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. . . . . . Allegro
Insieme

Donn’Anna,
Donn’Elvira,
Zerlina, Don

Ottavio e Masetto

Trema, trema scellerato!
Saprà tosto il mondo intero
il misfatto orrendo e nero,
la tua fiera crudeltà.

Odi il tuon della vendetta
che ti fischia intorno intorno:
sul tuo capo, in questo giorno,
il suo fulmine cadrà.

Allegro
Insieme

Don Giovanni È confusa la mia testa,
non so più quel ch’io mi faccia,
e un’orribile tempesta
minacciando, oddio! mi va!

Ma non manca in me coraggio:
non mi perdo o mi confondo.

Allegro
Insieme

Leporello È confusa la sua testa,
non sa più quel ch’ei si faccia,
e un’orribile tempesta
minacciando, oddio! lo va!

Ma non manca in lui coraggio:
non si perde o si confonde.

Allegro
Insieme

Don Giovanni Se cadesse ancora il mondo
nulla mai temer mi fa!

Più stertto
Insieme

Leporello Se cadesse ancora il mondo
nulla mai temer lo fa!

Allegro
Insieme

Lorenzo Da Ponte, Wolfgang Amadeus Mozart. Don Giovanni, K. 527, Act I, Scene XXI, 1787.
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Symbols, abbreviations and
conventions

• We use N = {1, 2, 3, . . .} for the set of natural numbers, whereas we adopt

N0 := {0} ∪ N.

Given d ∈ N0, Rd and Cd are the d-dimensional Euclidean and complex space, with the
convention that for d = 0 we have the singleton. We denote the set of extended complex
numbers by

C := C ∪ {+∞} ∪ {−∞}.
By ZN , N ∈ N, we mean the quotient group Z/NZ.

• If α ∈ Nd or Nd0, then the length of the multiindex is denoted by |α| := α1 + . . .+ αd.

• Given a set X, the symbol #X denotes the cardinality of X.

• Given a set X and a subset E ⊆ X, the characteristic function of E is denoted by χE , i.e.
χE(x) = 1 if x ∈ E and χE(x) = 0 if x ∈ X r E. The set X is clear from the context.

• A . B means that for given constants A and B there exists a constant c > 0 independent
of A and B such that A ≤ cB. We write A � B if both A . B and B . A.

• If A and B are two sets, then BA denotes the set of functions from A into B.

• Every vector space X is supposed complex. If X ia a topological vector space (TVS), we
denote by X ′ its topological dual defined as the set of antilinear continuous functional on
X. The duality shall be denoted by

X′〈·,·〉X ,
or simply 〈·,·〉. Whenever possible, the duality 〈·,·〉 is meant to extend the usual L2-inner
product, linear in the first argument and antilinear in the second one.

• If X,Y are two TVSs, then B(X,Y ) is the set of all continuous and linear mappings from
X into Y . We use the notation B(X) := B(X,X).

• Given two vectors x, y ∈ Cd their inner product is

xy := x · y :=

d∑
i=1

xiyi,

the Euclidean norm of x is

|x| :=

√√√√ d∑
i=1

|xi|2
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and we write
x2 := |x|2 .

By restriction we have the inner product on Rd.

• S(Rd) denotes the class of Schwartz functions, the tempered distributions are represented
by S ′(Rd).

• The normalization chosen for the Fourier transform on L1(Rd) is the following:

Ff(ω) := f̂(ω) :=

∫
Rd
f(x)e−2πixω dx,

where ω ∈ Rd.

• Fσ stands for the symplectic Fourier transform on L1(R2d) defined as

FσF (x, ω) :=

∫
R2d

F (u, ξ)e−2πi(ωu−ξx) dudξ.

• In all chapters but 7, the symbol ⊗ denotes the tensor product of functions, i.e. if f : X →
C and g : Y → C then

f ⊗ g : X × Y → C, (x, y) 7→ f(x)g(y).

In Chapter 7 f ⊗ g denotes the rank-one operator. Namely, if f, g ∈ L2(Rd), then

f ⊗ g : L2(Rd)→ L2(Rd), ψ 7→ 〈ψ, g〉f,

where 〈·,·〉 is the usual sesquilinear inner product on L2(Rd).

• The quasi-norm on Lpm(X) is denoted by ‖·‖Lpm or ‖·‖Lpm(X), accordingly to the need to
highlight the underlying measure space. Similarly for Lp,qm (X × Y ).

• We set 1/∞ := 0.

• We denoted a net of scalars by (αi)i∈I ⊆ C, whereas a net of vectors not in C is represented
by {xi}i∈I ⊆ X. If the context is clear, we omit the index set, so that we write just (αi)i
and {xi}i.

• GL(Rd) stands for the group of invertible, d× d, real matrices.

• J p := J p(L2) := J p(L2(Rd)), 0 < p ≤ ∞, denote the Schatten classes on L2(Rd), where
we put J∞ := B(L2(Rd)).

• If G is a locally compact abelian (LCA) group and T a linear bounded operator on L2(G),
we denote by σ(T ) the spectrum of T , that is the set {λ ∈ C |T − λIL2 is not invertible};
in particular, the set σP (T ) denotes the point spectrum of T , that is

σP (T ) := {λ ∈ C | ∃ f ∈ L2(G) r {0} such thatTf = λf},

such an f is called eigenfunction of T associated to the eigenvalue λ.

• If T ∈ B(L2), we write T ≥ 0 if T is positive, i.e. 〈Tf, f〉 ≥ 0 for every f ∈ L2.

• By X ↪→ Y we denote the continuous inclusion of a TVS X into the TVS Y .



• If X and Y are quasi-normed spaces and T : X → Y is a linear operator, the notations

|||T |||X→Y , ‖T‖Op , ‖T‖B(X,Y )

denotes the operator norm of T .

• If G ia locally compact abelian group, then

C(G), C0(G), Cb(G)

are the sets of complex-valued functions on G which are: continuous, continuous and
vanishing at infinity, continuous and bounded, respectively.





Chapter 1

Introduction

The main aim of this thesis work is threefold: to study of localization operators Aψ1,ψ2
a , with a

particular focus on decay and smoothness properties of their L2-eigenfunctions [3, 8, 9, 11]; to
define quasi-Banach modulation spaces on a locally compact abelian group G [8]; to establish
newly named Feichtinger operators, introduced first in [62], as a suitable as well as easy to handle
setting for quantum harmonic analysis [10].

We shall see how these three equally important issues overlap naturally. The techniques
used in Chapter 3 in order to study L2-eigenfunctions of Aψ1,ψ2

a require the operator to be
continuously defined between quasi-Banach modulation spaces on Rd, cf. Theorem 3.2.1, so that
in order to extend the result to any LCA group G (Theorem 5.3.3 from [8]) it is necessary to
define modulation spaces on G in the quasi-Banach setting. Moreover, localization operators
arise in the context of quantum harmonic analysis also. In fact, they can be written as

Aψ1,ψ2
a = a ? (ψ2 ⊗ ψ1),

where: ψ2 ⊗ ψ1 is the rank one operator on L2(Rd) f 7→ 〈f, ψ1〉ψ2, ? is the convolution defined
between (generalized) functions and operators, see below and in particular Chapter 7.
We shall focus on each of these issues in a dedicated section of the present chapter.

Besides the main scope of the thesis, we characterize also the symbol class

Sm(R2d) := {σ ∈ C∞(R2d) | |∂ασ(z)| ≤ Cα(1 + |z|2)m/2, α ∈ N2d
0 , z ∈ R2d},

introduced by Sjöstrand in [127], in terms of Gabor matrix of Opτ (σ) and study continuity
properties for such operators with symbol σ in such class [7]. For reader’s sake, we summarize
the main result and address to Chapter 4, for m ∈ R fixed the following properties are equivalent:

(i) σ ∈ Sm
(
R2d

)
.

(ii) σ ∈ S ′
(
R2d

)
and for every s ≥ 0, 0 < q ≤ ∞, there exists a function Hτ ∈ Lq〈·〉s(R

2d),
with

‖Hτ‖Lq〈·〉s ≤ C, ∀τ ∈ [0, 1];

such that

|〈Opτ (σ)π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d.
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See (2.212) for the definition of the transformation Tτ and (2.7) for 〈·〉s.

Operators Opτ (σ), considered on Rd or on G for τ = 0 only, shall be used through out
all the thesis work: they play a key role in the study of Aψ1,ψ2

a , see e.g. the boundedness
results on modulation spaces Theorem 3.1.2, 3.3.1 and 5.2.17, as well as the statements about
L2-eigenfunction of Opτ (σ), Proposition 3.1.4 and 3.1.5, Theorem 3.3.5 and Proposition 5.2.18;
they are paid particular attention in Chapter 7 where we consider them in the setting of quantum
harmonic analysis.

1.1 New quasi-Banach modulation spaces on G LCA group
Banach modulation spaces over a LCA group G (see Assumption 2.2.2 for the hypothesis made
in this work) were introduced by H. G. Feichtinger in early ’80s [56], they are set of distributions
characterized by a common decay in time as well as in frequencies. The framework most taken
into account is the Euclidean one, i.e. G = Rd, and in this case their definition goes as follows. For
p, q ≥ 1 and m “suitable” weight on Rd (see Chapter 2 for more details about weight functions)
we set

Mp,q
m (Rd) := {f ∈ S ′(Rd) |Vgf ∈ Lp,qm (R2d)}

and
‖f‖Mp,q

m
:= ‖Vgf‖Lp,qm .

Above, g is a fixed nonzero function in S(Rd), usually called widow, and Vgf is the short-time
Fourier transform (STFT) of f w.r.t. g which can be written formally as

Vgf(x, ω) :=

∫
Rd
f(t)e−2πiωtg(t− x) dt, ∀(x, ω) ∈ R2d.

For p = 1 = q we have the so-called Feichtinger algebra which can be equivalently described in
this way:

S0(Rd) := M1,1(Rd) = {f ∈ L2(Rd) |Vgf ∈ L1(R2d)},

for some g ∈ L2(Rd)r {0} and obvious norm. The space S0(Rd) is a Banach algebra and can be
easily generalized to any LCA group:

S0(G) := {f ∈ L2(G) |Vgf ∈ L1(G × Ĝ)},

with Ĝ the dual group of G, Vgf(x, ω) :=
∫
G f(t)〈ω, t〉g(t− x) dt, (x, ω) ∈ G × Ĝ, 〈ω, t〉 := ω(t).

The Feichtinger algebra S0(G) allows us to give one of the possible definitions for (Banach)
modulation spaces over G:

Mp,q
m (G) := {f ∈ S ′0(G) |Vgf ∈ Lp,qm (G × Ĝ)}, 1 ≤ p, q ≤ ∞,

for some g ∈ S0(G) r {0}, the norm is the natural one as for the Euclidean case.
In [56] H. G. Feichtinger proved that Mp,q

m (G), with 1 ≤ p, q ≤ ∞, are Banach spaces, whose
norm does not depend on the window g, in the sense that different window functions in S0(G)
(or S(Rd)) yield equivalent norms.

The modulation spaces Mp,q
m (Rd), with 0 < p < 1 or 0 < q < 1, were introduced in 2004 by

Y.V. Galperin and S. Samarah in [75] and then studied in [104, 119, 149]. Their definition is
the same as above with 0 < p, q ≤ ∞ and in [75] it is shown that they are quasi-Banach spaces
and almost every property which appears in the Banach case arises in the indexes’ range (0, 1)
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as well. E.g., they do not depend on the window chosen in order to compute the quasi-norm.
There are thousands of papers involving modulation spaces with indices 1 ≤ p, q ≤ ∞, whereas
very few works deal with the quasi-Banach case 0 < p < 1 or 0 < q < 1. Indeed, many properties
related to the latter case are still unexplored, such as duals for Mp,q

m (Rd) with at least one index
strictly below 1 and a generic weight m.

New contributions
The technique used by Y.V. Galperin and S. Samarah in [75] to construct quasi-Banach mod-
ulation spaces on Rd cannot be adapted to the general case of a LCA group. Indeed, in order
to prove the fundamental independence from the window, they exploit some properties of entire
functions.
The paper [8], by E. Cordero and the author, overcome this difficulty by getting inspiration from
the idea of H. G .Feichtinger and K. Gröchenig in [58], and view modulation spaces on G as par-
ticular coorbit spaces over the Heisenberg group G×Ĝ ×T, T being the complex torus. However,
the coorbit theory proposed by H. G. Feichtinger and K. Gröchenig in their works [58, 59, 60]
is not suitable for the quasi-Banach case. E.g., it requires the continuous embedding into L1

loc,
which would prohibit to take into account the spaces Lp with p < 1. The right construction
is provided by another coorbit theory which suits the quasi-Banach spaces, it was started by
H. Rauhut in [119] and developed by F. Voigtlaender in his Ph.D. thesis [147]. Thanks to this
new theory, we are able to give a good definition of modulation spaces on LCA groups. In fact,
we prove that they are quasi-Banach spaces independent from the window chosen in order to
compute the quasi-norm (see below).
Exploiting quasi-lattices, Gabor frame expansions are provided, see Theorem 5.2.13.
In the spirit of [9], new convolution relations for such spaces are proved as well, cf. Proposition
2.5.19 and Proposition 5.2.14. We address the reader to Chapter 5 for all details.
Concretely, we shall see that Mp,q

m (G) with 0 < p, q ≤ ∞ can be described as

Mp,q
m (G) := {f ∈ S ′0(G) |Vgf ∈W (L∞, Lp,qm )(G × Ĝ)},

the quasi-norm is inherited from the Wiener Amalgam space W (L∞, Lp,qm )(G × Ĝ) and it is

‖f‖Mp,q
m

:= ‖Vgf‖W (Lp,qm )
:= ‖MQVgf‖Lp,qm ,

where Q ⊆ G × Ĝ is a suitable unit neighbourhood and

MQVgf(x, ω) := ess sup
(u,ξ)∈(x,ω)+Q

|Vgf(u, ξ)| , ∀(x, ω) ∈ G × Ĝ,

is called the maximal function of Vgf .
The presented new construction recaptures all the previous definitions of modulation spaces.

Indeed, Mp,q
m (G) as above coincides with

(i) Mp,q
m (Rd) for every 0 < p, q ≤ ∞, as defined in [56, 75];

(ii) Mp,q
m (G) for 1 ≤ p, q ≤ ∞ and every G [56].

Recapturing the already known definitions entails the following equivalence of quasi-norms:

‖Vgf‖Lp,qm � ‖Vgf‖W (Lp,qm ) .

Of course, one inequality is always true, namely

‖Vgf‖Lp,qm . ‖Vgf‖W (Lp,qm ) .
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The other way round instead is in general an open problem which is part of a wider issue arising
from coorbit theory, see [119, 146]. Here we are able to give a small contribution in this direction,
we prove that if G is discrete or compact then

‖Vgf‖Lp,qm & ‖Vgf‖W (Lp,qm )

for every 0 < p, q ≤ ∞, see Lemma 5.1.38.

1.2 Localization operators

Localization operators Aψ1,ψ2
a on Rd arise from pure and applied mathematics in connection with

various areas of research. Given a symbol a and windows ψ1, ψ2 the operator Aψ1,ψ2
a is defined

by the formal integral

Aψ1,ψ2
a f(t) :=

∫
R2d

a(x, ω)Vψ1f(x, ω)MωTxψ2(t) dxdω,

where: translation and modulation operators are defined respectively as Txf(t) := f(t− x) and
Mωf(t) := e2πiωtf(t) and Vψ1f is the short-time Fourier transform of f with respect to ψ1.
Depending on the field of application, these operators are known under the names of Wick,
anti-Wick or Toeplitz operators, as well as wave packets, Gabor or short-time Fourier transform
multipliers. We will introduce them by means of time-frequency analysis, a branch of modern
harmonic analysis which deals with how to describe a function simultaneously in time and fre-
quency. It originates in the early development of quantum mechanics by H. Weyl, E. Wigner
and J. von Neumann around 1930, and in the theoretical foundation of signal analysis by the
engineer D. Gabor in 1946. However in 1980 the time-frequency analysis became an independent
mathematical field thanks to the work of G. Janssen. In the presented framework, localization
operators are a mathematical tool to define a restriction of modified signals, according to the en-
gineering lexicon, to a region of the phase space. Their first introduction as anti-Wick operators
is due to Berezin, in 1971. As a physicist, he introduced them by means of a quantization rule
a 7→ Aa, acting from a symbol a defined on a phase space to an operator Aa acting on a suitable
Hilbert space. The symbol a is called anti-Wick symbol, while the corresponding operator Aa
is referred to as the anti-Wick operator associated to the symbol a. However we point out that
some authors talk about Wick quantization rather than anti-Wick.
The terminology localization operators appears for the first time in 1988, in a paper by I. Daubechies
[37]. She introduced these operators as a generalisation of the anti-Wick ones to localize a signal
both in time and frequency. Her primary motivations were applications in optics and signal
analysis. For instance, localization operators could be used to filter out noise from given (noisy)
signals. Since then they have been extensively investigated.

The generalization to any LCA group G is quite straightforward. Namely, we replace R2d

with the phase-space G × Ĝ and the modulation operator becomes Mωf(t) := 〈ω, t〉f(t), where
ω ∈ Ĝ. Of course, windows ψ1, ψ2 and symbol a shall belong to suitable function and distribution
spaces on G and G × Ĝ, respectively.

New contributions

In first place, we pay particular attention to L2-eigenfunctions of Aψ1,ψ2
a defined on Rd or, more

generally, any LCA group G. Namely, we are able to show Theorem 3.2.1 and 5.3.3 which are
roughly summarized in the following item.
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Theorem 1.2.1. Let 0 < p < ∞ and a ∈ Mp,∞(G × Ĝ). Consider ψ1, ψ2 suitable nonzero
windows on G. Suppose that σP (Aψ1,ψ2

a ) r {0} 6= ∅ and λ ∈ σP (Aψ1,ψ2
a ) r {0}. Then any

eigenfunction f ∈ L2(G) with eigenvalue λ satisfies

f ∈
⋂
γ>0

Mγ(G).

The above result was first obtained in [9] by E. Cordero, F. Nicola and the author in the
case G = Rd. The general case just presented was published in [8] by E. Cordero and the author.
Notice that the new modulation spaces Mp,q

m (G) with 0 < p, q ≤ ∞, mentioned in the previous
section, are used here.

Theorem 3.2.9 and 3.3.5 are results about smoothness for L2-eigenfunctions of Aψ1,ψ2
a on

Rd. Briefly, they states that, if Aψ1,ψ2
a has suitable windows ψ1, ψ2 and symbol a, then any L2-

eigenfunction f of Aψ1,ψ2
a is in the Schwartz class S(Rd) or in the Gelfand-Shilov spaces S(γ)(Rd).

For reader’s sake, we state the first mentioned result. In what follows we adopt the polynomial
weight

vs(x) := (1 + |x|2)
s
2 , ∀x ∈ Rd, s ∈ R.

Theorem 1.2.2. Consider a symbol a ∈ M∞vs⊗1(R2d), for some s > 0, and non-zero windows
ψ1, ψ2 ∈ S(Rd). If f ∈ L2(Rd) is an eigenfunction of the localization operator Aψ1,ψ2

a , that is
Aψ1,ψ2
a f = λf , with λ 6= 0, then f ∈ S(Rd).

The above result was presented in [9] whereas the improvement to the Gelfand-Shilov class
was obtained in [11] by N. Teofanov and the author. Roughly speaking, in order to have f ∈
S(γ)(Rd) we need to consider the (sub-)exponential weights

wγs (x) := es|x|
1/γ

, ∀x ∈ Rd, s, γ > 0,

rather than the polynomial vs. We address the reader to Section 3.3 of Chapter 3 for a precise
formulation of the previous statement.
We highlight that whenever we speak of eigenfunctions for Aψ1,ψ2

a , the localization operator will
be always guaranteed to be compact on L2.

In Chapter 6 we take into account localization operators Aψ1,ψ2
a with symbols of type a =

1⊗m, with m defined on Rd, and study the equality

Aψ1,ψ2

1⊗m = Tm2
on S(Rd), M1(Rd), or L2(Rd).

I.e., we study under which conditions a localization operator Aψ1,ψ2

1⊗m can be written as a Fourier
multiplier Tm2 . Such a problem was addressed in [3] by E. Cordero, H. G. Feichtinger, N.
Schweighofer, P. Balasz and the author. For sake of clarity, we report the related main result
Theorem 6.2.1. By I we mean the reflection operator If(t) := f(−t).

Theorem 1.2.3. Fix multiplier symbols m,m2 ∈ S ′(Rd) (resp. m,m2 ∈M∞(Rd)) and windows
ψ1, ψ2 in S(Rd) (resp. in M1(Rd)). Then the equality

Aψ1,ψ2

1⊗m = Tm2
on S(Rd) (resp. M1(Rd))

holds if and only if

m2 = m ∗ F−1(Iψ2 ∗ ψ̄1) in S ′(Rd) (resp. M∞(Rd)).

The same conclusions hold under the following assumptions:
(i) The symbols m,m2 in S(Rd) (resp. inM1(Rd)) and the window functions (ψ1, ψ2) in S ′(Rd)×
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S(Rd) (resp. M∞(Rd)×M1(Rd));
(ii) The symbols m,m2 in S(Rd) (resp. inM1(Rd)) and the window functions (ψ1, ψ2) ∈ S(Rd)×
S ′(Rd) (resp. M1(Rd)×M∞(Rd)).

In Section 6.5 of Chapter 6 also the finite discrete setting of ZN is taken into account. In
this case, we talk about finite Gabor multipliers Gg1,g2

a and linear time invariant filters H rather
than localization operators Aψ1,ψ2

a and Fourier multipliers Tm.

1.3 Feichtinger operators in quantum harmonic analysis
Translations, convolutions and Fourier transform of functions dwell at the very heart of classical
harmonic analysis. R. Werner in his work [150] introduced analogues notions for operators
instead of functions, we recall them briefly. Given an operator T ∈ B(L2(Rd)) its translation at
z = (x, ω) ∈ R2d and its involution are meant to be

αz(T ) := π(z)Tπ(z)∗ and Ť := ITI,

recall that If(t) := f(−t) and π(z) := MωTx. Such definitions allow to introduce the subsequent
crucial notions, given a ∈ L1(R2d) and S, T ∈ J 1, trace class on L2(Rd), the convolution between
a function and an operator or between two operators are set to be

a ? S := S ? a :=

∫
R2d

a(z)αz(S) dz and S ? T (z) := tr
(
Sαz(Ť )

)
,

where z = (x, ω) ∈ R2d and the integral has to be understood in weak sense. The operator ?
enjoys all the expected properties of a convolution, i.e. it is commutative and associative. More-
over, it interacts nicely with the usual convolution ∗, see Chapter 7 for details. The equivalent
of the Fourier transform is given by the so-called Fourier-Wigner transform

FWS(z) := e−πixω tr(π(−z)S).

When we consider a rank-one operator S = f ⊗ g, where f, g ∈ L2(Rd) and it acts on L2(Rd)
as ψ 7→ 〈ψ, g〉f , the previous definitions boil down to well-known objects. For sake of clarity we
mention the following remarkable identities [108]:

Aψ1,ψ2
a = a ? (ψ2 ⊗ ψ1), (f ⊗ f) ? (Ig ⊗ Ig) = |Vgf |2 , FW (f ⊗ g) = A(f, g),

where A(f, g)(x, ω) = eπixωVgf(x, ω) is the cross-ambiguity function of f and g.
In [103] M. Keyl, J. Kiukas and R. Werner introduced and studied Schwartz operators S.

Namely, S is the set of those pseudo-differential operators with Weyl symbol in S(R2d), by S′

it is denoted the collection of pseudo-differential operators with Weyl symbol in S ′(R2d). The
authors of [103] were able to turn S into a Fréchet space such that its topological dual is S′, this
allowed them to define convolutions and Fourier(-Wigner) transform also on S′ using duality.
Schwartz operators behave with respect to ? and FW like the Schwartz class with the usual
convolution ∗ and Fourier transform F . We cite some of the main result of [103] which show two
things: the notions recalled at the beginning of this section are not valid just for operators in
B(L2(Rd)) or J 1 and distributions in L1(R2d); S is the very counterpart in quantum harmonic
analysis of S(Rd) in classical harmonic analysis.
If we consider S, T ∈ S, A ∈ S′, b ∈ S(R2d) and a ∈ S ′(R2d), then

S ? T ∈ S(R2d), S ? A ∈ S ′(R2d), b ? S ∈ S, a ? S, b ? A ∈ S′.

Moreover, the Fourier-Wigner transform can be extended to a topological isomorphism from S′

onto S ′(R2d). We address the reader to [103] for details and proofs, in particular Section 5.
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New contributions

Just as for the Schwartz class S(Rd), to handle the Fréchet space of Schwartz operators S and its
dual can be quite cumbersome. One can have a hint of this by looking at the proofs contained in
[103]. It is known that the Feichtinger algebra S0(Rd) reveals to be a valid alternative to S(Rd)
and, being a Banach space, easier to work with. In this spirit, F. Luef and the author in [10]
consider a space of operators introduced in [62] and named it the space of Feichtinger operators.
Such a space shall be defined in Chapter 7 as follows

S0 :={S : S ′0(Rd)→ S0(Rd) |S is linear, continuous and

maps norm bounded w-∗ convergent sequences in S ′0(Rd)
into norm convergent sequences in S0(Rd)}

and endowed with the norm of B(S ′0(Rd),S0(Rd)). H. G. Feichtinger and M. S. Jakobsen in
[62] proved that S0 is a Banach space and a Banach algebra under composition of operators,
it is isomorphic to S0(R2d) through the map T 7→ KT , where KT is the integral kernel of T ,
see Theorem 7.2.3. We highlight that the isomorphism given by T 7→ KT shall be heavily used
trough out all Chapter 7. Indeed, it will be usually convenient to work on the kernel KT rather
than directly on the operator T . The dual of Feichtinger operators ig given by

S′0 := B(S0(Rd),S ′0(Rd)),

cf. Theorem 7.2.2 and 7.2.3. In the same fashion of what done for S, we shall prove that
translations, convolutions and the Fourier-Wigner transform make sense for elements in S0 and
S′0. Moreover, if we consider S, T ∈ S0, A ∈ S′0, b ∈ S0(R2d) and a ∈ S ′0(R2d), we have

S ? T ∈ S0(R2d), S ? A ∈ S ′0(R2d), b ? S ∈ S0, a ? S, b ? A ∈ S′0.

The analogy with the results obtained in [103] for S is evident; to see how the convolutions are
technically defined, e.g. S0 ?S′0, we address the reader to Definition 7.2.18 and subsequent items.
As well as the Feichtinger algebra is Fourier invariant, we have that

FW : S0 → S0(R2d)

is a topological isomorphism and it can be extended to a topological isomorphism from S′0 onto
S ′0(R2d).

We shall introduce a continuum of time-frequency representations depending on τ ∈ [0, 1],
namely the τ -short-time Fourier transforms

V τg f(x, ω) = e2πiτxωVgf(x, ω),

and the τ -Wigner distribution of an operator S with integral kernel KS :

WτS(x, ω) :=

∫
Rd
e−2πitωKS(x+ τt, x− (1− τ)t) dt.

For rank-one operators S = f ⊗ g, we recapture the cross-τ -Wigner distribution Wτ (f ⊗ g) =
Wτ (f, g). We shall introduce a dependence on τ ∈ [0, 1] also in the Fourier-Wigner transform,
so that we will talk about Fourier-τ -Wigner transform:

FWτ
S(x, ω) := e−2πi(1−τ)xω tr(π(−x,−ω)S).
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The well-known spreading representation will be interpreted as a mapping from functions into
operators and a dependence on τ ∈ [0, 1] shall be imposed as well,

SRτ : a 7→
∫
R2d

a(x, ω)e−2πiτxωπ(x, ω) dxdω

is the τ -spreading representation operator.
In Chapter 7 we show how these objects are naturally related to each other, see e.g. Lemma
7.1.9, and that S0 is a fruitful setting where to consider them. To give a flavour of the main
results, we summarize Theorem 7.2.6 and 7.2.6 as follows. Recall that the τ -quantization of a if
formally given by

Opτ (a)f(t) :=

∫
R2d

e2πi(t−x)ωa((1− τ)t+ τx, ω)f(x) dxdω.

Theorem 1.3.1. Let τ ∈ [0, 1] and

(X,Y ) = (J 1, L2(R2d)), (S0,S0(R2d)),

so that
(X ′, Y ′) = (J∞, L2(R2d)), (S′0,S ′0(R2d)).

Then the following mappings are linear and continuous

Opτ : Y ′ → X ′, Wτ : X → Y

and Opτ is the Banach space adjoint of Wτ : Opτ = W ∗τ ,in the sense that

Y ′〈a,WτS〉Y = X′〈Opτ (a), S〉X

for all a ∈ Y ′ and S ∈ X.

Moreover, in Corollary 7.2.8 we show that Wτ : S0 → S0(R2d) is a topological isomorphism
which inverse is given by Opτ : S0(R2d)→ S0.
Analogous results hold true for the Fourier-τ -Wigner transform FWτ

and the τ -spreading repre-
sentation SRτ . In the following item we report Corollary 7.2.9.

Theorem 1.3.2. Let τ ∈ [0, 1]. Then the following mappings are linear and continuous

SRτ : S ′0(R2d)→ S′0, FWτ
: S0 → S0(R2d)

and SRτ is the Banach space adjoint of FWτ
: SRτ = F∗Wτ

, in the sense that

S′0〈a,FWτ
S〉S0

= S′0〈SRτa,S〉S0

for all a ∈ S ′0(R2d) and S ∈ S0.
Moreover FWτ

: S0 → S0(R2d) is a topological isomorphism which inverse is given by SRτ : S0(R2d)→
S0.

Eventually, in the last section of the chapter, a characterization for S is given in terms of
weighted classes of Feichtinger operators M1

s. Namely

S =
⋂
s≥0

M1
s,

see Theorem 7.3.6. As a consequence, in the spirit of [95], a sufficient condition for an operator
to be in S is provided.



1.4 Structure of the thesis
This thesis work is structured as follows. Chapter 2 contains the preliminaries which are required
along all the text. The subsequent chapters contains the results of the papers [3, 7, 8, 9, 10, 11].
We chose to present them following the order under which they were written.
Chapter 3 presents the results about decay and smoothness for L2-eigenfunction of localization
operators Aψ1,ψ2

a on Rd [9] as well as the generalization to the Gelfand-Shilov setting [11].
In Chapter 4 we characterize the symbol class Sm(R2d) in terms of the Gabor matrix decay of
Opτ [7].
Chapter 5 is devoted to the definition of quasi-Banach modulation spaces on LCA groups, the
study of their main properties and of Kohn-Nirenberg operators Op0(σ) on such spaces as well
as of eigenfunctions of localization operators Aψ1,ψ2

a . The results were published in [8].
Chapter 6 addresses the problem of writing a localization operator with symbol only in the fre-
quencies Aψ1,ψ2

1⊗m as Fourier multiplier [3]. Also the finite discrete setting of ZN is taken into
account.
Eventually, Chapter 7 deals with Feichtinger operators in quantum harmonic analysis and the
various interpretations of the τ -quantization Opτ as Banach space adjoint between suitable Ba-
nach spaces [10].





Chapter 2

Preliminaries

In the present chapter we recall and collect notations, backgrounds and some preliminary results
which are shared by and exploited in chapters from 3 to 7.

In Section 2.1 we report the definition of quasi-norm, r-norms, quasi-normed and and quasi-
Banach spaces. Basic theory which steams from them if briefly recalled. The main references
are [44, 147].

Section 2.2 concerns solid quasi-Banach function (QBF) spaces Y on locally compact Haus-
dorff (LCH) groups G and a summary of the relative coorbit theory developed by F. Voigtlaender
in his Ph.D. thesis [147]. In particular, Subsection 2.2.1 contains definitions and assumptions
made on weight functions through all the present thesis work, both in the general setting of a
LCH group G and on Rd. In the latter situation, particular weights are considered, such as e.g.
polynomial weights vs and (sub-)exponential ones wγk . Subsection 2.2.2 reports definitions and
main properties of solid QBF spaces Y and associated discrete sequence spaces Yd, along with
relatively separated families and BUPUs; Subsection 2.2.3 deals with Wiener amalgam spaces
WQ(Y ) with local component L∞(G). We point out that, for sake of simplicity, we shall stick to
the situation where the spaceWQ(Y ) is independent of the window subset Q, although more gen-
eral scenarios can be taken into account. Subsection 2.2.4 shows weighted Lebesgue mixed-norm
space Lp,qm [12] in the perspective of the preceding subsection and provides proofs for a numbers
of results which seem to be folklore, for no proof was available to author’s knowledge. See in
particular lemma 2.2.26 and Proposition 2.2.27, which were both published in [8]. Eventually, a
comparison with the theory developed by H. G. Feichtinger and K. Gröchenig in [58] is made,
see Theorem 2.2.39 and the above remark.

The main tools of time-frequency analysis (TFA) on Euclidean space Rd are listed in Section
2.3. Here we find the definitions and main properties of time-frequency shifts (TFS) π(x, ω),
short-time Fourier transform (STFT) Vgf , cross-τ -Wigner distribution Wτ (f, g). In Subsection
2.3.2 we list different and equivalent ways of representing linear and continuous operators from
the Schwartz class S(Rd) into S ′(Rd): as integral operator with kernel, as pseudo-differential
operator and as continuous superposition of TFS-s. In Subsection 2.3.3 we generalize π(x, ω),
Vgf , W0(f, g) = R(f, g) to any LCA group G. Moreover, the important Structure Theorem
2.3.23 [96] and the class of special test functions SC(G) [88] are reported. Eventually, the specific
choice G = ZN is taken into account. Under the identification CN ∼= `2(ZN ), see (2.104), we
look at: STFT, spreading and matrix (kernel) representation of linear mappings from CN into
itself, discrete Fourier transform FN : CN → CN , discrete two dimensional Fourier transform
F2 : CN×N → CN×N , Kronecker delta function δ, Dirac comb Xα,β and discrete symplectic
Fourier transform Fs : CN×N → CN×N . The main references are [18, 35, 82, 88, 117].
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A brief recap of frame theory in Hilbert spaces in given in Section 2.4. Gabor frames, along
with analysis and synthesis operators, and some of their properties are shown both on Rd and G
LCA group. In particular, in Subsection 2.4.2 we introduce quasi-lattices on G as done in [88] in
order to build Gabor frames. Once more, we consider the particular case of G = ZN .

Modulation spaces are introduced and discussed in Section 2.5. In particular, modulation
spaces Mp,q

m with indexes 0 < p, q ≤ ∞ on Rd are shown in Subsection 2.5.1, whereas Mp,q
m with

1 ≤ p, q ≤ ∞ on any G LCA group are treated in Subsection 2.5.2. There we also list some
properties of the Feichtinger algebra S0(G) = M1(G). In particular, in this section we present
the proof of some new convolution relations on modulation spaces on Rd which were published
in [9], see Proposition 2.5.19. This result has been improved to any G LCA group in [8], see
Proposition 5.2.14 in Chapter 5. Some results about inclusion relations and an equivalent semi-
discrete quasi-norm on Mp,q

m (Rd) taken from [7] are reported. See Proposition 2.5.20, 2.5.21 and
Corollary 2.5.22. Proposition 2.5.23 was present in [3]. We address the reader to [35, 56, 82, 88].

Section 2.6 recalls various function spaces which shall be used in many of the subsequent
chapters. In particular we shall briefly define: Wiener amalgam spaces W (Lp, Lqm)(Rd) with
indexes 0 < p, q ≤ ∞, Besov spaces Bp,qs (Rd) [145], the class of smooth symbols Sm(R2d) [127],
weak Lr,∞ spaces [145]. Original results here presented and both published in [7] are: Lemma
2.6.8, which generalizes a characterization of Hörmander’s class S0

0,0 proved in [87, Lemma 6.1],
and the subsequent Lemma 2.6.9.

The main operators which are used in the present thesis, and some of which are also object
of main results illustrated in subsequent chapters, are defined in Section 2.7. We shall see:
localization operator Aψ1,ψ2

a both on Rd and G, Gabor multipliers Gg1,g2
a on Rd and Gg1,g2

a on
ZN , pseudo-differential operators Opτ (σ) and Born-Jordan operators OpBJ(σ) on Rd, Kohn-
Nirenberg operators Op0(σ) on G LCA group, Fourier multiplier Tm on Rd and linear time
invariant filters H on CN ∼= `2(ZN ) (see (2.104)).

Eventually, Section 2.8 revisits Sections 2.3, 2.5 and 2.7 in the framework of Gelfand-Shilov
spaces Sγτ (Rd) and Σγτ (Rd), which are treated in Subsection 2.8.1. For some references about the
Gelfand-Shilov setting we address, e.g. to [76, 118, 141, 143]. Proposition 2.8.13 was published by
N. Teofanov and the author in [11], it extends the convolutions for modulation spaces presented
in Proposition 2.5.19 [9]. Also Lemma 2.8.15 and Proposition 2.8.16 appeared for the first time
in [11].

2.1 Quasi-normed and quasi-Banach spaces
In this section, we report the definition of quasi-norm, r-norm, quasi-normed and and quasi-
Banach space. These notions will be used through all further chapters, since we shall always
tackle the quasi-Banach case, whenever possible. In particular, the so-called Aoki-Rolewicz
Theorem 2.1.3 is exploited heavily in Chapter 5. We address the reader to [44, 147] for further
references.

Definition 2.1.1. Let X be a vector space. An application ‖·‖X : X → [0,+∞) is called quasi-
norm if:

(i) ‖x‖X = 0 if and only if x = 0X , for every x ∈ X;

(ii) ‖αx‖X = |α| ‖x‖X , for very x ∈ X and α ∈ C;

(iii) There exists a constant C ≥ 1 such that for every x, y ∈ X

‖x+ y‖X ≤ C (‖x‖X + ‖y‖X) ;

such a C is called triangle constant.
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The pair (X, ‖·‖X) is called quasi-normed space. Two quasi-norms ‖·‖1,X and ‖·‖2,X on X
are called equivalent if there exist two constants C1, C2 > 0 such that for every x ∈ X

C1 ‖x‖1,X ≤ ‖x‖2,X ≤ C2 ‖x‖1,X .

In this case we write ‖·‖1,X � ‖·‖2,X .
Given 0 < r ≤ 1, an application ‖·‖X : X → [0,+∞) which satisfies (i) and (ii) and such that

‖x+ y‖rX ≤ ‖x‖
r
X + ‖y‖rX , ∀x, y ∈ X,

is called r-norm.

If the triangle constant can be chosen to be 1, then we recover the definition of norm and
normed space. Trivially, a 1-norm is just a norm.

Remark 2.1.2. The following observations are borrowed from [147, Remark 2.1.2], see therein
for related computations.

(i) Given an r-norm ‖·‖X : X → [0,+∞), on account of the convexity of t 7→ t
1
r on [0,+∞),

for every x, y ∈ X we have

‖x+ y‖X ≤ 2
1
r−1 (‖x‖X + ‖y‖X) .

Therefore every r-norm is a quasi-norm with triangle constant C = 2
1
r−1;

(ii) If 0 < s ≤ r ≤ 1, then any r-norm is also an s-norm.

The following fundamental result will be repeatedly used in Chapter 5.

Theorem 2.1.3 (Aoki-Rolewicz). If (X, ‖·‖1,X) is a quasi-normed space, then there is 0 < r ≤ 1
such that the mapping defined by

‖x‖2,X := inf


(

n∑
i=1

‖xi‖r1,X

) 1
r

|n ∈ N, x1, . . . , xn ∈ X, x =

n∑
i=1

xi

 ,

for every x ∈ X, is an r-norm equivalent to ‖·‖1,X .

About the previous theorem, we address the reader to [79, Exercise 1.4.6] and [44, Chapter
2, Theorem 1.1].

Definition 2.1.4. Let (X, ‖·‖X) be a quasi-normed space. A sequence {xn}n ⊆ X is called
Cauchy if

∀ ε > 0 ∃Nε ∈ N | ‖xi − xj‖X < ε ∀ i, j > Nε.

If every Cauchy sequence in X is convergent, then (X, ‖·‖X) is called quasi-Banach space.

Lemma 2.1.5. ([147, Lemma 2.1.5]) Let (X, ‖·‖X) a quasi-normed space. Given x ∈ X and
ε > 0, we define the ball of radius ε centred at x as

Bε(x) := {y ∈ X | ‖x− y‖X < ε}.

The collection of all the subsets E ⊆ X such that

∀x ∈ E ∃ε > 0 : Bε(x) ⊆ E
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is a topology on X. It is called the topology induced by ‖·‖X and turns X into a TVS.
Equivalent quasi-norms induce the same topology. If ‖·‖1,X is an r-norm, for some 0 < r ≤ 1,
equivalent to ‖·‖X , then

d : X ×X → [0,+∞), (x, y) 7→ ‖x− y‖r1,X

is a metric on X which induces the same topology as ‖·‖X .

Remark 2.1.6. (i) On account of Lemma 2.1.5, if (X, ‖·‖X) is quasi-Banach and ‖·‖1,X is
an r-norm, for some 0 < r ≤ 1, equivalent to ‖·‖X , then (X, ‖·‖1,X) is quasi-Banach too;

(ii) If (X, ‖·‖X) is quasi-normed space which does not admit an equivalent norm, then patholog-
ical behaviours may occur. For example: the unit ball may not be open; the quasi-norm can
be not continuous w.r.t. the topology it induces, not even Borel measurable. For concrete
examples, we address the reader to [147, Remark 2.1.9]. Moreover, quasi-normed spaces
are in general not convex. In order to point out one more difference w.r.t. the Banach
case, we mention that the topological dual of Lp(R), 0 < p < 1, is {0}, see [79, Theorem
1.4.1 (i)].

Eventually we recall the following result from [147].

Lemma 2.1.7. ([147, Lemma 2.1.6]) Let (X, ‖·‖X) and (Y, ‖·‖Y ) be quasi-normed spaces. The
a linear mapping T : X → Y is continuous if and only if it is bounded, i.e. if

|||T |||X→Y := sup
x∈X,
‖x‖X≤1

‖Tx‖Y < +∞.

2.2 Solid quasi-Banach function spaces on G and coorbit
theory

The present section summarizes the construction of coorbit spaces Co(Y ), when Y is a solid
quasi-Banach function space on a locally compact Hausdorff group G, even not abelian. This
theory was first developed by H. Rauhut in [119] and technically fixed and deepened by F.
Voigtlaender in his Ph.D. thesis [147]. In the end we shall highlight the differences with the
original theory for Banach spaces by H. G. Feichtinger and K. Gröchenig, see [58, 59, 60].
We mention that an exposition and treatment of the named coorbit theory is now available also
in the recent article [146] from J. T. van Velthoven and F. Voigtlaender, where the requirements
on the weights are lightened up. However, due to the time when the work [8] was written, we
shall stick to the first version presented in [147]. Moreover, on account of the objects of our
particular setting, this makes no difference.

From now on we make the following assumptions.

Assumptions 2.2.1. A topological group G, not necessarily abelian, is always assumed to be
locally compact Hausdorff (LCH) and σ-compact. The group law on G is represented as multi-
plication.

Assumptions 2.2.2. We use the letter G for a locally compact, abelian, Hausdorff, σ-compact,
second-countable group.
We shall simply refer to it as a LCA group.
The group law on G, as on any abelian group, is represented as addition and e stands for the
identity. Ĝ denotes the dual group of G. Latin letters such as x, y and u denote elements in G
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whereas all the characters in Ĝ, except the identity ê, are indicated by Greek letters like ξ, ω and
η. For the evaluation of a character ξ ∈ Ĝ at a point x ∈ G we write

〈ξ, x〉 := ξ(x).

We use boldface Latin letters to denote point in the phase-space:

x = (x, ξ),y = (y, η),u = (u, ω) ∈ G × Ĝ.

Similarly, boldface Greek ones ξ,ω,η stand for elements of Ĝ × G. The Haar measure on G
is denoted by dx and dξ stands for the dual Haar measure on Ĝ. Hence the Fourier transform
defined as

Ff(ξ) := f̂(ξ) :=

∫
G
f(x)〈ξ, x〉 dx, ∀ξ ∈ Ĝ,

is an isometry from L2(G) onto L2(Ĝ).

Given x ∈ G and a function f on G, we denote left and right translation operators by

(2.1) Lxf(y) := f(x−1y), Rxf(y) := f(yx).

If we are dealing with G, i.e. the group is abelian, we shall adopt the common notation

Tx := Lx.

Whenever a measure on G is involved, it is understood to be the left Haar measure. We shall
not list systematically the known properties for the spaces introduced in the sequel, but rather
recall them when necessary. The reader is invited to consult [147, Chapter 2] for an exhaustive
treatment.

2.2.1 Weights
In what follows we state what we mean, and which assumptions are made, by weight functions
in the present thesis work. We refer to [35, 82, 84, 147].

Definition 2.2.3. A weight on G is a measurable function m : G → (0,+∞). A weight v on
G is said to be submultiplicative if

(2.2) v(xy) ≤ v(x)v(y), ∀x, y ∈ G.

Given two weights m and v on G, m is said to be left-moderate w.r.t. v if

(2.3) m(xy) . v(x)m(y), ∀x, y ∈ G,

it is right-moderate w.r.t. v if

(2.4) m(xy) . m(x)v(y), ∀x, y ∈ G.

If a weight m is both left- and right-moderate w.r.t. v, we simply say that it is moderate w.r.t.
v or v-moderate.
Consider v submultiplicative weight on G which is also even, bounded from below and satisfies
the Gelfand-Raikov-Shilov (GRS) condition, i.e.

v(x) = v(x−1) ∀x ∈ G,
∃c > 0 : v(x) ≥ c ∀x ∈ G,

lim
n→+∞

v(xn)
1
n = 1 ∀x ∈ G,
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then the class of weights on G moderate w.r.t. v is denoted as follows:

(2.5) Mv(G) := {mweight onG |m is v−moderate} .

Two weights w1, w2 on G are said to be equivalent if w1 � w2, i.e.

w1(x) . w2(x) . w1(x), ∀x ∈ G.

Remark 2.2.4. The GRS condition is not always needed, but it is necessary in order to have
Gabor frames for L2(G). The related result is Theorem 2.4.26 in which v is a weight on the
abelian group G × Ĝ, hence the GRS condition has the form

lim
n→+∞

v(nx)
1
n = 1, ∀x ∈ G × Ĝ.

Theorem 2.2.5. ([92, Theorem 2.1.4]) Let v be a submultiplicative weight on G. Then v is
bounded on compact sets.

2.2.1.1 Weights on Rd

Here we list some specific weights which shall be explicitly used in the following chapters, in
particular in Chapter 3. Namely, we define the Japanese brackets 〈·〉, the weight of polynomial
type vs and (super/sub-)exponential weights wγk . Some technical results from [11] are reported,
in particular Lemma 2.2.13 shall be exploited in order to prove Theorem 3.3.5. Finally, weights
mτ
u are defined and they will be needed in Chapter 3 as well.

Remark 2.2.6. When dealing with the abelian group G = Rd, we see that if m ∈Mv(Rd), then

v−1(x) . m(x) . v(x), ∀x ∈ Rd.

It follows that v(x) . m−1(x) . v−1(x) for every x ∈ Rd. This, together with Theorem 2.2.5
gives: m, 1/m ∈ L∞loc(Rd).

Definition 2.2.7. We define the Japanese bracket of x ∈ Rd to be

(2.6) 〈x〉 :=

√
1 + |x|2.

Let s ∈ R, the polynomial weight vs is defined to be

(2.7) vs(x) := 〈x〉s = (1 + |x|2)
s
2 , ∀x ∈ Rd.

We say that a weight m on Rd has at most polynomial growth (at infinity) if there exist
C > 0 and s > 0 such that

(2.8) m(x) ≤ Cvs(x), ∀x ∈ Rd.

Let k, γ > 0, and define

(2.9) wγk(x) := ek|x|
1/γ

, ∀x ∈ Rd.

If γ > 1 the above functions are called subexponential weights, when γ = 1 we have the ex-
ponential weights and write wk instead of w1

k, for 0 < γ < 1 we call them superexponential
weights.
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Sometimes we shall use the expression wγk for k = 0 also, with obvious meaning.

Remark 2.2.8. (i) The polynomial weight vs fails to be submultiplicative for s ≥ 0 due to
Peetre’s inequality (which is sharp):

〈x+ y〉s ≤ 2s〈x〉s〈y〉|s|, ∀x, y ∈ Rd, s ∈ R.

However the function 2s〈x〉s, for s ≥ 0, is a submultiplicative weight equivalent to vs.
By abuse of notation we denote by Mvs(Rd) the class of weights which are vs-moderate
weights. We leave as an exercise for the reader to prove that it coincides withM2svs(Rd).
We also observe that, for s < 0, vs is v|s|-moderate due to Peetre’s inequality;

(ii) Observe that (sub-)exponential weights wγk , γ ≥ 1, are submultiplicative;

(iii) Both vs and wγk , with s, k ≥ 0 and γ ≥ 1, are even and fulfil the GRS condition.

Definition 2.2.9. Let γ > 0 and define

PE(Rd) := {mweight onRd |m is v-moderate for some submultiplicative v},
PE,γ(Rd) := {mweight onRd |m is wγk -moderate for some k > 0},
P0
E,γ(Rd) := {mweight onRd |m is wγk -moderate for every k > 0}.

For 0 < γ2 < γ1 we have

P0
E,γ1

⊆PE,γ1 ⊆P0
E,γ2

⊆PE .

Moreover, for 0 < γ < 1 we have PE = PE,γ = P0
E,γ ; see [19, Remark 2.6] and [144]. In the

next lemma we show that if m ∈PE , then it is wk-moderate fore some k > 0 large enough. This
implies PE = PE,1.

Lemma 2.2.10. ([11, Lemma 2.1]) Let m ∈PE. Then m is wk-moderate fore some k > 0.

Proof. The lemma is folklore ([84, 19, 143, 142]). For the sake of completeness we report a
self-contained proof following [84]. By the hypothesis, we may assume that m is moderate with
respect to some continuous v0 > 0 (cf. [35, 84, 139]): m(x + y) ≤ Cv0(x)m(y), x, y ∈ Rd. It
follows that sup|t|≤1 Cv0(t) = ea for some a ∈ R. For any given x, y ∈ Rd we choose n ∈ N such
that n− 1 < |x| ≤ n. Then for all x and y in Rd

m(x+ y) = m
(
n
x

n
+ y
)
≤ Cv0

(x
n

)
m
(

(n− 1)
x

n
+ y
)

≤ C2v2
0

(x
n

)
m
(

(n− 2)
x

n
+ y
)

≤ . . .

≤
(
Cv0

(x
n

))n
m(y) ≤ eanm(y)

< ea(|x|+1)m(y) = eaea|x|m(y).

The claim follows for k > max(0, a).

We remark that PE contains the weights of polynomial type, i.e. weights moderate with
respect to some polynomial, or equivalently to some vs with s ≥ 0.

In the sequel P∗
E,γ means PE,γ or P0

E,γ . The following lemma follows by easy calculations
and we leave the proof to the reader (see also [139]). Observe that due to the equality PE,1 =
PE,γ = P0

E,γ , 0 < γ < 1, it is sufficient to consider γ ≥ 1.
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Lemma 2.2.11. ([11, Lemma 2.2]) Consider γ > 0. Then P∗
E,γ(Rd) is a group under the

pointwise multiplication and with the identity m ≡ 1.

Given a function f defined on R2d we denote its restrictions to Rd × {0} and {0} × Rd as
follows:

(2.10) f1(x) := f(x, 0), f2(ω) := f(0, ω), ∀x, ω ∈ Rd.

The families P∗
E,γ turn out to be closed under restrictions and tensor products in the sense of

the following lemma. The proof is omitted, since it follows from definitions and properties of the
Euclidean norm.

Lemma 2.2.12. ([11, Lemma 2.3]) Consider γ > 0:

(i) if m ∈P∗
E,γ(R2d), then m1,m2 ∈P∗

E,γ(Rd);

(ii) if m,w ∈P∗
E,γ(Rd), then m⊗ w ∈P∗

E,γ(R2d).

Next we exhibit a lemma which will play a key role in Theorem 3.3.5.

Lemma 2.2.13. ([11, Lemma 2.4]) Consider γ ≥ 1, r, s ≥ 0, τ ∈ [0, 1] and

(2.11) t ≥

{
r + sτ1/γ if 1/2 ≤ τ ≤ 1,

r + s(1 + τ2)1/2γ if 0 ≤ τ < 1/2.

Then for every x, ω, y, η ∈ Rd the following estimate holds true:

(2.12)
wγr+s(x, ω)

wγr (y, η)
≤ wγs ⊗ w

γ
t

((
(1− τ)x+ τy, τω + (1− τ)η

)
,
(
ω − η, y − x

))
.

Proof. We first recall that given 0 < p ≤ q <∞ the following holds true:

(2.13) ‖z‖q :=

(
d∑
i=1

|zi|q
) 1
q

≤

(
d∑
i=1

|zi|p
) 1
p

=: ‖z‖p , z = (z1, . . . , zd) ∈ Rd.

In fact, consider z such that ‖z‖p = 1. Hence |zi|p ≤ 1 ⇒ |zi| ≤ 1 for i = 1, . . . , d. Thus |zi|q ≤
|zi|p and

∑d
i=1 |zi|

q ≤
∑d
i=1 |zi|

p
= 1. Eventually consider u ∈ Rd r {0}, then

∥∥∥u/ ‖u‖p∥∥∥
q
≤ 1

and (2.13) is proved.
By using the triangular inequality and (2.13) with q = 1 and p = β, we infer that for 0 < β ≤ 1

(2.14)

∣∣∣∣∣
d∑
i=1

zi

∣∣∣∣∣
β

≤
d∑
i=1

|zi|β , z = (z1, . . . , zd) ∈ Rd.

Now, by the triangular inequality and (2.14) with d = 2 we obtain

(2.15) |x|β − |y|β ≤ |x− y|β , 0 < β ≤ 1, x, y ∈ Rd.

Next, we observe that for z, w ∈ Rd

|(τz, (1− τ)w)|2 = τ2 |z|2 + (1− τ)2 |w|2 = τ2 |z|2 + (τ2 + 1− 2τ) |w|2

= τ2(|z|2 + |w|2) + (1− 2τ) |w|2 = τ2 |(z, w)|2 + (1− 2τ) |w|2

≤

{
τ2 |(z, w)|2 + 0 if 1/2 ≤ τ ≤ 1,

τ2 |(z, w)|2 + 1 |w|2 + |z|2 = (1 + τ2) |(z, w)|2 if 0 ≤ τ < 1/2,
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which gives

(2.16) |(τz, (1− τ)w)|1/γ ≤

{
τ1/γ |(z, w)|1/γ if 1/2 ≤ τ ≤ 1,

(1 + τ2)1/2γ |(z, w)|1/γ if 0 ≤ τ < 1/2.

We can now prove (2.12):

wγr+s(x, ω)

wγr (y, η)
= exp

(
(r + s) |(x, ω)|1/γ − r |(y, η)|1/γ

)
= exp

(
r
(
|(x, ω)|1/γ − |(y, η)|1/γ

)
+ s |(x, ω)|1/γ

)
(2.15)
≤ exp

(
r |(x, ω)− (y, η)|1/γ + s |(x, ω)|1/γ

)
= exp(r |(ω − η, y − x)|1/γ + s |(x, ω)|1/γ − s |(τ(x− y), (1− τ)(ω − η))|1/γ)

× exp(s |(τ(x− y), (1− τ)(ω − η))|1/γ)

(2.15)
≤ exp(r |(ω − η, y − x)|1/γ + s |(x, ω)− (τ(x− y), (1− τ)(ω − η))|1/γ

+ s |(τ(x− y), (1− τ)(ω − η))|1/γ)

= exp(r |(ω − η, y − x)|1/γ + s |((1− τ)x+ τy, τω + (1− τ)η)|1/γ

+ s |(τx− τy, (1− τ)ω − (1− τ)η)|1/γ)

(2.16)
≤


exp((r + sτ1/γ) |(ω − η, y − x)|1/γ

+s |((1− τ)x+ τy, τω + (1− τ)η)|1/γ) if 1/2 ≤ τ ≤ 1,

exp((r + s(1 + τ2)1/2γ) |(ω − η, y − x)|1/γ

+s |((1− τ)x+ τy, τω + (1− τ)η)|1/γ) if 0 ≤ τ < 1/2,

and the claim follows from assumptions (2.11).

We finish this subsubsection by introducing some polynomial weights which will be used in
Theorem 3.3.2 and Lemma 3.3.3.
Let τ ∈ [0, 1] and u ≥ 0, then we define the weight of polynomial type

(2.17) mτ
u((x, ω), (y, η)) := (1 + |x− τη|+ |ω + (1− τ)y|)u,

where (x, ω), (y, η) ∈ R2d.

Remark 2.2.14. Let τ ∈ [0, 1] and u ≥ 0, then we notice that

mτ
u((x, ω), (y, η)) . vu ⊗ vu((x, ω), (y, η)), ∀ (x, ω), (y, η) ∈ R2d.

which will be used in Lemma 3.3.3. Indeed:

mτ
u((x, ω), (y, η)) = (1 + |x− τη|+ |ω + (1− τ)y|)u

. (1 + (|x|+ |τη|)2 + (|ω|+ |(1− τ)y|)2)u/2

. (1 + |x|2 + τ2 |η|2 + |ω|2 + (1− τ)2 |y|2)u/2

. (1 + |(x, ω)|2 + |(y, η)|2)u/2

≤ (1 + |(x, ω)|2 + |(y, η)|2 + |(x, ω)|2 |(y, η)|2)u/2

= (1 + |(x, ω)|2)u/2(1 + |(y, η)|2)u/2

= vu ⊗ vu((x, ω), (y, η)).
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2.2.2 Solid QBF spaces on G

The definition of a solid quasi-Banach function space Y on G is given. Since It can be useful to
describe Wiener Amalgam spaces WQ(Y ), Definition 2.2.22, in terms of sequences, the so-called
BUPUs and a particular space of sequences Yd associated to Y are introduced. We present the
space Yd under specific hypothesis fitting our framework, nevertheless a more general theory
is possible, see [120] and [147, Chapter 2]. We recall the Lx and Rx are the left and right
translations on G, respectively.

Definition 2.2.15. We say that (Y, ‖·‖Y ) is a function space on G if it is a quasi-normed space
consisting of equivalence classes of measurable C-valued functions on G, where two functions are
identified if they coincide a.e..

A function space (Y, ‖·‖Y ) on G is said to be left invariant if Lx : Y → Y is well defined
and bounded for every x ∈ G, similarly we define the right invariance. We say that Y is
bi-invariant if it is both left and right invariant.

A function space (Y, ‖·‖Y ) on G is said solid if given g ∈ Y and f : G → C measurable the
following holds true:

|f | ≤ |g| a.e. ⇒ f ∈ Y, ‖f‖Y ≤ ‖g‖Y ;

Y is called quasi-Banach function (QBF) space on G if it is complete.

Without loss of generality, we can assume ‖·‖Y to be a r-norm, 0 < r ≤ 1, i.e.

‖f + g‖rY ≤ ‖f‖
r
Y + ‖g‖rY , ∀f, g ∈ Y.

This is due to the Aoki-Rolewicz Theorem 2.1.3 and the fact that equivalent quasi-norms induce
the same topology, see Lemma 2.1.5 .

Definition 2.2.16. A family X = {xi}i∈I in G is called relatively separated if for all compact
sets K ⊆ G we have

(2.18) CX,K := sup
i∈I

#{j ∈ I |xiK ∩ xjK 6= ∅} < +∞.

Consider X = {xi}i∈I relatively separated family in G, Q ⊆ G measurable, relatively compact set
of positive measure and (Y, ‖·‖Y ) solid QBF space on G. Then the discrete sequence space
associated to Y is the set

(2.19) Yd(X,Q) :=

{
(λi)i∈I ∈ CI |

∑
i∈I
|λi|χxiQ ∈ Y

}

endowed with the quasi-norm

(2.20)
∥∥(λi)i∈I

∥∥
Yd(X,Q)

:=

∥∥∥∥∥∑
i∈I
|λi|χxiQ

∥∥∥∥∥
Y

;

CI is the space of functions from I into C.

Lemma 2.2.17. ([147, Lemma 2.3.10]) If G is σ-compact, then any relatively separated family
X is (at most) countable.

For the following issue we address the reader to [120, Lemma 2.2] and [147, Lemma 2.3.16].
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Lemma 2.2.18. (Yd(X,Q), ‖·‖Yd(XQ)) is a quasi-Banach space. Moreover, if Y is right invariant
then Yd(X,Q) is independent of Q in the sense that another U ⊆ G measurable, relatively compact
and with non empty interior yields the same space with an equivalent quasi-norm

We recall the following result by F. Voigtlaender [147].

Lemma 2.2.19. ([147, Lemma 2.3.21]) Let v be a submultiplicative weight on G and m a weight
on G right-moderate w.r.t. v. Then for every 0 < p ≤ ∞, for each Q ⊆ G measurable relatively
compact set with positive measure and for every relatively separated family X = {xi}i∈I in G we
have

(Lpm(G))d(X,Q) = `pmX (I),

where mX : I → (0,+∞), i 7→ m(xi).

A generalization of this result was given in [8], see Lemma 5.1.26.

Definition 2.2.20. Let U ⊆ G be a relatively compact, unit neighbourhood. A family Ψ =
{ψi}i∈I of continuous functions on G is called a bounded uniform partition of unity of
size U (U-BUPU) if

(i) 0 ≤ ψi(x) ≤ 1 for all x ∈ G and every i ∈ I;

(ii) there exists X = {xi}i∈I U-localizing family for Ψ, i.e., X is a relatively separated
family in G such that

suppψi ⊆ xiU ∀i ∈ I;

(iii)
∑
i∈I ψi ≡ 1.

Lemma 2.2.21. Given any relatively compact unit neighbourhood U in G, there always exists a
family Ψ which is a U -BUPU with some U -localizing family X. Moreover, since G is σ-compact,
the indexes’ set is (at most) countable.

For the above lemma we refer to [52, Theorem 2] and [147, Lemma 2.3.212].

2.2.3 Wiener Amalgam spaces with global component L∞(G)
We introduce the Wiener Amalgam spaces not in their full generality, but restrict ourselves to
cases which ensure “good” properties.

Definition 2.2.22. Consider Q ⊆ G measurable, relatively compact, unit neighbourhood and
f : G → C measurable. We call maximal function of f with respect to Q the following
application

(2.21) MQf : G→ [0,+∞], x 7→ ess sup
y∈xQ

|f(y)| .

We fix a solid QBF space (Y, ‖·‖Y ) on G and define theWiener Amalgam space with window
Q, local component L∞ = L∞(G) and global component Y as

(2.22) WQ(Y ) := WQ(L∞, Y ) := {f ∈ L∞loc(G) |MQf ∈ Y }

and endow it with

(2.23) ‖f‖WQ(Y ) := ‖f‖WQ(L∞,Y ) := ‖MQf‖Y .
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It was proven in [147, Lemma 2.3.4] that the maximal function MQf is measurable.

Lemma 2.2.23. The Wiener Amalgam space (WQ(Y ), ‖·‖WQ(Y )) is a solid QBF space on G,
in particular, ‖·‖WQ(Y ) is a r-norm, 0 < r ≤ 1, if ‖·‖Y is.

For each f ∈ L∞loc(G) we have

(2.24) |f(x)| ≤ MQf(x) a.e.,

which together with the solidity of Y gives the continuous embedding

(2.25) WQ(L∞, Y ) ↪→ Y.

In general the definition of WQ(Y ) may depend on the chosen subset Q. However, we shall
require some further properties in order to make the Wiener space independent of it. We collect
some of the results of [147, Lemma 2.3.16, Theorem 2.3.17] in the following lemma (which holds
under milder assumptions).

Lemma 2.2.24. Under the hypothesis presented so far, if the solid QBF space Y on G is right
invariant, then the following equivalent facts hold true:

(i) The Wiener Amalgam space WQ(L∞, Y ) is right invariant for each measurable, relatively
compact, unit neighbourhood Q ⊆ G;

(ii) The Wiener Amalgam space WQ(L∞, Y ) is independent of the choice of the measurable,
relatively compact, unit neighbourhood Q ⊆ G, in the sense that different choices yield the
same set with equivalent quasi-norms. The equivalence constants depend only on the two
sets Q,Q′ ⊆ G and on Y .

If these conditions are fulfilled, Ψ = {ψi}i∈I is a U -BUPU for some localizing family X = {xi}i∈I
and U ⊆ G relatively compact unit neighbourhood, then

(2.26) ‖f‖WQ(L∞,Y ) �
X,Q,Y

∥∥(‖ψi · f‖L∞)
i∈I

∥∥
Yd(X,Q)

for every f ∈WQ(L∞, Y ) and the constants involved in the above equivalence depend only on X,
Q and Y .

We remark that the right invariance of Y is sufficient for conditions (i) or (ii) but not
necessary; the existence of an U -BUPU Ψ is always guaranteed. When one of the above conditions
is satisfied, we suppress the index Q in the Wiener space and simply write W (L∞, Y ) or W (Y ).

By considering Qx instead of xQ in the definition of the maximal function, we obtain the
“right-sided” version of the Wiener spaces. So that we set the right-sided maximal function
to be

(2.27) MR
Qf : G→ [0,+∞], x 7→ ess sup

y∈Qx
|f(y)|

and define the right-sided Wiener Amalgam space WR
Q (Y ) similarly as before. Analogous

considerations hold for WR
Q (Y ), with the proper cautions about Lemma 2.2.24. In particular,

the independence of WR
Q (Y ) from Q is guaranteed if Y is left invariant, see [147, Lemma 2.3.29].
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2.2.4 An example of solid QBF spaces: Lp,qm spaces

In showing the well-known examples of weighted mixed-norm Lebesgue spaces Lp,qm , 0 < p, q ≤ ∞,
we prove a number of results which are usually taken al folklore. See in particular: Lemma 2.2.26
for the quasi-norm on Lp,qm being a min{1, p, q}-norm, Proposition 2.2.27 for Young’s inequality
for Lp,q(G × Ĝ) and subsequent consequences. The mentioned results are taken from [8].

Example 2.2.25. Let (X,A , µ) be a measure space. For 0 < p ≤ ∞, the Lebesgue space
Lp(X) := Lp(X,A , µ) is the collection of equivalence classes of measurable functions f : X → C,
where two functions coincide if they are equal almost everywhere (a.e.) w.r.t. µ, such that

‖f‖Lp :=

(∫
X

|f(x)|p dµ(x)

) 1
p

< +∞ if 0 < p <∞,

‖f‖L∞ := ess sup
x∈X

|f(x)| < +∞ if p =∞.

For p ≥ 1 the above application is a norm, for 0 < p < 1 it is easy to verify that it is a p-norm.
Hence ‖·‖Lp , 0 < p ≤ ∞, is a p-norm and Lp(X), endowed with such a quasi-norm, is known
to be a quasi-Banach space. Moreover, if X is a topological group with Haar measure µ, then
(Lp(X), ‖·‖Lp) is a solid QBF space.
If (Y,B, ν) is another measure space and 0 < q ≤ ∞, then the Lebesgue mixed-norm space
Lp,q(X × Y ) consists of equivalence classes of measurable equal a.e. functions f : X × Y → C,
such that

‖f‖Lp,q :=

(∫
Y

(∫
X

|f(x, y)|p dµ(x)

) q
p

dν(y)

) 1
q

< +∞ if 0 < p, q <∞,

analogous definitions when at least one between p and q is ∞. ‖·‖Lp,q is a quasi-norm and
Lp,q(X × Y ) is complete w.r.t. it. Similarly to the single index case, if X × Y is a product
topological group with Haar measure the product measure µ× ν, then (Lp,q(X × Y ), ‖·‖Lp,qm ) is a
solid QBF space.

The fact of ‖·‖Lp,q , presented in the above example, being a min{1, p, q}-norm seems to be
folklore, for no available proof is known to the author. For this reason, we present a proof which
was published in [8, Lemma 3.5]. For sake of generality we introduce the weighted version of
Lebesgue mixed-norm spaces. Let m : X × Y → (0,+∞) be a measurable function. Then

Lp,qm (X × Y ) :=
{
f : X × Y → C measurable | f ·m ∈ Lp,q(X × Y )

}
/ ∼,

where ∼ denotes the equivalence relation where f ∼ g if and only if f = g a.e. w.r.t. µ× ν. The
quasi-norm is the natural one:

‖f‖Lp,qm := ‖f ·m‖Lp,q .

Of course (Lp,qm , ‖·‖Lp,qm ) is a quasi-Banach space. If X × Y is a product of topological groups,
then it is a solid QBF space.

Lemma 2.2.26. ([8, Lemma 3.5]) Let (X,A , µ) and (Y,B, ν) be measure spaces, consider 0 <
p, q ≤ ∞ and m : X × Y → (0,+∞) measurable. Then ‖·‖Lp,qm is a min{1, p, q}-norm.

Proof. We tackle the unweighted case, the weighted one follows immediately. We recall that for
0 < p ≤ ∞ the application ‖·‖Lp , see Example 2.2.25, is an min{1, p}-norm. Therefore it is a
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min{1, p, q}-norm also. Let us consider f, g ∈ Lp,q(X × Y ) and define r := min{1, p, q}, using
the fact that ‖·‖Lp(X) is an r-norm and q/r ≥ 1:

‖f + g‖rLp,q =

(∫
Y

(∫
X

|f(x, y) + g(x, y)|p dµ(x)

) q
p

dν(y)

) r
q

=

(∫
Y

(∫
X

|f(x, y) + g(x, y)|p dµ(x)

) r
p
q
r

dν(y)

) r
q

≤

∫
Y

((∫
X

|f(x, y)|p dµ(x)

) r
p

+

(∫
X

|g(x, y)|p dµ(x)

) r
p

) q
r

dν(y)

 r
q

≤

∫
Y

((∫
X

|f(x, y)|p dµ(x)

) r
p

) q
r

dν(y)

 r
q

+

∫
Y

((∫
X

|g(x, y)|p dµ(x)

) r
p

) q
r

dν(y)

 r
q

= ‖f‖rLp,q + ‖g‖rLp,q .

