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Abstract

Research on ancient adhesives from the South African Stone Age is expanding, driven by

excellent preservation conditions of adhesives and the potential to address diverse archaeo-

logical questions. These adhesives are primarily characterized through microscopic and

chemical analysis. Despite geographic variability, a consistently identified component is

Podocarpus resin or tar. We challenge these identifications, considering another Podocar-

paceae genus, Afrocarpus, and the Cupressaceae genus Widdringtonia. Gas Chromatogra-

phy-Mass Spectrometry was employed to analyze molecular signatures of modern wood,

tar, resin, and seed cones from these genera. The results form an extensive reference data-

base and reveal challenges in distinguishing these genera based on the diterpenoid signa-

ture. While Podocarpus is frequently cited, we advocate for a broader classification as

Podocarpaceae when phenolic diterpenoids are found in high abundances and pimaranes

and abietanes in lower abundances, and Widdringtonia when the opposite is true. The study

differentiates materials used in adhesive production, including leaves and wood, highlighting

the significance of α,ω-dicarboxylic acids, hydroxy acids, n-alkanes, and alcohols. Tars pro-

duced from leaves are characterized by odd-numbered n-alkanes, while tars produced from

twigs and branches are characterized by long-chain α,ω-dicarboxylic acids, hydroxy acids,

and alcohols. Because the differences between these adhesives in terms of raw material

procurement and production are great, a more nuanced and cautious approach that

acknowledges the challenges in differentiating tree species on a molecular level and consid-

ers archaeological and environmental context is required.

1. Introduction

Research on South African Middle and Later Stone Age adhesives is a growing field due to the

excellent preservation of lipids the deposition conditions provide and the array of
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archaeological questions that can be addressed [1–3]. When identified, the adhesives are found

adhering most commonly to lithics but also to ceramics and bone tools and as free lumps [1,

4–9]. Adhesive research focuses on the microscopic and chemical characterization of the adhe-

sive components. Ingredients that are commonly found include conifer resin and tar, Euphor-
bia latex, plant and animal derived wax, animal fat, and a variety of mineral additives.

Although the archaeological adhesive finds are found across South Africa, covering many dif-

ferent biomes, the primary component identified is surprisingly monotone. Podocarpus, a

genus of conifers, is most frequently referenced in case studies spanning both the Middle and

Later Stone Ages [4–8].

Podocarpus is endemic to South Africa [10], and it is attested in the archaeological record by

burnt wood remains dating as far back as 75,000 years ago [11–13]. Pollen records show that

while abundance varied regionally and diachronically, Podocarpus was prolific throughout the

Stone Age, with clear forests [14–17], and it is perhaps because of this that Podocarpus is at the

focus of archaeological discourse. Used today almost exclusively for its timber [18], Podocarpus
can also be transformed into an adhesive. Experimental studies suggest that the tar was produced

from the leaves [3], which contain resin channels [19], rather than the bark, which does not con-

tain resin channels [20–22]. When prepared with certain methods, this tar is significantly stronger

than adhesives produced from other local plants [3]. The use of Podocarpus is reinforced by the

molecular analysis of ancient adhesives [4–8]. Here phenolic diterpenoids, specifically ferruginol,

sempervirol, totarol, and their derivatives, are used to identify Podocarpus [23].

We question the past identification of archaeological adhesives produced from Podocarpus
for several reasons. First, Podocarpus is part of the Podocarpaceae family, which contains

another genus endemic to South Africa–Afrocarpus. While initially clustered together, these

genera are distinct [24] and have different leaf anatomies and reproductive systems [25–27].

Afrocarpus must be considered as a potential adhesive source, and it is unclear if the two gen-

era can be chemically distinguished. Second, the chemical signature of Podocarpaceae is simi-

lar to some members of the Cupressaceae family [23, 28], represented in South Africa by the

genus Widdringtonia [10]. Charred wood remains at some archaeological sites [11] support

the presence of this plant; however, Widdringtonia has been rejected as a potential adhesive

source despite the bark’s high resin content because the resin was considered qualitatively infe-

rior [3]. None the less, this does not imply that the resin was not exploited, as the adhesives

properties can be improved with the use of additives or with differential treatment [9, 29–31],

and qualitatively inferior resins are known to have been used in some instances in favor of tars

[32]. Third, besides the leaves there are other parts of the Podocarpaceae plants that contain

diterpenoids and/or resin, including the wood [28, 33] and the female seed cones [26, 34].

Wood is a known raw material used in ancient adhesive production. In species with resin

channels, the resin can be extracted manually, but the wood can also be transformed into tar

[35, 36]. In addition, ethnographic research shows that some populations use fruits containing

latex to produce adhesives [37].

To address these discrepancies, this study applies Gas Chromatography-Mass-Spectrometry

(GC-MS) to characterize the molecular signature of resin from different conifers native to

South Africa, including those from the Podocarpus, Afrocarpus, and Widdringtonia genera.

