB; 
n=15 

NWGD; 
n=12 

OWGD; 
n=10 

 OBGD; 
n=9 

Maternal 
age (years) 

31.48 
(3.75) 

32.63 
(4.34) 

29.00 
(4.14) 

33.50 
(5.20) 

33.80 
(2.97) 

34.44 
(4.72) 

Child sex 
(M/F) 24 / 20 8 / 11 7 / 8 8 / 4 4 / 6 5 / 4 

Gestational 
Age 
(Weeks) 

39.57 
(1.13) 

39.56 
(1.89) 

39.60 
(1.64) 

39.58 
(1.44) 

39.10 
(1.52) 

39.44 
(1.51) 

Age at 
MRI (days) 

2386.59 
(116.10) 

2373.84 
(115.51) 

2293.40 
(105.90) 

2317.83 
(101.15) 

2256.10 
(75.69) 

2256.44 
(45.72) 

Subjects 
removed 17 3 3 4 5 2 

Table S1: Socio-demographic and anthropometric details of the sample. 
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Total	N Critical	cutoff Total	accuracy Balanced	accuracy AUC

NW	vs	NWGD 56 60% 78.57% 50% 0.08
OW	vs	OWGD 29 70% 89.66% 87.37% 0.88
OB	vs	OBGD 24 70% 50% 40% 0.49
EW	vs	EWGD 53 60% 77.36% 71.90% 0.77
non-GD	vs	GD 109 58% 68.81% 49.05% 0.67

NWGD	vs	OWGD 22 70% 72.73% 73.33% 0.71
OWGD	vs	OBGD 19 70% 63.16% 62.22% 0.74
NWGD	vs	OBGD 21 70% 42.86% 37.50% 0.15
NWGD	vs	EWGD 31 62.50% 67.74% 61.40% 0.62

NW	vs	OW 63 60% 69.84% 50% 0.27
OW	vs	OB 34 62.50% 38.24% 34.21% 0.07
NW	vs	OB 59 60% 74.58% 50% 0.30
NW	vs	EW 78 58.70% 48.72% 43.52 0.42

GD	effect

BMI	effect	(GD	groups)

BMI	effect	(non-GD	groups)

Table S2: Results of the SVM analyses based on gray matter only. Critical cutoff 
is based on Combrisson and Jerbi (2015), considering p<0.05 and two classes. 
Significant accuracy results are in bold. 

Total	N Critical	cutoff Total	accuracy Balanced	accuracy AUC
NW	vs	NWGD 56 60% 78.57% 50% 0.41
OW	vs	OWGD 29 70% 89.66% 87.37% 0.87
OB	vs	OBGD 24 70% 54.17% 45.56% 0.53
EW	vs	EWGD 53 60% 75.47% 70.43% 0.78
non-GD	vs	GD 109 58% 69.72% 50.66% 0.70

NWGD	vs	OWGD 22 70% 72.73% 73.33% 0.74
OWGD	vs	OBGD 19 70% 63.16% 62.22% 0.76
NWGD	vs	OBGD 21 70% 42.86% 37.50% 0.36
NWGD	vs	EWGD 31 62.50% 70.97% 65.57% 0.66

NW	vs	OW 63 60% 69.84% 50% 0.19
OW	vs	OB 34 62.50% 32.35% 28.95% 0.05
NW	vs	OB 59 60% 74.58% 50% 0.27
NW	vs	EW 78 58.70% 46.15% 41.24% 0.31

GD	effect

BMI	effect	(GD	groups)

BMI	effect	(non-GD	groups)

Table S3: Results of the SVM analyses based on white matter only. Critical 
cutoff is based on Combrisson and Jerbi (2015), considering p<0.05 and two 
classes. Significant accuracy results are in bold. 
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y	=	-0.2048x	+	16.43
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Table S4: Results of the SVM analyses for OWGD group. Critical cutoff is 
based on Combrisson and Jerbi (2015), considering p<0.05 and two classes. 
Significant accuracy results are in bold. 

