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Allegro

Insieme
Trema, trema scellerato!

Sapra tosto il mondo intero
il misfatto orrendo e nero,
la tua fiera crudelta.

Odi il tuon della vendetta
che ti fischia intorno intorno:
sul tuo capo, in questo giorno,
il suo fulmine cadra.

E confusa la mia testa,
non so piu quel ch’io mi faccia,
e un’orribile tempesta
minacciando, oddio! mi va!
Ma non manca in me coraggio:
non mi perdo o mi confondo.

E confusa la sua testa,
non sa piu quel ch’ei si faccia,
e un’orribile tempesta
minacciando, oddio! lo val!
Ma non manca in lui coraggio:
non si perde o si confonde.

Piu stertto

. Insieme
Se cadesse ancora il mondo

nulla mai temer mi fa!

Se cadesse ancora il mondo
nulla mai temer lo fa!

Lorenzo Da Ponte, Wolfgang Amadeus Mozart. Don Giovanni, K. 527, Act I, Scene XXI, 1787.
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Symbols, abbreviations and
conventions

e We use N={1,2,3,...} for the set of natural numbers, whereas we adopt
NO = {0} UN.

Given d € Ny, R? and C? are the d-dimensional Euclidean and complex space, with the
convention that for d = 0 we have the singleton. We denote the set of extended complex
numbers by

C:=CU{+00} U{~00}.

By Zn, N € N, we mean the quotient group Z/NZ.
o If « € N? or N¢, then the length of the multiindex is denoted by |a| == a1 + ...+ ag.
e Given a set X, the symbol #X denotes the cardinality of X.

e Given a set X and a subset £ C X, the characteristic function of F is denoted by xg, i.e.
xe(zr)=1if z € F and xg(xz) =0if z € X \ E. The set X is clear from the context.

e A < B means that for given constants A and B there exists a constant ¢ > 0 independent
of A and B such that A < ¢B. We write A < B if both A < B and B < A.

e If A and B are two sets, then B* denotes the set of functions from A into B.

e Every vector space X is supposed complex. If X ia a topological vector space (TVS), we
denote by X’ its topological dual defined as the set of antilinear continuous functional on
X. The duality shall be denoted by

X7 () x5
or simply (-,-). Whenever possible, the duality (-,-) is meant to extend the usual L2-inner
product, linear in the first argument and antilinear in the second one.

o If XY are two TVSs, then B(X,Y) is the set of all continuous and linear mappings from
X into Y. We use the notation B(X) = B(X, X).

e Given two vectors z,y € C% their inner product is

d
vy=zoyi=Y il
=1

the Euclidean norm of z is




and we write
2. 2
x = z|".

By restriction we have the inner product on R%.

S(R?) denotes the class of Schwartz functions, the tempered distributions are represented
by S'(R9).

The normalization chosen for the Fourier transform on L'(R?) is the following:
Fiw) = fw) = | f@)e*m da,

where w € R?.
F, stands for the symplectic Fourier transform on L!(R??) defined as

FoF(z,w) = F(u,&)e2m@u=82) qyqe.
R2d

In all chapters but[7], the symbol ® denotes the tensor product of functions, i.e. if f: X —
C and g: Y — C then

f@g: X xY = C (z,y) = f(2)9(y)-

In Chapter [7| f ® g denotes the rank-one operator. Namely, if f,g € L?(R?), then
f@g: ARY) = LR, ¢ = (v, 9)f,

where (-,-) is the usual sesquilinear inner product on L?(R?).

The quasi-norm on L%, (X) is denoted by ||-[|;» or |||z x), accordingly to the need to
highlight the underlying measure space. Similarly for L2:%(X x Y').

We set 1/00 := 0.

We denoted a net of scalars by («;);cr C C, whereas a net of vectors not in C is represented
by {x;}icr € X. If the context is clear, we omit the index set, so that we write just («;);
and {ZCZ}Z

GL(R?) stands for the group of invertible, d x d, real matrices.

JP = JP(L?) = JP(L*(R?)), 0 < p < 0o, denote the Schatten classes on L?(R%), where
we put J> = B(L?(R%)).

If G is a locally compact abelian (LCA) group and 7' a linear bounded operator on L?(G),
we denote by o(T) the spectrum of T, that is the set {\ € C|T — A2 isnot invertible};
in particular, the set op(T) denotes the point spectrum of T', that is

op(T):={\ € C|3f e L*G) ~ {0} suchthat Tf = \f},
such an f is called eigenfunction of T associated to the eigenvalue \.

If T € B(L?), we write T > 0 if T is positive, i.e. (T'f, f) > 0 for every f € L?.
By X — Y we denote the continuous inclusion of a TVS X into the TVS Y.



e If X and Y are quasi-normed spaces and T: X — Y is a linear operator, the notations

Tl x—y s 1Tlops  1Tpxy)
denotes the operator norm of T'.

e If G ia locally compact abelian group, then
c@),  Gl9), G(9)

are the sets of complex-valued functions on G which are: continuous, continuous and
vanishing at infinity, continuous and bounded, respectively.






Chapter 1

Introduction

The main aim of this thesis work is threefold: to study of localization operators Affl*w“’, with a
particular focus on decay and smoothness properties of their L2-eigenfunctions [3, 8, [, [IT]; to
define quasi-Banach modulation spaces on a locally compact abelian group G [8]; to establish
newly named Feichtinger operators, introduced first in [62], as a suitable as well as easy to handle
setting for quantum harmonic analysis [10].

We shall see how these three equally important issues overlap naturally. The techniques
used in Chapter [3| in order to study L2-eigenfunctions of A%+:%2 require the operator to be
continuously defined between quasi-Banach modulation spaces on R¢, cf. Theorem so that
in order to extend the result to any LCA group G (Theorem from [8]) it is necessary to
define modulation spaces on G in the quasi-Banach setting. Moreover, localization operators
arise in the context of quantum harmonic analysis also. In fact, they can be written as

AYTY2 = ax (1hy @ 1),

where: 15 ® 11 is the rank one operator on L2(R%) f + (f,1)1)1)9, % is the convolution defined
between (generalized) functions and operators, see below and in particular Chapter
We shall focus on each of these issues in a dedicated section of the present chapter.

Besides the main scope of the thesis, we characterize also the symbol class
SR = {0 € C°(R*) ||0%0(2)| < Coll + |2]*)™?, a e N, 2 e R},

introduced by Sjostrand in [127], in terms of Gabor matrix of Op,(c) and study continuity
properties for such operators with symbol ¢ in such class [7]. For reader’s sake, we summarize
the main result and address to Chapter[d] for m € R fixed the following properties are equivalent:

(i) o€ S™ (R2).

(i) o € 8" (R*?) and for every s > 0, 0 < q < oo, there exists a function H, € L<'>S(R2d),
with
||HT||L‘<I.>S < C7 NAIS [07 1]7

such that

{Op, (0) 7 (2) g, 7 (w) g)| < Hr(u—2)(To(z,0)™,  Vu,z € R*.
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See (2.212) for the definition of the transformation 7; and (2.7) for (-)*.

Operators Op, (o), considered on R? or on G for 7 = 0 only, shall be used through out
all the thesis work: they play a key role in the study of A%1¥2 see e.g. the boundedness
results on modulation spaces Theorem [3.1.2] [3.5.1] and [5.2.17}, as well as the statements about
L?-eigenfunction of Op, (o), Proposition [3.1.4] and [3.1.5, Theorem [3.3.5/ and Proposition
they are paid particular attention in Chapter [7] where we consider them in the setting of quantum
harmonic analysis.

1.1 New quasi-Banach modulation spaces on G LCA group

Banach modulation spaces over a LCA group G (see Assumption for the hypothesis made
in this work) were introduced by H. G. Feichtinger in early ’80s [56], they are set of distributions
characterized by a common decay in time as well as in frequencies. The framework most taken
into account is the Euclidean one, i.e. G = R%, and in this case their definition goes as follows. For
p,q > 1 and m “suitable” weight on R¢ (see Chapter [2| for more details about weight functions)
we set

MEI(RY) = {f € S'RY) |V, f € LE(R2)}

and

1l azga = Vo /]

Above, ¢ is a fixed nonzero function in S(R?), usually called widow, and Vg f is the short-time
Fourier transform (STFT) of f w.r.t. g which can be written formally as

P.q -
Lo,

Vof(z,w) = / f(t)e 2™ whg(t — ) dt, V(x,w) € R,
R4
For p = 1 = ¢ we have the so-called Feichtinger algebra which can be equivalently described in
this way:
So(RY) = MV (RY) = {f € L*(RY) |V, f € L'(R*)},

for some g € L2(R?) . {0} and obvious norm. The space Sp(R?) is a Banach algebra and can be
easily generalized to any LCA group:

So(G) = {f € L*@) |V, f € L (G x §)},

with G the dual group of G, Vof(z,w) =[5 f( gt —z)dt, (r,w) € G x G, (w,t) = w(t).
The Feichtinger algebra Sp(G) allows us to glve one of the posmble definitions for (Banach)
modulation spaces over G:

MEYG) = {f € S}(G)|Vyf € LB1(G x G)},  1<p,q< o0,

for some g € Sp(G) ~\ {0}, the norm is the natural one as for the Euclidean case.

In [56] H. G. Feichtinger proved that ME:2(G), with 1 < p, ¢ < oo, are Banach spaces, whose
norm does not depend on the window g, in the sense that different window functions in Sy(G)
(or S(R)) yield equivalent norms.

The modulation spaces MP;9(R%), with 0 < p < 1 or 0 < ¢ < 1, were introduced in 2004 by
Y.V. Galperin and S. Samarah in [75] and then studied in [104] 119, 149]. Their definition is
the same as above with 0 < p,¢ < oo and in [75] it is shown that they are quasi-Banach spaces

and almost every property which appears in the Banach case arises in the indexes’ range (0, 1)
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as well. E.g., they do not depend on the window chosen in order to compute the quasi-norm.
There are thousands of papers involving modulation spaces with indices 1 < p,q < oo, whereas
very few works deal with the quasi-Banach case 0 < p < 1 or 0 < ¢ < 1. Indeed, many properties
related to the latter case are still unexplored, such as duals for M?;9(R9) with at least one index
strictly below 1 and a generic weight m.

New contributions

The technique used by Y.V. Galperin and S. Samarah in [75] to construct quasi-Banach mod-
ulation spaces on R? cannot be adapted to the general case of a LCA group. Indeed, in order
to prove the fundamental independence from the window, they exploit some properties of entire
functions.