We synthesize the results of two separate case studies conducted between 2016–2023 that

applied different instrumentation and analytical conditions. Unmodified resin, wood, and

seed cones and tar made from leaves and branches were studied to test for molecular variation

based on genus and plant part. We propose that these results can be used to reevaluate our

understanding of the archaeological record and adhesive production in the South African

Stone Age, allowing for a more nuanced identification of what tree species and parts of the

trees people exploited.

PLOS ONE A tale of two conifers

PLOS ONE | https://doi.org/10.1371/journal.pone.0306402 November 13, 2024 2 / 19

2014-0477), the Wenner-Gren Foundation, the

Royal Anthropological Institute of Great Britain and

Ireland. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0306402


2. Material and methods

Material was tested from two families–Podocarpaceae and Cupressaceae (Table 1). Within the

Podocarpaceae family, there are two analyzed genera–Afrocarpus and Podocarpus. Specimens

from four species of Podocarpaceae were analyzed.–A. falcatus, P. elongatus, P. henkelii, and P.

latifolius. Cupressaceae in South Africa is represented by Widdringtonia [27]. Specimens of

two species were analyzed: W. cedarbergensis and W. nodiflora. The distribution of these plants

is variable with commonly Afrocarpus and Podocarpus populating the temperate coastal

regions and Widdringtonia populating mountainous regions [38, 39]. Specimens were col-

lected from botanic gardens in the Netherlands, South Africa, and the United Kingdom.

The wood of Widdringtonia is resinous (Fig 1A), and while the wood of Podocarpaceae
trees does not actively exude resin and is lacking resin channels, it is known to contain terpe-

noids [28, 40, 41]. The leaves of the Afrocarpus and Podocarpus trees also contain multiple

resin channels (Fig 1B) [19]. Accordingly, tar was produced from small bark bearing branches

of all collected species and the leaves of Afrocarpus and Podocarpus samples (Table 1). The spe-

cific tar production methods are described in the S1 File. In addition, unaltered samples of

wood and seed cones, the latter of which contain resin pockets (Fig 1C and 1D) [34, 42], were

collected as well as one pure resin sample (Table 1).

Sub-samples of the tars and other plant material underwent lipid residue analysis. Three

primary extraction and analysis protocols were used (see S1 File for additional information).

At TU Delft, lipids were extracted using dichloromethane. At the University of Pisa and the

University of Oxford, samples (tars produced from wood) were saponified with a hydroalco-

holic solution of potassium hydroxide and divided into neutral and acid fractions [43, 44].

Because of the saponification process, these samples are expected to have different composi-

tions to other pre-treatment procedures, including long chain dicarboxylic acids and hydroxy

acids that form during the alkaline hydrolysis and transesterification of suberin. Additionally,

at the University of Oxford, samples were extracted utilizing hexane, dichloromethane, and

methanol. All samples were silylated using bis(trimethysilyl)trifluoroacetamide (with 1% tri-

methylchlorosilane). Following GC-MS analysis, the resulting chromatograms were inter-

preted using the National Institute of Standards and Technology (NIST) library and a

prepared AMDIS library. Reference mass spectra for all discussed diterpenoids are provided in

the S2 File, and the general fragmentation pattern is presented here (Table 2).

3. Results

GC-MS was used to identify the following molecule types: fatty acids, alcohols, n-alkanes, α,ω-

dicarboxylic acids, hydroxy acids, and diterpenoids (S3 File). Fatty acids, alcohols, α,ω-dicar-

boxylic acids, and hydroxy acids form from the degradation of suberin, a biopolymer found in

the outer most layer of the bark periderm [45]. The n-alkanes are odd-numbered and related

Table 1. Overview of the type and number of samples collected from Podocarpaceae and Cupressaceae species.

Species Wood Tar from branches Tar from leaves Resin Seed cones Total no. samples per species

A. falcatus 2 3 1 0 0 6

P. elongatus 1 2 0 0 1 4

P. henkelii 2 3 1 0 0 6

P. latifolius 1 1 1 0 1 4

W. cedarbergensis 1 2 0 0 0 3

W. nodiflora 1 1 0 1 0 3

Total no. samples per material 8 12 3 1 2 26

https://doi.org/10.1371/journal.pone.0306402.t001
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to wax components [46, 47]. The diterpenoids include phenolic diterpenoids, such as ferrugi-

nol, sempervirol, totarol, and their degradation products, which are viewed as characteristic of

Podocarpaceae and Cupressaceae [23, 28, 48]. Pimaranes, abietanes, and communic acid,

which are found indiscriminately in conifer species [23], were also identified.

3.1 Taxonomic differentiation

While species-specific research is limited, the different families are commonly identified by

the diterpenoids characteristic of pine species, including specifically phenolic diterpenoids

[23, 28]. This section describes the molecular signature of the trees according to the plant tax-

onomy on the genus and species level using qualitative analysis.

3.1.1 Afrocarpus. The identified diterpenoids are primarily phenolic diterpenoids and

pimaranes (Fig 2), with the abundances varying between samples. The most abundant pheno-

lic diterpenoids are ferruginol, sempervirol, and totarol, with lesser amounts of 2,3-dehydro-

ferruginol, sugiol, totarane ketones, dehydrototarol, hydroxytotarol, and carboxynortotarol.