The proof is concluded.

Also Young’s inequality for Lp,q(G × Ĝ), G LCA group, seems to be folklore. For this reason
a proof was provided by E. Cordero and the author in [8].

Proposition 2.2.27. ([8, Proposition 4.1]) Consider 1 ≤ pi, qi, ri ≤ ∞, i = 1, 2, such that

(2.28)
1

pi
+

1

qi
= 1 +

1

ri
, i = 1, 2.

If F ∈ Lp1,p2(G × Ĝ) and H ∈ Lq1,q2(G × Ĝ), then F ∗H ∈ Lr1,r2(G × Ĝ) with

(2.29) ‖F ∗H‖Lr1,r2 ≤ ‖F‖Lp1,p2 ‖H‖Lq1,q2 .

Proof. We follow the pattern of [12, Part II, Theorem 1, b)]. It suffices to prove the claim
for F,H ≥ 0. Given a measurable function W : G × Ĝ → C and 1 ≤ s ≤ ∞, we define the
(measurable) function on Ĝ

(2.30) ‖W‖(s) (ξ) :=


(∫
G |W (x, ξ)|s dx

) 1
s

if s <∞,
ess sup x∈G |W (x, ξ)| if s =∞.

We show the case r1 < ∞, the case r1 = ∞ is done similarly. In the following we shall use
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Minkowski’s integral inequality (see [130, Appendix A.1]):

‖F ∗H‖(r1) (ξ) =

(∫
G

[∫
G×Ĝ

F ((x, ξ)− (u, ω))H(u, ω) dudω

]r1
dx

) 1
r1

=

(∫
G

[∫
Ĝ

(∫
G
F ((x, ξ)− (u, ω))H(u, ω) du

)
dω

]r1
dx

) 1
r1

≤
∫
Ĝ

(∫
G

[∫
G
F ((x, ξ)− (u, ω))H(u, ω) du

]r1
dx

) 1
r1

dω

=

∫
Ĝ

(∫
G

[[F (·, ξ − ω) ∗H(·, ω)](x)]
r1 dx

) 1
r1

dω

=

∫
Ĝ
‖F (·, ξ − ω) ∗H(·, ω)‖Lr1 (G) dω =: I.

Using Young’s inequality (see [96, Theorem 20.18]) with indexes p1, q1, r1 as in (2.28) we majorize
as

I ≤
∫
Ĝ
‖F (·, ξ − ω)‖Lp1 (G) ‖H(·, ω)‖Lq1 (G) dω

=

∫
Ĝ

(∫
G
F (x, ξ − ω)p1 dx

) 1
p1
(∫
G
H(x, ω)q1 dx

) 1
q1

dω

=

∫
Ĝ
‖F‖(p1) (ξ − ω) ‖H‖(q1) (ω) dω

=
(
‖F‖(p1) ∗ ‖H‖(q1)

)
(ξ).

Using Young’s inequality with indices p2, q2, r2 in (2.28) we obtain the desire result. Namely,

‖F ∗H‖Lr1,r2 (G×Ĝ) =

(∫
Ĝ

[
‖F ∗H‖(r1) (ξ)

]r2
dξ

) 1
r2

≤
(∫
Ĝ

[(
‖F‖(p1) ∗ ‖H‖(q1)

)
(ξ)
]r2

dξ

) 1
r2

=
∥∥∥‖F‖(p1) ∗ ‖H‖(q1)

∥∥∥
Lr2 (Ĝ)

≤
∥∥∥‖F‖(p1)

∥∥∥
Lp2 (Ĝ)

∥∥∥‖H‖(q1)

∥∥∥
Lq2 (Ĝ)

= ‖F‖Lp1,p2 (G×Ĝ) ‖H‖Lq1,q2 (G×Ĝ) .

This concludes the proof.

A straightforward consequence is the weighted Young’s inequality below.

Corollary 2.2.28. ([8, Corollary 4.2]) Consider 1 ≤ pi, qi, ri ≤ ∞, i = 1, 2, such that

(2.31)
1

pi
+

1

qi
= 1 +

1

ri
, i = 1, 2.

Consider m ∈Mv(G×Ĝ). If F ∈ Lp1,p2
m (G×Ĝ) and H ∈ Lq1,q2v (G×Ĝ), then F ∗H ∈ Lr1,r2m (G×Ĝ)

with

(2.32) ‖F ∗H‖Lr1,r2m
≤ ‖F‖Lp1,p2

m
‖H‖Lq1,q2v

.
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Note that Proposition 2.2.27 can be easily generalized to N indices, N ≥ 2, as in [12, Part
II, Theorem 1, b)]:

Proposition 2.2.29. ([8, Proposition 4.3]) Consider N ∈ N and let Gi be a LCA, σ-finite group
with Haar measure dxi, i = 1, . . . , N . Consider 1 ≤ pi, qi, ri ≤ ∞, i = 1, . . . , N , such that

1

pi
+

1

qi
= 1 +

1

ri
, i = 1, . . . , N.

If F ∈ Lp1,...,pN (G1 × · · · × GN ) and H ∈ Lq1,...,qN (G1 × · · · × GN ), then F ∗H ∈ Lr1,...,rN (G1 ×
· · · × GN ) with

‖F ∗H‖Lr1,...,rN (G1×···×GN ) ≤ ‖F‖Lp1,...,pN (G1×···×GN )‖H‖Lq1,...,qN (G1×···×GN ),

where the product LCA σ-finite group G1 × · · · × GN is endowed with the product Haar measure
dx1 . . . dxN .

2.2.4.1 Discrete weighted mixed-norm spaces `p,qm (Z2d)

By taking X = Zd = Y endowed with the counting measure µ#, we recover the well-know
weighted spaces of sequences `pm(Zd) and `p,qm (Z2d). We recall here some properties which will
be needed in next chapters.

Definition 2.2.30. Consider two sequences of complex numbers a = (ak)k∈Zd , b = (bk)k∈Zd ⊆ C.
We define the convolution sequence of a and b as

(2.33) a ∗ b :=

∑
n∈Zd

ak−nbn


k∈Zd

⊆ C.

We define the point-wise product sequence of a and b as a · b := (akbk)k∈Zd .

We present some properties we need in the sequel, we refer to [74, 75] for proofs.

Theorem 2.2.31. (Inclusion relations)
Let m be any weight on Zd. Consider 0 < p1 ≤ p2 ≤ ∞. Then we have the following continuous
inclusion:

(2.34) `p1
m (Zd) ↪→ `p2

m (Zd),

i.e. there exists C > 0 such that for all a ∈ `p1
m (Zd)

‖a‖`p2
m
≤ C ‖a‖`p1

m
.

Theorem 2.2.32. (Young’s convolution inequality)
Consider m ∈Mv(Zd). Take 0 < p, q, r ≤ ∞ such that:

1

p
+

1

q
= 1 +

1

r
for 1 ≤ r ≤ ∞,(2.35)

p = q = r for 0 < r < 1.(2.36)

Then we have the following continuous inclusion:

(2.37) `pm(Zd) ∗ `qv(Zd) ↪→ `rm(Zd),

i.e. there exists C > 0 such that for every a ∈ `pm(Zd) and b ∈ `qv(Zd)

‖a ∗ b‖`rm ≤ C ‖a‖`pm ‖b‖`qv
and C in independent of p, q, r, a, b. Moreover if m ≡ 1 ≡ v, then C = 1.
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Theorem 2.2.33. (Hölder’s inequality)
Let ν be any weight on Zd. Take 0 < p, q, r ≤ ∞ such that

(2.38)
1

p
+

1

q
=

1

r
.

Then we have the following continuous inclusion:

(2.39) `pν(Zd) · `q1/ν(Zd) ↪→ `r(Zd),

i.e. there exists C > 0 such that for every a ∈ `pν(Zd) and b ∈ `q1/ν(Zd)

‖a · b‖`r ≤ C ‖a‖`pν ‖b‖`q1/ν .

Lemma 2.2.34. If 0 < p1, p2 ≤ ∞, with

0 ≤ s2 ≤ s1,
1

p2
+
s2

d
<

1

p1
+
s1

d
,

then

(2.40) `p2

〈·〉s2 (Zd) ↪→ `p1

〈·〉s1 (Zd).

2.2.5 Coorbit theory for solid QBF spaces on G

We are now able to state the coorbit theory in [147, Assumption 2.4.1] in the following items
A–G and H –J. Although the structure could appear quite cumbersome, lot of elements shall
simplify due to our subsequent specific choices in Chapter 5.

A. We assume G to be a LCH, σ-compact group. We consider ρ : G → U(H) a strongly
continuous, unitary, irreducible representation of G for some nontrivial complex Hilbert
space H. U(H) denotes the group of unitary operators on H (see e.g. [69, 152] ).

B. Given f, g ∈ H, we define the (generalized) wavelet transform induced by ρ, or voice
transform, of f w.r.t. g as

(2.41) W ρ
g f : G→ C, x 7→ 〈f, ρ(x)g〉H,

where 〈·,·〉H, also denoted by 〈·,·〉, is the inner product on H supposed antilinear in the
second component. W ρ

g f is always a continuous and bounded function on G, see [152]. We
assume the representation ρ to be integrable, i.e. there exists g ∈ H r {0} such that
W ρ
g g ∈ L1(G); this implies that ρ is also square-integrable: there exists g ∈ H r {0}

such that W ρ
g g ∈ L2(G). Such a g is said to be admissible.

C. (Y, ‖·‖Y ) will be supposed to be a solid QBF space on G with ‖·‖Y , or some equivalent
quasi-norm, r-norm with 0 < r ≤ 1.

D. The Wiener Amalgam space WQ(L∞, Y ) is assumed right invariant for each measurable,
relatively compact, unit neighbourhood Q ⊆ G. We consider a submultiplicative weight
w : G→ (0,+∞) such that for some (and hence each) measurable, relatively compact, unit
neighbourhood Q ⊆ G

(2.42) w(x) &
Q
|||Rx|||WQ(Y )→WQ(Y )
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and

(2.43) w(x) &
Q

∆(x−1) |||Rx−1 |||WQ(Y )→WQ(Y ) ,

where ∆(x) is the modular function on G. We also require the weight w to be bounded
from below, i.e. there exists c > 0 such that w(x) ≥ c for every x ∈ G.

If the condition on WQ(Y ) in D is satisfied, then the Wiener space is independent of Q, so that
we can omit the lower index. Moreover, this is ensured if Y is right invariant (Lemma 2.2.24).

E. We fix a submultiplicative weight v : G → (0,+∞), which will be called control weight
for Y , such that

(2.44) v ≥ w, v ≥ w∨,r,

where w is defined in D and

(2.45) w∨,r(x) = w(x−1)
[
∆(x−1)

]1/r
.

F. The class of good vectors is defined to be

(2.46) Gv :=
{
g ∈ H |W ρ

g g ∈ L1
v(G)

}
and supposed nontrivial, {0} ( Gv.

G. The class of analyzing vectors is defined as

(2.47) Arv :=
{
g ∈ H |W ρ

g g ∈WR(L∞,W (L∞, Lrv))
}

and supposed nontrivial, {0} ( Arv.

Remark 2.2.35. (i) Observe that, since v is submultiplicative, Lrv(G) is bi-invariant. This
implies that W (Lrv) is independent of the window Q and it is left invariant, hence also
WR(W (Lrv)) is independent of the window subset. Concretely, this allows us to work with
the same Q:

(2.48)
∥∥W ρ

g g
∥∥
WR(W (Lrv))

�
∥∥MQMR

QW
ρ
g g
∥∥
Lrv
,

(see e.g. Lemma 5.1.10);

(ii) From the continuous embeddings for 0 < r ≤ 1

(2.49) WR(L∞,W (L∞, Lrv)) ↪→W (L∞, Lrv) ↪→W (L∞, L1
v) ↪→ L1

v,

see [147, p. 113], follows the inclusion Arv ⊆ Gv.

H. For a fixed g ∈ Gv r {0}, the space of test vectors is the set

(2.50) Tv :=
{
f ∈ H |W ρ

g f ∈ L1
v(G)

}
endowed with the norm

(2.51) ‖f‖Tv :=
∥∥W ρ

g f
∥∥
L1
v

.
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(Tv, ‖·‖Tv ) is a ρ-invariant Banach space which embeds continuously and with density into H and
it is independent from the choice of the window vector g ∈ Gv r {0}, see [147, Lemma 2.4.7].
Recall that often the notation H1

v is used in place of Tv, see e.g. [58, 59, 60, 119].

I. We call reservoir the Banach space

(2.52) Rv := T ¬v :=
{
f : H1

v → C | antilinear and continuous
}
.

J. We can extend the wavelet transform to f ∈ Rv and g ∈ Tv:

(2.53) W ρ
g f : G→ C, x 7→ Rv 〈f, ρ(x)g〉Tv ,

where Rv 〈·,·〉Tv is the duality between Rv and Tv that will be denoted simply by 〈·,·〉. We
have that W ρ

g f ∈ C(G) ∩ L∞1/v(G).

K. For a fixed vector window g ∈ Arv r {0}, the coorbit space on G with respect to Y is
defined as

(2.54) Co(Y ) :=
{
f ∈ Rv |W ρ

g f ∈W (L∞, Y )
}

endowed with the quasi-norm

(2.55) ‖f‖ Co(Y ) :=
∥∥W ρ

g f
∥∥
W (L∞,Y )

.

Theorem 2.2.36. ([147, Theorem 2.4.9]) Let Co(Y ) be a coorbit space constructed accordingly
to items A–J above. Then Co(Y ) is independent of g ∈ Arv r {0}, in the sense that different
windows yield equivalent quasi-norms. Moreover, ( Co(Y ), ‖·‖ Co(Y )) is a quasi-Banach space
continuously embedded into Rv and ‖·‖ Co(Y ) is a r-norm, 0 < r ≤ 1, if ‖·‖Y is.

In the following theorem we collect [147, Theorem 2.4.19, Remark 2.4.20].

Theorem 2.2.37. For every g ∈ Arvr{0} there exists U0 ⊆ G relatively compact unit neighbour-
hood such that for each U0-BUPU Ψ = {ψi}i∈I with localizing family X = {xi}i∈I the following
hold true:

(i) for each i ∈ I there exists a continuous linear functional

λi : Rv → C

such that (λi(f))i∈I ∈ Yd(X) for every f ∈ Rv and

(2.56) f =
∑
i∈I

λi(f)ρ(xi)g, , ∀ f ∈ Co(Y ),

where the sum converges unconditionally in the w-∗-topology of Rv. If the finite sequences
are dense in Yd(X), then the series converges unconditionally in Co(Y );

(ii) for all λ = (λi)i∈I ∈ Yd(X) the series

(2.57) SXg (λ) :=
∑
i∈I

λiρ(xi)g

is an element of Co(Y ). The above sum converges unconditionally in the w-∗-topology
of Rv (pointwise). If the finite sequences are dense in Yd(X), then the series converges
unconditionally in Co(Y ) and there exists C > 0 such that

(2.58)
∥∥∥SXg (λ)

∥∥∥
Co(Y )

≤ C
∥∥(λi)i∈I

∥∥
Yd(X)

, ∀λ ∈ Yd(X);
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(iii) for f ∈ Rv we have

(2.59) f ∈ Co(Y )⇔ (λi(f))i∈I ∈ Yd(X)

and for every f ∈ Co(Y )

(2.60) ‖f‖ Co(Y ) �
∥∥(λi(f))i∈I

∥∥
Yd(X)

.

Remark 2.2.38. Let us remark the main differences with the coorbit theory in Banach setting
developed by H. G. Feichtinger and K. Gröchenig [58]:

(i) in [58] a solid Banach function space Y on G is considered and supposed continuously em-
bedded in L1

loc(G). In particular, we observe how the condition Y ↪→ L1
loc(G) is restrictive,

in fact even if one would allow Y to be quasi-Banach, all the spaces Lp(Rd) with 0 < p < 1
would be excluded;

(ii) the window space considered in [58] is larger than the one presented so far, namely it is
sufficient a non-zero g ∈ Av := Gv and hence the coorbit space is defined as

(2.61) CoFG(Y ) :=
{
f ∈ Rv |W ρ

g f ∈ Y
}
,

with obvious norm. Hence CoFG(Y ) is a Banach space independent of the chosen window
g ∈ Av r {0}.

It is a natural question whether the two constructions coincide. In the Banach case the
answer is positive, see [60, Theorem 8.3] and [119, Theorem 6.1].

Theorem 2.2.39. Consider a solid Banach function space Y such that it is bi-invariant and
continuously embedded in L1

loc(G). Then

CoFG(Y ) = Co(Y )

with equivalent norms.

2.3 Time-frequency analysis tools

For a systematic and detailed treatment of time-frequency analysis, and proofs of what follows
in the section, we address the reader to [35, 82].

2.3.1 Fundamental operators and time-frequency distributions

We present the fundamental operators of time-frequency analysis, e.g. translation and modula-
tion ones. We then study their relations with the Fourier transform and define the short-time
Fourier transform (STFT), one of the most common used time-frequency representations, and
its main continuity properties. We also recall another time-frequency representation, the cross-
τ -Wigner distribution.

Definition 2.3.1. Fix x, ω ∈ Rd. Let f be a function defined on Rd.
The translation operator Tx is defined as:

(2.62) Txf(t) := f(t− x).
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The modulation operator Mω is defined as:

(2.63) Mωf(t) := e2πiωtf(t).

The following composition of the previous two operators is called time-frequency shift (TFS)
operator:

(2.64) π(x, ω) := MωTx.

Usually we denote a point in the time-frequency space as z = (x, ω) ∈ Rd × Rd ∼= R2d. The
operators Tx and Mω satisfy the so called commutation relations:

(2.65) MωTx = e2πixωTxMω.

Indeed, if f is any function defined on Rd, we can write:

π(x, ω)f(t) = e2πiωtf(t− x) = e2πiωxe2πiω(t−x)f(t− x) = e2πixωTxMωf(t).

Remark 2.3.2. The time-frequency shift π(z) is well defined on the equivalence classes in Lp(Rd)
for 1 ≤ p ≤ ∞ and 0 < p < 1.

Definition 2.3.3. Let f be a function on Rd. The involution operator is defined as:

f∗(x) := f(−x), ∀x ∈ Rd.

In order to obtain information about a local frequency spectrum of a signal f , we restrict f to
an interval centred at the instant x object of interest and then take the Fourier transform of this
restriction. Such a localization in time is made by multiplying f with a smooth cut-off function
g, called the window function. We shall work mainly with g ∈ S(Rd). This is the idea under
the construction of the short-time Fourier transform.

Definition 2.3.4. Fix g ∈ L2(Rd) r {0}, the window function. The short-time Fourier
transform (STFT) of a signal f ∈ L2(Rd) with respect to g is defined by:

(2.66) Vgf(x, ω) := 〈f,MωTxg〉, ∀x, ω ∈ Rd,

where 〈·,·〉 is the inner product on L2(Rd).

Lemma 2.3.5. Consider f, g ∈ L2(Rd). Then Vgf(x, ω) is uniformly continuous and bounded
on R2d. Moreover, the following estimate holds true:

(2.67) ‖Vgf‖L∞(R2d) ≤ ‖f‖L2(Rd) ‖g‖L2(Rd) .

Proposition 2.3.6. Consider f, g ∈ L2(Rd). Then the following equalities hold true:

Vgf(x, ω) = F(fTxḡ)(ω)

= 〈f̂ , TωM−xĝ〉
= e−2πixω(f ∗ (Mωg)∗)(x)

= e−2πixωVĝ f̂(ω,−x),(2.68)

where equation (2.68) is called the fundamental identity of time-frequency analysis.
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Theorem 2.3.7. (Orthogonality relations for the STFT)
Consider fi, gi ∈ L2(Rd), i = 1, 2. Then Vgifi ∈ L2(R2d) and:

(2.69) 〈Vg1
f1, Vg2

f2〉L2(R2d) = 〈f1, f2〉L2(Rd)〈g1, g2〉L2(Rd).

Corollary 2.3.8. Consider f, g ∈ L2(Rd). Then:

(2.70) ‖Vgf‖L2(R2d) = ‖f‖L2(Rd) ‖g‖L2(Rd) .

Remark 2.3.9. For a fixed window g, the linearity of Vg : L2(Rd) → L2(R2d) comes straight-
forward from (2.66). From Corollary 2.3.8 above boundedness follows. Moreover, the operator
norm is exactly

‖Vg‖B(L2(Rd),L2(R2d)) = ‖g‖L2(Rd) .

Hence choosing a window function g ∈ L2(Rd) with ‖g‖L2(Rd) = 1 the operator Vg : L2(Rd) →
L2(R2d) is an isometry which is not onto because of Lemma 2.3.5.

Let us introduce the notion of vector-valued integrals, here understood in a weak sense.
Sometimes, we shall refer to them also simply as formal integrals.

Consider B a Banach space over C and suppose it is reflexive, i.e. B
J∼= B′′, where the isomor-

phism is the (conjugate) evaluation map

J : B → B′′

b 7→Jb(·)

defined for b′ ∈ B′ as:
Jb(b

′) := b′(b).

Note that we’re considering B′, B′′ as the sets of the antilinear and continuous functionals on
B,B′ respectively. Let 〈·,·〉 be the duality between B′ and B, i.e. 〈h, b〉 := h(b) for h ∈ B′, b ∈ B.
Consider ϕ : Rq → B and assume that for every h ∈ B′

(2.71) `ϕ(h) :=

∫
Rq
〈h, ϕ(x)〉 dx

is absolutely convergent. Suppose that `ϕ ∈ B′′ ∼= B. Then there exists a unique fϕ ∈ B such
that `ϕ(·) = Jfϕ(·) = 〈·, fϕ〉. For sake of simplicity we formally define:

(2.72)
∫
Rq
ϕ(x) dx := fϕ ∈ B.

Take q = 2d, B = L2(Rd) and fix non zero functions F ∈ L2(R2d), γ ∈ L2(Rd). Define

ϕ : R2d → L2(Rd), (x, ω) 7→ F (x, ω)MωTxγ(·).

Observe that actually taking pointwise values of a function F which belongs to L2(R2d) makes
no sense. Hence we could choose a representative or work with an equivalence class of functions
ϕ = [ϕF ]. In any case we will work with an F which admits a continuous representative,
therefore no concern is needed. Remember that an Hilbert space, such as L2(Rd), is always
reflexive. Moreover it is isomorphic to its dual space via the Riesz-Fréchet Theorem, where we
meant the suitable version in which the set of continuous antilinear functionals is considered as
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dual space. Hence in (2.71) we can read the duality product 〈·,·〉 as the usual inner product on
L2(Rd) which is antilinear in the second argument. We want to check that `ϕ is an element of
the bidual space of L2(Rd). `ϕ is antilinear by construction, take h ∈ L2(Rd) ∼= L2(Rd)′ and
write

`ϕ(h) =

∫
R2d

〈h, ϕ(x, ω)〉 dxdω

=

∫
R2d

〈h, F (x, ω)MωTxγ〉 dxdω

=

∫
R2d

F (x, ω)〈h,MωTxγ〉 dxdω

=

∫
R2d

F (x, ω)Vγh(x, ω) dxdω

= 〈F, Vγh〉L2(R2d).

Using Cauchy-Schwarz inequality and Corollary 2.3.8 we get for every h ∈ L2(Rd):

|`ϕ(h)| ≤ ‖F‖L2(R2d) ‖Vγh‖L2(R2d) = ‖F‖L2(R2d) ‖γ‖L2(Rd) ‖h‖L2(Rd) .

Then `ϕ ∈ L2(Rd)′′ and there exists a unique fϕ ∈ L2(Rd) such that `ϕ(·) = Jfϕ(·) = 〈·, fϕ〉
where the duality product between L2(Rd)′ and L2(Rd) can be read as the inner product on
L2(Rd). Hence defining formally∫

R2d

F (x, ω)MωTxγ dxdω := fϕ ∈ L2(Rd),

we have that

(2.73) `ϕ(h) = 〈fϕ, h〉.

Then the statement of the following theorem is now clear.

Theorem 2.3.10. (Inversion formula for the STFT)
Consider g, γ ∈ L2(Rd) and suppose that 〈g, γ〉 6= 0. Then for all f ∈ L2(Rd):

(2.74) f =
1

〈γ, g〉

∫
R2d

Vgf(x, ω)MωTxγ dxdω.

Thanks to the inversion formula (2.74) we are able to find the adjoint of
Vg : L2(Rd) → L2(R2d), where the window is kept fixed. Fix g ∈ L2(Rd) and define the linear
operator Ag : L2(R2d)→ L2(Rd), F 7→ AgF , where:

(2.75) AgF :=

∫
R2d

F (x, ω)MωTxg dxdω.

It is easy to prove that Ag ∈ B(L2(R2d), L2(Rd)). Consider h ∈ L2(Rd), F ∈ L2(R2d), then by
definition of vector-valued integral:

〈AgF, h〉L2(Rd) = 〈F, Vgh〉L2(R2d).

Hence V ∗g = Ag, which allows us to rewrite the inversion formula (2.74) as follows:

(2.76) f =
1

〈γ, g〉
V ∗γ Vgf.
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Definition 2.3.11. Let g ∈ L2(Rd) r {0} and consider T : S(Rd)→ S ′(Rd) linear and continu-
ous. Then the Gabor matrix of T w.r.t. g is the (continuous) matrix

(2.77) GT (z, w) := GgT (z, w) := 〈Tπ(w)g, π(z)g〉, ∀z, w ∈ R2d.

Reading the inner product in (2.66) as the duality between S ′(Rd) and S(Rd), which is
antilinear in the second argument and linear in the first one, we are allowed to extend the short-
time Fourier transform to tempered distributions f ∈ S ′(Rd) with respect to smooth window
functions g ∈ S(Rd) r {0}.

Definition 2.3.12. Fix g ∈ S(Rd) r {0}, the window function. The short-time-Fourier
transform (STFT) of a tempered distribution f ∈ S ′(Rd) with respect to g is defined
by:

(2.78) Vgf(x, ω) := 〈f,MωTxg〉, ∀x, ω ∈ Rd,

where 〈·,·〉 is the sesquilinear duality between S ′(Rd) and S(Rd).

We recall some important properties of the STFT of a tempered distribution contained in
[82, Theorems 11.2.3 and 11.2.5].

Theorem 2.3.13. Consider g ∈ S(Rd) r {0} and a tempered distribution f ∈ S ′(Rd). Then
the STFT Vgf is a complex-valued continuous function defined on R2d and there exist constants
C > 0, N ∈ N0 such that:

(2.79) |Vgf(x, ω)| ≤ C(1 + |x|+ |ω|)N , ∀x, ω ∈ Rd,

hence Vgf has at most polynomial growth.

Theorem 2.3.14. Consider g ∈ S(Rd)r {0} and a tempered distribution f ∈ S ′(Rd). Then the
following are equivalent:

(i) f ∈ S(Rd);

(ii) Vgf ∈ S(R2d);

(iii) for all n ∈ N0, there exists Cn > 0 such that:

(2.80) |Vgf(x, ω)| ≤ Cn(1 + |x|+ |ω|)−n, ∀x, ω ∈ Rd.

We briefly recall another important time-frequency representation, the cross-τ -Wigner dis-
tribution, where τ ∈ [0, 1].

Definition 2.3.15. Consider f, g ∈ L2(Rd) and τ ∈ [0, 1]. The cross-τ-Wigner distribution
of f and g is defined by:

(2.81) Wτ (f, g)(x, ω) :=

∫
Rd
e−2πitωf(x+ τt)g(x− (1− τ)t) dt.

Taking g = f we get the so-called τ-Wigner distribution of f :

Wτf(x, ω) := Wτ (f, f)(x, ω).

If τ = 1/2, we call W1/2(f, g) cross-τ-Wigner distribution of f and g and adopt the notation
W (f, g) := W1/2(f, g). When τ = 0, we call W0(f, g) cross-Rihaczek distribution of f and
g and denote it by R(f, g) := W0(f, g).
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Definition 2.3.16. Let f be a function defined on Rd. We define the reflection or parity
operator as:

(2.82) If(t) := f(−t), ∀t ∈ Rd.

For τ ∈ (0, 1) we define the operator

(2.83) Aτf(t) := f

(
τ − 1

τ
t

)
, ∀t ∈ Rd.

Clearly, A1/2 = I.
For the following results we refer to [35].

Lemma 2.3.17. Let τ ∈ [0, 1]. Then:

(i) if f, g ∈ S(Rd), then Wτ (f, g) ∈ S(R2d);

(ii) if f, g ∈ L2(Rd), then Wτ (f, g) ∈ L2(R2d).

Lemma 2.3.18. Let g ∈ S(Rd) r {0} and f ∈ S(Rd).

(i) If τ ∈ (0, 1), then

Wτ (f, g)(x, ω) =
1

τd
e2πi 1

τ ωxVAτgf

(
1

1− τ
x,

1

τ
ω

)
, ∀ (x, ω) ∈ R2d;

(ii) if τ = 0, then

W0(f, g)(x, ω) = e−2πixωf(x)ĝ(ω) = R(f, g)(x, ω), ∀ (x, ω) ∈ R2d;

(iii) if τ = 1, then

W1(f, g)(x, ω) = e2πixωg(x)f̂(ω) = R(g, f)(x, ω), ∀ (x, ω) ∈ R2d.

Proposition 2.3.19. Consider f, g ∈ L2(Rd) and τ ∈ [0, 1]. The following hold true:

(i) for τ ∈ (0, 1) the function Wτ (f, g) is uniformly continuous and bounded on R2d and

‖W (f, g)‖L∞(R2d) ≤
1

τd
‖f‖L2(Rd) ‖g‖L2(Rd) ;

(ii) we have:
Wτ (f, g) = W1−τ (g, f).

In particular Wf is real-valued;

(iii) we have:
Wτ (f̂ , ĝ)(x, ω) = W1−τ (f, g)(−ω, x);

(iv) Moyal’s formula: for fi, gi ∈ L2(Rd), i = 1, 2,

(2.84) 〈Wτ (f1, g1),Wτ (f2, g2)〉L2(R2d) = 〈f1, f2〉L2(Rd)〈g1, g2〉L2(Rd).
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2.3.2 Representations of operators

For the following result we address the reader to [82, Theorem 14.3.5] and [35, (4.37) and (4.38)].
Although τ -pseudo-differential operators Opτ (σ) will be introduced later in (2.206), we state the
theorem now for sake of clarity.

Theorem 2.3.20. Let us consider T : S(Rd)→ S ′(Rd) linear and continuous. Then there exist
KT , ηT ∈ S ′(R2d) and, for every τ ∈ [0, 1], aTτ ∈ S ′(R2d) such that the operator T has the
following representations:

(i) as an integral operator:

(2.85) 〈Tf, g〉 = 〈KT , g ⊗ f〉, ∀f, g ∈ S(Rd);

(ii) as a τ -pseudo-differential operator:

(2.86) T = Opτ (aTτ );

(iii) as a continuous superposition of time-frequency shifts:

(2.87) T =

∫
R2d

ηT (z)π(z) dz,

in the sense that for every f, g ∈ S(Rd)

〈Tf, g〉 = 〈ηT , Vfg〉.

Definition 2.3.21. Let T : S(Rd) → S ′(Rd) be a linear and continuous operators and consider
the tempered distributions KT , ηT , a

T
τ ∈ S ′(R2d) coming from Theorem 2.3.20.

We call KT the (integral) kernel of the operator T and the following formal expression is
called integral representation of T :

(2.88) Tf(x) =

∫
Rd
KT (x, y)f(y) dy.

We call ηT the spreading function of the operator T and the formal expression (2.87) is
called spreading representation of T .
We call aTτ the τ-symbol of T .

The kernel KT and the spreading function ηT of T are related by the following formula

(2.89) ηT (x, ω) =

∫
Rd
KT (y, y − x)e−2πiωy dy.

Remark 2.3.22. If the notation used for the operator T is particularly cumbersome, we shall
adopt the following equivalent notations

(2.90) K(T ) := KT , η(T ) := ηT .
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2.3.3 TFA tools on G LCA group
The definitions given above on Rd are here extended to any G LCA group. We adopt the space
of special test functions SC(G), introduced in [88] and defined below, and perform some explicit
computations in Lemma 2.3.30 taken from [8]. The definition of SC(G) is based on the following
result.

Theorem 2.3.23 (Structure theorem). ([96, Theorem 24.30]) Let G be a LCA group. Then there
exist d ∈ N0, G0 LCA group containing a compact open subgroup K, such that G is isomorphic
as topological group to Rd × G0:

G ∼= Rd × G0.

Consequently, being the dual group of the Cartesian product the Cartesian product of the
dual groups and R̂d ∼= Rd, we have the decomposition

Ĝ ∼= Rd × Ĝ0,

where the dual group Ĝ0 contains the compact open subgroup K⊥, see e.g. [81, Lemma 6.2.3].
We recall that

K⊥ := {ξ ∈ Ĝ | 〈ξ, x〉 = 1 ∀x ∈ K}.

Definition 2.3.24. For x ∈ G, ξ ∈ Ĝ and a function f : G → C we define the translation
operator Tx, the modulation operator Mξ and the time-frequency shift (TFS) π(x, ξ) as

(2.91) Txf(y) := f(y − x), Mξf(y) := 〈ξ, y〉f(y), π(x, ξ) := MξTx.

For f, g ∈ L2(G), the short-time Fourier transform (STFT) of f with respect to g is
given by

(2.92) Vgf(x, ξ) := 〈f, π(x, ξ)g〉 =

∫
G
f(y)π(x, ξ)g(y) dy, ∀(x, ξ) ∈ G × Ĝ,

where 〈·,·〉 is the inner product on L2(G).

Once again, Tx and Mξ fulfil the commutation relations

(2.93) MξTx = 〈ξ, x〉TxMξ.

The following definitions come form [88, Section 2] and they rely on the Structure theorem 2.3.23.

Definition 2.3.25. We define the generalized Gaussian on G as

(2.94) ϕ(x1, x2) := e−πx
2
1χK(x2) =: ϕ1(x1)ϕ2(x2), ∀(x1, x2) ∈ Rd × G0,

and the set of special test functions

(2.95) SC(G) := span
{
π(x)ϕ |x = (x, ξ) ∈ G × Ĝ

}
⊆ L2(G).

Definition 2.3.26. Given f, g ∈ L2(G), we define the cross-Rihaczek distribution of f and
g by

(2.96) R(f, g)(x, ξ) := f(x)ĝ(ξ)〈ξ, x〉, ∀(x, ξ) ∈ G × Ĝ,

ĝ being the Fourier transform of g. When f = g, R(f, f) is called the Rihaczek distribution
of f .
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The following result comes from [8].

Lemma 2.3.27. Let ϕ be as in (2.94). Then for x = (x1, x2) ∈ Rd×G0 and ξ = (ξ1, ξ2) ∈ Rd×Ĝ0,
the Rihaczek distribution of ϕ is

(2.97) R(ϕ,ϕ)(x, ξ) = c(K)〈ξ, x〉e−π(x2
1+ξ2

1) ⊗ χK×K⊥(x2, ξ2),

where c(K) > 0 is a constant depending on the compact subgroup K.

Proof. It is sufficient to compute as follows:

R(ϕ,ϕ)(x, ξ) = R(ϕ1, ϕ1)(x1, ξ1)R(ϕ2, ϕ2)(x2, ξ2)

= e−2πiξ1x1e−π(x2
1+ξ2

1)χK(x2)c(K)χK⊥(ξ2)〈ξ2, x2〉

= c(K)e−2πiξ1x1e−π(x2
1+ξ2

1)〈ξ2, x2〉χK×K⊥(x2, ξ2)

= c(K)〈ξ, x〉e−π(x2
1+ξ2

1) ⊗ χK×K⊥(x2, ξ2),

for the constant c(K) coming from the factor R(ϕ2, ϕ2) see [88].

Hence R(ϕ,ϕ)(x, ξ) is up to a positive constant and a “chirp” a Gaussian on R2d× (G0×Ĝ0),
where we fixed K ×K⊥ as compact open subgroup of the not Euclidean component.

Definition 2.3.28. We denote by J is the topological isomorphism

(2.98) J : G × Ĝ → Ĝ × G, (x, ξ) 7→ (−ξ, x).

Remark 2.3.29. (i) Clearly, J−1(ξ, x) = (x,−ξ);

(ii) If we take G = Rd, then we have J = −J , J being the operator defined in (2.212).

We recall the following covariance property [88, Lemma 4.2 (i)]: for x = (x, ξ), y = (y, η) ∈ G×Ĝ,
f, g ∈ SC(G),

(2.99) R(π(x)f, π(y)g) = 〈η, x− y〉MJ (y−x)T(x,η)R(f, g).

In what follows we shall need also the following identity:

(2.100) Vϕϕ(x, ξ) = c(K)e−
π
2 (x2

1+ξ2
1) ⊗ χK×K⊥(x2, ξ2),

see [88] for calculations. Using a similar argument as in the estimate [88, formula (12)], one can
show that R(f, g) and Vgf are in Lpm(G×Ĝ), 0 < p ≤ ∞, for arbitrary moderate weight functions
and any f, g ∈ SC(G). Similarly, every function in SC(G) belongs to Lpm(G), 0 < p ≤ ∞. Recall
that for any f, g ∈ L2(G) [88, formula (8)]

(2.101) VMηTygMωTuf(x, ξ) = 〈ξ − ω, u〉〈η, x− u〉T(u−y,ω−η)Vgf(x, ξ).

The previous formula, jointly with (2.99), allows us to write explicitly every STFT and cross-
Rihaczek distribution of elements in SC(G).

Lemma 2.3.30. ([8, Lemma 2.1]) Consider f, g ∈ SC(G), hence

f =

n∑
k=1

akπ(uk)ϕ, g =

m∑
j=1

bjπ(yj)ϕ,
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for some n,m ∈ N, ak, bj ∈ C and uk = (uk, ωk),yj = (yj , ηj) ∈ G × Ĝ. Then for every
(x, ξ) ∈ G × Ĝ:

Vgf(x, ξ) =

n∑
k=1

m∑
j=1

akbj〈ξ − ωk, uk〉〈ηj , x− uk〉Tuk−yjVϕϕ(x, ξ),(2.102)

R(f, g)(x, ξ) =

n∑
k=1

m∑
j=1

akbj〈ηj , uk − yj〉MJ (yj−uk)T(uk,ηj)R(ϕ,ϕ)(x, ξ).(2.103)

Proof. We write x = (x, ξ). The first claim follows from (2.101) after the following rephrasing:

Vgf(x) = 〈f, π(x)g〉 = 〈
n∑
k=1

akπ(uk)ϕ, π(x)

m∑
j=1

bjπ(yj)ϕ〉

=

n∑
k=1

m∑
j=1

akbj〈π(uk)ϕ, π(x)π(yj)ϕ〉 =

n∑
k=1

m∑
j=1

akbj

(
Vπ(yj)ϕπ(uk)ϕ

)
(x).

For the second issue we write

R(f, g)(x) =

n∑
k=1

m∑
j=1

akbjπ(uk)ϕ(x)π̂(yj)ϕ(ξ)〈ξ, x〉

=

n∑
k=1

m∑
j=1

akbjR(π(uk)ϕ, π(yj)ϕ)(x)

and use (2.99).

2.3.3.1 The case G = ZN
When dealing with the cyclic group ZN , N ∈ N, we make the following identification:

(2.104) CN ∼= `2(ZN ).

Namely, every complex N -tuple (z0, . . . , zN−1) ∈ CN is identified with the unique function
f : ZN → Cd such that f(t) = zt for every t = 0, . . . , N − 1. So that the Euclidean product
on CN coincides with the standard inner product on `2(ZN ). Notice that we take the indexes
ranging from 0 to N − 1. Moreover, the argument of f ∈ CN , i.e. of f : ZN → CN , is always
taken modulus N , even if not explicitly stated. Hence, e.g., we shall write f(N) meaning f(0),
etc. . We shall denote by 1 ∈ CN the constant function equal to 1. It is useful to observe the
ZN is self-dual, i.e.

ẐN ∼= ZN .
In the finite discrete case translation and modulation operators take the following form

Tkf(t) := f(t− k), Mlf(t) := e
2πilt
N f(t),

where f ∈ CN , t = 0, . . . , N − 1, k, l ∈ Z.
There is an exact analogue of the objects described in Definition 2.3.21 in the finite discrete
case, see [64]. In fact, if T : CN → CN is a linear operator then its kernel KT is just its matrix
representation and we can define its spreading function as

(2.105) ηT (u, v) :=

N−1∑
k=0

KT (k, k − u)e
−2πikv
N .
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So that T can be seen as a finite superposition of TF-shifts, which in the finite dimensional case
are an orthonormal basis, so every matrix can be uniquely described by its spreading function:

T =

N−1∑
k=0

N−1∑
l=0

ηT (k, l)π(k, l).

Of course, π(k, l) := MlTk and we define the STFT of a signal f ∈ CN w.r.t. the window g ∈ CN
as the matrix in CN×N

Vgf(u, v) := 〈f, π(u, v)g〉 =

N−1∑
k=0

f(k)g(k − u)e
−2πikv
N ,

where 〈·,·〉 is the inner product on `2(CN ), i.e. the Euclidean product on CN .

Definition 2.3.31. The discrete Fourier transform (DFT) on CN is the linear operator
represented by the following N ×N complex matrix

(2.106) (FN )k,l := e
−2πikl
N

which inverse if given by

(F−1
N )k,l =

1

N
e

2πikl
N .

We shall denote by f̂ the vector FNf , f ∈ CN .
The discrete two-dimensional Fourier transform of a matrix a ∈ CN×CN and its inverse
are defined as

F2a(u, v) :=

N−1∑
k=0

N−1∑
l=0

a(k, l)e
−2πiuk
N e

−2πivl
N ,

F−1
2 a(u, v) =

1

N2

N−1∑
k=0

N−1∑
l=0

a(k, l)e
2πiuk
N e

2πivl
N .

The action of F2 on the (pointwise) product of a and b in CN×N ∼= CN × CN is well-known
and we mention it for sake of completeness:

(2.107) F2(a · b) =
1

N2
(F2a ∗ F2b) ,

where the (two-dimensional discrete) convolution on the right-hand side is defined similarly to
(2.221).

Definition 2.3.32. The Kronecker delta function δ ∈ CN is defined as

(2.108) δ(u) =

{
1 for u = 0,

0 for u = 1, . . . , N − 1.

We recall also the following identity which is due to the subsequent (2.113) and the normal-
ization chosen for the Fourier transform :

FN
(

1

N
1

)
(u) = δ(u).
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In some of the subsequent computations we shall need the function introduced in the following
definition. Let us consider two numbers α, β such that

(2.109) α, β ∈ N, A :=
N

α
∈ N, B :=

N

β
∈ N.

We shall see that they are the core of rectangular lattices defined in (2.138).

Definition 2.3.33. Let α, β,A,B ∈ N as in (2.109). We call impulse train, or Dirac comb,
the function so defined:

X(α,β)(u, v) :=

A−1∑
p=0

B−1∑
q=1

δ(u− αp)δ(v − βq)(2.110)

= χαZN (u) · χβZN (v)

=
1

αβ

N−1∑
k=0

N−1∑
l=0

δ(u− αk)δ(v − βl),

for u, v = 0, . . . , N − 1.

For sake of the reader, we recall and present a proof of the Poisson summation formula
(2.111) and its two-dimensional analogue in the following lemma, see [78] and [110, Theorem
3.2.1].

Lemma 2.3.34. Let α, β,A,B ∈ N as in (2.109). Then:

(2.111) FNχαZN = AχAZN ,

(2.112) F2X(α,β) = ABX(A,B).

Proof. Before showing the computations, we recall the following well-known identity for u, v =
0, . . . , N − 1:

(2.113)
N−1∑
k=0

e
2πiuk
N e

−2πivk
N =

{
N if u = v,

0 otherwise.

Hence

F2X(α,β)(u, v) =
1

αβ

N−1∑
k,l=0

N−1∑
p,q=0

δ(k − αp)δ(l − βq)e
−2πiku
N e

−2πilv
N

=
1

αβ

N−1∑
p=0

e
−2πiαpu

N

N−1∑
q=0

e
−2πiβqv

N .

Due to (2.113), we see that

N−1∑
p=0

e
−2πiαpu

N =

{
N if αu = 0 modN
0 otherwise
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and αu = 0 modN is equivalent to u = Al for l = 0, . . . , α−1. Arguing similarly for the second
summation we have

F2X(α,β)(u, v) =
1

αβ
N

α−1∑
l=0

δ(u−Al)N
β−1∑
k=0

δ(v −Bk)

= ABX(A,B)(u, v).

This concludes the proof.

Definition 2.3.35. The discrete symplectic Fourier transform of a matrix a ∈ CN×N is
defined as

(2.114) Fsa(u, v) :=
1

N

N−1∑
k=0

N−1∑
l=0

a(k, l)e
2πi(lu−kv)

N ,

with u, v = 0, . . . , N − 1.

Hence the relation between F2 and Fs is as follows:

(2.115) Fsa(u, v) =
1

N
F2(aT )(−u, v) =

1

N
F2a(v,−u),

aT being the transpose of a. Recall that given two vectors f, g ∈ CN , the tensor product
f ⊗ g ∈ CN×N is the matrix

f ⊗ g(u, v) = f(u)g(v), u, v = 0, . . . , N − 1.

Eventually we mention that

(2.116) Fs(f ⊗ ĝ) = g ⊗ f̂ .

2.4 Frames in Hilbert spaces
In this section we present frame theory which can be seen as a generalisation of basis theory
in Hilbert spaces. Moreover, frames became very popular because they resulted useful in appli-
cations. Frame theory allows us the passage from a continuous representation of a signal as in
(2.74) to a discrete one. For further details about frame theory and Gabor frames, we suggest
[21, 35, 82].

Definition 2.4.1. Let (H, 〈·,·〉H) be an Hilbert space. A sequence {xn}n ⊆ H is a frame if there
exist constants 0 < A ≤ B such that:

(2.117) A ‖x‖2H ≤
∞∑
n=1

|〈x, xn〉H|2 ≤ B ‖x‖2H , ∀x ∈ H.

The constants A and B are called lower and upper frame bound respectively. We call optimal
lower (upper) frame bound the largest (smallest) possible lower (upper) frame bound.

Remark 2.4.2. By frame inequality (2.117) we have that ‖(〈·, xn〉H)n‖`2 is an equivalent norm
for H. Moreover, if A = 1 = B, then ‖·‖H = ‖(〈·, xn〉H)n‖`2 .
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Definition 2.4.3. Let (H, 〈·,·〉H) be an Hilbert space and consider a frame {xn}n ⊆ H.

(i) If A = B, then {xn}n is called an A-tight frame, or simply tight frame;

(ii) if A = 1 = B, then {xn}n is called a Parseval frame;

(iii) if {xn}n ceases to be a frame whenever any single element is removed from the sequence,
then it is called an exact frame.

Remark 2.4.4. (i) We observe that in a frame the zero vector and repetition of elements are
allowed;

(ii) if {xn}n is a frame for H, then
∑∞
n=1 |〈x, xn〉H|

2 is absolutely convergent. Hence the
series is unconditionally convergent. This proves that {xσ(n)}n is still a frame for any
permutation σ of N;

(iii) every orthonormal basis (o.n.b.) {en}n is a Parseval and exact frame;

(iv) if {xn}n is a frame for H, then it is complete. Indeed consider x ∈ ({xn}n)⊥, then by
frame inequality (2.117) we have:

A ‖x‖2H ≤
∞∑
n=1

|〈x, xn〉H|2 = 0.

This implies x = 0H, hence span{xn}n = H.

Definition 2.4.5. Let (H, 〈·,·〉H) be an Hilbert space and consider a sequence {xn}n ⊆ H. {xn}n
is a Bessel sequence if

(2.118)
∞∑
n=1

|〈x, xn〉H|2 < +∞, ∀x ∈ H.

Remark 2.4.6. A frame {xn}n for an Hilbert space H is always a Bessel sequence.

Proposition 2.4.7. Let (H, 〈·,·〉H) be an Hilbert space and consider a Bessel sequence {xn}n ⊆
H. Then

C : H −→ `2(N)(2.119)
x 7−→ (〈x, xn〉H)n

is well defined and it is a linear and continuous operator. The square of the operator norm

(2.120) B := ‖C‖2Op > 0

is called Bessel constant for the Bessel sequence {xn}n.

Definition 2.4.8. The operator C : H → `2 defined in (2.119) is called coefficient, or analysis,
operator associated to the Bessel sequence {xn}n.

Proposition 2.4.9. Let (H, 〈·,·〉H) be an Hilbert space and consider a Bessel sequence {xn}n ⊆ H
with Bessel constant B. Then:

(i) if c = (cn)n ∈ `2(N), then the series
∑∞
n=1 cnxn is unconditionally convergent in H;
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(ii)

D : `2(N) −→ H(2.121)

(cn)n 7−→
∞∑
n=1

cnxn

is well defined and it is a linear and continuous operator;

(iii) D∗ = C and ‖D‖Op = ‖C‖Op =
√
B;

(iv) if {xn}n is also a frame, then C is injective and D is surjective.

Definition 2.4.10. The operator D : `2 → H defined in (2.121) is called reconstruction, or
synthesis, operator associated to the Bessel sequence {xn}n.

(i) The operator S := DC : H → H is called frame operator.

(ii) The operator G := CD : `2 → `2 is called Gram operator or Gram matrix.

Theorem 2.4.11. (Reproducing formulae for a frame)
Let (H, 〈·,·〉H) be an Hilbert space and consider a frame {xn}n ⊆ H with frame bounds 0 < A ≤ B.
Then:

(i) the frame operator S : H → H is a topological isomorphism, self-adjoint and positive, with

AI ≤ S ≤ BI,

where I is the identity on H;
(ii) S−1 is a topological isomorphism, self-adjoint and positive, with

B−1I ≤ S−1 ≤ A−1I;

(iii) {S−1xn}n is a frame for H with frame bounds 0 < B−1 ≤ A−1;

(iv) for each x ∈ H, the following reproducing formulae hold true:

(2.122) x =

∞∑
n=1

〈x, S−1xn〉Hxn =

∞∑
n=1

〈x, xn〉HS−1xn,

and the above series converge unconditionally in H;
(v) if the frame is A-tight, then S = AI, S−1 = A−1I, and for every x ∈ H

x =
1

A

∞∑
n=1

〈x, xn〉Hxn.

Definition 2.4.12. Let (H, 〈·,·〉H) be an Hilbert space and consider a frame {xn}n ⊆ H with
frame operator S. Then the frame {S−1xn}n is called canonical dual frame.

We leave as an exercise for the reader to prove that the frame operator for the canonical dual
frame {S−1xn}n is S−1.

Definition 2.4.13. Let (H, 〈·,·〉H) be an Hilbert space and consider a frame {xn}n ⊆ H. A
sequence {yn}n ⊆ H such that

x =

∞∑
n=1

〈x, yn〉Hxn ∀x ∈ H

with unconditional convergence is called alternative dual for {xn}n. If {yn}n is also a frame,
then is called alternative dual frame.
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2.4.1 Gabor frames on Euclidean space
We restrict our attention to the Hilbert space L2(Rd) and introduce a specific type of frames,
the Gabor ones. They are the most commonly used and studied due to their rather simple
construction and being handy for applications.

Definition 2.4.14. We call lattice on R2d a set of the following type:

αZd × βZd,

where α, β > 0. The numbers α and β are called lattice parameters.
Fix a non-zero window function g ∈ L2(Rd) and lattice parameters α, β > 0. We call Gabor
system the following set:

G(g, α, β) :=
{
TαmMβng | m,n ∈ Zd

}
.

If a Gabor system G(g, α, β) is a frame for L2(Rd), then it is called Gabor frame.

Due to the commutation relations (2.65), the frame operator S associated to a Gabor frame
G(g, α, β) has the form

Sf =
∑

m,n∈Zd
〈f, TαmMβng〉TαmMβng =

∑
m,n∈Zd

Vgf(αm, βn)MβnTαmg.

If necessary, we write Sα,βg,g or Sg,g instead of S in order to emphasize the dependence from the
window function and the lattice parameters. Anyway, the reason for this notation will be clarified
later.

Remark 2.4.15. A Gabor frame can be equivalently defined as

G(g, α, β) :=
{
MβnTαmg | m,n ∈ Zd

}
because of commutation relations (2.65).

Gabor frames are named after the electrical engineer and physicist, most notable for inventing
holography, Dennis Gabor (1900-1979). In his paper [73] Gabor conjectured that the Gabor
system G(ϕ, 1, 1), where ϕ(t) = e−πt

2

is the 1-dimensional Gaussian, was a basis for L2(R).
Indeed, he claimed that every function f ∈ L2(R) could be represented as

f =
∑
m,n∈Z

cm,n(f)MnTmϕ,

for some scalars cm,n(f). His conjecture was false, but the previous expansion makes sense using
frame theory.

Proposition 2.4.16. Consider G(g, α, β) a Gabor frame for L2(Rd) with frame operator Sg,g.
Then

(2.123) γ := S−1
g,gg

is such that G(γ, α, β) is the canonical dual frame of G(g, α, β). Consequently, every f ∈ L2(Rd)
has the following frame expansions:

(2.124) f =
∑

m,n∈Zd
〈f, TαmMβng〉TαmMβnγ =

∑
m,n∈Zd

〈f, TαmMβnγ〉TαmMβng,
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with unconditional convergence in L2(Rd). Further, the following norm equivalences hold:

A ‖f‖2L2 ≤
∑

m,n∈Zd
|〈f, TαmMβng〉|2 ≤ B ‖f‖2L2 ,(2.125)

B−1 ‖f‖2L2 ≤
∑

m,n∈Zd
|〈f, TαmMβnγ〉|2 ≤ A−1 ‖f‖2L2 ,(2.126)

where A,B are the frame bounds for G(g, α, β).

The window defined in (2.123) is called canonical dual window .
Consider g, γ ∈ L2(Rd) and α, β > 0. We introduce the following type of operator on L2(Rd):

(2.127) Sα,βg,γ f :=
∑

m,n∈Zd
〈f, TαmMβng〉TαmMβnγ,

defined whenever the series makes sense. Then (2.124) can be rephrased as

Sα,βg,γ = I,

where I is the identity on L2(Rd). Eventually we observe that, if we set Λ := αZd × βZd, then
the operator can be written as

Sα,βg,γ f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ.

Sometimes we write G(g,Λ) instead of G(g, α, β).

Corollary 2.4.17. Consider G(g, α, β) a Gabor frame for L2(Rd) with frame operator Sg,g.
Consider the canonical dual window γ = S−1

g,gg. Then:

S−1
g,g = Sγ,γ .

Remark 2.4.18. Proposition 2.4.16 provides a discrete time-frequency representation of signals.
If G(g, α, β) is a frame for L2(Rd), then (2.124) is a discrete version of the inversion formula
for the STFT. Moreover, (2.124) provides a Gabor expansions of f with the canonical set of
coefficients given by cm,n = 〈f, TαmMβnγ〉. The series expansion (2.124) can be rephrased in
terms of the STFT as

f =
∑

m,n∈Zd
Vgf(αm, βn)MβnTαmγ,

which is a reconstruction of the signal f from samples of its STFT.

If we focus on functions g compactly supported in an interval of length 1/β, then there exist
Gabor frames G(g, α, β) for L2(R) where we can also take g smooth, if we choose the lattice
parameters α, β properly. This was done first by I. Daubechies, A. Grossmann, Y. Meyer in [38],
and they were called painless nonorthogonal expansions, since they were easy to construct.

Theorem 2.4.19. (Painless Nonorthogonal Expansions)
Consider lattice parameters α, β > 0 and g ∈ L2(R).

(i) If supp(g) ⊆ [0, β−1], then G(g, α, β) is a frame for L2(R) if and only if there exist constants
A,B > 0 such that

(2.128) Aβ ≤
∑
k∈Z
|g(x− αk)|2 ≤ Bβ a.e..

In this case, A and B are the frame bounds for G(g, α, β).
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(ii) If 0 < αβ < 1, then there exists g such that supp(g) ⊆ [0, β−1] that satisfies (2.128) and
can be as smooth as we like, even infinitely differentiable.

(iii) If αβ = 1, then any function that is supported in [0, β−1] and satisfies (2.128) is discon-
tinuous.

(iv) If αβ > 1 and g is supported in [0, β−1], then (2.128) is not satisfied and G(g, α, β) is
incomplete in L2(R).

We end up this section recalling an important result concerning Gabor systems G(ϕ, α, β)

where ϕ(t) = e−πt
2

is the Gaussian function. The following important result is proved indepen-
dently by Y. Lyubarskii [111] and by K. Seip and R. Wallstén [123, 124] using complex analysis
methods.

Theorem 2.4.20. Consider the 1-dimension Gaussian function ϕ(t) = e−πt
2

. Then the system
G(ϕ, α, β) is a frame for L2(R) if and only if αβ < 1.

The generalisation to the d-dimensional case can be found in [41, Proposition 10].

Theorem 2.4.21. Consider ϕ(t) = 2d/4e−πt
2

, t ∈ Rd. Then the system G(ϕ, α, β) is a frame
for L2(Rd) if and only if αβ < 1.

2.4.2 Gabor frames on G LCA group
In what follows we generalize the notion of Gabor frame to any LCA group G. Not every
LCA group G admits a lattice, see definition below, such as p-adic groups Qp ,hence we use a
particular construction due to K. Gröchenig and T. Strohmer in [88]. Having Gabor frames for
L2(G) shall enable us to generalize the convolution relations for modulation spaces firstly given
in [9, Proposition 3.1], see Proposition 5.2.14 from [8].

Definition 2.4.22. A lattice in G is a discrete subgroup Λ such that the quotient group G/Λ is
compact.

If G admits a lattice, there is a relatively compact U ⊆ G, called fundamental domain for
Λ, such that

G =
⋃
w∈Λ

(w + U) , (w + U) ∩ (u+ U) = ∅ for w 6= u.

Definition 2.4.23. Let D ⊆ G0 a collection of coset representatives of G0/K and A ∈ GL(Rd).
We define U := A[0, 1)d × K. The discrete set Λ := AZd × D is called quasi-lattice with
fundamental domain U .

Observe that we have the following partition

G =
⋃
w∈Λ

(w + U) .

Remark 2.4.24. According to the above definition and the Structure Theorem 2.3.23, a quasi-
lattice on the phase-space G × Ĝ is of the type:

(2.129) Λ := Λ1 × Λ2 :=
(
A1Zd ×D1

)
×
(
A2Zd ×D2

) ∼= A1,2Z2d ×D1,2

with fundamental domain

(2.130) U := U1 × U2 :=
(
A1[0, 1)d ×K

)
×
(
A2[0, 1)d ×K⊥

) ∼= A1,2[0, 1)2d ×
(
K ×K⊥

)
,
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where D2 ⊆ Ĝ0 is a set of coset representatives of Ĝ0/K⊥ and

(2.131) A1,2 :=

[
A1 0
0 A2

]
, D1,2 := D1 ×D2.

We shall denote elements of a quasi-lattice Λ in G × Ĝ as

w = (w, µ) = ((w1, w2), (µ1, µ2)) ∈ Λ = Λ1 × Λ2 ⊆ G × Ĝ.

Definition 2.4.25. Given a quasi-lattice Λ ⊆ G × Ĝ and windows g, h ∈ L2(G), the Gabor
system generated by g is

{π(w)g |w ∈ Λ} = {π(w)g}w∈Λ.

The coefficient or analysis operator is given by

(2.132) CΛ
c := Cg : L2(G)→ `2(Λ), f 7→ (〈f, π(w)g〉)w∈Λ .

Its adjoint is called reconstruction or synthesis operator and has the form

(2.133) CΛ
g

∗
:= C∗g : `2(Λ)→ L2(G), (cw)w∈Λ 7→

∑
w∈Λ

cwπ(w)g.

The Gabor frame operator Sh,g is given by

(2.134) SΛ
h,g := Sh,gf = C∗hCgf =

∑
w∈Λ

〈f, π(w)g〉π(w)h.

We say that {π(w)g}w∈Λ is a Gabor frame for L2(G) if there exist A,B > 0 such that

(2.135) A ‖f‖2L2 ≤
∑
w∈Λ

|〈f, π(w)g〉|2 ≤ B ‖f‖2L2 , ∀f ∈ L2(G);

this is equivalent to saying that Sg,g is invertible on L2(G). If A = B the frame is called tight.
Moreover, if h ∈ L2(G) is such that

(2.136) Sh,g = Sg,h = IL2 ,

then h is named dual window for the frame {π(w)g}w∈Λ.

We note that Theorem 2.7 in [88] is still valid for the case of the Gaussian ϕ and considering
a Gabor frame not tight. Namely,

Theorem 2.4.26. Let Λ := αZ2d ×D1,2, α ∈ (0, 1), be a quasi-lattice in G × Ĝ. Consider the
Gaussian ϕ in (2.94). Then

(2.137) {π(w)ϕ |w ∈ Λ}

is a Gabor frame for L2(G).
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2.4.2.1 Gabor frames on G = ZN
We now pick the group G = ZN . Recall that ẐN ∼= ZN and also the identification CN ∼= `2(ZN )
(2.104).

Definition 2.4.27. A rectangular lattice in ZN × ZN is a set of the following type:

(2.138) Λ := αZN × βZN , α, β ∈ N, A :=
N

α
∈ N, B :=

N

β
∈ N.

Notice that, since α, β are divisors of N , Λ is indeed a (discrete) subgroup of ZN × ZN such
that the quotient is compact. Therefore in this case we no need quasi-lattices.

Definition 2.4.28. The Gabor system generated by a window g ∈ CN and lattice Λ as
in (2.138) is the set

G(g, α, β) := {π(k, l)g , (k, l) ∈ Λ}
= {π(αk, βl)g , k = 0, . . . , A− 1, l = 0, . . . , B − 1}.

We say that G(g, α, β) is a Gabor frame for CN if

(2.139) C1 ‖f‖22 ≤
A−1∑
k=0

B−1∑
l=0

|〈f, π(αk, βl)g〉|2 ≤ C2 ‖f‖22 , ∀f ∈ CN ,

for some C1, C2 > 0.

We point out that in the above equation

〈f, π(αk, βl)g〉 =

N−1∑
u=0

f(u)π(αk, βl)g(u)

and ‖·‖2 is the induced norm.

Remark 2.4.29. Since we are in finite-dimension, to ask G(g, α, β) to be a frame for CN is
equivalent to ask that it spans CN [21], where the bounds C1, C2 describe the numerical properties
of the transform and the quantity

√
C2/C1 is the condition number of the analysis, see [5].

2.5 Modulation spaces
The core of this section are function spaces which norm aims to measure the time-frequency
concentration of functions or tempered distribution, namely the class ofmodulation spaces. These
normed spaces were introduced by H. G. Feichtinger in early 1980’s.

We want to investigate how to measure the time-frequency concentration of a function or a
distribution. We define a function space whose elements share the same decay properties in the
time-frequency plane. To reach this goal, we impose a norm on the SFTF and thus we get the
so-called modulation spaces.
In order to remain within the setup of Schwartz functions and tempered distributions, we will
present the theory of modulation spaces under the following assumptions:

Assumptions 2.5.1. Every weight on Rd, R2d, or on any of their subgroups, is assumed to have
at most polynomial growth at infinity (see (2.8)).
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For sake of clarity, we recall that this means there exist s0, C > 0 such that

(2.140) m(z) ≤ C〈z〉s0 = Cvs0(z),

for z in Rd, R2d, etc. .
Assumptions 2.5.1, even if not explicitly stated, are made through all the present thesis work

except for: Section 2.8, Section 3.3 of Chapter 3. For more details and the case of other weight
classes, namely exponential ones, we refer to [82, Chapter 11].

We shall first define modulation spaces on Rd in the wider quasi-Banach setting, whereas for
modulation spaces on G LCA group in this section we stick to the Banach case. The quasi-Banach
case on G shall be one of the main result of Chapter 5, see [8] by E. Cordero and the author.
On Rd, we prove some new convolution relations due to E. Cordero, F. Nicola and the author
[9], see Proposition 2.5.19. This result will be extended to any LCA group in Chapter 5 [8],
see Proposition 5.2.14. See Proposition 2.5.20, 2.5.21 and Corollary 2.5.22 are about inclusion
relations and an equivalent semi-discrete quasi-norm on Mp,q

m (Rd), see [7]. Proposition 2.5.23
was presented in [3].

2.5.1 Mp,q
m on Euclidean space, 0 < p, q ≤ ∞

Definition 2.5.2. Fix a non-zero window g ∈ S(Rd), a weight m ∈Mv(R2d) and 0 < p, q ≤ ∞.
We define the modulation space as the following set of tempered distributions:

(2.141) Mp,q
m (Rd) :=

{
f ∈ S ′(Rd) | Vgf ∈ Lp,qm (R2d)

}
.

For shortness, we writeMp
m(Rd) in place ofMp,p

m (Rd) andMp,q(Rd) ifm ≡ 1. Due to Remark
2.2.8 it’s legit to consider v = vs, even if vs is not submultiplicative for s ≥ 0.

Remark 2.5.3. Roughly speaking, Mp,q(Rd) contains all those generalised functions such that
they behave locally like elements of FLq(Rd) and “decay” like elements of Lp(Rd) at infinity.

The most famous modulation spaces are those Mp,q
m (Rd) with 1 ≤ p, q ≤ ∞, invented by H.

G. Feichtinger in [56]. In that paper he proved they are Banach spaces, whose norm does not
depend on the window g, in the sense that different window functions in S(Rd) yield equivalent
norms. Moreover, the window class S(Rd) can be extended to the modulation space M1,1

v (Rd)
(so-called weighted Feichtinger algebra). The modulation spaces Mp,q

m (Rd), with 0 < p < 1
or 0 < q < 1, were introduced almost twenty years later by Y.V. Galperin and S. Samarah
in [75] and then studied in [104, 119, 149] (see also references therein). In this framework, it
appears that the largest natural class of windows universally admissible for all spaces Mp,q

m (Rd),
0 < p, q ≤ ∞, (with m having at most polynomial growth) is the Schwartz class S(Rd).

Proposition 2.5.4. Fix a non-zero window g ∈ S(Rd), a weight m ∈ Mv(R2d) and 0 < p, q ≤
∞. Then the application

‖f‖Mp,q
m

:= ‖Vgf‖Lp,qm , ∀ f ∈Mp,q
m (Rd),

is a quasi-norm on Mp,q
m (Rd), it is a norm if 1 ≤ p, q ≤ ∞.

From now on we omit the explicit choice of the window function according to the equivalence
above.

Theorem 2.5.5. Fix a weight m ∈Mv(R2d) and 0 < p, q ≤ ∞.
Then (Mp,q

m (Rd), ‖·‖Mp,q
m

) is a quasi-Banach space. It is a Banach space if 1 ≤ p, q ≤ ∞.
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For the following important result we refer to [35, Theorem 2.4.17] or [75, Theorem 3.4].

Theorem 2.5.6. Consider m1,m2 ∈ Mv(R2d) with m2 . m1. Take 0 < p1 ≤ p2 ≤ ∞ and
0 < q1 ≤ q2 ≤ ∞. Then we have the following continuous inclusion:

(2.142) Mp1,q1
m (Rd) ↪→Mp2,q2

m (Rd).

As a consequence, we can extend the result [82, Corollary 11.1.10] which is implicitly used
in Theorem 2.5.18.

Corollary 2.5.7. Consider m ∈Mv(R2d). Take 0 < p, q ≤ ∞. Then

(2.143) Mp,q
m (Rd) ⊆M∞1/v(R

d).

Proposition 2.5.8. Consider m ∈Mv(R2d) and 1 ≤ p, q <∞. Then

(Mp,q
m )′(Rd) = Mp′,q′

1/m (Rd),

where p′ and q′ are the conjugate exponents and

(2.144)
Mp′,q′

1/m

〈f, g〉Mp,q
m

:=

∫
R2d

Vhf(z)Vhg(z) dz,

for every h ∈M1
v (Rd) r {0}, f ∈Mp′,q′

1/m (Rd) and g ∈Mp,q
m (Rd).

We shall simply write
〈f, g〉 =

Mp′,q′
1/m

〈f, g〉Mp,q
m
.

As a consequence, we have a Hölder’s inequality for modulation spaces.

Corollary 2.5.9. Consider m ∈ Mv(R2d), 1 ≤ p, q ≤ ∞ and let p′ and q′ be the conjugate
exponents. Then

(2.145) |〈f, g〉| ≤ ‖f‖Mp,q
w
‖g‖

Mp′,q′
1/w

, f ∈Mp,q
w (Rd), g ∈Mp′,q′

1/w (Rd).

for every f ∈Mp′,q′

1/m (Rd) and g ∈Mp,q
m (Rd).

The duality properties for modulation spaces with indices p < 1 or q < 1 where studied in
[105] and completed in [149, Proposition 6.4, page 163].

Proposition 2.5.10. Let s ∈ R and 0 < p, q < ∞. If p ≥ 1 we denote by p′ the conjugate
exponent of p, i.e.

1

p
+

1

p′
= 1;

if 0 < p < 1 we set p′ :=∞. Similarly for q. Then

(2.146) (Mp,q
1⊗vs(R

d))′ = Mp′,q′

1⊗v−s(R
d).