The paper [§], by E. Cordero and the author, overcome this difficulty by getting inspiration from
the idea of H. G .Feichtinger and K. Grochenig in [58], and view modulation spaces on G as par-
ticular coorbit spaces over the Heisenberg group G x G x T, T being the complex torus. However,
the coorbit theory proposed by H. G. Feichtinger and K. Grochenig in their works [58, (9, [60]
is not suitable for the quasi-Banach case. E.g., it requires the continuous embedding into Llloc,
which would prohibit to take into account the spaces LP with p < 1. The right construction
is provided by another coorbit theory which suits the quasi-Banach spaces, it was started by
H. Rauhut in [ITI9] and developed by F. Voigtlaender in his Ph.D. thesis [I47]. Thanks to this
new theory, we are able to give a good definition of modulation spaces on LCA groups. In fact,
we prove that they are quasi-Banach spaces independent from the window chosen in order to
compute the quasi-norm (see below).

Exploiting quasi-lattices, Gabor frame expansions are provided, see Theorem [5.2.13

In the spirit of [9], new convolution relations for such spaces are proved as well, cf. Proposition
and Proposition We address the reader to Chapter [5] for all details.

Concretely, we shall see that MP:7(G) with 0 < p,q < oo can be described as

-~

MENG) =A{f € So(9) [ Vof € W(L™, Lp)(G x G},
the quasi-norm is inherited from the Wiener Amalgam space W (L, L%:9)(G x G) and it is
s = 1V hwcaner = IMQVy s
where QQ C G x Q\ is a suitable unit neighbourhood and

MoV, f(z,w) = esssup |Vyf(w,§)], V(z,w) € G X Q
(u,8)€(z,w)+Q

is called the maximal function of V, f.
The presented new construction recaptures all the previous definitions of modulation spaces.
Indeed, M2:9(G) as above coincides with

(i) ME2(R?) for every 0 < p,q < oo, as defined in [56] [75];
(15) MP1(G) for 1 < p,q < oo and every G [56].

Recapturing the already known definitions entails the following equivalence of quasi-norms:

Vo fllpge = IVafllw gy -

Of course, one inequality is always true, namely

1Vl S IVaF -
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The other way round instead is in general an open problem which is part of a wider issue arising
from coorbit theory, see [I19, 146]. Here we are able to give a small contribution in this direction,
we prove that if G is discrete or compact then

Vg f]

Loe 2 MWVafllw e

m

for every 0 < p,q < 00, see Lemma [5.1.38

1.2 Localization operators

Localization operators Aflﬂ/’? on R? arise from pure and applied mathematics in connection with
various areas of research. Given a symbol a and windows 1)1, the operator A¥1:¥2 is defined
by the formal integral

AP f(t) = /de a(z, w)Vy, f (2, w) My, Typa(t) dedw,

where: translation and modulation operators are defined respectively as T, f(t) .= f(t — z) and
M, f(t) = €™t f(t) and Vi, f is the short-time Fourier transform of f with respect to 9.
Depending on the field of application, these operators are known under the names of Wick,
anti-Wick or Toeplitz operators, as well as wave packets, Gabor or short-time Fourier transform
multipliers. We will introduce them by means of time-frequency analysis, a branch of modern
harmonic analysis which deals with how to describe a function simultaneously in time and fre-
quency. It originates in the early development of quantum mechanics by H. Weyl, E. Wigner
and J. von Neumann around 1930, and in the theoretical foundation of signal analysis by the
engineer D. Gabor in 1946. However in 1980 the time-frequency analysis became an independent
mathematical field thanks to the work of G. Janssen. In the presented framework, localization
operators are a mathematical tool to define a restriction of modified signals, according to the en-
gineering lexicon, to a region of the phase space. Their first introduction as anti- Wick operators
is due to Berezin, in 1971. As a physicist, he introduced them by means of a quantization rule
a — Ag, acting from a symbol a defined on a phase space to an operator A, acting on a suitable
Hilbert space. The symbol a is called anti- Wick symbol, while the corresponding operator A,
is referred to as the anti- Wick operator associated to the symbol a. However we point out that
some authors talk about Wick quantization rather than anti-Wick.

The terminology localization operators appears for the first time in 1988, in a paper by I. Daubechies
[37]. She introduced these operators as a generalisation of the anti-Wick ones to localize a signal
both in time and frequency. Her primary motivations were applications in optics and signal
analysis. For instance, localization operators could be used to filter out noise from given (noisy)
signals. Since then they have been extensively investigated.

The generalization to any LCA group G is quite straightforward. Namely, we replace R2d
with the phase-space G X G and the modulation operator becomes M, f(t) = (w,t)f(t), where
weG. Of course, windows 1, 12 and symbol a shall belong to suitable function and distribution
spaces on G and G x G, respectively.

New contributions

In first place, we pay particular attention to L2-eigenfunctions of A¥+%2 defined on R or, more
generally, any LCA group G. Namely, we are able to show Theorem and which are
roughly summarized in the following item.
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-~

Theorem 1.2.1. Let 0 < p < o0 and a € MP*®(G x G). Consider 11,12 suitable nonzero
windows on G. Suppose that op(AY1¥2) {0} # @ and A\ € op(A¥+¥2) ~ {0}. Then any
eigenfunction f € L?(G) with eigenvalue \ satisfies

fe M)

v>0

The above result was first obtained in [9] by E. Cordero, F. Nicola and the author in the
case G = R?%. The general case just presented was published in [§] by E. Cordero and the author.
Notice that the new modulation spaces ME:4(G) with 0 < p,q < oo, mentioned in the previous
section, are used here.

Theorem and are results about smoothness for L2-eigenfunctions of AY*%2 on
R<. Briefly, they states that, if A¥**¥2 has suitable windows 1,1, and symbol a, then any L?-
eigenfunction f of A¥1¥2 is in the Schwartz class S(R?) or in the Gelfand-Shilov spaces S (R?).
For reader’s sake, we state the first mentioned result. In what follows we adopt the polynomial
weight

v(x) = (1 + |z]*)3, vz e RY seR.

Theorem 1.2.2. Consider a symbol a € M;’SO@)I(RM), for some s > 0, and non-zero windows
VY1, € S(RY). If f € L2(RY) is an eigenfunction of the localization operator AY+¥2 that is
Avr¥2 f = N f, with A # 0, then f € S(RY).

The above result was presented in [9] whereas the improvement to the Gelfand-Shilov class
was obtained in [II] by N. Teofanov and the author. Roughly speaking, in order to have f €
S™(R?) we need to consider the (sub-)exponential weights

s|a:\1/7
)

wl(z) =e Vz e RY, s,y >0,

rather than the polynomial v;. We address the reader to Section [3.3] of Chapter [3] for a precise
formulation of the previous statement.
We highlight that whenever we speak of eigenfunctions for AY1-%2 the localization operator will
be always guaranteed to be compact on L?2.

In Chapter |§| we take into account localization operators AY1%¥2 with symbols of type a =
1 ® m, with m defined on R?, and study the equality

AVLY: =T,  on SRY), MY R?Y), or L*RY).

Le., we study under which conditions a localization operator Azl%’:ﬁ’“ can be written as a Fourier
multiplier T,,,,. Such a problem was addressed in [3] by E. Cordero, H. G. Feichtinger, N.
Schweighofer, P. Balasz and the author. For sake of clarity, we report the related main result

Theorem By Z we mean the reflection operator Zf(t) := f(—t).

Theorem 1.2.3. Fiz multiplier symbols m, mo € S'(R?) (resp. m,my € M>°(R%)) and windows
V1,9 in S(RY) (resp. in MY (RY)). Then the equality

Ai%’fff =T, on SR (resp. M*(R?)
holds if and only if
my =mx F YTy x1py) in S (RY) (resp. M (RY)).

The same conclusions hold under the following assumptions:
(i) The symbols m, my in S(RY) (resp. in M (RY)) and the window functions (11,2) in S’ (RY) x
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S(RY) (resp. M>=(R?) x M*(R?));
(ii) The symbols m, my in S(R?) (resp. in M*(R?)) and the window functions (11,19) € S(R?) x
S'(RY) (resp. M'(R?) x M>=(R?)).

In Section [6.5] of Chapter [6] also the finite discrete setting of Zy is taken into account. In
this case, we talk about finite Gabor multipliers G9'+92 and linear time invariant filters H rather
than localization operators A¥:¥2 and Fourier multipliers T,.

1.3 Feichtinger operators in quantum harmonic analysis

Translations, convolutions and Fourier transform of functions dwell at the very heart of classical
harmonic analysis. R. Werner in his work [I50] introduced analogues notions for operators
instead of functions, we recall them briefly. Given an operator T € B(L?(R?)) its translation at
z = (z,w) € R?? and its involution are meant to be

o (T) =m(z)Tr(2)" and T:=1T1T,

recall that Zf(t) :== f(—t) and 7(2) == M,,T,. Such definitions allow to introduce the subsequent
crucial notions, given a € Ll(RQd) and S,T € J', trace class on L? (Rd), the convolution between
a function and an operator or between two operators are set to be

axS:=8%a:= ./R% a(z)a,(S)dz and SxT(z) = tr (Se.(T)),

where z = (z,w) € R?? and the integral has to be understood in weak sense. The operator %
enjoys all the expected properties of a convolution, i.e. it is commutative and associative. More-
over, it interacts nicely with the usual convolution x, see Chapter [7] for details. The equivalent
of the Fourier transform is given by the so-called Fourier-Wigner transform

FwS(2) = e ™" tr(n(—2)S).

When we consider a rank-one operator S = f ® g, where f,g € L?(R?%) and it acts on L?(R?)
as ¢ — (1, g) f, the previous definitions boil down to well-known objects. For sake of clarity we
mention the following remarkable identities [I0g]:

AV —ax (b @), (f®f)*(TgeIg)=|VyfI*, Fw(f@g)=Afy9),

where A(f, g)(x,w) = ™V, f(x,w) is the cross-ambiguity function of f and g.

In [I03] M. Keyl, J. Kiukas and R. Werner introduced and studied Schwartz operators &.
Namely, & is the set of those pseudo-differential operators with Weyl symbol in S(R??), by &’
it is denoted the collection of pseudo-differential operators with Weyl symbol in S’(R24). The
authors of [I03] were able to turn & into a Fréchet space such that its topological dual is &', this
allowed them to define convolutions and Fourier(-Wigner) transform also on &’ using duality.
Schwartz operators behave with respect to x and Fy like the Schwartz class with the usual
convolution * and Fourier transform F. We cite some of the main result of [I03] which show two
things: the notions recalled at the beginning of this section are not valid just for operators in
B(L?(R%)) or J! and distributions in L!(R?¢); & is the very counterpart in quantum harmonic
analysis of S(RY) in classical harmonic analysis.