Pimaranes include high amounts of sandaracopimaric acid, isopimaric acid, and an unknown

pimarane (characterized by a base peak at m/z 241), with lower amounts of pimaric acid.

Traces of kaur-16-ene, abietatriene, and communic acid were also identified.

Fig 1. Macroscopic photo of a) Resin exuding from W. nodiflora bark; b) Resin channels in a P. henkelii leaf; c) Resin exuding from a P. elongatus seed when

pressure is applied; d) Resin pockets in an P. elongatus seed.

https://doi.org/10.1371/journal.pone.0306402.g001
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3.1.2 Podocarpus. The diterpenoids consist of phenolic diterpenoids, pimaranes, abie-

tanes, and communic acid (Fig 3). Some variation in terms of the most abundant molecules

was noted between the species. P. elongatus tar and wood contain high amounts of phenolic

diterpenoids, with only trace amounts of pimaranes and abietanes. This includes primarily

2,3-dehydroferruginol, totarol, and totarane ketones, with lesser amounts of sempervirol and

other derivatives. P. latifolius tar and wood similarly contains high amounts of totarol, with

lower abundances of 2,3-dehydroferruginol, ferruginol, sempervirol, sugiol and other totarane

ketones, hydroxyferruginol, and carboxynortotarol (Fig 3B). Within the Podocarpus genus, P.

Table 2. List of diterpenoids identified in the Afrocarpus, Podocarpus, and Widdringtonia samples and their fragmentation patterns.

Molecule MW M/Z values of characteristic fragment ions (% abundance)

2,3-Dehydroferruginol, TMS 356 73 (100), 274 (88), 356 (83), 341 (33), 271 (31), 299 (28), 285 (27), 357 (27), 231 (26), 272 (24)

Abietatriene 270 255 (100), 270 (34), 173 (32), 159 (32), 43 (24), 256 (20), 185 (16), 69 (14), 58 (10), 271 (7)

Abietic acid, TMS 374 256 (100), 73 (42), 241 (35), 257 (25), 374 (19), 32 (18), 213 (16), 185 (16), 105 (13), 359 (13)

Carboxynortotarol, diTMS 460 327 (100), 445 (66), 285 (30), 355 (22), 460 (20), 73 (18), 247 (16), 313 (14)

Communic acid, TMS 374 73 (100), 81 (35), 79 (29), 119 (29), 105 (26), 91 (23), 93 (22), 175 (20), 134 (19) 75 (19)

Dehydroabietic acid, TMS 372 239 (100), 73 (54), 240 (21), 43 (16), 171 (14), 75 (12), 173 (12), 357 (12), 41 (12), 255 (11)

Ferruginol, TMS 358 73 (100), 358 (99), 343 (76), 359 (31), 247 (30), 261 (29), 344 (23), 69 (23), 273 (21), 259 (20)

Hydroxyferruginol, diTMS 446 446 (100), 341 (87), 73 (49), 447 (47), 342 (29), 431 (21), 75 (21), 259 (19), 448 (18), 299 (18)

Hydroxytotarol, diTMS 446 341 (100), 431 (44), 73 (44), 342 (33), 343 (26), 357 (24), 446 (20), 372 (20), 432 (16), 261 (14)

Isopimaric acid, TMS 374 73 (100), 256 (73), 241 (61), 257 (30), 41 (27), 55 (27), 75 (27), 81 (25), 109 (21), 43 (19)

Kaur-16-ene 272 257 (100), 272 (77), 229 (54), 123 (47), 125 (47), 69 (45), 105 (44), 147 (44), 81 (38)

Pimaric acid, TMS 374 73 (100), 121 (63), 120 (30), 257 (24), 75 (21), 41 (18), 55 (18), 81 (18), 91 (17), 79 (15)

Sandaracopimaric acid, TMS 374 121 (100), 73 (94), 120 (45), 359 (37), 257 (34), 91 (30), 241 (26), 81 (25), 105 (23), 75 (22)

Sempervirol, TMS 358 343 (100), 344 (32), 358 (29), 73 (18), 247 (14), 273 (12), 359 (9), 261 (9), 345 (8), 259 (6)

Sugiol, TMS 386 357 (100), 372 (59), 73 (42), 358 (29), 373 (18), 289 (14), 275 (14), 315 (11), 287 (10), 359 (8)

Totarol, TMS 358 343 (100), 247 (43), 358 (38), 34 (31), 73 (26), 273 (23), 359 (13), 261 (13), 248 (10), 274 (9)

Unknown ketone (m/z 261), TMS 386 261 (100), 372 (46), 275 (27), 262 (23), 373 (14), 301 (11), 357 (9), 217 (8), 276 (7), 73 (7)

Unknown ketone (m/z 275), TMS 386 275 (100), 261 (83), 372 (37), 276 (24), 262 (22), 73 (17), 357 (15), 301 (15), 287 (10), 259 (10)

Unknown pimarane (m/z 241), TMS 374 241 (100), 73 (27), 359 (22), 256 (15), 374 (12), 173 (11)

https://doi.org/10.1371/journal.pone.0306402.t002

Fig 2. Patial ion chromatogram displaying molecules identified as TMS derivatives from solvent extracted tars produced from A. falcatus wood.

https://doi.org/10.1371/journal.pone.0306402.g002
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henkelii stands out as unique. Unlike the others, it contains high abundances of pimaranes,

including, pimaric acid, sandaracopimaric acid, isopimaric acid, and the unknown pimarane

(Fig 3A). Phenolic diterpenoids, including sempervirol, totarol, hydroxytotarol, and carboxy-

nortotarol, were found only in trace amounts in the tar produced from the branches and

leaves. Kaur-16-ene was also identified in low abundances.