Proposition 2.5.11. ([82, Proposition 11.3.2, Theorem 11.3.7])
Consider m ∈ Mv(R2d). Assume g ∈ M1

v (Rd) r {0}, 1 ≤ p, q ≤ ∞. Then every f ∈ Mp,q
m (Rd)

can be written as vector-valued integral in a weak sense as follows:

(2.147) f =
1

‖g‖2L2

∫
R2d

Vgf(x, ω)MωTxg dxdω,

and the equality holds in Mp,q
m (Rd).
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Remark 2.5.12. The above vector-valued integral has to be interpreted as follows: if f ∈
Mp,q
m (Rd) and ϕ ∈ S(Rd), then

〈f, ϕ〉 =

∫
R2d

Vgf(x, ω)〈MωTxg, ϕ〉 dxdω =

∫
R2d

Vgf(x, ω)Vgϕ(x, ω) dxdω.

In the next proposition we need the subsequent polynomial type weights:

τs(x, ω) := 〈ω〉s =(1 + |ω|2)s/2, ∀x, ω ∈ Rd;

µs(x, ω) := 〈x〉s =(1 + |x|2)s/2, ∀x, ω ∈ Rd.

Proposition 2.5.13. Fix two indices 0 < p, q ≤ ∞ and s ∈ R. Among the modulation spaces
the following function spaces occur:

(i) L2-spaces:
M2(Rd) = L2(Rd);

(ii) weighted L2-spaces:

M2
µs(R

d) = L2
s(Rd) := {f ∈ L2(Rd) | f(x)〈x〉s ∈ L2(Rd)};

(iii) Sobolev spaces:

M2
τs(R

d) = Hs(Rd) := {f ∈ L2(Rd) | f̂(ω)〈ω〉s ∈ L2(Rd)};

(iv) Shubin-Sobolev spaces:

(2.148) M2
vs(R

d) = L2
s(Rd) ∩Hs(Rd) = Qs(Rd);

(v) spaces Lpvs :
Lpvs(R

d) ⊆Mp,∞
vs⊗1(Rd);

(vi) the Schwartz class: ⋂
s≥0

Mp,q
vs (Rd) = S(Rd);

(vii) space of tempered distributions: ⋂
s≥0

Mp,q
1/vs

(Rd) = S ′(Rd).

Roughly speaking a weight in ω regulates the smoothness of f ∈ Mp,q
m , whereas a weight in

x regulates the decay of f ∈Mp,q
m .

Remark 2.5.14. We remark that

S(Rd) (
⋂
p>0

Mp(Rd).

The idea in order to prove the previous strict inclusion is the following. The problem is trans-
ported to the discrete case: if f ∈ S(Rd), then Vgf ∈ S(R2d) and (Vgf(λ))λ∈Λ ∈ `∞vs(Λ) for every
s > 0, where Λ ⊆ R2d is a suitable lattice. We have the following inclusion⋂

s>0

`∞vs(Λ) ⊆
⋂
p>0

`p(Λ)

which can be proved to be strict by constructing a suitable sequence which is in
⋂
p>0 `

p but is
not rapidly decreasing, i.e. is not an element of

⋂
s>0 `

∞
vs .
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For proofs of the following density result we refer to [82, Proposition 11.3.4] for the Banach
case, to [75, Remark 14] for the quasi-Banach one.

Theorem 2.5.15. Consider m ∈ Mv(R2d) (having at most polynomial growth) and 0 < p, q <
∞. Then S(Rd) is a dense subspace of Mp,q

m (Rd).

Modulation spaces provide a natural setting for time-frequency analysis, thanks to discrete
equivalent norms produced by means of Gabor frames. The key result will be Theorem 2.5.18
(see [82, Corollary 12.2.6] for 1 ≤ p, q ≤ ∞, and [75, Theorem 3.7] for 0 < p, q < 1). In order to
state it, we briefly introduce the analysis and synthesis operators on modulation spaces.
Consider m ∈ Mv(R2d). Fix α, β > 0, then we denote the restriction of m to the lattice
Λ := αZd × βZd as follows:

mΛ(k, n) := m(αk, βn), ∀k, n ∈ Zd,

similarly for v.
The next proposition summarizes definition and well-posedness of the analysis, or coefficient,
operator Cα,βg for modulation spaces. For the Banach case we refer to [82, Theorem 12.2.3], for
the quasi-Banach case see [75, Theorem 3.5].

Proposition 2.5.16. Consider m ∈ Mv(R2d). Fix g ∈ S(Rd), α, β > 0 and 0 < p, q ≤ ∞.
Then the analysis operator

Cα,βg : Mp,q
m (Rd) −→ `p,qmΛ

(Z2d)(2.149)

f 7−→ (〈f, π(αk, βn)g〉)k,n∈Zd

is well defined and bounded.

We establish an analogue result for the synthesis, or reconstruction, operator which
summarises [82, Theorem 12.2.4] and [75, Theorem 3.6].

Proposition 2.5.17. Consider m ∈ Mv(R2d). Fix g ∈ S(Rd), α, β > 0 and 0 < p, q ≤ ∞.
Then the synthesis operator

Dα,βg : `p,qmΛ
(Z2d) −→Mp,q

m (Rd)(2.150)

(ck,n)k,n∈Zd 7−→
∞∑

k,n∈Zd
ck,nπ(αk, βn)g

is well defined and bounded. Moreover, if p, q < ∞ then Dα,βg c converges unconditionally in
Mp,q
m (Rd), otherwise Dα,βg c converges weak-∗ in M∞1/v(R

d).

Then we define

(2.151) Sα,βg,γ := Dα,βγ Cα,βg ,

which can be seen defined on L2(Rd) or Mp,q
m (Rd), according to the context.

Theorem 2.5.18. Consider m ∈ Mv(R2d). Fix α, β > 0, g, γ ∈ S(Rd) such that Sα,βg,γ = I on
L2(Rd). Define Λ := αZd × βZd. Then

(2.152) f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ =
∑
λ∈Λ

〈f, π(λ)γ〉π(λ)g, ∀ f ∈Mp,q
m (Rd),
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with unconditional convergence in Mp,q
m (Rd) if 0 < p, q < ∞ and with weak-∗ convergence in

M∞1/v(R
d) otherwise. Furthermore, there are constants 0 < A ≤ B such that, for all f ∈

Mp,q
m (Rd),

(2.153) A‖f‖Mp,q
m
≤

∑
n∈Zd

∑
k∈Zd

|〈f, π(αk, βn)g〉|pm(αk, βn)p


q
p


1
q

≤ B‖f‖Mp,q
m
,

independently of p, q, and m. Similar inequalities hold with g replaced by γ.

Then the above theorem can be summarised as:

(2.154) ‖f‖Mp,q
m (Rd) � ‖(〈f, π(λ)g〉)λ‖`p,qm̃ (Λ) = ‖(Vgf(λ))λ‖`p,qm̃ (Λ).

We present new convolution relations for modulations spaces proved in [9]. Let us recall that,
for the Banach cases, convolution relations were studied in [28] and [136, 137]. The approach
used in [9] is general, the techniques use Gabor frames via the equivalence (2.153), plus Hölder’s
and Young’s inequalities for sequences.

Proposition 2.5.19. ([9, Proposition 3.1])
Let ν be weight on Rd and consider 0 < p, q, r, t, u, γ ≤ ∞ such that:

(2.155)
1

u
+

1

t
=

1

γ
,

and

(2.156)
1

p
+

1

q
= 1 +

1

r
for 1 ≤ r ≤ ∞,

whereas

(2.157) p = q = r for 0 < r < 1.

Fix m ∈Mv(R2d) and define the restrictions to Rd × {0}, m1 and v1, and to {0} ×Rd, m2 and
v2, as in (2.10). Then we have the following continuous inclusion:

(2.158) Mp,u
m1⊗ν(Rd) ∗Mq,t

v1⊗v2ν−1(Rd) ↪→Mr,γ
m (Rd),

i.e. for any f ∈Mp,u
m1⊗ν(Rd) and h ∈Mq,t

v1⊗v2ν−1(Rd)

‖f ∗ h‖Mr,γ
m
. ‖f‖Mp,u

m1⊗ν
‖h‖Mq,t

v1⊗v2ν−1
.

Proof. We use the key idea in [28, Proposition 2.4] to measure the modulation space norm with
respect to the Gaussian windows g0(x) = e−πx

2

and g(x) = 2−d/2e−πx
2/2 = (g0 ∗g0)(x) ∈ S(Rd).

It is useful noting thatMω(g∗0) = (Mωg0)∗, similarly for g. A straightforward computation shows

Vgf(x, ω) = e−2πix·ω(f ∗ (Mωg)∗)(x),

where actually g can be any window in L2(Rd). Consider now f ∈ Mp,u
m1⊗ν(Rd) and h ∈

Mq,t
v1⊗v2ν−1(Rd), using the identity Mω(g∗0 ∗ g∗0) = Mωg

∗
0 ∗ Mωg

∗
0 we can write the STFT of

f ∗ h as follows:

Vg(f ∗ h)(x, ω) = e−2πix·ω((f ∗ h) ∗ (Mωg)∗
)
(x)

= e−2πix·ω((f ∗Mωg
∗
0) ∗ (h ∗Mωg

∗
0)
)
(x).
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In the following, we first use the norm equivalence (2.153), written in terms of the STFT as
‖ · ‖Mr,γ

m
� ‖(Vg · (λ))λ∈Λ‖`r,γm (Λ), where Λ = αZd × βZd. Then we majorize m by

m(αk, βn) . m(αk, 0)v(0, βn) = m1(αk)v2(βn),

and finally use Young’s convolution inequality for sequences (Theorem 2.2.32) in the k-variable
and Hölder’s one (Theorem 2.2.33) in the n-variable. The indices p, q, r, γ, t, u fulfil the equalities
in the assumptions. We show in details the case when r, γ, t, u <∞:

‖f ∗ h‖Mr,γ
m
� ‖((Vg(f ∗ h))(αk, βn)m(αk, βn))k,n‖`r,γm (Z2d)

.

∑
n∈Zd

∑
k∈Zd

|(f ∗Mβng
∗
0) ∗ (h ∗Mβng

∗
0)(αk)|rm1(αk)r

γ/r

v2(βn)γ


1/γ

=

∑
n∈Zd

‖(f ∗Mβng
∗
0) ∗ (h ∗Mβng

∗
0)‖γ

`rm1
(αZd)

v2(βn)γ

1/γ

.

∑
n∈Zd

‖f ∗Mβng
∗
0‖
γ
`pm1

(αZd)
‖h ∗Mβng

∗
0‖
γ
`qv1 (αZd)

v2(βn)γ

1/γ

.

∑
n∈Zd
‖f ∗Mβng

∗
0‖u`pm1

(αZd)ν(βn)u

 1
u
∑
n∈Zd
‖h ∗Mβng

∗
0‖t`qv1 (αZd)

v2(βn)t

ν(βn)t

 1
t

= ‖((Vg0f)(λ))λ‖`p,um1⊗ν
(Λ) ‖((Vg0h)(λ))λ‖`q,t

v1⊗v2ν−1 (Λ)

� ‖f‖Mp,u
m1⊗ν

‖h‖Mq,t

v1⊗v2ν−1
,

where we wrote m1⊗ ν and v1⊗ v2ν
−1 instead of (m1⊗ ν)Λ and (v1⊗ v2ν

−1)Λ, and so on. This
concludes the proof. The cases when one among the indexes r, γ, t, u is equal to ∞ are done
similarly.

We need to introduce an alternative definition of modulation spaces we shall use in the
sequel. For k ∈ Zd, we denote by Qk the unit closed cube centred at k. The family {Qk}k∈Zd is
a covering of Rd. We define |ξ|∞ := maxi=1,...,d |ξi|, for ξ ∈ Rd. Consider now a smooth function
ρ : Rd → [0, 1] satisfying ρ(ξ) = 1 for |ξ|∞ ≤ 1/2 and ρ(ξ) = 0 for |ξ|∞ ≥ 3/4. Define

(2.159) ρk(ξ) := Tkρ(ξ) = ρ(ξ − k), ∀k ∈ Zd,

that is, ρk is the translation of ρ at k. By the assumption on ρ, we infer that ρk(ξ) = 1 for
ξ ∈ Qk and ∑

k∈Zd
ρk(ξ) ≥ 1, ∀ ξ ∈ Rd.

Denote by

(2.160) σk(ξ) :=
ρk(ξ)∑
l∈Zd ρl(ξ)

, ∀ξ ∈ Rd, k ∈ Zd.

Observe that σk(ξ) = σ0(ξ − k) ∈ D(Rd) and the sequence {σk}k∈Zd is a smooth partition of
unity ∑

k∈Zd
σk(ξ) = 1, ∀ξ ∈ Rd.
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For k ∈ Zd, we define the frequency-uniform decomposition operator by

(2.161) �k := F−1σkF .

The previous operators allow to introduce an alternative quasi-norm on the weighted modulation
spaces Mp,q

h⊗w(Rd) inspired by [148] as follows.

Proposition 2.5.20. ([7, Proposition 2.2]) For 0 < p, q ≤ ∞, h,w ∈Mv(Rd) have

(2.162) ‖f‖Mp,q
h⊗w(Rd) �

∑
k∈Zd

‖�kf‖qLphw(k)q

 1
q

, f ∈ S ′(Rd),

with obvious modification for q =∞.

Proof. The case p, q ≥ 1 is well known, see for example [35, Proposition 2.3.25]. The cases
0 < p < 1 or 0 < q < 1 are an easy modification of that proof. Namely, let us point out the main
changes. If 0 < p ≤ 1, we consider

�kf = F−1σkFf = F−1σkTξ
¯̂
φFf, for ξ ∈ Qk,

since Tξ
¯̂
φ = 1 in supp σk for ξ ∈ Qk. Using Young’s inequality for distributions compactly

supported in the frequencies (see [104, Lemma 2.6], which holds also for Lph, 0 < p ≤ 1, with h
being v-moderate), for ξ ∈ Qk, we obtain

‖�kf‖Lph . ‖F
−1σk‖Lpv‖F

−1Tξ
¯̂
φFf‖Lph . ‖F

−1Tξ
¯̂
φFf‖Lph .

The rest of the proof is analogous to the Banach case and we leave the details to the interested
reader.

An useful embedding is contained in what follows.

Proposition 2.5.21. ([7, Proposition 2.3]) Given 0 < p1, p2, q1, q2 ≤ ∞, with m, s1, s2 in R,
one has

(2.163) Mp1,q1
〈·〉m⊗〈·〉s1 (Rd) ↪→Mp2,q2

〈·〉m⊗〈·〉s2 (Rd)

if and only if

(2.164) p1 ≤ p2

and

(2.165) q1 ≤ q2, s1 ≥ s2 or q1 > q2,
s1

d
+

1

q1
>
s2

d
+

1

q2
.

Proof. The Banach case when m = 0 was originally shown by H. G. Feichtinger in [56]. We use
similar arguments as in that proof. The discrete modulation norm defined in (2.162) is given by

‖f‖Mp,q
〈·〉m⊗〈·〉s

�

∑
k∈Zd

‖�kf‖qLp〈·〉m 〈k〉
sq

 1
q

.

The necessity of (2.164) follows from the fact that FLp1 is locally contained in FLp2 if and only
if p1 ≤ p2 (with strict inclusion if p1 < p2), cf. [16, 71, 104, 145]. The set of conditions in
(2.165) in turn describes the inclusions between weighted `q spaces: `q1〈·〉s1 ⊆ `q2〈·〉s2 if and only if
the indices’ relations in (2.165) are satisfied, cf. for instance [91, Lemma 2.10]. This concludes
the proof.
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Corollary 2.5.22. ([7, Corollary 2.4]) For 0 < q1 ≤ q2 ≤ ∞, d ∈ N, m, s, r ∈ R, r > s +
d(1/q1 − 1/q2), we have the following continuous embeddings:

(2.166) M∞,q1〈·〉m⊗〈·〉r (R
d) ↪→M∞,q2〈·〉m⊗〈·〉r (R

d) ↪→M∞,q1〈·〉m⊗〈·〉s(R
d).

Proof. The first embedding is a straightforward application of the inclusion relations in (2.142).
The second one follows by the embedding in Proposition 2.5.21.

Let m ∈Mv(R2d). We denote byMp,q
m (Rd) the closure of S(Rd) in the Mp,q

m -norm:

(2.167) Mp,q
m (Rd) := S(Rd)

‖·‖Mp,qm .

Observe thatMp,q
m (Rd) = Mp,q

m (Rd), whenever the indices p and q are finite. Notice that these
spaces enjoy the duality property

(Mp,q
m )′ =Mp′,q′

1/m with 1 ≤ p, q ≤ ∞.

Proposition 2.5.23. ([3, Proposition 2.2]) Consider 1 ≤ p, q ≤ ∞, with p′, q′ being conjugate
exponents of p, q, respectively.

(i) For 1 ≤ p, q ≤ ∞, f ∈Mp,q(Rd), h ∈Mp′,q′(Rd), we have that f ∗ h ∈ C0(Rd);

(ii) For 1 < p, q <∞, f ∈Mp,q(Rd), h ∈Mp′,q′(Rd), we have that f ∗ h ∈ C0(Rd);

(iii) If either f ∈ M∞,1(Rd) and h ∈ M1,∞(Rd) or f ∈ M1(Rd) and h ∈ M∞(Rd), then
f ∗ h ∈ Cb(Rd).

Proof. These results are well known, see [53] and [54]. For sake of clarity we provide a direct
proof.

(i) Using the density of S(Rd) in both spaces we can find sequences {fn}n, {hn}n ∈ S(Rd)
such that ‖fn − f‖Mp,q → 0 and ‖hn − h‖Mp′,q′ → 0, now fn ∗ hn ∈ S(Rd) ↪→ C0(Rd) so that,
using

|f ∗ h(t)| = |〈f, TtI(h)〉| ≤ ‖f‖Mp,q‖TtI(h)‖Mp′,q′ = ‖f‖Mp,q‖h‖Mp′,q′ , ∀t ∈ Rd,

‖fn ∗ hn − f ∗ h‖L∞ ≤ ‖fn ∗ (hn − h)‖L∞ + ‖(fn − f) ∗ h‖L∞
≤ ‖fn‖Mp,q‖hn − h‖Mp′,q′ + ‖fn − f‖Mp,q‖h‖Mp′,q′ .

Hence f ∗ h ∈ C0(Rd). Item (ii) is obtained by the same argument as in (i).
(iii) Using the convolution relations of Proposition 2.5.19 we infer

M∞,1(Rd) ∗M1,∞(Rd) ↪→M∞,1(Rd) and M1(Rd) ∗M∞(Rd) ↪→M∞,1(Rd).

It follows immediately from the definition of the modulation space M∞,1(Rd) that

(2.168) M∞,1(Rd) ⊆ (FL1(Rd))loc ∩ L∞(Rd) ⊆ Cb(Rd)

and we are done.

Remark 2.5.24. We observe that the convolution relations

M1(Rd) ∗M∞(Rd) ⊆ Cb(Rd)

where already shown in [65, Lemma 8].
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2.5.2 Mp,q
m on G LCA group, 1 ≤ p, q ≤ ∞

Since several descriptions are available for modulation spaces on G LCA group, we chose the
following which can be found e.g. in [88]. We shall summarize briefly their main properties
which corresponds to the ones for Mp,q

m (Rd).

Definition 2.5.25. Let m ∈ Mv(G × Ĝ), consider 1 ≤ p, q ≤ ∞ and let ϕ be as in (2.94). For
f ∈ SC(G) we define the application

(2.169) ‖f‖Mp,q
m

:= ‖Vϕf‖Lp,qm =

(∫
Ĝ

(∫
G
|Vϕf(x, ξ)|pm(x, ξ)p dx

) q
p

dξ

) 1
q

,

with obvious modifications if at least one between p and q is ∞. Then we define the modulation
space Mp,q

m (G) to be the completion SC(G) w.r.t. ‖·‖Mp,q
m

if p, q <∞:

Mp,q
m (G) := SC(G)

‖·‖Mp,qm ,

if at least one between p and q is ∞ we take the w-∗ closure.

As usual, we adopt the notation Mp,q := Mp,q
1 and Mp

m := Mp,p
m .

Theorem 2.5.26. Let m ∈Mv(G × Ĝ) and 1 ≤ p, q ≤ ∞. Then Mp,q
m (G) endowed with ‖·‖Mp,q

m

defined in (2.169) is a Banach space. Moreover, it is independent of the window function in
M1
v (G) r {0}, in the sense that given any g ∈ M1

v (G) r {0} the application ‖Vg·‖Lp,qm is a norm
on Mp,q

m (G) equivalent to the one defined in (2.169).

Remark 2.5.27. (i) We want to highlight the following inclusion

SC(G) ⊆M1
v (G).

So that every nonzero function in SC(G) is a suitable window for Mp,q
m (G);

(ii) Taking G = Rd we recover the very same modulation spaces which were introduced in
Definition 2.5.2.

Proposition 2.5.28. (i) Let 1 ≤ p, q < ∞ and consider the conjugate exponents p′ and q′.
Then

(Mp,q
m (G))′ = Mp′,q′

1/m (G);

(ii) M1
m(G) and M∞,1m (G) are the dual spaces of

SC(G)
‖·‖M∞

1/m and SC(G)
‖·‖

M
1,∞
1/m ,

respectively;

(iii) If f ∈ M∞,1m (G) and g ∈ M1,∞
1/m, then 〈f, g〉 :=

∫
G×Ĝ Vϕf(x)Vϕg(x) dx is well-defined and

|〈f, g〉| . ‖f‖M∞,1m
‖g‖M1,∞

1/m
.
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2.5.2.1 The Feichtinger algebra S0(G)

The Feichtinger algebra S0(G) [49, 50, 51] has numerous equivalent descriptions, we address the
reader to [101] for an exhaustive tour.

Definition 2.5.29. We call Feichtinger algebra over G the Banach space

S0(G) := M1(G).

Let v be a submultiplicative weight on G × Ĝ, then the weighted Feichtinger algebra over G
is

M1
v (G).

We shall tackle mainly the unweighted case. Of course, if we endow S0(G) with the norm

‖·‖S0
:= ‖·‖M1

we have a Banach space which dual is given by S ′0(G) = M∞(G), which is also called set of mild
distributions. In the case of S0(G) = M1(G), we can pick any window in S0(G) itself in order
to compute the norm. Namely, given any g ∈ S0(G) r {0} the application ‖Vg·‖L1 is a norm on
the Feichtinger algebra and different window in S0(G) yeld equivalent norms.
An equivalent description of S0(G), e.g., is the following:

S0(G) = {f ∈ L2(G) | ∃g ∈ L2(G) r {0} : Vgf ∈ L1(G × Ĝ)}.

In the following proposition we list just some of the main properties of the Feichtinger algebra.

Proposition 2.5.30. Let us consider f ∈ L2(G) such that Vgf ∈ L1(G × Ĝ) for some g ∈
L2(G) r {0}, i.e. f ∈ S0(G). Then:

(i) F [S0(G)] = S0(Ĝ) and ‖Vgf‖L1 =
∥∥∥Vĝ f̂∥∥∥

L1
;

(ii) π(x)f ∈ S0(G) for every x ∈ G × Ĝ;

(iii) S0(G) ⊆ C0(G);

(iv) f, If, f∗ ∈ S0(G);

(v) if f 6= 0, then g ∈ S0(G);

Proposition 2.5.31. S0(G) is a Banach algebra under convolution and pointwise multiplication,
i.e. if f, g ∈ S0(G), then f ∗ g, f · g ∈ S0(G) with norm estimates

‖f ∗ g‖S0
. ‖f‖S0

‖g‖S0
, ‖f · g‖S0

. ‖f‖S0
‖g‖S0

.

2.6 Some specific function spaces
In the present section we shall recall the following function spaces which will be used in the
upcoming chapters: Wiener amalgam spaces W (Lp, Lqm)(Rd) with indexes 0 < p, q ≤ ∞; Besov
spaces Bp,qs (Rd) [145]; the class of smooth symbols Sm(R2d) [127]; weak Lr,∞ spaces [145]. Orig-
inal results, by E. Cordero and the author, here presented and both published in [7] are: Lemma
2.6.8, which generalizes a characterization of Hörmander’s class S0

0,0 proved in [87, Lemma 6.1],
and the subsequent Lemma 2.6.9.
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2.6.1 Wiener Amalgam spaces with local component Lp(Rd) 0 < p ≤ ∞
For more about Wiener amalgam spaces we address the reader, e.g., to [53, 54, 55, 72, 75, 93,
119, 120].

Definition 2.6.1. Consider p, q ∈ (0,∞], m ∈ Mv(Rd) and the compact set Q := [0, 1]d. The
Wiener amalgam space with local component Lp(Rd) and global component Lqm(Rd),
denoted by W (Lp, Lqm) (Rd), consists of equivalence classes of functions f : Rd → C equal a.e.
such that f ∈ Lploc(Rd) and for which the control function:

(2.170) FQf (k) := ‖f · TkχQ‖Lp ∈ `
q
m

(
Zd
)
, ∀k ∈ Zd.

The quasi-norm on W (Lp, Lqm) (Rd) is given by

‖f‖W (Lp,Lqm) :=
∥∥∥FQf (k)

∥∥∥
`qm

=
∥∥‖f · TkχQ‖Lp∥∥`qm

=

∑
k∈Zd

(∫
Rd
|f (t)|p χQ (t− k) dt

) q
p

mq (k)

 1
q

,(2.171)

with suitable adjustments for the cases p, q =∞.

This special definition allows us to grasp the sense of the amalgam: we first view f “locally”
through translations TkχQ of the sharp cutoff function χQ, and measure those local pieces in
the Lp-norm, then we measure the global behaviour of those local pieces according to the `qm-
norm. The “window” through which we view f locally need not be a unit d-dimensional cube,
cf. [54, 75, 93, 120]. In the sequel we shall use the following properties:

(i) Inclusion relations: For 0 < p1 ≤ p2 ≤ ∞, 0 < q2 ≤ q1 ≤ ∞, we have

(2.172) W (Lp2 , Lq2m)(Rd) ↪→W (Lp1 , Lq1m)(Rd).

(ii) Convolution relations (for the quasi-Banach case see [75, Lemma 2.9]): Considermi ∈Mv,
0 < pi, qi ≤ ∞, i ∈ {1, 2, 3}, and p3 ≥ 1. Assume that Lp1 ∗ Lp2 ↪→ Lp3 and `q1m1

∗ `q2m2
↪→

`q3m3
, then

(2.173) W (Lp1 , Lq1m1
) ∗W (Lp2 , Lq2m2

) ↪→W (Lp3 , Lq3m1
).

(iii) For m ∈Mv, 0 < p ≤ ∞, we have

(2.174) Lpm = W (Lp, Lpm).

Proposition 2.6.2 (Multiplication relations). ([9, Proposition 2.3]) Consider m,w ∈ Mv, 0 <
pi, qi ≤ ∞, i = {1, 2, 3}. Assume 1

p1
+ 1

p2
= 1

p3
and 1

q1
+ 1

q2
= 1

q3
, then

(2.175) W (Lp1 , Lq1m) ·W (Lp2 , Lq2w/m) ↪→W (Lp3 , Lq3w ).

Proof. The result is well known for 1 ≤ pi, qi ≤ ∞, cf. [53, 93]. Here we show that the same proof
works for quasi-Banach spaces. Indeed, since the standard Hölder inequality holds for Lebesgue
exponents in (0,∞], for f1 ∈W (Lp1 , Lq1m), f2 ∈W (Lp2 , Lq2w/m) we have

‖f1f2TkχQ‖Lp3 = ‖(f1TkχQ)(f2TkχQ)‖Lp3 ≤ ‖f1TkχQ‖Lp1‖‖f2TkχQ‖Lp2 .
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Defining ak = ‖f1TkχQ‖p1
and bk = ‖f2TkχQ‖p2

and using Hölder’s inequality for sequences
`q1`q2 ↪→ `q3 , for 1/q1 + 1/q2 = 1/q3 (0 < qi ≤ ∞, i = 1, 2, 3), we obtain

‖akbkw(k)‖`q3 = ‖(akm(k))(bkw(k)/m(k))‖`q3 ≤ ‖akm(k)‖`q1 ‖bkw(k)/m(k)‖`q2 .

This completes the proof.

Concerning the theorem below, we address to [75, Theorem 3.3] (see also [82, Theorem 12.2.1]
for p ≥ 1).

Theorem 2.6.3. Assume that m ∈ Mv(R2d). For 0 < p < 1 let g be a non-zero window in
Mr
v (Rd), r ≤ p. For 1 ≤ p ≤ ∞, the function g can be chosen in the larger space M1

v (Rd). If
f ∈ Mp

m(Rd), 0 < p ≤ ∞, then Vgf ∈ W (L∞, Lpm) and there exists C > 0, independent of f ,
such that

‖Vgf‖W (L∞,Lpm) ≤ C‖Vgf‖Lpm .

2.6.2 Besov spaces

Definition 2.6.4. Consider ψ0, ψ ∈ S(Rd) and set ψj(ω) := ψ(2−jω) for ω ∈ Rd and j ∈ N.
Suppose that:

supp ψ0 ⊆ {ω ∈ Rd : |ω| ≤ 2};
supp ψ ⊆ {ω ∈ Rd : 1/2 ≤ |ω| ≤ 2};

ψ0(ω) +

∞∑
j=1

ψ(2−jω) = 1, ∀ω ∈ Rd.

Let 0 < p, q ≤ ∞ and s ∈ R. Then the Besov space Bp,qs (Rd) consists of all tempered distribu-
tions f ∈ S ′(Rd) such that the quasi-norm

(2.176) ‖f‖Bp,qs :=

 ∞∑
j=0

2jsq‖F−1(ψjFf)‖qLp

1/q

(with usual modifications when q =∞) is finite.

Besov spaces are generalizations of both Hölder-Zygmund and Sobolev spaces, see e.g. [145].
Precisely, we recapture the Sobolev spaces when p = q = 2, s ∈ R: B2,2

s (Rd) = Hs(Rd). For
s > 0, B∞,∞s (Rd) = Cs(Rd), the Hölder-Zygmund classes, whose definition is as follows. For
s > 0, we can write s = n + ε, with n ∈ N0 and ε < 1. Then Cs(Rd) is the space of functions
f ∈ Cn(Rd) such that for each multi-index α ∈ Nd0, with |α| = n, the derivative ∂αf satisfies the
Hölder condition |∂αf(x)− ∂αf(y)| ≤ K|x− y|ε, for a suitable K > 0.

Inclusion relations between modulation and Besov spaces B∞,qs were first obtained for 1 ≤
q ≤ ∞ (the Banach setting) in [137, Theorem 2.10] and then for 0 < q ≤ ∞ in [148]: for
0 < q ≤ ∞, set θ(q) = min{0, 1/q − 1}, then

(2.177) B∞,qs+d/q(R
d) ↪→M∞,q1⊗〈·〉s(R

d) ↪→ B∞,qs+dθ(q)(R
d), s ∈ R.
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2.6.3 A class of smooth symbols introduced by Sjöstrand
In [127] J. Sjöstrand continued his study on pseudo-differential operators with rough symbols
and he also considered the symbol class object of study of [7], see Chapter 4. Namely, the class
Sm(R2d) defined below.

Definition 2.6.5. For m ∈ R, we define the class of smooth symbols Sm(R2d) as

(2.178) Sm(R2d) := {σ ∈ C∞(R2d) : |∂ασ(z)| ≤ Cα〈z〉m, α ∈ N2d
0 , z ∈ R2d},

where 〈z〉 has been defined in (2.6).

Remark 2.6.6. (i) Notice that this is a special instance of the class S(w) introduced in [127,
Formula (3.2)];

(ii) Sm(R2d) contains the so called Shubin classes Γmρ , 0 < ρ ≤ 1 defined as [125]:

(2.179) Γmρ (R2d) = {σ ∈ C∞(R2d) | |∂ασ(z)| ≤ Cα〈z〉m−ρ|α|, α ∈ N2d
0 , z ∈ R2d}

and can be seen as their limit case for ρ = 0;

(iii) or m = 0 we recover the Hörmander class S0
0,0(R2d).

For any fixed m ∈ R, the class Sm(R2d) in (2.178) is a Fréchet space when endowed with the
sequence of norms {| · |N,m}N∈N0 ,

(2.180) |σ|N,m := sup
|α|≤N

sup
z∈R2d

|∂ασ(z)|〈z〉−m, N ∈ N0.

For n ∈ N0, m ∈ R r {0}, we define by Cnm(R2d) the space of functions having n derivatives
and satisfying (2.180) for N = n, whereas Cn(R2d) is the space of functions with n bounded
derivatives. Clearly we have the equalities

Sm(R2d) =
⋂
n∈N0

Cnm(R2d), m ∈ Rr {0}, S0(R2d) =
⋂
n∈N0

Cn(R2d).

A characterization of the class S0(R2d) = S0
0,0(R2d) with modulation spaces was announced

by Toft in [138, Remark 3.1] and proved in [87, Lemma 6.1].

Lemma 2.6.7. We have the equalities

(2.181)
⋂
n∈N0

Cn(Rd) =
⋂
s≥0

M∞1⊗〈·〉s(R
d) =

⋂
s≥0

M∞,11⊗〈·〉s(R
d).

Hence S0(R2d) =
⋂
s≥0M

∞
1⊗〈·〉s(R

2d) =
⋂
s≥0M

∞,1
1⊗〈·〉s(R

2d).

In what follows we extend the previous outcome to all the classes Sm(R2d), m ∈ R.

Lemma 2.6.8. ([7, Lemma 2.2]) For m ∈ R, 0 < q ≤ ∞, n ∈ N0, s ∈ (0,+∞), we have the
equalities of Fréchet spaces

(2.182) Sm(R2d) =
⋂
n∈N0

Cnm(R2d) =
⋂
n∈N0

M∞,q〈·〉−m⊗〈·〉n(R2d) =
⋂
s≥0

M∞,q〈·〉−m⊗〈·〉s(R
d)

with equivalent families of quasi-norms

(2.183) {| · |n,m}n∈N0
, {‖ · ‖M∞,q

〈·〉−m⊗〈·〉n
}n∈N0

, {‖ · ‖M∞,q
〈·〉−m⊗〈·〉s

}s≥0.

In particular, for every n ∈ N0,

(2.184) ‖f‖M∞
〈·〉−m⊗〈·〉n

≤ C(n,m)|f |n,m.



2.6. SOME SPECIFIC FUNCTION SPACES 73

Proof. The equality Sm(R2d) =
⋂
n∈N0

M∞,1〈·〉−m⊗〈·〉n(R2d) was proved in [97, Remark 2.18]. The
embeddings in (2.166) then give the equalities in (2.182) with the equivalent families of quasi-
norms in (2.183).

Let us show the estimate (2.184). For f ∈ Cnm(Rd) (Cn(Rd) if m = 0) and any multi-index
α ∈ Nd0 with |α| ≤ n, we consider the function ∂α(fTxḡ). Taking its Fourier transform we get

(2.185) F(∂α(fTxḡ))(ω) = (2πiω)αF(fTxḡ)(ω) = (2πiω)αVgf(x, ω).

In what follows we use the boundedness of F : L1(Rd) → C0(Rd), Peetre’s inequality 〈x〉−m ≤
2−m〈x− t〉|m|〈t〉−m, and Leibniz’ formula:

〈x〉−m‖F(∂α(fTxḡ))‖L∞ ≤ 〈x〉−m‖∂α(fTxḡ)‖L1

=

∥∥∥∥∥∥〈x〉−m
∑
β≤α

(
α

β

)
∂βf Tx∂

α−β ḡ

∥∥∥∥∥∥
L1

≤ 2−m
∑
β≤α

(
α

β

)
‖(∂βf)〈·〉−m‖L∞‖(∂α−β ḡ)〈·〉|m|‖L1

≤ 2−m sup
|β|≤n

‖(∂βf)〈·〉−m‖L∞Mα

×max
β≤α

(
α

β

)
‖(∂α−β ḡ)〈·〉|m|‖L1

= Cα,g,m|f |n,m,

where Cg,α,m = 2−mMα maxβ≤α
(
α
β

)
‖(∂α−β ḡ)〈·〉|m|‖L1 with Mα = #{β ∈ Nd0, β ≤ α}. The

estimate above and formula (2.185) yield

(2.186) sup
x∈Rd

|Vgf(x, ω)|〈x〉−m ≤ Cg,α,m|f |n,m|ωα|−1, |ω| 6= 0, ∀|α| ≤ n.

Now if f ∈
⋂
n∈N0

Cnm(Rd) then for every α ∈ Nd0 there exists C = Cα > 0 such that the estimate
in (2.186) holds true. Since 〈ω〉n ≤

∑
|α|≤n cα|ωα| for suitable cα ≥ 0, we obtain

sup
x,ω∈Rd

|Vgf(x, ω)|〈x〉−m〈ω〉n ≤ C|f |n,m, ∀n ∈ N0,

for a suitable C = C(n,m) > 0 that is (2.184).

In particular, for m = 0 we recapture the outcome of Lemma 2.6.7.
For the case m = 0 we can characterize the Hörmander class S0(R2d) = S0

0,0(R2d) by Hölder-
Zygmund classes Cs(R2d) = B∞,∞s (R2d) and by Besov spaces.

Lemma 2.6.9. ([7, Lemma 2.3]) For 0 < q ≤ ∞, we have the equalities

(2.187) S0
0,0(R2d) =

⋂
s≥0

Cs(R2d) =
⋂
s≥0

B∞,qs (R2d) =
⋂
s≥0

M∞,q1⊗〈·〉s(R
2d),

with equivalent families of quasi-norms

(2.188) {‖ · ‖B∞,∞s
}s≥0, {‖ · ‖B∞,qs

}s≥0, {‖ · ‖M∞,q
1⊗〈·〉s

}s≥0.

Proof. It is a straightforward consequence of Lemma 2.6.8 and the inclusion relations in (2.177).
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2.6.4 Weak Lr,∞ spaces
We address the reader to [145].

Definition 2.6.10. For r ∈ [1,∞), the weak Lr space Lr,∞(Rd) is the space of measurable
functions f : Rd → C such that

(2.189) ‖f‖Lr,∞ := sup
α>0

αλf (α)
1
r < +∞,

where
λf (α) := µ({t ∈ Rd : |f(t)| > α}), α > 0,

µ being the Lebesgue measure.

Note that the quantity in (2.189) is a quasi-norm.
For convenience, we write L∞,∞(Rd) := L∞(Rd). Observe that weak Lr spaces are special

instances of Lorentz spaces and Lr(Rd) ⊆ Lr,∞(Rd), 1 ≤ r ≤ ∞.

Lemma 2.6.11. ([3, Lemma 2.8]) For r ∈ [1,∞), λ > 0 and ϕ(t) = e−πt
2

, t ∈ Rd, we consider
the rescaled Gaussians ϕλ(t) := e−πλt

2

. Then we have

(2.190) ‖ϕλ‖Lr,∞(Rd) =

(
d
2r

) d
2r

Γ(d2 + 1)λ
d
2r

e−
d
2r .

Hence,

(2.191) ‖ϕλ‖Lr,∞(Rd) = C(d, r)λ−
d
2r ,

with C(d, r) = e−
d
2r

(
d
2r

) d
2r Γ(d2 + 1)−1.

Proof. Observe that for α ≥ 1 we have {t : |ϕλ(t)| > α} = ∅. For 0 < α < 1, {t : |ϕλ(t)| >
α} = {t : |t| < π−1/2λ−1/2(log(1/α))1/2}. The Lebesgue measure of the set is given by

Aλ := µ({t : |t| < π−1/2λ−1/2(log(1/α))1/2}) =
log(1/α)

d
2

Γ(d2 + 1)λ
d
2

.

Now, using the definition of the quasi-norm in (2.189),

‖ϕλ‖Lr,∞(Rd) = sup
α>0

αµ({t : |ϕλ(t)| > α}) 1
r

= sup
0<α<1

αA
1
r

λ

=
1

Γ(d2 + 1)λ
d
2r

sup
0<α<1

α (log(1/α))
d
2r .

An easy computation shows that the function y(α) := α (log(1/α))
d
2r on (0, 1) admits the max-

imum point tM := e−
d
2r and the maximum is y(tM ) = (d/(2r))2/(2r)e−2/(2r), so that we obtain

the claim.

We observe that in the Lr,∞ spaces the rescaled Gaussians behave like in the usual Lr spaces,
meaning ‖ϕλ‖r � ‖ϕλ‖Lr,∞ � λ−d/(2r).
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2.7 Main operators
The operators presented in this section shall be object of study of next chapters. We shall see:
localization operator Aψ1,ψ2

a both on Rd and G, Gabor multipliers Gg1,g2
a on Rd and Gg1,g2

a on
ZN , pseudo-differential operators Opτ (σ) and Born-Jordan operators OpBJ(σ) on Rd, Kohn-
Nirenberg operators Op0(σ) on G LCA group, Fourier multiplier Tm on Rd and linear time
invariant filters H on CN ∼= `2(ZN ) (recall (2.104)).

2.7.1 Localization operators on Rd

Definition 2.7.1. Consider a symbol a ∈ S ′(R2d) and non-zero windows ψ1, ψ2 ∈ S(Rd) r
{0}. Then the localization operator

Aψ1,ψ2
a : S(Rd)→ S ′(Rd)

is defined by the formal integral

(2.192) Aψ1,ψ2
a f(t) :=

∫
R2d

a(x, ω)Vψ1
f(x, ω)MωTxψ2(t) dxdω,

or we can give the definition in a weak sense as follows:

(2.193) 〈Aψ1,ψ2
a f, g〉 := 〈a, Vψ1

fVψ2
g〉, ∀f, g ∈ S(Rd),

where 〈·,·〉 in the left-hand side is the sesquilinear duality between S ′(Rd) and S(Rd) and in the
right-hand side between S ′(R2d) and S(R2d).

Localization operators are also called STFT multiplier because of (2.192).

Remark 2.7.2. Aψ1,ψ2
a is well defined as mapping Aψ1,ψ2

a : S(Rd) → S ′(Rd). In fact, for any
f, g, ψ1, ψ2 ∈ S(Rd) we have

Vψ1f, Vψ2g ∈ S(R2d)

by Theorem 2.3.14. Moreover

Vψ1
f ∈ S(R2d) ⇒ Vψ1

f ∈ S(R2d).

Since the Schwartz class is closed under pointwise multiplication, we get

Vψ1
fVψ2

g ∈ S(R2d)

and thus 〈a, Vψ1
fVψ2

g〉 makes sense since a ∈ S ′(R2d).
The linearity of Aψ1,ψ2

a comes straightforward from (2.193). Indeed

Vψ1
· (x, ω) = 〈·,MωTxψ1〉

is linear, the duality between S ′(R2d) and S(R2d) is antilinear in the second argument, hence the
complex conjugation over Vψ1

f makes of Aψ1,ψ2
a a linear operator.

A localization operator Aψ1,ψ2
a is defined whenever the vector-valued integral (2.192) makes

sense, hence we could chose other sets as spaces of symbols and windows respectively. In (2.193)
the brackets 〈·,·〉 would express the duality on a suitable pair of dual spaces (B′, B) and extend
the inner product on L2(R2d). For example, later we shall pick the Gelfand-Shilov space B =
S(1)(Rd).
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Remark 2.7.3. Aψ1,ψ2
a defined as in (2.192) is well defined and continuous from S(Rd) to S ′(Rd)

(endowed with the w-∗ topology). In particular if one considers a symbol a in the Lebesgue space
Lq(R2d) (1 ≤ q <∞) and window functions ψ1, ψ2 in the Feichtinger algebra M1(Rd), then the
localization operator Aψ1,ψ2

a is in the Schatten class J q (see [28]). In this case, the localization
operator Aψ1,ψ2

a is a bounded and compact operator on L2(Rd).

We report the following important characterization of Aψ1,ψ2
a ∈ J p(L2(Rd)), [29, Theorem

1].

Theorem 2.7.4. Consider 1 ≤ p ≤ ∞.

(i) The mapping

Mp,∞(R2d)×M1(Rd)×M1(Rd)→ J p(L2(Rd)), (a, ψ1, ψ2) 7→ Aψ1,ψ2
a

is bounded with norm estimate∥∥Aψ1,ψ2
a

∥∥
J p ≤ B ‖a‖Mp,∞ ‖ψ1‖M1 ‖ψ2‖M1 ,

for a suitable constant B > 0;

(ii) Assume that Aψ1,ψ2
a ∈ J p(L2(Rd)) for all windows ψ1, ψ2 ∈M1(Rd) and that there exists

a constant B > 0 depending only on the symbol a such that∥∥Aψ1,ψ2
a

∥∥
J p ≤ B ‖ψ1‖M1 ‖ψ2‖M1 , ∀ψ1, ψ2 ∈ S(Rd).

Then a ∈Mp,∞(R2d).

Remark 2.7.5. If ψ1(t) = e−πt
2

= ψ2(t), then Aa = Aψ1,ψ2
a is the classical anti-Wick operator

and the mapping a 7→ Aψ1,ψ2
a is a quantization rule in quantum mechanics [14, 39, 125, 152].

The terminology localization operator appears for the first time in 1988, in a paper by I.
Daubechies [37]. Writing Aψ1,ψ2

a f as the integral (2.192) makes this choice clearer. Think of f
as a signal, an element of L2(Rd) is suitable, then we analyse the signal via its STFT. For sake
of simplicity consider the symbol a of type χΩ, where Ω ⊆ R2d is a compact subset of the time-
frequency plane. The product aVψ1

f is the restriction of the analysed signal to a compact subset
in the phase space. Eventually we obtain the modified signal Aψ1,ψ2

a f multiplying byMωTxψ2 and
integrating. According to this perspective, ψ1, ψ2 are called analysis and synthesis window
respectively.
In [9] even rough symbols are considered (see Remark 3.2.3), no assumptions on the geometry or
support of the generalised function a are made. Besides, the related localization operator Aψ1,ψ2

a

is not necessarily a self-adjoint operator. It is easy to check that the adjoint of a localization
operator is given by

(Aψ1,ψ2
a )∗ = Aψ2,ψ1

ā ;

hence the self-adjointness property forces the choice ψ1 = ψ2 and the symbol a real valued, as for
the case Aψ,ψχΩ

mentioned above. The framework of [9] can allow the use of two different windows
ψ1 and ψ2 to analyse and synthesize the signal f , respectively. Moreover, the symbol a can be
a complex-valued function.



2.7. MAIN OPERATORS 77

2.7.2 Localization operators on G LCA group

We address the reader to Wong’s book [152] for a detailed treatment of localization operators on
locally compact Hausdorff groups and point out the recent works [108, 109]. Since the equivalent
of the Schwartz class on G, i.e. the Schwartz-Bruhat class, is quite cumbersome to deal with, we
adopt the more handy Feichtinger algebra S0(G).

Definition 2.7.6. Consider windows ψ1, ψ2 ∈ S0(G) and symbol a ∈ S ′0(G×Ĝ). Then the local-
ization operator with symbol a and windows ψ1, ψ2 in S0(G) is the linear and continuous
operators

Aψ1,ψ2
a : S0(G)→ S ′0(G)

formally defined by

(2.194) Aψ1,ψ2
a f(x) =

∫
G×Ĝ

a(u, ω)Vψ1
f(u, ω)MωTuψ2(x) dudω.

Equivalently, its weak definition is

(2.195) 〈Aψ1,ψ2
a f, g〉 = 〈a, Vψ1fVψ2g〉, ∀ f, g ∈ S0(G).

Remark 2.7.7. (i) It is straightforward computation to check that Aψ1,ψ2
a : S0(G)→ S ′0(G) is

well defined, linear and continuous as claimed (cf. [101, Theorem 5.3]);

(ii) Concretely, we shall mainly consider windows ψ1, ψ2 ∈ SC(G) rather than in the whole
Feichtinger algebra. Notice that if a ∈ Lp(G × Ĝ), for any 1 ≤ p ≤ ∞, then Aψ1,ψ2

a ∈
B(L2(G)), cf. [152, Proposition 12.1, 12.2, 12.3].

2.7.3 Gabor multipliers

We address the reader to [66, 122] for more about Gabor multipliers.

Definition 2.7.8. Let α, β > 0 and consider the lattice Λ = αZd × βZd, then the Gabor
multiplier with windows g1, g2 ∈ L2(Rd) and symbol a can formally be defined as

(2.196) Gg1,g2
a f :=

∑
k,n∈Z2d

a(αk, βn)Vg1
f(αk, βn)TαkMβng2, ∀f ∈ L2(Rd),

Observe that a Gabor multiplier is the discrete version of a localization operator; in fact it
can be obtained from (2.192) by replacing the Lebesgue measure dxdω with the discrete measure
ν =

∑
k,n∈Zd δαk,βn; the integration with respect to ν becomes the summation∫

R2d

F (x, ω)dν(x, ω) =
∑

k,n∈Zd
F (αk, βn).

Note that this is a particular instance of a continuous frame multiplier, a (discrete) frame mul-
tiplier and their relation, see [2, 4, 6].

2.7.3.1 Gabor multipliers on G = ZN
Recall the identification CN ∼= `2(ZN ) (2.104).
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Definition 2.7.9. Given a rectangular lattice Λ ⊆ ZN ×ZN as in (2.138), windows g1, g2 ∈ CN ,
mask or lower symbol a ∈ CN×N , we define the (finite) Gabor multiplier applied to f ∈ CN
as follows:

(2.197) Gg1,g2

a,Λ f :=

A−1∑
k=0

B−1∑
l=0

a(αk, βl)Vg1
f(αk, βl)π(αk, βl)g2.

Whenever clear, we shall write Gg1,g2
a in place of Gg1,g2

a,Λ .

Remark 2.7.10. If we pick α = 1 = β, the the relative finite Gabor multiplier Gg1,g2
a is just the

localization operator (or STFT multiplier) Ag1,g2
a on ZN .

It is straightforward to obtain the matrix representation of Gg1,g2

a,Λ :

(2.198) K(Gg1,g2

a,Λ )(u, v) =

A−1∑
k=0

B−1∑
l=0

a(αk, βl)g1(v − αk)g2(u− αk)e
2πiβl(u−v)

N .

Let us introduce the notation

(2.199) S := Fsa,

where a ∈ CN×N is the symbol of a Gabor multiplier and Fs the discrete symplectic Fourier
transform (2.114). In [46] many results for the interrelation of spreading function and Gabor
multiplier are shown. Here we give the related finite dimensional result, like the following:

Proposition 2.7.11. ([3, Proposition 6.3]) The spreading function of a (finite) Gabor multiplier
Gg1,g2

a,Λ is given by

(2.200) η(Gg1,g2

a,Λ )(u, v) =
N

αβ

α−1∑
l=0

β−1∑
k=0

S(u+Bk, v −Al)Vg1
g2(u, v).

Proof. A direct computation gives

η(Gg1,g2

a,Λ )(u, v) =

N−1∑
t=0

K(Gg1,g2

a,Λ )(t, t− u)e
−2πitv
N

=

N−1∑
t=0

A−1∑
k=0

B−1∑
l=0

a(αk, βl)g1(t− u− αk)g2(t− αk)e
2πiβlu
N e

−2πitv
N

=

A−1∑
k=0

B−1∑
l=0

a(αk, βl)e
2πiβlu
N

×
N−1∑
t=0

g1(t− u− αk)g2(t− αk)e
−2πitv
N .(2.201)

Performing the substitution t′ = t− αk in (2.201) gives
N−1∑
t=0

g1(t− u− αk)g2(t− αk)e
−2πitv
N =

N−1∑
t′=0

g2(t′)g1(t′ − u)e
−2πi(t′+αk)v

N

=

N−1∑
t′=0

g2(t′)g1(t′ − u)e
−2πiv
N −−2πiαkv

N

= Vg1g2(u, v)e−
−2πiαkv

N .
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Hence, recalling the definition of X(α,β), Fs, F2, and using Lemma 2.3.34 together with (2.107),
we get

η(Gg1,g2

a,Λ )(u, v) =

A−1∑
k=0

B−1∑
l=0

a(αk, βl)e
2πiβlu
N e−

−2πiαkv
N Vg1

g2(u, v)

= NFs
(
a ·X(α,β)

)
(u, v)Vg1g2(u, v)

= F2

(
aT ·XT

(α,β)

)
(−u, v)Vg1

g2(u, v)

= F2

(
aT ·X(β,α)

)
(−u, v)Vg1

g2(u, v)

=
1

N2

(
F2a

T ∗ F2X(β,α)

)
(−u, v)Vg1

g2(u, v)

=
1

N

N−1∑
k=0

N−1∑
l=0

1

N
F2a

T (−u− k, v − l)F2X(β,α)(k, l)Vg1
g2(u, v)

=
1

N

N−1∑
k=0

N−1∑
l=0

Fsa(u+ k, v − l)ABX(B,A)(k, l)Vg1
g2(u, v)

=
AB

N

α−1∑
l=0

β−1∑
k=0

Fsa(u+Bk, v −Al)Vg1g2(u, v).

This concludes the proof.

We shall frequently denote the periodization of S by SBAP :

(2.202) SBAP (u, v) :=

α−1∑
l=0

β−1∑
k=0

S(u+Bk, v −Al),

the periodicity is meant in the sense that

(2.203) SBAP (u, v) = SBAP (u+Bk, v +Al)

for u, v = 0, . . . , N − 1 and k = 0, . . . , β − 1, l = 0, . . . , α− 1.
So that (2.200) can be written as

(2.204) η(Gg1,g2

a,Λ )(u, v) =
N

αβ
SBAP (u, v)Vg1

g2(u, v).

The factor N/αβ is also called redundancy. In the finite dimensional case the interpretation of
this number is straightforward, because one uses A · B to represent a vector in RN . This leads
to an oversampling of

AB

N
=
N

α

N

β

1

N
=

N

αβ
.

By using the convolution theorem for Fs, cf. (2.107) and (2.115) and see [64, Theorem 4.3], and
Lemma 2.3.34 we get

Fs
(
a ·X(α,β)

)
(u, v) =

1

αβ

α−1∑
l=0

β−1∑
k=0

S(u+Bk, v −Al).

Therefore

(2.205) SBAP (u, v) = αβ Fs
(
a ·X(α,β)

)
(u, v).
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Figure 2.1: The left part shows the (Gaussian) spectrogram of the output of an “ideal
band-pass filter” with cut-off frequency R = 80, applied to a random signal in CN , N =
480. The right hand side represents the spectrogram of the output of the corresponding
STFT multiplier Gg1,g2a . Here we use the number of samples as normalization on time
and frequency scale.

Example 2.7.12. As example, we consider a low pass filter as it is often implemented in prac-
tice. We choose the frequency response ĥ ∈ CN equal to the characteristic function, which is 1
on [−R,R] and zero elsewhere. The resulting convolution operator H is compared to the filter
generated by a Gabor multiplier Gg1,g2

a with symbol a = 1⊗ ĥ. As analysis and synthesis window
for Gg1,g2

a we choose the Gaussian window normalized by the factor 1/N , which is the redundancy
since we take α = β = 1. Both operations are applied to a random vector f0.

A graphical comparison of the LTI filter approach and of the Gabor multiplier one is shown
in Figure 2.1.

2.7.4 Opτ (σ) operators

Definition 2.7.13. Consider a tempered distribution σ ∈ S ′(R2d) and τ ∈ [0, 1]. Then the
τ-quantization Opτ (σ) of σ is the continuous mapping

Opτ (σ) : S(Rd)→ S ′(Rd)

(S ′(Rd) endowed with the w-∗ topology) defined by the formal integral as:

(2.206) Opτ (σ)f(t) :=

∫
R2d

e2πi(t−x)ωσ((1− τ)t+ τx, ω)f(x) dxdω,
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or defined weakly by

(2.207) 〈Opτ (σ)f, g〉 = 〈σ,Wτ (g, f)〉, ∀f, g,∈ S(Rd),

where 〈·,·〉 in the left-hand side is the sesquilinear duality between S ′(Rd) and S(Rd) and in the
right-hand side between S ′(R2d) and S(R2d).

Naturally, σ is the τ -symbol of the operator Opτ (σ), see Definition 2.3.21. When τ = 0,
we call Op0(σ) the Kohn-Nirenberg quantization of σ and σ is called Kohn-Nirenberg
symbol of Op0(σ).
When τ = 1/2, we call Op1/2(σ) Weyl transform (or quantization) of σ, the distribution σ
is called then Weyl symbol of the operator. For Weyl operators we adopt also the following
alternative notation:

Lσ := Op1/2(σ).

Remark 2.7.14. Opτ (σ) is well defined as mapping Opτ (σ) : S(Rd)→ S ′(Rd). In fact, for any
f, g ∈ S(Rd) we have Wτ (g, f) ∈ S(R2d) by Lemma 2.3.17. Thus 〈σ,W (g, f)〉 makes sense since
σ ∈ S ′(R2d). The linearity of Opτ (σ) follows immediately from the weak definition of Opτ (σ)
because of the relation between Wigner distribution and STFT, Lemma 2.3.18. Then Wτ (g, ·)
is antilinear and 〈σ,Wτ (g, ·)〉 is linear since 〈·,·〉 is the sesquilinear duality between S ′(R2d) and
S(R2d).

Remark 2.7.15. (i) The Schwartz Kernel Theorem, stated for S(Rd) and S ′(Rd) as in [82,
Theorem 14.3.4], implies that if T : S(Rd) → S ′(Rd) is a continuous operator (where
S ′(Rd) is endowed with the w-∗ topology), then there exists σ ∈ S ′(R2d) such that

T = Lσ.

See in particular [82, Theorem 14.3.5];

(ii) It is always possible to write Lσ as the τ -quantization of some symbol στ , τ 6= 1/2. In
fact, we have from [35, (4.37) and (4.38)] that

(2.208) Lσ = Opτ (στ ) ⇔ στ =
2d

|1− 2d|d
e−πi(1−2τ)xω ∗ σ(x, ω).

Hence the Schwartz Kernel Theorem can be expressed in term of any τ -quantization, τ ∈
[0, 1]. Namely, given T : S(Rd) → S ′(Rd) linear and continuos and τ ∈ [0, 1], then there
exists στ ∈ S ′(R2d) such that

T = Opτ (στ ).

This fact has been reported in Theorem 2.3.20.

As highlighted in Remark 2.7.3, Aψ1,ψ2
a is continuous from S(Rd) to S ′(Rd) whenever a ∈

S ′(R2d) and ψ1, ψ2 ∈ S(Rd). Hence there exists σ ∈ S ′(R2d) such that Aψ1,ψ2
a = Lσ. A

calculation in [17, 68, 125] reveals that the Weyl symbol associated to Aψ1,ψ2
a is

(2.209) σ = a ∗W (ψ2, ψ1),

then

(2.210) Aψ1,ψ2
a = La∗W (ψ2,ψ1).

In [11, Proposition 2.16], in the Gelfand-Shilov setting, every τ -symbol of Aψ1,ψ2
a was explicitly

calculated. We state the following result without proof since the one of subsequent Proposition
2.8.16 applies almost verbatim.
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Proposition 2.7.16. Consider a ∈ S ′(R2d), ψ1, ψ2 ∈ S(Rd) and τ ∈ [0, 1]. Then

Aψ1,ψ2
a = Opτ (a ∗Wτ (ψ2, ψ1)).

The crucial relation between the action of any τ -quantization Opτ (σ) on time-frequency
shifts and the short-time Fourier transform of its symbol is contained in [32, Lemma 4.1].

Lemma 2.7.17. Consider τ ∈ [0, 1], g ∈ S(Rd), Φτ := Wτ (g, g) ∈ S(R2d). If σ ∈ S ′(R2d), then

(2.211) |〈Opτ (σ)π(z)g, π(w)g〉| = |VΦτσ (Tτ (w, z), J(w − z))| , ∀ z, w ∈ R2d,

where z = (z1, z2), w = (w1, w2) ∈ R2d and Tτ and J are defined as follows:

(2.212) Tτ (w, z) := ((1− τ)w1 + τz1, τw2 + (1− τ)z2) , J(z) := (z2,−z1).

Notice that J = −J in the case G = Rd, J defied as in (2.98). The following lemma can be
viewed as a form of the inversion formula (2.74). We present the proof later for the same result
stated in the Gelfand-Shilov setting, as was published in [11, Lemma 3.2].

Lemma 2.7.18. Let τ ∈ [0, 1] and σ ∈ S ′(R2d). If g ∈ S(Rd) with ‖g‖L2 = 1 and f ∈ S(Rd),
then

(2.213) Opτ (σ)f =

∫
R2d

Vgf(z) Opτ (σ)(π(z)g) dz,

in the sense that

〈Opτ (σ)f, ϕ〉 =

∫
R2d

Vgf(z) 〈Opτ (σ)(π(z)g), ϕ〉 dz, ∀ϕ ∈ S(Rd).

We first recall Schatten class results for the Weyl calculus in terms of modulation spaces,
initially proved for 1 ≤ p ≤ ∞ in [17, Theorem 4.5], for 0 < p < 1 we refer to [142, Theorem 3.4].

Theorem 2.7.19. If the Weyl symbol σ ∈ Mp,1(R2d) for some 0 < p < ∞, then the operator
Lσ belongs to the Schatten class J p with

‖Lσ‖J p ≤ ‖σ‖Mp,1 .

In particular, Lσ is a compact operator on L2(Rd).

2.7.5 Born-Jordan operators

We suggest [26, 40] to the interested reader.

Definition 2.7.20. Let f, g ∈ S(Rd). We call Born-Jordan distribution of f and g the
function given by

(2.214) WBJ(f, g) :=

∫ 1

0

Wτ (f, g) dτ.

The Born-Jordan operator with symbol σ ∈ S ′(Rd) is then defined as

(2.215) 〈OpBJ(σ)f, g〉 := 〈σ,WBJ(g, f)〉, ∀f, g ∈ S(Rd).
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2.7.6 Pseudo-differential operators on G LCA group

Definition 2.7.21. Let σ ∈ S ′0(G × Ĝ). Then the pseudo-differential operator with Kohn-
Nirenberg symbol σ is the linear and continuous operator

Op0(σ) : S0(G)→ S ′0(G)

defined by the formal integral

(2.216) Op0(σ)f(x) =

∫
Ĝ
σ(x, ξ)f̂(ξ)〈ξ, x〉 dξ, ∀x ∈ G.

Equivalently, we can define it weakly by

(2.217) 〈Op0(σ)f, g〉 = 〈σ,R(g, f)〉, ∀f, g ∈ S0(G),

where 〈·,·〉 = S′0〈·,·〉S0
and R(g, f) is the cross-Rihaczek distribution of f and g as in (2.96).

To see that Op0(σ) in the above definition is actually well-defined, linear and continuous
from S0(G) into S ′0(G) see, e.g., [101, Corollary 4.2, Theorem 5.3].

2.7.7 Fourier multiplier
Fourier multipliers [13] are well known in both partial differential equations and signal analysis.
They can be viewed as a special instance of Kohn-Nirenberg operators with symbol which depends
only on the frequency variables ω ∈ Rd.
Definition 2.7.22. Let m ∈ S ′(Rd). The Fourier multiplier with multiplier m ∈ S ′(Rd) is
the linear and continuous operator

Tm : S(Rd)→ S ′(Rd)

defined by

(2.218) Tmf(t) := F−1(mFf)(t) =
(
F−1m ∗ f

)
(t), ∀f ∈ S(Rd).

The function

(2.219) h = F−1m

is called the impulse response or transfer function in signal processing [116].
Such operator is a well-defined linear mapping from S(Rd) to S ′(Rd). Boundedness properties
of Fourier multipliers Tm : Lp(Rd) → Lq(Rd) are studied in the classical paper by Hörmander
[98]. The most important examples of Fourier multipliers can be obtained by taking p = q = 2.
Then Tm is bounded if and only if the multiplier m ∈ L∞(Rd) and ‖Tm‖B(L2) = ‖m‖L∞ . For
p = q = 1 and p = q = ∞ the only bounded Fourier multipliers are Fourier transforms of
bounded measures. For the cases p = q ∈ (1,∞)r{2} only sufficient conditions on m are known.
The assumptions m ∈ L∞ is necessary, though. The main result by Hörmander in [98, Theorem
1.11] (see also its generalization to locally compact groups [1]) states:

Theorem 2.7.23. If 1 < p ≤ 2 ≤ q <∞, m ∈ Lr,∞(Rd) with

(2.220) 1/q = 1/r + 1/p,

then Tm is bounded Tm : Lp(Rd)→ Lq(Rd).
Here Lr,∞(Rd) is the weak Lr-space, see (2.189). For example, every m on Rd with |m(ω)| ≤

C|ω|−d/r, C > 0, satisfies m ∈ Lr,∞(Rd). For simplicity, we defined L∞,∞(Rd) := L∞(Rd), so
that, inserting r =∞ in Theorem 2.7.23 we recapture the boundedness of the multiplier Tm on
L2(Rd).
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2.7.8 Linear time invariant filters on G = ZN
Here we apply the identification CN ∼= `2(ZN ), see (2.104). In the finite discrete setting, i.e.
G = ZN , Fourier multiplier are also named linear time invariant (LTI) filters [115].

Definition 2.7.24. A Fourier multiplier on ZN , or linear time invariant (LTI) filter on
CN , or convolution operator

H : CN → CN

is the linear operator uniquely determined by the so called impulse response h ∈ CN via
circular convolution

(2.221) Hf(u) := h ∗ f(u) :=

N−1∑
k=0

h(u− k)f(k), ∀f ∈ CN , u = 0, . . . , N − 1,

where u− k is considered modulus N .

Clearly, h = Hδ where δ is as in (2.108) and

Hf(u) = h ∗ f(u) =
(
F−1
N FNh ∗ F

−1
N FNf

)
(u) = F−1

N

(
ĥ · f̂

)
(u),

see (2.219), ĥ is also called frequency response. It is straight forward to see that a LTI filter
H on CN has matrix representation

(2.222) KH(u, v) = h(u− v), u, v = 0, . . . , N − 1.

We can define the associated discrete spreading function ηH ∈ CN×N as

(2.223) ηH(u, v) = h⊗ δ(u, v).

2.8 Gelfand-Shilov setting
We now revisit sections 2.3, 2.5 and 2.7 in the framework of Gelfand-Shilov spaces Sγτ (Rd) and
Σγτ (Rd). For some references about the Gelfand-Shilov setting we address, e.g. to [76, 118, 141,
143]. We introduce the Gelfand-Shilov spaces, then define the STFT for ultra-distributions and
give the definition of ultra-modulation spaces, eventually localization and τ -pseudo-differential
operators are shown in the present setting.

In this section, we drop Assumptions 2.5.1 about polynomial growth of the weights involved.
In fact, we shall consider the weights wγk defined in (2.9).

Proposition 2.8.13 was published by N. Teofanov and the author in [11], it extends the
convolutions for modulation spaces presented in Proposition 2.5.19, [9]. Also Lemma 2.8.15 and
Proposition 2.8.16 appeared for the first time in [11].

2.8.1 Ggelfand-Shilov spaces and their duals
Let h, γ, τ > 0 be fixed. Then Sγτ ;h(Rd) is the Banach space of all f ∈ C∞(Rd) such that

(2.224) ‖f‖Sγτ;h
:= sup

p,q∈Nd0
sup
x∈Rd

|xp∂qf(x)|
h|p|+|q||p|!τ |q|!γ

< +∞,

endowed with the norm (2.224).
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Definition 2.8.1. Let γ, τ > 0. The Gelfand-Shilov spaces Sγτ (Rd) and Σγτ (Rd) are defined
as unions and intersections of Sγτ ;h(Rd) with respective inductive and projective limit topologies:

Sγτ (Rd) :=
⋃
h>0

Sγτ ;h(Rd) and Σγτ (Rd) :=
⋂
h>0

Sγτ ;h(Rd).

Note that Σγτ (Rd) 6= {0} if and only if τ + γ ≥ 1 and (τ, γ) 6= (1/2, 1/2), and Sγτ (Rd) 6= {0}
if and only if τ + γ ≥ 1, see [76, 118]. For every τ, γ, ε > 0 we have

(2.225) Σγτ (Rd) ↪→ Sγτ (Rd) ↪→ Σγ+ε
τ+ε(Rd) ↪→ S(Rd).

If τ+γ ≥ 1, then the last two inclusions in (2.225) are dense, and if in addition (τ, γ) 6= (1/2, 1/2)
then the first inclusion in (2.225) is dense. Moreover, for γ < 1 the elements of Sγτ (Rd) can be
extended to entire functions on Cd satisfying suitable exponential bounds, [76].
In the sequel we will also use the following notations:

S(γ)(Rd) := Σγγ(Rd), S{γ}(Rd) := Sγγ (Rd) and S∗(Rd),

where ∗ stands for (γ) or {γ}.

Definition 2.8.2. The Gelfand-Shilov distribution spaces (Sγτ )′(Rd) and (Σγτ )′(Rd) are the
projective and inductive limit respectively of (Sγτ ;h)′(Rd), the topological dual of Sγτ ;h(Rd):

(Sγτ )′(Rd) :=
⋂
h>0

(Sγτ ;h)′(Rd) and (Σγτ )′(Rd) :=
⋃
h>0

(Sγτ ;h)′(Rd).

It follows that S ′(Rd) ↪→ (Sγτ )′(Rd) when τ + γ ≥ 1, and if in addition (τ, γ) 6= (1/2, 1/2),
then (Sγτ )′(Rd) ↪→ (Σγτ )′(Rd).

The Gelfand-Shilov spaces enjoy beautiful symmetric characterizations which also involve
the Fourier transform of their elements. The following result has been reinvented several times,
in similar or analogous terms, see [22, 89, 102, 114].