Total	N Critical	cutoff Total	accuracy Balanced	accuracy AUC
NW	vs	OWGD 54 62.50% 85.19% 67.73% 0.90
OB	vs	OWGD 25 70% 80% 80% 0.90
NW	vs	OWGD 54 62.50% 79.63% 52.73% 0.85
OB	vs	OWGD 25 70% 80% 80% 0.91
NW	vs	OWGD 54 62.50% 81.48% 57.73% 0.85
OB	vs	OWGD 25 70% 80% 80% 0.93

Whole	brain

Gray	matter

White	matter

Figure S1: Linear regression between maternal BMI and gestational weight gain 
(measured in Kg) in non-GD groups. 
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Figure S2: Linear regression between maternal BMI and gestational weight gain 
(measured in Kg) in GD groups. 

Figure S3: Linear regression between children’s BMI at 6 years and gestational 
weight gain (measured in Kg) in non-GD groups. 
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Figure S4: Linear regression between children’s BMI at 6 years and gestational 
weight gain (measured in Kg) in GD groups. 

BMI	
6	years

Figure S5: ANOVA results for BMI for the BMI of the subjects at the moment 
of the evaluation (6 years old). 
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Figure S6: Linear regression between maternal BMI and birth weight of the 
children (measured in g) in non-GD groups. 

Figure S7: Linear regression between maternal BMI and birth weight of the 
children (measured in g) in GD groups. 
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3 – Discussion and conclusions 
The included studies provided an overview of different ways to investigate 

properties of GM networks. The first three ones, in particular, highlighted how the 
framework of pathoconnectomics can add new levels of interpretation to understand 
specific brain disorders, the pathological mechanisms behind them, and even the 
detailed involvement of a given brain region. As pointed out, all these different 
scales can be investigated with the same methodology, simply changing a few 
parameters during data selection. Interestingly, the evidence obtained adopting a 
transdiagnostic approach can provide a contribution to the still open debate 
concerning disorders taxonomy and diagnostic process in clinical practice, at least 
in the Western world. Notably, in their seminal paper in the field of 
pathoconnectomics Rubinov and Bullmore (2013) specified as one of the main 
challenges of this paradigm the “brain-network-based delineation of psychiatric 
disorders”. The same can be extended to neurodegenerative diseases (Deco & 
Kringelbach, 2014). For many years, the predominant approach has been principally 
based on the identification of a disorder through the recognition of a collection of 
symptoms (Lilienfeld & Treadway, 2016). This guided the definition of both the 
ICDs system and the DSMs, so that each disease, either psychiatric or neurological, 
ended up to be considered as a clearly defined entity. Consequently, a relevant 
proliferation of diagnostic labels took place. However, clinicians often interpret 
particular combinations of symptoms as cases of comorbidity (Krueger & Markon, 
2006). On the other hand, only a reduced set of clinical symptoms can be really 
considered pathognomonic, in virtue of their high specificity and sensitivity for a 
defined disease. In many cases symptoms appear instead in a cross-disorder way, 
and this is the conceptual base for the differential diagnosis in the clinical reasoning. 
In recent years, medical conditions usually thought as independent (or clinically 
distant one to each other) have shown to be not as far as initially considered. In some 
cases, this even motivated the inclusion in a common spectrum. A relevant evidence 
in this sense is the identification of a shared biological background. This was the 
case of frontotemporal dementia and amyotrophic lateral sclerosis, showing 
complex overlap from a neuropathological, clinical and genetic point of view 
(Ravits, 2014; Ravits et al., 2013). Shared elements were also described among 
multiple sclerosis, Baló's concentric sclerosis and tumefactive demyelination (T. A. 
Hardy, Tobin, & Lucchinetti, 2016), or between frontotemporal dementia and 
Alzheimer’s disease (Padovani et al., 2013). Further commonalities between 
disorders are emerging thanks to the advances in genetics are (Anttila et al., 2018; 
Gershon & Grennan, 2015; Yokoyama et al., 2017) (Anttila et al. 2018; Gershon 
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and Grennan 2015; Yokoyama et al. 2017). For example, genetic correlation has 
been proposed for amyotrophic lateral sclerosis and schizophrenia (McLaughlin et 
al., 2017). This growing body of evidence matches with different initiatives, as the 
RDoC framework (Insel, 2014; Insel et al., 2010) or the HiTOP (Kotov, Krueger, & 
Watson, 2018), that started in last years a process of reconsideration of the approach 
to disorders taxonomy and diagnostic procedure. 