Fig 3. Patial ion chromatogram displaying molecules identified as TMS derivatives from solvent extracted tars produced from Podocarpus wood: a) P. henkelii;
b) P. latifolius.

https://doi.org/10.1371/journal.pone.0306402.g003
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3.1.3 Widdringtonia. In contrast to Afrocarpus and Podocarpus, both W. cedarbergensis
and W. nodiflora contain high abundances of pimaranes, namely sandaracopimaric acid, with

lesser amounts of pimaric acid, isopimaric acid, and the unknown pimarane (Fig 4). Traces of

phenolic diterpenoids in W. cedarbergensis are restricted to sempervirol and in W. nodiflora to

2,3-dehydroferruginol and ferruginol.

3.2 Material differentiation

Wood, tar produced from branches, tar produced from Podocarpaceae leaves, and unmodified

resin collected manually from Widdringtonia bark and Podocarpus seed cones were analyzed.

The materials were differentiated primarily based on fatty acids, α,ω-dicarboxylic acids,

hydroxy acids, alcohols, and n-alkanes. Because the previous section presents an overview of

the diterpenoid signature, this section will only touch on the diterpenoids that are indicative of

specific raw material.

3.2.1 Wood. Wood was analyzed from Afrocarpus (A. falcatus), Podocarpus (P. elongatus,
P. henkelii, and P. latifolius), and Widdringtonia (W. cedarbergensis and W. nodiflora) species.

Due to sampling constraints, all wood was collected from young green branches. The samples

from Afrocarpus and Podocarpus species contain saturated fatty acids ranging from C7:0–C24:0,

maximizing typically at C16:0. Unsaturated fatty acids include C18:1 and C18:2. These general

distributions match the tars described below. Traces of even-numbered alcohols were in the

samples from most species: 1-octadecanol, 1-eicosanol, 1-docosanol, 1-tetracosanol, and

1-triacontanol. In addition, high amounts of 10-nonacosanol, a secondary alcohol, were in all

samples. This is commonly identified in other Pinaceae trees, related often to smoke [49–51].

Finally, unexpectedly trace amounts of odd-numbered n-alkanes were identified in every spe-

cies including pentacosane, heptacosane, nonacosane, and triacontane, maximizing at nonaco-

sane. This is unusual because odd-numbered n-alkanes are associated with leaf wax [46, 47],

Fig 4. Patial ion chromatogram displaying molecules identified as TMS derivatives from solvent extracted tars produced from W. nodiflora wood.

https://doi.org/10.1371/journal.pone.0306402.g004
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and while the reason for their presence is unclear, it may be associated with the type of wood

sampled–young green branches. The wood samples from Widdringtonia species contrast;

these molecule types are rare or entirely absent, with only the above described terpenoids

identified.

3.2.2 Tar from branches. Tar made from branches bearing bark was analyzed from Afro-
carpus (A. falcatus), Podocarpus (P. elongatus, P. henkelii, and P. latifolius), and Widdringtonia
(W. cedarbergensis and W. nodiflora) species. While there are, as noted above, differences in

the terpenoids between the genera, there are some overarching shared patterns. The saturated

fatty acids range from C7:0–C24:0, maximizing most commonly at C16:0, with additional high

amounts of long-chain even-numbered saturated fatty acids. Unsaturated fatty acids include

C16:1, C18:1, C18:2, and C20:1, maximizing at C18:1. In addition, in each genus, small amounts of

α,ω-dicarboxylic acids and hydroxy acids were identified. The α,ω-dicarboxylic acids range

from C5–C18, with all long-chain α,ω-dicarboxylic acids even-numbered; hydroxy acids are

even-numbered and have 16–20 carbon atoms, including saturated and unsaturated mono-

mers. Small amounts of even-numbered primary alcohols were present, ranging from C16–

C28, maximizing most commonly at C22 (Fig 5). High amounts of 10-nonacosanol were also in

tars produced from A. falcatus, P. henkelii, P. latifolius, and W. cedarbergensis (Fig 5). N-

alkanes were absent from nearly every tar, excluding P. latifolius. These include C27, C29, and

C31 alkanes. The n-alkanes are unusual as they are generally found only in high amounts in

tars made from leaves (see Section 3.2.3), and their presence is most likely related to the use of

young green shoots to form the tar as these were also shown to contain n-alkanes.