If we consider 5,7 € &, A € &, b € S(R?*?) and a € §'(R??), then

S+T eSMR*), S+xAcS(R*™), bxSe6, axS, bxAcd.

Moreover, the Fourier-Wigner transform can be extended to a topological isomorphism from &’
onto S'(R24). We address the reader to [I03] for details and proofs, in particular Section 5.
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New contributions

Just as for the Schwartz class S(R?), to handle the Fréchet space of Schwartz operators & and its
dual can be quite cumbersome. One can have a hint of this by looking at the proofs contained in
[103]. It is known that the Feichtinger algebra Sp(R¢) reveals to be a valid alternative to S(R?)
and, being a Banach space, easier to work with. In this spirit, F. Luef and the author in [10]
consider a space of operators introduced in [62] and named it the space of Feichtinger operators.
Such a space shall be defined in Chapter [7] as follows

So ={8: S}(R%) — Sp(R?) | Sis linear, continuous and
maps norm bounded w- convergent sequences in Sj(R?)

into norm convergent sequences in Sp(R%)}

and endowed with the norm of B(S)(R%),So(R%)). H. G. Feichtinger and M. S. Jakobsen in
[62] proved that Sg is a Banach space and a Banach algebra under composition of operators,
it is isomorphic to Sp(R??) through the map 7' + K7, where Kp is the integral kernel of T,
see Theorem [7.2.3] We highlight that the isomorphism given by 7"+ K shall be heavily used
trough out all Chapter [7} Indeed, it will be usually convenient to work on the kernel Kr rather
than directly on the operator T. The dual of Feichtinger operators ig given by

So = B(So(R), Sy(R)),

cf. Theorem [7.2.2] and [7.2.3] In the same fashion of what done for &, we shall prove that
translations, convolutions and the Fourier-Wigner transform make sense for elements in Sy and
S. Moreover, if we consider S,T € Sg, A € S}, b € Sp(R??) and a € S(R??), we have

S+T € Sy(R*), SxAcS(R™), bxSe€Sy, axS bxAcS).

The analogy with the results obtained in [I03] for & is evident; to see how the convolutions are
technically defined, e.g. So*Sj,, we address the reader to Definition [7.2.18/and subsequent items.
As well as the Feichtinger algebra is Fourier invariant, we have that

.Fwi S() — S()(RQd)

is a topological isomorphism and it can be extended to a topological isomorphism from Sj, onto
SH(R?).

We shall introduce a continuum of time-frequency representations depending on 7 € [0, 1],
namely the 7-short-time Fourier transforms

Vg f(w,w) = 2TV f(z,w),

and the 7-Wigner distribution of an operator S with integral kernel Kg:
WS (z,w) = / e 2T K (x4 Ttz — (1 — 7)) dt.
R

For rank-one operators S = f ® g, we recapture the cross-7-Wigner distribution W.(f ® g) =
W.(f,g). We shall introduce a dependence on 7 € [0, 1] also in the Fourier-Wigner transform,
so that we will talk about Fourier-7-Wigner transform:

Fw. S(z,w) = e 2072 tr(n(—z, —w)S).
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The well-known spreading representation will be interpreted as a mapping from functions into
operators and a dependence on 7 € [0, 1] shall be imposed as well,

SR”:a— a(z,w)e” T (2, w) drdw
R2d

is the 7-spreading representation operator.

In Chapter [7] we show how these objects are naturally related to each other, see e.g. Lemma
and that Sy is a fruitful setting where to consider them. To give a flavour of the main
results, we summarize Theorem and as follows. Recall that the T-quantization of a if
formally given by

Op-(a)f(t) = /de 22w o (1 — 1)t + 72, w) f (2) dedw.

Theorem 1.3.1. Let 7 € [0,1] and
(X7Y) = (j17L2(R2d))a (S0780(R2d))’

so that
(X/7Y/) = (joo7L2(R2d))a( 6786(R2d))

Then the following mappings are linear and continuous
Op-: Y — X/, W X—-Y
and Op, is the Banach space adjoint of W,: Op, = WZ in the sense that
yr{a, WrS)y = x(Op-(a), S)x
forallaeY' and S € X.

Moreover, in Corollary we show that W, : Sy — Sp(R?9) is a topological isomorphism
which inverse is given by Op, : Sp(R24) — Sp.
Analogous results hold true for the Fourier-r-Wigner transform Fy_ and the 7-spreading repre-
sentation SR”. In the following item we report Corollary

Theorem 1.3.2. Let 7 € [0,1]. Then the following mappings are linear and continuous
SR™: SH(R?*?) — S,  Fw,: So — So(R?*?)
and SR” is the Banach space adjoint of Fyw,: SR” = Fjy, , in the sense that
spla,Fw, S)s, = s, (SR a,9)s,

for all a € S§(R?*?) and S € So.
Moreover Fy, : So — So(R??) is a topological isomorphism which inverse is given by SR™ : So(R?4) —
So.

Eventually, in the last section of the chapter, a characterization for & is given in terms of
weighted classes of Feichtinger operators M. Namely

6 =M,
s>0

see Theorem As a consequence, in the spirit of [95], a sufficient condition for an operator
to be in & is provided.



1.4 Structure of the thesis

This thesis work is structured as follows. Chapter [2 contains the preliminaries which are required
along all the text. The subsequent chapters contains the results of the papers [3] 7], [8, @] 10} 11].
We chose to present them following the order under which they were written.

Chapter [3| presents the results about decay and smoothness for L2-eigenfunction of localization
operators A¥1:¥2 on R? [9] as well as the generalization to the Gelfand-Shilov setting [T1].

In Chapter 4| we characterize the symbol class S™(R2?) in terms of the Gabor matrix decay of
Op- [1].

Chapter [5] is devoted to the definition of quasi-Banach modulation spaces on LCA groups, the
study of their main properties and of Kohn-Nirenberg operators Opg(o) on such spaces as well
as of eigenfunctions of localization operators A¥*¥2. The results were published in [8].

Chapter [6] addresses the problem of writing a localization operator with symbol only in the fre-
quencies ’f’é’n’ﬁz as Fourier multiplier [3]. Also the finite discrete setting of Zy is taken into
account.

Eventually, Chapter [7] deals with Feichtinger operators in quantum harmonic analysis and the
various interpretations of the T-quantization Op, as Banach space adjoint between suitable Ba-
nach spaces [10].






Chapter 2

Preliminaries

In the present chapter we recall and collect notations, backgrounds and some preliminary results
which are shared by and exploited in chapters from [3] to [7]

In Section [2.I] we report the definition of quasi-norm, r-norms, quasi-normed and and quasi-
Banach spaces. Basic theory which steams from them if briefly recalled. The main references
are [44] [T47].

Section concerns solid quasi-Banach function (QBF) spaces Y on locally compact Haus-
dorff (LCH) groups G and a summary of the relative coorbit theory developed by F. Voigtlaender
in his Ph.D. thesis [I47]. In particular, Subsection contains definitions and assumptions
made on weight functions through all the present thesis work, both in the general setting of a
LCH group G and on R?. In the latter situation, particular weights are considered, such as e.g.
polynomial weights v, and (sub-)exponential ones w,. Subsection reports definitions and
main properties of solid QBF spaces Y and associated discrete sequence spaces Yy, along with
relatively separated families and BUPUs; Subsection [2.2.3] deals with Wiener amalgam spaces
Wq(Y) with local component L>°(G). We point out that, for sake of simplicity, we shall stick to
the situation where the space W (Y") is independent of the window subset @), although more gen-
eral scenarios can be taken into account. Subsection [2.2.4] shows weighted Lebesgue mixed-norm
space LP:? [12] in the perspective of the preceding subsection and provides proofs for a numbers
of results which seem to be folklore, for no proof was available to author’s knowledge. See in
particular lemma and Proposition which were both published in [8]. Eventually, a
comparison with the theory developed by H. G. Feichtinger and K. Gréchenig in [58] is made,
see Theorem and the above remark.

The main tools of time-frequency analysis (TFA) on Euclidean space R? are listed in Section
Here we find the definitions and main properties of time-frequency shifts (TFS) 7(z,w),
short-time Fourier transform (STFT) V, f, cross-7-Wigner distribution W, (f,g). In Subsection
[2:3:2] we list different and equivalent ways of representing linear and continuous operators from
the Schwartz class S(R?) into S’(R?): as integral operator with kernel, as pseudo-differential
operator and as continuous superposition of TFS-s. In Subsection we generalize 7(z,w),
Vof, Wo(f,9) = R(f,g) to any LCA group G. Moreover, the important Structure Theorem
[96] and the class of special test functions S¢(G) [88] are reported. Eventually, the specific
choice G = Zy is taken into account. Under the identification CV = (2(Zy), see , we
look at: STFT, spreading and matrix (kernel) representation of linear mappings from C" into
itself, discrete Fourier transform Fy: CY — CV, discrete two dimensional Fourier transform
Fo: CN*N — CN*N | Kronecker delta function d, Dirac comb III, s and discrete symplectic
Fourier transform Fy: CV*N — CNXN_ The main references are [18] [35, [82, 88, [T17].
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A brief recap of frame theory in Hilbert spaces in given in Section Gabor frames, along
with analysis and synthesis operators, and some of their properties are shown both on R? and G
LCA group. In particular, in Subsection we introduce quasi-lattices on G as done in [8§] in
order to build Gabor frames. Once more, we consider the particular case of G = Zy.

Modulation spaces are introduced and discussed in Section 2.5 In particular, modulation
spaces M with indexes 0 < p,q < oo on R? are shown in Subsection whereas MP? with
1 < p,qg <ooonany G LCA group are treated in Subsection [2.5.2l There we also list some
properties of the Feichtinger algebra Sp(G) = M'(G). In particular, in this section we present
the proof of some new convolution relations on modulation spaces on R? which were published
in [9], see Proposition This result has been improved to any G LCA group in [§], see
Proposition [5.2.14] in Chapter 5] Some results about inclusion relations and an equivalent semi-
discrete quasi-norm on MP2:4(R%) taken from [7] are reported. See Proposition and
Corollary Proposition was present in [3]. We address the reader to [35] 56} [82] []S].

Section [2.6] recalls various function spaces which shall be used in many of the subsequent
chapters. In particular we shall briefly define: Wiener amalgam spaces W (LP, L4, )(R?) with
indexes 0 < p,q < oo, Besov spaces BP4(R?) [145], the class of smooth symbols S™(R2??) [121],
weak L™ spaces [I45]. Original results here presented and both published in [7] are: Lemma
which generalizes a characterization of Hérmander’s class 58’0 proved in [87, Lemma 6.1],
and the subsequent Lemma,

The main operators which are used in the present thesis, and some of which are also object
of main results illustrated in subsequent chapters, are defined in Section 2.7 We shall see:
localization operator A¥1%2 both on R? and G, Gabor multipliers GZ*92 on R? and GJ92 on
Zy, pseudo-differential operators Op,(¢) and Born-Jordan operators Opg;(c) on R? Kohn-
Nirenberg operators Opg(c) on G LCA group, Fourier multiplier 7},, on R? and linear time
invariant filters H on CV = (*(Zy) (see (2.104)).