The one-to-one mapping between symptoms and pathologies is challenged by 
latest findings and advances in the field of neuroimaging too. If taken as valid, in 
fact, the matching of each disorder with a distinct pattern of brain alteration should 
be expected. However, based on growing evidence, this seems to be the exception 
rather than the rule. This aspect was specifically investigated by our team in a recent 
study (not included in extenso in the present thesis because not based on the co-
alteration network method) (Franco Cauda et al., 2019). Briefly, an index named 
“alteration entropy” was developed, to measure the amount of different disorders 
associated with structural alteration in each voxel of the brain. The results showed 
that the majority of the brain regions can be disrupted by a wide range of both 
psychiatric and neurodegenerative pathologies. In light of this, given a detected 
pattern of cerebral alteration is hardly possible to assign it to a single pathology. 
This could be due, at least in part, to the clinical stage captured by the experiments 
analyzed. In fact, clinical and research data collected from affected subjects often 
represent a symptomatic stage of the disease. Indeed, at this late phase the 
progression of the alteration could have reached a vast portion of the whole brain, 
although probably started from a circumscribed region (or set of regions). This 
aspect seems to be confirmed by a further work recently published by our group (not 
included in extenso) showing that, at least in Alzheimer’s disease, the brain regions 
expressing higher specificity for this disorder are also among the first to be altered 
(Franco Cauda et al., 2020). As proposed in the introduction, the analysis of the co-
alteration networks in place of simple patterns could help to disentangle this 
complex landscape. In fact, at least in theory, in case of two conditions showing 
similar ALE maps the obtained co-alteration networks could highlight different 
relationships between the same brain regions. This issue had been preliminarily 
addressed in abstract presented by our group during OHBM 2018, comparing the 
co-alteration networks of Alzheimer’s disease and frontotemporal dementia (Nani 
et al., 2018). Results showed the overlap of altered nodes localized in superior 
temporal gyrus, amygdala, and hippocampus between the two conditions, but a well 
differentiated structure of their co-alteration networks. Moreover, although the co-
alteration network of frontotemporal dementia consisted of more edges, 
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Alzheimer’s disease presented a co-atrophy network with a greater number of highly 
co-altered nodes. This aspect, that would have not been identified through the 
analyses of the sole ALE patterns, possibly suggested a more intense process of co-
alteration, yet needing further investigation to be confirmed. 

 

 

Figure 4: The co-alteration network of Alzheimer’s disease (A) and 
frontotemporal dementia (B). Nodes’ size and color represent 
degree, while edges’ thickness represent edge betweenness. 
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A further possible approach to tackle the issue of distinction between disorders relies 
on the clustering of the nodes based on their profile of co-alteration. If applied to 
multiple co-alteration networks built using a same set of nodes, this procedure could 
highlight a different role of a brain region between two (or more) disorders, 
observing how it tends to be clustered with respect to the rest of the co-alteration 
network.  

A second meaningful point that can be addressed by means of the co-alteration 
networks detection, and at the same time one of the ultimate goals of this approach, 
is the comprehension of how the alteration spreads across the brain. This aspect 
would help to follow the temporal evolution of a disease, since its early potentially 
asymptomatic stages. A key element to this aim, as mentioned in the selected 
studies, is the transition from undirected to directed co-alteration networks. 
Although already computationally possible, the soundness of using Patel’s tau on 
this kind of data still needs further support. Providing this has high priority for the 
future development of our methodology. Nonetheless, it would be possible to argue 
that starting from structural meta-analytic data it is not possible to infer a pattern of 
propagation, requiring instead longitudinal data. In fact, VBM experiments provide 
a static picture of a state, while the concept of propagation implies a causal event 
characterized by a precise temporal directionality. However, it is possible to 
demonstrate that a description of the propagation pattern can be obtained modelling 
a diffusion process (Kondor & Lafferty, 2002) on the basis of the co-alteration 
matrix built using Patel’s k (Abdelnour, Voss, & Raj, 2014). In fact, the co-alteration 
matrix (of size n x n, where n is the number of nodes in the network) is tantamount 
to an adjacency matrix, from which a degree matrix can be obtained, allowing to 
describe the transition between two states of a system (F. Cauda et al., 2018). The 
last element needed to fully model the spread trajectory is the starting point of the 
propagation, but, unfortunately, this information can’t be extracted from meta-
analytic data. However, even in absence of this, the existing theoretical support 
allows to reasonably state that a diffusion process occurs along the edges of a co-
alteration network. 