3.2.3 Tar from leaves. Tars produced from leaves were tested from A. falcatus, P. latifo-
lius, and P. henkelii. Identified fatty acids range from C7:0–C24:0, maximizing at C16:0. Some

variation is noted between the genera with Afrocarpus containing more longer-chain even-

numbered fatty acids than Podocarpus. Unsaturated fatty acids include C16:1, C18:1, and C18:2,

with higher amounts of C18:1. Only traces of hydroxy acids were identified (C16:1 and C16:0).

The only alcohol was 10-nonacosanol (Fig 5). Odd-numbered n-alkanes were also present; in

Fig 5. Bar plot of the average relative abundance of the identified alcohols in Afrocarpus leaf and wood tar, Podocarpus leaf and wood tar, and

Widdringtonia wood tar.

https://doi.org/10.1371/journal.pone.0306402.g005

PLOS ONE A tale of two conifers

PLOS ONE | https://doi.org/10.1371/journal.pone.0306402 November 13, 2024 8 / 19

https://doi.org/10.1371/journal.pone.0306402.g005
https://doi.org/10.1371/journal.pone.0306402


A. falcatus, this is restricted to just nonacosane, but in the Podocarpus species, there is heptaco-

sane, nonacosane, and triacontane, maximizing at nonacosane.

3.2.4 Resin. The resin was carefully scraped from the bark of W. nodiflora to exclude any

molecular interference from the bark. As such, fatty acids, alcohols, and n-alkanes are entirely

absent. Only pimaranes were identified, including sandaracopimaric acid and lesser amounts

of pimaric acid, isopimaric acid, and the unknown pimarane.

3.2.5 Seed cones. Resinous material from within the seed cones was analyzed from two

Podocarpus species: P. elongatus and P. latifolius. As with the resin scraped from the bark,

these contain no fatty acids, alcohols, and n-alkanes because there was no suberin, cutin, or

wax in the sample. The diterpenoids differ between the two species. From the P. elongatus
cone, kaur-16-ene, communic acid, and pimaranes (pimaric acid and isopimaric acid) were

identified. In contrast, only phenolic diterpenoids (2,3-dehydroferruginol, totarol, and a totar-

ane ketone) were identified in the P. latifolius cone.

4. Discussion

Adhesives in South Africa were identified dating as far back as nearly 60,000 BP [4]. Limited

organic ingredients are referenced in relation to adhesive production in the Middle and Later

Stone Age, including Podocarpus resin and tar, beeswax, and other plant exudates [52]. This

narrow array is unusual as South Africa is home to over 20,000 plant species [53], and ethnog-

raphy of southern Africa shows that many of these can be exploited for their adhesive proper-

ties [54–56].

The systematic chemical analysis of modern reference material can expand our knowledge

of this diverse biome and allow us to understand the use of organics more accurately in the

South African archaeological record. At present, lipid residue analysis studies on South African

archaeological material are increasing although still uncommon [4–8, 57–62], and a frame-

work for understanding these results is lacking. This dilemma is highly apparent in the study

of Stone Age adhesives because most experimental work and reference material target ingredi-

ents available in Europe, such as birch tar and pine resin [36]. This issue is compounded by a

lack of appropriate ethnographic parallels from South Africa and the Cape region specifically,

where we see the majority of archaeological research programs. In contrast, much of the eth-

nographic research focuses on more arid regions in southern Africa that provide a different

array of plant species to exploit [54–56]. The discussion of South African ancient adhesives

therefore is still in its early days of research, revolving around a few specific species of plants

that have already been chemically characterized in archaeological contexts and ignoring the

possibility that other plants may have similar molecular signatures. Refining our ability to cor-

rectly identify the used species and material is vital to reconstruct the past reliably, particularly

in the case of Afrocarpus, Podocarpus, and Widdringtonia based adhesives because there are

substantial differences in raw material procurement and adhesive production. As a step toward

ameliorating this situation, the current study targets the chemical profile of these genera. The

results contribute to archaeological research and address two primary questions: what trees

were exploited by Stone Age populations to produce adhesives and what parts of the trees did

people use?

4.1 What tree taxa were exploited?

Based on the modern reference collection, attributing adhesives to a species or genus is com-

plicated. Podocarpaceae adhesives can be tentatively distinguished by high amounts of pheno-

lic diterpenoids and pimaranes, and specifically a Podocarpus-based adhesive can be suggested

when there are exclusively phenolic diterpenoids as pimaranes are more characteristic of
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Afrocarpus. Widdringtonia differs with only traces of phenolic diterpenoids and high amounts

of pimaranes. The situation, however, is complicated by the differential preservation of diter-

penoids. Pimaranes, which are essential to classifying Widdringtonia, lack a conjugated double

bond, making them susceptible to degradation [63]. Caution must be applied when using bio-

markers that are not stable to interpret lipid origins [64]. The degradation of pimaranes could

make a Widdringtonia based adhesive appear like a Podocarpaceae adhesive, while an Afrocar-
pus adhesive can appear to be a Podocarpus adhesive. Therefore, in the total absence of pimar-

anes, concrete identification should be avoided. Considering this, we raise the need for a

reassessment of identified archaeological adhesives.