Eventually, Section [2.8] revisits Sections [2.3] 2.5] and 2.7] in the framework of Gelfand-Shilov
spaces S7 (R?) and ¥7(R?), which are treated in Subsection For some references about the
Gelfand-Shilov setting we address, e.g. to |76} 118 1411 [143]. Propositionwas published by
N. Teofanov and the author in [I1], it extends the convolutions for modulation spaces presented

in Proposition [2.5.19| [9]. Also Lemma [2.8.15| and Proposition [2.8.16| appeared for the first time

in [IT].

2.1 Quasi-normed and quasi-Banach spaces

In this section, we report the definition of quasi-norm, r-norm, quasi-normed and and quasi-
Banach space. These notions will be used through all further chapters, since we shall always
tackle the quasi-Banach case, whenever possible. In particular, the so-called Aoki-Rolewicz
Theorem is exploited heavily in Chapter [5| We address the reader to [44], [147] for further
references.

Definition 2.1.1. Let X be a vector space. An application ||-||y : X — [0, 400) is called quasi-
norm if:

(0) ||zl x =0 if and only if x = 0x, for every x € X;
(1) ||laz| x = |a| |z| , for very x € X and o € C;

(#it) There exists a constant C > 1 such that for every x,y € X

e +yllx <Clzllx +llyllx);

such a C is called triangle constant.
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The pair (X, ||| x) is called quasi-normed space. Two quasi-norms |||, x and |||, x on X
are called equivalent if there exist two constants C1,Co > 0 such that for every r € X

(&1 ”37”1,)( < ||x||27x <O ||33H1,)p

In this case we write ||-||; v < |||l5 x-
Given 0 < r <1, an application ||-||y : X — [0,400) which satisfies (i) and (ii) and such that

x4yl <llzllx +llyly,  VoyeX,
is called r-norm.

If the triangle constant can be chosen to be 1, then we recover the definition of norm and
normed space. Trivially, a 1-norm is just a norm.

Remark 2.1.2. The following observations are borrowed from [1]7, Remark 2.1.2], see therein
for related computations.

(i) Given an r-norm ||-|| x : X — [0,+00), on account of the convezity of t — tv on [0, +00),
for every x,y € X we have

1
lz +yllx <277 (el + llyllx)-

Therefore every r-norm is a quasi-norm with triangle constant C' = 2%*1;

i) If 0 < s <r <1, then any r-norm is also an s-norm.

(12) ) y

The following fundamental result will be repeatedly used in Chapter

Theorem 2.1.3 (Aoki-Rolewicz). If (X, |||, x) is a quasi-normed space, then there is0 < r <1
such that the mapping defined by

n % n
], = inf (Z ||xi|;jx> IneN ay,...,z X, 0= a; ¢,
i=1 1=1

for every x € X, is an r-norm equivalent to ||-||; -

About the previous theorem, we address the reader to [79, Exercise 1.4.6] and [44] Chapter
2, Theorem 1.1].

Definition 2.1.4. Let (X, |||x) be a quasi-normed space. A sequence {x,}, C X is called
Cauchy if
Ve>0 3IN.eN | |la;—x4)y <e Vi,j>N..

If every Cauchy sequence in X is convergent, then (X, ||| ) is called quasi-Banach space.

Lemma 2.1.5. (|I47, Lemma 2.1.5]) Let (X, |||y) a quasi-normed space. Given x € X and
e > 0, we define the ball of radius ¢ centred at x as

Be(z) ={ye X| |z -yl x <e}
The collection of all the subsets E C X such that

VeeFE J>0:B(zx)CF
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is a topology on X. It is called the topology induced by ||y and turns X into a TVS.
Equivalent quasi-norms induce the same topology. If ||||1X is an r-norm, for some 0 < r <1,
equivalent to |||y, then

d: X x X = [0,+00), (z,9) = [lz =y} x
is a metric on X which induces the same topology as ||| x -

Remark 2.1.6. (i) On account of Lemma if (X,|'lx) s quasi-Banach and ||-||, y is
an r-norm, for some 0 <1 <1, equivalent to |||y, then (X, |||, x) is quasi-Banach too;

(1) If (X, || x) is quasi-normed space which does not admit an equivalent norm, then patholog-
ical behaviours may occur. For example: the unit ball may not be open; the quasi-norm can
be not continuous w.r.t. the topology it induces, not even Borel measurable. For concrete
examples, we address the reader to [1]7, Remark 2.1.9]. Moreover, quasi-normed spaces
are in general mot convexr. In order to point out one more difference w.r.t. the Banach
case, we mention that the topological dual of LP(R), 0 < p < 1, is {0}, see [79, Theorem

1.4.1 (1)].
Eventually we recall the following result from [147].

Lemma 2.1.7. ([147, Lemma 2.1.6]) Let (X, ||-||x) and (Y,|-|ly) be quasi-normed spaces. The
a linear mapping T: X — Y is continuous if and only if it is bounded, i.e. if

Tl x>y = sup [ITz(y <+oc.
zeX

,
llzll x <1

2.2 Solid quasi-Banach function spaces on G and coorbit
theory

The present section summarizes the construction of coorbit spaces Co(Y), when Y is a solid
quasi-Banach function space on a locally compact Hausdorff group GG, even not abelian. This
theory was first developed by H. Rauhut in [I19] and technically fixed and deepened by F.
Voigtlaender in his Ph.D. thesis [147]. In the end we shall highlight the differences with the
original theory for Banach spaces by H. G. Feichtinger and K. Grochenig, see [58] 59, [60].

We mention that an exposition and treatment of the named coorbit theory is now available also
in the recent article [146] from J. T. van Velthoven and F. Voigtlaender, where the requirements
on the weights are lightened up. However, due to the time when the work [8] was written, we
shall stick to the first version presented in [I47]. Moreover, on account of the objects of our
particular setting, this makes no difference.

From now on we make the following assumptions.

Assumptions 2.2.1. A topological group G, not necessarily abelian, is always assumed to be
locally compact Hausdorff (LCH) and o-compact. The group law on G is represented as multi-
plication.

Assumptions 2.2.2. We use the letter G for a locally compact, abelian, Hausdorff, o-compact,
second-countable group.

We shall simply refer to it as a LCA group.

The group law on G, as on any abelian group, is represented as addition and e stands for the
identity. G denotes the dual group of G. Latin letters such as x, y and u denote elements in G
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whereas all the characters in é, except the identity ¢, are indicated by Greek letters like §, w and
1. For the evaluation of a character £ € G at a point x € G we write

(& x) = &(x).
We use boldface Latin letters to denote point in the phase-space:
x = (2,€),y = (y,n),u = (u,w) €G xG.

Similarly, boldface Greek ones & ,w,n stand for elements of Q\Ax G. The Haar measure on G
is denoted by dx and d§ stands for the dual Haar measure on G. Hence the Fourier transform
defined as

FFE) = f(€) = /g f@)Exyde, vEed,

is an isometry from L?(G) onto Lz(é).

Given z € G and a function f on G, we denote left and right translation operators by

(2.1) Lof(y) = f(z7'y),  Ruf(y) = flyx).
If we are dealing with G, i.e. the group is abelian, we shall adopt the common notation
T, =1L,.

Whenever a measure on G is involved, it is understood to be the left Haar measure. We shall
not list systematically the known properties for the spaces introduced in the sequel, but rather
recall them when necessary. The reader is invited to consult [I47, Chapter 2| for an exhaustive
treatment.

2.2.1 Weights

In what follows we state what we mean, and which assumptions are made, by weight functions
in the present thesis work. We refer to [35, [82], 84] [147].

Definition 2.2.3. A weight on G is a measurable function m: G — (0,4+00). A weight v on
G is said to be submultiplicative if

(2.2) v(zy) < v(x)v(y), Ve,y € G.

Given two weights m and v on G, m is said to be left-moderate w.r.t. v if
(2.3) m(zy) Sv(x)m(y),  Va,y€G,

it is right-moderate w.r.t. v if

(2.4) m(zy) S m(x)v(y),  Va,yeG.

If a weight m is both left- and right-moderate w.r.t. v, we simply say that it is moderate w.r.t.
v or v-moderate.

Consider v submultiplicative weight on G which is also even, bounded from below and satisfies
the Gelfand-Raikov-Shilov (GRS) condition, i.e.

v(r) =v(z™) Vzegq,
Je>0:v(z)>c Vregd,
lim v(x")% =1 Vzeg,

n—-+o0o
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then the class of weights on G moderate w.r.t. v is denoted as follows:
(2.5) M, (G) = {m weight on G | misv—moderate} .
Two weights w1, wy on G are said to be equivalent if wy < wo, i.e.

wy(z) Swa(x) S wi(x), Vx € G.

Remark 2.2.4. The GRS condition is not always needed, but it is necessary in order to have
Gabor frames for L?(G). The related result is Theorem in which v is a weight on the
abelian group G X G, hence the GRS condition has the form

lim v(nx)% =1, Vxegx QA

n—-+oo
Theorem 2.2.5. ([92], Theorem 2.1.4]) Let v be a submultiplicative weight on G. Then v is
bounded on compact sets.
2.2.1.1 Weights on R¢

Here we list some specific weights which shall be explicitly used in the following chapters, in
particular in Chapter [3] Namely, we define the Japanese brackets (), the weight of polynomial
type vs and (super/sub-)exponential weights w; . Some technical results from [II] are reported,
in particular Lemma [2.2.13|shall be exploited in order to prove Theorem |3.3.5} Finally, weights
m,, are defined and they will be needed in Chapter [3| as well.

Remark 2.2.6. When dealing with the abelian group G = R?, we see that if m € M,(R?), then
v (z) < m(x) S o), vz € R4

It follows that v(z) < m~(z) < v™Y(x) for every x € R This, together with Theorem
gives: m,1/m € L2 (RY).

loc

Definition 2.2.7. We define the Japanese bracket of x € R? to be

(2.6) (z) == \/1+ |z

Let s € R, the polynomial weight v, is defined to be
(2.7) ve(z) = (2)* = (1+[z[*)3,  VzeRL

We say that a weight m on R? has at most polynomial growth (at infinity) if there exist
C >0 and s > 0 such that

(2.8) m(z) < Cug(x), vz € RY.
Let k,v > 0, and define
(2.9) w) (x) = ekl Vo € RY.