In addition to the introduction of directionality, a major goal for the future will 
be the comparison of the co-alteration network with further kind of data. In 
particular, relevant knowledge could come from the analysis of vascularization 
maps. First, the vascular system has a network-like nature, a favourable feature to 
be entered in a network-based framework. Notably, the available imaging 
techniques allow its in vivo detection to a very good level of detail, and relying much 
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less on probabilistic estimation than tractography. Moreover, the circulation allows 
to build a directed network without resorting to statistical strategies, unlike effective 
connectivity or Patel’s tau. The information coming from the blood flow could also 
interact in a meaningful way with functional connectivity networks, being in turn 
based on BOLD effect. From a clinical point of view, data about vascularization 
could allow to think in terms of pathoconnectomics about cardiovascular disorders 
affecting the brain, while these are currently difficult to be included in 
transdiagnostic studies together with psychiatric and neurodegenerative pathologies 
due to their different nature. Finally, these data could support a hypothesized failure 
in the production of trophic factors behind the deterioration of neural wiring and, in 
turn, the propagation of alteration, known as trophic failure (Zhou et al., 2012). At 
the present stage, the main issue to be solved to turn this speculation into facts is the 
integration of vascular data, usually collected at subject level, and the ALE maps, 
by definition on a meta-analytic level. During the last years some attempts have been 
done to adapt our methodology to subject-level data. The individual spatially 
standardized GM maps obtained as intermediate product of the VBM pipeline could 
be technically suitable. However, in absence of normative intensity values to 
discriminate between T1 images of healthy and pathological subjects, the main issue 
remains the identification of focal structural alteration and the consequent creation 
of the nodes.  

The advantages of working on subject-level data, especially in terms of design 
flexibility and chance to detect subtle effects, emerged from the fourth and fifth 
study included. In fact, the peculiarity of the PREOBE cohort allowed to investigate 
transgenerational effects, modelling two different clinical features at the same time. 
The research carried out in Oxford, instead, benefited from the significant sample 
size of UK Biobank, that made possible to characterize the association with 
variables explaining even a very small fraction of variance, but in a strongly 
significant way. Despite the different methodologies used in these two studies, the 
opposed way of inference (“from features to network” the former, “from network to 
features” the latter), and the different subjects’ age, it is interesting to note that both 
converged in finding a role of diabetes and, to a less extent, body size measurements. 
This evidence, together with the effect for cholesterol and blood pressure in the 
Oxford study, could suggest a more general relationship between GM structural 
properties and cardiovascular state (Boots et al., 2019; Gonzales et al., 2017). Both 
these last studies potentially offer the prospect of follow-up researches. The children 
in the PREOBE cohort had been recently re-scanned at the age of 8 years, allowing 
an interesting prospective evaluation of the evolution of the effects described at 6 
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years old. As for UK Biobank, the sample size is intended to more than double while 
the goal of scanning 100,000 participants is reached.  