Theorem 2.8.3. Let γ, τ ≥ 1/2. The following conditions are equivalent:

(i) f ∈ Sγτ (Rd) (resp. f ∈ Σγτ (Rd));

(ii) There exist (resp. for every) constants A,B > 0 such that

‖xpf(x)‖L∞ . A|p||p|!τ and ‖ωq f̂(ω)‖L∞ . B|q||q|!γ , ∀ p, q ∈ Nd0;

(iii) There exist (resp. for every) constants A,B > 0 such that

‖xpf(x)‖L∞ . A|p||p|!τ and ‖∂qf(x)‖L∞ . B|q||q|!γ , ∀ p, q ∈ Nd0;

(iv) There exist (resp. for every) constants h, k > 0 such that

‖f(x)eh|x|
1/τ

‖L∞ < +∞ and ‖f̂(ω)ek|ω|
1/γ

‖L∞ < +∞;

(v) There exist (resp. for every) constants h,B > 0 such that

(2.226) ‖(∂qf)(x)eh|x|
1/τ

‖L∞ . B|q||q|!γ , ∀ q ∈ Nd0.
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Moreover, we could consider any Lp-norm, 1 ≤ p <∞ instead of L∞-norm in Theorem 2.8.3,
cf. [102].

By using Theorem 2.8.3 it can be shown that the Fourier transform is a topological isomor-
phism between Sγτ (Rd) and Sτγ (Rd), γ, τ ≥ 1/2

(F(Sγτ )(Rd) = Sτγ (Rd)), which extends to a continuous linear transform from (Sγτ )′(Rd) onto
(Sτγ )′(Rd). Similar considerations hold for partial Fourier transforms with respect to some choice
of variables. In particular, if γ = τ and γ ≥ 1/2 then F(Sγγ )(Rd) = Sγγ (Rd), and if moreover
γ > 1/2, then F(Σγγ)(Rd) = Σγγ(Rd), and similarly for their distribution spaces. Due to this fact,
corresponding dual spaces are referred to as tempered ultra-distributions (of Roumieu and
Beurling type respectively), see [118].

The combination of global regularity with suitable decay properties at infinity (cf. (2.226))
which is built in the very definition of Sγτ (Rd) and Σγτ (Rd), makes them suitable for the study of
different problems in mathematical physics, [76, 80, 114]. We refer to [33, 34, 134, 135] for the
study of localization operators in the context of Gelfand-Shilov spaces. See also [139, 142, 143]
for related studies.

2.8.2 Time-frequency distribution and operators
As done for the framework of the Schwartz class S(Rd) and its dual S ′(Rd) in Section 2.3, we
can defined the STFT of f ∈ S(1)′(Rd) w.r.t. g ∈ S(1)(Rd):

Vgf(x, ω) := 〈f, π(x, ω)g〉, x, ω ∈ Rd,

where the dual pair 〈·,·〉 is the one between S(1)′(Rd) and S(1)(Rd). Since S(1)(Rd) ⊆ L2(Rd), the
definition of Wτ (f, g) makes sense for f, g ∈ S(1)(Rd) too. In particular we recall the following
results.

Lemma 2.8.4. Let g ∈ S(1)(Rd) r {0} and f ∈ S(1)(Rd).

(i) If τ ∈ (0, 1), then

(2.227) Wτ (f, g)(x, ω) =
1

τd
e2πi 1

τ ωxVAτgf

(
1

1− τ
x,

1

τ
ω

)
, ∀ (x, ω) ∈ R2d;

(ii) if τ = 0, then

W0(f, g)(x, ω) = e−2πixωf(x)ĝ(ω) = R(f, g)(x, ω), ∀ (x, ω) ∈ R2d;

(iii) if τ = 1, then

W1(f, g)(x, ω) = e2πixωg(x)f̂(ω) = R(g, f)(x, ω), ∀ (x, ω) ∈ R2d.

Theorem 2.8.5. Let S∗(Rd) denote S{γ}(Rd), γ ≥ 1/2, or S(γ)(Rd), γ > 1/2. Moreover, let
g ∈ S∗(Rd) r {0} and τ ∈ [0, 1]. Then the following are true:

(i) if f ∈ S∗(Rd), then Wτ (f, g), Vgf ∈ S∗(R2d);

(ii) if f ∈ (S∗)′(Rd) and Wτ (f, g) ∈ S∗(R2d) or Vgf ∈ S∗(R2d), then f ∈ S∗(Rd).

Proof. The proof for the STFT and W1/2 can be found in several sources, see e.g. [89, 132, 139].
The case τ ∈ [0, 1], τ 6= 1/2, can be proved in a similar fashion and is left for the reader as an
exercise.
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2.8.3 Ultra-modulation spaces
We use the terminology ultra-modulation spaces in order to emphasize that such spaces may
contain ultra-distributions, contrary to the most usual situation when members of modulation
spaces are tempered distributions. However, ultra-modulation spaces belong to the family of
modulation spaces introduced in [56]. We refer to e.g. [141, 143] for a general approach to the
broad class of modulation spaces.
Recall that the weight class PE(R2d) was introduced in Subsubsection 2.2.1.1.

Definition 2.8.6. Fix a non-zero window g ∈ S(1)(Rd), a weight m ∈ PE(R2d) and 0 <
p, q ≤ ∞. The ultra-modulation space Mp,q

m (Rd) consists of all tempered ultra-distributions
f ∈ S(1)′(Rd) such that the quasi-norm

(2.228) ‖f‖Mp,q
m

:= ‖Vgf‖Lp,qm =

(∫
Rd

(∫
Rd
|Vgf(x, ω)|pm(x, ω)pdx

) q
p

dω

) 1
q

(obvious modifications with p =∞ or q =∞) is finite.

We collect properties for ultra-modulation spaces them in the following theorem in the same
manner of [141, 142], see references therein also.

Theorem 2.8.7. Consider 0 < p, p1, p2, q, q1, q2 ≤ ∞ and weights m,m1,m2 ∈ PE(R2d). Let
‖·‖Mp,q

m
be given by (2.228) for a fixed g ∈ S(1)(Rd) r {0}. Then:

(i)
(
Mp,q
m (Rd), ‖·‖Mp,q

m

)
is a quasi-Banach, if p, q ≥ 1 it is a Banach space too;

(ii) if g̃ ∈ S(1)(Rd) r {0}, g̃ 6= g, then it induces a quasi-norm equivalent to ‖·‖Mp,q
m

;

(iii) if p1 ≤ p2, q1 ≤ q2 and m2 . m1, then:

S(1)(Rd) ↪→Mp1,q1
m1

(Rd) ↪→Mp2,q2
m2

(Rd) ↪→ S(1)′(Rd);

(iv) if p, q <∞, then : (
Mp,q
m (Rd)

)′ ∼= Mp′,q′

1/m (Rd),

where

p′ :=

{
∞ if 0 < p ≤ 1
p
p−1 if 1 < p <∞

and similarly for q′.

Remark 2.8.8. Point (ii) of the previous theorem tell us that the definition of Mp,q
m (Rd) is

independent of the choice of the window. Moreover, it can be shown that the class for win-
dow functions can be extended from S(1)(Rd) to Mr

v (Rd), where r ≤ p, q and v ∈ PE(R2d) is
submultiplicative and such that m is v-moderate, [142].

We refer to [23] for the density of S(1)(Rd) in Mp,q
m (Rd).

The following proposition is proved in e.g. [133, Theorem 4.1], [139, Theorem 3.9].

Proposition 2.8.9. Consider γ ≥ 1 and 0 < p, q ≤ ∞. Then

S(γ)(Rd) =
⋂
k≥0

Mp,q
wγk

(Rd), S(γ)′(Rd) =
⋃
k≥0

Mp,q
1/wγk

(Rd).
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In some situations it is convenient to consider ultra-modulation spaces as subspaces of
S{1/2}′(Rd) (taking the window g in S{1/2}(Rd)), see for example [23, 142]. However, for our
purposes it is sufficient to consider the weights in PE(R2d), and then Mp,q

m (Rd) is a subspace of
S(1)′(Rd). We address the reader to [142, Proposition 1.1] and references quoted there for more
details.

We restate [33, Proposition 2.6] in a simplified case suitable to our purposes.

Proposition 2.8.10. Assume 1 ≤ p, q ≤ ∞, m ∈PE(R2d) and g ∈ S(1)(Rd) such that ‖g‖L2 =
1. Then for every f ∈Mp,q

m (Rd) the following inversion formula holds true:

(2.229) f =

∫
R2d

Vgf(x, ω)MωTxg dxdω,

where the equality holds in Mp,q
m (Rd).

The embeddings between modulation spaces are studied by many authors. We recall the
recent contribution [90, Theorem 4.11], which is convenient for our purposes and which will be
used in Lemma 3.3.3.

Theorem 2.8.11. Let 0 < pj , qj ≤ ∞, sj , tj ∈ R for j = 1, 2 and consider the polynomial
weights vtj , vsj defined as in (2.7). Then

Mp1,q1
vt1⊗vs1

(Rd) ↪→Mp2,q2
vt2⊗vs2

(Rd)

if the following two conditions hold true:

(i) (p1, p2, t1, t2) satisfies one of the following conditions:

(C1)
1

p2
≤ 1

p1
, t2 ≤ t1,

(C2)
1

p2
>

1

p1
,

1

p2
+
t2
d
<

1

p1
+
t1
d

;

(ii) (q1, q2, s1, s2) satisfies one of the conditions (C1) or (C2) with pj and tj replaced by qj and
sj respectively.

Discrete equivalent norms produced by means of Gabor frames make of ultra-modulation
spaces a natural framework for time-frequency analysis. We address the reader to [75, 82, 141,
142].

Theorem 2.8.12. Consider m, v ∈ PE(R2d) such that v is submultiplicative and m is v-
moderate. Take Λ := αZd × βZd, for some α, β > 0, and g, h ∈ S(1)(Rd) such that Sg,h = I on
L2(Rd). Then

f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)h =
∑
λ∈Λ

〈f, π(λ)h〉π(λ)g, ∀ f ∈Mp,q
m (Rd),

with unconditional convergence in Mp,q
m (Rd) if 0 < p, q < ∞ and with weak-∗ convergence in

M∞1/v(R
d) otherwise. Moreover, there exist 0 < A ≤ B such that, for every f ∈Mp,q

m (Rd),

A‖f‖Mp,q
m
≤

∑
n∈Zd

∑
k∈Zd

|〈f, π(αk, βn)g〉|pm(αk, βn)p


q
p


1
q

≤ B‖f‖Mp,q
m
,
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independently of p, q, and m. Equivalently:

(2.230) ‖f‖Mp,q
m (Rd) � ‖(〈f, π(λ)g〉)λ‖`p,qm (Λ) = ‖(Vgf(λ))λ‖`p,qm (Λ).

Similar inequalities hold with g replaced by h.

Now we are able to prove the convolution relations for ultra-modulations spaces which will
be used to prove the main results of Section 3.3 in Chapter 3. For the Banach cases with weight
of at most polynomial growth at infinity, convolution relations were studied in e.g [28, 136, 137].
We modify the technique used in [9] to the Gelfand-Shilov framework presented so far. The
essential tool is the equivalence between continuous and discrete norm (2.230).

Proposition 2.8.13. ([11, Proposition 2.24]) Let there be given 0 < p, q, r, t, u, γ ≤ ∞ such that

1

u
+

1

t
=

1

γ
,

and
1

p
+

1

q
= 1 +

1

r
, for 1 ≤ r ≤ ∞

whereas
p = q = r, for 0 < r < 1.

Consider m, v, ν ∈PE(R2d) such that m is v-moderate. Then

Mp,u
m1⊗ν(Rd) ∗Mq,t

v1⊗v2ν−1(Rd) ↪→Mr,γ
m (Rd),

where m1, v1, v2 are defined as in (2.10).

Proof. First observe that due to Lemma 2.2.11 and Lemma 2.2.12 it follows that the ultra-
modulation spaces which came into play are well defined.

The main tool is the idea contained in [28, Proposition 2.4]. We take the ultra-modulation
norm with respect to the Gaussian windows g0(x) := e−πx

2 ∈ S{1/2}(Rd) and g(x) := 2−d/2e−πx
2/2 =

(g0 ∗ g0)(x) ∈ S{1/2}(Rd).
Since the involution operator g∗(x) = g(−x) and the modulation operator Mω commute, by

a direct computation we have

Mω(g∗0 ∗ g∗0) = Mωg
∗
0 ∗Mωg

∗
0

and
Vgf(x, ω) = e−2πixω(f ∗Mωg

∗)(x).

Thus, by using the associativity and commutativity of the convolution product, we obtain

Vg(f ∗ h)(x, ω) = e−2πixω
(
(f ∗ h) ∗Mωg

∗)(x) = e−2πixω
(
(f ∗Mωg

∗
0) ∗ (h ∗Mωg

∗
0)
)
(x) .

We use the norm equivalence (2.230) for a suitable Λ = αZd×βZd, and then the v-moderateness
in order to majorize m:

m(αk, βn) . m(αk, 0)v(0, βn) = m1(αk)v2(βn).

Eventually Young’s convolution inequality for sequences is used in the k-variable and Hölder’s
one in the n-variable. Indeed both inequalities can be used since p, q, r, γ, t, u fulfil the assump-
tions of the proposition. We write in details the case when r, γ, t, u <∞ and leave to the reader
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the remaining cases, when one among the indices r, γ, t, u is equal to ∞, which can be done
analogously.

‖f ∗ h‖Mr,γ
m
� ‖((Vg(f ∗ h))(αk, βn)m(αk, βn))k,n‖`r,γ(Z2d)

.

∑
n∈Zd

∑
k∈Zd

|(f ∗Mβng
∗
0) ∗ (h ∗Mβng

∗
0)(αk)|rm1(αk)r

γ/r

v2(βn)γ


1/γ

=

∑
n∈Zd

‖(f ∗Mβng
∗
0) ∗ (h ∗Mβng

∗
0)‖γ

`rm1
(αZd)

v2(βn)γ

1/γ

.

∑
n∈Zd

‖f ∗Mβng
∗
0‖
γ
`pm1

(αZd)
‖h ∗Mβng

∗
0‖
γ
`qv1 (αZd)

v2(βn)γ

1/γ

.

∑
n∈Zd
‖f ∗Mβng

∗
0‖u`pm1

(αZd)ν(βn)u

 1
u
∑
n∈Zd
‖h ∗Mβng

∗
0‖t`qv1 (αZd)

v2(βn)t

ν(βn)t

 1
t

= ‖((Vg0f)(λ))λ‖`p,um1⊗ν
(Λ) ‖((Vg0h)(λ))λ‖`q,t

v1⊗v2ν−1 (Λ)

� ‖f‖Mp,u
m1⊗ν

‖h‖Mq,t

v1⊗v2ν−1
.

Here we wrote m1 ⊗ ν in place of (m1 ⊗ ν)Λ, similarly for the other weights appearing in the
lower indexes.This concludes the proof.

2.8.4 Localization operators and τ-quantization
Localization operators Aψ1,ψ2

a and τ -pseudo-differential operators Opτ (σ) can be defined also
in the setting of Gelfand-Shilov spaces. Namely, in the definition given in (2.193) and (2.207)
substitute the dual pair (S ′,S) with (S(1)′ ,S(1)).
The proof of the following lemma is omitted, since it follows by a slight modification of the proof
of [32, Lemma 4.1].

Lemma 2.8.14. Consider τ ∈ [0, 1], g ∈ S(1)(Rd), Φτ := Wτ (g, g) ∈ S(1)(R2d). If σ ∈
S(1)′(R2d), then

(2.231) |〈Opτ (σ)π(z)g, π(w)g〉| = |VΦτσ (Tτ (w, z), J(w − z))| , ∀ z, w ∈ R2d,

where z = (z1, z2), w = (w1, w2) ∈ R2d and Tτ and J are defined as in (2.212).

The following lemma can be viewed as a form of the inversion formula (2.229).

Lemma 2.8.15. ([11, Lemma 3.2]) Let τ ∈ [0, 1] and σ ∈ S(1)′(R2d). If g ∈ S(1)(Rd) with
‖g‖L2 = 1 and f ∈ S(1)(Rd), then

(2.232) Opτ (σ)f =

∫
R2d

Vgf(z) Opτ (σ)(π(z)g) dz,

in the sense that

〈Opτ (σ)f, ϕ〉 =

∫
R2d

Vgf(z) 〈Opτ (σ)(π(z)g), ϕ〉 dz, ∀ϕ ∈ S(1)(Rd).
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Proof. Consider τ ∈ (0, 1) and recast the τ -Winger distribution Wτ (ϕ, f) using the operator
Aτf(t) = f

(
τ−1
τ t
)
introduced in (2.83):

Wτ (ϕ, f)(x, ω) =
1

τd
e2πi 1

τ ωxVAτfϕ

(
1

1− τ
x,

1

τ
ω

)
=

1

τd
e2πi 1

τ ωx〈ϕ,M 1
τ ω
T 1

1−τ x
Aτf〉

=
1

τd
e2πi 1

τ ωx〈
(

τ

1− τ

)d
A1−τT− 1

1−τ x
M− 1

τ ω
ϕ, f〉

=
1

τd
e2πi 1

τ ωx

∫
R2d

Vgf(z) 〈
(

τ

1− τ

)d
A1−τT− 1

1−τ x
M− 1

τ ω
ϕ, π(z)g〉 dz

=

∫
R2d

Vgf(z)
1

τd
e2πi 1

τ ωx〈ϕ,M 1
τ ω
T 1

1−τ x
Aτπ(z)g〉 dz

=

∫
R2d

Vgf(z)
1

τd
e2πi 1

τ ωxVAτπ(z)gϕ

(
1

1− τ
x,

1

τ
ω

)
dz

=

∫
R2d

Vgf(z)Wτ (ϕ, π(z)g)(x, ω) dz.

Therefore

〈Opτ (σ)f, ϕ〉 = 〈σ,Wτ (ϕ, f)〉 = 〈σ,
∫
R2d

Vgf(z)Wτ (ϕ, π(z)g)(x, ω) dz〉

=

∫
R2d

Vgf(z) 〈σ,Wτ (ϕ, π(z)g)(x, ω)〉 dz =

∫
R2d

Vgf(z) 〈Opτ (σ)(π(z)g), ϕ〉 dz

and (2.232) holds true when τ ∈ (0, 1).
For the cases τ = 0, 1 we need the operator J defined in (2.212) and the following equalities

which come from easy computations (cf. [82]):

Vgf(x, ω) = e−2πixωVĝ f̂(ω,−x), FTx = M−xF , FMω = TωF , TxMω = e−2πixωMωTx.

Therefore (2.232) is proved for τ = 0, 1 in the following manner. We put z = (x, ω) and let
σ acts on functions of variables (y, η):

〈Op0(σ)f, ϕ〉 = 〈σ, e−2πiyηϕ(y)f̂(η)〉

= 〈σ, e−2πiyηϕ(y)

∫
R2d

Vĝ f̂(z′)π(z′)ĝ(η) dz′〉

= 〈σ,
∫
R2d

Vgf(z)e−2πiyηϕ(y)e2πixωπ(Jz)ĝ(η) dz〉

=

∫
R2d

Vgf(z)〈σ, e−2πiyηϕ(y)π̂(z)g(η)〉 dz

=

∫
R2d

Vgf(z)〈σ,W0(ϕ, π(z)g)〉 dz

=

∫
R2d

Vgf(z)〈Op0(σ)π(z)g, ϕ〉 dz.



The case τ = 1, i.e.

〈Op1(σ)f, ϕ〉 =

∫
R2d

Vgf(z)〈Op1(σ)π(z)g, ϕ〉 dz,

can be proved in the same manner. The details are left to the reader.

Proposition 2.8.16. ([11, Propositio 2.16]) Consider a ∈ S ′(R2d), ψ1, ψ2 ∈ S(Rd) and τ ∈
[0, 1]. Then

Aψ1,ψ2
a = Opτ (a ∗Wτ (ψ2, ψ1)).

Proof. For any τ ∈ [0, 1], let us define

Aψ1,ψ2
a,τ := Opτ (a ∗Wτ (ψ2, ψ1)),

where ψ1, ψ2 ∈ S(1)(Rd) and a ∈ S(1)′(R2d). We show that Aψ1,ψ2
a = Aψ1,ψ2

a,τ , for every τ ∈ [0, 1],
using the Schwartz kernel theorem for S(1)(Rd) and S(1)′(Rd). From the weak definition of Aψ1,ψ2

a

it follows that
〈Aψ1,ψ2

a f, g〉 = 〈K(Aψ1,ψ2
a ), g ⊗ f〉,

where the kernel K(Aψ1,ψ2
a ) of the operator Aψ1,ψ2

a is given by

(2.233) K(Aψ1,ψ2
a )(t, y) =

∫
R2d

a(x, ω)MωTxψ1(y)MωTxψ2(t)dxdω.

It remains to calculate the kernel ofAψ1,ψ2
a,τ . By the commutation relation TxMω = e−2πixωMωTx,

and the covariance property of τ -Wigner transform:

Wτ (TxMωf, TxMωg)(p, q) = Wτ (f, g)(p− x, q − ω),

we calculate a ∗Wτ (ϕ2, ϕ1) and obtain

a ∗Wτ (ψ2, ψ1)(p, q) =

∫
R2d

a(x, ω)Wτ (TxMωϕ2, TxMωϕ1)(p, q)dxdω

=

∫
R2d

a(x, ω)

(∫
Rd
MωTxψ2(p+ τs)MωTxψ1(p− (1− τ)s)e−2πiqsds

)
dxdω,

Now by using a suitable interpretation of the oscillatory integrals in the distributional sense, and
appropriate change of variables (cf. [135]) we get

〈Aψ1,ψ2
a,τ f, g〉 = 〈a ∗Wτ (ψ2, ψ1),Wτ (g, f)〉

=

∫
R2d

a(x, ω)

∫
R2d

( ∫
R2d

MωTxψ2(p+ τs)MωTxψ1(p− (1− τ)s)

× e−2πiq(s−r)g(p+ τr)f(p− (1− τ)r)dsdr
)
dpdqdxdω

=

∫
R2d

∫∫
R2d

a(x, ω)MωTxψ2(t)MωTxψ1(y)dxdωg(t)f(y)dtdy

= 〈K(Aψ1,ψ2
a ), g ⊗ f〉,

where K(Aψ1,ψ2
a ) is given by (2.233). By the uniqueness of the kernel we conclude that

Aψ1,ψ2
a = Aψ1,ψ2

a,τ

and the proof is finished.



Chapter 3

Eigenfunctions of localization
operators on Rd

The core of this chapter are some new results of decay and smoothness for eigenfunctions of
localization operators on modulation and ultra-modulation spaces, presented by E. Cordero, F.
Nicola and the author in [9] and by N. Teofanov and the author in [11]. The main results state
that, roughly speaking, if f ∈ L2(Rd) is an eigenfunction of Aψ1,ψ2

a with suitable symbol a, then
one of the following may occur:

f ∈
⋂
γ>0

Mγ(Rd), f ∈ S(Rd), f ∈ S(γ)(Rd),

see Theorem 3.2.1, 3.2.9 and 3.3.6, respectively.
In order to study Aψ1,ψ2

a , we investigate first Weyl operators Lσ and got results concerning
boundedness on modulation spaces and L2-eigenfunctions, this is done in Section 3.1. Section 3.2
reports the main results of [9], see in particular Theorem 3.2.1 and 3.2.9. Eventually, in Section
3.3 results of similar flavour in the Gelfand-Shilov setting are presented from [11].

We recall that the necessary backgrounds can be found in Chapter 2 and warn the reader
that in Section 3.3 of the current chapter Assumptions 2.5.1 are dropped, i.e. we shall consider
not only weights of polynomial growth but of (sub-)exponential growth as well.

3.1 Preliminary results on Weyl operators

The target of this section is Theorem 3.1.2 ([9, Theorem 3.3]) which will tell us when, according
to the symbol σ, it is possible to extend the Weyl operator Lσ to modulation spaces and which
ones are allowed. The proof presented here is independent and alternative to the one present in
[9].
We then derive some consequences about eigenfunctions for Lσ which we require only to be in
L2(Rd).

The proof of the following criterion is contained in [82, Lemma 6.2.1], it will be a useful tool
in the sequel.

Lemma 3.1.1. (Schur’s boundedness test)



94 CHAPTER 3. EIGENFUNCTIONS OF LOCALIZATION OPERATORS ON Rd

(i) Consider an infinite matrix a = (ak,n)k,n∈Z ⊆ C and 1 ≤ p ≤ ∞. Suppose that:

sup
k∈Z

∑
n∈Z
|ak,n| ≤ C1 < +∞, sup

n∈Z

∑
k∈Z
|ak,n| ≤ C2 < +∞.

The linear operator
A : `p(Z)→ `p(Z), c 7→ ((Ac)k)k∈Z,

defined by the matrix-vector multiplication

(Ac)k :=
∑
n∈Z

ak,ncn,

is well defined and bounded. Moreover the following estimate holds:

‖A‖Op ≤ C
1/p′

1 C
1/p
2 ;

(ii) Consider a measurable function K : R2d → C and 1 ≤ p ≤ ∞. Suppose that:

ess sup
x∈Rd

∫
Rd
|K(x, ω)| dω ≤ C1 < +∞, ess sup

ω∈Rd

∫
Rd
|K(x, ω)| dx ≤ C2 < +∞.

The linear operator
A : Lp(Rd)→ Lp(Rd), f 7→ Af,

defined as integral operator with kernel K by

Af(x) :=

∫
Rd
K(x, ω)f(ω) dω,

is well defined and bounded. Moreover the following estimate holds:

‖A‖Op ≤ C
1/p′

1 C
1/p
2 .

Theorem 3.1.2. ([9, Theorem 3.3])

(i) Consider 0 < p, q, γ ≤ ∞ such that

(3.1)
1

p
+

1

q
=

1

γ
.

If σ ∈Mp,min{1,γ}(R2d), then the Weyl operator

Lσ : S(Rd)→ S ′(Rd)

extends uniquely to a bounded linear operator from Mq(Rd) to Mγ(Rd);

(ii) Consider s, r ≥ 0, t ≥ r + s, and a symbol σ ∈M∞,1vs⊗vt(R
2d). Then the Weyl operator

Lσ : S(Rd)→ S ′(Rd)

extends uniquely to a bounded linear operator from M2
vr (R

d) into M2
vr+s(R

d).
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Proof. (i) Assume γ ≥ 1, then, by (3.1), p ≥ γ ≥ 1 and q ≥ γ ≥ 1. The claim was proved by Toft
in [136, Theorem 4.3]. The case γ < 1, p, q ∈ (0,∞] was again proved by Toft in [142, Theorem
3.1]. For sake of completeness we provide an alternative and independent proof.
Assume first γ ≥ 1, then, by (3.1), p ≥ γ ≥ 1 and q ≥ γ ≥ 1 and the claim was proved by Toft
in [136, Theorem 4.3].
Consider now the case γ < 1 and p, q <∞. We set

(3.2) Gµ,λ := 〈Lσ(π(λ)g), π(µ)g〉, λ, µ ∈ Λ,

where Λ = αZ2d is a lattice in R2d, g ∈ S(Rd) and 〈·,·〉 is the sesquilinear duality between S ′(Rd)
and S(Rd). Notice that, by Lemma 2.7.17 with τ = 1/2,

(3.3) |Gµ,λ| =
∣∣∣∣VΦσ

(
µ+ λ

2
, J(µ− λ)

)∣∣∣∣ , λ, µ ∈ Λ,

where Φ := Φ1/2 := W (g, g) and J(z1, z2) := (z2,−z1) for z1, z2 ∈ Rd. We want to show that the
operator defined by the matrix (Gλ,µ)λ,µ is well defined and continuous, namely:

G : `q(Λ)→ `γ(Λ), c = (cλ)λ 7→ (Gcµ)µ,

where

Gcµ :=
∑
λ∈Λ

Gµ,λcλ.

We choose the Gaussian window g(t) = 2d/4e−πt
2

, t ∈ Rd. It is a straightforward calculation
to show that the related Wigner distribution is the rescaled Gaussian Φ = W (g, g)(x, ω) =

2de−2π(x2+ω2). Now, the Gabor system G(Φ,Λ×Λ) is a frame for L2(R2d), whenever Λ = αZ2d,
for any α > 0 satisfying α2 < 1/2, as shown by M. de Gosson in [41, Proposition 10] (take
~ = 1/(4π)). Hence we choose α < 1/

√
2. Since γ < 1, from Theorem 2.2.31 we have the

continuous inclusion

`γ(Λ) ↪→ `1(Λ),

therefore for any a ∈ `γ(Λ) we have

(3.4) ‖a‖`1 . ‖a‖`γ .
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We can now compute as follows:

‖Gc‖`γ =

∑
µ∈Λ

|Gcµ|γ
 1

γ

=

∑
µ∈Λ

∣∣∣∣∣∑
λ∈Λ

Gµ,λcλ

∣∣∣∣∣
γ
 1

γ

≤

(∑
µ∈Λ

(∑
λ∈Λ

|Gµ,λ| |cλ|

)
︸ ︷︷ ︸

=‖(Gµ,λcλ)λ‖`1

γ) 1
γ

using (3.4) .

∑
µ∈Λ

(∑
λ∈Λ

|Gµ,λ|γ |cλ|γ
) 1
γ

γ
1
γ

using (3.3) =

∑
µ∈Λ

∑
λ∈Λ

∣∣∣∣VΦσ

(
λ+ µ

2
, J(µ− λ)

)∣∣∣∣γ |cλ|γ
 1

γ

=

∑
λ∈Λ

∑
µ∈Λ

∣∣∣∣VΦσ

(
λ+ µ

2
, J(µ− λ)

)∣∣∣∣γ |cλ|γ
 1

γ

=

∑
λ′∈Λ

∑
µ∈Λ

∣∣∣∣VΦσ

(
2µ+ J(λ′)

2
, λ′
)∣∣∣∣γ |cµ+J(λ′)|γ

 1
γ

(3.5)

≤

∑
λ′∈Λ

∑
µ∈Λ

∣∣∣∣VΦσ

(
2µ+ J(λ′)

2
, λ

)∣∣∣∣p


γ
p
∑
µ∈Λ

|cµ+J(λ′)|q


γ
q


1
γ

,

where: in last inequality we applied Hölder’s inequality with

1
p
γ

+
1
q
γ

= 1,

in (3.5) we set
λ′ := J(µ− λ) = J(µ)− J(λ) ∈ Λ

which implies
J(λ′) = J2(µ)− J2(λ) = −µ+ λ ⇒ λ = J(λ′) + µ.

Hence, performing the change
µ+ J(λ′) =: λ′′ ∈ Λ

in the last sum we get ‖c‖`q . Let us observe that the following inclusions occur:

Λ (
1

2
Λ,

3

2
Λ (

1

2
Λ.
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Then the change of variables

µ+ J(λ′)/2 =: µ′ ∈ Λ +
1

2
Λ =

3

2
Λ

allows us to majorize as follows

‖Gc‖`γ . ‖c‖`q

∑
λ′∈Λ

∑
µ∈Λ

∣∣∣∣VΦσ

(
2µ+ J(λ′)

2
, λ′
)∣∣∣∣p


γ
p


1
γ

= ‖c‖`q

∑
λ′∈Λ

 ∑
µ′∈ 3

2 Λ

|VΦσ (µ′, λ′)|p


γ
p


1
γ

≤ ‖c‖`q

 ∑
λ′∈ 1

2 Λ

 ∑
µ′∈ 1

2 Λ

|VΦσ (µ′, λ′) |p


γ
p


1
γ

= ‖c‖`q

 ∑
λ′∈ 1

2 Λ

 ∑
µ′∈ 1

2 Λ

|〈σ, π(µ′, λ′)Φ〉|p


γ
p


1
γ

.

We apply the the previous argument, from [41, Proposition 10] we have that G(Φ, 1
2Λ× 1

2Λ) is a
frame for L2(R2d) if an only if (α

2

)2

<
1

2
⇔ α <

√
2.

Since we chose α < 1/
√

2, G(Φ, 1
2Λ × 1

2Λ) is a frame; by assumption σ ∈ Mp,γ(R2d) and, using
the characterization in Theorem 2.5.18, this is equivalent to saying

(3.6) ‖σ‖Mp,γ �

 ∑
λ′∈ 1

2 Λ

 ∑
µ′∈ 1

2 Λ

|〈σ, π(µ′, λ′)Φ〉|p


γ
p


1
γ

.

Therefore by (3.6) we get continuity for the linear operator G :

‖Gc‖`γ . ‖c‖`q

 ∑
λ′∈ 1

2 Λ

 ∑
µ′∈ 1

2 Λ

|〈σ, π(µ′, λ′)Φ〉|p


γ
p


1
γ

. ‖c‖`q‖σ‖Mp,γ .

As shown in [86], G(g,Λ) = G(g, α, α) is a frame if α < 1 and it admits a dual window h ∈ S(Rd).
Then, thanks to Theorem 2.5.18, we can expand f ∈ S(Rd) ⊆ Mq(Rd) by means of the Gabor
atoms

f =
∑
λ∈Λ

〈f, π(λ)h〉π(λ)g

and write

(3.7) Lσf =
∑
λ∈Λ

〈f, π(λ)h〉Lσ(π(λ)g).
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Expanding now the function Lσf and using (3.7) we get

Lσf =
∑
µ∈Λ

〈Lσf, π(µ)g〉π(µ)h

=
∑
µ∈Λ

〈
∑
λ∈Λ

〈f, π(λ)h〉Lσ(π(λ)g), π(µ)g〉π(µ)h

=
∑
µ∈Λ

∑
λ∈Λ

〈f, π(λ)h〉︸ ︷︷ ︸
=Cα,αh (f)λ

〈Lσ(π(λ)g), π(µ)g〉︸ ︷︷ ︸
=Gµ,λ

π(µ)h.

Recall the continuity properties of the coefficient operator Cα,αh from Mp,q into `p,q(Λ) and
of the synthesis operator Dα,αh from `p,q(Λ) into Mp,q, 0 < p, q ≤ ∞ (Proposition 2.5.16 and
Proposition 2.5.17), then we have just shown that Lσ (considered as linear operator with dense
domain S(Rd) ⊆Mq(Rd)) can be decomposed as

Lσ = Dα,αh ◦G ◦ Cα,αh

and the following diagram is commutative:

Mq Mγ

`q `γ
?

Cα,αh

-Lσ

-G

6
Dα,αh

Since we proved the continuity of the operator G from `q into `γ , Lσ is a continuous and linear
operator with dense domain, hence it admits a unique continuous linear extension.
The cases when γ < 1 and p =∞ or q =∞ can be treated similarly.

(ii) Let g ∈ S(Rd) with ‖g‖L2 = 1 and consider f ∈ S(Rd) ⊆ M2
vr (R

d). From (2.213) with
τ = 1/2 we have

(3.8) Lσf =

∫
R2d

Vgf(z)Lσ(π(z)g) dz,

in the sense that for every ϕ ∈ S(Rd) the distribution Lσf acts as follows:

〈Lσf, ϕ〉 =

∫
R2d

Vgf(z) 〈Lσ(π(z)g), ϕ〉 dz.

We can express the STFT of the tempered distribution Lσf as

Vg(Lσf)(w) = 〈Lσf, π(w)g〉 =

∫
R2d

Vgf(z) 〈Lσπ(z)g, π(w)g〉 dz,

where w ∈ R2d. The desired result thus follows if we can prove that the map

M(σ) : L2
vr (R

2d)→ L2
vr+s(R

2d), F 7→M(σ)F

defined by

M(σ)F (w) :=

∫
R2d

F (z) 〈Lσπ(z)g, π(w)g〉 dz
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is continuous. Setting Φ = W (g, g) and using (2.211), we see that it is sufficient to prove that
the integral operator with integral kernel∣∣∣∣VΦσ

(
z + w

2
, J(w − z)

)∣∣∣∣ 〈z〉−r〈w〉r+s
is bounded on L2(R2d). This follows from Shur’s test, Lemma 3.1.1. Indeed, by assumption
σ ∈M∞,1vs⊗vt(R

2d), so that performing a change of variables∫
R2d

sup
z∈R2d

∣∣∣∣VΦσ

(
z + w

2
, J(w − z)

)∣∣∣∣ 〈z + w〉s〈w − z〉tdw < +∞;

we used sup instead of ess sup since every function involved is continuous. Thus

sup
z∈R2d

∫
R2d

∣∣∣∣VΦσ

(
z + w

2
, J(w − z)

)∣∣∣∣ 〈z + w〉s〈w − z〉t dw < +∞

and similarly

sup
w∈R2d

∫
R2d

∣∣∣∣VΦσ

(
z + w

2
, J(w − z)

)∣∣∣∣ 〈z + w〉s〈w − z〉t dz < +∞.

Hence it is sufficient to prove that for some positive constant C > 0 we have

(3.9) 〈z + w〉−s〈w − z〉−t〈z〉−r〈w〉r+s ≤ C, ∀w, z ∈ R2d.

Let us prove the estimate (3.9). Setting x = z + w, y = w − z, the inequality (3.9) can be
rephrased as

(3.10) 〈x〉−s〈y〉−t〈x− y〉−r〈x+ y〉r+s ≤ C, ∀x, y ∈ R2d.

For |x| < 2|y|, observe that |x + y| < 3|y| and since t ≥ r + s we get the estimate (3.10). For
|x| ≥ 2|y|, we use 〈x+ y〉 � 〈x− y〉 � 〈x〉 and (3.10) immediately follows.

The following corollary is a easy consequence due to Proposition 2.5.13. We recall that a
description of the Shubin-Sobolev spaces Qs is given in (2.148).

Corollary 3.1.3. ([9, Corollary 3.4])
If s, r ≥ 0, t ≥ r + s, and the symbol σ ∈M∞,1vs⊗vt(R

2d), then the pseudo-differential operator Lσ
extends uniquely to a bounded operator from Qr(Rd) into Qr+s(Rd) .

An application of the previous theorem concerns the study of eigenfunctions’ properties for
Weyl operators.

Proposition 3.1.4. ([9, Proposition 3.5])
Consider a Weyl symbol σ ∈ Mp,γ for some 0 < p < ∞ and every γ > 0. Any eigenfunction
f ∈ L2(Rd) of Lσ is in ∩γ>0M

γ(Rd).

Proof. We use Theorem 3.1.2 with q = 2: if the symbol σ is in Mp,γ(R2d), for every γ > 0, then
the Weyl operator acts continuously from M2(Rd) into Mγ1(Rd), where γ1 is such that

1

p
+

1

2
=

1

γ1
.
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Since p <∞, we have
1/γ1 = 1/p+ 1/2 > 0 + 1/2⇒ 0 < γ1 < 2.

Since σ ∈ Mp,min{1,γ1}(R2d), by Theorem 3.1.2 part (i) Lσ admits a unique continuous linear
extension

Lσ : M2(Rd) = L2(Rd)→Mγ1(Rd).

If f ∈M2(Rd) = L2(Rd) is an eigenfunction of Lσ with eigenvalue λ 6= 0, we have

f =
1

λ
Lσf ∈Mγ1(Rd).

Starting with f ∈Mγ1(Rd), we repeat the same argument, obtaining that the eigenfunction f is
in the smaller modulation space Mγ2(Rd), with γ2 solution of

1

p
+

1

γ1
=

1

γ2
.

We observe that 0 < γ2 < γ1 since p < ∞. Indeed since σ ∈ Mp,min{1,γ2}(R2d), by Theorem
3.1.2 part (i) Lσ admits a unique continuous linear extension

Lσ : Mγ1(Rd)→Mγ2(Rd).

If f ∈Mγ1(Rd) is an eigenfunction of Lσ with eigenvalue λ 6= 0, we have

f =
1

λ
Lσf ∈Mγ2(Rd).

Continuing this way we construct a decreasing sequence of indices γn > 0 which explicit expres-
sion is

γn =
2

2n/p+ 1
, n ∈ N0.

The proof is a simple induction argument which is left to the reader. Hence

f ∈
⋂
n∈N0

Mγn(Rd).

Moreover limn→∞ γn = 0 and the claim follows from the inclusion relations for modulation spaces
Theorem 2.5.6.

A boot-strap argument similar to the previous one allows us to prove the following regularity
result for L2-eigenfunctions of Weyl operators.

Proposition 3.1.5. ([9, Proposition 3.6])
Consider a Weyl symbol σ ∈ M∞,1vs⊗vt(R

2d) for some s > 0 and every t > 0. Any eigenfunction
f ∈ L2(Rd) of Lσ is in S(Rd).

Proof. We use Theorem 3.1.2 part (ii) with r = 0. If the symbol σ is in M∞,1vs⊗vt(R
2d), for some

s > 0 and every t > 0, then the Weyl operator Lσ acts continuously fromM2
v0

(Rd) = L2(Rd) into
M2
vs(R

d). Starting now with the eigenfunction f in M2
vs(R

d) and repeating the same argument
with t ≥ s we obtain that the eigenfunction is in M2

vs+s(R
d). Proceeding this way we infer that

f ∈ ∩n∈N0
M2
vns(R

d). The inclusion relations for modulation spaces and the property

∩r>0M
2
vr (R

d) = S(Rd),

see (vi) Proposition 2.5.13, prove the claim.
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3.2 Decay and smoothness results
Eventually we state and prove the main results about decay and smoothness for eigenfunctions
of localization operators which are supposed to be in L2(Rd). The essential meaning of the
main decay’s statement, Theorem 3.2.1 ([9, Theorem 3.7]), will be made explicit via Parseval
Gabor frames. We present regularity properties for L2-eigenfunctions of some Aψ1,ψ2

a which is a
simple consequence of Proposition 3.1.5. Eventually we tackle the case of Aψ1,ψ2

a with symbol in
Lqm(R2d), 1 ≤ q <∞.

Theorem 3.2.1. ([9, Theorem 3.7])
Consider a symbol a ∈Mp,∞(R2d), for some 0 < p <∞, and non-zero windows ψ1, ψ2 ∈ S(Rd).
Any eigenfunction f ∈ L2(Rd) of Aψ1,ψ2

a satisfies f ∈
⋂
γ>0M

γ(Rd).

Proof. Since the windows ψ1, ψ2 ∈ S(Rd), the cross-Wigner distribution is in S(R2d) ⊆Mq,γ(R2d),
for every 0 < q, γ ≤ ∞. We next apply the convolution relations for modulation spaces (2.158)
with u =∞, t = γ and v = m = ν ≡ 1.
If p ≥ 1, choose q = 1, so that r = p, and

σ := a ∗W (ψ2, ψ1) ∈Mp,∞(R2d) ∗M1,γ(R2d) ↪→Mp,γ(R2d), ∀γ > 0.

If 0 < p < 1, choose p = q = r so that

σ := a ∗W (ψ2, ψ1) ∈Mp,∞(R2d) ∗Mp,γ(R2d) ↪→Mp,γ(R2d), ∀γ > 0.

In both cases we obtain that σ ∈Mp,γ(R2d), for every γ > 0. Hence the claim immediately follows
by Proposition 3.1.4 and the realization of the localization operator as a Weyl one: Aψ1,ψ2

a = Lσ,
where σ = a ∗W (ψ2, ψ1).

Remark 3.2.2. Notice that f ∈
⋂
γ>0M

γ(Rd) does not imply f ∈ S(Rd), as pointed out in
Remark 2.5.14.

Remark 3.2.3. We want to emphasize the vast class of symbols which are included in assump-
tions of Theorem 3.2.1. For example, a rough symbol as the Dirac delta δ is allowed. Indeed,
consider g ∈ S(R2d) and compute:

Vgδ(z, w) = 〈δ,MwTzg〉

= e2πiwtg(t− z)
∣∣
t=0

= g(0− z).

Hence δ ∈ M1,∞(R2d) and Theorem 3.2.1 holds true for any L2-eigenfunction of Aψ1,ψ2

δ , with
ψ1, ψ2 ∈ S(Rd).

As a consequence of Theorem 3.2.1, the eigenfunctions of a localization operator Aψ1,ψ2
a are

extremely concentrated on the time-frequency space, having very few Gabor coefficients large
whereas all the others are negligible.

Definition 3.2.4. Consider a Gabor frame G(g, α, β) for L2(Rd). For N ∈ N, we define the set
of all linear combinations of Gabor atoms consisting of at most N terms as

(3.11) ΣN :=

p =
∑
k,n∈F

ck,nπ(αk, βn)g | ck,n ∈ C, F ⊆ Zd × Zd, #F ≤ N

 .
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Given a function f ∈ L2(Rd), the N-term approximation error in L2(Rd) (with respect to
the Gabor frame G(g, α, β)) is

(3.12) σN (f) := inf
p∈ΣN

‖f − p‖L2 .

Remark 3.2.5. Note that ΣN is not a linear subspace since ΣN + ΣN = Σ2N . That is why the
approximation of a signal f by elements of ΣN is often referred to as non-linear approximation.
Namely, σN (f) is the error produced when f is approximated optimally by a linear combination
of N Gabor atoms.

Assume f ∈ Mp(Rd) for some 0 < p < 2. Thus, in particular, f ∈ L2(Rd) since Mp(Rd) ⊆
M2(Rd) = L2(Rd) for 0 < p < 2. Consider now a Parseval Gabor frame G(g,Λ) for L2(Rd),
where Λ = αZd × βZd and g ∈ S(Rd). The series of Gabor coefficients in

‖f‖2L2 =
∑
λ∈Λ

|〈f, π(λ)g〉|2

is absolutely convergent, hence also unconditionally convergent. Thus we can rearrange the
Gabor coefficients |〈f, π(λ)g〉| in a decreasing order. Precisely, set ck,n := 〈f, π(αk, βn)g〉, k, n ∈
Zd, and let ι : N→ Zd × Zd be any bijection satisfying

|cι(1)| ≥ |cι(2)| ≥ · · · ≥ |cι(m)| ≥ |cι(m+1)| ≥ · · · .

Such a bijection always exists due to the convergence of the series. The sequence (c̃m)m∈N :=
(|cι(m)|)m∈N is called the non-increasing rearrangement of (ck,n)k,n above. With this nota-
tions, the best approximation of f in ΣN is

popt :=

N∑
m=1

cι(m)π(ι(m))g

and the the N -term approximation error becomes

σN (f) = inf
p∈ΣN

‖f − p‖L2 = ‖f − popt‖L2 =

( ∞∑
m=N+1

|cι(m)|2
) 1

2

.

We observe that ι, the non-increasing rearrangement (c̃m)m∈N and popt are not unique. Anyway
different best approximations popt and p′opt both realize the N -term approximation error.
By abuse of notation, given a = (am)m, am ≥ 0 for every m, a non-increasing sequence (
a1 ≥ a2 ≥ · · · ≥ am ≥ am+1 ≥ · · · ) we write

σN (a) :=

( ∞∑
m=N+1

a2
m

) 1
2

.

The key tool is now the following lemma from [82], see also [129] and [43].

Lemma 3.2.6. ([82, Lemma 12.4.1])
Let a = (am)m, am ≥ 0 for every m, be a non-increasing sequence and consider 0 < p < 2. Set

(3.13) γ :=
1

p
− 1

2
> 0.

Then there exists a constant C = C(p) > 0, such that

(3.14)
1

C
‖a‖`p ≤

( ∞∑
N=1

(NγσN−1(a))p
1

N

) 1
p

≤ C‖a‖`p .
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Proposition 3.2.7. ([9, Proposition 3.8])
Assume f ∈Mp(Rd) for some 0 < p < 2. Consider a Parseval Gabor frame G(g,Λ) for L2(Rd),
where Λ = αZd × βZd, α, β > 0, and g ∈ S(Rd). Then, there exists C = C(p) > 0 such that the
N -term approximation error with respect to the Parseval Gabor frame G(g,Λ) satisfies

(3.15) σN (f) ≤ C‖f‖MpN−γ ,

where γ > 0 is defined as in (3.13).

Proof. The sequence of Gabor coefficients of f , given by (〈f, π(αk, βn)g〉)k,n∈Zd , is in `p(Λ) by
Theorem 2.5.18, with

‖f‖Mp � ‖(〈f, π(αk, βn)g〉)k,n‖`p(Λ)

and the sequence (|〈f, π(αk, βn)g〉|)k,n can be rearranged in a non-increasing one (am)m∈N, as
explained above. Applying Lemma 3.2.6 to such a sequence, from the right-hand side inequality
in (3.14) we infer (3.15).

Corollary 3.2.8. ([9, Corollary 3.9])
Consider a Parseval Gabor frame G(g,Λ) for L2(Rd), where Λ = αZd × βZd, α, β > 0, and
g ∈ S(Rd). Under the assumptions of Theorem 6.2.1, any f eigenfunction of Aψ1,ψ2

a is highly
compressed onto a few Gabor atoms π(λ)g, in the sense that its N -term approximation error (with
respect to G(g,Λ)) satisfies the following property: for every r > 0 there exists C = C(r) > 0
such that

(3.16) σN (f) ≤ CN−r.

Proof. By Theorem 3.2.1, the eigenfunction fulfils f ∈ Mp(Rd), for every p > 0. Hence the
assumptions of Proposition 3.2.7 are satisfied for every 0 < p < 2. The claim follows by choosing
r := γ = 1/p− 1/2, as defined in (3.13).

We next consider the case of localization operators with symbols a ∈M∞vs⊗1(R2d), s > 0. In
this case L2-eigenfunctions reveal to be Schwartz functions, as shown below.

Theorem 3.2.9. ([9, Theorem 3.10])
Consider a symbol a ∈ M∞vs⊗1(R2d), for some s > 0, and non-zero windows ψ1, ψ2 ∈ S(Rd). If
f ∈ L2(Rd) is an eigenfunction of Aψ1,ψ2

a , then f ∈ S(Rd).

Proof. The assumption ψ1, ψ2 ∈ S(Rd) implies

W (ψ2, ψ1) ∈ S(R2d) ⊆M1,1
vr⊗vt(R

2d),

for every r, t > 0. We next apply the convolution relations for modulation spaces (2.158),
obtaining that Aψ1,ψ2

a = Lσ with σ := a ∗W (ψ2, ψ1) ∈ M∞,1vs⊗vt(R
2d), for some s > 0 and every

t > 0. Hence the claim immediately follows by Proposition 3.1.5.

Remark 3.2.10. From Proposition 2.5.13 and inclusion relations between modulation spaces
Theorem 2.5.6 we have that the previous theorem holds true also for symbols of the type a ∈
Lpvs(R

2d), for some 0 < p ≤ ∞ and s > 0.

Remark 3.2.11. The nice properties of eigenfunctions for localization operators studied so far
seem to depend on the fact that such operators are not only compact but belong to the Schatten
class J p, 0 < p <∞ (cf. [29, Theorem 1]). C. Fernández and A. Galbis in [67, Theorem 3.15]
characterize compact localization operators. Namely, fix g0 ∈ S(Rd) and a ∈M∞(R2d), then the
following conditions are equivalent:
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(i) The localization operator Aψ1,ψ2
a is compact on L2(Rd) for every ψ1, ψ2 in S(Rd);

(ii) For every R > 0,

(3.17) lim
|x|→∞

sup
|ω|≤R

|Vg0
a(x, ω)| = 0.

It seems that for symbols satisfying condition (3.17) the techniques developed above do not
work anymore. It would be very interesting to know whether for compact operators that
are not in the Schatten class J p, 0 < p <∞, the L2 eigenfunctions do gain any additional
smoothness and regularity.

We now consider localization operators with symbols in weighted Lebesgue spaces. Let us
recall that any localization operator Aψ1,ψ2

a with windows in S(Rd) and symbol a ∈ Lq(R2d), with
1 ≤ q < ∞, is a compact operator, cf. [152, Proposition 13.3]. The case of weighted Lebesgue
spaces and, more generally, Potential Sobolev spaces was treated in [17]: let us stress that any
localization operator Aψ1,ψ2

a with Schwartz windows and symbol a in Lqm(R2d), with 1 ≤ q <∞
is a compact operator on L2(Rd).

Theorem 3.2.12. ([9, Theorem 4.1]) Let m ∈ Mv, m(z) ≥ 1 for every z ∈ R2d, a ∈ Lqm(R2d),
1 ≤ q < ∞, and non-zero windows ψ1, ψ2 ∈ S(Rd). Any eigenfunction f ∈ L2(Rd) of Aψ1,ψ2

a

satisfies f ∈
⋂
p>0M

p
m(Rd).

Proof. By assumption and using (2.174), we start with a symbol a in Lqm(R2d) = W (Lq, Lqm)(R2d).
Consider the eigenvector f ∈ L2(Rd) and the window ψ1 ∈ S(Rd). Then by Theorem 2.6.3 the
STFT Vψ1

f is in the Wiener amalgam space W (L∞, L2)(R2d). Proposition 2.6.2 yields that
aVψ1

f ∈W (Lq, Lp1
m )(R2d), with

1

q
+

1

2
=

1

p1
,

so that the index p1 satisfies p1 < min{q, 2}. Consider now a non-zero window g ∈ S(Rd). Using
the weak definition of Aψ1,ψ2

a

Vg(A
ψ1,ψ2
a f)(w) = 〈Aψ1,ψ2

a f, π(w)g〉 =

∫
R2d

(aVψ1
f) (z)〈π(z)ψ2, π(w)g〉 dz

=

∫
R2d

(aVψ1
f) (z)〈ψ2, π(−z)π(w)g〉 dz

=

∫
R2d

(aVψ1f) (z)e−2πiz1w2〈ψ2, π(w − z)g〉 dz

so that,

(3.18) |Vg(Aψ1,ψ2
a f)(w)| ≤

∫
R2d

|(aVψ1
f)(z)| |Vgψ2(w − z)|dz = |aVψ1

f | ∗ |Vgψ2|(w).

We estimate

|Vg(Aψ1,ψ2
a f)(w)| ≤ |aVψ1

f | ∗ |Vgψ2|(w) ∈W (Lq, Lp1
m )(R2d) ∗W (L∞, L1

v)(R2d).

Observing that W (L∞, L1
v)(R2d) ↪→ W (Lq

′
, L1

v)(R2d) and applying the convolution relations
(2.173) we infer |Vg(Aψ1,ψ2

a f)| ∈W (L∞, Lp1
m ) ↪→ Lp1

m . This proves that Aψ1,ψ2
a f ∈Mp1

m (Rd).
Recalling the assumption Aψ1,ψ2

a f = λf , λ 6= 0, we infer f ∈Mp1
m (Rd).
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We now repeat the previous argument starting with f ∈Mp1
m (Rd). By Theorem 2.6.3 the STFT

Vψ1
f ∈W (L∞, Lp1

m )(R2d) and aVψ1
f ∈W (Lq, Lp2

m2) ↪→W (Lq, Lp2
m ), (since m2 ≥ m), with

1

q
+

1

p1
=

1

p2
,

so that p2 < p1. Arguing as above we infer |Vg(Aψ1,ψ2
a f)(w)| ∈ W (L∞, Lp2

m ) ↪→ Lp2
m . Thus, the

eigenfunction f belongs to the smaller space Mp2
m .

Continuing this way we construct a strictly decreasing sequence of indices pn > 0 and such that

lim
n→∞

pn = 0.

By induction and using the same argument as above one immediately obtains that if f ∈Mpn
m (Rd)

then f ∈Mpn+1
m (Rd). This concludes the proof.

3.3 Gelfand-Shilov setting

This last section presents the main results achieved in [11] about localization operators Aψ1,ψ2
a

in the framework of ultra-modulation spaces. Once more, we stress that Assumptions 2.5.1 are
dropped in the current section.

In the following item, we show how the τ -quantization Opτ (σ), τ ∈ [0, 1], can be extended
between ultra-modulation spaces under suitable assumptions on the weights. We remark that
the following theorem is contained in more general [142, Theorem 3.1]. A more elementary proof
of the same claim when Lebesgue parameters are greater than or equal to 1 is given in [140,
Theorem A.2]. In contrast to [140, 142], different arguments were used in [11] and are presented
below. Namely, the Schur test in combination with Lemmas 2.8.14 and 2.8.15 is used. We note
that [9, Theorem 3.3] (Theorem 3.1.2) is a particular case of Theorem 3.3.1 when restricted to
polynomial weights and the duality between S(Rd) and S ′(Rd), taking τ = 1/2.

Theorem 3.3.1. ([11, Theorem 3.3]) Consider τ ∈ [0, 1], m0 ∈ PE(R4d) and m1,m2 ∈
PE(R2d) such that

(3.19)
m2(x, ω)

m1(y, η)
. m0((1− τ)x+ τy, τω + (1− τ)η, ω − η, y − x), ∀x, ω, y, η ∈ Rd.

Fix a symbol σ ∈ M∞,1m0
(R2d). Then the pseudo-differential operator Opτ (σ), from S(1)(Rd) to

S(1)′(Rd), extends uniquely to a bounded and linear operator from Mp
m1

(Rd) into Mp
m2

(Rd) for
every 1 ≤ p <∞.

Proof. Let g ∈ S(1)(Rd) with ‖g‖L2 = 1 and consider f ∈ S(1)(Rd) ⊆ Mp
m1

(Rd). Due to the
normalization chosen ‖g‖L2 = ‖ĝ‖L2 and we recall the inversion formula (2.229) which can be
seen as a pointwise equality between smooth functions in this case (see [82, Proposition 11.2.4]):
f =

∫
R2d Vgf(z)π(z)g dz.

By Lemma 2.8.15 we have

Vg(Opτ (σ)f)(w) = 〈Opτ (σ)f, π(w)g〉

=

∫
R2d

Vgf(z) 〈Opτ (σ)π(z)g, π(w)g〉 dz.(3.20)
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In the next step we prove that the map Mτ (σ) : F 7→Mτ (σ)F , defined by

Mτ (σ)F (w) :=

∫
R2d

F (z) 〈Opτ (σ)π(z)g, π(w)g〉 dz

is continuous from Lpm1
(R2d) to Lpm2

(R2d).
Using (2.231), we see that it is equivalent to prove that the integral operator with kernel

Kτ (z, w) := |VΦτσ (Tτ (w, z), J(w − z))| 1

m1(z)
m2(w),

where Tτ ans J are defined in (2.212), is bounded on Lp(R2d). We do this using the Schur test,
see Lemma 3.1.1. First we majorize Kτ with another integral kernel Qτ using the condition
(3.19) with w = (x, ω) ∈ R2d and z = (y, η) ∈ R2d:

Kτ (z, w) =
m2(w)m0(Tτ (w, z), J(w − z))
m1(z)m0(Tτ (w, z), J(w − z))

|VΦτσ(Tτ (w, z), J(w − z))|

. |VΦτσ(Tτ (w, z), J(w − z))|m0(Tτ (w, z), J(w − z))
=: Qτ (z, w).

We now show that Qτ satisfies the Schur conditions. By appropriate change of variables
(w′ ≡ w′z(w) := J(w − z), where z is fixed) we obtain

ess sup
z∈R2d

∫
R2d

|Qτ (z, w)| dw =

∫
R2d

ess sup
z∈R2d

|VΦσ (z, w′)|m0 (z, w′) dw′

= ‖σ‖M∞,1m0
< +∞.

Furthermore, by the change of variables w′ ≡ w′w(z) := J(w − z) for every w fixed, we obtain

ess sup
w∈R2d

∫
R2d

|Qτ (z, w)| dz =

∫
R2d

ess sup
w∈R2d

|VΦτσ (w,w′)|m0 (w,w′) dw′

= ‖σ‖M∞,1m0
< +∞.

Since Kτ . Qτ , it follows that

ess sup
z∈R2d

∫
R2d

|Kτ (z, w)| dw < +∞ and ess sup
w∈R2d

∫
R2d

|Kτ (z, w)| dz < +∞.

Hence from the Schur test it follows that Mτ (σ) is continuous, and due to (3.20) we notice
that

Vg ◦Opτ (σ)f = Mτ (σ) ◦ Vgf,

where the right hand-side is continuous and takes elements of S(1)(Rd) ⊆Mp
m1

(Rd) into Lpm2
(R2d).

Therefore Opτ (σ) is linear, continuous and densely defined. This concludes the proof.

Schatten class properties for various classes of pseudo-differential operators in the framework
of time-frequency analysis are studied by many authors, let us mention just [82, 29, 113, 142].
However, for our purposes it is convenient to recall [106, Theorem 1.2] about Schatten class
property for pseudo-differential operators Opτ (σ) with symbols in modulation spaces.
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Theorem 3.3.2. Let τ ∈ [0, 1], 0 < p < 2, d ∈ N and

(3.21) u >
2d

p
− d.

Consider σ ∈M2
mτu

(R2d), where mτ
u is defined as in (2.17). Then

Opτ (σ) ∈ J p(L2(Rd)).

Lemma 3.3.3. ([11, Lemma 3.5]) Let τ ∈ [0, 1], γ ≥ 1 and d ∈ N. Fix

u, s, t > 0, l > u+ d, j ≥ u.

Then
M∞,1
wγs⊗wγt

(R2d) ↪→M∞,1vl⊗vj (R
2d) ↪→M2

vu⊗vu(R2d) ↪→M2
mτu

(R2d).

Proof. The first inclusion is due to the inclusion relations between ultra-modulation spaces since
vl ⊗ vj . wγs ⊗ w

γ
t . The last inclusion follows similarly since mτ

u . vu ⊗ vu, as it is shown in
Remark 2.2.14.

For the second inclusion we use Theorem 2.8.11: (∞, 2, l, u) fulfils the condition (C2) and
(1, 2, j, u) fulfils the condition (C1). This concludes the proof.

On account of the following corollary all the operators considered in Theorem 3.3.5 are
compact on L2(Rd).

Corollary 3.3.4. ([11, Corollary 3.6]) Let τ ∈ [0, 1], γ ≥ 1 and s, t > 0. Consider σ ∈
M∞,1
wγs⊗wγt

(R2d). Then Opτ (σ) is compact on L2(Rd).

Proof. The claim follows by Lemma 3.3.3 with u satisfying (3.21), after choosing any 0 < p < 2,
in addition with Theorem 3.3.2.

Now we prove the decay property of the eigenfunctions of Opτ (σ) when the symbol belongs
to certain weighted ultra-modulation spaces. This result improves Theorem 3.2.9 ([9, Theorem
3.10]), in the sense that we show how faster decay of the symbol implies stronger regularity and
decay properties for the eigenfunctions of the corresponding operator. More precisely, Theorem
3.2.9 deals with polynomial decay, whereas Theorem 3.3.5 allows to consider sub-exponential
decay as well.

Theorem 3.3.5. ([11, Theorem 3.7]) Fix τ ∈ [0, 1], γ ≥ 1 and s > 0. Consider a symbol
σ ∈M∞,1

wγs⊗wγt
(R2d) for every t ≥ 0. Any f ∈ L2(Rd) eigenfunction of Opτ (σ) belongs to S(γ)(Rd).

Proof. We first observe that σ ∈ M∞,1
wγs⊗wγt

(R2d) for every t ≥ 0 is equivalent to require that t
fulfils (2.11) due to the inclusion relations. By (2.12) from Lemma 2.2.13 it follows that

wγr′+s′(x, ω)

wγr′(y, η)
≤ wγs′ ⊗ w

γ
t′

((
(1− τ)x+ τy, τω + (1− τ)η

)
,
(
ω − η, y − x

))
,

for every x, ω, y, η ∈ Rd, where s′, r′ ≥ 0 and t′ which fulfils (2.11). We consider first the case
1/2 ≤ τ ≤ 1 and fix s′ = s > 0.

Take r′ = 0, t ≥ sτ1/γ , and apply Theorem 3.3.1 with p = 2, m0 = wγs ⊗ w
γ
t , m1 = wγ0 and

m2 = wγs which satisfy (3.19). Thus Opτ (σ) extends to a continuous operator from M2
wγ0

(Rd) =

L2(Rd) to M2
wγs

(Rd). Starting with f ∈ L2(Rd) we get f = λ−1 Opτ (σ)f ∈M2
wγs

(Rd).



Now, take r′ = s, t ≥ s + sτ1/γ , and apply Theorem 3.3.1 with p = 2, m0 = wγs ⊗ wγt ,
m1 = wγs and m2 = wγ2s which satisfy (3.19). Thus Opτ (σ) restricts to a continuous operator
fromM2

wγs
(Rd) toM2

wγ2s
(Rd), so starting with f ∈M2

wγs
(Rd) we get f = λ−1 Opτ (σ)f ∈M2

wγ2s
(Rd).

Repeating the same argument, and using the inclusion relations between ultra-modulation
spaces we obtain:

f ∈
⋂
n∈N0

M2
wγns

(Rd) =
⋂
k≥0

M2
wγk

(Rd) = S(γ)(Rd).

The case 0 ≤ τ < 1/2 is done similarly. This concludes the proof.

We conclude the chapter with the analogue of Theorem 3.2.9. Note that by Corollary 3.3.4 it
follows that the localization operators Aψ1,ψ2

a in the following statement are compact on L2(Rd).

Theorem 3.3.6. ([11, Theorem 3.8]) Consider γ ≥ 1, s > 0, a ∈ M∞
wγs⊗1

(R2d) and ψ1, ψ2 ∈
S(1)(Rd). Any f ∈ L2(Rd) eigenfunction of Aψ1,ψ2

a belongs to S(γ)(Rd).

Proof. Since ψ1, ψ2 ∈ S(1)(Rd) it follows that W (ψ2, ψ1) ∈ S(1)(R2d) ⊆M1
wγr⊗wγt

(R2d), for every
r, t ≥ 0. It is easy to check that wγs ⊗ w

γ
t is wγr ⊗ w

γ
t -moderate for every t ≥ 0 and every r ≥ s,

i.e.
wγs ⊗ w

γ
t ((x, ω) + (y, η)) ≤ wγr ⊗ w

γ
t (x, ω)wγs ⊗ w

γ
t (y, η), x, ω, y, η ∈ Rd.

We write Aψ1,ψ2
a = Op1/2(σ) with σ = a ∗W (ψ2, ψ1), and then apply Proposition 2.8.13 in order

to infer σ ∈M∞,1
wγs⊗wγt

(R2d) for every t ≥ s/21/γ :

M∞wγs⊗1(R2d) ∗M1
wγr⊗wγt

(R2d) ↪→M∞,1
wγs⊗wγt

(R2d).

The claim now follows by Theorem 3.3.5.



Chapter 4

Characterization of smooth symbol
classes by Gabor matrix decay

The present chapter illustrates a characterization of the symbol class Sm(R2d) (2.178), introduced
by J. Sjöstrand in [127], by mean of the Gabor matrix of Opτ (σ). The results reported in what
follows are due to E. Cordero and the author [7]. In particular, the first part of the main result
can be roughly summarized as follows.

Fix m ∈ R. The following properties are equivalent:

(i) σ ∈ Sm
(
R2d

)
;

(ii) σ ∈ S ′
(
R2d

)
and for every s ≥ 0, 0 < q ≤ ∞, there exists a function Hτ ∈ Lq〈·〉s(R

2d),
with

‖Hτ‖Lq〈·〉s ≤ C, ∀τ ∈ [0, 1];

such that

|〈Opτ (σ)π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d.

Above, Tτ is the transformation defined in (2.212).
We provide also a discrete version of the above item (ii), see Theorem 4.2.3. For the Hörmander
class S0(R2d) = S0

0,0(R2d), the Gabor matrix characterization for Weyl operators was shown by
K. Gröchenig and Z. Rzeszotnik in [87, Theorem 6.2] (see also [121]) in the case q =∞. So this
result can be viewed as an extension to any 0 < q ≤ ∞ and τ ∈ [0, 1]. The key tool in order
to prove such generalization is Lemma 2.6.8, which proof is contained in Chapter 2, and which
gives the characterization

Sm(R2d) =
⋂
s≥0

M∞,q〈·〉−m⊗〈·〉s ,

where 0 < q ≤ ∞ and the weights 〈·〉−m, 〈·〉s were introduced in (2.7).
Section 4.1 shows some estimates for the STFT of σ ∈ S ′(R2d) w.r.t. Wτ (g, g) ∈ S(R2d)

uniform in τ ∈ [0, 1]. In particular, a proof alternative to the one published in [7] is provided for
Proposition 4.1.1.
The main result mentioned above is achieved by proving a characterization of similar flavour for
the modulation spaces

M∞,q〈·〉−m⊗〈·〉s(R
2d),
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where m, s ∈ R and 0 < q ≤ ∞. See Theorem 4.2.1 in Section 4.2. As a consequence, we are able
to infer boundedness properties for τ -pseudo-differential operators on modulation spaces along
with a uniform bound in τ ∈ [0, 1] for the norm on Opτ (σ), see Subsection 4.2.1. In Subsection
4.2.2 we give an estimate for the Gabor matrix of a Born-Jordan operator, Theorem 4.2.10, and
obtain as straightforward consequence some continuity results for OpBJ between modulation
spaces, Corollary 4.2.12.

We remind to the reader that the necessary preliminaries and definitions can be found in
Chapter 2, in particular the definitions of Cs, Cn and Cnm can be found in Subsection 2.6.3. In
this chapter Assumptions 2.5.1 hold, i.e. every weight is supposed of at most polynomial growth.

4.1 Uniform estimates in τ

In this section, we focus on the quasi-norm ofMp,q
w (R2d) computed w.r.t. the windowWτ (g, g) ∈

S(R2d) and prove that it does not depend on τ ∈ [0, 1], in the sense of (4.2). After stating
and proving Proposition 4.1.1, we exhibit a number of unpublished lemmas in order to give an
alternative proof of (4.2).

Let us first represent the Gabor matrix as a kernel of an integral operator. Consider a linear
and bounded operator T from S(Rd) into S ′(Rd). The inversion formula (2.147) for g ∈M1

v (Rd),
‖g‖L2 = 1 is simply V ∗g Vg = I. The operator T can be written as

(4.1) T = V ∗g VgTV
∗
g Vg.

The linear transformation VgTV ∗g is an integral operator with kernel given by the Gabor matrix
of T which was defined in (2.77):

GT (u, z) = 〈Tπ(z)g, π(u)g〉, ∀u, z ∈ R2d .