If v > 1 the above functions are called subexponential weights, when v = 1 we have the ex-
ponential weights and write wy, instead of w,i, for 0 <y <1 we call them superexponential
weights.
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Sometimes we shall use the expression w] for k = 0 also, with obvious meaning.

Remark 2.2.8. (i) The polynomial weight vy fails to be submultiplicative for s > 0 due to
Peetre’s inequality (which is sharp):

(z+y)® < 25(x)* ()], Vz,y e RY, seR.

However the function 2°(x)*, for s > 0, is a submultiplicative weight equivalent to vs.
By abuse of notation we denote by M, (R?) the class of weights which are vs-moderate
weights. We leave as an ezercise for the reader to prove that it coincides with Mas,_ (R?).
We also observe that, for s < 0, vs is v|g-moderate due to Peetre’s inequality;

(it) Observe that (sub-)exponential weights w), v > 1, are submultiplicative;

(iii) Both vs and wy, with s,k >0 and v > 1, are even and fulfil the GRS condition.
Definition 2.2.9. Let v > 0 and define
PR = {mweight onR?|m is v-moderate for some submultiplicative v},

Pp.(RY) == {mweight onR*|m is wy -moderate for some k > 0},

t@%ﬁ (R?) := {m weight onR® | m is w] -moderate for every k > 0}.
For 0 < 2 < 71 we have
Py € PEy € Py C P

Moreover, for 0 < v < 1 we have Pg = Pg, = Py _; see [19, Remark 2.6] and [144]. In the
next lemma we show that if m € g, then it is wi-moderate fore some k > 0 large enough. This
implies gE = gZEJ.

Lemma 2.2.10. ([1I, Lemma 2.1]) Let m € Pg. Then m is wi-moderate fore some k > 0.

Proof. The lemma is folklore ([84, 19, 143] 142]). For the sake of completeness we report a
self-contained proof following [84]. By the hypothesis, we may assume that m is moderate with
respect to some continuous vy > 0 (cf. [35, 84, 139]): m(z +y) < Cvo(z)m(y), =,y € R%. It
follows that supy<; Cvo(t) = e for some a € R. For any given z,y € R¢ we choose n € N such
that n — 1 < |z| < n. Then for all z and y in R?

m(z+y) =m<n%+y) < Cuyg (%)m((n—l)%—f—y)
0 (5)n (05 49

I /\

IN

(cvo (5)) m@) < e m(y)

eI D m(y) = eellm(y).

/\

The claim follows for & > max(0, a). O

We remark that &g contains the weights of polynomial type, i.e. weights moderate with
respect to some polynomial, or equivalently to some vy with s > 0.

In the sequel &}, . means &g, or P29, - The following lemma follows by easy calculations
and we leave the proof to the reader (see also [139]). Observe that due to the equality Pg 1 =
PE~ = '@E,w 0 < v < 1, it is sufficient to consider v > 1.
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Lemma 2.2.11. ([II, Lemma 2.2|) Consider v > 0. Then g@gﬂ(Rd) is a group under the
pointwise multiplication and with the identity m = 1.

Given a function f defined on R?? we denote its restrictions to R? x {0} and {0} x R? as
follows:

(2.10) fi@) = f(2,0),  f2lw)=fOw), VoweR"

The families QZEW turn out to be closed under restrictions and tensor products in the sense of
the following lemma. The proof is omitted, since it follows from definitions and properties of the
Euclidean norm.

Lemma 2.2.12. (|11, Lemma 2.3]) Consider v > 0:
(i) if m e Pp,_(R*?), then my,my € 5 (R?);
(1) if m,w € c@EW(Rd), then m®@w € ,@EN(RM).
Next we exhibit a lemma which will play a key role in Theorem [3:3.5
Lemma 2.2.13. ([1I, Lemma 2.4]) Consider v > 1, r,s >0, 7 € [0,1] and

Rl ' 1/2<7<1
(2.11) N L
r+s(1472)Y2 if  0<T1<1/2
Then for every x,w,y,n € R? the following estimate holds true:
2l
(2.12) zwﬁufféuﬁ®u@QﬂTm+T%mH(lﬂm&wmy@)
wr Y, N

Proof. We first recall that given 0 < p < ¢ < oo the following holds true:

1 1
d q d P
(2.13) 21, = <Z|zl|q> < <Z|zi|p> =|lzll,, z=(21,---,24) e R4,
i=1 i=1

In fact, consider z such that [|z]|, = 1. Hence |z;|” <1 = |z| < 1fori=1,...,d. Thus |z|? <

|z:/” and 20, |2:]" < 2%, |2]” = 1. Eventually consider u € R% . {0}, then Hu/ ||u||pH <1
a

and ([2.13) is proved.

By using the triangular inequality and (2.13]) with ¢ = 1 and p = 8, we infer that for 0 < 8 <1

B

(2.14) <Z|zl|6 z=(z1,...,24) € RY

i=1

Now, by the triangular inequality and with d = 2 we obtain

(2.15) o)’ — |y’ <le—yl”, 0<B<1, ayeR”

Next, we observe that for z,w € R¢

(rz, (L =7)w)[* = 72 [ + (1L = 7)* Jw|* = 7% |2 + (7> + 1 = 27) Jw|”
=7 \zl + [w]?) + (1 = 27) [w|* = 7 |(z,w)|* + (1 = 27) [w]”

zw|—|—0 if 1/2<7<1,
2|(z,w) P+ 1w + 2> = (14 72) (2, w)|? it 0<7<1/2,

IN
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which gives

(2w i 1/2<r <1,

— 7wV
(2.16) |(Tz, (1 Jw)| < {<1 +72)1/27 |(Z)w)|1/V if 0<7<1/2.

We can now prove (2.12)):
wZJrs(wi) _ 1/~ 1/~
Frrss = e (4 8) )l = i) )
= exp (v (1) = Iy m[7) + s (2 0)7)
(2.15)
< exp (1) = ()7 + s (@) )
= exp(r|(w —n,y — @) +s|(z,w)" —s|(r(z —y), (1 - 7)(w — )"
x exp(s|(r(z — ), (1 — 1) (w —n))[*")
E13) 1/~ 1/
< exp(r|(w —my — )|+ s|(2z,0) = (r(@ — ), (1 = 7)(w — 1))
+sl(r(@—y), (1—7)(w—m)")
= exp(r|(w —ny — )" + s |(1 =) + 7y, 70 + (1 — 7)n)| "/
+s|(rz — 7y, (1 —m)w — (1 —7)n)|"7)
exp((r + 87'1/7) (w—mn,y— :1c)|1/V
226 +s|((1 =7+ 7y, 7w + (1 — 7)77)|1/'Y) if 1/2<7<1,
exp((r + s(1+ 72)1/27) [(w—mn,y — x)|1/v
+s|(I=m)z+ 7y, rw+ 1 —7))Y) if 0<7<1/2
and the claim follows from assumptions (2.11). O

We finish this subsubsection by introducing some polynomial weights which will be used in
Theorem [3.3.2] and Lemma [3.3.3]
Let 7 € [0,1] and u > 0, then we define the weight of polynomial type

(2.17) my((z,w), (y,n)) = (1 + [z = 70 + |w + (1 = 7)y))",
where (z,w), (y,n) € R,
Remark 2.2.14. Let 7 € [0,1] and u > 0, then we notice that

mi((z,w), (1) S vu @ va((w,w), (y. 1), V(z,0), (y,7) € R*.
which will be used in Lemma[3.3.3. Indeed:
my((z,w), (y,m) = L+ [z — [ + |w + (1 = 7)y[)*
(L4 (J| + [mnl)® + (ol + (1 = 7)y])*)/?
(L [zl + 72 [0 + |wl” + (1 = 1) [y ")/
(1 + [(a,w)* + |(y, m) )2
(1 + (W) * + (g, ) * + (@, w)[* | (g m)[*) /2
= (14|, @) (1 + [(y, ) )/
vy ® vu((2,w), (Y1)

S
<
<
<
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2.2.2 Solid QBF spaces on GG

The definition of a solid quasi-Banach function space Y on G is given. Since It can be useful to
describe Wiener Amalgam spaces Wq(Y'), Definition in terms of sequences, the so-called
BUPUs and a particular space of sequences Y, associated to Y are introduced. We present the
space Yy under specific hypothesis fitting our framework, nevertheless a more general theory
is possible, see [120] and [I47, Chapter 2]. We recall the L, and R, are the left and right
translations on G, respectively.

Definition 2.2.15. We say that (Y, ||-||y) is a function space on G if it is a quasi-normed space
consisting of equivalence classes of measurable C-valued functions on G, where two functions are
identified if they coincide a.e..

A function space (Y, |-||y) on G is said to be left invariant if L,: Y — Y is well defined
and bounded for every x € G, similarly we define the right invariance. We say that Y is
bi-invariant if it is both left and right invariant.

A function space (Y, ||-|ly) on G is said solid if given g € Y and f: G — C measurable the
following holds true:

lfI<lgl ae = fey, Aflly < lglly;
Y is called quasi-Banach function (QBF) space on G if it is complete.

Without loss of generality, we can assume [|-||y to be a r-norm, 0 < r <1, i.e.

If +9glly <A1y +llglly . VfgeY.

This is due to the Aoki-Rolewicz Theorem and the fact that equivalent quasi-norms induce
the same topology, see Lemma |2.1.5)] .

Definition 2.2.16. A family X = {x;}ics in G is called relatively separated if for all compact
sets K C G we have

(2.18) Cxrx=sup#{jel|a;KNa;K # 3} < +oo.
iel

Consider X = {x;};c1 relatively separated family in G, Q C G measurable, relatively compact set
of positive measure and (Y, ||-||y-) solid QBF space on G. Then the discrete sequence space
associated to Y is the set

(2.19) Ya(X,Q) = {()‘i)iel eC’| Z |Ail Xz € Y}
iel
endowed with the quasi-norm

)

Y

(2.20) | (A

Z |/\i|XIiQ

iel

i)iEIHYd(X,Q) =

C! is the space of functions from I into C.

Lemma 2.2.17. ([I47, Lemma 2.3.10]) If G is o-compact, then any relatively separated family
X is (at most) countable.

For the following issue we address the reader to [120, Lemma 2.2] and [I47, Lemma 2.3.16].
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Lemma 2.2.18. (Yy(X, @), |I'lly,(xq)) is @ quasi-Banach space. Moreover, if Y is right invariant

then Yy(X, Q) is independent of Q) in the sense that another U C G measurable, relatively compact
and with non empty interior yields the same space with an equivalent quasi-norm

We recall the following result by F. Voigtlaender [147].