Besides the incorporation of subject-level data, a future planned development of 
the co-alteration network methodology would allow to model further variables and 
meta-data associated with the single experiments. Although the classic meta-
analytic level does not allow to access details for each subject included in the various 
samples, unless adopting something similar to a mega-analysis approach (Boedhoe 
et al., 2018), additional information about the sample analyzed is often available. 
This includes, at least, average age ad male/female ratio, but in some cases duration 
of illness, disorder sub-type, or score to specific clinical tests are also reported. 
These could be regressed on the MA maps as nuisance variables, propagating their 
effects to the ALE map, or modelled during the edges computation. One possible 
option could be to leverage the information on the contribution of the foci to each 
blob in the ALE map, already provided by the ALE implementation in the 
GingerALE tool. As described before, our methodology marks the local maxima of 
the ALE map with nodes, so that a correspondence exists between a node and a blob 
of the ALE map. It is also known which of the foci contribute to a blob (i.e. a node), 
as well as which experiment each of those foci belongs to. Therefore, when the 
aforementioned kinds of information are available for an experiment, these can be 
used to characterize the foci reported for that experiment. In turn, the features can 
be extended to the blob these foci contribute to, and hence to the corresponding 
node. In this way, the nodes in the co-alteration network could be enhanced with 
clinical/biological information. However, further development is needed to turn this 
hypothetical approach into a concrete methodology. At the moment, for example, 
the information concerning duration of illness or disorder sub-type is used to split 
the available study into sub-groups (e.g. at risk for schizophrenia, early diagnosed, 
chronic patients) that are independently analyzed, with results being compared at a 
later stage. In other cases, this process leads to the identification of a small class that 
is removed from the pool. Alternatively, one general dataset could be preserved, 
improving the statistical power, and providing additional information not obtained 
with the current approach. A somewhat similar solution was developed to 
complement SDM methodology (Radua et al., 2012; Radua, van den Heuvel, 
Surguladze, & Mataix-Cols, 2010). 

As described, the co-alteration network approach had been conceived and 
developed in the framework of CBMA. Nonetheless, the methodology could be 
shifted to IBMA without requiring serious modifications. In fact, the essential 
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elements of the described approach are the maps representing results of each 
experiment in the dataset, and a final higher-level (meta-analytic) map. In CBMA 
the former are the MA maps, while the latter is the ALE map. In actual fact, the MA 
maps are a reconstruction of the original results maps made from the foci. Therefore, 
in the IBMA original maps would be already available. The strategy described to 
define the nodes of a co-alteration network is equally suitable for any kind of spatial 
maps, including the results of a IBMA. Finally, Patels’ k could be used to compute 
the likelihood of co-alteration of each couple of nodes across the maps related with 
each of the experiments. If compared with the CBMA scenario, the IBMA version 
could allow the identification of a higher number of nodes in the co-alteration 
network. In fact, a MA map heavily depends on the amount of foci reported, and 
this can vary from just one to several tens. The degree to which this reflects the real 
spatial extent of the original map is tied to the level of detail (and care) adopted by 
the authors of each experiment. On the other hand, the ALE algorithm considers the 
sample size of each experiment, giving a greater weight to bigger samples. In the 
IBMA version, the use of the original maps without some kind of correction would 
not allow to control for this possible bias. In light of the technical feasibility, a direct 
comparison between IBMA and CBMA on a same dataset (as in Salimi-Khorshidi 
et al., 2009) could help to evaluate the actual pros and cons of each scenario. 

Although the scientific domain this research project belongs to is far from a direct 
clinical application, it is anyway possible and potentially useful to speculate on it. 
Especially because, in a hopefully not too far future, our approach could contribute 
to tackle brain disorders characterized by neurodegeneration. When co-alteration 
networks will have become directional, allowing to reliably estimate the propagation 
process, it could be possible to identify those focal brain regions that once 
compromised open the way to a fast and widespread propagation of the structural 
damage. Those hubs could thus be the target of future medicines or other therapeutic 
strategies to prevent the beginning of degenerative cascades still at a 
presymptomatic stage of the disease. 

To conclude, the present thesis discussed different approaches to the analysis of 
GM networks in both healthy and pathological brain. When working on subject-
level data, two different designs were adopted to investigate the relationship 
between GM structural properties and non-brain factors, having the chance to 
analyze peculiar healthy cohorts. On the pathological side, the development and 
application of a new method to enhance CBMA combining it with network analysis 
was described. At the end of this fascinating project I hope that the developed 
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technique and the results obtained will contribute to the progress of the 
pathoconnectomics field. 
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