By definition and the inversion formula, Vg is bounded from Mp,q
w (Rd) to Lp,qw (R2d) and V ∗g

from Lp,qw (R2d) to Mp,q
w (Rd). Hence the continuity properties of T on modulation spaces can be

obtained by the corresponding ones of the operator VgTV ∗g on mixed-norm Lp,qw spaces. These
issues will be studied in Proposition 4.2.7 and Corollary 4.2.12 and can be achieved by studying
the Gabor matrix decay of T .

Proposition 4.1.1. ([7, Proposition 3.1]) Consider 0 < p, q ≤ ∞, τ ∈ [0, 1], w ∈ Mv(R4d) of
at most polynomial growth, G ∈ S(R2d)r{0}, g ∈ S(Rd)r{0} and define Φτ := Wτ (g, g). Then
there exist A = A(v, g,G) > 0, B = B(v, g,G) > 0 such that

(4.2) A ‖VGσ‖Lp,qw ≤ ‖VΦτσ‖Lp,qw ≤ B ‖VGσ‖Lp,qw ,

for every τ ∈ [0, 1] and σ ∈Mp,q
w (R2d).

Proof. By Proposition 2.2 and Remark 2.3 in [42], the mapping

(τ, f, g) 7→Wτ (f, g)

is continuous from R × S(Rd) × S(Rd) to S(R2d) and locally uniformly bounded. Since Φτ for
τ ∈ [0, 1] belongs to a bounded set in S(R2d), the result follows immediately from [82, Theorem
11.3.7] for p, q ≥ 1 and [75, Theorem 3.1] for 0 < p, q ≤ ∞.

For sake of completeness, we give an alternative and independent proof of previous Proposi-
tion 4.1.1. In order to do so, we need some technical lemmas.

We begin with a generalization of [27, Lemma 3.2].
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Lemma 4.1.2. Consider τ ∈ [0, 1] and define

(4.3) ψ(t) := e−πt
2

, Ψ(x, ω) := e−π(x2+ω2), Ψτ := Wτ (ψ,ψ),

for t, x, ω ∈ Rd. Then for v submultiplicative weight on R4d there exists a constant C > 0 such
that

(4.4) ‖VΨΨτ‖L1
v
≤ C, ∀τ ∈ [0, 1].

Consequently

(4.5) ‖Ψτ‖M1
v
≤ C, ∀τ ∈ [0, 1].

Proof. We first observe that any submultiplicative weight function v on R4d can grow at most
exponentially, i.e., there exist C > 0 and b > 0 such that

(4.6) v(z) ≤ Ceb|z|, ∀z ∈ R4d,

see, e.g. [35, Lemma 2.1.4]. Following the proof in [27] and using (4.6), we can majorize in the
following manner:

‖VΨΨτ‖L1
v
≤ C1

∫
R2d

e
−π z21+z22

2τ2−2τ+5 eb|z|I1 dz1dz2

≤ C1

∫
R2d

e
−π z21+z22

2τ2−2τ+5 eb(|z1|+|z2|)I1 dz1dz2,

where C > 0 depends only on the weight v and I1 is an integral over R2d which can be controlled
from above by

I1 ≤ C̃2e
π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5)

+
a|1−2τ|

2τ2−2τ+2
|z2|e

π
(1−2τ)2z21

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ|
2τ2−2τ+2

|z1|,

for some a > 0 and C̃2 > 0 independent of τ . Hence setting C2 := C1C̃2 we have

‖VΨΨτ‖L1
v
≤ C2

∫
Rd
e
−π 3z21

2τ2−2τ+5
+π

(1−2τ)2z21
(2τ2−2τ+2)(2τ2−2τ+5)

+
a|1−2τ|

2τ2−2τ+2
|z1|+b|z1| dz1

×
∫
Rd
e
−π 3z22

2τ2−2τ+5
+π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5)

+
a|1−2τ|

2τ2−2τ+2
|z2|+b|z2| dz2

= C2

∫
Rd
e
−π 3z21

2τ2−2τ+5
+π

(1−2τ)2z21
(2τ2−2τ+2)(2τ2−2τ+5)

+
a|1−2τ|

2τ2−2τ+2
|z1|+b|z1| dz1︸ ︷︷ ︸

=:I2


2

.

The integral I2 can be controlled as

I2 =

∫
Rd
e
−π 3(2τ2−2τ+2)−(1−2τ)2

(2τ2−2τ+2)(2τ2−2τ+5)
z2
1+
(
a
|1−2τ|

2τ2−2τ+2
+b
)
|z1| dz1 ≤

∫
Rd
e−πC3z

2
1+

=:C5≥0︷ ︸︸ ︷
(aC4 + b)|z1| dz1,

being

C3 = min
τ∈[0,1]

3(2τ2 − 2τ + 2)− (1− 2τ)2

(2τ2 − 2τ + 2)(2τ2 − 2τ + 5)
=

1

2
, C4 = max

τ∈[0,1]

|1− 2τ |
2τ2 − 2τ + 2

=
1

2
.
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Since e−π
C3
2 z2

1+C5|z1| → 0 as |z1| → +∞, for ε > 0 fixed there exists R > 0 such that
e−π

C3
2 z2

1+C5|z1| < ε for every z1 /∈ BR(0). Therefore

I2 ≤
∫
Rd
e−πC3z

2
1+C5|z1| dz1 =

∫
BR(0)

e−πC3z
2
1+C5|z1| dz1 +

∫
RdrBR(0)

e−πC3z
2
1+C5|z1| dz1

≤ eC5R

∫
BR(0)

e−πC3z
2
1 dz1 + ε

∫
RdrBR(0)

e−π
C3
2 z2

1 dz1 < +∞,

Hence there exists C > 0 such that ‖VΨΨτ‖L1
v
≤ C, uniformly w.r.t. τ ∈ [0, 1]. The equivalence

‖Ψτ‖M1
v
� ‖VΨΨτ‖L1

v

concludes the proof.

Corollary 4.1.3. Fix G ∈ S(R2d) and consider an even, submultiplicative weight v on R4d. Let
Ψτ be the function defined in (4.3). Then there exists a constant C > 0 such that

(4.7) ‖VΨτG‖L1
v
≤ C, ∀τ ∈ [0, 1].

Proof. The claim is a straightforward consequence of Lemma 4.1.2, the switching property of
the STFT (see, e.g., [35, Lemma 1.2.3])

VΨτG(z, ζ) = e−2πzζVGΨτ (−z,−ζ), ∀(z, ζ) ∈ R4d.

and the even property of the weight v.

In the following lemma we summarize [27, Lemma 2.5, Lemma 2.6, Corollary 2.7]. For
τ ∈ (0, 1), define the matrix

(4.8) Bτ :=

 0d

√
1−τ
τ Id

−
√

τ
1−τ Id 0d

 .
Lemma 4.1.4. Let f, g ∈ S(Rd), τ ∈ [0, 1] and define Φτ := Wτ (g, g). Consider z = (z1, z2), ζ =
(ζ1, ζ2) ∈ R2d. If τ ∈ (0, 1), then

VΦτWτ (f, f)(z, ζ) = e−2πz2ζ2Vgf(z1 − τζ2, z2 + (1− τ)ζ1)Vgf(z1 + (1− τ)ζ2, z2 − τζ1)

= e−2πz2ζ2Vgf(z +
√
τ(1− τ)BTτ ζ)Vgf(z +

√
τ(1− τ)Bτζ); ,(4.9)

where BTτ stands for the transpose of Bτ .
If τ = 1, then

(4.10) VΦ1W1(f, f)(z, ζ) = e−2πz2ζ2Vgf(z1 − ζ2, z2)Vgf(z1, z2 − ζ1);

If τ = 0, then

(4.11) VΦ0
W0(f, f)(z, ζ) = e−2πz2ζ2Vgf(z1, z2 + ζ1)Vgf(z1 + ζ2, z2).

Remark 4.1.5. Notice that, for ζ = (ζ1, ζ2) ∈ R2d and τ ∈ (0, 1), we have

(4.12) |
√
τ(1− τ)Bτζ|2 = | − τζ1|2 + |(1− τ)ζ2|2 ≤ |ζ1|2 + |ζ2|2 = |ζ|2.

Therefore

(4.13) 〈
√
τ(1− τ)Bτζ〉s ≤ 〈ζ〉s, ∀τ ∈ (0, 1), ∀ζ ∈ R2d, ∀s ≥ 0.
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Lemma 4.1.6. Consider f, g ∈ S(Rd) r {0}, τ ∈ [0, 1], v a submultiplicative weight on R4d of
at most polynomial growth, and define Φτ := Wτ (g, g). Then there exists a constant C > 0 such
that

(4.14) ‖VΦτWτ (f, f)‖L1
v
≤ C, ∀τ ∈ [0, 1].

Proof. We divide the proof in three cases: τ ∈ (0, 1), τ = 1 and τ = 0.
For τ ∈ (0, 1) we apply (4.9), the change of variable y = z +

√
τ(1− τ)Bτζ, so that z +√

τ(1− τ)BTτ ζ = y−Jζ (where J is as in (2.212)), the submultiplicativity of v as well as the (at
most) polynomial growth, and finally Remark 4.1.5:

‖VΦτWτ (f, f)‖L1
v

=

∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| v(y −
√
τ(1− τ)Bτζ, ζ) dydζ

≤
∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| v(y, 0)v(−
√
τ(1− τ)Bτζ, 0)v(0, ζ) dydζ

.
∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| 〈y〉s〈−
√
τ(1− τ)Bτζ〉s〈ζ〉s dydζ

≤
∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| 〈y〉s〈ζ〉s〈ζ〉s dydζ

=

∫
R2d

(|Vgf | ∗ |Vgf〈·〉s|) (Jζ)〈ζ〉2s dζ

= ‖|Vgf | ∗ |Vgf〈·〉s|‖L1
〈·〉2s

< +∞.

The convergence is due to the fact that f, g ∈ S(Rd), therefore Vgf ∈ S(R2d).
For τ = 1 we apply (4.10) and the change of variable y1 = z1, y2 = z2 − ζ1; arguing as in the

previous stage we obtain the result. In detail,

‖VΦ1W1(f, f)‖L1
v

=

∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| v(y1, y2 + ζ1, ζ1, ζ2) dydζ

≤
∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| v(y, 0)v(0, 0, ζ1, 0)v(0, ζ) dydζ

.
∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| 〈y〉s〈ζ1〉s〈ζ〉s dydζ

≤
∫
R2d

∫
R2d

|Vgf(y − Jζ)Vgf(y)| 〈y〉s〈ζ〉s〈ζ〉s dydζ

=

∫
R2d

(|Vgf | ∗ |Vgf〈·〉s|) (Jζ)〈ζ〉2s dζ

= ‖|Vgf | ∗ |Vgf〈·〉s|‖L1
〈·〉2s

< +∞.

The case τ = 0 follows the same argument as before via (4.11).
In each case we found the same upper bound which does not depend on τ ∈ [0, 1]. The proof

is concluded.

Corollary 4.1.7. Consider τ ∈ [0, 1], v a submultiplicative weight on R4d of at most polynomial
growth, g ∈ S(Rd) r {0} and define Φτ := Wτ (g, g). Then there exists a constant C > 0 such
that

(4.15) ‖Φτ‖M1
v
≤ C, ∀τ ∈ [0, 1].
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Proof. Fix a window G ∈ S(R2d) r {0} and consider the functions ψ and Ψτ defined in (4.3).
Using the change-window property of the STFT (see, e.g., [35, 1.2.29]), Moyal’s formula for
τ -Wigner distributions (see (2.84)) and Young’s inequality for mixed-normed spaces (see Propo-
sition 2.2.27 or, e.g., [35, Theorem 2.2.3]),

‖VGΦτ‖L1
v
≤ 1

|〈Ψτ ,Ψτ 〉|
‖VΨτΦτ ∗ VGΨτ‖L1

v
≤ ‖ψ‖−4

L2 ‖VΨτΦτ‖L1
v
‖VGΨτ‖L1

v
.

The desired result follows now by Lemma 4.1.2, 4.1.6 and the fact that

‖Φτ‖M1
v
� ‖VGΦτ‖L1

v
,

where the constants involved do not depend on τ ∈ [0, 1]. This concludes the proof.

Corollary 4.1.8. Consider τ ∈ [0, 1], v an even submultiplicative weight on R4d of at most
polynomial growth, G ∈ S(R4d) r {0}, g ∈ S(Rd) r {0} and define Φτ := Wτ (g, g). Then there
exists a constant C > 0 such that

(4.16) ‖VΦτG‖L1
v
≤ C, ∀τ ∈ [0, 1].

Proof. The proof is a straightforward consequence of Corollary 4.1.7 and the switching property
of the STFT, cf. the proof of Corollary 4.1.3.

Alternative proof for Proposition 4.1.1. Let Ψτ = Wτ (ψ,ψ), and ψ be as in (4.3). Using the
change-window property of the STFT (see, e.g., [35, 1.2.29]), Moyal’s formula for τ -Wigner
distributions (2.84) and Young’s inequality for mixed-normed spaces (see, e.g., [35, Theorem
2.2.3]), and Corollary 4.1.8:

‖VΦτσ‖Lp,qw ≤
1

|〈Ψτ ,Ψτ 〉|
‖|VΨτσ| ∗ |VΦτΨτ |‖Lp,qw ≤ ‖ψ‖

−4
L2 ‖VΨτσ‖Lp,qw ‖VΦτΨτ‖L1

v

≤ C ‖ψ‖−4
L2 ‖VΨτσ‖Lp,qw

≤ C ‖ψ‖−4
L2

1

|〈G,G〉|
‖|VGσ| ∗ |VΨτG|‖Lp,qw

≤ C ‖ψ‖−4
L2 ‖G‖−2

L2 ‖VGσ‖Lp,qw ‖VΨτG‖L1
v

≤ C̃ ‖ψ‖−4
L2 ‖G‖−2

L2 ‖VGσ‖Lp,qw ,

with C̃ > 0 and independent of τ . Similarly,

‖VGσ‖Lp,qw ≤ C̃ ‖ψ‖
−4
L2 ‖g‖−4

L2 ‖VΦτσ‖Lp,qw .

The choice
A := C̃−1 ‖ψ‖4L2 ‖g‖4L2 , B := C̃ ‖ψ‖−4

L2 ‖G‖−2
L2

let us conclude the proof.

In what follows, [32, Lemma 4.1] is needed. It was reported in Lemma 2.7.17.
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4.2 Main results

In order to obtain the announced characterization of Sm(R2d), we first characterize τ -pseudo-
differential operators with symbols in M∞,q〈·〉−m⊗〈·〉s(R

2d). After that we shall describe the class
Sm(R2d) in terms of the Gabor matrix of Opτ (σ) and provide some continuity results for such
operators. In the last Subsection 4.2.2, Born-Jordan operators shall be considered.

Theorem 4.2.1. ([7, Theorem 3.2]) Consider g ∈ S(Rd) r {0} and a lattice Λ ⊆ R2d such that
G (g,Λ) is a Gabor frame for L2

(
Rd
)
. For τ ∈ [0, 1], let Tτ be the transformation defined in

(2.212). For any s,m ∈ R, 0 < q ≤ ∞, the following properties are equivalent:

(i) σ ∈M∞,q〈·〉−m⊗〈·〉s
(
R2d

)
;

(ii) σ ∈ S ′
(
R2d

)
and there exists a function Hτ ∈ Lq〈·〉s(R

2d) satisfying

(4.17) ‖Hτ‖Lq〈·〉s ≤ C, ∀τ ∈ [0, 1],

such that

(4.18) |〈Opτ (σ)π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d;

(iii) σ ∈ S ′
(
R2d

)
and there exists a sequence hτ ∈ `q〈·〉s(Λ), with ‖hτ‖`q〈·〉s ≤ C for every

τ ∈ [0, 1], such that

(4.19) |〈Opτ (σ)π (µ) g, π (λ) g〉| ≤ hτ (λ− µ)〈Tτ (µ, λ)〉m, ∀λ, µ ∈ Λ.

Proof. The proof follows the pattern of the corresponding one for Weyl operators with symbols
in weighted Sjöstrand’s classes [83, Theorem 3.2].
(i)⇒ (ii) This implication comes easily from the characterization (2.211). In details, observing
that 〈Ju〉 = 〈u〉,

|〈Opτ (σ)π (z) g, π (u) g〉| = |VΦτσ (Tτ (z, u) , J (u− z))|
≤ sup
w∈R2d

(
|VΦτσ(w, J (u− z) |〈w〉−m

)
〈Tτ (z, u)〉m

= Hτ (u− z)〈Tτ (z, u)〉m,

where
Hτ (u) := sup

w∈R2d

(
|VΦτσ(w, Ju)|〈w〉−m

)
.

For 0 < q <∞,

‖Hτ‖Lq〈·〉s =

(∫
R2d

[
sup
w∈R2d

(
|VΦτσ(w, Ju)|〈w〉−m

)]q
〈u〉qsdu

) 1
q

� ‖σ‖M∞,q
〈·〉−m⊗〈·〉s

,

Hence by Proposition 4.1.1 we obtain the estimate (4.17). The case q =∞ is analogous.
(ii)⇒ (i) Consider the change of variables y = Tτ (z, u) and t = J(u− z), so that

(4.20)

{
z(y, t) = y − UτJ−1t

u(y, t) = y + (I2d − Uτ )J−1t
, Uτz :=

[
τId 0
0 (1− τ)Id

]
z = Tτ (0, z)
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and u(y, t)− z(y, t) = J−1t. For 0 < q <∞, using (2.211) and (4.18),

‖σ‖M∞,q
〈·〉−m⊗〈·〉s

�

(∫
R2d

(
sup
y∈R2d

|VΦτσ (y, t)| 〈y〉−m
)q
〈t〉qsdt

) 1
q

=

(∫
R2d

(
sup
y∈R2d

|〈Opτ (σ)π (z(y, t)) g, π (u(y, t)) g〉| 〈Tτ (z, u)〉−m
)q
〈t〉qsdt

) 1
q

≤
(∫

R2d

∣∣Hτ (J−1t)
∣∣q 〈t〉qsdt) 1

q

≤ C,

where we used (4.17). The case q =∞ is analogous.
(ii)⇔ (iii) The argument requires that G (g,Λ) is a Gabor frame for L2

(
Rd
)
. Then the equiva-

lence can be proved similarly to [30, Theorem 3.1] and [83, Theorem 3.2].

Remark 4.2.2. Under the assumptions of the previous theorem, let us consider the following
statements:

(ii)′ σ ∈ S ′
(
R2d

)
and

|〈Opτ (σ)π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d,

for some τ ∈ [0, 1] and Hτ ∈ Lq〈·〉s(R
2d);

(iii)′ σ ∈ S ′
(
R2d

)
and

|〈Opτ (σ)π (µ) g, π (λ) g〉| ≤ hτ (λ− µ)〈Tτ (µ, λ)〉m, ∀λ, µ ∈ Λ,

for some τ ∈ [0, 1] and hτ ∈ `q〈·〉s(Λ).

Then the proof of Theorem 4.2.1 shows that the (ii)′ and (iii)′ imply (i), i.e. σ ∈M∞,q〈·〉−m⊗〈·〉s(R
2d).

We possess all the instruments for the characterization of Sm(R2d).

Theorem 4.2.3. ([7, Theorem 1.1]) Consider g ∈ S(Rd)r{0} and a lattice Λ such that G (g,Λ)
is a Gabor frame for L2

(
Rd
)
. Fix m ∈ R. The following properties are equivalent:

(i) σ ∈ Sm
(
R2d

)
;

(ii) σ ∈ S ′
(
R2d

)
and for every s ≥ 0, 0 < q ≤ ∞, there exists a function Hτ ∈ Lq〈·〉s(R

2d),
satisfying (4.17)

‖Hτ‖Lq〈·〉s ≤ C, ∀τ ∈ [0, 1],

such that

(4.21) |〈Opτ (σ)π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d;

(iii) σ ∈ S ′
(
R2d

)
and for every s ≥ 0, 0 < q ≤ ∞, there exists a sequence hτ ∈ `q〈·〉s(Λ), with

‖hτ‖`q〈·〉s ≤ C for every τ ∈ [0, 1], such that

(4.22) |〈Opτ (σ)π (µ) g, π (λ) g〉| ≤ hτ (λ− µ)〈Tτ (µ, λ)〉m, ∀λ, µ ∈ Λ.
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Proof. The proof is a direct application of the characterization of the classes Sm(R2d) presented
in (2.182) and Theorem 4.2.1.

Remark 4.2.4. Observations similar to the ones in Remark 4.2.2 can be made for the above
theorem.

For m = 0, τ = 1/2 and q = ∞, we recapture the characterization for the Hörmander class
S0(R2d) = S0

0,0(R2d) shown by K. Gröchenig and Z. Rzeszotnik in [87, Theorem 6.2] (see also
[121]).

The following issue is an improvement of [24, Theorem 2.4] and relies on the new character-
ization of Sm(R2d) proved in Lemma 2.6.8.

Proposition 4.2.5. ([7, Proposition 3.3]) Consider g ∈ S(Rd)r {0}, m ∈ R and σ ∈ Sm
(
R2d

)
.

For any n ∈ N0 there exists C = C(n) > 0, which does not depend on σ or τ , such that

(4.23) |〈Opτ (σ)π (z) g, π (u) g〉| ≤ C|σ|n,m
〈Tτ (z, u)〉m

〈u− z〉n
, ∀τ ∈ [0, 1], ∀u, z ∈ R2d.

Proof. Using the characterization of the Hörmander classes Sm(R2d) in (2.182) we infer that
σ ∈ M∞〈·〉−m⊗〈·〉n(R2d) and, for any n ∈ N0, the norm estimate in (2.184) says that there exists
C = C(n,m) such that

(4.24) ‖σ‖M∞
〈·〉−m⊗〈·〉n

≤ C(n,m)|σ|n,m,

where C(n,m) > 0 is independent of σ. For z, w ∈ R2d we use Lemma 2.7.17 and the norm
estimate in (4.24) which yield

|〈Opτ (σ)π (z) g, π (u) g〉| = |VΦτσ (Tτ (z, u) , J (u− z))|

≤ C|σ|n,m
〈Tτ (z, u)〉m

〈u− z〉n
,

that is the desired result.

For s ∈ [0,+∞) rN0, the estimate reads as follows.

Proposition 4.2.6. ([7, Proposition 3.4]) Consider g ∈ S(Rd) r {0}, τ ∈ [0, 1], m ∈ R and
σ ∈ Sm

(
R2d

)
. For any s ∈ [0,+∞) r N0 there exists C = C(s,m) > 0, which does not depend

on σ or τ , such that

(4.25) |〈Opτ (σ)π (z) g, π (u) g〉| ≤ C|σ|n+1,m
〈Tτ (z, u)〉m

〈u− z〉s
, ∀u, z ∈ R2d,

where n = [s] is the integer part of s.

Proof. The result is attained by the the same argument as Proposition 4.2.5 and the inclusion
relations between modulation spaces in Theorem 2.5.6.
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4.2.1 Boundedness results

The characterization of the class Sm(R2d) in Lemma 2.6.8 and Theorem 4.2.1 are the key tool
for boundedness properties of τ -pseudo-differential operators on weighted modulation spaces.

Proposition 4.2.7. ([7, Proposition 3.5]) Consider τ ∈ [0, 1], m ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤
∞. Then Opτ (σ), from S(Rd) to S ′(Rd), extends uniquely to a bounded operator

Opτ (σ) : Mp,q
〈·〉r+m(Rd)→Mp,q

〈·〉r (R
d),

for every r ∈ R.

Proof. Choose g ∈ S(Rd) and a lattice Λ such that G(g,Λ) is a Gabor frame for L2(Rd). Define
t := min{1, p, q} and choose s > (2d + |r|)/t. Using the equivalent discrete quasi-norm for
the modulation space (2.153), the estimate in (4.19) and Young’s convolution inequality in [74,
Theorem 3.1], we obtain the result. Namely,

‖Opτ (σ)f‖Mp,q
〈·〉r
� ‖Vg(Opτ (σ)f)‖`p,q〈·〉r (Λ) ≤

∥∥∥hτ ∗ |Vgf | 〈·〉|m|∥∥∥
`p,q〈·〉r (Λ)

≤ ‖hτ‖`t〈·〉s(Λ)
‖Vgf〈·〉m‖`p,q〈·〉r(Λ)

≤ C ‖f‖Mp,q

〈·〉r+m
.

Alternatively, since σ ∈ Sm =
⋂
s≥0M

∞,q
〈·〉−m⊗〈·〉s(R

2d) by Lemma 2.6.8, one can use [142, Theorem
3.1] with p =∞ and q ≤ 1 small enough to yield the claim.

Remark 4.2.8. (i) For σ ∈ S0(R2d) = S0
0,0(R2d) and we recapture the continuity of

Opτ (σ) : Mp,q
〈·〉r (R

d)→Mp,q
〈·〉r (R

d).

This was already shown in [137] for p, q ≥ 1, for the quasi-Banach cases see [142];

(ii) For p = q = 2 we have the continuity between the Shubin-Sobolev spaces Qr+m(Rd) and
Qr(Rd).

Corollary 4.2.9. ([7, Corollary 3.7]) Consider m, r ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Let
‖Opτ (σ)‖ denote the norm of Opτ (σ) in B(Mp,q

〈·〉r+m(Rd),Mp,q
〈·〉r (R

d)). Then there exists a constant
C > 0 such that

(4.26) ‖Opτ (σ)‖ ≤ C, ∀τ ∈ [0, 1].

Proof. The claim is evident from proof of Proposition 4.2.7.

4.2.2 Born-Jordan operators

We recall that Born-Jordan operators OpBJ(σ) were defined in (2.215).

Theorem 4.2.10. ([7, Theorem 3.8]) Consider g ∈ S(Rd) r {0}. For m ∈ R consider σ ∈
Sm

(
R2d

)
. Then for every s ≥ 0, 0 < q ≤ ∞, τ ∈ [0, 1] there exists a function Hτ ∈ Lq〈·〉s(R

2d)

which satisfies (4.17) and such that

(4.27) |〈OpBJ (σ)π (z) g, π (u) g〉| ≤ 〈z〉m
∫ 1

0

Hτ (u− z) dτ, ∀u, z ∈ R2d.
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Proof. For σ ∈ S ′(R2d), OpBJ(σ) is linear and continuous from S(Rd) into S ′(Rd), see [42]. For
z, u ∈ R2d, σ ∈ Sm(R2d) and g ∈ S(Rd) we compute

〈OpBJ(σ)π(z)g, π(u)g〉 = 〈σ,WBJ(π(u)g, π(z)g)〉

=

∫
R2d

σ(y)

∫ 1

0

Wτ (π(u)g, π(z)g)(y) dτdy =: I.

From [42, Proposition 2.2, Remark 2.3] we have that the mapping

R× S(Rd)× S(Rd)→ S(R2d), (t, ϕ, ψ) 7→Wt(ϕ,ψ)

is continuous and locally uniformly bounded. Thus WBJ(ϕ,ψ) ∈ S(R2d) and the integral I is
absolutely convergent, so that

I =

∫ 1

0

∫
R2d

σ(y)Wτ (π(u)g, π(z)g)(y) dydτ =

∫ 1

0

〈Opτ (σ)π (z) g, π (u) g〉 dτ.

By Peetre’s inequality:

〈Tτ (z, u)〉m = 〈z1 + τ(u1 − z1), z2 + (1− τ)(u2 − z2)〉m

. 〈z〉m〈u− z〉|m|,

for every u = (u1, u2), z = (z1, z2) ∈ R2d. Hence, using Theorem 4.2.3,

|I| ≤
∫ 1

0

|〈Opτ (σ)π (z) g, π (u) g〉| dτ .
∫ 1

0

Hτ (u− z) 〈u− z〉|m| dτ 〈z〉m.

Then the function Hτ (z) 〈z〉|m| satisfies condition (4.17).

Remark 4.2.11. (i) For q ≥ 1, we can define H(z) :=
∫ 1

0
Hτ (z)dτ . Using Minkowski’s integral

inequality we infer H ∈ Lq〈·〉s(R
2d) and the estimate (4.27) becomes

|〈OpBJ (σ)π (z) g, π (u) g〉| ≤ H(u− z) 〈z〉m, ∀u, z ∈ R2d.

Notice that for 0 < q < 1 Minkowski’s integral inequality is not true in general.
(ii) Arguing as in Theorem 4.2.10, we may discretize the Gabor matrix decay in (4.27) as follows:
consider g ∈ S(Rd)r {0} and a lattice Λ in R2d such that G (g,Λ) is a Gabor frame for L2

(
Rd
)
.

If σ ∈ Sm
(
R2d

)
then for every s ≥ 0, 0 < q ≤ ∞, there exists a sequence hτ ∈ `q〈·〉s(Λ) with

‖hτ‖`q〈·〉s ≤ C for every τ ∈ [0, 1] such that

|〈OpBJ (σ)π (µ) g, π (λ) g〉| ≤ 〈µ〉m
∫ 1

0

hτ (λ− µ)dτ, ∀λ, µ ∈ Λ.

Corollary 4.2.12. ([7, Corollary 3.10]) Consider m ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Then
OpBJ(σ), from S(Rd) to S ′(Rd), extends uniquely to a bounded operator

OpBJ(σ) : Mp,q
〈·〉r+m(Rd)→Mp,q

〈·〉r (R
d),

for every r ∈ R.



Proof. The proof is similar to the one of Proposition 4.2.7, using the decay for Gabor matrix
of OpBJ(σ) found in Theorem 4.2.10, with hτ replaced by

∫ 1

0
hτ (·)dτ . Then, for t ≥ 1 we use

Minkowski’s inequality to write∥∥∥∥∫ 1

0

hτ (·)dτ
∥∥∥∥
`t〈·〉s

≤
∫ 1

0

‖hτ‖`t〈·〉sdτ ≤ C.

For t < 1 we use the inclusion relations (2.40) and majorize∥∥∥∥∫ 1

0

hτ (·)dτ
∥∥∥∥
`t〈·〉s

.

∥∥∥∥∫ 1

0

hτ (·)dτ
∥∥∥∥
`1
〈·〉s̃

,

with s̃ ≥ 0 such that 1/t+ s/(2d) < 1 + s̃/(2d), that is

s̃ >
2d

t
(1− t),

and we proceed as above.



Chapter 5

Quasi-Banach modulation spaces
and localization operators on locally
compact abelian groups

The first important achievement presented in this chapter is a new definition, due to E. Cordero
and the author [8], of modulation spaces Mp,q

m over a LCA group G with indexes 0 < p, q ≤ ∞.
Concretely, we shall set

Mp,q
m (G) := {f ∈ S ′0(G) |Vgf ∈W (L∞, Lp,qm )(G × Ĝ)},

where S ′0(G) is the dual of the Feichtinger algebra, g is a suitable window andW (L∞, Lp,qm )(G×Ĝ)

the Wiener amalgam space on G × Ĝ with local component L∞ and global one Lp,qm . The quasi-
norm is the natural one:

‖f‖Mp,q
m

:= ‖Vgf‖W (Lp,qm )

:=

∫
Ĝ

(∫
G

ess sup
(u,ω)∈Q+(x,ξ)

|Vgf(u, ω)|pm(x, ξ)p dx

) q
p

dξ

 1
q

,

where Q ⊆ G × Ĝ is a suitable unit neighbourhood; the modifications when p =∞ or q =∞ are
obvious.
We shall see that such definition recovers all the already known modulation spaces, i.e. it
coincides with

(i) Mp,q
m (Rd) with 0 < p, q ≤ ∞;

(ii) Mp,q
m (G) with 1 ≤ p, q ≤ ∞, any G LCA group.

The novelty of the definition here presented relies in the fact that it allows us to deal with
the quasi-Banach case, i.e. p < 1 or q < 1, on every G LCA group, not only the Euclidean
space Rd. Moreover, we prove that if G is discrete or compact, then we can consider the “usual”
Lp,qm -quasi-norm of the STFT instead of the Wiener one. Namely, if G is discrete or compact,
then

Mp,q
m (G) = {f ∈ S ′0(G) |Vgf ∈ Lp,qm (G × Ĝ)}.



122 CHAPTER 5. QUASI-BANACH Mp,q
m AND Aψ1,ψ2

a ON G LCA

If the above equality holds true for every LCA group is still an open problem.
Technically speaking, the new definition of Mp,q

m (G) was inspired by the idea of H. G. Fe-
ichtinger and K. Gröchenig in [58]: to view modulation spaces on G as particular coorbit spaces
over the Heisenberg group G×Ĝ ×T. However, the coorbit theory proposed by H. G. Feichtinger
and K. Gröchenig in their works [58, 59, 60] is not suitable for the quasi-Banach case. The right
construction is provided by the new coorbit theory started by H. Rauhut in [119] and developed
by F. Voigtlaender in his Ph.D. thesis [147], see also the more recent contribution [146]. The
reader can find a short survey of the mentioned coorbit theory for quasi-Banach spaces in Chap-
ter 2, Section 2.2.

The second most important contribution shown in this chapter is a number of bounded-
ness results for cross-Rihaczek distribution R(f, g) (2.96) and pseudo-differential operators with
Kohn-Nirenberg symbol Op0(σ) (2.216). Concerning the mapping R between modulation spaces,
we address the reader to Proposition 5.2.2, which borrows techniques from[31, Theorem 3.1] and
[25, Theorem 4]. As a consequence, we have the boundedness result for Op0(σ) between modu-
lation spaces, which generalizes [31, Theorem 5.1]. A result similar to Theorem 3.1.2 is obtained
for Kohn-Nirenberg operators as well, although the techniques are way much different due to the
high level of technicalities. Indeed, we first need to prove Gabor frame expansions for Mp,q

m (G),
which are done by mean of quasi-lattices on groups [88], then we work on a quotient group derived
form G × Ĝ instead of the whole phase-space. See Theorem 5.2.17 and its proof carefully. Once
this result is established, we easily infer Proposition 5.2.18 about L2-eigenfunctions of Op0(σ).
We report the statement for sake of clarity:

Consider a symbol σ on the phase space such that for some 0 < p < ∞ we have σ ∈⋂
γ>0M

p,γ(G × Ĝ). If λ ∈ σP (Op0(σ)) r {0}, then any eigenfunction f ∈ L2(G) with eigenvalue
λ satisfies f ∈

⋂
γ>0M

γ(G).

Moreover, once we have proved Theorem 5.2.11 and 5.2.12, i.e. continuity for coefficient Cg
and synthesis C∗g operators on modulation spaces, we get new convolution relations for Mp,q

m (G)
in Proposition 5.2.14. This is the natural generalization of what is proved for the Euclidean case
in [9], see Proposition 2.5.19.

The third and last major contribution this chapter presents concerns localization operators
Aψ1,ψ2
a in the same fashion of [9], see Theorem 3.2.1. Namely, using the representation of Aψ1,ψ2

a

as Kohn-Nirenberg operator
Aψ1,ψ2
a = Op0(a ∗R(ψ2, ψ1)),

see Proposition 5.3.2, the main result of [8] Theorem 5.3.3 is obtained:

Let 0 < p < ∞ and a ∈ Mp,∞(G × Ĝ). Consider ψ1, ψ2 ∈ SC(G) r {0}. Suppose that
σP (Aψ1,ψ2

a ) r {0} 6= ∅ and λ ∈ σP (Aψ1,ψ2
a ) r {0}. Then any eigenfunction f ∈ L2(G) with

eigenvalue λ satisfies
f ∈

⋂
γ>0

Mγ(G).

The chapter is structured as follows. Section 5.1 is devoted to the construction of modula-
tion spaces over G and the study of their main expected properties. There we make a specific
choice for every item from A to J presented in Chapter 2 Subsection 2.2.5. Subsection 5.2.1
deals with continuity for the Rihaczek distribution between modulation spaces and a first re-
sult for Kohn-Nirenberg operators Op0(σ). In Subsection 5.2.2 we put to work quasi-lattices in
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order to have frames expansion in the new modulation spaces. The new convolutions relations
for Mp,q

m (G) Proposition 5.2.14 are presented here. Subsection 5.2.3 contains the result for L2-
eigenfunction of Op0(σ). Eventually, Section 5.3 is devoted to the main result Theorem 5.3.3
about L2-eigenfunction of localization operators Aψ1,ψ2

a over G LCA group.

We recall that Assumptions 2.2.2 on G hold in this chapter even if not explicitly stated.

5.1 Quasi-Banach modulation spaces on LCA groups
The following concepts are taken for granted and can be found in Chapter 2: left Lx and right Rx
translations, relatively separated families, a discrete space Yd associated to Y , BUPUs, maximal
functions MQf , Wiener amalgam spaces WQ(Y ) = WQ(L∞, Y ). Definition 2.2.3 contains the
hypothesis on weights and the classMv used in what follows. Note that the coorbit space con-
struction is listed in items A – J (unitary representation ρ, wavelet transformW ρ

g f , assumptions
on weights, sets Gv, Arv, Tv, Rv) in Subsection 2.2.5 of Chapter 2. Each of these items will be
revisited in this section under specific choices, see list A′ –J′ below.

Relying on the theory Chapter 2 Subsection 2.2.5, we are able to give a definition of mod-
ulation spaces on LCA groups which covers Feichtinger’s orginal one [56] and deals with the
quasi-Banach case. The subsequent construction of Mp,q

m (G) was suggested for the Banach case
in [58, p. 67], although the coorbit theory applied here is different.

Since the group HG defined below is noncommutative, we adopt the multiplicative notation
for its operation.

Definition 5.1.1. Let T be the torus with the complex multiplication. We define theHeisenberg-
type group associated to G, Heisenberg group for short, as

(5.1) HG := G × Ĝ × T,

endowed with the product topology and the following operation:

(5.2) (x, ξ, τ)(x′, ξ′, τ ′) = (x+ x′, ξ + ξ′, ττ ′〈ξ′, x〉) ,

for (x, ξ, τ), (x′, ξ′, τ ′) ∈ HG.

The group HG is also called Mackey obstruction group of G × Ĝ, see [20, Section 4], in
particular Example 4.6 therein.

Lemma 5.1.2. ([8, Lemma 3.2]) The topological product space HG with the operation in (5.2) is a
topological LCH, σ-compact, noncommutative, unimodular group with Haar measure the product
measure dxdξdτ , dx and dξ being dual Haar measures on G and Ĝ and dτ(T) = 1.

Proof. Hausdorff property, local compactness, σ-compactness and noncommutativity are trivial.
For the proof that HG is a topological unimodular group we refer to Theorem 3 in [100], for the
bi-invariance of dxdξdτ see [100, p. 12] or, alternatively, [20, Lemma 4.3].

The identity in HG is (e, ê, 1) and the inverse of an element (x, ξ, τ) is

(x, ξ, τ)−1 = (−x,−ξ, τ〈ξ, x〉).

Lemma 5.1.3. ([8, Lemma 3.3]) The mapping

(5.3) % : HG → U(L2(G)), (x, ξ, τ) 7→ τMξTx

is a unitary, strongly continuous, irreducible, integrable representation of HG on L2(G). We call
% Schrödinger representation.
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Proof. Well-posedness of % is trivial, from the commutations relations (2.93) it is straightforward
to see that % is a group homomorphism. Observe that

π : G × Ĝ → U(L2(G)), (x, ξ) 7→MξTx

is a projective representation in the terminology of [20, Definition 4.1]. In fact, (i) π(e, ê) = IL2 ;
(ii) from the commutation relations (2.93) we obtain

π ((x, ξ) + (x′, ξ′)) = 〈ξ′, x〉π(x, ξ)π(x′, ξ′),

where 〈·,·〉 is continuous on G × Ĝ; (iii) the continuity of the STFT guarantees the required
measurability. To verify that % is strongly continuous, one can proceed as in the Euclidean case,
see e.g. [35]. The result then follows from [20, Lemma 4.4 (ii)].
The fact that % is irreducible was proved in [100], see page 14 before §5. For the integrability,
consider the Gaussian ϕ ∈ L2(G) in (2.94) and observe that the torus is compact and

∣∣W %
ϕϕ
∣∣ =

|Vϕϕ| (see (2.41) for the definition of W %
ϕϕ). Then from (2.100) we have Vϕϕ ∈ L1(G × Ĝ) and

W %
ϕϕ ∈ L1(HG). This concludes the proof.

Definition 5.1.4. We define the extension of m ∈Mv(G × Ĝ) as

(5.4) m̃ : HG → (0,+∞), (x, ξ, τ) 7→ m(x, ξ).

For 0 < p, q ≤ ∞, the space Lp,qm̃ (HG) consists of those equivalence classes of measurable complex-
valued functions on HG, where two functions are identified if they coincide a.e., for which the
following application is finite

(5.5) ‖F‖Lp,qm̃ (HG) := ‖F‖Lp,qm̃ :=

(∫
Ĝ×T

(∫
G
|F (x, ξ, τ)|pm(x, ξ)p dx

) q
p

dξdτ

) 1
q

,

obvious modifications for p =∞ or q =∞.

(Lp,qm̃ (HG), ‖·‖Lp,qm̃ (HG)) is a solid QBF space on HG . If m is moderate with respect to a

submultiplicative weight v on G × Ĝ, then m̃ is left- and right-moderate w.r.t. ṽ on HG , ṽ as in
(5.4). Therefore Lp,qm̃ (HG) is left and right invariant, see Definition 2.2.15.

Lemma 5.1.5. Consider 0 < p, q ≤ ∞. Then ‖·‖Lp,qm̃ (HG) is an r-norm on Lp,qm̃ (HG) with
r := min{1, p, q}.

Proof. This is just Lemma 2.2.26 with X = G and Y = Ĝ × T.

Lemma 5.1.6. ([8, Lemma 3.6]) Consider m ∈Mv(G×Ĝ) and 0 < p, q ≤ ∞. Then there exists
C = C(m, v) > 0 such that for any F ∈ Lp,qm̃ (HG) and (x, ξ, τ) ∈ HG
(5.6)

∥∥R(x,ξ,τ)F
∥∥
Lp,qm̃
≤ Cv(−x,−ξ) ‖F‖Lp,qm̃ ,

∥∥L(x,ξ,τ)F
∥∥
Lp,qm̃
≤ Cv(x, ξ) ‖F‖Lp,qm̃ .

Proof. The claim is a straightforward calculation which follows by the bi-invariance of the Haar
measure on HG . For p, q 6=∞,∥∥R(x,ξ,τ)F

∥∥q
Lp,qm̃

=

∫
Ĝ×T

(∫
G
|F ((u, ω, t)(x, ξ, τ))|p m̃(u, ω, t)p du

) q
p

dωdt

.
m,v

∫
Ĝ×T

(∫
G
|F (u′, ω′, t′)|p m̃(u′, ω′, t′)pṽ((x, ξ, τ)−1)p du′

) q
p

dω′dt′

= v(−x,−ξ)q ‖F‖qLp,qm̃ .

Left translations are treated similarly, as well as the cases p =∞ or q =∞.
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Due to the symmetry of v (Definition 2.2.3), the first inequality in (5.6) reads as∥∥R(x,ξ,τ)F
∥∥
Lp,qm̃
≤ Cv(x, ξ) ‖F‖Lp,qm̃ .

Lemma 5.1.7. ([8, Lemma 3.7]) Let 0 < p, q ≤ ∞. Fix VG ⊆ G and VĜ ⊆ Ĝ open, relatively
compact, neighbourhoods of e ∈ G and ê ∈ Ĝ, respectively. Define

(5.7) V := VG × VĜ × T.

Consider m ∈Mv(G × Ĝ). Then there exists C = C(m, v) > 0 such that for every (x, ξ, τ) ∈ HG

(5.8)
∣∣∣∣∣∣R(x,ξ,τ)

∣∣∣∣∣∣
WV (Lp,qm̃ )→WV (Lp,qm̃ )

≤ Cv(−x,−ξ).

Proof. V is a open, relatively compact, unit neighbourhood and the set

(5.9) V1,2 := VG × VĜ

is also open, relatively compact, unit neighbourhood in G × Ĝ. For F ∈ L∞loc(HG)

(5.10) MV [R(x,ξ,τ)F ] = MV (x,ξ,τ)F,

see [147, Lemma 2.3.18, 1.]. For any (x, ξ, τ) ∈ HG

V (x, ξ, τ) = (VG + x)×
(
VĜ + ξ

)
×
⋃
u∈VG

Tτ〈ξ, u〉 = (x, ξ, τ)V.

If F ∈WV (Lp,qm̃ ) and (x, ξ, τ) ∈ HG , from what just observed we obtain:

MV [R(x,ξ,τ)F ](u, ω, t) = ess sup
(y,η,s)∈(u,ω,t)(x,ξ,τ)V

|F (y, η, s)| = R(x,ξ,τ)[MV F (u, ω, t)].

Eventually by using (5.6)∥∥R(x,ξ,τ)F
∥∥
WV (Lp,qm̃ )

=
∥∥MV [R(x,ξ,τ)F ]

∥∥
Lp,qm̃

=
∥∥R(x,ξ,τ)[MV F ]

∥∥
Lp,qm̃

≤ Cv(−x,−ξ) ‖MV F‖Lp,qm̃ = Cv(−x,−ξ) ‖F‖WV (Lp,qm̃ ) ,

for some C = C(m, v) > 0. This concludes the proof.

As already highlighted, inequality (5.8) can be equivalently written with v(x, ξ) in place of
v(−x,−ξ). Observe that the constant C involved in (5.6) and (5.8) is the one coming from the
v-moderateness condition: m((x, ξ) + (u, ω)) ≤ Cv(x, ξ)m(u, ω).

Corollary 5.1.8. ([8, Corollary 3.8]) Let 0 < p, q ≤ ∞. Consider Q ⊆ HG measurable, relatively
compact, unit neighbourhood and m ∈Mv(G × Ĝ). Then there exists CQ = C(Q,m, v) > 0 such
that for every (x, ξ, τ) ∈ HG

(5.11)
∣∣∣∣∣∣R(x,ξ,τ)

∣∣∣∣∣∣
WQ(Lp,qm̃ )→WQ(Lp,qm̃ )

≤ CQv(−x,−ξ).

Proof. The claim follows from the independence of the Wiener Amalgam space W (Lp,qm̃ ) from
the window subset (Lemma 2.2.24) together with Lemma 5.1.7.



126 CHAPTER 5. QUASI-BANACH Mp,q
m AND Aψ1,ψ2

a ON G LCA

Remark 5.1.9. ([8, Remark 3.9]) Consider the (generalized) wavelet transform induced by the
Schrödinger representation % in (2.41) taking G = HG and f, g ∈ H = L2(G):

(5.12) W %
g f : HG → C, (x, ξ, τ) 7→ 〈f, τMξTxg〉L2(G).

This is a continuous and bounded function. It is straightforward to see that

(5.13) W %
g f(x, ξ, τ) = 〈f, τMξTxg〉 = τVgf(x, ξ), ∀ (x, ξ, τ) ∈ HG ,

which implies

(5.14)
∣∣W %

g f(x, ξ, τ)
∣∣ = |Vgf(x, ξ)| , ∀ (x, ξ, τ) ∈ HG .

Therefore for f, g ∈ L2(G), being T compact,

(5.15) W %
g f ∈ L

p,q
m̃ (HG) ⇔ Vgf ∈ Lp,qm (G × Ĝ)

and

(5.16) W %
g f ∈W (L∞(HG), Lp,qm̃ (HG)) ⇔ Vgf ∈W (L∞(G × Ĝ), Lp,qm (G × Ĝ)).

We are now able to revisit steps A – J, in Subsection 2.2.5 of Chapter 2, as follows.

A′. For G = HG the Heisenberg group associated to G, H = L2(G) and ρ = % : HG → L2(G)
the Schrödinger representation, the requirements of A are fulfilled due to Lemma 5.1.2
and 5.1.3.

B′. W %
g f was described in (5.12) and the integrability of % was proved in Lemma 5.1.3 as well

as that every element of SC(G) is admissible for %.

C′. Take Y = Lp,qm̃ (HG) (Definition 5.1.4) and r = min{1, p, q} (Lemma 5.1.5).

D′. The right invariance for each measurable, relatively compact, unit neighbourhood Q ⊆ HG
of WQ(L∞, Lp,qm̃ ) is guaranteed by the right invariance of Lp,qm̃ (HG), Lemma 5.1.6 and
Lemma 2.2.24. Since HG is unimodular, (2.42) and (2.43) can be summarized as

(5.17) w(x, ξ, τ) &
Q

∣∣∣∣∣∣R(x,ξ,τ)±1

∣∣∣∣∣∣
WQ(Lp,qm̃ )→WQ(Lp,qm̃ )

,

for some (hence every) measurable, relatively compact, unit neighbourhood Q ⊆ HG .
Therefore, on account of (5.11) and the definition ofMv(G × Ĝ), we can take w = ṽ the
extension of v defined as in (5.4).

E′. We take ṽ as control weight for Lp,qm̃ (HG), see E.

F′. The class of good vectors we are considering is

(5.18) Gṽ :=
{
g ∈ L2(G) |W %

g g ∈ L1
ṽ

}
.

We shall prove that it is nontrivial.

G′. Our class of analysing vectors is

(5.19) Arṽ :=
{
g ∈ L2(G) |W %

g g ∈WR(L∞,W (L∞, Lrṽ))
}
.
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It is due to [147, Lemma 2.4.9] that Arṽ is a vector space, as observed in the proof of [147,
Theorem 2.4.9], and that

(5.20) W %
hg ∈W

R(L∞,W (L∞, Lrṽ))

for every g, h ∈ Arṽ.

Lemma 5.1.10. ([8, Lemma 3.10]) Let us define

(5.21) Aṽ := Aṽ(G) :=
⋂

0<r≤1

Arṽ.

The following inclusions hold true:

(5.22) SC(G) ⊆ Aṽ ⊆ Gṽ.

Proof. The only inclusion to be shown is the first one, the second one was already mentioned in
Remark 2.2.35 (ii). Fix 0 < r ≤ 1. First, we show that the Gaussian ϕ ∈ L2(G) in (2.94) belongs
to Arṽ. From (2.100):

W %
ϕϕ(x, ξ, τ) = τc(K)e−

π
2 (x2

1+ξ2
1) ⊗ χK×K⊥(x2, ξ2) = τVϕϕ(x, ξ),

for some c(K) > 0. Take V ⊆ HG as in (5.7) and observe that if F ∈ L∞loc(HG)

MV [MR
V F ](x, ξ, τ) = ess sup

(u,ω,t)∈(x,ξ,τ)V

∣∣∣∣∣ ess sup
(y,η,s)∈V (u,ω,t)

|F (y, η, s)|

∣∣∣∣∣ ≤ ess sup
(y,η,s)∈V (x,ξ,τ)V

|F (y, η, s)| .

If F = W %
ϕϕ, adopting notation of (5.9), we get

MV [MR
VW

%
ϕϕ](x, ξ, τ) ≤ ess sup

(y,η,s)∈V (x,ξ,τ)V

|sVϕϕ(y, η)| = ess sup
(y,η)∈V1,2+(x,ξ)+V1,2

|Vϕϕ(y, η)|

= ess sup
(y,η)∈(x,ξ)+2V1,2

|Vϕϕ(y, η)| = M2V1,2
Vϕϕ(x, ξ),

where 2V1,2 := V1,2 + V1,2 is a open, relatively compact, unit neighbourhood in G × Ĝ.
From the solidity of Lrṽ,

(5.23)
∥∥W %

ϕϕ
∥∥
WR(W (Lrṽ))

�
∥∥W %

ϕϕ
∥∥
WR
V (WV (Lrṽ))

≤
∥∥M2V1,2Vϕϕ

∥∥
Lrv(G×Ĝ)

and we shall prove the right-hand side to be finite. Due to the arbitrariness of VG and VĜ , we
can assume that

(5.24) V1,2 = VG × VĜ ∼= (E1 ×D1)× (E2 ×D2) ∼= (E1 × E2)× (D1 ×D2) ,

where E1, E2 ⊆ Rd, D1 ⊆ G0 and D2 ⊆ Ĝ are open, relatively compact, unit neighbourhoods.
As done previously,

E1,2 := E1 × E2 ⊆ R2d, D1,2 := D1 ×D2 ⊆ G0 × Ĝ0,

2E1,2 := E1,2 + E1,2, 2D1,2 := D1,2 +D1,2.
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Hence

M2V1,2
Vϕϕ(x, ξ) = c(K) ess sup

((y1,η1),(y2,η2))∈
((x1,ξ1),(x2,ξ2))+2E1,2×2D1,2

∣∣∣e−π2 (y2
1+η2

1)χK×K⊥(y2, η2)
∣∣∣

= c(K) ess sup
(y1,η1)∈(x1,ξ1)+2E1,2

∣∣∣e−π2 (y2
1+η2

1)
∣∣∣ ess sup

(y2,η2)∈(x2,ξ2)+2D1,2

|χK×K⊥(y2, η2)| .

Since v(x, ξ) is submultiplicative, using the structure theorem we can majorize as follows:

v(x, ξ) = v((x1, ξ1), (x2, ξ2)) ≤ v((x1, ξ1), (e0, ê0))v((0, 0), (x2, ξ2)),

where x = (x1, x2) ∈ Rd × G0, ξ = (ξ1, ξ2) ∈ Rd × Ĝ0. Let us define

v1(x1, ξ1) := v((x1, ξ1), (e0, ê0)), v2(x2, ξ2) := v((0, 0), (x2, ξ2)),

(x1, ξ1) ∈ R2d and (x2, ξ2) ∈ G0 × Ĝ0, which are still submultiplicative. Hence∥∥M2V1,2Vϕϕ
∥∥r
Lrv(G×Ĝ)

≤c(K)r
∫
R2d

ess sup
(y1,η1)∈(x1,ξ1)+2E1,2

∣∣∣e−π2 (y2
1+η2

1)
∣∣∣r v1(x1, ξ1)r dx1dξ1︸ ︷︷ ︸

=:I1

×
∫
G0×Ĝ0

ess sup
(y2,η2)∈(x2,ξ2)+2D1,2

|χK×K⊥(y2, η2)| v2(x2, ξ2)r dx2dξ2︸ ︷︷ ︸
=:I2

.

For N > 2d and considering the weight 〈·〉 := (1 + | · |2)1/2, we can write

I1 =

∫
R2d

〈(x1, ξ1)〉N

〈(x1, ξ1)〉N
ess sup

(y1,η1)∈(x1,ξ1)+2E1,2

∣∣∣e−π2 (y2
1+η2

1)
∣∣∣r v1(x1, ξ1)r dx1dξ1

≤
∫
R2d

1

〈(x1, ξ1)〉N
ess sup

(y1,η1)∈(x1,ξ1)+2E1,2

[
e−

rπ
2 (y2

1+η2
1)v1(y1, η1)r〈(y1, η1)〉N

]
dx1dξ1

≤
∫
R2d

1

〈(x1, ξ1)〉N
ess sup

(y1,η1)∈R2d

[
e−

rπ
2 (y2

1+η2
1)v1(y1, η1)r〈(y1, η1)〉N

]
dx1dξ1.

In fact,

ess sup
(y1,η1)∈(x1,ξ1)+2E1,2

e−
rπ
2 (y2

1+η2
1)〈(x1, ξ1)〉Nv1(x1, ξ1)r

≤ ess sup
(y1,η1)∈(x1,ξ1)+2E1,2

[
e−

rπ
2 (y2

1+η2
1)v1(y1, η1)r〈(y1, η1)〉N

]
≤ ‖e

−rπ
2 |·|

2

vr1(·)〈·〉N‖L∞(R2d) < +∞

because v1 is submultiplicative so it can grow at most exponentially [35, Lemma 2.1.4]. Hence
I1 < +∞.
We now study the integral I2. Observe that the integrand is not equal to zero if and only if
(K × K⊥) ∩ ((x2, ξ2) + 2D1,2) 6= ∅, which means that there exist k ∈ K × K⊥ and h ∈ 2D1,2,
all depending on (x2, ξ2), such that k = (x2, ξ2) + h if and only if (x2, ξ2) = k − h, which
implies (x2, ξ2) ∈ K × K⊥ − 2D1,2. Equivalently, (x2, ξ2) /∈ K × K⊥ − 2D1,2 if and only if

ess sup
(y2,η2)∈(x2,ξ2)+2D1,2

|χK×K⊥(y2, η2)| = 0, that implies

ess sup
(y2,η2)∈(x2,ξ2)+2D1,2

|χK×K⊥(y2, η2)| ≤ χK×K⊥−2D1,2
(x2, ξ2).
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Note that K×K⊥− 2D1,2 is relatively compact, hence of finite measure. The local boundedness
of the submultiplicative weight v2, shown in [147, Theorem 2.2.22], ensures that the integral on
G0 × Ĝ0 is finite.
So far we have shown ϕ ∈ Arṽ. We now consider f =

∑n
k=1 akπ(uk, ωk)ϕ ∈ SC(G) and apply

(5.23), Lemma 2.3.30 and left/right invariance of W2V1,2(Lrv(G × Ĝ)):∥∥∥W %
f f
∥∥∥
WR
V (WV (Lrṽ))

≤
∥∥M2V1,2

Vff
∥∥
Lrv(G×Ĝ)

= ‖Vff‖W2V1,2
(Lrv(G×Ĝ))

=

∥∥∥∥∥∥
n∑

k,j=1

akaj〈ξ − ωk, uk〉〈ωj , x− uk〉T(uk,ωk)−(uj ,ωj)Vϕϕ(x, ξ)

∥∥∥∥∥∥
W2V1,2

(Lrv(G×Ĝ))

.
n,r

n∑
k,j=1

|akaj |
∥∥T(uk,ωk)−(uj ,ωj)Vϕϕ(x, ξ)

∥∥
W2V1,2

(Lrv(G×Ĝ))
< +∞.

This concludes the proof.

Of course, Aṽ is a vector space. We shall use the extended notation Aṽ(G) only when
confusion may occur. It is also clear that writing Aṽ(G × Ĝ) we mean the weight v to be defined
on (G × Ĝ)× (Ĝ × G), as done in the subsequent Corollary 5.1.11.

Corollary 5.1.11. ([8, Corollary 3.11]) Let f, g ∈ SC(G), then R(f, g) ∈ Aṽ(G × Ĝ).

Proof. The proof follows the same arguments in Lemma 5.1.10, together with (2.97) and Lemma
2.3.30.

H′. For a fixed g ∈ Gṽ r {0}, the space of test vectors is

(5.25) Tṽ :=
{
f ∈ L2(G) |W %

g f ∈ L1
ṽ(HG)

}
endowed with the norm

(5.26) ‖f‖Tṽ :=
∥∥W %

g f
∥∥
L1
ṽ

.

(Tṽ, ‖·‖Tṽ ) is a %-invariant Banach space which embeds continuously into L2(G) and it is inde-
pendent from the choice of the window vector g ∈ Gṽ r {0}, see [147, Lemma 2.4.7].

Lemma 5.1.12. ([8, Lemma 3.12]) For any g ∈ SC(G) r {0}, the following equality holds true

(5.27) Gṽ = Tṽ =
{
f ∈ L2(G) |Vgf ∈ L1

v(G × Ĝ)
}
.

Proof. The second equality is just Remark 5.1.9, for the first one the proof follows the pattern
of [15, Proposition 3.6]. From [147, Lemma 2.4.7]: Gṽ ⊆ Tṽ. Being the Duflo-Moore operator
([47, Theorem 3]) the identity, the orthogonality relations for f, h ∈ L2(G) and g, γ ∈ Gṽ are

〈W %
g f,W

%
γ h〉L2(HG) = 〈γ, g〉L2(G)〈f, h〉L2(G),
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see [147, Theorem 2.4.3]. Fix f ∈ Tṽ, take γ = g 6= 0, h = %(x, ξ, τ)f and using Fubini’s Theorem,
symmetry and submultiplicativity of ṽ we compute∥∥∥W %

f f
∥∥∥
L1
ṽ

=

∫
HG
|〈f, %(x, ξ, τ)f〉| ṽ(x, ξ, τ) dxdξdτ

=
1

‖g‖2L2

∫
HG

∣∣〈W %
g f,W

%
g [%(x, ξ, τ)f ]〉

∣∣ ṽ(x, ξ, τ) dxdξdτ

≤ 1

‖g‖2L2

∫
HG

∫
HG

∣∣W %
g f(y, η, s)W %

g [%(x, ξ, τ)f ](y, η, s)
∣∣ dydηds ṽ(x, ξ, τ) dxdξdτ

=
1

‖g‖2L2

∫
HG

∣∣W %
g f(y, η, s)

∣∣ (∫
HG

∣∣W %
g [%(x, ξ, τ)f ](y, η, s)

∣∣ ṽ(x, ξ, τ) dxdξdτ

)
dydηds.

Observe

W %
g [%(x, ξ, τ)f ](y, η, s) = 〈%(x, ξ, τ)f, %(y, η, s)g〉 = W %

g f
(
(x, ξ, τ)−1(y, η, s)

)
,

so that ∥∥∥W %
f f
∥∥∥
L1
ṽ

≤ 1

‖g‖2L2

∫
HG

∣∣W %
g f(y, η, s)

∣∣
×
(∫

HG

∣∣W %
g f
(
(x, ξ, τ)−1(y, η, s)

)∣∣ ṽ(x, ξ, τ) dxdξdτ

)
dydηds

≤ 1

‖g‖2L2

∫
HG

∣∣W %
g f(y, η, s)

∣∣
×
(∫

HG

∣∣W %
g f(x′, ξ′, τ ′)

∣∣ ṽ(x′, ξ′, τ ′)ṽ(y, η, s) dx′dξ′dτ ′
)
dydηds

=
1

‖g‖2L2

(∫
HG

∣∣W %
g f(x′, ξ′, τ ′)

∣∣ ṽ(x′, ξ′, τ ′) dx′dξ′dτ ′
)2

=
1

‖g‖2L2

∥∥W %
g f
∥∥2

L1
ṽ

< +∞.

Hence f ∈ Gṽ and the proof in concluded.

Lemma 5.1.13. ([8, Lemma 3.13]) SC(G) is dense in (Tṽ, ‖·‖Tṽ ).

Proof. In Lemma 5.1.10 we have shown that the Gaussian ϕ in (2.94) belongs to Gṽ. Then from
[147, Lemma 2.4.7, 5.] we have that

S%C(G) := span {%(x, ξ, τ)ϕ | (x, ξ, τ) ∈ HG}

is dense in (Tṽ, ‖·‖Tṽ ). The claim follows from the trivial fact that S%C(G) = SC(G).

I′. The reservoir is the Banach space

(5.28) Rṽ := T ¬ṽ := {f : Tṽ → C | antilinear and continuous} .

Remark 5.1.14. ([8, Remark 3.14]) Recall the definition of S0(G) given in Definition 2.5.29. If
v ≡ 1, then

(5.29) T1 = G1 = S0(G), R1 = S ′0(G).
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If v is not constant, then

(5.30) Tṽ = Gṽ ↪→ S0(G), Rṽ ←↩ S ′0(G).

Corollary 5.1.15. ([8, Corollary 3.15]) The following inclusion holds true:

(5.31) Aṽ ⊆ C0(G),

the latter being the space of continuous complex-valued functions on G which vanish at infinity.

Proof. Combining Lemma 5.1.10 and Remark 5.1.14 we have Aṽ ⊆ Gṽ = Tṽ ⊆ S0(G). We
conclude using the fact that S0(G) ⊆ C0(G), see e.g. [101, Theorem 4.1].

J′. We extend the wavelet transform to f ∈ Rṽ and g ∈ Tṽ:

(5.32) W %
g f : HG → C, (x, ξ, τ) 7→ Rṽ 〈f, τMξTxg〉Tṽ .

From now on we shall simply write 〈·,·〉. Observe W %
g f ∈ C(HG) ∩ L∞1/ṽ(HG).

Remark 5.1.16. ([8, Remark 3.16]) The class SC(G) defined in (2.95) actually depends on the
compact open subgroup K in G0, where G ∼= Rd × G0. Then we might write SKC in place of SC.
Observe that if K′ is a compact open subgroup different from K Lemma 5.1.10 is still valid. More
generally, if K is the class of all compact open subgroups in G0:

(5.33) SC(G) :=
⋃
K∈K
SKC (G) ⊆ Aṽ ⊆ Gṽ.

Therefore, coorbit spaces (defined in the subsequent (5.34)) are independent of the window g ∈
SC(G). Concretely, this gives us the freedom to chose the subgroup K which fits better to our
purposes, as done in the proof of Lemma 5.1.38. Arguing similarly, we could replace e−πx

2
1 in

(2.94) with any e−ax
2
1 , a > 0. This fact will be used in Proposition 5.2.14.

From now on, for sake of simplicity, we shall only use the notation SC(G) with the convention
that K and the coefficient of the Gaussian on Rd can be chosen freely, so that we shall never
explicitly use the symbol SC(G).

K′. The coorbit space on HG with respect to Lp,qm̃ (HG), 0 < p, q ≤ ∞, is, for some fixed non-zero
window g ∈ SC(G),

(5.34) Co(Lp,qm̃ (HG)) := Co(Lp,qm̃ ) :=
{
f ∈ Rṽ |W %

g f ∈W (L∞, Lp,qm̃ (HG))
}

endowed with the quasi-norm

(5.35) ‖f‖ Co(Lp,qm̃ ) :=
∥∥W %

g f
∥∥
W (L∞,Lp,qm̃ )

.

We stress that Co(Lp,qm̃ ) is independent of the window g and ( Co(Lp,qm̃ ), ‖·‖ Co(Lp,qm̃ )) is a quasi-
Banach space continuously embedded into Rṽ. Moreover, ‖·‖ Co(Lp,qm̃ ) is a r-norm, with r =

min{1, p, q}. Notice that

Co(Lp,qm̃ (HG)) =
{
f ∈ Rṽ |Vgf ∈W (L∞, Lp,qm (G × Ĝ))

}
.

Remark 5.1.17. ([8, Remark 3.17]) It is clear from the general coorbit theory presented in
Chapter 2, that the set Aṽ defined in (5.21) is the maximal window space for all the coorbit
spaces Co(Lp,qm̃ ), 0 < p, q ≤ ∞. For sake of simplicity we shall mainly work with window
functions in the smaller class SC(G) and adopt the whole space Aṽ only when necessary, as done
in Section 5.2.
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The coorbit spaces are independent of the reservoir, in the sense shown below.

Proposition 5.1.18. ([8, Proposition 3.18]) Fix a non-zero window g ∈ SC(G), then

(5.36) Co(Lp,qm̃ (HG)) =
{
f ∈ S ′0(G) |W %

g f ∈W (L∞, Lp,qm̃ (HG))
}
,

in the sense that the restriction map{
f ∈ S ′0(G) |W %

g f ∈W (Lp,qm̃ )
}
→ Co(Lp,qm̃ (HG)), f 7→ f |Tṽ

is a bijection.

Proof. If v ≡ 1 the claim is trivial since T1 = S0 and R1 = S ′0, with equal norms, see Remark
5.1.14. If v is not constant, then v & 1 (since v is bounded from below), and the thesis follows
from what observed in Remark 5.1.14 and [147, Theorem 2.4.9, 3.].

Definition 5.1.19. Consider m ∈ Mv(G × Ĝ) and 0 < p, q ≤ ∞. The modulation space
Mp,q
m (G) is defined as

(5.37) Mp,q
m (G) := Co(Lp,qm̃ (HG)),

endowed with the quasi-norm

(5.38) ‖·‖Mp,q
m

:= ‖·‖ Co(Lp,qm̃ ) .

We adopt the notations Mp
m = Mp,p

m and Mp,q = Mp,q
1 .

Theorem 5.1.20. ([8, Theorem 3.20]) For 0 < p, q ≤ ∞, the modulation spaces (Mp,q
m (G), ‖·‖Mp,q

m
)

are quasi-Banach spaces continuously embedded into Rṽ which do not depend on the window func-
tion g ∈ SC(G) r {0}, in the sense that different windows yield equivalent quasi-norms.

Proof. Since (Mp,q
m (G), ‖·‖Mp,q

m
) = ( Co(Lp,qm̃ (HG)), ‖·‖ Co(Lp,qm̃ )), the claim follows from the coorbit

spaces theory, Lemma 5.1.10 and [147, Theorem 2.4.9].

Remark 5.1.21. ([8, Remark 3.21]) If g, h ∈ SC(G)r {0} (or Aṽ r {0}) and f ∈Mp,q
m (G), then

from the proof in [147, Theorem 2.4.9] we see that

(5.39) ‖W %
hf‖WQ(Lp,qm̃ )

.
Q,v,r

∥∥W %
g h
∥∥
WQ(Lrṽ)

‖g‖2L2

∥∥W %
g f
∥∥
WQ(Lp,qm̃ )

=
‖h‖Mr

v (G)

‖g‖2L2

∥∥W %
g f
∥∥
WQ(Lp,qm̃ )

,

where r = min{1, p, q} as in C′; actually we could replace r with any r′ such that 0 < r′ ≤ r.
In the Banach case we have r = 1 and recapture [82, (11.33)], after taking into account Theorem
5.1.33 and Remark 5.1.37.

In order to prove the expected inclusion relations between modulation spaces, we need par-
ticular types of relatively separated families, BUPUs and discrete spaces. The proofs of some
subsequent lemmas are omitted because well known or trivial.

Lemma 5.1.22. ([8, Lemma 3.22]) Let Q,Q′ ⊆ HG be relatively compact, unit neighbourhoods
and F = {(xl, ξl, τl)}l∈L ⊆ HG relatively separated family, consider 0 < p, q ≤ ∞ and m ∈
Mv(G × Ĝ). Then

(Lp,qm̃ (HG))d(F, Q) = (Lp,qm̃ (HG))d(F, Q
′)

with equivalent quasi-norms. Moreover, the equivalence constants depend only on Q, Q′, m and
v: ∥∥(λl)l∈L

∥∥
(Lp,qm̃ (HG))d(F,Q)

�
Q,Q′,m,v

∥∥(λl)l∈L
∥∥

(Lp,qm̃ (HG))d(F,Q′)
.