Lemma 2.2.19. ([147, Lemma 2.3.21]) Let v be a submultiplicative weight on G and m a weight
on G right-moderate w.r.t. v. Then for every 0 < p < oo, for each Q@ C G measurable relatively
compact set with positive measure and for every relatively separated family X = {x;}icr in G we
have

(Lgn(G))d(Xa Q) = efnx (I)a

where mx : I — (0,400),i — m(x;).
A generalization of this result was given in [§], see Lemma [5.1.26

Definition 2.2.20. Let U C G be a relatively compact, unit neighbourhood. A family ¥ =
{ti}ier of continuous functions on G is called o bounded uniform partition of unity of
size U (U-BUPU) if

(1) 0 <e(x) <1 forallz € G and every i € I;

(ii) there exists X = {x;}icr U-localizing family for U, i.e., X is a relatively separated
family in G such that
supp ¥; C x;U Vi € I

(di1) D ,erthi = 1.

Lemma 2.2.21. Given any relatively compact unit neighbourhood U in G, there always exists a
family U which is a U-BUPU with some U-localizing family X. Moreover, since G is o-compact,
the indexes’ set is (alt most) countable.

For the above lemma we refer to [52, Theorem 2] and [I47, Lemma 2.3.212].

2.2.3 Wiener Amalgam spaces with global component L>(G)

We introduce the Wiener Amalgam spaces not in their full generality, but restrict ourselves to
cases which ensure “good” properties.

Definition 2.2.22. Consider Q C G measurable, relatively compact, unit neighbourhood and
f+ G — C measurable. We call maximal function of f with respect to @ the following
application

(2.21) Mgf: G — [0,4+00], x> esssup |f(y)].
yezQ

We fiz a solid QBF space (Y, ||-||y) on G and define the Wiener Amalgam space with window
Q, local component L*>* = L*°(G) and global component Y as

(2.22) Wo(Y) = Wo(L®,Y) = {f € Li%(G) |[Mqf € Y}

loc

and endow it with

(2.23) ||f||WQ(Y) = ||fHWQ(L°°,Y) = [[Mqflly -
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It was proven in [147, Lemma 2.3.4] that the maximal function Mg f is measurable.

Lemma 2.2.23. The Wiener Amalgam space (Wo(Y), ||l y)) is a solid QBF space on G,
in particular, ||-lly, vy is a r-norm, 0 <r <1, if |||y is.

For each f € L2 (G) we have

loc

(2.24) (@) < Mof(@) ac.

which together with the solidity of Y gives the continuous embedding
(2.25) Wo(L™,Y) =Y.

In general the definition of Wg(Y) may depend on the chosen subset Q. However, we shall
require some further properties in order to make the Wiener space independent of it. We collect
some of the results of [I47, Lemma 2.3.16, Theorem 2.3.17] in the following lemma (which holds
under milder assumptions).

Lemma 2.2.24. Under the hypothesis presented so far, if the solid QBF space Y on G is right
mwvariant, then the following equivalent facts hold true:

(i) The Wiener Amalgam space Wo(L>®,Y) is right invariant for each measurable, relatively
compact, unit neighbourhood Q C G;

(i4) The Wiener Amalgam space Wo(L>®,Y") is independent of the choice of the measurable,
relatively compact, unit neighbourhood Q C G, in the sense that different choices yield the
same set with equivalent quasi-norms. The equivalence constants depend only on the two
sets Q,Q" C G and on Y.

If these conditions are fulfilled, ¥ = {1); }ic1 is a U-BUPU for some localizing family X = {x;}icr
and U C G relatively compact unit neighbourhood, then

(2.26) HfHWQ(Loo’Y) XEY H(II% : fHLOO)iEIHYd(X,Q)

for every f € Wq(L™>,Y) and the constants involved in the above equivalence depend only on X,
Q andY.

We remark that the right invariance of Y is sufficient for conditions (i) or (i#¢) but not
necessary; the existence of an U-BUPU V¥ is always guaranteed. When one of the above conditions
is satisfied, we suppress the index @ in the Wiener space and simply write W (L*>,Y) or W(Y).

By considering Qz instead of x@) in the definition of the maximal function, we obtain the
“right-sided” version of the Wiener spaces. So that we set the right-sided maximal function
to be

(2.27) Mgf: G — [0,+00], x> esssup |f(y)]
YyEQE

and define the right-sided Wiener Amalgam space Wg(Y) similarly as before. Analogous
considerations hold for Wg(Y)7 with the proper cautions about Lemma [2.2.24] In particular,
the independence of Wg(Y) from @ is guaranteed if Y is left invariant, see [I47, Lemma 2.3.29].
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2.2.4 An example of solid QBF spaces: L7 spaces

In showing the well-known examples of weighted mixed-norm Lebesgue spaces L2490 < p,q < 0o,
we prove a number of results which are usually taken al folklore. See in particular: Lemma [2.2.26
for the quasi-norm on L2:? being a min{1, p, ¢}-norm, Proposition for Young’s inequality

-~

for LP4(G x G) and subsequent consequences. The mentioned results are taken from [§].

Example 2.2.25. Let (X, 47, u) be a measure space. For 0 < p < oo, the Lebesgue space
LP(X) == LP(X, o, 1) is the collection of equivalence classes of measurable functions f: X — C,
where two functions coincide if they are equal almost everywhere (a.e.) w.r.t. p, such that

1

1l = ( [ s@r du(x)>p<+oo if 0<p<oo

1l = eSSS}l{lp |f(z)] < 400 if p=oc.
xTe

For p > 1 the above application is a norm, for 0 < p < 1 it is easy to verify that it is a p-norm.
Hence ||| », 0 < p < 00, is a p-norm and LP(X), endowed with such a quasi-norm, is known
to be a quasi-Banach space. Moreover, if X is a topological group with Haar measure u, then
(LP(X), Il 1.p) ts a solid QBF space.

If (Y, %,v) is another measure space and 0 < q < oo, then the Lebesgue mized-norm space
LP9(X x Y) consists of equivalence classes of measurable equal a.e. functions f: X x Y — C,
such that

1l = ( / ( [ s du(x)>;dy(y)>;<+oo F 0<pg<oo

analogous definitions when at least one between p and q is co. |||, 5 a quasi-norm and
LP9(X X Y) is complete w.r.t. it. Similarly to the single index case, if X XY is a product
topological group with Haar measure the product measure p x v, then (LP4(X X Y), ||(| 1p.a) is a
solid QBF space.

The fact of ||-|| .4, presented in the above example, being a min{1,p, ¢}-norm seems to be
folklore, for no available proof is known to the author. For this reason, we present a proof which
was published in [8, Lemma 3.5]. For sake of generality we introduce the weighted version of
Lebesgue mixed-norm spaces. Let m: X x Y — (0,+00) be a measurable function. Then

LPA(X xY):={f: X xY — C measurable| f -m € LPY(X xY)} / ~,

where ~ denotes the equivalence relation where f ~ g if and only if f = g a.e. w.r.t. pux v. The
quasi-norm is the natural one:

[flloe = 1Lf - mll o -
Of course (L2, |||l ) is a quasi-Banach space. If X x Y is a product of topological groups,

then it is a solid QBF space.

Lemma 2.2.26. (|8, Lemma 3.5|) Let (X, o7, u) and (Y, B,v) be measure spaces, consider 0 <
p,q <00 and m: X xY — (0,400) measurable. Then ||HL1;7nq is a min{1, p, ¢}-norm.

Proof. We tackle the unweighted case, the weighted one follows immediately. We recall that for
0 < p < oo the application ||-||;,, see Example [2.2.25 is an min{1, p}-norm. Therefore it is a
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min{1, p, ¢}-norm also. Let us consider f,g € LP49(X x Y) and define r := min{1,p, ¢}, using
the fact that ||, x, is an r-norm and ¢/r > 1:

1 + gl = ( /Y ( /X F(@,y) + 9, 9)IP du(z) pdum)

23

IN

IN

= ”f”;p,q + HgHT[’m,q .

The proof is concluded. O

-~

Also Young’s inequality for LP9(G x G), G LCA group, seems to be folklore. For this reason
a proof was provided by E. Cordero and the author in [§].

Proposition 2.2.27. ([8, Proposition 4.1]) Consider 1 < p;,q;,7; < 00, i = 1,2, such that

1 1 1 .
(2.28) —+—=1+—, 1=1,2.
Di qi T

-~ -~ -~

If F e LP2(G x G) and H € L992(G x G), then F + H € L™"2(G x G) with

(2.29) [Ex HI| pryre < (| F[|povra || H [ payaz.

Proof. We follow the pattern of [I2, Part II, Theorem 1, b)]. It suffices to prove the claim
for F,H > 0. Given a mgasurable function W: G x G — C and 1 < s < 0o, we define the
(measurable) function on G

w =

(2.30) Wl © = 4 (s W @O &) it s <o
esssup e |W(x, &) if s=oc.

We show the case r; < oo, the case r; = oo is done similarly. In the following we shall use
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Minkowski’s integral inequality (see [I30, Appendix A.1]):
1Pl ©= ([ | [ P9 - ot ] )"
G LUGXG
= (/ {/A (/ F((x,¢) — (u,w))H (u,w) du) dw] : da:) h
g LJg g
< /g (/g [/g F((x,€) — (u,w))H (u,w) du} E dx) h dw

/@(/g [F(§ = w) « H(w)](2)]" d:c)rll dw

:é||F(7£_w)*H(7w)|L11(g) dw =: 1.

35

Using Young’s inequality (see [96, Theorem 20.18]) with indexes p1, g1,71 as in (2.28)) we majorize

as

1< [ IFCE =l o) V)l )

([ reeor i) ([ o) a

- /§||F||(,,1) (€= w) [1H] ) (@) dw
= (IFll gy 11 ) (€)-

Using Young’s inequality with indices pa, g2, 72 in (2.28) we obtain the desire result. Namely,

1

IF 5 Bl oy = (1 1 @) )

< (L1071 = 1211,) @] )
= |10y  1E 1

< |iF

L™2(G)

”(Pl) ”HH(Ql)

Lr2(G) Laz2(G)
= HF”mepz(gX@) ”H”Lfnqu(gx@) :

This concludes the proof.

A straightforward consequence is the weighted Young’s inequality below.