Prior GC-MS studies on South African ancient adhesives identified the use of Podocarpa-
ceae tar or resin (Table 3) dating as far back as the Middle Stone Age (MSA) at Diepkloof Rock

Shelter [4]; it continued to be used through the Later Stone Age (LSA) at Elands Bay Cave,

Melkhoutboom Cave, and Steenbokfontein Cave [5–7, 65, 66]. This use of Podocarpaceae is

suggested at these four sites based on the presence of phenolic diterpenoids. In Diepkloof

Rock Shelter, Elands Bay, and Border Cave, P. elongatus was suggested as a likely source based

on comparison to one modern reference and the link to the archaeological botanic remains at

these sites [4–6, 12]. However, based on the chromatograms from these studies, most peaks

were unidentified, and the defined molecules can be found in Afrocarpus, Podocarpus, and

Widdringtonia genera, deterring confident identification. A more cautious approach was

taken for the Melkhoutboom residues for which Afrocarpus and Podocarpus were listed as pos-

sible sources [7]. In all these examples, the absence of pimaranes and abietanes is worrying,

suggesting an advanced stage of degradation that prohibits identification to the genus Podocar-
paceae despite the abundance of phenolic diterpenoids. An even broader interpretation of

Podocarpaceae or Cupressaceae resin was given for Steenbokfontein [65, 66], in which only

phenolic diterpenoids were identified. In all these examples, the primary diterpenoids identi-

fied are totarane ketones, which were found in low abundances in most of the modern refer-

ence material. Ketones can be synthesized from other molecules through several pathways,

including oxidation [67–69], and metals in the soil can also act as a catalyst for this process

[70–72], so the abundance of totarane ketones in archaeological examples most likely relates to

degradation processes. Accelerated aging studies however are required to support this.

An adhesive formed from Widdringtonia was suggested at the Later Stone Age sites of Mel-

khoutboom Cave and Renbaan Cave (Table 3) based on the abundance of pimaranes and abie-

tanes in favor of phenolic diterpenoids [7]. These results are more in line with our study.

While some Podocarpus and Afrocarpus samples do contain high abundances of pimaranes

and abietanes, this is always paired with high amounts of phenolic diterpenoids. In the Wid-
dringtonia samples, there are always high abundances of pimaranes and abietanes and only

traces of phenolic diterpenoids. At Melkhoutboom and Renbaan caves, no archaeobotanical

remains were recovered that could support the results. However, based on the known distribu-

tion of Widdringtonia, concentrated in primarily mountainous regions [38], these trees were

likely present, particularly at Melkoutboom Cave, which is located in the Cape Folded Moun-

tain Belt. Unusually, W. cedarbergensis charcoal was recovered from Diepkloof Rock Shelter

[11], but there is no evidence that the occupants exploited it for adhesive production.

At Sibudu Cave, an attempt to differentiate the genera based on lipid signature was not

made as it contained only abietanes and pimaranes; a conifer resin was suggested [8, 52].

Despite this the adhesive was still connected to Podocarpus based on the charcoal remains at

the site [8]. Caution should be applied here because the molecular signature can also be con-

nected to Afrocarpus and Widdringtonia or even a different conifer species.

To summarize, based on the modern reference collection, we propose that several archaeo-

logical GC-MS studies overinterpreted biomarkers that can have multiple origins and too
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Table 3. Overview of the archaeological coniferous resin and tar in South Africa1.

Site Extraction

method

Molecules identified Original interpretation Current study’s

interpretation

Reference

Border Cave (LSA) Saponification Diterpenoids • Sugiol

• Totarane ketones

Podocarpaceae (likely P.

elongatus) tar

Podocarpaceae/
Widdringtonia tar from

wood

[6]

α,ω-

Dicarboxylic

acids

• C7–C12, C16, C18, C20–C22

Hydroxy acids • Hydroxy C8–C16, C18, C20, C22

• Dihydroxy C18

Diepkloof Rock

Shelter (MSA)

Solvent

extraction

Diterpenoids • Sugiol

• Totarane ketones

Podocarpaceae (likely P.

elongatus) oxidized resin

Podocarpaceae/
Widdringtonia resin/tar

[4]

α,ω-

Dicarboxylic

acids

• C7–C14

Alcohols • Unspecified

Alkanes • C20-C35

Elands Bay Cave

(LSA)

Solvent

extraction

Diterpenoids • 3-Ketototarol

• 4-Carboxy, 7-ketototarol

• Totarol

Podocarpaceae (likely P.

elongatus) resin

Podocarpaceae/
Widdringtonia resin/tar

[5]

α,ω-

Dicarboxylic

acids

• C9

Alcohols • C14–C18

Melkhoutboom Cave

(LSA)

Saponification Diterpenoids • 2,3-dehydroferruginol

• Dehydrosempervirol

• Dehydrototarol

• Totarol

• Sempervirol

• Sugiol

• Totarane ketones

Podocarpaceae tar Podocarpaceae/
Widdringtonia tar from

wood

[7]