In particular, they do not depend on F or p and q.
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Proof. From (5.6) we have that for every 0 < p, q ≤ ∞ and (x, ξ, τ) ∈ HG∣∣∣∣∣∣R(x,ξ,τ)

∣∣∣∣∣∣
Lp,qm̃ →L

p,q
m̃

≤ Cv(x, ξ),

where C = C(m, v) > 0 is the constant of v-moderateness form. Since Lp,qm̃ (HG) is right invariant,
the proof goes like the one of [147, Lemma 2.3.16] applying the additional majorization above.

Lemma 5.1.23. ([8, Lemma 3.23]) Let Q,U ⊆ HG be relatively compact, unit neighbourhoods,
∆ = {δl}l∈L U -BUPU on HG with U -localizing family F = {(xl, ξl, τl)}l∈L ⊆ HG, consider
0 < p, q ≤ ∞ and m ∈Mv(G × Ĝ).Then

‖f‖WQ(Lp,qm̃ (HG)) �
Q,U,F,m,v

∥∥(‖δl · f‖L∞)
l∈L

∥∥
(Lp,qm̃ (HG))d(F,Q)

.

In particular, the equivalence constants do not depend on p and q.

Proof. The result come from the proof [147, Theorem 2.3.17], see (2.26), together with Lemma
5.1.22.

Lemma 5.1.24. ([8, Lemma 3.24]) Consider X = {xi}i∈I ⊆ G, Ξ = {ξj}j∈J ⊆ Ĝ and T =
{τz}z∈Z ⊆ T relatively separated families. Then X := X × Ξ× T is a relatively separated family
in HG.

We remark that if the group is σ-compact, then any relatively separated family is (at most)
countable, Lemma 2.2.17.

Lemma 5.1.25. ([8, Lemma 3.25]) Let U ⊆ G and D ⊆ Ĝ be relatively compact, unit neigh-
bourhoods. Consider Ψ = {ψi}i∈I U -BUPU with localizing family X = {xi}i∈I and Γ = {γj}j∈J
D-BUPU with localizing family Ξ = {ξj}j∈J . Then

(5.40) Ψ⊗ Γ⊗ I := {ψi ⊗ γj ⊗ χT, (i, j) ∈ I × J}

is a U ×D × T-BUPU in HG with localizing family X := X × Ξ× {1}.

The following is a generalization of Lemma 2.2.19 and we follow the pattern of its proof.
Although we present it for the Heisenberg group HG ∼= G ×

(
Ĝ × T

)
, it can be easily adapted to

any product group G1 × G2, G1 and G2 even not abelian. A similar result for 1 ≤ p = q ≤ ∞
had been stated in [54, Remark 4, p. 518] without proof.

Lemma 5.1.26. ([8, Lemma 3.26]) Consider X = {xi}i∈I ⊆ G and Ξ = {ξj}j∈J ⊆ Ĝ relatively
separated families, X as in Lemma 5.1.25, and V = VG×VĜ×T as in (5.7). For m ∈Mv(G×Ĝ)
and 0 < p, q ≤ ∞,

(5.41) (Lp,qm̃ (HG))d (X, V ) = `p,qmX
(I × J),

where

(5.42) mX : I × J → (0,+∞), (i, j) 7→ m(xi, ξj),

with equivalence of the relative quasi-norms depending on X, Ξ, VG, VĜ, v, p and q.
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Proof. The proof is divided into four cases.
Case p, q < ∞. Consider a sequence (λi)i∈I ∈ CI . For every x ∈ G, we define Ix the subset of
indexes

(5.43) Ix = {i ∈ I |χxi+VG (x) 6= ∅} ⊆ {i ∈ I |
(
xi + V G

)
∩ (x+ {e}) 6= ∅}.

From [147, Lemma 2.3.10], we have

(5.44) #{i ∈ I | (xi + VG) ∩ (x+ {e}) 6= ∅} ≤ CX,V G < +∞, ∀x ∈ G,

CX,V G ∈ N as in (2.18). Whence #Ix ≤ CX,V G and

(∑
i∈I
|λi|χxi+VG (x)

)p
≤ (#Ix ·max{|λi| | i ∈ Ix})p ≤ CpX,V G max{|λi|p | i ∈ Ix}

≤ Cp
X,V G

∑
i∈Ix

|λi|p = Cp
X,V G

∑
i∈I
|λi|p χxi+VG (x).

Vice versa

(∑
i∈I
|λi|χxi+VG (x)

)p
≥ (max{|λi| | i ∈ Ix})p = max{|λi|p | i ∈ Ix}

≥ C−p
X,V G

∑
i∈Ix

|λi|p = C−p
X,V G

∑
i∈I
|λi|p χxi+VG (x).

Hence we have shown the equivalence

(5.45)

(∑
i∈I
|λi|χxi+VG (x)

)p
�
∑
i∈I
|λi|p χxi+VG (x).

Analogous equivalences hold for every relatively separated family and sequence on the corre-
sponding set of indexes, which under our hypothesis are always countable. Due to the chosen
V ,

χ(xi,ξj ,1)V (x, ξ, τ) = χxi+VG (x)χξj+VĜ (ξ) ∀ (x, ξ, τ) ∈ HG .
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Taking a sequence (λij)i∈I,j∈J ∈ CI×J and using twice the equivalence (5.45), we compute

∥∥∥(λij)i,j

∥∥∥
(Lp,qm̃ (HG))d(X,V )

=

∫
Ĝ×T

∫
G

 ∑
i∈I,j∈J

|λij |χxi+VG (x)χξj+VĜ (ξ)

p

m(x, ξ)p dx


q
p

dξdτ


1
q

�

∫
Ĝ

∫
G

∑
i∈I,j∈J

|λij |p χxi+VG (x)χξj+VĜ (ξ)m(x, ξ)pdx


q
p

dξ


1
q

=

∫
Ĝ

∑
j∈J

∑
i∈I
|λij |p

∫
G
m(x, ξ)pχxi+VG (x)dxχξj+VĜ (ξ)


q
p

dξ


1
q

�

∫
Ĝ

∑
j∈J

(∑
i∈I
|λij |p

∫
G
m(x, ξ)pχxi+VG (x) dx

) q
p

χξj+VĜ (ξ) dξ

 1
q

=

∑
j∈J

∫
VĜ

(∑
i∈I
|λij |p

∫
VG

m(x+ xi, ξ + ξj)
pdx

) q
p

dξ

 1
q

.

The monotone convergence theorem justifies the interchanges of integration with summation
performed. From [147, Corollary 2.2.23] we have

(5.46)

(
sup

V 1,2∪−V 1,2

v

)−1

m((x, ξ) + (u, ω)) ≤ m(u, ω) ≤

(
sup

V 1,2∪−V 1,2

v

)
m((x, ξ) + (u, ω)),

for every (u, ω) ∈ G × Ĝ and (x, ξ) ∈ V 1,2, with V1,2 defined in (5.9). Therefore, if ξ ∈ VĜ , we
have

(5.47)
∫
VG

m(x+ xi, ξ + ξj)
p dx �

v,V1,2

∫
VG

m(xi, ξj)
p dx = m(xi, ξj)

pdx(VG).

Using the equivalences above,

∥∥∥(λij)i,j

∥∥∥
(Lp,qm̃ (HG))d(X,V )

�

∑
j∈J

∫
VĜ

(∑
i∈I
|λij |p

∫
VG

m(x+ xi, ξ + ξj)
pdx

) q
p

dξ

 1
q

�

∑
j∈J

(∑
i∈I
|λij |pm(xi, ξj)

p

) q
p

 1
q

=
∥∥∥(λij)i,j

∥∥∥
`p,qmX

(I×J)
.

Case p = q =∞. For (x, ξ) ∈ G × Ĝ we define

I(x,ξ) = {(i, j) ∈ I × J |χ(xi,ξj)+V1,2
(x, ξ) 6= ∅}.

Arguing as for (5.43) and (5.44), we have that there exists N = N(X, V1,2) = CX,V 1,2
∈ N

(see (2.18)) such that #I(x,ξ) ≤ N , where X := X × Ξ and V1,2 as in (5.9). Using (5.46), for
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(λij)i∈I,j∈J ∈ CI×J ,∑
i∈I,j∈J

|λij |χ(xi,ξj)+V1,2
(x, ξ)m(x, ξ) =

∑
(i,j)∈I(x,ξ)

|λij |m(xi + ui(x), ξj + ωj(ξ))(5.48)

�
∑

(i,j)∈I(x,ξ)

|λij |m(xi, ξj)

=
∑

i∈I,j∈J
|λij |m(xi, ξj)χ(xi,ξj)+V1,2

(x, ξ),

where (ui(x), ωj(ξ)) ∈ V1,2 for every (i, j) ∈ I(x,ξ). Consider now (λij)i∈I,j∈J ∈ `∞mX
(I × J).

Then∥∥∥(λij)i,j

∥∥∥
(L∞m̃ (HG))d(X,V )

=
∥∥∥(λij)i,j

∥∥∥
(L∞m (G×Ĝ))d(X,V1,2)

=

∥∥∥∥∥∥
∑

i∈I,j∈J
|λij |χ(xi,ξj)+V1,2

(x, ξ)m(x, ξ)

∥∥∥∥∥∥
L∞(G×Ĝ)

�

∥∥∥∥∥∥
∑

i∈I,j∈J
|λij |m(xi, ξj)χ(xi,ξj)+V1,2

(x, ξ)

∥∥∥∥∥∥
L∞(G×Ĝ)

≤

∥∥∥∥∥∥
∑

i∈I,j∈J
sup
l,s
|λls|m(xl, ξs)χ(xi,ξj)+V1,2

(x, ξ)

∥∥∥∥∥∥
L∞(G×Ĝ)

≤
∥∥∥(λij)i,j

∥∥∥
`∞mX

(I×J)

∥∥∥NχG×Ĝ∥∥∥
L∞(G×Ĝ)

= N
∥∥∥(λij)i,j

∥∥∥
`∞mX

(I×J)
.

Vice versa, if (λij)i∈I,j∈J ∈ (L∞m̃ (HG))d(X, V ),∥∥∥(λij)i,j

∥∥∥
`∞mX

(I×J)
= sup
i∈I,j∈J

|λij |mX(i, j) = sup
i∈I,j∈J

|λi,j |χ(xi,ξj)+V1,2
(xi, ξj)m(xi, ξj)

≤ sup
i∈I,j∈J

∥∥|λij |χ(xi,ξj)+V1,2
(x, ξ)m(x, ξ)

∥∥
L∞(G×Ĝ)

≤ sup
i∈I,j∈J

∥∥∥∥∥∥
∑

l∈I,s∈J

|λls|χ(xl,ξs)+V1,2
(x, ξ)m(x, ξ)

∥∥∥∥∥∥
L∞(G×Ĝ)

=

∥∥∥∥∥∥
∑

l∈I,s∈J

|λls|χ(xl,ξs)+V1,2
(x, ξ)m(x, ξ)

∥∥∥∥∥∥
L∞(G×Ĝ)

=
∥∥∥(λij)i,j

∥∥∥
(L∞m̃ (HG))d(X,V )

.

Case p =∞ and q <∞. We show the equivalence

ess sup
x∈G

∑
i∈I,j∈J

|λij |mX(i, j)χxi+VG (x)χξj+VĜ (ξ)(5.49)

�
Ξ,VĜ

∑
j∈J

ess sup
x∈G

∑
i∈I
|λij |mX(i, j)χxi+VG (x)χξj+VĜ (ξ).
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In fact, arguing as in (5.43) and (5.44), for ξ ∈ Ĝ fixed and Jξ := {j ∈ J |χξj+VĜ (ξ) 6= ∅}, there
exists M = M(Ξ, VĜ) ∈ N such that #Jξ ≤M . Therefore,

ess sup
x∈G

∑
i∈I,j∈J

|λij |mX(i, j)χxi+VG (x)χξj+VĜ (ξ) = ess sup
x∈G

∑
j∈Jξ

∑
i∈I
|λij |χxi+VG (x)mX(i, j)

≤
∑
j∈Jξ

ess sup
x∈G

∑
i∈I
|λij |χxi+VG (x)mX(i, j)

=
∑
j∈J

ess sup
x∈G

∑
i∈I
|λij |χxi+VG (x)mX(i, j)χξj+VĜ (ξ).

On the other hand,∑
j∈J

ess sup
x∈G

∑
i∈I
|λij |χxi+VG (x)mX(i, j)χξj+VĜ (ξ) =

∑
j∈Jξ

ess sup
x∈G

∑
i∈I
|λij |χxi+VG (x)mX(i, j)

≤M max{ess sup
x∈G

∑
i∈I
|λij |χxi+VG (x)mX(i, j) | j ∈ Jξ}

≤M ess sup
x∈G

∑
j∈Jξ

∑
i∈I
|λij |χxi+VG (x)mX(i, j)

= M ess sup
x∈G

∑
j∈J

∑
i∈I
|λij |χxi+VG (x)mX(i, j)χξj+VĜ (ξ).

Finally, using the previous cases, the equivalences in (5.48) and (5.49), we can write

∥∥∥(λij)i,j

∥∥∥
(L∞,qm̃ (HG))d(X,V )

=

∫
Ĝ

ess sup
x∈G

∑
i∈I,j∈J

|λij |χxi+VG (x)χξj+VĜ (ξ)m(x, ξ)

q

dξ


1
q

�

∫
Ĝ

∑
j∈J

ess sup
x∈G

∑
i∈I
|λij |mX(i, j)χxi+VG (x)χξj+VĜ (ξ)

q

dξ


1
q

=

∫
Ĝ

∑
j∈J

∥∥∥∥∥∑
i∈I
|λij |mX(i, j)χxi+VG (·)

∥∥∥∥∥
L∞(G)

χξj+VĜ (ξ)

q

dξ


1
q

=

∫
Ĝ

∑
j∈J

∥∥(λijmX(i, j))i∈I
∥∥

(L∞(G))d(X,VG)
χξj+VĜ (ξ)

q

dξ


1
q

�

∫
Ĝ

∑
j∈J

∥∥(λijmX(i, j))i∈I
∥∥
`∞(I)

χξj+VĜ (ξ)

q

dξ


1
q

=

∥∥∥∥(∥∥(λijmX(i, j))i∈I
∥∥
`∞(I)

)
j∈J

∥∥∥∥
(Lq(Ĝ))d(Ξ,VĜ)

�
∥∥∥∥(∥∥(λijmX(i, j))i∈I

∥∥
`∞(I)

)
j∈J

∥∥∥∥
`q(J)

=
∥∥∥(λij)i,j

∥∥∥
`∞,qmX

(I×J)
.
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Case p <∞ and q =∞. Similarly to what has been done before,

∥∥∥(λij)i,j

∥∥∥
(Lp,∞m̃ (HG))d(X,V )

= ess sup
ξ∈Ĝ

∫
G

 ∑
i∈I,j∈J

|λij |χxi+VG (x)χξj+VĜ (ξ)

p

m(x, ξ)pdx


1
p

� ess sup
ξ∈Ĝ

∫
G

∑
i∈I,j∈J

|λij |p χxi+VG (x)χξj+VĜ (ξ)m(x, ξ)pdx

 1
p

� ess sup
ξ∈Ĝ

 ∑
i∈I,j∈J

|λij |pm(xi, ξj)
pχξj+VĜ (ξ)

 1
p

� ess sup
ξ∈Ĝ

∑
j∈J

(∑
i∈I
|λij |pm(xi, ξj)

p

) 1
p

χξj+VĜ (ξ)

= ess sup
ξ∈Ĝ

∑
j∈J

∥∥(λijmX(i, j))i∈I
∥∥
`p(I)

χξj+VĜ (ξ)

=

∥∥∥∥(∥∥(λijmX(i, j))i∈I
∥∥
`p(I)

)
j∈J

∥∥∥∥
(L∞(Ĝ))d(Ξ,VĜ)

�
∥∥∥(λij)i,j

∥∥∥
`p,∞mX

(I×J)
.

The proof is concluded.

Remark 5.1.27. ([8, Remark 3.27]) We want to state explicitly the equivalence constants involved
in the previous lemma. We distinguish four cases, as done in the proof.
Case p, q <∞. We have

A−1B
∥∥∥(λij)i,j

∥∥∥
`p,qmX

(I×J)
≤
∥∥∥(λij)i,j

∥∥∥
(Lp,qm̃ (HG))d(X,V )

≤ AB
∥∥∥(λij)i,j

∥∥∥
`p,qmX

(I×J)
,

where

A := A(X,Ξ, VG , VĜ , v, p) := CX,V GC
1
p+1

Ξ,V Ĝ

(
sup

V 1,2∪−V 1,2

v

)
,

B := B(VG , VĜ , p, q) := dx(VG)
1
p dξ(VĜ)

1
q .

Case p = q =∞. The equivalence is

∥∥∥(λij)i,j

∥∥∥
`∞mX

(I×J)
≤
∥∥∥(λij)i,j

∥∥∥
(L∞m̃ (HG))d(X,V )

≤

(
sup

V 1,2∪−V 1,2

v

)
CX,V 1,2

∥∥∥(λij)i,j

∥∥∥
`∞mX

(I×J)
.

Case p =∞ and q <∞. We got

D
∥∥∥(λij)i,j

∥∥∥
`∞,qmX

(I×J)
≤
∥∥∥(λij)i,j

∥∥∥
(L∞,qm̃ (HG))d(X,V )

≤ E
∥∥∥(λij)i,j

∥∥∥
`∞,qmX

(I×J)
,
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where

D := D(Ξ, VG , VĜ , v, q) := C−2

Ξ,V Ĝ

(
sup

V 1,2∪−V 1,2

v

)−1

dξ(VĜ)
1
q ,

E := B(X,Ξ, VG , VĜ , v, q) := CX,V GCΞ,V Ĝ

(
sup

V 1,2∪−V 1,2

v

)
dξ(VĜ)

1
q .

Case p <∞ and q =∞. The last equivalence is given by

L
∥∥∥(λij)i,j

∥∥∥
`p,∞mX

(I×J)
≤
∥∥∥(λij)i,j

∥∥∥
(Lp,∞m̃ (HG))d(X,V )

≤M
∥∥∥(λij)i,j

∥∥∥
`p,∞mX

(I×J)
,

where

L := L(X,Ξ, VG , VĜ , v, p) := C−1

X,V G
C−1

Ξ,V Ĝ

(
sup

V 1,2∪−V 1,2

v

)−1

dx(VG)
1
p ,

M := M(X,Ξ, VG , VĜ , v, p) := CX,V GC
2
Ξ,V Ĝ

(
sup

V 1,2∪−V 1,2

v

)
dx(VG)

1
p .

We recall that the definition of the constants CX,V G , CΞ,V Ĝ
, CX,V 1,2

is given in (2.18).

On account of the constants shown in the previous remark, we have the following corollary.

Corollary 5.1.28. ([8, Corollary 3.28]) Fix 0 < δ ≤ ∞ and take p, q such that 0 < δ ≤ p, q ≤ ∞.
Under the same assumptions of Lemma 5.1.26, there are two constants

C1 := C1(X,Ξ, VG , VĜ , v, δ) > 0 and C1 := C1(X,Ξ, VG , VĜ , v, δ) > 0

such that

C1

∥∥∥(λij)i,j

∥∥∥
`p,qmX

(I×J)
≤
∥∥∥(λij)i,j

∥∥∥
(Lp,qm̃ (HG))d(X,V )

≤ C2

∥∥∥(λij)i,j

∥∥∥
`p,qmX

(I×J)

for every sequence (λij)i,j in (Lp,qm̃ (HG))d(X, V ) = `p,qmX
(I × J).

Proof. We notice that if b ≥ 1, then b
1
p is a strictly decreasing function of p ∈ (0,∞) and b

1
p ≥ 1.

Likewise b−
1
p is strictly increasing and 0 < b−

1
p ≤ 1. The claim follows now from Remark

5.1.27.

Remark 5.1.29. Although in Lemma 5.1.26 we considered V = VG × VĜ × T with VG and VĜ
open, this last assumption can be relaxed into measurability. Even in this case the above lemma
and the subsequent Corollary 5.1.30 hold true.

Corollary 5.1.30. ([8, Corollary 3.30]) Consider 0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞ and
m1,m2 ∈Mv(G × Ĝ) such that m2 . m1. Let V , X, Ξ and X be as in Lemma 5.1.26. Then

(5.50)
(
Lp1,q1
m̃1

(HG)
)
d

(X, V ) ↪→
(
Lp2,q2
m̃2

(HG)
)
d

(X, V ).

Proof. It is a straightforward consequence of Lemma 5.1.26 and the continuous inclusions

(5.51) `p1,q1
m1,X

(I × J) ↪→ `p2,q2
m2,X

(I × J),

since m2,X . m1,X.
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Proposition 5.1.31. ([8, Proposition 3.31]) Consider 0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞ and
m1,m2 ∈Mv(G × Ĝ) such that m2 . m1. Then we have the following continuous inclusions:

(5.52) Mp1,q1
m1

(G) ↪→Mp1,q2
m2

(G).

Proof. Under the hypothesis of Lemma 5.1.25, it is always possible to find a BUPU on HG of
the type (5.40), see [147, Lemma 2.3.12]. For such a BUPU

Ψ⊗ Γ⊗ I = {ψi ⊗ γj ⊗ χT, (i, j) ∈ I × J},

the corresponding localizing family X = X ×Ξ×{1} fulfils the requirements of Corollary 5.1.30.
To get the desired result we use the equivalence of quasi-norms shown in (2.26):

‖f‖Mp2,q2
m2

�
∥∥W %

g f
∥∥
W (L

p2,q2
m̃2

)
�
∥∥∥∥(∥∥(ψi ⊗ γj ⊗ χT) ·W %

g f
∥∥
L∞

)
i,j

∥∥∥∥
(L
p2,q2
m̃2

(HG))d(X,V )

.

∥∥∥∥(∥∥(ψi ⊗ γj ⊗ χT) ·W %
g f
∥∥
L∞

)
i,j

∥∥∥∥
(L
p1,q1
m̃1

(HG))d(X,V )

�
∥∥W %

g f
∥∥
W (L

p1,q1
m̃1

)
� ‖f‖Mp1,q1

m1
.

This concludes the proof.

Ifm ∈Mv(G×Ĝ), from the submultiplicativity and symmetry of v we have 1/m ∈Mv(G×Ĝ).
This remark is implicitly used in the following issue.

Proposition 5.1.32. ([8, Proposition 3.32]) If 1 ≤ p, q <∞, then (Mp,q
m (G))

′
= Mp′,q′

1/m (G) under
the duality

(5.53) 〈f, h〉 = 〈Vgf, Vgh〉L2(G×Ĝ),

for all f ∈Mp,q
m (G), h ∈Mp′,q′

1/m (G) and some g ∈ SC(G) r {0}.

Proof. For 1 ≤ p, q ≤ ∞, Lp,qm̃ (HG) is a solid bi-invariant Banach function space continuously
embedded into L1

loc(HG). Therefore, from Theorem 2.2.39 combined with Remark 5.1.9, we have

(5.54) Mp,q
m (G) = Co(Lp,qm̃ (HG)) = CoFG(Lp,qm̃ (HG)) = {f ∈ Rṽ |Vgf ∈ Lp,qm (G × Ĝ)}

with

(5.55) ‖Vgf‖W (Lp,qm ) � ‖Vgf‖Lp,qm .

The proof then goes as in [82, Theorem 11.3.6], after noticing that we can identify (L1
m)′ with

L∞1/m since under our assumptions G × Ĝ is σ-finite, similarly for mixed-norm cases.

Theorem 5.1.33. ([8, Theorem 3.33])

(i) If 0 < p, q <∞, then SC(G) is quasi-norm-dense in Mp,q
m (G);

(ii) If 1 ≤ p, q ≤ ∞ and at least one between p and q is equal to ∞, then SC(G) is w-∗-dense
in Mp,q

m (G).
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Proof. For any 0 ≤ p, q ≤ ∞, SC(G) is a subspace of Mp,q
m (G), cf. the computations in the proof

of Lemma 5.1.10 and the inclusions in (5.52).
(i) Let ϕ be as in (2.94) and consider the relatively compact unit neighbourhood U0 coming

from Theorem 2.2.37. Without loss of generality we can assume U0 = VG × VĜ × T = V as
in (5.7), see the proofs of [147, Theorem 2.4.19] and [147, Lemma 2.4.17]. Then there exists a
U0-BUPU with localizing family X = {(xi, ξj , 1)}(i,j)∈I×J such that any f ∈ Mp,q

m (G) can be
written as

(5.56) f =
∑

i∈I,j∈J
λij(f)%(xi, ξj , 1)ϕ =

∑
i∈I,j∈J

λij(f)π(xi, ξj)ϕ,

with unconditional convergence in Mp,q
m (G) since the finite sequences are dense in `p,qmX

(I × J) =
(Lp,qm̃ (HG))d(X, V ), p, q <∞.
(ii) We show the case p = q = ∞, the remaining ones are analogous. From Proposition 5.1.32,
M∞m (G) can be seen as the dual of M1

1/m(G). Therefore, with ϕ the Gaussian in (2.94),

(5.57) ⊥SC(G) = {f ∈M1
1/m | 〈Vϕf, Vϕh〉 = 0, ∀h ∈ SC(G)}.

For fixed (u, ω) ∈ G × Ĝ consider h = π(u, ω)ϕ ∈ SC(G). From Lemma 2.3.30

(5.58) Vϕh(x, ξ) = 〈ξ − ω, u〉T(u,ω)Vϕϕ(x, ξ).

In particular, from (2.100), Vϕh(u, ω) 6= 0 and it is continuous. Therefore if f ∈ ⊥SC(G)

〈Vϕf, Vϕh〉 =

∫
G×Ĝ

Vϕf(x, ξ)Vϕh(x, ξ) dxdξ = 0 ⇒ VϕfVϕh = 0 a.e.,

but since VϕfVϕh is continuous this implies Vϕf(x, ξ)Vϕh(x, ξ) = 0 for every (x, ξ) ∈ G × Ĝ.
NecessarilyVϕf vanishes on a neighbourhood of (u, ω). On account of the arbitrariness of the
point (u, ω) ∈ G × Ĝ, we have Vϕf ≡ 0 which also means W %

ϕf ≡ 0. Since the application

W %
ϕ : Rṽ → C(HG) ∩ L∞1/ṽ(HG)

is injective, see [147, Lemma 2.4.8], we infer f = 0. Therefore ⊥SC(G) = {0} and

SC(G)
w−∗

=
(⊥SC(G)

)⊥
= ({0})⊥ = M∞m (G).

This concludes the proof.

Lemma 5.1.34. ([8, Lemma 3.34]) For every , 0 < p, q ≤ ∞ and m ∈Mv(G × Ĝ)

Aṽ(G) ⊆Mp,q
m (G).

Proof. We just need to show that for every 0 < r ≤ 1 the inclusion

(5.59) Aṽ(G) ⊆Mr
v (G)

holds true, then the claim follows from the inclusion relations for modulation spaces. From (5.20)
and the inclusion relations in [147, p. 113], if g ∈ Aṽ ⊆ Arṽ and ϕ is the Gaussian as in (2.94),
we get that

W %
ϕg ∈WR(L∞,W (L∞, Lrṽ)) ↪→W (L∞, Lrṽ).

Hence g ∈Mr
v (G).



142 CHAPTER 5. QUASI-BANACH Mp,q
m AND Aψ1,ψ2

a ON G LCA

Corollary 5.1.35. ([8, Corollary 3.35]) If 0 < p, q < ∞, then Aṽ is quasi-norm-dense in
Mp,q
m (G).

Proof. The claim follows from the above theorem, the previous lemma and the inclusion SC ⊆
Aṽ.

Corollary 5.1.36. ([8, Corollary 3.36]) For every f ∈ S ′0(G) there exists a net (fα)α∈A ⊆ SC(G)
such that

(5.60) lim
α∈A
〈fα, h〉L2(G) = S′0〈f, h〉S0

, ∀h ∈ S0(G).

Proof. From Lemma 5.1.13 we have that SC(G) is norm-dense in T1 = S0(G). From [101, Propo-
sition 6.15] there exists a bounded net (fβ)β∈B ⊆ S0(G) such that

(5.61) lim
β∈B
〈fβ , h〉L2(G) = S′0〈f, h〉S0 , ∀h ∈ S0(G).

This concludes the proof.

Remark 5.1.37. ([8, Remark 3.37])

(i) From Theorem 5.1.33 and relations (5.54) and (5.55) it follows that the modulation spaces
introduced in Definition 5.1.19 coincide with the classical ones in [56, 88]. This implies
that

(5.62) M1
m(G) ∼=

(
closM∞

1/m
(SC(G))

)′
,

the dual of the closure of SC(G) with respect to the norm on M∞1/m(G). If f ∈ M∞,1m (G)

and g ∈M1,∞
1/m(G), then for ϕ as in (2.94)

(5.63)
∣∣∣〈Vϕf, Vϕg〉L2(G×Ĝ)

∣∣∣ . ‖f‖M∞,1m
‖g‖M1,∞

1/m
.

See [88, Proposition 2.2];

(ii) The theory for G = Rd developed in [75] is recovered for every 0 < p, q ≤ ∞. In fact, it
was observed in [119, Section 8] that from [75, Lemma 3.2] follows the equality

Co(Lp,qm̃ (HRd)) = {f ∈ S ′ |Vgf ∈ Lp,qm (R2d)} 0 < p, q ≤ ∞,

with equivalent quasi-norms.

For a general LCA group G it is an open problem whether a construction of the type

{f ∈ Rṽ |Vgf ∈ Lp,qm (G × Ĝ)},

with obvious quasi-norm, could make sense or not when at least one between p and q is smaller
than 1. However, we are able to answer affirmatively if G is discrete or compact, see the lemma
and corollary below.

Lemma 5.1.38. ([8, Lemma 3.38]) Let 0 < p, q ≤ ∞. Suppose G is discrete or compact. Then
there exists C > 0 such that for every f ∈Mp,q

m (G)

(5.64)
∥∥W %

g f
∥∥
W (Lp,qm̃ )

≤ C
∥∥W %

g f
∥∥
Lp,qm̃

,

for some g ∈ SC(G) r {0}.
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Proof. If we prove for some suitable unit neighbourhood Q ⊆ G× Ĝ that there exists C > 0 such
that

(5.65) ‖Vgf‖WQ(Lp,qm ) ≤ C ‖Vgf‖Lp,qm ,

then (5.64) holds true, see Remark 5.1.9. Moreover, as shown in Proposition 5.1.18, we can
consider the modulation spaces as subsets of S ′0(G).
Case G discrete. Ĝ is compact and the structure theorem reads as G = G0 and Ĝ = Ĝ0. In
the definition of the Gaussian function (2.94) we take, Remark 5.1.16, the open and compact
subgroup K = {e}, therefore

ϕ(x) := χ{e}(x) =: δe(x).

We also choose Q := {e}×Ĝ, which is a measurable, relatively compact, unit neighbourhood. Fix
f ∈ Mp,q

m (G), from [101, Proposition 6.15], we have that there exists a bounded net (fα)α∈A ⊆
S0(G) such that

(5.66) lim
α∈A
〈fα, h〉L2(G) = S′0〈f, h〉S0 , ∀h ∈ S0(G).

Recall that SC(G) ⊆ S0(G), then adopting the widow function ϕ, we compute

Vϕf(x, ξ) = 〈f, π(x, ξ)δe〉 = lim
α∈A
〈fα, π(x, ξ)δe〉 = lim

α∈A

∑
u∈G

fα(u)〈ξ, u〉δx(u)

= lim
α∈A

fα(x)〈ξ, x〉 = 〈ξ, x〉 lim
α∈A

fα(x),

MQVϕf(x, ξ) = ess sup
(y,η)∈(x,ξ)+{e}×Ĝ

∣∣∣∣〈η, y〉 lim
α∈A

fα(y)

∣∣∣∣ = ess sup
(y,η)∈{x}×Ĝ

∣∣∣∣ limα∈A fα(y)

∣∣∣∣
=

∣∣∣∣ limα∈A fα(x)

∣∣∣∣ = |Vϕf(x, ξ)| .

Therefore
‖Vϕf‖WQ(Lp,qm ) = ‖MQVϕf‖Lp,qm = ‖Vϕf‖Lp,qm .

Case G compact. The argument is identical to the previous one, take K = G and Q := G×{ê}.

Corollary 5.1.39. ([8, Corollary 3.39]) Suppose G is discrete or compact. Consider m ∈Mv(G×
Ĝ) and 0 < p, q ≤ ∞. Then

Mp,q
m (G) = {f ∈ S ′0(G) |Vgf ∈ Lp,qm (G × Ĝ)}

and

(5.67) ‖f‖Mp,q
m
� ‖Vgf‖Lp,qm ,

for some g ∈ SC(G) r {0}.

Proof. We consider Mp,q
m (G) as a subspace of S ′0(G) instead of Rṽ (Proposition 5.1.18). The

claim then follows from the continuous embedding W (Lp,qm̃ ) ↪→ Lp,qm̃ , Lemma 5.1.38 and Remark
5.1.9.
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5.2 Continuity of the Rihaczek and Kohn-Nirenberg opera-
tors

In this section we investigate the continuity of the Rihaczek distribution (2.96) on modulation
spaces and infer boundedness results for the Kohn-Nirenberg operators, defined in (2.216).

5.2.1 Boundedness results
We first study the boundedness of the Rihaczek distribution on modulation spaces. The tech-
niques are mainly borrowed from [31, Theorem 3.1] and [25, Theorem 4] for the Wigner distri-
bution on Rd.
From now on we shall mainly work with S0(G) and S ′0(G) instead of Tṽ and Rṽ (Proposition
5.1.18).

We need to extend [88, formula (51)] to wider classes of functions. Namely,

Lemma 5.2.1. ([8, Lemma 4.4]) Consider ψ ∈ SC(G) and f, g ∈ S ′0(G). Then

(5.68) VR(ψ,ψ)R(g, f)((x, ξ), (ω, u)) = 〈ξ, u〉Vψg(x, ξ + ω)Vψf(x+ u, ξ),

with x, u ∈ G and ξ, ω ∈ Ĝ.

Proof. For f, g, ψ ∈ SC(G) formula (5.68) is proved in [88, formula (51)]. Consider now f, g ∈
S ′0(G). From Corollary 5.1.36 there exist nets {fα}α∈A and {gα}α∈A in S0(G) which converge
pointwisely to f and g in S ′0(G). Therefore for every x, u ∈ G and ξ ∈ Ĝ,

lim
α∈A

Vψfα(x+ u, ξ) = lim
α∈A
〈fα, π(x+ u, ξ)ψ〉 = 〈f, π(x+ u, ξ)ψ〉 = Vψf(x+ u, ξ),

and similarly for Vψg. For the left-hand side of (5.68), observe that

R(fα, gα)(x, ξ) = 〈ξ, x〉F2(fα ⊗ gα)(x, ξ).

The partial Fourier transform F2 is a topological isomorphism from S0(G × G) onto S0(G × Ĝ)

and from S ′0(G × G) onto S ′0(G × Ĝ). Write x = (x, ξ) and ω = (ω, u),

lim
α∈A

VR(ψ,ψ)R(fα, gα)(x,ω) = lim
α∈A
〈〈·,·〉F2(fα ⊗ gα), π(x,ω)R(ψ,ψ)〉

= 〈〈·,·〉F2(f ⊗ g), π(x,ω)R(ψ,ψ)〉
= VR(ψ,ψ)R(f, g)(x,ω),

being R(ψ,ψ) ∈ S0(G × Ĝ). This concludes the proof.

Proposition 5.2.2. ([8, Proposition 4.5]) Consider p, q, pi, qi ∈ (0,∞], i = 1, 2, such that

pi, qi ≤ q, i = 1, 2;(5.69)

min

{
1

p1
+

1

p2
,

1

q1
+

1

q2

}
≥ 1

p
+

1

q
.(5.70)

Let v be a even submultiplicative weight bounded from below on G × Ĝ, and J the isomorphism
in (2.98). For g ∈Mp1,q1

v (G) and f ∈Mp2,q2
v (G), we have R(g, f) ∈Mp,q

1⊗v◦J−1(G × Ĝ), with

(5.71) ‖R(g, f)‖Mp,q

1⊗v◦J−1
. ‖g‖Mp1,q1

v
‖f‖Mp2,q2

v
.
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Proof. Consider ψ ∈ SC(G), f ∈ Mp2,q2
v (G), g ∈ Mp1,q1

v (G). By Lemma 5.2.1 the STFT of the
Rihaczek distribution is given by

(5.72) VR(ψ,ψ)R(g, f)((x, ξ), (ω, u)) = 〈ξ, u〉Vψg(x, ξ + ω)Vψf(x+ u, ξ),

with x, u ∈ G and ξ, ω ∈ Ĝ. Corollary 5.1.11 shows that R(ψ,ψ) ∈ A ˜1⊗v◦J−1
(G × Ĝ). Consider

VG ⊆ G and VĜ ⊆ Ĝ open, relatively compact, unit neighbourhoods. According to the notation
in (5.9) we define

V1,2 = VG × VĜ , V2,1 := VĜ × VG , O := V1,2 × V2,1 × T.(5.73)

Set

Hg((x, ξ), (ω, u), τ) := Vψg(x, ξ + ω) and Hf ((x, ξ), (ω, u), τ) := Vψf(x+ u, ξ),

which are functions on the Heisenberg group associated to G × Ĝ. Notice

MO[τVR(ψ,ψ)R(g, f)] = MO[Hg ·Hf ] ≤ MO[Hg] ·MO[Hf ].

We compute

MO[Hg]((x, ξ), (ω, u), τ) = ess sup
((y,η),(ν,z),s)∈
((x,ξ),(ω,u),τ)O

|Vψg(y, η + ν)|

= ess sup
ν∈ω+VĜ

ess sup
(y,η)∈(x,ξ)+V1,2

∣∣T(e,−ν)Vψg(y, η)
∣∣

= ess sup
ν∈ω+VĜ

(
MV1,2 [T(e,−ν)Vψg](x, ξ)

)
= ess sup
ν∈ω+VĜ

(
T(e,−ν)[MV1,2

Vψg(x, ξ)]
)

= ess sup
ν∈ω+VĜ

(
MV1,2

Vψg(x, ξ + ν)
)
.

Similarly,

MO[Hf ]((x, ξ), (ω, u), τ) = ess sup
z∈u+VG

(
T(−z,ê)[MV1,2

Vψf(x, ξ)]
)

= ess sup
z∈u+VG

(
MV1,2Vψf(x+ z, ξ)

)
.
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By the modulation spaces independence of the window in A ˜1⊗v◦J−1
(G × Ĝ), we can write

‖R(g, f)‖Mp,q

1⊗v◦J−1
�
(∫
Ĝ×G×T

(∫
G×Ĝ

∣∣MO[τVR(ψ,ψ)R(g, f)]((x, ξ), (ω, u), τ)
∣∣p dxdξ) q

p

× vq ◦ J−1(ω, u) dωdudτ

) 1
q

≤
(∫
Ĝ×G

(∫
G×Ĝ

ess sup
ν∈ω+VĜ

(
MV1,2

Vψg(x, ξ + ν)
)p

× ess sup
z∈u+VG

(
MV1,2

Vψf(x+ z, ξ)
)p
dxdξ

) q
p

vq ◦ J−1(ω, u) dωdu

) 1
q

=

(∫
Ĝ×G

(
ess sup

(ν,z)∈(ω,u)+V2,1

∫
G×Ĝ

MV1,2Vψg(x, ξ + ν)pMV1,2Vψf(x+ z, ξ)p dxdξ

) q
p

× vq ◦ J−1(ω, u) dωdu

) 1
q

.

The inner integral can be rephrased using the left-right invariance of Haar measure and the
involution h∗(·) := h(−·) as follows:

∫
G×Ĝ

MV1,2Vψg(x, ξ + ν)pMV1,2Vψf(x+ z, ξ)p dxdξ

=

∫
G×Ĝ

MV1,2Vψg(x′, ξ′)pMV1,2Vψf((x′, ξ′) + (z,−ν))p dx′dξ′

=

∫
G×Ĝ

(MV1,2Vψg)∗(x′′, ξ′′)pMV1,2Vψf((z,−ν)− (x′′, ξ′′))p dx′′dξ′′

= (MV1,2Vψg)∗ p ∗ (MV1,2Vψf)p(z,−ν)

= (MV1,2
Vψg)∗ p ∗ (MV1,2

Vψf)p ◦ J−1(ν, z).

Whence, using [147, Lemma 2.3.23], we majorize

ess sup
(ν,z)∈(ω,u)+V2,1

(MV1,2
Vψg)∗ p ∗ (MV1,2

Vψf)p ◦ J−1(ν, z)

= ess sup
(z′,ν′)∈J−1(ω,u)+J−1V2,1

(MV1,2
Vψg)∗ p ∗ (MV1,2

Vψf)p(z′, ν′)

= MJ−1V2,1
[(MV1,2

Vψg)∗ p ∗ (MV1,2
Vψf)p](J−1(ω, u))

≤ [MJ−1V2,1
[(MV1,2

Vψg)∗ p] ∗ (MV1,2
Vψf)p](J−1(ω, u))

= [MJ−1V2,1
[(MV1,2

Vψg)∗ p] ∗ (MV1,2
Vψf)p] ◦ J−1(ω, u).

Setting U := −J−1V2,1 + V1,2, which is an open, relatively compact, unit neighbourhood, we
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obtain

MJ−1V2,1
[(MV1,2

Vψg)∗ p](u, ω) = ess sup
(y,η)∈(u,ω)+J−1V2,1

ess sup
(x,ξ)∈−(y,η)+V1,2

|Vψg(x, ξ)|p

≤ ess sup
(y,η)∈(u,ω)+J−1V2,1

ess sup
(x,ξ)∈

−(u,ω)−J−1V2,1+V1,2

|Vψg(x, ξ)|p

= ess sup
(x,ξ)∈

−(u,ω)−J−1V2,1+V1,2

|Vψg(x, ξ)|p

= (MUVψg(−u,−ω))
p

= ([MUVψg(u, ω)]∗)
p
.

Observe that for positive functions h, l on G × Ĝ and v a submultiplicative weight we can write

(5.74) ((h ∗ l)v) (x, ξ) ≤ (hv ∗ lv) (x, ξ), (x, ξ) ∈ G × Ĝ,

moreover vp is submultiplicative as well. Therefore

‖R(g, f)‖Mp,q

1⊗v◦J−1
.

(∫
Ĝ×G

(
[([MUVψg]∗)p ∗ (MV1,2Vψf)p] ◦ J−1(ω, u)

) q
p

× vq ◦ J−1(ω, u) dωdu

) 1
q

≤
(∫
Ĝ×G

(
([MUVψg]∗ · v)p ∗ (MV1,2Vψf · v)p

) q
p ◦ J−1(ω, u) dωdu

) 1
q

=
∥∥([MUVψg]∗ · v)p ∗ (MV1,2Vψf · v)p

∥∥1/p

Lq/p(G×Ĝ)
.

By Young’s convolution inequality and following the same argumenta as in the proofs in [31,
Theorem 3.1] and [25, Theorem 4] for the Euclidean case (replacing the Wigner distribution with
the Rihaczek) we infer the estimate

(5.75) ‖R(g, f)‖Mp,q

1⊗v◦J−1
. ‖g‖Mp1,q1

v
‖f‖Mp2,q2

v
,

with indices satisfying the conditions (5.69) and (5.70). Following the patterns of [25, 31] the
same result is obtained when p =∞ or q =∞.

The boundedness properties of the Rihaczek distributions enter the study of Kohn-Nirenberg
pseudo-differential operators Op0(σ), defined in (2.216) and (2.217), in the same fashion of [88].

The boundedness result for Weyl operators in the Euclidean setting [31, Theorem 5.1] can
be written for Kohn-Nirenberg operators on groups as follows.

Theorem 5.2.3. ([8, Theorem 4.6]) Consider p, q, pi, qi ∈ [1,∞], i = 1, 2, such that:

q ≤ min{p′1, q′1, p2, q2};(5.76)

min

{
1

p1
+

1

p′2
,

1

q1
+

1

q′2

}
≥ 1

p′
+

1

q′
.(5.77)

Consider v submultiplicative weight even and bounded from below on G×Ĝ. If σ ∈Mp,q

1⊗ 1
v ◦J−1(G×

Ĝ), then Op0(σ) is a bounded operator from Mp1,q1
v (G) into Mp2,q2

1/v (G) with estimate

(5.78) ‖Op0(σ)f‖Mp2,q2
1/v

. ‖σ‖Mp,q

1⊗ 1
v
◦J−1

‖f‖Mp1,q1
v

.

Proof. It follows by duality using Proposition 5.2.2 and the weak definition of Op0(σ) in (2.217).
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5.2.2 Gabor frames on quasi-lattices
The key tool in the boundedness properties of Kohn-Nirenberg operators on quasi-Banach mod-
ulation spaces is the Gabor frame theory. For a detailed treatment of frame theory see, e.g., [21].
In what follows we shall recall and prove new properties for Gabor frames on a LCA group. As
a byproduct, we generalize the convolution relations for modulation spaces firstly given in [9,
Proposition 3.1], see Proposition 5.2.14.

Lemma 5.2.4. G0/K and Ĝ0/K⊥ are discrete.

Proof. We show only the case G0/K, the remaining one is identical. Let p0 : G0 → G0/K be the
projection and consider a point [x] ∈ G0/K. Then p−1

0 ([x]) = x+K is open since K is. Therefore,
being every point open, the space is discrete.

Lemma 5.2.5. ([8, Lemma 4.7]) Let Λ ⊆ G × Ĝ be a quasi-lattice as in (2.129). Then Λ is a
relatively separated family.

Proof. We use Lemma 5.1.24. The fact that A1,2Z2d is relatively separated in R2d is trivial.
We only have to show that D1 is relatively separated in G0; D2 is treated similarly. For a fixed
compact set Q0 ⊆ G0 we have to show that

CD1,Q0
= sup
x∈D1

#{y ∈ D1 | (x+Q0) ∩ (y +Q0) 6= ∅} < +∞.

Since Q0 is compact and K is an open subgroup, there exist q1, . . . , qn ∈ Q0 such that

Q0 ⊆
n⋃
i=1

(qi +K) =: Q′0.

For x, y ∈ D1, if (x+Q0)∩(y +Q0) 6= ∅ then (x+Q′0)∩(y +Q′0) 6= ∅, hence CD1,Q0
≤ CD1,Q′0

.
Assume that (x+Q′0) ∩ (y +Q′0) 6= ∅, then there are i0, j0 ∈ {1, . . . , n} and ki0 , kj0 ∈ K such
that

x+ qi0 + ki0 = y + qj0 + kj0 ⇔ y = x+ qi0 − qj0 + ki0 − kj0 .
Fix x ∈ D1, quotienting by K,

(5.79) [y]• = [x+ qi0 − qj0 ]• ⇒ #{y ∈ D1 | (x+Q′0) ∩ (y +Q′0) 6= ∅} ≤ n2,

where [y]• denotes the projection of y ∈ G0 onto the quotient G0/K. This proves CD1,Q0 ≤
CD1,Q′0

< +∞. The desired result follows now from Lemma 5.1.24.

Corollary 5.2.6. ([8, Corollary 4.8]) Let Λ ⊆ G × Ĝ be a quasi-lattice. Then Λ is at most
countable.

Proof. We use the fact that Λ is a relatively separated family and Lemma 2.2.17.

In the following issue about the existence of a particular BUPU, we use the quasi-lattice Λ
both as localizing family and as indexes’ set. The argument was presented in [57, Remark 2.5].

Lemma 5.2.7. ([8, Lemma 4.9]) Let Λ ⊆ G×Ĝ be a quasi-lattice as in (2.129) with fundamental
domain U as in (2.130). Then there exist two open, relatively compact, unit neighbourhoods Q
and V1,2 in G × Ĝ, where V1,2 as in (5.9), such that Q ( V1,2 and there is a V1,2-BUPU

{ψw ⊗ γµ}(w,µ)∈Λ

with localizing family Λ and such that for every (w, µ) ∈ Λ

ψw ⊗ γµ ≡ 1 on (w, µ) +Q.
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Remark 5.2.8. ([8, Remark 4.10]) Without loss of generality, the unit neighbourhood Q of the
previous lemma can be chosen such that

(5.80) ({0Rd} × K)×
(
{0Rd} × K⊥

)
( Q.

Therefore for every (w, µ) ∈ Λ = Λ1 × Λ2 we have

ψw ≡ 1 on w + ({0Rd} × K) , γµ ≡ 1 on µ+
(
{0Rd} × K⊥

)
.

The following is a consequence of Theorem 2.4.26.

Corollary 5.2.9. ([8, Corollary 4.13]) There exists α ∈ (0, 1) such that the Gabor frame
{π(w)ϕ |w ∈ Λ} defined in (2.137) admits a dual window h ∈ Aṽ.

Proof. We first tackle the problem of finding a dual window. The proof is similar to that in [88,
Theorem 2.7]. We distinguish three cases.

Case G = Rd. In this case the frame we are considering is

(5.81) {π(w1, µ1)e−πx
2
1 , (w1, µ1) ∈ αZ2d}, α ∈ (0, 1).

We fix α such that α2d < (d+1)−1. Then the existence of a dual window γ0 for the Gabor frame
generated by the first Hermite function H0 (the Gaussian) was proved by K. Gröchenig and Y.
Lyubarskii, see [85, 86]. In particular in [86, Remarks 2] was observed that γ0 belongs to the
Gelfand-Shilov space S1/2

1/2 (Rd), cf. [76].
Case G = G0. In this case the frame that we are dealing with is the orthonormal basis for L2(G0)

(5.82) {π(w2, µ2)χK(x2), (w2, µ2) ∈ D1,2}.

Therefore χK is a dual window itself.
Case G ∼= Rd × G0. The frame in this case is the tensor product of the previous ones:

(5.83) {π(w)ϕ, w = ((w1, w2), (µ1, µ2)) ∈ Λ =
(
αZd ×D1

)
×
(
αZd ×D2

)
},

where ϕ(x1, x2) = e−πx
2
1χK(x2) = (ϕ1⊗ϕ2)(x1, x2). Recall that the functions of the type f1⊗f2,

with f1 ∈ L2(Rd) and f2 ∈ L2(G0), are dense in L2(Rd × G0). Let us show that

(5.84) h(x1, x2) := (γ0 ⊗ χK)(x1, x2)

is a dual window. In fact,∑
w∈Λ

〈f1 ⊗ f2, π(w)ϕ〉π(w)γ0 ⊗ χK

=
∑

(w1,µ1)

〈f1, π(w1, µ1)ϕ1〉π(w1, µ1)γ0

∑
(w2,µ2)

〈f2, π(w2, µ2)ϕ2〉π(w2, µ2)χK

= f1 ⊗ f2;

similarly, ∑
w∈Λ

〈f1 ⊗ f2, π(w)γ0 ⊗ χK〉π(w)ϕ = f1 ⊗ f2.

The claim follows by density argument.
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We now prove that h ∈ Aṽ in the general case G ∼= Rd × G0. Similarly to the wavelet
transform of the generalized Gaussian ϕ in (2.94), see (2.100), we obtain

(5.85) W %
hh(x, ξ, τ) = τc(K)Vγ0

γ0 ⊗ χK×K⊥(x, ξ).

Since Vγ0
γ0 ∈ S1/2

1/2 (R2d), see e.g. [11, Theorem 2.13], calculations similar to the ones performed
in Lemma 5.1.10 yield the desired result.

Lemma 5.2.10. ([8, Lemma 4.14]) Let Λ = αZ2d × D1,2, α ∈ R, be a quasi-lattice in G × Ĝ.
Consider the function

(5.86) ϕ◦(x) := ϕ◦(x1, x2) := 2−
d
2 meas(K)e−

π
2 x

2
1 ⊗ χK(x2) ∈ Aṽ

for x = (x1, x2) ∈ Rd×G0
∼= G, where meas(K) is the (finite) measure of the compact open closed

subgroup K in G0. Then there exist α ∈ (0, 1) and a function h◦ ∈ Aṽ such that

(5.87) {π(w)ϕ◦ |w ∈ Λ}

is a Gabor frame for L2(G) with dual window h◦.

Proof. The result is obtained using the same arguments as in Theorem 2.4.26 and Corollary
5.2.9, combined with [35, Lemma 3.2.2].

Theorem 5.2.11. ([8, Theorem 4.15]) Let Λ ⊆ G×Ĝ be a quasi-lattice with fundamental domain
U . Consider 0 < p, q ≤ ∞, m ∈Mv(G×Ĝ) and g ∈ Aṽ. Then the coefficient operator Cg admits
a unique continuous and linear extension

(5.88) Cg : Mp,q
m (G)→ `p,qmΛ

(Λ),

where mΛ is the restriction of m to Λ. Moreover, if 0 < δ ≤ ∞ is such that 0 < δ ≤ min{p, q} ≤
∞, then there is a constant C = C(δ) > 0, such that

|||Cg|||Mp,q
m →`p,qmΛ

≤ C

for all p, q ≥ δ. The constant C = C(δ) may depend on other elements, but not on p and q.

Proof. Consider f ∈ Mp,q
m (G). Let {ψw ⊗ γµ}(w,µ)∈Λ be the BUPU on G × Ĝ constructed in

Lemma 5.2.7. Since tensor product of BUPUs is a BUPU (Lemma 5.1.25) it follows that {ψw ⊗
γµ⊗χT}(w,µ)∈Λ is a V -BUPU on HG , V as in (5.7), with localizing family X = Λ×{1} and such
that

(5.89) (ψw ⊗ γµ ⊗ χT)(w, µ, 1) = 1 ∀ (w, µ) ∈ Λ.

Hence

|〈f, π(w, µ)g〉| =
∣∣(ψw ⊗ γµ ⊗ χT)(w, µ, 1) ·W %

g f(w, µ, 1)
∣∣ ≤ ∥∥(ψw ⊗ γµ ⊗ χT) ·W %

g f
∥∥
L∞

.

By Lemma 5.1.26,

‖Cgf‖`p,qmΛ
(Λ) =

∥∥∥(〈f, π(w, µ)g〉)(w,µ)∈Λ

∥∥∥
`p,qmΛ

(Λ)

≤
∥∥∥∥(∥∥(ψw ⊗ γµ ⊗ χT) ·W %

g f
∥∥
L∞

)
(w,µ)∈Λ

∥∥∥∥
`p,qmΛ

(Λ)

�
∥∥∥∥(∥∥(ψw ⊗ γµ ⊗ χT) ·W %

g f
∥∥
L∞

)
(w,µ)∈Λ

∥∥∥∥
(Lp,qm̃ )d(X,V )

�
∥∥W %

g f
∥∥
W (Lp,qm̃ )

= ‖f‖Mp,q
m
,
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where in the last equivalence we used Lemma 5.1.23, see also (2.26). The last claim comes from
Lemma 5.1.23 and Corollary 5.1.28.

Theorem 5.2.12. ([8, Theorem 4.16]) Let Λ ⊆ G×Ĝ be a quasi-lattice with fundamental domain
U . Consider 0 < p, q ≤ ∞, m ∈Mv(G × Ĝ) and g ∈ Aṽ. Then the synthesis operator C∗g admits
a unique continuous and linear extension

(5.90) C∗g : `p,qmΛ
(Λ)→Mp,q

m (G),

where mΛ is the restriction of m to Λ. If p, q 6=∞, then the series representing C∗g (c) converges
unconditionally in Mp,q

m (G). Otherwise C∗g (c) w-∗-converges in M∞1/v(G). Moreover, if 0 < δ ≤ ∞
is such that 0 < δ ≤ min{p, q} ≤ ∞, then there is a constant C = C(δ) > 0, such that∣∣∣∣∣∣C∗g ∣∣∣∣∣∣`p,qmΛ

→Mp,q
m
≤ C

for all p, q ≥ δ. The constant C = C(δ) may depend on other elements, but not on p and q.

Proof. The proof follows the pattern displayed in [75]. Let (x, ξ, τ) ∈ HG and c = (cw)w∈Λ ∈
`p,qmΛ

(Λ), then we write

∣∣W %
g [C∗g (c)](x, ξ, τ)

∣∣ =

∣∣∣∣∣Vg
[∑
w∈Λ

cwπ(w)g

]
(x, ξ)

∣∣∣∣∣ =

∣∣∣∣∣∑
w∈Λ

cwVgπ(w)g(x, ξ)

∣∣∣∣∣
≤
∑
w∈Λ

|cw| |TwVgg(x, ξ)| =: F gc (x, ξ, τ).

Let {ψw⊗γµ}(w,µ)∈Λ be the V1,2-BUPU on G×Ĝ constructed in Lemma 5.2.7. Then {ψw⊗γµ⊗
χT}(w,µ)∈Λ is a V -BUPU, V as in (5.7), on HG with localizing family X = Λ × {1}. Using the
norm equivalence in (2.26) and Lemma 5.1.26∥∥C∗g (c)

∥∥
Mp,q
m
�
∥∥C∗g (c)

∥∥
WV (Lp,qm̃ )

.
∥∥∥(‖(ψw ⊗ γµ ⊗ χT) · F gc ‖L∞

)
w∈Λ

∥∥∥
(Lp,qm̃ )d(X,V )

�
∥∥∥(‖(ψw ⊗ γµ ⊗ χT) · F gc ‖L∞

)
w∈Λ

∥∥∥
`p,qmΛ

(Λ)
.

We control the latter sequence as follows:

‖(ψw ⊗ γµ ⊗ χT) · F gc ‖L∞ ≤
∑
u∈Λ

|cu| ess sup
(x,ξ)∈w+V1,2

|TuVgg(x, ξ)|

=
∑
w∈Λ

|cw|MV1,2Vgg(w − u)

=
(

(|cu|)u ∗ (MV1,2
Vgg(u))u

)
(w).

We set t = min{1, p} and s = min{1, p, q}. Using the convolution relations for the sequences’
spaces in [75, Lemma 2.7], we obtain

∥∥C∗g (c)
∥∥
Mp,q
m
.

∥∥∥∥∥
((

(|cu|)u ∗ (MV1,2Vgg(u))u

)
(w)

)
w∈Λ

∥∥∥∥∥
`p,qmΛ

(Λ)

. ‖c‖`p,qmΛ
(Λ)

∥∥(MV1,2
Vgg(w))w∈Λ.

∥∥
`t,svΛ (Λ)

.
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Arguing as in the proof of Theorem 5.2.11 and using Lemma 5.1.26 and (2.26) again∥∥(MV1,2
Vgg(w))w∈Λ

∥∥
`a,bvΛ (Λ)

≤
∥∥∥∥(∥∥(ψw ⊗ γµ ⊗ χT) ·MVW

%
g g
∥∥
L∞

)
w∈Λ

∥∥∥∥
`t,svΛ (Λ)

�
∥∥∥∥(∥∥(ψw ⊗ γµ ⊗ χT) ·MVW

%
g g
∥∥
L∞

)
w∈Λ

∥∥∥∥
(Lt,sṽ )d(X,V )

�
∥∥MVW

%
g g
∥∥
WV (Lt,sṽ )

=
∥∥MV MVW

%
g g
∥∥
Lt,sṽ

≤
∥∥MV 2W %

g g
∥∥
Lt,sṽ

=
∥∥W %

g g
∥∥
WV 2 (Lt,sṽ )

,

where we set V 2 := V V (multiplicative notation in HG). As reported in Remark 2.2.35, for any
0 < r ≤ 1 we have the continuous inclusion

(5.91) WR(L∞,W (L∞, Lrṽ)) ↪→W (L∞, Lrṽ).

Arguing as in Proposition 5.1.31 and taking r < min{t, s} we obtain

(5.92) W (L∞, Lrṽ) ↪→W (L∞, Lt,sṽ ).

The fact that g is in Aṽ (defined in (5.21)) implies then∥∥W %
g g
∥∥
WV 2 (Lt,sṽ )

< +∞

and

(5.93)
∥∥C∗g (c)

∥∥
Mp,q
m
. ‖c‖`p,qmΛ

(Λ) .

Unconditional convergence for the series defining C∗g (c) inMp,q
m (G) if p, q 6=∞, and w-∗-convergence

in M∞1/v(G) otherwise, is inferred as in [82, Theorem 12.2.4]. The last claim comes from Lemma
5.1.23 and Corollary 5.1.28.

Theorem 5.2.13. ([8, Theorem 4.17]) Let 0 < p, q ≤ ∞, m ∈ Mv(G × Ĝ) and ϕ as in (2.94).
Consider h ∈ Aṽ such that

(5.94) Sh,ϕ = Sϕ,h = IL2 ,

for a suitable quasi-lattice Λ = Λ1 × Λ2 ⊆ G × Ĝ. Then

(5.95) f =
∑
w∈Λ

〈f, π(w)ϕ〉π(w)h =
∑
w∈Λ

〈f, π(w)h〉π(w)ϕ

with unconditional convergence in Mp,q
m (G) if p, q 6= ∞, and w-∗-convergence in M∞1/v(G) other-

wise. Moreover, for every f ∈Mp,q
m (G) we have the following quasi-norm equivalences:

‖f‖Mp,q
m
�

∑
µ∈Λ2

(∑
w∈Λ1

|Vϕf(w, µ)|pm(w, µ)p

) q
p

 1
q

=
∥∥(Vϕf(w))w∈Λ

∥∥
`p,qmΛ

(Λ)
,(5.96)

‖f‖Mp,q
m
�

∑
µ∈Λ2

(∑
w∈Λ1

|Vhf(w, µ)|pm(w, µ)p

) q
p

 1
q

=
∥∥(Vhf(w))w∈Λ

∥∥
`p,qmΛ

(Λ)
,

and similarly if p =∞ or q =∞.
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Proof. The proof is based on the continuity of Cϕ, C∗ϕ, Ch and C∗h. The pattern is the same of
[82, Corollary 12.2.6].

Expansions and equivalences analogous to (5.95) and (5.96) hold for ϕ◦ and h◦ defined in
Lemma 5.2.10.
The following is a generalization of Proposition 2.5.19, which treated treated only the group Rd.

Proposition 5.2.14. Consider m ∈Mv(G × Ĝ), define for x ∈ G and ξ ∈ Ĝ

(5.97) m1(x) := m(x, ê), v1(x) := v(x, ê), v2(ξ) := v(e, ξ).

Let ν(ξ) > 0 be an arbitrary weight function on Ĝ such that

(5.98) m1 ⊗ ν, v1 ⊗ v2ν
−1 ∈Mv(G × Ĝ).

Let 0 < p, q, r, t, u, γ ≤ ∞, with

(5.99)
1

u
+

1

t
=

1

γ
,

and

(5.100)
1

p
+

1

q
= 1 +

1

r
, for 1 ≤ r ≤ ∞

whereas

(5.101) p = q = r, for 0 < r < 1.

Then

(5.102) Mp,u
m1⊗ν(G) ∗Mq,t

v1⊗v2ν−1(G) ↪→Mr,γ
m (G)

with quasi-norm inequality

(5.103) ‖f ∗ g‖Mr,γ
m
. ‖f‖Mp,u

m1⊗ν
‖g‖Mq,t

v1⊗v2ν−1
.

Proof. We follow the patter displayed in [9, Proposition 3.1]. A direct computation gives ϕ∗ϕ =
ϕ◦, where ϕ is defined in (2.94) and ϕ◦ in (5.86). Similarly, the following identities can be easily
checked:

Vhf(x, ξ) = 〈ξ, x〉 (f ∗Mξ[h
∗]) (x), Mξ[ϕ

◦∗](x) = (Mξ[ϕ
∗] ∗Mξ[ϕ

∗]) (x)

(recall the involution h∗(x) = h(−x)). Using associativity and commutativity of the convolution
product we can write

(5.104) Vϕ◦(f ∗ g)(x, ξ) = 〈ξ, x〉 ((f ∗Mξ[ϕ
∗]) ∗ (g ∗Mξ[ϕ

∗])) (x).

In what follows we will use the frame expansions in Theorem 5.2.13 with ϕ◦ in place of ϕ, see
Lemma 5.2.10. We majorize the weight m by

m(w) = m(w, µ) . m(w, ê)v(e, µ) = m1(w)v2(µ) w = (w, µ) ∈ Λ,
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use Young’s convolution inequality for sequences in the w-variable and Hölder’s one in the µ-
variable. The indices p, q, r, γ, t, u fulfil the equalities in the assumptions. We show in details the
case when r, γ, t, u <∞. The others are similar. Namely,

‖f ∗ g‖Mr,γ
m
�
∥∥((Vϕ◦(f ∗ h))(w)m(w))w∈Λ

∥∥
`r,γ(Λ)

=

∑
µ∈Λ2

(∑
w∈Λ1

|Vϕ◦(f ∗ g)(w, µ)|rm(w, µ)r

) γ
r

 1
γ

.

∑
µ∈Λ2

(∑
w∈Λ1

|(f ∗Mµ[ϕ∗]) ∗ (g ∗Mµ[ϕ∗])(w)|rm1(w)r

) γ
r

v2(µ)γ

 1
γ

=

∑
µ∈Λ2

∥∥∥((f ∗Mµ[ϕ∗]) ∗ (g ∗Mµ[ϕ∗])(w))w∈Λ1

∥∥∥γ
`rm1

(Λ1)
v2(µ)γ

 1
γ

.

∑
µ∈Λ1

∥∥∥((f ∗Mµ[ϕ∗])(w))w∈Λ1

∥∥∥γ
`pm1

(Λ1)

∥∥∥((g ∗Mµ[ϕ∗])(w))w∈Λ1

∥∥∥γ
`qv1 (Λ1)

× v2(µ)γ
ν(µ)γ

ν(µ)γ

) 1
γ

≤

∑
µ∈Λ2

∥∥∥((f ∗Mµ[ϕ∗])(w))w∈Λ1

∥∥∥u
`pm1

(Λ1)
ν(µ)u

 1
u

×

∑
µ∈Λ2

∥∥∥((g ∗Mµ[ϕ∗])(w))w∈Λ1

∥∥∥t
`qm1

(Λ1)

v2(µ)t

ν(µ)t

 1
t

=
∥∥(Vϕf(w))w∈Λ

∥∥
`p,um1⊗ν

(Λ)

∥∥(Vϕg(w))w∈Λ

∥∥
`q,t
m1⊗v2ν−1 (Λ)

� ‖f‖Mp,u
m1⊗ν

‖g‖Mq,t

v1⊗v2ν−1
,

the last equivalence is (5.96). This concludes the proof.

Let us introduce the closed and compact subgroups of G × Ĝ and Ĝ × G, respectively:

(5.105) U(G) := ({0Rd} × K)×
(
{0Rd} × K⊥

)
, U(Ĝ) :=

(
{0Rd} × K⊥

)
× ({0Rd} × K) .

Given x ∈ G × Ĝ, we will denote its projection on (G × Ĝ)/U(G) by

•
x or [x]•,

and similarly for the projection of ξ ∈ Ĝ × G onto (Ĝ × G)/U(Ĝ).
Let Λ = A1,2Z2d ×D1,2 ⊆ G × Ĝ and Γ = A3,4Z2d ×D3,4 ⊆ Ĝ × G be quasi-lattices, then their
projections

(5.106) D(G) := D(G, A1,2) :=
•
Λ and D(Ĝ) := D(Ĝ, A3,4) :=

•
Γ



5.2. CONTINUITY OF R AND Op0(σ) 155

are discrete and at most countable LCA groups. Given a distribution f in Rṽ, or S ′0, and a
window g ∈ Aṽ, the function

(5.107)
•
V gf(

•
x) := sup

z∈U(G)

|Vgf(x + z)| = MU(G)Vgf(x)

is well defined on the quotient group (G × Ĝ)/U(G). In fact, if u is such that
•
x =

•
u, then there

exists n ∈ U(G) such that u = x + n. Setting y = n + z ∈ U(G) we have

sup
z∈U(G)

|Vgf(u + z)| = sup
z∈U(G)

|Vgf(x + n + z)| = sup
y∈U(G)

|Vgf(x + y)| .

Similarly, given a weight m ∈Mv(G × Ĝ), the function

(5.108)
•
m(
•
x) := sup

z∈U(G)

m(x + z)

is well defined on the quotient.

Lemma 5.2.15. ([8, Lemma 4.19]) Consider a quasi-lattice Λ in G × Ĝ. Let g ∈ Aṽ, 0 < p, q ≤
∞, m ∈Mv(G × Ĝ) and define the mapping

(5.109)
•
Cg : Mp,q

m (G)→ `p,q•
m

(D(G)), f 7→
(
•
V gf(

•
w)

)
•w∈D(G)

,

where the weight
•
m is understood to be restricted on D(G). Then there exists a constant C > 0

such that for every f ∈Mp,q
m (G) we have

(5.110)
∥∥∥∥•Cgf∥∥∥∥

`p,q•
m

(D(G))

≤ C ‖f‖Mp,q
m
.

Proof. The BUPU {ψw ⊗ γµ ⊗ χT, w = (w, µ) ∈ Λ} coming from Lemma 5.2.7 is such that

ψw ⊗ γµ ≡ 1 on w + U(G).

Noticing that the projection of Λ onto D(G) is one-to-one we have without ambiguity
•
V gf(

•
w) ≤ ‖(ψw ⊗ γµ ⊗ χT) · Vgf‖L∞ =

∥∥(ψw ⊗ γµ ⊗ χT) ·W %
g f
∥∥
L∞

,

where (w, µ) is the only representative of
•
w in the quasi-lattice. Since U(G) is compact there

exists a constant C = C(U(G), v) > 0 such that

(5.111)
1

C
m(x + z) ≤ m(x) ≤ Cm(x + z),

for every x ∈ G × Ĝ and z ∈ U(G), see [147, Corollary 2.2.23]. For x = w ∈ Λ, taking the
supremum over z in U(G) we can unambiguously write

(5.112)
•
m(
•
w) � m(w).