Corollary 2.2.28. ([8, Corollary 4.2]) Consider 1 < p;,q;,7; < 00, i = 1,2, such that

1
(2.31) *—l-*—l-l-* i =1,2.
Di qi T

Considerm € My(GxG). IfF € LP*P2(GxG) and H € L192(GxG), then FxH € L1

m

with
(2.32) VP Hl gy e < |Fl gy | or

(gxg)
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Note that Proposition [2.2.27| can be easily generalized to N indices, N > 2, as in [12, Part
IT, Theorem 1, b)]:

Proposition 2.2.29. (|8, Proposition 4.3]) Consider N € N and let G; be a LCA, o-finite group
with Haar measure dx;, i =1,...,N. Consider 1 < p;,q;,r; < oo, i=1,...,N, such that

1 1 1

—+—=14+—, i=1,...,N.

Di qi Ti
If F e LPvPN(Gy X --- X GN) and H € LT IN(Gy X --- X GN), then Fx H € L™ "N (Gy x
<o X GN) with

LN (GyxeexGn) S AFlzenorn Gy xgu) [ [ Larsan (61 < x )

where the product LCA o-finite group G1 X --- X Gy is endowed with the product Haar measure
dry...dzy.

2.2.4.1 Discrete weighted mixed-norm spaces /5,!(7Z*?)

By taking X = Z¢ = Y endowed with the counting measure u#, we recover the well-know
weighted spaces of sequences 2, (Z%) and ¢7;9(Z??). We recall here some properties which will
be needed in next chapters.

Definition 2.2.30. Consider two sequences of complex numbers a = (ax) ez, b = (b)peze C C.
We define the convolution sequence of a and b as

(2.33) ax*xb:= Z k—nbn Cc C.

nezs kezd
We define the point-wise product sequence of a and b as a - b = (agby)recza.
We present some properties we need in the sequel, we refer to [74, [75] for proofs.

Theorem 2.2.31. (Inclusion relations)
Let m be any weight on Z®. Consider 0 < p; < pa < co. Then we have the following continuous
inclusion:

(2.34) H(Z) < 22,

i.e. there exists C > 0 such that for all a € (P} (Z%)

lallggz < Cllallg; -

Theorem 2.2.32. (Young’s convolution inequality)
Consider m € M, (Z%). Take 0 < p,q,r < oo such that:

1 1 1

(2.35) —+-=1+- for 1<r <o,
P q r

(2.36) p=q=r for 0<r<l.

Then we have the following continuous inclusion:

(2.37) . (27) + 64(27) = 6,(27),

i.e. there exists C > 0 such that for every a € (%, (Z%) and b € ¢9(Z%)
llaxblly, < Cllall, [1bllg

and C in independent of p, q, v, a, b. Moreover if m =1=wv, then C = 1.
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Theorem 2.2.33. (Holder’s inequality)
Let v be any weight on Z%. Take 0 < p,q,r < oo such that

(2.38)

1 1 1

p oq T

Then we have the following continuous inclusion:

(2.39)

NG

(2% < (2%,

i.e. there exists C > 0 such that for every a € (%(Z¢) and b € fz/y(Zd)

la-bllpe < C lally bl -

Lemma 2.2.34. If 0 < p1,ps < 00, with

then

(2.40)

1
0<s5,<5, —F—=<—+—
D

gpz

ey (Z%) = )., (Z%).

2.2.5 Coorbit theory for solid QBF spaces on G

We are now able to state the coorbit theory in [I47, Assumption 2.4.1] in the following items
A-G and H —J. Although the structure could appear quite cumbersome, lot of elements shall
simplify due to our subsequent specific choices in Chapter [5}

A.

We assume G to be a LCH, o-compact group. We consider p: G — U(H) a strongly
continuous, unitary, irreducible representation of G for some nontrivial complex Hilbert
space H. U(H) denotes the group of unitary operators on H (see e.g. [69, [152] ).

. Given f, g € H, we define the (generalized) wavelet transform induced by p, or voice

transform, of f w.r.t. g as
(2.41) Wof:G—C, xw—(f p(x)g)n,

where (-,-)3;, also denoted by (-,-), is the inner product on H supposed antilinear in the
second component. W¢ f is always a continuous and bounded function on G, see [152]. We
assume the representation p to be integrable, i.e. there exists g € H ~ {0} such that
W/pg € L'(G); this implies that p is also square-integrable: there exists g € H ~ {0}
such that W¢rg € L?(G). Such a g is said to be admissible.

. (Y, ||]ly) will be supposed to be a solid QBF space on G with ||-||y-, or some equivalent

quasi-norm, r-norm with 0 < r < 1.

. The Wiener Amalgam space Wg(L>,Y) is assumed right invariant for each measurable,

relatively compact, unit neighbourhood @ C G. We consider a submultiplicative weight
w: G — (0,400) such that for some (and hence each) measurable, relatively compact, unit
neighbourhood @ C G

(2.42) w(x) % 1Rl )= wo (v)
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and
(2.43) w(w) g A 1Ra= llwg vy wo (v

where A(z) is the modular function on G. We also require the weight w to be bounded
from below, i.e. there exists ¢ > 0 such that w(x) > ¢ for every z € G.

If the condition on Wg(Y') in D is satisfied, then the Wiener space is independent of @, so that
we can omit the lower index. Moreover, this is ensured if Y is right invariant (Lemma [2.2.24)).

E.

We fix a submultiplicative weight v: G — (0, +00), which will be called control weight
for Y, such that

(2.44) v > w, v > Wy,
where w is defined in D and

(2.45) wy (z) = wzt) [A )]

. The class of good vectors is defined to be

(2.46) Gy, :={geM|Wrge L, (G)}

and supposed nontrivial, {0} C G,.

. The class of analyzing vectors is defined as

(2.47) AL ={geH|Wrge WR(L> W(L>® L)}

and supposed nontrivial, {0} C A”.

Remark 2.2.35. (i) Observe that, since v is submultiplicative, L (G) is bi-invariant. This

implies that W(L%) is independent of the window Q and it is left invariant, hence also
WE(W (L)) is independent of the window subset. Concretely, this allows us to work with
the same Q:

(2.48) HnggHWR(W(Lm = [MeMGWyg| Ly’

(see e.g. Lemma ;

From the continuous embeddings for 0 <r <1

(2.49) WHR(L®, W (L%, LT)) = W(L*®,L") < W(L>,L}) — L},

see [T]7, p. 113], follows the inclusion Al C G,,.

. For a fixed g € G, \ {0}, the space of test vectors is the set

(2.50) To={feH|W/f € Ly(G)}
endowed with the norm

(251) 11l = W27, -
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(7w, Ill-7,) is a p-invariant Banach space which embeds continuously and with density into H and
it is independent from the choice of the window vector g € G, ~\ {0}, see [I47, Lemma 2.4.7].
Recall that often the notation H} is used in place of Ty, see e.g. [58, 59, 60, 119].

I. We call reservoir the Banach space
(2.52) R, =T, = {f: H, — C|antilinear and continuous} .
J. We can extend the wavelet transform to f € R, and g € Ty:
(2.53) Wif:G—=C, xw g, (fp)9)T,,
where %, (-,-)7, is the duality between R, and 7, that will be denoted simply by (-,-). We

v

have that W f € C(G) N Ly, (G).

K. For a fixed vector window g € A” \ {0}, the coorbit space on G with respect to Y is
defined as

(2.54) Co(Y) :={f eRy|Wlf e W(L>®Y)}
endowed with the quasi-norm

(2.55) 1 coiyry = W5 Fll (oo vy -

Theorem 2.2.36. (|147, Theorem 2.4.9]) Let Co(Y') be a coorbit space constructed accordingly
to items A-J above. Then Co(Y) is independent of g € Al ~ {0}, in the sense that different
windows yield equivalent quasi-norms. Moreover, ( Co(Y), ||| co(y) is @ quasi-Banach space
continuously embedded into R, and ||-[| coyy @5 a m-norm, 0 <r <1, if |||y is.

In the following theorem we collect [147, Theorem 2.4.19, Remark 2.4.20].

Theorem 2.2.37. For every g € Al, {0} there exists Uy C G relatively compact unit neighbour-
hood such that for each Uy-BUPU W = {4;};c1 with localizing family X = {x;}icr the following
hold true:

(i) for each i € I there exists a continuous linear functional

)\il R, — C
such that (Xi(f));c; € Ya(X) for every f € R, and
(2.56) F=> Aheladg,,  Vfe Co(Y),

iel
where the sum converges unconditionally in the w-+-topology of R,. If the finite sequences
are dense in Yy(X), then the series converges unconditionally in Co(Y);

(id) for all A = (N\i);c; € Ya(X) the series

(2.57) Sa (M) =Y Nip(zi)g

iel
is an element of Co(Y). The above sum converges unconditionally in the w-x-topology
of Ry (pointwise). If the finite sequences are dense in Yq(X), then the series converges
unconditionally in Co(Y") and there exists C > 0 such that

(2.58) Hs;((A)H V€ Ya(X);

< C Il ierlly, x) -

Co(Y
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(#91) for f € Ry we have
(2.59) fe Co(Y) = (N(f))ier € Ya(X)
and for every f € Co(Y)

(2.60) Il coqyy =< ||()\i(f))i€IHYd(X) :

Remark 2.2.38. Let us remark the main differences with the coorbit theory in Banach setting
developed by H. G. Feichtinger and K. Grochenig [58]:

(¢) in [58] a solid Banach function space Y on G is considered and supposed continuously em-
bedded in L}, (G). In particular, we observe how the condition Y — L} (G) is restrictive,

loc loc

in fact even if one would allow Y to be quasi-Banach, all the spaces LP(RY) with 0 < p < 1
would be excluded;

(it) the window space considered in [58] is larger than the one presented so far, namely it is
sufficient a non-zero g € A, = G, and hence the coorbit space is defined as

(2.61) Corg(Y) = {f € R, |WIfeEY},

with obvious norm. Hence Copg(Y) is a Banach space independent of the chosen window

g € A, ~{0}.

It is a natural question whether the two constructions coincide. In the Banach case the
answer is positive, see [60, Theorem 8.3] and [I19, Theorem 6.1].

Theorem 2.2.39. Consider a solid Banach function space Y such that it is bi-invariant and
continuously embedded in L}, .(G). Then

loc
Corg(Y) = Co(Y)

with equivalent norms.

2.3 Time-frequency analysis tools

For a systematic and detailed treatment of time-frequency analysis, and proofs of what follows
in the section, we address the reader to [35] [82].

2.3.1 Fundamental operators and time-frequency distributions

We present the fundamental operators of time-frequency analysis, e.g. translation and modula-
tion ones. We then study their relations with the Fourier transform and define the short-time
Fourier transform (STFT), one of the most common used time-frequency representations, and
its main continuity properties. We also recall another time-frequency representation, the cross-
7-Wigner distribution.