α,ω-

Dicarboxylic

acids

• C9, C16, C18, C20, C22

Hydroxy acids • Hydroxy C16, C18, C20, C22

Diterpenoids • 7-Oxodehydroabietic acid

• Dehydroabietic acid

• Sugiol

• Totarane ketones

Widdringtonia tar Widdringtonia tar

α,ω-

Dicarboxylic

acids

• C16, C22

Hydroxy acids • Hydroxy C16, C18, C22

Renbann Cave (LSA) Saponification Diterpenoids • 7-Hydroxydehydroabietic acid

• 8,15-Pimaradien-18-oate

• Dehydroabietic acid

• Ferruginol

Widdringtonia tar Widdringtonia tar [7]

α,ω-

Dicarboxylic

acids

• C16, C18

Hydroxy acids • Hydroxy C16, C18, C22

Alcohols • C22, C24, C26, C28, C30

Alkanes • C27, C29, C31

(Continued)
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narrowly assigned a residue source. While suggestions for a Podocarpaceae-based adhesive can

be made for both the Middle and Later Stone Age (across several regions of South Africa), a

specific genus or species cannot be confirmed. Widdringtonia appears to have a punctuated

appearance, having been identified at two coastal sites during the final Later Stone Age. A cau-

tious approach that relies first and foremost on a comprehensive GC-MS reference collection

and then supports the results with archaeobotanical remains and environmental context is

appropriate and should be a standard practice in adhesive identification.

4.2 What materials were exploited?

Recent work focuses on the production of tar from Podocarpus leaves. The leaves were sug-

gested as an appropriate source for adhesive production because they contain high amounts of

resin in comparison to the bark, and when processed in certain ways, the leaves can be used to

form a strong adhesive [3]. To test this hypothesis against archaeological material, differences

in the molecular signature of adhesives made from leaves and bark must first be identified.

Tars formed from Afrocarpus and Podocarpus leaves contain diterpenoids similar to tar

produced from the bark of Afrocarpus and Podocarpus trees. Based on diterpenoids alone, the

source cannot be distinguished. However, when the wider molecular signature is analyzed, the

leaves can be distinguished based on the presence of odd-numbered n-alkanes, which are char-

acteristic of plant wax [46, 73]. These are nearly entirely absent in tar produced from branches.

Instead, this tar contains long-chain α,ω-dicarboxylic acids, hydroxy acids, and even-

Table 3. (Continued)

Site Extraction

method

Molecules identified Original interpretation Current study’s

interpretation

Reference

Sibudu Cave (MSA

and LSA)

Saponification Diterpenoids • 15-Hydroxy-

7-oxodehydroabietic acid

• 7-Oxodehydroabietic acid

• Dehydroabietic acid

• Didehydroabietic acid

• Isopimaric acid

Conifer/Podocarpus resin Conifer tar [8]

α,ω-

Dicarboxylic

acids

• C5–C7, C12, C13

Hydroxy acids • Hydroxy C7, C9, C12, C13, C16

• Dihydroxy C18

Alcohols • C16, C18

Steenbokfontein

Cave (LSA)

Saponification Diterpenoids • 14-isopropylpodocarpa-

8,11,13-triene-7,13-diol

• 2,3-Dehydroferruginol

• Dehydrototarol

• Sempervirol

• Sugiol

• Totarane ketones

• Totarol

Podocarpaceae/
Widdringtonia

Podocarpaceae/
Widdringtonia tar

[65, 66]

α,ω-

Dicarboxylic

acids

• C16, C18

Hydroxy acids • Hydroxy C6, C7, C16, C18, C22

• Dihydroxy C6, C8

• Trihydroxy C18

1 This table does not include all organic constituents identified from adhesives from these sites and displays only those potentially related to Podocarpaceae and

Widdringtonia resin and tar.

https://doi.org/10.1371/journal.pone.0306402.t003
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numbered alcohols. While these can be found individually in other materials naturally [74–

79], the combination of these three is indicative of tar formed from bark as these are degrada-

tion products of suberin [45, 80]. α,ω-Dicarboxylic acids and hydroxy acids were not identified

in unaltered wood samples. However, this may be explained by differences in extraction meth-

ods; α,ω-dicarboxylic acids and hydroxy acids were primarily identified in the reference mate-

rial extracted using saponification, and it is possible that these could appear in other materials

if extracted differently. “Pure” resins extracted from the bark and seed cones contain only

diterpenoids.

Applying this knowledge to published archaeological material is difficult as the discussion

is centered around the terpenoids, and often other molecule types are only discussed in brief

(Table 3). Further, several of the molecule types that are indicative of the material exploited

can be found in other materials, namely other plant waxes, degraded beeswax, and sediment,

mandating caution in interpretation [64] as these could represent mixtures with other prod-

ucts. For example, at Diepkloof Rock Shelter, n-alkanes with C20–C35 (maximizing at C27)

were present, with only a strong odd over even abundance [4], similar to tar produced from

leaves. However, these can also be interpreted as resulting from sediment contamination,

based on the identification of odd- and even-numbered n-alkanes [81], or a wax or additional

plant material [47, 82, 83] based on the combined presence of n-alkanes and unspecified alco-

hols and esters [4]. Such a mixture is even clearer at Renbaan Cave. A sample with evidence

for Widdringtonia resin contained odd-numbered n-alkanes (C27, C29, and C31) [7]; our study

shows that these are not found naturally in Widdringtonia, and because they were paired with

long-chain even-numbered saturated hydroxy fatty acids and alcohols, they were interpreted

as related to beeswax [7]. Only when there are exclusively diterpenoids and odd-numbered n-

alkanes can tar formed from leaves be confidently identified. Therefore, from the currently

characterized examples of Afrocarpus and Podocarpus, there is no clear evidence of tar pro-

duced from leaves. On the contrary, archaeological examples with n-alkanes may relate to the

production of a compound adhesive.