All together we have∥∥∥∥•Cgf∥∥∥∥
`p,q•
m

(D(G))

=

∥∥∥∥∥
(
•
V gf(

•
w) · •m(

•
w)

)
•w∈D(G)

∥∥∥∥∥
`p,q(D(G))

.

∥∥∥∥(∥∥(ψw ⊗ γµ ⊗ χT) ·W %
g f
∥∥
L∞
·m(w)

)
w∈Λ

∥∥∥∥
`p,q(Λ)

.

Then we conclude as in the proof of Theorem 5.2.11.
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5.2.3 Eigenfunctions of Kohn-Nirenberg operators

We have now all the instruments to study the eigenfunctions for Kohn-Nirenberg operators. Let
us first introduce the Gabor matrix of Op0(σ).

Definition 5.2.16. Consider g ∈ SC(G) and σ ∈ S ′0(G × Ĝ). The Gabor matrix of the
Kohn-Nirenberg operator Op0(σ) (with respect to g) is defined by

(5.113) [M(σ)]x,y := 〈Op0(σ)π(y)g, π(x)g〉, ∀x,y ∈ G × Ĝ.

The machinery developed in the previous subsection let us generalize what stated in [9,
Thereom 3.3 (i)] (Theorem 3.1.2) for Weyl operators on Rd and proved separately in [136, Theo-
rem 4.3] and [142, Theorem 3.1]. We will then obtain properties for the eigenfunctions in L2(G)
of Op0(σ) similar to the ones for Weyl operators on the Euclidean space, cf. [9, Proposition 3.5]
(Proposition 3.1.4).

We start with the boundedness properties of Kohn-Nirenberg operators.

Theorem 5.2.17. ([8, Theorem 4.21]) Consider 0 < p, q, γ ≤ ∞ such that

(5.114)
1

p
+

1

q
=

1

γ

and a symbol σ ∈ Mp,min{1,γ}(G × Ĝ). Then Kohn-Nirenberg operator Op0(σ): S0(G) → S ′0(G)
admits a unique linear continuous extension

Op0(σ) : Mq(G)→Mγ(G).

Proof. We distinguish two cases: γ ≤ 1 and γ > 1.
Case γ ≤ 1. Let ϕ be as in (2.94) and consider h ∈ Aṽ and a quasi-lattice Λ such that
Sh,ϕ = Sϕ,h = IL2 . Write

(5.115) Op0(σ) = C∗h ◦ Cϕ ◦Op0(σ) ◦ C∗ϕ ◦ Ch =: C∗h ◦M(σ) ◦ Ch.

We shall prove that the Gabor matrix M(σ) is linear and continuous from `q(Λ) into `γ(Λ). It
is sufficient to prove that the diagram

Mq Mγ

`q `γ
?

Ch

-
Op0(σ)

-
M(σ)

6
C∗h

is commutative. We show in detail the cases p < +∞ and q < +∞, the others are similar. For
f ∈ Mq(G), using the decomposition in (5.115) and the notation for the Gabor matrix (5.113),
we have

Op0(σ)f =
∑
w∈Λ

∑
u∈Λ

〈Op0(σ)π(u)ϕ, π(w)ϕ〉〈f, π(u)h〉π(w)h

=
∑
w∈Λ

∑
u∈Λ

[M(σ)]w,u 〈f, π(u)h〉π(w)h,
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so that

M(σ) : `q(Λ)→ `γ(Λ), (cw)w∈Λ 7→

(∑
u∈Λ

[M(σ)]w,u cu

)
w∈Λ

.

From the weak definition (2.217) and (2.99) we can write each entry of the (discrete) Gabor
matrix of Op0(σ) as follows:

[M(σ)]w,u = 〈Op0(σ)π(u)ϕ, π(w)ϕ〉
= 〈σ,R(π(w)ϕ, π(u)ϕ)〉
= 〈σ, 〈ν, w − u〉MJ (u−w)T(w,ν)R(ϕ,ϕ)〉

= 〈ν, w − u〉VΦσ ((w, ν),J (u−w)) ,

where w = (w, µ), u = (u, ν) and Φ := R(ϕ,ϕ) ∈ Aṽ(G × Ĝ). We introduce the mapping

(5.116) T0 :
(
G × Ĝ

)
×
(
G × Ĝ

)
→ G × Ĝ, ((w, µ), (u, ν)) 7→ (w, ν)

and write

(5.117)
∣∣∣[M(σ)]w,u

∣∣∣ = |VΦσ (T0(w,u),J (u−w))| .

Since γ ≤ 1, we have ‖c‖`1 ≤ ‖c‖`γ and we estimate

‖M(σ)c‖`γ(Λ) =

(∑
w∈Λ

∣∣∣∣∣∑
u∈Λ

[M(σ)]w,u cu

∣∣∣∣∣
γ) 1

γ

≤

(∑
w∈Λ

(∑
u∈Λ

∣∣∣[M(σ)]w,u

∣∣∣ |cu|)γ)
1
γ

≤

(∑
w∈Λ

∑
u∈Λ

∣∣∣[M(σ)]w,u

∣∣∣γ |cu|γ)
1
γ

=

(∑
w∈Λ

∑
u∈Λ

|VΦσ (T0(w,u),J (u−w))|γ |cu|γ
) 1
γ

.

Let us majorize each entry of the matrix as follows:

|VΦσ (T0(w,u),J (u−w))| ≤ sup
z∈U(G),δ∈U(Ĝ)

|VΦσ (T0(w,u) + z,J (u−w) + δ)|

=
•
V Φσ

(
[T0(w,u)]

•
, [J (u−w)]

•)
,(5.118)

where the function on the quotient group was introduced in (5.107). Fix w,u ∈ Λ and consider
x = (x, ξ), y = (y, η) such that

•
w =

•
x and

•
u =

•
y. Then there exist unique z = (z, ζ) =

((0, z2), (0, ζ2)),n = (n, ι) = ((0, n2), (0, ι2)) ∈ U(G) such that

x = w + z, y = u + n.

Therefore

T0(x,y) = T0(w + z,u + n) = ((w1, w2 + z2), (ν1, ν2 + ι2))

= T0(w,u) + ((0, z2), (0, ι2))
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where ((0, z2), (0, ι2)) ∈ U(G), so that we have shown

(5.119)
•
w =

•
x,
•
u =

•
y ⇒ [T0(w,u)]

•
= [T0(x,y)]

•
.

Similarly,
J (y − x) = J (u + n−w − z) = J (u−w) + J (n− z)

and being J (n− z) ∈ U(Ĝ) we have proved

(5.120)
•
w =

•
x,
•
u =

•
y ⇒ [J (u−w)]

•
= [J (y − x)]

•
.

Hence the function in (5.118) depends only on the cosets of w and u, so that the application

(5.121)
•
H(
•
u,
•
w) :=

•
V Φσ

(
[T0(w,u)]

•
, [J (u−w)]

•)
is well defined. A sequence c = (cw)w∈Λ on the quasi-lattice Λ uniquely determines a sequence

on D(G) =
•
Λ simply by

(5.122)
•
c :=

(
c •w := cw

)
•w∈D(G)

with
‖c‖`q(Λ) =

∥∥∥•c∥∥∥
`q(D(G))

.

Using Hölder’s inequality in the
•
u variable (observe 1/(p/γ)+1/(q/γ) = 1) and the consideration

above:

‖M(σ)c‖`γ(Λ) ≤

(∑
w∈Λ

∑
u∈Λ

•
H(
•
u,
•
w)γ |cu|γ

) 1
γ

=

 ∑
•w∈D(G)

∑
•u∈D(G)

•
H(
•
u,
•
w)γ

∣∣∣c•u∣∣∣γ


1
γ

≤

 ∑
•w∈D(G)

 ∑
•u∈D(G)

•
H(
•
u,
•
w)γ

p
γ


γ
p
 ∑
•u∈D(G)

∣∣∣c•u∣∣∣γ qγ


γ
q


1
γ

= ‖c‖`q(Λ)

 ∑
•w∈D(G)

 ∑
•u∈D(G)

•
V Φσ

(
[T0(w,u)]

•
, [J (u−w)]

•)p
γ
p


1
γ

.

Let us perform the following change of variables:

(5.123)
•
θ := [J (u−w)]

• ∈ D(Ĝ) = [JΛ]
•
.

Notice that JΛ ⊆ Ĝ×G is a quasi-lattice. Then there exists δ ∈ U(Ĝ) such that θ+δ = J (u−w)
and

u−w = J−1(θ + δ) ⇒ w = u− J−1(θ)− J−1(δ) ⇒ •
w = [u− J−1(θ)]•,
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since −J−1(δ) ∈ U(G). Recalling (5.119) and writing θ = (θ, s) = ((θ1, θ2), (s1, s2)) ∈ JΛ, we
have

[T0(w,u)]• = [T0(u− J−1(θ),u)]• = [T0((u− s, ν + θ), (u, ν))]•

= [(u− s, ν)]• = [u− (s, ê)]•.

In the above calculation we can choose as representative of
•
θ the only one in JΛ without loss

of generality. In fact, write Λ = (αZd ×D1) × (αZd ×D2), JΛ = (αZd × −D2) × (αZd ×D1),

and consider η = (η, l) = ((η1, η2), (l1, l2)) such that
•
θ =

•
η and η /∈ JΛ. Being U(Ĝ) =

({0Rd} ×K⊥)× ({0Rd} ×K), it necessarily follows that θ1 = η1 and s1 = l1 in αZd, [θ2]• = [η2]•

in Ĝ0/K⊥, [s2]• = [l2]• in G0/K and [(l, ê)]• ∈
•
Λ.

Eventually we set

(5.124)
•
z :=

•
u− [(s, ê)]• ∈ D(G) =

•
Λ

and using Lemma 5.2.15( ∑
•w∈D(G)

( ∑
•u∈D(G)

•
V Φσ

(
[T0(w,u)]

•
, [J (u−w)]

•

)p) γ
p
) 1
γ

=

( ∑
•
θ∈D(Ĝ)

( ∑
•z∈D(G)

•
V Φσ(

•
z,
•
θ)p

) γ
p
) 1
γ

=

∥∥∥∥•CΦσ

∥∥∥∥
`p,γ(D(G)×D(Ĝ))

. ‖σ‖Mp,γ(G×Ĝ) < +∞.

Case γ > 1. Observe that p ≥ γ > 1 and q ≥ γ > 1. Consider first p 6= ∞. The desired
result is obtained by duality. By Proposition 5.1.32 Mγ(G) ∼= (Mγ′(G))′, we hence show that if
f ∈ Mq(G) then Op0(σ)f is a continuous linear functional on Mγ′(G). Let g ∈ Mγ′(G), from
the weak definition (2.217) and the fact that Mp,1(G × Ĝ) ∼= (Mp′,∞(G × Ĝ))′ we get:

|〈Op0(σ)f, g〉| = |〈σ,R(g, f)〉| ≤ ‖σ‖Mp,1 ‖R(g, f)‖Mp′,∞ .

The indexes’ conditions in (5.69) and (5.70) become

γ′, q ≤ ∞,(5.125)
1

γ′
+

1

q
≥ 1

p
.(5.126)

The first one is trivial, the second follows from the assumption (5.114). Therefore

‖R(g, f)‖Mp′,∞ . ‖g‖Mγ′ ‖f‖Mq

and the boundedness of Op0(σ) from Mq(G) into Mγ(G) follows.
If p =∞ the argument is similar, we use the duality (5.63) between M∞,1 and M1,∞.

Proposition 5.2.18. ([8, Proposition 4.22]) Consider a symbol σ on the phase space such that
for some 0 < p <∞

(5.127) σ ∈
⋂
γ>0

Mp,γ(G × Ĝ).

Any eigenfunction f ∈ L2(G) of Op0(σ) satisfies f ∈
⋂
γ>0M

γ(G).

Proof. We use Theorem 5.2.17 and follow the proof pattern of [9, Proposition 3.5].
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5.3 Localization Operators on Groups

The aim of this section is to infer a result for L2-eigenfunctions of localization operators which
extends the one obtained in the Euclidean setting in Theorem 3.2.1 [9]. We recall that the
definition of Aψ1,ψ2

a was given in (2.194).
Given a function F on G × G, we introduce the operator Tb:

(5.128) TbF (x, u) := F (x, u− x).

Recall that F2 stands for the partial Fourier transform with respect to the second variable of
measurable functions σ defined on G×Ĝ. We shall consider F2σ to be defined on G×G, instead of
G× ̂̂G, due to the Pontryagin’s duality. Tb and F2 are automorphisms of S0(G×G) and S0(G×Ĝ),
respectively, which extend to automorphisms of S ′0(G × G) and S ′0(G × Ĝ) by transposition.

Lemma 5.3.1. ([8, Lemma 5.2]) Consider σ ∈ S ′0(G × Ĝ) and f, g ∈ S0(G). Then

(5.129) 〈Op0(σ)f, g〉L2(G) = 〈kσ, g ⊗ f〉L2(G×G)

where the kernel kσ is given by

(5.130) kσ(x, u) := K(Op0(σ))(x, u) :=

∫
Ĝ
σ(x, ξ)〈u− x, ξ〉 dξ = Tb(F2σ(x, u)).

Proof. The proof carries over from the Euclidean case almost verbatim, see e.g. [35, formula
(4.3)].

The following issue presents the connection between localization and Kohn-Nirenberg oper-
ators on LCA groups, extending the Euclidean case proved in Proposition 2.8.16 [11].

Proposition 5.3.2. ([8, Proposition 5.3]) Consider windows ψ1, ψ2 ∈ S0(G) and a symbol a ∈
S ′0(G × Ĝ). Then we have

(5.131) Aψ1,ψ2
a = Op0(a ∗R(ψ2, ψ1)).

Proof. The proof is similar to the Euclidean case. We detail it for sake of clarity. We first
compute the kernel K(Aψ1,ψ2

a ) of Aψ1,ψ2
a :

〈Aψ1,ψ2
a f, g〉 =

∫
G×Ĝ

a(x, ξ)

(∫
G
f(u)π(x, ξ)ψ1(u) du

)(∫
G
g(y)π(x, ξ)ψ2(y) dy

)
dxdξ

=

∫
G×G

f(u)g(y)k(y, u) dydu,

with

K(Aψ1,ψ2
a )(y, u) :=

∫
G×Ĝ

a(x, ξ)π(x, ξ)ψ1(u)π(x, ξ)ψ2(y) dxdξ.



Using Lemma 5.3.1, we set Tb ◦ F2(σ) = K(Aψ1,ψ2
a ) and compute σ using (2.99) as follows:

F−1
2 ◦ T−1

b (k) =

∫
G×Ĝ

a(x, ξ)F−1
2 ◦ T−1

b

(
π(x, ξ)ψ2 ⊗ π(x, ξ)ψ1(y, u)

)
dxdξ

=

∫
G×Ĝ

a(x, ξ)F−1
2

(
π(x, ξ)ψ2(y) · π(x, ξ)ψ1(u+ y)

)
dxdξ

=

∫
G×Ĝ

a(x, ξ)π(x, ξ)ψ2(y)

∫
G
π(x, ξ)ψ1(u+ y)〈ω, u〉 du dxdξ

=

∫
G×Ĝ

a(x, ξ)π(x, ξ)ψ2(y)〈ω, y〉F(π(x, ξ)ψ1)(ω) dxdξ

=

∫
G×Ĝ

a(x, ξ)R(π(x, ξ)ψ2, π(x, ξ)ψ1)(y, ω) dxdξ

=

∫
G×Ĝ

a(x, ξ)R(ψ2, ψ1)((y, ω)− (x, ξ)) dxdξ

= a ∗R(ψ2, ψ1)(y, ω).

We then infer the thesis from the kernels’ theorem [50, Theorem B3].

Theorem 5.3.3. ([8, Theorem 5.4]) Let 0 < p < ∞ and a ∈ Mp,∞(G × Ĝ). Consider ψ1, ψ2 ∈
SC(G) r {0}. Any eigenfunction f ∈ L2(G) of Aψ1,ψ2

a satisfies

(5.132) f ∈
⋂
γ>0

Mγ(G).

Proof. Observe that for ψ1, ψ2 ∈ SC(G) we have R(ψ2, ψ1) ∈ Aṽ(G × Ĝ), by Corollary 5.1.11.
Therefore R(ψ2, ψ1) belongs to every modulation space on the phase space; this is easily seen
by using (5.21), the inclusion relations (2.49) and the inclusion between modulation spaces in
Proposition 5.1.31. Then the argument is the same as in [9, Theorem 3.7]: we write Aψ1,ψ2

a in
the Kohn-Nirenberg form (Proposition 5.3.2)

(5.133) Aψ1,ψ2
a = Op0(a ∗R(ψ2, ψ1)),

use the convolution relations in Proposition 5.2.14 and infer the thesis applying Proposition
5.2.18.





Chapter 6

Localization operators as Fourier
multipliers

In this chapter we investigate under which conditions is it possible to write a localization operator
Aψ1,ψ2
a , or STFT multiplier accordingly to the terminology adopted in [3], with symbol only in

the frequencies, i.e. symbols of type a = 1 ⊗m with m defined on Rd, as a Fourier multiplier
first on Rd, then in the framework of ZN . Namely, we study when the equality

Aψ1,ψ2

1⊗m = Tm2
on S(Rd), M1(Rd), or L2(Rd)

holds true. Of course, in the finite discrete case the equality above reduces to an equality
between N × N matrices. We recall that a localization operator Aψ1,ψ2

a on ZN is just a finite
Gabor multiplier Gg1,g2

a (2.197) and we talk about linear time invariant (LTI) filters H (2.221)
rather than Fourier multipliers.
To give a hint of the results in chapter, the equality Aψ1,ψ2

1⊗m = Tm2
holds true on S(Rd) is and

only if
m2 = m ∗ F−1(Cψ1,ψ2),

with m,m2 ∈ S ′(Rd), ψ1, ψ2 ∈ S(Rd) or other suitable function spaces, and Cψ1,ψ2
is the window

correlation function defined in (6.2) below as

(6.1) Cψ1,ψ2(y) := (Iψ2 ∗ ψ1)(y),

I being the reflection operator. We address the reader to Theorem 6.2.1.
In particular, if we choose m = m2 the equality Aψ1,ψ2

1⊗m = Tm holds for any multiplier m ∈ S(Rd)
if and only if

Cψ1,ψ2
= 1 in S ′(Rd).

The equality above is very restrictive, so that Aψ1,ψ2

1⊗m = Tm2
on S(Rd) never holds for classical

anti-Wick operators, i.e. ψ1 = ψ2 = e−πt
2

, whose Gaussian windows provide a smoothing effect.
Indeed, Theorem 6.4.3 states that

If 1 < p ≤ 2 ≤ q < ∞, m ∈ Lr,∞(Rd) with indices satisfying (6.13), then the anti-Wick
operator Aψ,ψ1⊗m is bounded from Lp(Rd) into Lq(Rd).

Please note the similarity (and differences) to Hörmander’s result, Theorem 2.7.23). The
previous result holds true for more general STFT multipliers Aψ1,ψ2

1⊗m with ψ1, ψ2 ∈ S ′(Rd) such
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that the window correlation function satisfies Cψ1,ψ2
∈ L2(Rd) ∩ L∞(Rd), cf. Theorem 6.4.1 in

Section 6.4 below. For p = 2, the boundedness of the Fourier multiplier Tm in Theorem 2.7.23
forces the indices’ choice: q = 2 and r =∞, whereas condition in (6.13)

1

q
≤ 1

r
+

1

p

is more flexible, allowing to choose q ≥ 2 and r ≤ ∞. The necessity of condition (6.13) for anti-
Wick operators is proved in Theorem 6.4.4. We just mention that the problem of representation
and approximation of linear operators by means of Gabor multipliers (and suitable modifica-
tions) was studied by M. Dörfler and B. Torrésani in [46], further investigations are contained
in [77, 107]. More generally, approximating problems for pseudo-differential operators via STFT
multipliers (“wave packets” were exhibited in the work by A. Cordoba and C. Fefferman [36], see
also Folland [68] and the Ph.D. thesis [48]). However here the focus is strictly different.

All the results the chapter presents are due to [3], it is structured as follows. Section 6.1
is devoted to the study of the already mentioned window correlation function Cψ1,ψ2

, also a
boundedness result on modulation spaces for Aψ1,ψ2

a is obtained. The equality Aψ1,ψ2

1⊗m = Tm2
in

considered in Section 6.2 whereas the case m = m2 is tackled in Section 6.3. The smoothing
effect of a STFT multiplier, Theorem 6.4.1, is the main object of Section 6.4, in Subsection 6.4.1
the anti-Wick case is taken into account. Eventually, Section 6.5 deals with the finite discrete
setting of ZN and it is an extension of [48, Chapter 2].

We recall that all the needed definitions and backgrounds can be found in Chapter 2 and As-
sumptions 2.5.1 hold in the present chapter. Moreover, we shall assume every weight continuous
and even.

6.1 Window correlation function

In the following theorem we present an optimal result for Mp,q-boundedness (and in particular
L2-boundedness) of STFT multipliers. We extend Theorem 5.2 in [31] and Theorem 1.1 in [28].

Theorem 6.1.1. ([3, Theorem 2.4]) Consider s ≥ 0, p1, p2, q1, q2 ∈ [1,∞], with 1/p1 +1/p2 ≥ 1,
1/q1 + 1/q2 ≥ 1. If ψ1 ∈ Mp1,q1

vs (Rd), ψ2 ∈ Mp2,q2
vs (Rd), and a ∈ M∞,1(R2d), then Aψ1,ψ2

a is
bounded on every Mp,q

vs (Rd), p, q ∈ [1,∞]. In particular, the operator Aψ1,ψ2
a is bounded on the

Shubin-Sobolev space Qs = M2
vs (In particular, for s = 0, Aψ1,ψ2

a is bounded on L2(Rd)).

Proof. If ψ1 ∈ Mp1,q1
vs (Rd), ψ2 ∈ Mp2,q2

vs (Rd) with 1/p1 + 1/p2 ≥ 1, 1/q1 + 1/q2 ≥ 1, by [25,
Theorem 4] we infer that their cross-Wigner distribution W (ψ2, ψ1) is in M1,∞

1⊗vs(R
2d). Rewriting

the STFT multiplier Aψ1,ψ2
a as a Weyl operator Lσ with σ = a ∗ W (ψ2, ψ1), the convolution

relations for modulation spaces in Proposition 2.5.19 give

σ ∈M∞,1(R2d) ∗M1,∞
1⊗vs(R

2d) ↪→M∞,11⊗vs(R
2d).

The result follows by the continuity properties of Weyl operators in [31, Theorem 5.2].

For sake of completeness let us recall [28, Corollary 4.2]:

Proposition 6.1.2. If a ∈ M∞(R2d) and ψ1, ψ2 ∈ M1
v (Rd), w ∈ Mv, then Aψ1,ψ2

a is bounded
on Mp,q

w (Rd) for 1 ≤ p, q ≤ ∞. In particular, it is bounded on L2(Rd).
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Definition 6.1.3. Let ψ1, ψ2 ∈ L2(Rd). The window correlation function of the pair
(ψ1, ψ2) is defined by

(6.2) Cψ1,ψ2
(y) := (Iψ2 ∗ ψ̄1)(y), ∀y ∈ Rd.

The shifted window correlation function of the pair (ψ1, ψ2) is defined for all t, y ∈ Rd
as:

(6.3) Gψ1,ψ2
(t, y) :=

∫
Rd
ψ2(t− u)ψ1(y − u) du.

Remark 6.1.4. (i) The window correlation function Cψ1,ψ2
is a continuous function and it

enjoys several properties depending on the function/distribution space of the two windows
ψ1, ψ2, cf- Proposition 6.1.5;

(ii) It is straightforward to show that Gψ1,ψ2
∈ L∞(R2d). Observe that the definition of Gψ1,ψ2

also works for windows ψ1, ψ2 belonging to function/distributions spaces other than L2(Rd)
(see Proposition 6.1.5). We can rewrite the shifted window correlation function Gψ1,ψ2

on
R2d as a time shift of the mapping Cψ1,ψ2 on Rd defined in (6.2). In fact, a straightforward
computation shows that

(6.4) Gψ1,ψ2
(t, y) = Cψ1,ψ2

(y − t) = TtCψ1,ψ2
(y), ∀t, y ∈ Rd.

Let us study the properties of Cψ1,ψ2
.

Proposition 6.1.5. ([3, Proposition 2.6]) The window correlation function Cψ1,ψ2 enjoys the
following properties.

(i) If ψ1, ψ2 ∈ S(Rd), then Cψ1,ψ2
∈ S(Rd).

(ii) If either ψ1 is in S ′(Rd) and ψ2 ∈ S(Rd) or ψ1 is in S(Rd) and ψ2 ∈ S ′(Rd) then
Cψ1,ψ2

∈ C(Rd) with at most polynomial growth.

(iii) If ψ1 ∈ Lp(Rd), ψ2 ∈ Lp
′
(Rd), with 1 < p < ∞, 1/p + 1/p′ = 1, then Cψ1,ψ2 ∈ C0(Rd).

If either p = 1 (p′ = ∞) or p = ∞ (p′ = 1) then Cψ1,ψ2 ∈ Cb(Rd). The same statements
hold if we replace the Lebesgue space Lp(Rd) (resp. Lp

′
(Rd)) with the modulation space

Mp(Rd) (resp. Mp′(Rd)).

(iv) If ψ1 ∈Mp,u
w1⊗ν(Rd), ψ2 ∈Mq,t

v1⊗v2ν−1(Rd), with 1 ≤ p, q, r, t, u, γ ≤ ∞ satisfying

1

u
+

1

t
≥ 1

γ
,

and
1

p
+

1

q
≥ 1 +

1

r
,

and the weights as in the assumptions of Proposition 2.5.19, then Cψ1,ψ2
is in ∈Mr,γ

w (Rd),
with norm inequality

‖Cψ1,ψ2‖Mr,γ
w
. ‖ψ1‖Mp,u

w1⊗ν
‖ψ2‖Mq,t

v1⊗v2ν−1
.

Proof. The proofs of items (i), (ii) follow by the convolution properties for the Schwartz class
S, its dual S ′ respectively, see, e.g., the textbooks [70, 94]. Item (iii) is a consequence of the
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convolution properties for Lp(Rd) spaces which can be found e.g., in [70, 94]. For modulation
spaces Mp we use the convolution properties in Proposition 2.5.23.

(iv). By assumption all the weights under consideration are even, so that Iψ2 ∈Mq,t
v1⊗v2ν−1(Rd)

whenever ψ2 ∈Mq,t
v1⊗v2ν−1(Rd). Moreover modulation spaces are closed under complex conjuga-

tion, hence the result immediately follows by applying the convolution relations in Proposition
2.5.19.

Example 6.1.6. ([3, Example 2.7]) In what follows we exhibit examples of window correlation
functions.

(i) Consider two L2-normalized Gaussian functions ψ1(t) = ψ2(t) = 2d/4e−πt
2

, t ∈ Rd. In
this case, the window correlation function Cψ1,ψ2

in (6.2) is a Gaussian as well

(6.5) Cψ1,ψ2
(t) = I(ψ1 ∗ I(ψ̂2))(t) = 2d/2(eπ(·)2

∗ eπ(·)2

)(−t) = e−
π
2 t

2

, t ∈ Rd;

(ii) Consider ψ1 = χ[0,1]d , ψ2(t) = 1, for every t ∈ Rd. Observe ψ1 ∈ L1(Rd), ψ2 ∈ L∞(Rd).
Then the window correlation function becomes

Cψ1,ψ2(t) = ψ1 ∗ I(ψ̄2)(−t) =

∫
[0,1]d

dy = 1, ∀t ∈ Rd.

6.2 Study the equality Aψ1,ψ2

1⊗m = Tm2

The following issue has been already anticipated at the beginning of the chapter.

Theorem 6.2.1. ([3, Theorem 3.1]) Fix multiplier symbols m,m2 ∈ S ′(Rd) (resp. m,m2 ∈
M∞(Rd)) and windows ψ1, ψ2 in S(Rd) (resp. in M1(Rd)). Then the equality

(6.6) Aψ1,ψ2

1⊗m = Tm2
on S(Rd) (resp. M1(Rd))

holds if and only if

(6.7) m2 = m ∗ F−1(Cψ1,ψ2
) in S ′(Rd) (resp. M∞(Rd)).

The same conclusions hold under the following assumptions:

(i) The symbols m,m2 in S(Rd) (resp. in M1(Rd)) and the window functions (ψ1, ψ2) in
S ′(Rd)× S(Rd) (resp. M∞(Rd)×M1(Rd));

(ii) The symbols m,m2 in S(Rd) (resp. in M1(Rd)) and the window functions (ψ1, ψ2) ∈
S(Rd)× S ′(Rd) (resp. M1(Rd)×M∞(Rd)).

Proof. Assume m,m2 ∈ S ′(Rd) and (ψ1, ψ2) ∈ S(Rd)×S(Rd). First, we show that the operators
Aψ1,ψ2

1⊗m and Tm2
are well defined and continuous from S(Rd) to S ′(Rd). For every f, g ∈ S(Rd),

the weak definition of STFT multiplier (2.193) and the standard properties of the STFT give
the result, since Vψ1f ∈ S(R2d) and Vψ2g ∈ S(R2d) and the mappings Vψ1 , Vψ2 are continuous
on S(Rd), see for example [35, Chapter 1]. For the Fourier multiplier we use the continuity of F
(resp. F−1) on S(Rd) (resp. S ′(Rd)) and of the product S(Rd) · S ′(Rd) ↪→ S ′(Rd).

Writing them as integral operators we obtain

Aψ1,ψ2

1⊗m f(t) =

∫
Rd
K(Aψ1,ψ2

1⊗m )(t, y)f(y)dy,
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with kernel

K(Aψ1,ψ2

1⊗m )(t, y) =

∫
Rd

∫
Rd
e2πi(t−y)ωm(ω)ψ2(t− x)ψ1(y − x) dxdω

= m̂(y − t)Gψ1,ψ2
(t, y) = Tt(m̂Cψ1,ψ2

)(y),(6.8)

and

(6.9) Tm2f(t) =

∫
Rd
K(Tm2)(t, y)f(y)dy,

with kernel

(6.10) K(Tm2)(t, y) =

∫
Rd
e2πi(t−y)ωm2(ω)dω = m̂2(y − t) = Ttm̂2(y).

By the Schwartz’ kernel theorem the operators Aψ1,ψ2

1⊗m and Tm2
coincide if and only if their

kernels K(Aψ1,ψ2

1⊗m ) and K(Tm2
) coincide in S ′(R2d). Equating the kernels we obtain (6.19).

Consider now case (i): m,m2 ∈ S(Rd) and (ψ1, ψ2) ∈ S ′(Rd) × S(Rd). We use similar
arguments as above, observing that the STFT Vψ1f ∈ S ′(R2d) for every f ∈ S(Rd) (cf. [35,
Chapter 1]). The case (ii) is analogous and left to the reader.

Second, assume m,m2 ∈ M∞(Rd), ψ1, ψ2 ∈ M1(Rd). We use the same arguments as in the
first step, simply replacing S with M1 and its dual S ′ with (M1)′ = M∞. Hence, we obtain
that Tm2 and the STFT multiplier Aψ1,ψ2

1⊗m are well-defined linear and bounded operators from
M1(Rd) into M∞(Rd). Rewriting them as integral operators and using the kernel theorem in
the framework of modulation spaces [50, 61] we come up to the result. The cases: (i) m,m2 ∈
M1(Rd), ψ1 ∈ M1(Rd) ψ2 ∈ M∞(Rd), (ii) m,m2 ∈ M1(Rd), ψ1 ∈ M∞(Rd) ψ2 ∈ M1(Rd) are
similar.

In this case the symbol m of the STFT multiplier is smoothed by the convolution with the
Fourier transform of the window correlation function Cψ1,ψ2

and the result is a multiplier symbol
m2 of Tm2

smoother than m. For example, if you consider m ∈ M∞(Rd), ψ1, ψ2 ∈ M1(Rd), as
explained in Proposition 6.1.5 (iv), then we have

m2 = m ∗ F−1(Cψ1,ψ2
) ∈M∞(Rd) ∗ F−1M1(Rd).

Using the convolution property in Proposition 2.5.19

(6.11) m2 ∈M∞(Rd) ∗ F−1M1(Rd) = M∞(Rd) ∗M1(Rd) ⊆M∞,1(Rd) ⊆ Cb(Rd)

and we infer that the multiplier symbol m2 belongs to Cb(Rd). Then one can play with the
convolution properties for modulation (and other function) spaces to obtain a Fourier multipliers’
symbol m2 in different function spaces.

For applications it is often useful to consider windows ψ1, ψ2 ∈ L2(Rd) and multiplier m ∈
L∞(Rd). In this case the multiplier m2 enjoys the smoothing below.

Lemma 6.2.2. ([3, Lemma 3.2]) Assume ψ1, ψ2 ∈ L2(Rd), m ∈ L∞(Rd). Then m2 as in (6.7)
belongs to Cb(Rd).

Proof. For ψ1, ψ2 ∈ L2(Rd), the window correlation function satisfies F−1Cψ1,ψ2 ∈ L1(Rd), since
Iψ2, ψ̄1 ∈ L2(Rd) and

F−1(Cψ1,ψ2) ∈ F−1(L2(Rd) ∗ L2(Rd)) = F−1L2(Rd) · F−1L2(Rd)
= L2(Rd) · L2(Rd) ⊆ L1(Rd).



168 CHAPTER 6. LOCALIZATION OPERATORS AS FOURIER MULTIPLIERS

Hence, by Proposition 6.1.5 (iii) we obtain

m2 ∈ L∞(Rd) ∗ L1(Rd) ⊆ Cb(Rd),

as desired.

QUIQUIQUI

6.3 Study the equality Aψ1,ψ2

1⊗m = Tm

First, we recall that the Hörmander’s condition p ≤ 2 ≤ q in Theorem 2.7.23 is sharp. More
precisely, if there exists a function F such that {F > 0} has non-zero measure and for all
m : Rd → R with |m| ≤ |F |, Tm : Lp(Rd) → Lq(Rd) is bounded, then p ≤ 2 ≤ q (cf. [98,
Theorem 1.12]). Moreover, also (2.220) is necessary by the Lp inequalities for potentials (see
[130, pag. 119]). We present a direct proof by rescaling arguments of the following necessary
condition. Lr,∞ denotes the weak Lr spaces (2.189), we use ‖·‖p := ‖·‖Lp where Lp(Rd) is the
usual Lebesgue space.

Proposition 6.3.1. ([3, Proposition 1.2]) For p, q, r ∈ (1,∞] we assume that the Fourier mul-
tiplier Tm satisfies

(6.12) ‖Tmf‖q ≤ C‖m‖Lr,∞‖f‖p, for every f, m ∈ S(Rd),

then we must have the indices’ relation:

(6.13)
1

q
≤ 1

r
+

1

p
.

Proof. Let us choose the multiplier m(t) = mλ(t) := ϕλ(t) = e−πλt
2

and the function f(t) =

ϕλ(t) as well. Observe that ϕ̂λ(ξ) = λ−d/2e−πλ
−1ξ2

, so that we compute

Tmλϕλ(t) = λ−d/2F−1(e−π
λ2+1
λ ξ2

)(t)

= (λ2 + 1)−d/2e
− πλ
λ2+1

t2
.

The Lq norm of the function above is given by

‖Tmλϕλ‖q � λ
− d

2q (λ2 + 1)
− d
q′ ,

with q′ being the conjugate exponent of q. We have ‖ϕλ‖p � λ−d/(2p). Assuming now (6.12) in
our context

‖Tmλϕλ‖q ≤ C ≤ ‖mλ‖Lr,∞‖ϕλ‖p
we get

λ−
d
2q (λ2 + 1)

− d
q′ ≤ Cλ− d

2r λ−
d
2p .

Letting λ→ 0+ we obtain the desired estimate (6.13).

For any symbol a(x, ω) = (1⊗m)(x, ω) = m(ω), x, ω ∈ Rd, the STFT multiplier Aψ1,ψ2

1⊗m can
be formally re-written in terms of the related correlation function. Assume for simplicity that
the windows ψ1, ψ2 and multiplier m = m(ω) are in S(Rd). We start with f ∈ S(Rd); for every
fixed t ∈ Rd, the integrals below are absolutely convergent and we are allowed to use Fubini’s
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Theorem. Moreover, it is straightforward to see that Aψ1,ψ2

1⊗m f ∈ S(Rd). Simple computations
give

Aψ1,ψ2

1⊗m f(t) =

∫
Rd
e2πiωtm(ω)

∫
Rd
f(y)e−2πiωyGψ1,ψ2(t, y)dydω

=

∫
Rd
e2πiωtm(ω)

∫
Rd
f(y)e−2πiωyTtCψ1,ψ2

(y)dydω(6.14)

=

∫
Rd
e2πiωtm(ω)F(fTtCψ1,ψ2

)(ω)dω.(6.15)

Note that, if we assume condition (6.1), then TtCψ1,ψ2
= 1 for every t ∈ Rd and Aψ1,ψ2

1⊗m = Tm,
as desired.

The equality (6.15) suggests the introduction of a new time-frequency representation closely
related to the STFT.

Definition 6.3.2. For ψ1 ∈ L1(Rd), ψ2 ∈ L2(Rd), we define the two-window short-time
Fourier transform of a signal f ∈ L2(Rd) by

(6.16)
∫
Rd
e−2πiωyf(y)TtCψ1,ψ2

(y)dy := 〈f,MωTtCψ1,ψ2
〉 = VCψ1,ψ2

f(t, ω), .

for every (t, ω) ∈ R2d.

For ψ1 ∈ L1(Rd), ψ2 ∈ L2(Rd), Young’s Inequality gives Cψ1,ψ2
∈ L2(Rd). Thus, the integral

above is absolutely convergent for every f ∈ L2(Rd). The same argument applies if we replace
the condition ψ1 ∈ L1(Rd), ψ2 ∈ L2(Rd) with the more general one ψ1 ∈ Lp(Rd), ψ2 ∈ Lq(Rd)
such that 1/p+ 1/q = 3/2.

Using (6.15), the action of the STFT multiplier Aψ1,ψ2

1⊗m can be rewritten as

(6.17) Aψ1,ψ2

1⊗m f(t) =

∫
Rd
e2πiωtm(ω)VCψ1,ψ2

f(t, ω)dω = F−1
2 [mVCψ1,ψ2

f(t, ·)](t), t ∈ Rd

where F−1
2 denotes the partial Fourier transform w.r.t. the second coordinate ω. The formal

equality above can be made rigorous by studying the properties of the two-window short-time
Fourier transform VCψ1,ψ2

and the multiplier symbol m(ω).
The following issue stems from Theorem 6.2.1 with m = m2.

Corollary 6.3.3. ([3, Corollary 4.2]) Fix a multiplier symbol m ∈ S ′(Rd) (resp. m ∈M∞(Rd))
and windows ψ1, ψ2 in S(Rd) (resp. in M1(Rd)). Then the equality

(6.18) Aψ1,ψ2

1⊗m = Tm on S(Rd) (resp. M1(Rd))

holds if and only if

(6.19) m̂Cψ1,ψ2
= m̂ in S ′(Rd) (resp. M∞(Rd)).

The same conclusions hold under the following assumptions:

(i) The symbol m in S(Rd) (resp. in M1(Rd)) and the window functions (ψ1, ψ2) in S ′(Rd)×
S(Rd) (resp. M∞(Rd)×M1(Rd));

(ii) The symbol m in S(Rd) (resp. in M1(Rd)) and the window functions (ψ1, ψ2) ∈ S(Rd)×
S ′(Rd) (resp. M1(Rd)×M∞(Rd)).
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Straightforward consequences of the result above are the following.

Corollary 6.3.4. ([3, Corollary 4.3]) Consider either (ψ1, ψ2) ∈ S ′(Rd) × S(Rd) or (ψ1, ψ2) ∈
S(Rd) × S ′(Rd). Then the equality (6.19) holds for every symbol m ∈ S(Rd) if and only if
condition (6.1) is satisfied.

Proof. The condition (6.1) immediately follows if we take m(ω) = e−πω
2 ∈ S(Rd) in the equality

(6.19).

Corollary 6.3.5. ([3, Corollary 4.4]) It is not possible to find ψ1, ψ2 ∈ S(Rd) such that the
equality (6.18) holds for every multiplier m ∈ S ′(Rd).

Proof. Taking m(ω) = e−πω
2 ∈ S(Rd) in the equality (6.19) we obtain condition (6.1). Since

ψ1, ψ2 ∈ S(Rd), by Proposition 6.1.5 we infer Cψ1,ψ2 ∈ S(Rd), thus condition (6.1) is never
satisfied.

Let us try to understand the condition (6.1) better for operators having windows/symbols
in modulation spaces.

Notice that under the assumption ψ1, ψ2 ∈ M1(Rd) the window correlation function Cψ1,ψ2

is in M1(Rd) (use Proposition 6.1.5 (iv) or the well-known fact that M1 is an algebra under
convolution). As a consequence of Theorem 6.2.1, if we want condition (6.19) to be satisfied for
every multiplier m ∈M∞(Rd), the window correlation function Cψ1,ψ2

must satisfy

(6.20) Cψ1,ψ2
(t) = 1, t ∈ Rd.

But this is not possible since Cψ1,ψ2
∈M1(Rd) ⊆ C0(Rd).

To overcome this issue, we look for windows in a bigger class that could guarantee condition
(6.20). This requires smoother symbols.

Theorem 6.3.6. ([3, Theorem 4.5]) Consider p1, p2, q1, q2 ∈ [1,∞], with 1/p1 + 1/p2 ≥ 1,
1/q1 + 1/q2 ≥ 1, ψ1 ∈Mp1,q1(Rd), ψ2 ∈Mp2,q2(Rd), and m ∈M∞,1(Rd). Then both the Fourier
multiplier Tm and the STFT multiplier Aψ1,ψ2

1⊗m are well-defined linear and bounded operators on
L2(Rd) and the equality (6.18) holds on M∞(Rd) if and only if condition (6.19) is satisfied on
M∞(Rd). As a consequence, if we want (6.19) to be fulfilled for every symbol m ∈ M∞,1(Rd),
the window correlation function Cψ1,ψ2

must satisfy (6.20).

Proof. We start with ψ1, ψ2 ∈ M1(Rd) ↪→ Mp,q(Rd), for every p, q ∈ [1,∞]. Notice that, if the
multiplier m ∈M∞,1(Rd), then the localization symbol (1⊗m) is in M∞,1(R2d), since

(1⊗m) ∈M∞,1(Rd)⊗M∞,1(Rd) ⊆M∞,1(R2d)

and we have 1 ∈M∞,1(Rd). In fact, for any fixed non-zero g ∈ S(Rd), we work out

Vg1(x, ω) = F(Txḡ)(ω) = M−x ˆ̄g(ω), (x, ω) ∈ R2d,

so that
‖1‖M∞,1(Rd) � ‖Vg1‖L∞,1(R2d) = ‖ˆ̄g‖L1(Rd) = ‖g‖FL1(Rd) < +∞.

Hence by Theorem 6.1.1 the STFT multiplier Aψ1,ψ2

1⊗m is bounded on any Mp,q(Rd) and in partic-
ular on L2(Rd). This is also the case for the Fourier multiplier Tm with m ∈ M∞,1(Rd), since
the inclusion relation in (2.168) gives in particular m ∈ L∞(Rd) and hence Tm ∈ B(L2) [98].
Using Theorem 6.2.1, such operators coincide whenever condition (6.19) is satisfied.
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Next, consider ψ1 ∈Mp1,q1(Rd), ψ2 ∈Mp2,q2(Rd) satisfying the assumptions. We shall show
that the related kernel K(Aψ1,ψ2

1⊗m ) of Aψ1,ψ2

1⊗m is in M∞(R2d). In fact, Proposition 6.1.5 (iv) gives
the window correlation function Cψ1,ψ2 ∈ M∞,1(Rd). If the multiplier m ∈ M∞,1(Rd), then
m̂ ∈ W (FL∞, L1)(Rd) ↪→ W (FL∞, L∞)(Rd) = M∞(Rd) (cf., e.g., [35, Chapter 2]) and the
multiplication relations for modulation spaces [35, Prop. 2.4.23]

‖m̂Cψ1,ψ2
‖M∞ . ‖m̂‖M∞‖Cψ1,ψ2

‖M∞,1 . ‖m‖M∞,1‖ψ1‖Mp1,q1‖ψ2‖Mp2,q2 <∞.

Hence we obtain condition (6.19).

Thanks to the results above, if the window functions ψ1 and ψ2 are non-smooth, they can
satisfy condition (6.1), as in the following issue.

Example 6.3.7. ([3, Example 4.6]) An example of window correlation functions Cψ1,ψ2 satisfying
(6.1). Consider ψ2 = 1 ∈M∞,1(Rd) and any ψ1 ∈M1,∞(Rd) satisfying

(6.21)
∫
Rd
ψ1(y) dy = 1.

This gives (6.20). In particular, observe that (6.21) is fulfilled if we consider ψ1(t) = e−πt
2 ∈

S(Rd) ⊆ M1,∞(Rd). Hence, the operators Aψ1,ψ2

1⊗m and Tm coincide for every multiplier m ∈
M∞,1(Rd).

The realm of modulation spaces seems the only possible environment to get the equality
Aψ1,ψ2

1⊗m = Tm. Also for the standard case of L2-window functions the equality fails, as shown
below.

Theorem 6.3.8. ([3, Theorem 4.7]) Consider ψ1, ψ2 ∈ L2(Rd), and the multiplier m ∈ L∞(Rd).
Then both the Fourier multiplier Tm and the STFT multiplier Aψ1,ψ2

1⊗m are well-defined linear and
bounded operators on L2(Rd) and the equality

(6.22) Aψ1,ψ2

1⊗m = Tm on L2(Rd)

holds if and only if condition (6.19) is satisfied. As a consequence, if we want (6.19) to be fulfilled
for every multiplier m ∈ L∞(Rd), the window correlation function Cψ1,ψ2 must satisfy (6.20),
and this is never the case.

Proof. The boundedness of Aψ1,ψ2

1⊗m on L2(Rd) is shown in [151]. For the Fourier multiplier
we recall that Tm is bounded on L2(Rd) since m is in L∞(Rd) [98]. Condition (6.19) then
follows by Theorem 6.2.1. The window correlation function Cψ1,ψ2

never satisfies (6.19) because
ψ1, ψ2 ∈ L2(Rd) implies Cψ1,ψ2

∈ C0(Rd), by Proposition 6.1.5 (iii).

A natural question is whether we can consider windows ψ1 ∈ Mp(Rd), ψ2 ∈ Mp′(Rd),
1 ≤ p, p′ ≤ ∞, 1/p+ 1/p′ = 1, and the multiplier m ∈ L∞(Rd). This is the case explained below.

Proposition 6.3.9. ([3, Proposition 4.8]) If we consider ψ1 ∈ Mp(Rd), ψ2 ∈ Mp′(Rd), 1 ≤
p, p′ ≤ ∞, 1/p + 1/p′ = 1, and multiplier m ∈ L∞(Rd), then the result in Theorem 6.2.1 holds
true. In particular, the equality in (6.19) is fulfilled if and only if condition (6.20) is satisfied.

Proof. The Fourier multiplier Tm is obviously well-defined, linear and bounded from S(Rd) to
S ′(Rd), since Tm is bounded on L2(Rd).
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We recall, for f, g, γ ∈ S(Rd) with ‖γ‖L2 = 1, the switching property of the STFT [35, Lemma
1.2.3] and the change of window in [35, Lemma 1.2.29]. Indeed, for (x, ω) ∈ R2d:

Vfg(x, ω) = e−2πix·ωVgf(−x,−ω), |Vgf(x, ω)| ≤ (|Vγf | ∗ Vgγ) (x, ω).

For the STFT multiplier Aψ1,ψ2

1⊗m , we use its weak definition in (2.193), Hölder’s inequality, the
mentioned switching property and change of window; for every f, g ∈ S(Rd),

|〈Aψ1,ψ2
a f, g〉| = |〈a, Vψ1

fVψ2
g〉|

≤ ‖a‖L∞(R2d)‖Vψ1fVψ2g‖L1(R2d)

≤ ‖m‖L∞(Rd)‖Vψ1
f‖Lp(R2d)‖Vψ2

g‖Lp′ (R2d)

= ‖m‖L∞(Rd)‖Vγf ∗ Vψ1
γ‖Lp(R2d)‖Vγg ∗ Vψ2

γ‖Lp′ (R2d)

≤ ‖m‖L∞(Rd)‖Vγf‖L1(R2d)‖Vψ1
γ‖Lp(R2d)‖Vγg‖L1(R2d)‖Vψ2

γ‖Lp′ (R2d)

= ‖m‖L∞(Rd)‖f‖M1(Rd)‖Vγψ1‖Lp(R2d)‖g‖M1(Rd)‖Vγψ2‖Lp′ (R2d)

= ‖m‖L∞(Rd)‖f‖M1(Rd)‖ψ1‖Mp(Rd)‖ψ2‖Mp′ (Rd)‖g‖M1(Rd).

Since S(Rd) ↪→ M1(Rd), the estimate above gives the continuity of Aψ1,ψ2

1⊗m from S(Rd) into
S ′(Rd). Then, arguing as in the proof of Theorem 6.2.1 we obtain the claim.

Considering ψ2(t) = 1 for every t ∈ Rd, hence ψ2 ∈ L∞(Rd) ⊆ M∞(Rd), and any ψ1 ∈
M1(Rd) satisfying (6.21), we provide examples for condition (6.20) being satisfied.

6.4 Smoothing effects of STFT multipliers
Thanks to the smoothing effect of the two-window STFT we obtain boundedness results for
STFT multipliers which extend the case of Fourier multipliers. The main tool is to use the
representation of Aψ1,ψ2

a in (6.15), that is

Aψ1,ψ2

1⊗m f(t) =

∫
Rd
e2πiωtm(ω)F(fTtCψ1,ψ2

)(ω)dω = F−1
2 [mVCψ1,ψ2

f(t, ·)].

Theorem 6.4.1. ([3, Theorem 5.1]) Assume 1 < p ≤ 2 ≤ q < ∞, m ∈ Lr,∞(Rd) such that
condition (6.13) is satisfied. Consider windows ψ1, ψ2 ∈ S ′(Rd) such that the correlation function
satisfies

(6.23) Cψ1,ψ2
∈ Lp

′
(Rd) ∩ L∞(Rd).

Then the STFT operator Aψ1,ψ2

1⊗m is bounded from Lp(Rd) into Lq(Rd).

Proof. Consider a function f in Lp(Rd), p ≤ 2, then

‖fTtCψ1,ψ2
‖1 ≤ ‖f‖p‖TtCψ1,ψ2

‖p′ = ‖f‖p‖Cψ1,ψ2
‖p′ , ∀t ∈ Rd

and
‖fTtCψ1,ψ2

‖p ≤ ‖f‖p‖TtCψ1,ψ2
‖∞ ≤ ‖f‖p‖Cψ1,ψ2

‖∞, ∀t ∈ Rd.

So that by complex interpolation, fTtCψ1,ψ2
∈ Ls(Rd), for every 1 ≤ s ≤ p (hence 1/s ≥ 1/p)

∀t ∈ Rd, with
‖fTtCψ1,ψ2

‖Ls(Rd) ≤ C‖f‖Lp(Rd),
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for a constant C > 0 independent of t.
By Theorem 2.7.23, if m ∈ Lr,∞(Rd), then the Fourier multiplier

Tmf = F−1
2 [mVCψ1,ψ2

f(t, ·)] = F−1
2 [mF2(fTtCψ1,ψ2)]

acts continuously from Lp(Rd)→ Lq(Rd), with q ≥ 2 satisfying the index condition in (6.13).

Remark 6.4.2. If ψ1 ∈ L1(Rd) ∩ L2(Rd) and ψ2 ∈ L2(Rd) (or vice versa) then the win-
dow correlation function satisfies condition (6.23). In fact, by Proposition 6.1.5 it follows that
Cψ1,ψ2

∈ L2(Rd) ∩ L∞(Rd) ⊆ Lp′(Rd), for every 2 ≤ p′ ≤ ∞.

This shows the smoothing effect of the two-window STFT VCψ1,ψ2
f . For simplicity, let us

consider f ∈ L2(Rd). The Fourier multiplier Tm takes the function f ∈ L2(Rd) and considers
its Fourier transform f̂ that lives in L2(Rd) by Plancherel theorem, but we cannot infer any
other further property for f . Instead, in the STFT multiplier Aψ1,ψ2

1⊗m we replace f̂ with the two-
window STFT VCψ1,ψ2

f . Assuming the condition (6.23), we obtain that VCψ1,ψ2
f ∈ Cb(R2d) ∩

L2(R2d) and uniformly continuous on R2d (cf. [35, Proposition 1.2.10, Corollary 1.2.12]), and
this implies VCψ1,ψ2

f(t, ·) ∈ Cb(Rd)∩L2(Rd) for every fixed t ∈ Rd, so that the related multiplier
F−1

2 [mVCψ1,ψ2
f(t, ·)] can enjoy the smoothing effect above, uniformly with respect to t ∈ Rd.

6.4.1 The anti-Wick case
Thanks to the discussions above, we can state that an anti-Wick operator Aϕ,ϕ1⊗m, with Gaussian
windows ϕ(t) = 2d/4e−πt

2

and multiplier symbolm ∈ S ′(Rd), can never be written in the Fourier
multiplier form. In fact, recalling that the window correlation function in this case is given by
Cϕ,ϕ(t) = e−

π
2 t

2

, cf. formula (6.5), we infer that condition (6.1) is never satisfied.
Let us better understand the smoothing effects for such operators. Using the expression in

(6.15), we can write

Aϕ,ϕ1⊗mf(t) =

∫
Rd
e2πiωtm(ω)F(fTt(e

−π2 (·)2

))(ω)dω.

The anti-Wick operator in terms of the two-window STFT defined in (6.16) can be written as

Aϕ,ϕ1⊗mf(t) = F−1
2 [mVCϕ,ϕf(t, ·)], t ∈ Rd.

Roughly speaking, here the signal f is first smoothed by multiplying with the shifted Gaussian
Tt(e

−π2 (·)2

), that is

(6.24) gt(y) := f(y)Tt(e
−π2 (·)2

)(y).

Then, the multiplier Tm is applied to the modified signal gt. In other words,

(6.25) Aϕ,ϕ1⊗mf(t) = Tm(gt)(t), f ∈ L2(Rd).

From the equality above, it is clear the smoothing effect of the anti-Wick operator Aϕ,ϕ1⊗m with
respect to the Fourier multiplier Tm, stated in Theorem 6.4.3, that we are going to prove very
easily.

Theorem 6.4.3. ([3, Theorem 1.3]) If 1 < p ≤ 2 ≤ q <∞, m ∈ Lr,∞(Rd) with indices satisfying
(6.13), then the anti-Wick operator Aϕ,ϕ1⊗m is bounded from Lp(Rd) into Lq(Rd).
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Proof. Since the window correlation function Cϕ,ϕ(t) = e−
π
2 t

2

is in S(Rd) ↪→ Lp
′
(Rd)∩L∞(Rd),

for any 2 ≤ p′ <∞ condition in (6.23) is satisfied and the thesis follows by Theorem 6.4.1.

We end up this section by showing the necessity of the indices’ relation in (6.13).

Theorem 6.4.4. ([3, Theorem 5.3]) If there exists a C > 0 such that the anti-Wick operator
satisfies

(6.26) ‖Aϕ,ϕ1⊗mf‖q ≤ C‖m‖Lr,∞‖f‖p, ∀f,m ∈ S(Rd),

then condition (6.13) holds true.

Proof. We write condition (6.26) for the multipliers mλ(ξ) = ϕλ(ξ) = e−πλξ
2

, λ > 0, and
functions fλ(t) = ϕλ(t) as well. Then we compute the anti-Wick operator Aϕ,ϕ1⊗mλfλ. A tedious
computation shows

Aϕ,ϕ1⊗mλfλ(t) = cλe
−πbλt2 ,

with

cλ :=
2d/2

(6λ2 + 4λ+ 1)d/2
, bλ :=

2λ(6λ3 + 10λ2 + 9λ+ 1)

(6λ2 + 4λ+ 1)(2λ+ 1)2
.

This yields the norm estimate

‖Aϕ,ϕ1⊗mλfλ‖q � cλb
− d

2q

λ � (2λ+ 1)
d
q

λ
d
2q (6λ2 + 4λ+ 1)

d
2q′ (6λ3 + 10λ2 + 9λ+ 1)

d
2q

.

Letting λ→ 0+ we infer the inequality in (6.13).

6.5 Finite discrete setting: representation of LTI filter as
Gabor Multiplier

Using intuition and visual comparison as an indication that the implementation of a LTI filter by
a Gabor multiplier seems to work quite well, but being aware of continuous results, we are now
going to analyse under which conditions it is analytically possible to have equivalence between a
LTI filter and a Gabor multiplier. We will see immediately in the first theorem that exactly the
most interesting class of perfect filters with characteristic function as frequency response does
not qualify as suited candidates.

The result below is a consequence of the general setting in Theorem 6.3.8, but the estimate
(6.27) is new.

Theorem 6.5.1. ([3, Theorem 6.5]) Let Tm2 : L2(R) → L2(R) be a LTI filter with frequency
response m2 = ĥ = χΩ, Ω ( R interval. Then Tm2

can never be represented exactly as Gabor
multiplier with symbol a = 1⊗m, m ∈ L∞(R), and

(6.27) ‖Tm2
−Gg1,g2

a ‖Op ≥
1

2

for every and g1, g2 ∈ L2(R).
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Proof. The spreading function is a Banach Gelfand Triple isomorphism between (B,H,B′) and
(S0, L

2,S ′0)(R2), see [63] for notations. Therefore two operators are identical in (B,H,B′) if and
only if their spreading functions are identical. The integral kernel of a Fourier multiplier with
symbol m2 was calculated in (6.10) and it is related to the spreading function as follows:

η(Tm2
)(x, ω) =

∫
Rd
K(Tm2

)(y, y − x)e−2πiωy dy

=

∫
Rd
Tym̂2(y − x)e−2πiωy dy

=

∫
Rd
m̂2(−x)e−2πiωy dy

= (I ◦ F(m2)⊗ δ) (x, ω)

= (h⊗ δ) (x, ω).

The spreading function of a Gabor multiplier Gg1,g2
a defined trough a lattice Λ = αZd × βZd is

given by

(6.28) η(Gg1,g2
a )(x, ω) = Fs(a)(x, ω) · Vg1g2(x, ω) =: A (x, ω) · Vg1g2(x, ω),

where A = Fsa = F−1(m) ⊗ F(1) = F−1(m) ⊗ δ is the ( 1
β ,

1
α )-periodic symplectic Fourier

Transform of the symbol a = 1 ⊗m (compare [46]). Therefore a Gabor multiplier is equivalent
to a convolution operator if and only if

(6.29) (h⊗ δ) (x, ω) =
(
F−1(m)⊗ δ

)
Vg1

g2(x, ω) ∀(x, ω) ∈ R2d.

This gives

(6.30) h(x) = F−1(m)Vg1
g2(x, 0) ⇔ ĥ = m ∗ F (Vg1

g2(·, 0)) .

Let us calculate

F (Vg1
g2(·, 0)) (ω) =

∫
Rd

∫
Rd
g2(t)g1(t− x) dte−2πiωx dx

=

∫
Rd

∫
Rd
g2(t)g1(x′)e−2πi(x−y) dx′dt

= F(g2)(ω)F−1(g1)(ω).

Therefore

(6.31) ĥ = m ∗ F(g2)F−1(g1).

Since the windows g1, g2 belong to L2(Rd), we have s(ω) := F(g2)F−1(g1) ∈ L1(Rd) and the
right-hand side of (6.31) is bounded and uniformly continuous. Since we are assuming ĥ to be
the characteristic function of an interval Ω ( R, we obtained the first assertion of the thesis.
About estimate (6.27) we distinguish two cases. If there is ω0 ∈ R such that |s(ω0)| = 1/2, being
the image of ĥ the set {0, 1}, then∣∣∣ĥ(ω0)− s(ω0)

∣∣∣ ≥ ∣∣∣∣∣∣ĥ(ω0)
∣∣∣− |s(ω0)|

∣∣∣ ≥ 1

2

which implies

sup
ω∈R

∣∣∣ĥ(ω)− s(ω)
∣∣∣ = ‖Tm2 −Gg1,g2

a ‖Op ≥
1

2
.

If the value 1/2 is never attained by |s(ω)| the argument is identical. This concludes the proof.
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In the finite discrete case the problem presents itself in a similar way. In the next theorem
we state the necessary conditions on the window functions in order to get perfect equivalence.
It can be seen that without subsampling perfect equivalence would in theory be always possible
if supp(h) ⊆ supp(Ig1 ∗ g2). Numerically, we observe however the same behaviour as we have in
the continuous case.

Theorem 6.5.2. ([3, Theorem 6.6]) Le us fix a LTI filter H : CN → CN with impulse response
h ∈ CN and lattice constants α, β ≥ 1.
If H can be written as a Gabor multiplier Gg1,g2

a with lattice constants α, β, for some symbol
a ∈ CN×N and window functions g1, g2 ∈ CN , then the following hold for every ∀u ∈ supp(h):

1) Vg1
g2(u, 0) = (Ig1 ∗ g2)(u) = Cg1,g2

(u) 6= 0;

2) Vg1
g2(u+Bk, lA) = 0, ∀k = 0, . . . , β − 1, ∀l = 1, . . . , α− 1;

3) Vg1
g2(u+Bk, 0) = 0, ∀k = 1, . . . , β − 1 s.t. (u+Bk) /∈ supp(h);

4) Vg1
g2(u+Bk, 0) = h(u+Bk)

h(u) Vg1
g2(u, 0), ∀k = 1, . . . , β − 1 s.t. (u+Bk) ∈ supp(h).

Vice versa, if there are window functions g1, g2 ∈ CN fulfilling 1)– 4), then there exists a symbol
a ∈ CN×N such that H = Gg1,g2

a .

Proof. Let us assume that H = Gg1,g2
a for some a ∈ CN×N , g1, g2 ∈ CN . Two operators are

identical if and only if their spreading functions are identical. From (2.223) and (2.204), H =
Gg1,g2
a if and only if

(6.32) (h⊗ δ)(u, v) =
N

αβ
SBAP (u, v)Vg1

g2(u, v)

This, in turn is equivalent to

h(u) = N (αβ)
−1 SBAP (u, 0)Vg1

g2(u, 0), u = 0, . . . , N − 1;(6.33)

0 = N (αβ)
−1 SBAP (u, v)Vg1g2(u, v), u, v = 0, . . . , N − 1, v 6= 0.(6.34)

From equation (6.33) condition 1) follows. In fact, suing the switching property property of the
STFT [35, Lemma 1.2.3] Vg1

g2(u, 0) = Vg2
g1(−u, 0) = Cg1,g2

(u). Note that for SBAP (u, 0) = 0
by equation (6.32) we get u /∈ supp(h). Hence by equation (6.34) together with the periodicity
of SBAP follows condition 2) follows. The periodicity of SBAP in the time domain together with
equation (6.33) gives condition 3). Finally by (6.33) and (2.203) we compute

(6.35)
αβ

N

h(u)

Vg1
g2(u, 0)

= SBAP (u, 0) = SBAP (u+Bk, 0) =
αβ

N

h(u+Bk)

Vg1
g2(u+Bk, 0)

for k = 1, ..., β − 1, (u+ kB) ∈ supp(h), hence we get condition 4).
On the other hand, let us consider g1, g2 ∈ CN fulfilling conditions 1) – 4). Let us define for
u = 0, . . . , N − 1

(6.36) V (u) :=

{
Vg1

g2(u, 0) if u ∈ supp(h)

1 otherwise

and

(6.37) C(u) :=

{
#{{u+BZN} ∩ supp(h)} if {u+BZN} ∩ supp(h) 6= ∅
1 otherwise,
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we notice that C(u+Bk) = C(u) for any k = 0, . . . , β − 1, since u+BZN = u+Bk +BZN .
Let us observe that

h

C · V
∗ χBZN (u) =

N−1∑
k=0

h(u− k)

C(u− k)V (u− k)
χBZN (k) =

1

C(u)

N−1∑
k=0

h(u− k)

V (u− k)
χBZN (k)

=
1

C
·
(
h

V
∗ χBZN

)
(u).

We define

(6.38) SBAP (u, v) :=
αβ

N

(
h

C · V
∗ χBZN

)
⊗ χAZN (u, v),

which is periodic in the sense of (2.203) since C(u+Bk) = C(u) for any k = 0, . . . , β − 1 and(
h

V
∗ χBZN

)
(u+Bk) =

1

C(u)

N−1∑
j=0

h(j)

V (j)
χBZN (u+Bk − j)

=
1

C(u)

N−1∑
j=0

h(j)

V (j)
χBZN−Bk(u− j)

=
1

C(u)

N−1∑
j=0

h(j)

V (j)
χBZN (u− j)

=

(
h

V
∗ χBZN

)
(u).

In order to verify (6.33), fix u ∈ {0, . . . , N − 1} and let us write the partition

{0, . . . , β − 1} = Sin(u) ∪ Sout(u),

where

Sin(u) := {k ∈ {0, . . . , β − 1} |u+Bk ∈ supp(h)},
Sout(u) := {k ∈ {0, . . . , β − 1} |u+Bk /∈ supp(h)}.

Therefore if u ∈ supp(h) we have 0 ∈ Sin(u) 6= ∅, starting from the right-hand side of (6.33)
and using 4) we get

N(αβ)−1SBAP (u, 0)Vg1g2(u, 0) =
1

C(u)

β−1∑
k=0

h(u+Bk)

V (u+Bk)
Vg1g2(u, 0)

=
1

C(u)

∑
k∈Sin(u)

h(u+Bk)

Vg1
g2(u+Bk, 0)

Vg1g2(u, 0)

=
1

C(u)

∑
k∈Sin(u)

h(u)

Vg1
g2(u, 0)

Vg1
g2(u, 0)

=
1

C(u)
C(u)h(u).



178 CHAPTER 6. LOCALIZATION OPERATORS AS FOURIER MULTIPLIERS

If u /∈ supp(h) and Sin(u) = ∅, then SBAP (u, 0) = 0 and (6.33) is fulfilled. If u /∈ supp(h) and
Sin(u) 6= ∅, then u+Bj = z ∈ supp(h) for some j ∈ Sin(u). Hence we can write u = z −Bj =
z + Bs for a certain s ∈ {0, . . . , β − 1} and from 3) we get Vg1

g2(u, 0) = Vg1
g2(z + Bs, 0) = 0,

which guarantees (6.33).
Equation (6.34) is fulfilled if v /∈ AZN r {0}. Let us fix v ∈ AZN r {0} and distinguish two
cases: if u appearing in (6.34) belongs to supp(h) +BZN , then Vg1g2(u, v) = 0 due to 2) and we
are done; if u does not belong to supp(h) +BZN , then SBAP (u, v) = 0 and (6.34) if verified once
more.
Eventually, in order to find a symbol a which gives the function SBAP defined above, we use
(2.205):

(6.39) αβFs(a ·Xα,β)(u, v) =
αβ

N

(
h

C · V
∗ χBZN

)
⊗ χAZN (u, v).

Being F−1
s = Fs and for (2.111) we derive

a(u, v)X(α,β)(u, v) =
1

N
Fs

((
h

C · V
∗ χBZN

)
⊗ χAZN

)
(u, v)

=
1

N
A−1χαZN (u)FN

(
h

C · V
∗ χBZN

)
(v)

=
α

N2
χαZN (u)FN

(
h

C · V

)
(v)βχβZN (v)

=
αβ

N2
FN

(
h

C · V

)
(v)X(α,β)(u, v).

So that a possible choice for the symbol is

(6.40) a(u, v) =
αβ

N2

(
1⊗FN

(
h

C · V

))
(u, v).

This concludes the proof.

Remark 6.5.3. Theorem 6.5.2 can be seen as a special result on the reproducing property,
compare [99] or [131] equation (4):

f(t) ≡
√

2πT

∞∑
k=−∞

f(kT )ψ(t− kT ).

If supp(h) ⊆ (−B,B) we would get perfect reproduction for Vg1g2(u, 0) = 1 on u ∈ supp(h)
and Vg1

g2(u, v) = 0 outside the fundamental region of the adjoint lattice for (u, v) /∈ (−B,B) ×
(−A,A). If supp(h) ⊆ (−B,B), the region X with supp(h) ⊆ X ⊆ (−B,B) introduces the free-
dom to choose (Ig1∗g2)(u) having smooth decay on X. As for an LTI filter ηH(u, v) = 0 ∀ v 6= 0,
see (2.223), we have this freedom in the frequency domain for Y := {(x, y) : 0 < |y| < A} irre-
spective of the choice of h.

The conditions given in Theorem 6.5.2 will be central for the remaining part of this section.
Therefore a visual outline of them is shown in Figure 6.1. The next theorem can be seen as a
special case of the last result, having no subsampling, i.e. α = β = 1.
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Figure 6.1: This figure gives a visual outline of Theorem 6.5.2 on the representation of a
LTI filter by a Gabor multiplier. The conditions on the support of Vg1g2 are shown once
for supp(h) ⊆ [−B,B] and once for supp(h) 6⊆ [−B,B]. Black lines indicate the regions
where Vg1g2 has to be zero.

Theorem 6.5.4. ([3, Theorem 6.8]) Consider a LTI filter H : CN → CN with impulse response
h ∈ CN and g1, g2 ∈ CN with Cg1,g2

(u) 6= 0 for every u = 0, . . . , N − 1. Then the H can be
represented as Gabor multiplier Gg1,g2

a with α = β = 1 and lower symbol

(6.41) a =
1

N2

(
1⊗FN

(
h

Cg1,g2

))
.

Proof. Let us observe that, since α = β = 1, we have S = SBAP , see (2.199) and (2.205). Taking
a as in (6.41), recalling Ig1 ∗ g2(·) = Vg1g2(·, 0) and FN (N−11)(v) = δ(v), we compute

S(u, v) = Fsa(u, v) =
1

N
Fs

(
1

N
1⊗FN

(
h(·)

Vg1
g2(·, 0)

))
(u, v) =

1

N

h(u)

Vg1
g2(u, 0)

· δ(v).

Similarly to what done in the proof of Theorem 6.5.2, H and Gg1,g2
a coincide if their spreading
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functions do; on account of the previous computation we get

h⊗ δ(u, v) = NS(u, v)Vg1g2(u, v) =
h(u)

Vg1
g2(u, 0)

δ(v)Vg1g2(u, v)

which is true since Vg1
g2(u, 0) = Ig1 ∗ g2(u) = Cg1,g2

(u) 6= 0 for every u. This concludes the
proof.

This means, given window functions, for which the convolution (up to I and a conjugation)
is non-zero on the support of the impulse response h, a LTI filter H can always be represented
exactly as Gabor multiplier Gg1,g2

a . The error between the LTI filter and the Gabor multiplier is
the error introduced through subsampling of the mask a. The representation is always possible
if we allow for the degenerate case of g1 = g2 = 1. We should, however, keep in mind that if we
want to have a meaningful parameter set for applications this is, after all, a very strong condition
on the smoothness of ĥ. Even if met, for applications, the exact representation is not too well
suited due to poor calculation efficiency and bad numerical behaviour for Ig1 ∗ g2 close to zero.

Knowing from Theorem 6.5.4 that every LTI filter with bandlimited impulse response h can
be represented as Gabor multiplier, we are now turning the focus to the opposite direction,
asking whether it is clear that a Gabor multiplier having a mask constant in time is equivalent
to a LTI filter. Reading equation (6.41) the other way round, we see implicitly that a Gabor
multiplier with time invariant symbol is a convolution operator. The frequency response of this
convolution operator, however, is not exactly equal to the frequency mask of the Gabor multiplier
but smoothed by a convolution with the Fourier transform of the window functions. In Figure 6.2
a visual representation can be found. Smooth window functions have the advantage of preserving
the edges of the frequency mask rather well at the cost of a longer time delay needed in return.
Theorem 6.5.5 formalizes this fact.

Theorem 6.5.5. ([3, Theorem 6.9]) Consider a Gabor multiplier Gg1,g2
a with no time subsam-

pling, i.e. α = 1, windows g1, g2 ∈ CN with g1 symmetric and symbol

(6.42) a = 1⊗ ĥ

for some ĥ ∈ CN . Then, it is also a LTI filter with impulse response

(6.43)
1

β

β−1∑
k=0

h(·+Bk)(g1 ∗ g2)(·).

Proof. We start from the kernel representation of the Gabor multiplier (2.198) with α = 1

K(Gg1,g2
a )(u, v) =

N−1∑
k=0

B−1∑
l=0

a(k, βl)g1(v − k)g2(u− k)e
2πiβl(u−v)

N

=

N−1∑
k=0

B−1∑
l=0

ĥ(βl)g1(v − k)g2(u− k)e
2πiβl(u−v)

N

=

B−1∑
l=0

ĥ(βl)e
2πiβl(u−v)

N

N−1∑
k=0

g1(v − k)g2(u− k).(6.44)



Fixing v ∈ {0, . . . , N − 1}, performing the change of variable t = v − k and using the symmetry
of g1, we write the second factor as

N−1∑
k=0

g1(v − k)g2(u− k) =

N−1∑
t=0

g1(t)g2(u− v + t)

=

N−1∑
t=0

g1(t)g2(u− v − t)

= (g1 ∗ g2)(u− v).

For the first factor in (6.44), using (2.111):

B−1∑
l=0

ĥ(βl)e
2πiβl(u−v)

N = F−1
N (ĥ · χβZN )(u− v)

=
(
F−1
N ĥ ∗ F−1

N χβZN

)
(u− v)

=

N−1∑
k=0

h(u− v − k)
B

N
χBZN (−k)

=
1

β

β−1∑
k=0

h(u− v +Bk).

Eventually we get

(6.45) K(Gg1,g2
a )(u, v) =

1

β

β−1∑
k=0

h(u− v +Bk)(g1 ∗ g2)(u− v)

and the result follows by (2.222).

We observe that the convolution in (6.43) is the restriction of Vg1
g2 to the time-axis, since

we are considering a symmetric window g1.
It is important to note that the LTI property is only valid in case of no time subsampling. In the
case of a common Gabor multiplier with α > 1, in contrast, the second sum in equation (6.44)
would depend on u and be α−periodic, explicitly:

A−1∑
k=0

g1(v − αk)g2(u− αk).

Therefore as soon as we have time domain subsampling of the signal, the LTI property of the
operator is lost even though the mask being constant in time.

As already mentioned, it becomes apparent that an LTI filter can be considered as a special
case of a Gabor multiplier with degenerated window functions g1 = g2 = 1. We want to put
emphasis also on the interconnection between sharp frequency cut off of the filter and smoothness
of the window functions corresponding to a time delay in filtering. Condition 1) of Theorem 6.5.2
requires the impulse response h to have a faster decay than Ig1 ∗ g2. This means that in case
we want to have a sharp cut off in the frequency filter ĥ, which corresponds to a slow decay in
h, we have to choose a smooth window function which corresponds to a large time lag.



182 CHAPTER 6. LOCALIZATION OPERATORS AS FOURIER MULTIPLIERS

Figure 6.2: The figure shows the effect of implementing a Gabor (STFT) multiplier with
mask a = 1⊗χΩ, Ω = [−R,R], with R = 80 and N = 480. The resulting operator is still
an LTI operator as long as no subsampling is performed (α = β = 1), but now looking at
the difference of the spectrograms given in the first plot, which is strongly concentrated
around the cut-off frequency. The central plot shows the 20 largest singular values of
the difference between the implemented STFT multiplier and the perfect low pass filter.
In the last plot, we show only a segment of the first singular vector of the difference, to
demonstrate the high regular oscillations.



Chapter 7

Quantum Harmonic Analysis

This last chapter presents the result by F. Luef and the author contained in [10]. The main aim
is to provide a class of operators in quantum harmonic analysis (QHA) which is the counterpart
of the Feichtinger algebra S0 in classical harmonic analysis. For this reason, we shall name such
class the set of Feichtinger operators and denote it by S0. The space S0, which turns out to be
a Banach ∗-algebra, was introduced by H. G. Feichtinger and M. S. Jakobsen in [62] and can be
described as follows:

S0 = {S : S ′0(Rd)→ S0(Rd) |S is linear, continuous andKS ∈ S0(R2d)},

where KS is the integral kernel of S. S0 proves to be a valid alternative to the Fréchet space of
Schwartz operators S, introduced in [103], which consists of all the pseudo-differential operators
with Weyl symbol in the Schwartz class S(R2d). Roughly speaking, to work with S0 in place
of S is more advantageous as well as to work with S0(Rd) instead of S(Rd). We also introduce
a weighted version of S0, M1

s, and exhibit a characterization for S in terms of such weighted
classes. Theorem 7.3.6 states the following:

S =
⋂
s≥0

M1
s.

As a consequence, we obtain a result in the spirit of [95]: Corollary 7.3.7 shows that, if the STFT
of any τ -symbol aSτ of an operator S ∈ B(L2) is rapidly decaying, then S belongs to the Schwartz
class S.

As preliminaries, in order to show that Feichtinger operators are a suitable environment for
QHA, new tools are introduced and new perspectives on the well-known τ -quantization Opτ are
shed. E.g., for every τ ∈ [0, 1] we define the τ -Wigner distribution of an operator S as follows:

WτS(x, ω) :=

∫
Rd
e−2πitωKS(x+ τt, x− (1− τ)t) dt.

To give a flavour of our results concerning the interplay of Opτ and Wτ , we report the statement
of Theorem 7.2.7.

For every τ ∈ [0, 1] the following mappings are linear and continuous:

Opτ : S ′0(R2d)→ S′0, Wτ : S0 → S0(R2d).
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Moreover, Opτ is the Banach space adjoint of Wτ : Opτ = W ∗τ , i.e. for every a ∈ S ′0(R2d) and
S ∈ S0

S′0〈a,WτS〉S0
= S′0〈Opτ (a),S〉S0

.

The chapter is structured as follows. In Section 7.1 we recall the necessary preliminary tools,
e.g. convolutions between functions and operators a?S or between operators and operators T ?S,
and introduce some new ones. Namely: the τ -STFT V τ , the τ -Wigner distribution for operators
Wτ , the Fourier-τ -Wigner transform for operators FWτ , the τ -spreading representation operator
SRτ . Section 7.2 introduces Feichtinger operators S0, recalling the important Outer and Inner
Kernel Theorems from [62], and studies them in the framework of QHA. In Subsection 7.2.1
the mappings FWτ

and Wτ are studied on S0, as well as Opτ and SRτ on S ′0(R2d). Subsection
7.2.2 extends the convolution ? to elements in S0 and S′0, showing that Feichtinger operators
are actually a suitable environment for QHA. As a consequence, we are able to extend FWτ

and Wτ to S′0. In Subsection 7.2.3 we define the τ -Cohen’s class representation, with kernel
a, of an operator S Qτa(S) and the definition of QτS(f) from [108] is recalled. Already known
objects will be recovered in the form of Qτa(S) and we shall observe that Qτa(S) coincides with
the τ -symbol of the mixed-state localization operator a ? S. Some interplays between the Gabor
matrix of an operator, the τ -Cohen’s class, the trace and the τ -Wigner distribution are then
exhibited. Eventually, Subsection 7.3 introduces the weighted classes of Feichtinger operators
M1
s and provides a characterization for Schwartz operators S in terms of M1

s.

7.1 Preliminaries

We recall the already known tools of QHA and introduce new one, such as V τg f , FWτS, WτS,
SRτa. The τ -quantization Opτ and the cross-τ -Wigner distribution Wτ (f, g) can be found in
Chapter 2.
Even if not specified, the parameter τ always belongs to [0, 1].

7.1.1 A continuum of (new) time-frequency representations

Definition 7.1.1. Given τ ∈ [0, 1], the τ−time-frequency shift (τ-TFS) at (x, ω) ∈ R2d is
defined to be

(7.1) πτ (x, ω) := e−2πiτxωMωTx = M(1−τ)ωTxMτω.

For τ = 0 we recover the usual TFS π0 = π. The following relations are due to easy
computations, hence we left them to the reader:

πτ (x, ω)πτ (x′, ω′) = e−2πi[(1−τ)xω′−τx′ω]πτ (x+ x′, ω + ω′),

πτ (x, ω)πτ (x′, ω′) = e−2πi[xω′−x′ω]πτ (x′, ω′)πτ (x, ω),

πτ (x, ω)∗ = π1−τ (−x,−ω) = e−2πi(1−τ)xωπ(−x,−ω).

Definition 7.1.2. For f, g ∈ L2(Rd) we define the τ-short-time Fourier transform (τ-
STFT) of f w.r.t g:

(7.2) V τg f(x, ω) := 〈f, πτ (x, ω)g〉, ∀x, ω ∈ Rd.
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Of course, the τ -STFT can be defined for any suitable dual pair. As can be easily verified,
each mapping

πτ : R2d → U(L2(Rd)),
where U(L2(Rd)) denotes the unitary operators on L2, is a projective representation. So that
V τ is the wavelet transform associated to πτ , hence V τg f is a continuous function.

Remark 7.1.3. Of course for τ = 0 we come back to the usual STFT V 0 = V and we have

(7.3) V τg f(x, ω) = e2πiτxωVgf(x, ω).

From the above equation, we notice that V
1
2
g f is exactly the cross-ambiguity function of f

and g A(f, g):

(7.4) V
1
2
g f(x, ω) = A(f, g)(x, ω).

7.1.2 Fundamental and new tools of QHA
In this subsection we introduce the fundamentals definitions of quantum harmonic analysis which
were introduced by R. Werner in [150]. We shall see in Definition 7.2.18 how to extend the
following definitions.

Definition 7.1.4. Consider z ∈ R2d and T ∈ B(L2(Rd)). The translation of T at z is

(7.5) αz(T ) := π(z)Tπ(z)∗.

The involution of T is set to be:

(7.6) Ť := ITI.

Given a ∈ L1(R2d) and S ∈ J 1, trace class on L2(Rd), the convolution between a and S is
the operator

(7.7) a ? S := S ? a :=

∫
R2d

a(z)αz(S) dz,

where the integral has to be understood in weak sense. The convolution of two operators
S, T ∈ J 1 is the function defined for every z ∈ R2d as

(7.8) S ? T (z) := tr
(
Sαz(Ť )

)
.

It is straightforward to check that αzαz′ = αz+z′ . In this chapter, we reserve the symbol ⊗
for rank-one operators. Namely, given f, g ∈ L2(Rd):

(7.9) (f ⊗ g)ψ := 〈ψ, g〉f, ∀ψ ∈ L2(Rd).

Trivially, the kernel of the operator f ⊗ g is the tensor product of functions f(x)g(y):

(f ⊗ g)ψ(t) = 〈ψ, g〉f(t) =

∫
Rd
f(t)g(x)ψ(x) dx.

So that, when we will need the functions’ tensor product f(x)g(y), we shall adopt the notation

(7.10) Kf⊗g(x, y) = f(x)g(y),

KS being the integral kernel of the operator S.
We now interpret (2.81) as the cross-τ -Wigner distribution of the rank-one operator f⊗g. Hence,
we naturally define the τ -Wigner distribution of an operator as follows.
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Definition 7.1.5. Let S be an operator with integral kernel KS and let τ ∈ [0, 1]. Then the
τ-Wigner distribution of S is

(7.11) WτS(x, ω) :=

∫
Rd
e−2πitωKS(x+ τt, x− (1− τ)t) dt.

Definition 7.1.6. For S ∈ J 1 and τ ∈ [0, 1], the Fourier-τ-Wigner transform of S is
defined to be:

(7.12) FWτ
S(z) := tr (πτ (z)∗S) , ∀z ∈ R2d.

For τ = 1/2 we recover the usual Fourier-Wigner transform [150].

Definition 7.1.7. We call τ-spreading representation of S ∈ B(L2) an expression of type

(7.13) S =

∫
R2d

h(z)πτ (z) dz,

where the integral is understood in weak sense. The function h is called τ-spreading function
of S.

We shall see the τ -spreading representation as mapping which assign to a function an oper-
ator, hence we give the following definition.

Definition 7.1.8. For τ ∈ [0, 1] and h ∈ L1(R2d) we define the τ-spreading representation
operator as the mapping

(7.14) h 7→ SRτh :=

∫
R2d

h(z)πτ (z) dz.

Let Fσ denote the symplectic Fourier transform, we are know able to collect in the following
lemma a number of important relations which involve many of the tools presented so far. The
proofs are standard computations and the canonical decompositions of S and T [126] are used,
we leave them to the interested reader.

Lemma 7.1.9. Let f, g,∈ L2(Rd), S, T ∈ J 1, a ∈ L1(R2d) and τ ∈ [0, 1]. Then:

(i) Fσ(Wτ (f ⊗ g)) = V τg f ;

(ii) FWτ (f ⊗ g) = V τg f ;

(iii) WτS = FσFWτS;

(iv) FWτ
S(x, ω) = e−2πi(1/2−τ)xωFW1/2

S(x, ω);

(v) Fσ(S ? T ) = FWτ
S · FW1−τT = FW1−τS · FWτ

T ;

(vi) FWτ
(a ? S) = Fσa · FWτ

S;

(vii) FWτS is the τ -spreading function of S, i.e. S =
∫
R2d FWτS(z)πτ (z) dz.

We notice that if we consider the rank-one operator S = f ⊗ g, then item (iii) and (ii) of
the previous lemma give

(7.15) Wτ (f, g) = Wτ (f ⊗ g) = FσV τg f.
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7.1.3 τ-quantization of functions

Recall that given an operator S, we denote by aSτ its τ -symbol, i.e. that tempered distribution
such that Opτ

(
aSτ
)

= S.

Remark 7.1.10. Under suitable assumptions, for example a ∈ L1(R2d), straightforward calcu-
lations give

Opτ (a) =

∫
R2d

Fσa(z)πτ (z) dz,

and since also FWτ
Opτ (a) is the τ -spreading function of Opτ (a) we have

(7.16) a = FσFWτ
Opτ (a).

Hence for S ∈ J 1

(7.17) aSτ = FσFWτ
S = WτS.

Given a ∈ S ′0(R2d) and f, g ∈ S0(Rd), we recall the definition of cross-τ-Cohen’s class
representation of f and g, with kernel a:

(7.18) Qτa(f, g) := a ∗Wτ (f, g).

We shall extend this definition in the next section.

7.2 Feichtinger operators

In this section we summarize some important results concerning a class of operators studied
in [62]. For such operators, introduced below, we adopt the name “Feichtinger operators” for
reasons which will appear clear. We stick to the Euclidean setting in which we are interested,
although the treatment shown in [62] is far more general.

Definition 7.2.1. The set of Feichtinger operators is defined to be

S0 :={S : S ′0(Rd)→ S0(Rd) |S is linear, continuous and
maps norm bounded w-∗ convergent sequences in S ′0(7.19)
into norm convergent sequences in S0}.

We adopt the following notation:

(7.20) S′0 := B(S0(Rd),S ′0(Rd))

and state the so called Outer Kernel Theorem [62, Theorem 1.1].

Theorem 7.2.2 (Outer Kernel). The Banach space S′0 is isomorphic to S ′0(R2d) via the map
T 7→ KT , where the relation between T and its kernel KT is given by

S′0〈Tf,g〉S0
= S′0〈KT ,Kg⊗f 〉S0

, ∀ f, g,∈ S0(Rd).
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The following synthesized result goes under the name of Inner Kernel Theorem, we present
it in our setting, i.e. S ′0 is meant to be the sent of conjugate-linear continuous functionals on S0.
To this end, we introduce the following notation: given σ, ν ∈ S ′0(Rd), we denote by ν⊗̃σ the
unique element of S ′0(R2d) such that

S′0〈ν⊗̃σ,Kψ⊗ϕ〉S0
= S′0〈ν,ψ〉S0S′0〈σ,ϕ〉S0

, ∀ψ,ϕ ∈ S0(R2d).

We address the reader to [62, Theorem 1.3], Lemma 3.1 and Corollary 3.10 also.

Theorem 7.2.3 (Inner Kernel). The space of Feichtinger operators S0 is a Banach space if
endowed with the norm of B(S ′0,S0) and it is naturally isomorphic as Banach space to S0(R2d)
through the map T 7→ KT , where the relation between T and its kernel KT is given by

S′0〈ν,Tσ〉S0
= S′0〈ν⊗̃σ, ,KT 〉S0

, ∀σ, ν,∈ S ′0(Rd).

Moreover, S0 is Banach algebra under composition. If S, T ∈ S0, then

(7.21) KS◦T (y, u) =

∫
Rd
KT (y, t)KS(t, u) dt.

On account of Theorem 7.2.2 and 7.2.3, S′0 is the (conjugate) topological dual of S0 and the
duality is given by

S′0〈T ,S〉S0
= S′0〈KT ,KS〉S0

.

Lemma 7.2.4. Let S ∈ S0, then there are two non-unique sequences {fn}n, {gn}n ⊆ S0(Rd)
such that

S =

∞∑
n=1

fn ⊗ gn,
∞∑
n=1

‖fn‖S0
‖gn‖S0

< +∞, KS =

∞∑
n=1

Kfn⊗gn .

Moreover,
S0 ↪→ J 1

with
tr(S) =

∫
Rd
KS(x, x) dx.

Proof. We just have to prove the continuous inclusion of Feichtinger operators into J 1, all the
remaining statements can be found in [62], see in particular Corollary 3.15 and Remark 9. The
claim comes after an easy computation:

‖S‖J 1 = |tr(A)| ≤
∫
Rd

∞∑
n=1

|fn(x)gn(x)| dx =

∞∑
n=1

∫
Rd
|fn(x)gn(x)| dx

≤
∞∑
n=1

‖fn‖L2 ‖gn‖L2 .
∞∑
n=1

‖fn‖S0
‖gn‖S0

<∞.

Since S0(R2d) = S0(Rd)⊗̂S0(Rd), see e.g. [62, Lemma 2.1], we get

‖S‖J 1 . ‖KS‖S0
� ‖S‖S0

and the proof is concluded.

Together with the observations in [62, p. 4], we have

(7.22) S0 ↪→ J 1 ↪→ J 2 ↪→ B(L2(Rd)) ↪→ S′0.

The fact that all Feichtinger operators are trace class implies the validity of Lemma 7.1.9.



7.2. FEICHTINGER OPERATORS 189

7.2.1 τ-quantization of operators

The present subsection is devoted to the study of Opτ , Wτ , FWτ
and SRτ on one of the following

spaces: S0, S′0, S0(R2d) and S ′0(R2d).
We shall see, e.g. that Opτ can be interpreted as the Banach space adjoint of Wτ , see Theorem
7.2.6 and Theorem 7.2.7. The following remark is the key insight for the mentioned results.

Remark 7.2.5. Let us consider f, g ∈ L2(Rd) such that f 6= 0, a ∈ L2(R2d) and {fj}j o.n.b.
for L2 with f1 = f . Then we compute as follows:

〈Opτ (a)f, g〉 = 〈Opτ (a)f,

∞∑
j=1

〈g, fj〉fj〉 =

∞∑
j=1

〈Opτ (a) (〈fj , g〉f) , fj〉

=

∞∑
j=1

〈Opτ (a)(f ⊗ g)fj , fj〉 = tr (Opτ (a)(f ⊗ g)) .

Taking into account the weak definition of Opτ (a) and (7.11) we can write

(7.23) 〈Opτ (a)f, g〉 = 〈a,Wτ ((f ⊗ g)∗)〉 = tr (Opτ (a)(f ⊗ g)) = J∞〈Opτ (a), (f ⊗ g)∗〉J 1 .

We can perform computations similar to the ones above for S ∈ J 1 with canonical decomposition∑∞
k=1 λkfk ⊗ gk after extending {fk}k to an o.n.b., in this case we obtain

(7.24) 〈a,WτS〉 = tr (Opτ (a)S∗) = J∞〈Opτ (a), S〉J 1 .

Theorem 7.2.6. For every τ ∈ [0, 1] the following mappings are linear and continuous:

Opτ : L2(R2d)→ J∞, Wτ : J 1 → L2(R2d).

Moreover, Opτ is the Banach space adjoint of Wτ : Opτ = W ∗τ .

Proof. The boundedness of Opτ is trivial; the proof of the continuity of Wτ follows the same
pattern shown in the proof of the subsequent Theorem 7.2.7. The last claim is just (7.24).

Theorem 7.2.7. For every τ ∈ [0, 1] the following mappings are linear and continuous:

Opτ : S ′0(R2d)→ S′0, Wτ : S0 → S0(R2d).

Moreover, Opτ is the Banach space adjoint of Wτ : Opτ = W ∗τ , i.e. for every a ∈ S ′0(R2d) and
S ∈ S0

(7.25) S′0〈a,WτS〉S0 = S′0〈Opτ (a),S〉S0
.

Proof. The boundedness and linearity of Opτ need no proof; using the formal representation of
Opτ (a) we can given the formal expression for its kernel:

(7.26) KOpτ (a)(t, x) =

∫
Rd
e2πi(t−x)ωa((1− τ)t+ τx, ω) dω.

Let us consider first f, g ∈ S0, then a standard argument, see e.g. [35, Proposition 1.3.25], gives
that

Wτ (f ⊗ g) = Wτ (f, g) ∈ S0(R2d) with ‖Wτ (f ⊗ g)‖S0
. ‖f‖S0

‖g‖S0
.
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Since Lemma 7.1.9 holds true on S0, we write Wτ = FσFWτ
and use a representation for S of

type
∑∞
n=1 fn ⊗ gn as shown in Lemma 7.2.4. Now we compute:

FWτ
S(z) = tr(πτ (z)∗S) = tr(

∞∑
n=1

πτ (z)∗(fn ⊗ gn))

=

∞∑
n=1

〈πτ (z)∗fn, gn〉 =

∞∑
n=1

V τgnfn(z).(7.27)

Taking a suitable window for the norm on S0(R2d) [101, Theorem 5.3] we have

‖FWτS‖S0
≤
∞∑
n=1

∥∥V τgnfn∥∥S0
=

∞∑
n=1

‖fn‖S0
‖gn‖S0

< +∞.

Therefore

‖FWτ
S‖S0

≤ inf{
∞∑
n=1

‖fn‖S0
‖gn‖S0

, S =

∞∑
n=1

fn ⊗ gn}

≤ inf{
∞∑
n=1

‖fn‖S0
‖gn‖S0

,KS =

∞∑
n=1

Kfn⊗gn}

= ‖KS‖S0
� ‖S‖S0

.

We proved the boundedness of FWτ
: S0 → S0(R2d), the continuity of the symplectic Fourier

transform Fσ : S0(R2d) → S0(R2d) is well-known, the continuity of Wτ : S0 → S0(R2d) follows.
Concerning the last claim, we proceed as follows:

S′0〈Opτ (a),S〉S0 = S′0〈KOpτ (a),KS〉S0 = S′0〈KOpτ (a),

∞∑
n=1

Kf⊗gn〉S0

=

∞∑
n=1

S′0〈KOpτ (a),Kf⊗gn〉S0
=

∞∑
n=1

S′0〈Opτ (a)gn,fn〉S0

=

∞∑
n=1

S′0〈a,Wτ (fn ⊗ gn)〉S0
= S′0〈a,

∞∑
n=1

Wτ (fn ⊗ gn)〉S0

= S′0〈a,WτS〉S0
.

the proof is concluded.

On account of Theorem 7.2.6 and 7.2.7, it seems reasonable to interpret

WτS

as the τ -quantization of an operator in S0 or J 1.

Corollary 7.2.8. (i) For every τ ∈ [0, 1] the mapping Wτ : S0 → S0(R2d) is a topological
isomorphism with inverse given by Opτ : S0(R2d)→ S0;

(ii) A linear and continuous operator S : S0(Rd)→ S ′0(Rd) belongs to S0 if and only if WτS ∈
S0(R2d) for some (hence every) τ ∈ [0, 1].
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Proof. (i) We observed in (7.17) that WτS is just the τ -symbol aSτ of S, here we take S ∈ S0.
Therefore

Opτ ◦WτS = Opτ (aSτ ) = S.

We now show that if we start with a ∈ S0(R2d), then Opτ (a) belongs to S0. From (7.26), we
have that the kernel of Opτ (a) can be written as

KOpτ (a)(t, x) =

∫
Rd
e2πi(t−x)ωa((1− τ)t+ τx, ω) dω = ΨτF−1

2 a(t, x),

where: F−1
2 is the inverse of the Fourier transform in the second variable; Ψτ is the change of

variables induced by the matrix so defined

(7.28)
[
1− τ τ

1 −1

]
, ΨτF (t, x) := F ((1− τ)t+ τx, t− x).

Being a in the Feichtinger algebra S0(R2d) we have F−1
2 a ∈ S0(R2d), therefore also ΨτF−1

2 a is
in S0(R2d) which means that Opτ (a) is an element of S0. The fact that Opτ is continuous from
S0(R2d) into S0 is clear from the applications F−1

2 and Ψτ . Eventually:

Wτ ◦Opτ (a) = aOpτ (a)
τ = a.

(ii) The claim is a straightforward consequence of (i).

Corollary 7.2.9. (i) For every τ ∈ [0, 1] FWτ : S0 → S0(R2d) is a topological isomorphisms
with inverse given by the τ -spreading representation

(7.29) SRτ : S0(R2d)→ S0 , a 7→
∫
R2d

a(z)πτ (z) dz;

(ii) Let us define

(7.30) SRτ : S ′0(R2d)→ S′0 a 7→
∫
R2d

a(z)πτ (z) dz,

where the integral has to be understood weakly as follows:

S′0〈(SRτa)f,g〉S0
:= S′0〈a,V

τ
f g〉S0 , a ∈ S ′0(R2d), f, g ∈ S0(Rd).

Then SRτ as in (7.30) is well-defined, linear, continuous, extends (7.29) and it is the
Banach space adjoint of FWτ

in (i):

(7.31) SRτ = F∗Wτ
,

in the sense that for every a ∈ S ′0(R2d) and S ∈ S0

S′0〈a,FWτS〉S0 = S′0〈SRτa,S〉S0 = S′0〈KSRτa,KS〉S0 ;

(iii) Every function F ∈ S0(R2d) admits an expansion of the following type:

F =

∞∑
n=1

V τgnfn,

for some sequences {fn}n, {gn}n ⊆ S0(Rd) such that
∑∞
n=1 ‖fn‖S0

‖gn‖S0
< +∞.
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Proof. (i) First we notice that if we start with a ∈ S0(R2d), then SRτa is the Feichtinger operator
with kernel

KSRτa(y, u) =

∫
Rd
a(y − u, ω)e2πiyω dω = F−1

2 [a(y − u, ·)](y).

Clearly SRτ is continuous from S0(R2d) into S0.
Since we have Wτ = FσFWτ and Fσ is an automorphism of S0(R2d), we can write FWτ = FσWτ

and which is an isomorphism due to Corollary 7.2.8. To prove that SRτ is the inverse of FWτ

we use (7.27), take S =
∑∞
n=1 fn ⊗ gn ∈ S0 and ψ, f ∈ S0(Rd):

S′0〈(SRτ ◦ FWτ
S)ψ,ϕ〉S0

=

∫
R2d

FWτ
S(z)S′0〈π

τ (z)ψ,ϕ〉S0
dz

=

∞∑
n=1

∫
R2d

V τgnfn(z)V τψϕ(z) dz

=

∞∑
n=1

S′0〈fn,ϕ〉S0S′0〈gn,ψ〉S0

= S′0〈
∞∑
n=1

S′0〈ψ,gn〉S0
fn,ϕ〉S0

= S′0〈
∞∑
n=1

(fn ⊗ gn)ψ,ϕ〉S0

= S′0〈Sψ,ϕ〉S0
,

in the third equality we used Moyal’s identity. For the composition FWτ
◦ SRτ , notice that this

is the identity on S0(R2d) due lo Lemma 7.1.9 (vii).
(ii) Well-posedness, linearity and continuity of SRτ from S ′0(R2d) into S′0 are standard. Trivially
(7.30) extends (7.29). To see that SRτ is the Banach space adjoint of FWτ

from S0 into S0(R2d),
take a ∈ S ′0(R2d) and S ∈ S0. In the following calculations we use: the already mentioned (7.27),
the representation for Feichtinger operators and their kernel given in Lemma 7.2.4, the Outer
and Inner Kernel Theorem:

S′0〈a,FWτ
S〉S0

=

∞∑
n=1

S′0〈a,V
τ
gnfn〉S0

=

∞∑
n=1

S′0〈(SRτa)gn,fn〉S0

=

∞∑
n=1

S′0〈KSRτa,Kfn⊗gn〉S0
= S′0〈KSRτa,KS〉S0

= S′0〈SRτa,S〉S0
.

(iii) The last claim is a direct consequence of the computations in (7.27) and the surjectivity of
FWτ

.

7.2.2 A suitable environment for QHA

In Section 7.1 we introduced convolutions between a function and an operator and two operators.
M. Keyl, J. Kiukas and R. Werner [103] showed that such convolutions make sense for wider
classes of (generalized) functions and operators. We summarized here the main results; in what
follows S denotes the set of pseudo-differential operators with Weyl symbol in the Schwartz class
S(R2d) and S′ those pseudo-differential operators with Weyl symbol in S ′(R2d). On account of
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the Schwartz Kernel Theorem we can identify S′ with the linear and continuous operators from
S(Rd) into S ′(Rd).

Proposition 7.2.10. (i) Let us take S, T ∈ S, A ∈ S′, b ∈ S(R2d) and a ∈ S ′(R2d). Then
the following convolutions can be defined and they extend the ones defined in Subsection
7.1.2:

S ? T ∈ S(R2d), S ? A ∈ S ′(R2d), b ? S ∈ S, a ? S, b ? A ∈ S′;

(ii) The Fourier-Wigner transform can be extended to a topological isomorphism FW1/2
: S′ →

S ′(R2d);

(iii) We have Fσ(S ? T ) = FW1/2
S · FW1/2

T and FW1/2
(b ? S) = Fσb · FW1/2

S whenever S, T
and b are such that the convolutions are defined as in part (i);

(iv) The Weyl symbol of A ∈ S′ is given by FσFW1/2
A.

The authors of [103] proved that the class of so-called Schwartz operators S has the structure
of a Fréchet space. Since we believe that Fréchet spaces can be rather cumbersome to work with,
in this subsection we show that the Banach space of Feichtinger operators S0 is a valid alternative
to S. We first need some preliminary results about S0 and S0.

Lemma 7.2.11. Given f ∈ S ′0(Rd), there exists a sequence {fn}n ⊆ S0(Rd) which w-∗ converges
to f and it is bounded by ‖f‖S′0 , i.e.

lim
n→+∞

〈fn, g〉 = S′0〈f,g〉S0 ∀ g ∈ S0(Rd), sup
n
‖fn‖S0

≤ ‖f‖S′0 .

Proof. Let us fix f ∈ S ′0(Rd) r {0} and call R := ‖f‖S′0 . From [101, Proposiiton 6.15], there
exists a net {fα}α∈A ⊆ S0(Rd) which w-∗ converges to f in S ′0 and such that ‖fα‖S′0 ≤ R for
every α ∈ A. Calling

BR :=
{
f ∈ S ′0(Rd) | ‖f‖S′0 ≤ R

}
and ER := S0(Rd) ∩BR,

where S0 is identified with its natural immersion in S ′0, this means that

ER ⊆ BR ⊆ ER
w−∗

.

ER
w−∗

is bounded in S ′0(Rd). In fact, if f0 ∈ ER
w−∗

, then there exists a net {fα}α∈A ⊆ ER
such that it w-∗ converges to f0, hence

‖f0‖S′0 ≤ lim inf
α∈A

‖fα‖S′0 = lim
α∈A

inf{‖fβ‖S′0 |α � β} ≤ lim
α∈A

R = R.

In particular, this shows that ER
w−∗ ⊆ BR and we get

ER
w−∗

= BR.

Being S0 separable, from [112, Therem 2.6.23] the relative w-∗ topology on BR is induced by a
metric, hence the topological w-∗ closure of ER equals its sequential w-∗ closure. Hence there
exists a sequence {fn}n ⊆ ER which w-∗ converges to f in S ′0(Rd).

Remark 7.2.12. The above lemma holds also for any LCA second countable group G replacing
Rd, see [45, Theorem 2] for the separability of S0(G).
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Lemma 7.2.13. Given S ∈ S′0, there exists a sequence {Sn}n ⊆ S0 such that

(i) ‖Sn‖S′0 . ‖S‖S′0 ;

(ii) limn→+∞
∣∣S′0〈(S − Sn)f,g〉S0

∣∣ = 0 for all f, g ∈ S0(Rd).

Proof. it is a straightforward application of the Kernel Theorem 7.2.2 and 7.2.2 and of Lemma
7.2.11.

Convergence as in item (i) of the above lemma will be also denoted by

Sn
w−∗−→
n

S in S′0 or S = w- ∗ -limn Sn in S′0.

Lemma 7.2.14. Let S : S0 → S ′0 be in S0. Then the Banach space adjoint S∗ : S ′0 → S0 is in
S0 with kernel

(7.32) KS∗(y, u) = KS(u, y).

Proof. We take f, g ∈ S0(Rd), then

S′0〈Sf,g〉S0 =

∫
R2d

KT (y, u)g(y)f(u) dydu

=

∫
Rd
f(u)

∫
Rd
KS(y, u)g(y) dy du

= S′0〈f,S
∗g〉S0 .

Hence S∗g(y) =
∫
Rd KS(u, y)g(u) du, this means KS∗(y, u) = KS(u, y) which is an element of

S0(R2d).

Corollary 7.2.15. S0 is a Banach ∗-algebra.

We notice that (S∗)̌ = (Š)∗, so that from now on we shall simply write Š∗ when necessary.

Lemma 7.2.16. (i) The following applications are surjective isometries:

(i− a) αz : S0 → S0, for every z = (x, ω) ∈ R2d, and

(7.33) KαzS(y, u) = e2πi(y−u)ωKS(y − x, u− x);

(i− b) ·̌ : S0 → S0 and

(7.34) KŠ(y, u) = KS(−y − u);

(i− c) αz : S′0 → S′0, for every z ∈ R2d;

(i− d) ·̌ : S′0 → S′0;

(ii) Let S, T ∈ S0 and b ∈ S0(R2d), then

S ? T ∈ S0(R2d), b ? S ∈ S0;
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(iii) The kernel of the mixed-state localization operator b ? S is given by

(7.35) Kb?S(y, u) =

∫
Rd
b(x, ω)e2πi(y−u)ωKS(y − x, u− x) dxdω;

for very z = (x, ω) ∈ R2d the kernel of SαzŤ is

(7.36) KSαzŤ
(y, u) =

∫
Rd
e2πi(y−t)ωKT (x− y, x− t)KS(t, u) dt.

Proof. (i) We leave all the direct computations to the interest reader, we just point out that
to prove αzS, Š ∈ S0 the result [62, Corollary 3.3] is useful. A continuous and linear operator
S : S0 → S ′0 is a Feichtinger operator iff∫

R2d

∫
R2d

∣∣S′0〈Sπ(z)g1,π(w)g2〉S0

∣∣ dzdw
is finite for every g1, g2 ∈ S0(Rd).
(ii) We first tackle the convolution between two Feichtinger operators. On account of item (i) and
the fact that S0 is a Banach algebra under composition, we have that for every z = (x, ω) ∈ R2d

SαzŤ is in S0. Then we compute using [62, Corollary 3.15]:

S ? T (z) = tr(SαzŤ ) =

∫
Rd
KSαzŤ

(y, y) dy =

∫
R2d

KαzŤ
(y, t)KS(t, y) dtdy

=

∫
R2d

e2πi(y−t)ωKT (x− y, x− t)KS(t, y) dtdy

=

∫
Rd

(∫
Rd
KT (x− y, x− t)KS(t, y)e−2πitω dt

)
e2πiyω dy

= F−1
2 F1

(
ΦT(x,x)KT ·KS

)
(ω, ω),

where F1 and F2 are the partial Fourier transforms with respect to the first and second variable,
respectively, and ΦF (t, y) := F (−y,−t). Consider now f, g, h, l ∈ S0(Rd), it is useful to compute
the following where P is the parity operator:

F−1
2 F1

(
ΦT(x,x)Kh⊗l ·Kf⊗g

)
(ω, ω) =

∫
Rd

(∫
Rd
h(x− y)l(x− t)f(t)g(y)e−2πitω dt

)
e2πiyω dy

=

∫
Rd
f(t)e−2πitωl(x− t) dt ·

∫
Rd
g(y)e2πiyωh(x− y) dy

= VIlf(−x, ω) · VIhg(−x, ω).

So that F−1
2 F1

(
ΦT(x,x)Kh⊗l ·Kf⊗g

)
(ω, ω) is in S0(R2d) as a function of (x, ω). We consider

now two representation S =
∑∞
n=1 fn ⊗ gn and T =

∑∞
n=1 hn ⊗ ln, see Lemma 7.2.4, so that

KS =

∞∑
n=1

Kfn⊗gn , KT =

∞∑
n=1

Khn⊗ln .
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It follows that we can write

S ? T (z) = F−1
2 F1

(
ΦT(x,x)

∞∑
M

Khm⊗lm ·
∞∑
n=1

Kfn⊗gn

)
(ω, ω)

=

∞∑
m=1

∞∑
n=1

F−1
2 F1

(
ΦT(x,x)Khm⊗lm ·Kfn⊗gn

)
(ω, ω)

=

∞∑
m=1

∞∑
n=1

VIlmfn(−x, ω) · VIhmgn(−x, ω) ∈ S0(R2d),

the convergence is guaranteed by Lemma 7.2.4.
Concerning b ? S, the subsequent estimate for every f, g ∈ S0(Rd) proves that b ? S ∈ S′0:∣∣S′0〈(b ? S)f,g〉S0

∣∣ ≤ ∫
R2d

|b(z)|
∣∣S′0〈Sπ(z)∗f,π(z)∗g〉S0

∣∣ dz . ‖b‖L1 ‖S‖S′0 ‖f‖S0
‖g‖S0

.

We exploit [62, Theorem 3.2 (ii)] to show that b ? S is in S0, take g1, g2 ∈ S0(Rd):∫
R2d

∫
R2d

∣∣S′0〈(b ? S)π(w)g1,π(u)g2〉S0

∣∣ dwdu ≤ ∫
R2d

∫
R2d

∫
R2d

|b(z)|

×
∣∣S′0〈Sπ(w − z)g1,π(u− z)g2〉S0

∣∣ dzdwdu
=

∫
R2d

∫
R2d

∣∣S′0〈Sπ(w′)g1,π(u′)g2〉S0

∣∣ dw′du′ · ∫
R2d

|b(z)| dz < +∞.

(iii) We compute explicitly the kernel of the operator given by the convolution b ? S, here
z = (x, ω) ∈ R2d:

S′0〈(b ? S)f,g〉S0
=

∫
R2d

b(x, ω)

∫
R2d

KS(y, u)π(−z)g(y)π(−z)f(u) dydu dxdω

=

∫
R2d

∫
R2d

b(x, ω)e2πi(y−u)ωKS(y, u)g(y + x)f(u+ x) dxdω dydu.

The change of variables y′ = y + u, u′ = u + x gives the desired result. The last claim is just a
direct application of (7.33), (7.34) and the Banach algebra property for S0 [62, Lemma 3.10].

Corollary 7.2.17. Let S, T ∈ S0 with representations S =
∑∞
n=1 fn⊗gn and T =

∑∞
n=1 hn⊗ ln,

where {fn}n, {gn}n, {hn}n, {ln}n ⊆ S0(Rd) with
∑∞
n=1 ‖fn‖S0

‖gn‖S0
< +∞,

∑∞
n=1 ‖hn‖S0

‖ln‖S0
<

+∞. Then, with the notations introduced in the proof of Lemma 7.2.16, for every z = (x, ω) ∈
R2d:

S ? T (z) = F−1
2 F1

(
ΦT(x,x)KT ·KS

)
(ω, ω)

=

∞∑
m=1

∞∑
n=1

VIlmfn(−x, ω) · VIhmgn(−x, ω).(7.37)

Definition 7.2.18. Let A ∈ S′0, a ∈ S ′0(R2d), S ∈ S0 and b ∈ S0(R2d). Consider any sequences
{An}n ⊆ S0 and {an}n ⊆ S0(R2d) such that

An
w−∗−→
n

A in S′0 and an
w−∗−→
n

a in S ′0(R2d).
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Then we define the following convolutions:

S ? A := w- ∗ -limn S ? An in S ′0(R2d);(7.38)
a ? S := S ? a := w- ∗ -limn an ? S in S′0;(7.39)
b ? A := A ? b := w- ∗ -limn b ? An in S′0.(7.40)

Remark 7.2.19. The reader may find useful to keep in mind the following simple identities,
they will be used in the proof of the subsequent proposition. Consider S ∈ S0, ψ, ϕ, f, g ∈ S0(Rd)
and z ∈ R2d:

αz(ψ ⊗ ϕ) = π(z)ψ ⊗ π(z)ϕ;

(ψ ⊗ ϕ)(Kf⊗g) = 〈f, ϕ〉(ψ ⊗ g);

(ψ ⊗ ϕ) ? Š(z) = S′0〈π(z)Sπ(z)∗ψ,ϕ〉S0
.

Proposition 7.2.20. The convolutions defined in Definition 7.2.18:

(i) do not depend on the sequences chosen; moreover, taking A, a, S, b as in Definition 7.2.18:

S′0〈S ? A,b〉S0 = S′0〈KA,Kb?Š∗〉S0 ;(7.41)

S′0〈(a ? S)f,g〉S0
= S′0〈a,(g ⊗ f) ? Š∗〉S0

;(7.42)

S′0〈(b ? A)f,g〉S0 = S′0〈KA,Kb∗?(g⊗f)〉S0 ,(7.43)

where b∗(z) := b(−z);

(ii) extend the definitions given in Subsection 7.1.2;

(iii) are commutative;

(iv) are associative, in particular if z ∈ R2d, T,Q ∈ S0, σ ∈ S0(R2d) and A, a, S, b as in
Definition 7.2.18 then:

(S ? (T ? b))(z) = ((S ? T ) ∗ b)(z);(7.44)
S ? (T ? Q) = (S ? T ) ? Q;(7.45)
(S ? b) ? σ = S ? (b ∗ σ);(7.46)
S ? (T ? a) = (S ? T ) ∗ a;(7.47)
A ? (T ? b) = (A ? T ) ? b;(7.48)
S ? (T ? A) = (S ? T ) ? A;(7.49)

in the above identities ∗ denotes the usual convolution between two functions or a function
and a distribution.

Proof. (i) If we show (7.41), (7.42) and (7.43), then the rest claimed in (i) is obvious.
We start with(7.41). Let b ∈ S0(R2d) and z = (x, ω) ∈ R2d, in the subsequent computations we
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use Lemma 7.2.14 and 7.2.16:

S′0〈S ? A,b〉S0
= lim
n→+∞S

′
0
〈S ? An,b〉S0

= lim
n→+∞

∫
R2d

tr(SαzǍn)b(z) dz

= lim
n→+∞

∫
R2d

∫
Rd
KSαzǍn

(y, y) dyb(z) dz

= lim
n→+∞

∫
R2d

∫
Rd

∫
Rd
e2πi(y−t)ωKAn(x− y, x− t)KS(t, y) dtdy b(z) dz

= lim
n→+∞

∫
R2d

∫
Rd

∫
Rd
e2πi(t′−y′)ωKAn(y′, t′)KS(x− t′, x− y′) dt′dy′ b(z) dz

= lim
n→+∞

∫
Rd

∫
Rd
KAn(y′, t′)

(∫
R2d

KS(x− t′, x− y′)e2πi(y′−t′)ωb(z) dz

)
dy′dt′

= lim
n→+∞

∫
Rd

∫
Rd
KAn(y′, t′)

(∫
R2d

KŠ(t′ − x, y′ − x)e2πi(y′−t′)ωb(z) dz

)
dy′dt′

= lim
n→+∞

∫
Rd

∫
Rd
KAn(y′, t′)

(∫
R2d

KŠ∗(y
′ − x, t′ − x)e2πi(y′−t′)ωb(z) dz

)
dy′dt′

= lim
n→+∞

∫
Rd

∫
Rd
KAn(y′, t′)Kb?Š∗(y

′, t′) dy′dt′.

About (7.42), we take f, g ∈ S0(Rd) and compute directly keeping in mind Remark 7.2.19:

S′0〈(a ? S)f,g〉S0 = lim
n→+∞

∫
R2d

an(z)S′0〈π(z)Sπ(z)∗f,g〉S0 dz

= lim
n→+∞

∫
R2d

an(z)S′0〈π(z)S∗π(z)∗g,f〉S0
dz

= lim
n→+∞

∫
R2d

an(z)(g ⊗ f) ? Š∗(z) dz.

We tackle then (7.43):

S′0〈(b ? A)f,g〉S0
= lim
n→+∞S

′
0
〈Kb?An ,Kg⊗f 〉S0

= lim
n→+∞

∫
R2d

(∫
R2d

b(x, ω)e2πi(y−u)ωKAn(y − x, u− x) dxdω
)

× g(y)f(u) dydu

= lim
n→+∞

∫
R2d

KAn(y′, u′)
(∫

R2d

b(x, ω)e−2πi(y′−u′)ω

× g(y′ + x)f(u′ + x) dxdω
)
dy′du′

= lim
n→+∞

∫
R2d

KAn(y′, u′)
(∫

R2d

b∗(x′, ω′)e2πi(y′−u′)ω′

× g(y′ − x′)f(u′ + x′) dx′dω′
)
dy′du′

= lim
n→+∞

∫
R2d

KAn(y′, u′)Kb∗?(g⊗f)(y′, u′) dy
′du′,

where for sake of brevity we put b∗(z) := b(−z).
(ii) and (iii) are trivial.
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(iv) We prove just (7.44), (7.45) and (7.46). The remaining identities can be derived easily by
the interested reader.
In order to show (7.44) we compute for z ∈ R2d:

(S ? (T ? b))(z) = tr

(
S ◦ αz

((∫
R2d

b(z)αwT dw

) )̌)
= tr

(
S ◦

(∫
R2d

b(w)αz ((αwT )̌ ) dw

))
= tr

(
S ◦

∫
R2d

b(w)αzα−wŤ dw

)
= tr

(
S ◦

∫
R2d

b(−w′)αw′αzŤ dw′
)

=

∫
R2d

b(−w′) tr
(
Sαw′+zŤ

)
dw′,

where the last equality is due, e.g., to [128, Proposition 2.9]. we can the rephrase the last
right-side term as

∫
R2d

b(z − w′′) tr
(
Sαw′′ Ť

)
dw′′ =

∫
R2d

b(z − w′′)(S ? T )(w′′) dw′′

= ((S ? T ) ∗ b)(z).

About (7.45), the following property for the trace is useful:

∫
R2d

tr(SαwT ) dw = tr(S) tr(T ),

where S, T ∈ J 1. Take now f, g ∈ S0(Rd):

S′0〈(S ? (T ? Q))f,g〉S0
=

∫
R2d

tr(TαzQ̌)S′0〈αzSf,g〉S0
dz

=

∫
R2d

tr(QαzŤ ) tr((αzS)(f ⊗ g)) dz

=

∫
R2d

∫
R2d

tr(Q(αzŤ )αw((αzS)(f ⊗ g))) dwdz

=

∫
R2d

∫
R2d

tr((f ⊗ g)(αwQ)αz((αwŤ )S)) dzdw

=

∫
R2d

tr(SαwŤ ) tr((αwQ)(f ⊗ g)) dw

= S′0〈((S ? T ) ? Q)f,g〉S0
.
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Also the last identity (7.46) comes from a direct computation, for f, g ∈ S0(Rd):

S′0〈((S ? b) ? σ)f,g〉S0
=

∫
R2d

σ(z)S′0〈αz(S ? b)f,g〉S0
dz

=

∫
R2d

σ(z)

∫
R2d

b(w)S′0〈(αwS)π(z)∗f,π(z)∗g〉S0 dwdz

=

∫
R2d

∫
R2d

σ(z)b(w)S′0〈(αw+zS)f,g〉S0
dwdz

=

∫
R2d

∫
R2d

σ(z)b(w) tr((αw+zS)(f ⊗ g)) dwdz

=

∫
R2d

b(w)

∫
R2d

σ(z′ − w) tr((αz′S)(f ⊗ g)) dz′dw

=

∫
R2d

(

∫
R2d

b(w)σ(z′ − w) dz′) tr((αz′S)(f ⊗ g)) dw

=

∫
R2d

b ∗ σ(z′)S′0〈(αz′S)f,g〉S0 dz
′

= S′0〈(S ? (b ∗ σ))f,g〉S0
.

The proof is concluded.

Corollary 7.2.21. The mappings FWτ
and Wτ defined on S0 can be extended to topological

isomorphisms
FWτ

: S′0 → S ′0(R2d) and Wτ : S′0 → S ′0(R2d)

by duality:

(7.50) S′0〈FWτ
S,a〉S0

:= S′0〈S,SRτa〉S0
, S′0〈WτS,a〉S0

:= S′0〈S,Opτ a〉S0
,

where S ∈ S′0 and a ∈ S0(R2d). The inverses are given by

SRτ : S ′0(R2d)→ S′0 and Opτ : S ′0(R2d)→ S′0,

respectively.

Proof. The definitions in (7.50) rely on the fact that Opτ = W ∗τ and SRτ = F∗Wτ
, see Theorem

7.2.7 and Corollary 7.2.9. It is straightforward to see that if S ∈ S′0, then FWτ
S and WτS

defined as in (7.50) are in S ′0(R2d). Also linearity and boundedness of FWτ
: S′0 → S ′0(R2d) and

Wτ : S′0 → S ′0(R2d) are easy to verify as well as the fact that they extend FWτ
: S0 → S0(R2d)

and Wτ : S0 → S0(R2d).
We show thatWτ is an isomorphisms with inverse Opτ , then FWτ is treated in the same way. Wτ

is injective because Opτ : S0(R2d) → S0 is an isomorphism. Fix now a ∈ S ′0(R2d), there exists
a sequence {an}n ⊆ S0(R2d) such that an

w−∗−→
n

a in S ′0(R2d). Since Wτ is an isomorphism

between S0 and S0(R2d), there exists {An}n ⊆ S0 such that an = WτAn. We see that there is
A ∈ S′0 such that An

w−∗−→
n

A in S′0, in fact taking b ∈ S0(R2d)

S′0〈a,b〉S0
= lim
n→+∞S

′
0
〈WτAn,b〉S0

= lim
n→+∞ S′0〈An,Opτ b〉S0

.

Hence a = WτA, which proves that Wτ is onto. We show now that Wτ ◦Opτ is the identity on
S ′0(R2d), take a ∈ S ′0(R2d) and b ∈ S0(R2d):

S′0〈Wτ ◦Opτ a,b〉S0 = S′0〈Opτ a,Opτ b〉S0 = S′0〈a,Wτ ◦Opτ b〉S0 = S′0〈a,b〉S0 .
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The first identity is just (7.50), the second one is (7.25) and the last one is (i) of Corollary 7.2.8.
For the other way round, take S ∈ S′0 and T ∈ S0:

S′0〈Opτ ◦WτS,T 〉S0
= S′0〈WτS,WτT 〉S0

= S′0〈S,Opτ ◦WτT 〉S0
= S′0〈S,T 〉S0

.

The first identity is (7.25), the second one is (7.50) and the last one is (i) of Corollary 7.2.8.

7.2.3 τ-Cohen’s class of operators

In the present subsection we define Qτa(S) and the definition of QτS(f) from [108] is recalled. We
shall see which already known object can be recovered by Qτa(S) and observe that it coincides
with the τ -symbol of the mixed-state localization operator a ? S. Some interplays between the
Gabor matrix of an operator GT , the τ -Cohen’s class, the trace and the τ -Wigner distribution
are exhibited afterwards.

Definition 7.2.22. For a ∈ S ′0(R2d) we define the τ-Cohen’s class representation, with
kernel a, of an operator S ∈ S0 as

(7.51) Qτa(S) := a ∗WτS.

Of course, the rank-1 case f ⊗ g we recover the definition given in (7.18). We recall also
the definition given in [108] of Cohen’s class representation of a function f ∈ S0(Rd) w.r.t. the
operator S ∈ S′0 by

(7.52) QSf := (f ⊗ f) ? Š.

It can be easily seen that for every z ∈ R2d

QSf(z) = (f ⊗ f) ? Š(z) = 〈(αzS)f, f, 〉.

Remark 7.2.23. Consider a ∈ S ′0(R2d) and S ∈ S0, then we see that the τ -Cohen’s class
representation of S w.r.t. a is just the τ -symbol of the mixed-state localization operator a ? S:

aa?Sτ = Wτ (a ? S) = a ∗WτS = Qτa(S).

Lemma 7.2.24. Let S ∈ S0 have a representation
∑∞
n=1 fn ⊗ gn, take f, ϕ, ψ ∈ S0(Rd) and

{hn}n ⊆ S0(Rd) with
∞∑
n=1

‖hn‖2S0
< +∞.

. Then for every z ∈ R2d:

Qτ
W1−τ (ψ̌,ϕ̌)

(S)(z) =

∞∑
n=1

Vϕfn(z)Vψgn(z);(7.53)

QτW1−τ (ϕ̌,ϕ̌)(

∞∑
n=1

hn ⊗ hn)(z) =

∞∑
n=1

|Vϕhn(z)|2 .(7.54)

Proof. Clearly, it is sufficient to prove the first identity. We show first that for f, g ∈ S0(Rd)

(7.55) Qτa(f, g) = (f ⊗ g) ?Op1-τ (a).
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In fact, applying Fσ to the right-hand side first we get

Fσ((f ⊗ g) ?Op1-τ (a)) = FWτ (f ⊗ g) · FW1−τ Op1-τ (a) = V τg f · Fσa.

We apply Fσ a second time:

(f ⊗ g) ?Op1-τ (a) = FσV τg f ∗ FσFσa = Wτ (f, g) ∗ a.

We can now compute as below:

Qτ
W1−τ (ψ̌,ϕ̌)

(S) = W1−τ (ψ̌, ϕ̌) ∗Wτ (

∞∑
n=1

fn ⊗ gn) =

∞∑
n=1

W1−τ (ψ̌, ϕ̌) ∗Wτ (fn, gn)

=

∞∑
n=1

(fn ⊗ gn) ?Op1-τ (W1−τ (ψ̌, ϕ̌)) =

∞∑
n=1

(fn ⊗ gn) ? (ψ̌ ⊗ ϕ̌)

=

∞∑
n=1

Vϕfn(z)Vψgn(z),

where the last equality is due to [108]

We denote by T ≥ 0 fact T being positive, i.e.

〈Tf, f〉 ≥ 0, ∀ f ∈ L2(Rd).

An operator T ∈ J 1 and T ≥ 0 is also called a quantum state.
Let us take T ∈ S′0 and ϕ ∈ S, then the Gabor matrix of T (w.r.t. ϕ) is defined as

(7.56) GT (z, w) := 〈Tπ(w)ϕ, π(z)ϕ〉, z = (x, ω), w = (u, v) ∈ R2d.

We notice that the Gabor matrix of an operator does not depend on τ , in the sense that

GT (z, w) = 〈Tπ(w)ϕ, π(z)ϕ〉 = 〈Tπτ (w)ϕ, πτ (z)ϕ〉, ∀ τ ∈ [0, 1].

Remark 7.2.25. We point out that the diagonal of the Gabor matrix of T , w.r.t. ϕ, is the
Cohen’s class representation of ϕ w.r.t. T up to a reflection:

(7.57) GT (−z,−z) = QTϕ(z).

In fact

GT (−z,−z) = 〈Tπ(−z)ϕ, π(−z)ϕ〉 = 〈Tπ(z)∗ϕ, π(z)∗ϕ〉
= 〈(αzT )ϕ,ϕ, 〉 = QTϕ(z).

Let F and H be functions of (z, w) ∈ R4d and let Θ be a real 4d × 4d matrix. Then the
twisted convolution induced by Θ is defined as

(7.58) F \ΘH(z, w) :=

∫
R2d

∫
R2d

F (z′, w′)H(z − z′, w − w′)e2πi(z,w)Θ(z′,w′) dz′dw′.

Lemma 7.2.26. Let T, S ∈ J 1, T, S ≥ 0. Then for every τ ∈ [0, 1] we have

(7.59) tr(TS) =

∫
R2d

WτT (z)WτS(z) dz.
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Proof. Since T and S are trace-class and positive, they can be described as

T =

∞∑
n=1

λnfn ⊗ fn, S =

∞∑
n=1

µngn ⊗ gn

for some o.n. sets {fn}n and {gn}n in L2 and λn, µn ≥ 0. Let {en}n be an o.n.b. for L2(Rd):

tr(TS) =

∞∑
n=1

〈TSen, en〉 =

∞∑
i,j

λjµi |〈fj , gi〉|2 .

On the other hand∫
R2d

WτT (z)WτS(z) dz =

∞∑
i,j

λjµi

∫
R2d

Wτfj(z)Wτgi(z) dz =

∞∑
i,j

λjµi |〈fj , gi〉|2 ,

where the last equality is due to Moyal’s identity. This concludes the proof.

Remark 7.2.27. Since we assume S ≥ 0, S is self-adjoint and for τ = 1/2 we have that W1/2S
is real-valued. In fact, using the representation given in the proof of Lemma 7.2.26:

W1/2S =

∞∑
n=1

µnW1/2gn

with every W1/2gn real-valued and µn ≥ 0. Hence for τ = 1/2 we recover [95, lemma 2.7].

Lemma 7.2.28. Let T ∈ J 1 and consider ϕ ∈ S(Rd) such that ‖ϕ‖L2 = 1. Then

(7.60) trT =

∫
R2d

〈(αzT )ϕ,ϕ〉 dz =

∫
R2d

QTϕ(z) dz =

∫
R2d

GT (z, z) dz.

Proof. The proof follows from a direct computation using the representations presented in the
proof of Lemma 7.2.26 and Moyal’s identity involving the function ϕ:

〈fj , gi〉 = 〈Vϕfj , Vϕgi〉.

We leave details to the interested reader.

Lemma 7.2.29. Let T ∈ J 1, T ≥ 0 and consider ϕ ∈ S(Rd) such that ‖ϕ‖L2 = 1. Then for
every z ∈ R2d:

(7.61) QTϕ(z) =

∫
R2d

WτT (w)Wτϕ(z + w) dw = WτT ∗ (Wτϕ)∗(z),

where (Wτϕ)∗(w) = Wτϕ(−w).

Proof. We compute directly

QTϕ(z) = 〈π(z)Tπ(z)∗ϕ,ϕ〉 = tr(T (π(z)∗ϕ⊗ π(z)∗ϕ))

=

∫
R2d

WτT (w)Wτ (π(z)∗ϕ⊗ π(z)∗ϕ)(w) dw,

the last equation holds because of Lemma 7.2.26. An easy calculation gives

Wτ (π(z)∗ϕ⊗ π(z)∗ϕ)(w) = Wτϕ(z + w),

which is also known as covariance property and concludes the proof.
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Lemma 7.2.30. Let T ∈ J 1, T ≥ 0 and consider ϕ ∈ S(Rd) such that ‖ϕ‖L2 = 1. Then for
every z, w ∈ R2d:

|GT (z, w)|2 ≤ QTϕ(−z)QTϕ(−w).

Proof. The claim follows from the Cauchy-Schwarz inequality for the inner product induced by
the positive operator T and Remark 7.2.25.

Lemma 7.2.31. Let 0d and Id denote the zero and identity d× d matrices, respectively. Let us
define

Θ :=


0d 0d 0d 0d
Id 0d 0d 0d
0d 0d 0d 0d
0d 0d −Id 0d

 .
Let T ∈ J 1 and consider ϕ ∈ S(Rd) such that ‖ϕ‖L2 = 1. For z = (x, ω), w = (u, v) ∈ R2d we
have

GT (z, w) = GT \Θ(Gϕ⊗ϕ)∗(z, w)(7.62)

=

∫
R2d

∫
R2d

GT (z′, w′)(Gϕ⊗ϕ)∗(z − z′, w − w′)e2πi(ωx′−u′v) dz′dw′,

where z′ = (x′, ω′), w′ = (u′, v′) ∈ R2d.

Proof. We apply twice Moyal’s identity:

GT (z, w) =

∫
R2d

Vϕ[Tπ(w)ϕ](z′)Vϕ[π(z)ϕ](z′) dz′

=

∫
R2d

∫
R2d

Vϕ[π(w)ϕ](w′)Vϕ[T ∗π(z′)ϕ](w′)〈π(z′)ϕ, π(z)ϕ〉 dz′dw′

=

∫
R2d

∫
R2d

GT (z′, w′)〈π(w)ϕ, π(w′)ϕ〉〈π(z′)ϕ, π(z)ϕ〉 dz′dw′.

It is then a direct, although tedious, calculation to show that

〈π(z)ϕ, π(z′)ϕ〉〈π(w′)ϕ, π(w)ϕ〉 = (Gϕ⊗ϕ)∗(z − z′, w − w′)e2πi(ωx′−u′v).

The proof is concluded.

Lemma 7.2.32. Let T ∈ J 1, T ≥ 0 and consider ϕ ∈ S(Rd) such that ‖ϕ‖L2 = 1. Then for
any τ ∈ [0, 1]:

(7.63) WτT (z) =

∫
R2d

∫
R2d

e−2πi[(ωx′−ω′x)+( 1
2−

3
4 τ)x′ω′+x′v]GT

(
z′

2
− w,−z

′

2
− w

)
dwdz′,

where z = (x, ω), z′ = (x′, ω′), w = (u, v) ∈ R2d.

Proof. We start rephrasing the τ -Wigner distribution of T :

WτT (z) = FσFWτT (z) =

∫
R2d

e−2πi(ωx′−ω′x) tr(πτ (z′)∗T ) dz′.
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Recalling the properties for πτ , see Section 7.1, we see that

πτ (z′/2 + z′/2) = e2πi[(1−τ) x
′ω′
4 −τ

x′ω′
4 ]πτ (z′/2)πτ (z′/2)

= e
π
2 i(1−2τ)x′ω′πτ (z′/2)πτ (z′/2).

Taking the adjoint we get πτ (z′)∗ = e−
π
2 i(1−2τ)x′ω′πτ (z′/2)∗πτ (z′/2)∗ and we write using Lemma

7.2.28:

tr(πτ (z′)∗T ) = e−
π
2 i(1−2τ)x′ω′ tr(πτ (z′/2)∗Tπτ (z′/2)∗)

= e−
π
2 i(1−2τ)x′ω′

∫
R2d

〈Tπτ (z′/2)∗πτ (w)∗ϕ, πτ (z′/2)πτ (w)∗ϕ〉 dw

= e−
π
2 i(1−2τ)x′ω′e−

π
2 i(1−τ)x′ω′

×
∫
R2d

〈Tπτ (−z′/2)πτ (−w)ϕ, πτ (z′/2)πτ (−w)ϕ〉 dw

= e−
π
2 i(2−3τ)x′ω′

∫
R2d

〈Tπ(−z′/2)π(−w)ϕ, π(z′/2)π(−w)ϕ〉 dw

= e−
π
2 i(2−3τ)x′ω′

∫
R2d

e−2πix′v〈Tπ(−z′/2− w)ϕ, π(z′/2− w)ϕ〉 dw.

The proof is concluded.

7.3 A characterization for Schwartz operators
In this section we introduced the weighted version of S0 and give an alternative description of
the class S. We recall the polynomial weight defined in (2.7):

vs(z) := (1 + |z|2)
s
2 , z ∈ R2d,

where s ≥ 0. In order to avoid an extremely cumbersome notation, just for the weight functions
vs we shall use in the present chapter the following:

vs ⊗ vs(z, w) := Kvs⊗vs = vs(z)vs(w), ∀z, w ∈ R2d.

Definition 7.3.1. For s ≥ 0 we define the weighted class of Feichtinger operators as

(7.64) M1
s := {S : S ′0(Rd)→ S0(Rd) |S is linear, continuous with kernelKS ∈M1

vs⊗vs(R
2d)}.

For S in M1
s we define the application

(7.65) ‖S‖M1
s

:= ‖KS‖M1
vs⊗vs

.

Remark 7.3.2. (i) For s = 0 we recover the unweighted Feichtinger operators S0;

(ii) The application defined in (7.65) is a norm on M1
s and it is easy to see that (M1

s, ‖·‖M1
s
)

is a Banach space and the following continuous inclusion holds true for every s ≥ 0:

(7.66) M1
s ↪→ S0.

Lemma 7.3.3. Let S ∈M1
s, then there exist {fn}n, {gn}n ⊆M1

vs⊗vs(R
2d) such that

S =

∞∑
n=1

fn ⊗ gn,
∞∑
n=1

‖fn‖M1
vs
‖gn‖M1

vs
≤ +∞, KS =

∞∑
n=1

Kfn⊗gn .



Proof. The proof follows from the fact that

M1
vs⊗vs(R

2d) = M1
vs(R

d)⊗̂M1
vs(R

d).

See proof of Lemma 7.2.4 also.

Theorem 7.3.4. For every τ ∈ [0, 1] the mapping Wτ : M1
s → M1

vs⊗vs(R
2d) is a topological

isomorphism with inverse given by Opτ : M1
vs⊗vs(R

2d)→M1
s.

Proof. The proof follows the same patter of Theorem 7.2.7 and Corollary 7.2.8.

Corollary 7.3.5. An operator S belong to M1
s iif for some (hence every) τ ∈ [0, 1] WτS ∈

M1
vs⊗vs(R

2d).

Theorem 7.3.6. The following holds true:

(7.67) S =
⋂
s≥0

M1
s.

Proof. On account of Corollary 7.3.5, S belongs to the set on the right-hand side if and only if

WτS ∈
⋂
s≥0

M1
vs⊗vs(R

2d) = S(R2d).

The claim follows since W1/2S is the Weyl symbol of S, i.e. aS1/2 = W1/2S.

We recall that a function F on R2d is called rapidly decaying if for every multiindex α, β ∈ Nd0
we have

sup
x,ω∈Rd

∣∣xαωβF (x, ω)
∣∣ < +∞,

where, if x = (x1, . . . , xd) and α = (α1, . . . , αd), xα stands for xα1
1 · . . . · x

αd
d .

In [95, Theorem 1.1] is given a sufficient condition for a positive trace-class operator to be
in S. Namely, if T ∈ B(L2), T ≥ 0, is such that WτT exists for some τ ∈ [0, 1] and it is
rapidly decreasing, then T ∈ S and WτT exists for every τ ∈ [0, 1]. In this spirit, we provide the
following sufficient condition for a generic S ∈ B(L2). Observe that we do not not require S to
be positive.

Corollary 7.3.7. Let S ∈ B(L2) and assume that form some τ ∈ [0, 1] WτS exists. Suppose
also that, w.r.t. some non-zero window in L2(R2d), the STFT of WτS is rapidly decaying. Then
WτS exists for every τ ∈ [0, 1] and S is in S.

Proof. Let us pick G ∈ L2(R2d) r {0}. If VGWτS is rapidly decaying then S ∈ M1
s for every

s ≥ 0. The claim follows from Theorem 7.3.6.
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