Some examples, however, from Border Cave, Melkhoutboom Cave, Renbaan Cave, and

Steenbokfontein Cave contain phenolic diterpenoids paired with α,ω-dicarboxylic acids and

hydroxy acids [6, 7, 65, 66], and these can be considered more indicative of tar produced from

bark. It must be noted that in most cases where the adhesive was identified as a tar (Table 3),

the samples were saponified, a process that transesterifies suberin into its core components

[84–86]. Because these were uncommon in samples that were not saponified, the adhesive was

often identified as a resin, as at Diepkloof Rock Shelter and Elands Bay Cave [4, 5]. More accu-

rately, without saponification, no attempt should be made to differentiate between tar and

resin. Saponification, however, is not without its short comings, deterring the identification of

wax esters and acylglycerols, and as such, interpretations can be complicated when mixtures

are present. In the case of South African archaeological contexts where organic admixtures

were identified [4–7], multiple extraction methods are called for to discern between the use of

tar versus resin and additives, and even further elucidation can be achieved through the use of

other mass spectrometry, microscopy, and spectroscopy techniques.

5. Conclusion

This study forms one of the most comprehensive reference databases of the molecular profile

of specific conifers native to South Africa, including 26 samples from six species and five dif-

ferent materials from trees from the Afrocarpus, Podocarpus, and Widdringtonia genera. The

results enhance our understanding of conifer-based adhesive production in the South African

archaeological record, setting guidelines for genus and raw material identification.
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While Podocarpus resin and tar is frequently cited as a key ingredient in adhesive produc-

tion [4–8], based on the reference material, Podocarpus, Afrocarpus, and Widdringtonia are

difficult to distinguish especially when preservation is considered. Modern Podocarpaceae con-

tains high amounts of phenolic diterpenoids and, in the case of Afrocarpus, pimaranes, while

Widdringtonia contains trace amounts of phenolic diterpenoids and high amounts of pimar-

anes. Once degraded, these may appear similar. When these patterns are applied with caution

to the archaeological record, many of the previously archaeologically identified Podocarpus
resins are more accurately classified as Podocarpaceae or are too degraded to specify, and no

genus or species-level identification should be given. Accelerated aging studies are recom-

mended as a next step in elucidating the differences between archaeological samples and mod-

ern reference material, and these may provide insight on oxidation processes and further

reasoning behind observed discrepancies.

A clearer divide can be proposed for materials used in adhesive production. While diterpe-

noids are essential to identify tree species, differentiating tar produced from leaves and wood

relies on other molecule types, namely n-alkanes, α,ω-dicarboxylic acids, hydroxy acids, and

alcohols. Leaves of Afrocarpus and Podocarpus species were suggested as an ideal matrix for tar

production [3], and the tar can be distinguished by a high amount of long-chain odd-num-

bered n-alkanes found in the leaf wax. In contrast, an adhesive produced from the bark of

either Afrocarpus, Podocarpus, or Widdringtonia contains α,ω-dicarboxylic acids, hydroxy

acids, and alcohols, formed from the degradation of suberin, and no n-alkanes. Based on these

definitions, at present, there is no definitive archaeological evidence for tar production using

leaves. However, suggestions can be made for wood-based tar production when adhesive sam-

ples are saponified and for mixtures of tar/resin with beeswax when adhesives are solvent

extracted. The resin from the seed cones of Afrocarpus and Podocarpus has yet to be consid-

ered in literature as a potential ingredient in archaeological adhesive production, and more

testing is required to elucidate its molecule profile as well as the most efficient way to extract

and transform it into a useable adhesive. However, based on the current samples, the resin

from the seed cones contains exclusively diterpenoids, making them likely indistinguishable

from degraded tar and resin samples.

In reviewing the archaeological record of adhesive production in South Africa, this study

shows how having an extensive reference collection is essential for interpreting the use of

organics in the past. By using a small and unrepresentative reference collection, the potential

for misinterpretation is great. This reference collection, while thorough and encompassing a

range of taxa (from multiple locations), instrumentation, and extraction protocols, demon-

strates that differentiating between tree species is complicated because the lipid signatures are

not perfectly consistent. It is unclear if increasing the sample size further would create a more

representative average. Therefore, when interpreting the use of conifers in adhesive production

in South Africa based on molecular analysis, we propose that caution must be applied to avoid

overgeneralizations, and the results from molecular studies should be viewed considering the

archaeological record (e.g. pollen, charcoal, and other macro- and micro-botanical remains) as

well as the environmental landscape.
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