Definition 2.3.1. Fiz z,w € R, Let f be a function defined on R?.
The translation operator T, is defined as:

(2.62) T, f(t) = f(t — x).
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The modulation operator M, is defined as:
(2.63) My f(t) = e*m f(1).

The following composition of the previous two operators is called time-frequency shift (TFS)
operator:

(2.64) m(x,w) = M,T;.

Usually we denote a point in the time-frequency space as z = (z,w) € R? x R4 = R24, The
operators T, and M, satisfy the so called commutation relations:

(2.65) M,T, = 2™ T, M,,.
Indeed, if f is any function defined on R, we can write:
7'('(:17, w)f(t) _ 627riwtf(t - 93) _ 627riw1627riw(tfz)f(t - x) _ 62mszme‘f(t).

Remark 2.3.2. The time-frequency shift ©(z) is well defined on the equivalence classes in LP(R?)
for1<p<ooand0<p<l.

Definition 2.3.3. Let f be a function on R?. The involution operator is defined as:

f@)=F—2), VeeRw

In order to obtain information about a local frequency spectrum of a signal f, we restrict f to
an interval centred at the instant x object of interest and then take the Fourier transform of this
restriction. Such a localization in time is made by multiplying f with a smooth cut-off function
g, called the window function. We shall work mainly with g € S(R?). This is the idea under
the construction of the short-time Fourier transform.

Definition 2.3.4. Fiz g € L*(R?) \ {0}, the window function. The short-time Fourier
transform (STFT) of a signal f ¢ L?>(R?) with respect to g is defined by:

(2.66) Vof(@,w) = (f,M,Tpg),  Va,w€R?,
where (-,-) is the inner product on L*(R?).

Lemma 2.3.5. Consider f,g € L*(R%). Then V,f(z,w) is uniformly continuous and bounded
on R??. Moreover, the following estimate holds true:

(2.67) HngHLoc(RM) < ||f||L2(Rd) ||9||L2(Rd) :
Proposition 2.3.6. Consider f,g € L?>(R?). Then the following equalities hold true:

Vo (z,w) = F(fTeg)(w)

= ([, TuM_.§)
= e T (f % (Mwg)*)(x)
(2.68) = 6_2””“ng(w, —x),

where equation (2.68]) is called the fundamental identity of time-frequency analysis.
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Theorem 2.3.7. (Orthogonality relations for the STFT)
Consider f;,g; € L*(RY), i = 1,2. Then Vg, f; € L*(R*?) and:

(2.69) (Vou f1, Vga f2) Lo meay = (f1, f2) L2 (ra) (915 92) 2 (Ra)-
Corollary 2.3.8. Consider f,g € L*(R%). Then:
(2.70) IV 1l 2 (meay = 1l L2 ray 191 2 may -

Remark 2.3.9. For a fived window g, the linearity of Vy: L?(R%) — L?(R?) comes straight-
forward from (2.66). From C’omllary above boundedness follows. Moreover, the operator

norm is exactly

||Vg||B(L2(Rd),L2(R2d)) = HgHL2(Rd)'
Hence choosing a window function g € L?(R?) with 9/l p2(ray = 1 the operator Vy: L?(R?) —
L2(R2) is an isometry which is not onto because of Lemma .

Let us introduce the notion of vector-valued integrals, here understood in a weak sense.
Sometimes, we shall refer to them also simply as formal integrals.

Z
Consider B a Banach space over C and suppose it is reflexive, i.e. B = B”, where the isomor-
phism is the (conjugate) evaluation map

7:B—B"
b 7(0)
defined for &’ € B’ as:

Sl) = V).
Note that we’re considering B’, B” as the sets of the antilinear and continuous functionals on
B, B’ respectively. Let (-,-) be the duality between B’ and B, i.e. {(h,b) := h(b) for h € B';b € B.
Consider ¢: R? — B and assume that for every h € B’

(2.71) ly(h) = /Rq (h,p(x)) dx

is absolutely convergent. Suppose that ¢, € B” = B. Then there exists a unique f, € B such
that £,(-) = #Z;_(-) = (-, f,). For sake of simplicity we formally define:

(2.72) /Rq p(x)dx = f, € B.

Take ¢ = 2d, B = L?(R?) and fix non zero functions F € L?(R?4), v € L?(R?). Define
@: R?? — LHRY), (z,w) — F(z,w) M Tpy(:).

Observe that actually taking pointwise values of a function F which belongs to L?(R??) makes
no sense. Hence we could choose a representative or work with an equivalence class of functions
¢ = [pr]. In any case we will work with an F which admits a continuous representative,
therefore no concern is needed. Remember that an Hilbert space, such as L?(R%), is always
reflexive. Moreover it is isomorphic to its dual space via the Riesz-Fréchet Theorem, where we
meant the suitable version in which the set of continuous antilinear functionals is considered as
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dual space. Hence in (2.71]) we can read the duality product (-,-) as the usual inner product on
L*(R?) which is antilinear in the second argument. We want to check that £, is an element of
the bidual space of L*(R%). /, is antilinear by construction, take h € L?(R%) 2 L?(R?)’ and
write

to(h) = /R () drd

- / (hy F(w, @) Mo T dvdes
R2d

= F(z,w)(h, M,Tyv) dedw
R2d

= F(z,w)Vyh(z,w) dedw
R2d

= <F, V’yh>L2(]R2d) .
Using Cauchy-Schwarz inequality and Corollary we get for every h € L?(R%):

o (W) < 1F | 2 maay VAl L2 geay = N1l L2 geay 1]l 22 (gay 1]l 2 ey -

Then £, € L?*(R?)” and there exists a unique f, € L*(R?) such that (,(-) = Z5 (-) = (-, fy)
where the duality product between L2(R?)’ and L?(R?) can be read as the inner product on
L?(R4). Hence defining formally

/ F(z,w)M,T,ydvdw = f, € L*(RY),
R2d

we have that

(2.73) lo(h) = ([, h).
Then the statement of the following theorem is now clear.

Theorem 2.3.10. (Inversion formula for the STFT)
Consider g,v € L*(R?) and suppose that (g,v) # 0. Then for all f € L*(R9):

1
(v, 9)

Thanks to the inversion formula (2.74]) we are able to find the adjoint of
Vy: L2(RY) — L?(R%®), where the window is kept fixed. Fix g € L?(R¢) and define the linear
operator A,: L?(R*) — L*(RY), F + A, F, where:

(2.74) f= /de Vo f (2, w)M,Tyy dudw.

(2.75) AGF = - F(z,w)M,T,gdzxdw.

It is easy to prove that A, € B(L*(R??), L>(R)). Consider h € L*(R%), F € L?(R??), then by
definition of vector-valued integral:

<AgF, h>L2(Rd) = <F, Vgh>L2(R2d)'
Hence V* = Ay, which allows us to rewrite the inversion formula (2.74) as follows:
1

(2.76) =g ViVl
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Definition 2.3.11. Let g € L*(R?) \ {0} and consider T: S(R?) — S'(R?) linear and continu-
ous. Then the Gabor matrix of T w.r.t. g is the (continuous) matrix

(2.77) Gr(z,w) = G (z,w) = (T'r(w)g, 7(2)g), Vz,w € R%,

Reading the inner product in as the duality between S’(R?) and S(R?), which is
antilinear in the second argument and linear in the first one, we are allowed to extend the short-
time Fourier transform to tempered distributions f € S'(R¢) with respect to smooth window
functions g € S(RY) . {0}.

Definition 2.3.12. Fiz g € S(R?) \ {0}, the window function. The short-time-Fourier
transform (STFT) of a tempered distribution f € S'(R%) with respect to g is defined

by:
(2.78) Vof(z,w) = (f, MuTzg), Vz,w € RY,
where (-,-) is the sesquilinear duality between S'(R?) and S(RY).

We recall some important properties of the STFT of a tempered distribution contained in
[82, Theorems 11.2.3 and 11.2.5].

Theorem 2.3.13. Consider g € S(R?) \ {0} and a tempered distribution f € S'(R?). Then
the STFT Vy f is a complex-valued continuous function defined on R?4 and there exist constants
C > 0,N € Ny such that:

(2.79) V, fz,w)] < C(1+ |z] + [w))V, Va,weRY
hence Vy f has at most polynomial growth.

Theorem 2.3.14. Consider g € S(R?) . {0} and a tempered distribution f € S'(R?). Then the
following are equivalent:

(i) feSRY;
(ii) Vyf € S(R??);
(#it) for all n € Ny, there exists C,, > 0 such that:

(2.80) Vo f(z,w)| < Cp(l+ 2|+ |w|)™", Va,we R

We briefly recall another important time-frequency representation, the cross-7-Wigner dis-
tribution, where 7 € [0, 1].
Definition 2.3.15. Consider f,g € L>(R?) and 7 € [0,1]. The cross-t-Wigner distribution
of f and g is defined by:
(2.81) W (fg)aw) = [ 2 ot rtjgle = (T 7)0) dh.
Rd
Taking g = [ we get the so-called T-Wigner distribution of f:

W‘rf(x,w) = W‘r(faf)(x7w)'

If 7 =1/2, we call Wy 5(f, g) cross-tT-Wigner distribution of f and g and adopt the notation
W(f,g) =Wi2(f,g). When 1 =0, we call Wy(f,g) cross-Rihaczek distribution of f and
g and denote it by R(f,g) = Wo(f,9)-
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Definition 2.3.16. Let f be a function defined on R?. We define the reflection or parity
operator as:

(2.82) Tf(t) = f(—t), vt € R%.

For 7 € (0,1) we define the operator

(2.83) A f(t) = f (T ; 1t> , vt € R%.

Clearly, A1/2 =17
For the following results we refer to [35].

Lemma 2.3.17. Let 7 € [0,1]. Then:
(i) if f,g € S(RY), then W-(f,g) € S(R*);
(i1) if f,g € L*(R), then W,(f,g) € L*(R*?).
Lemma 2.3.18. Let g € S(RY) \ {0} and f € S(RY).
(1) If T €(0,1), then

1 Titwr 1
W‘r(f7 g)(wi) = ﬁ€2 T V-ATgf (1_7_1‘7 W) s V(Z‘,(AJ) S RQd;

(i1) if T =0, then
Wo(f, 9)(z,w) = e 2™ f(2)§(w) = R(f, 9)(z,w), V(z,w) e R,
(#ii) if T =1, then
Wi(f,9)(x,w) = €7™g(x) f(w) = R(g, [)(z,w), V(z,w)€R*™.
Proposition 2.3.19. Consider f,g € L>(R?) and 7 € [0,1]. The following hold true:

(i) for T € (0,1) the function W,(f,g) is uniformly continuous and bounded on R?*? and

1
W (f, g)||L°°(R2d) < d ||fHL2(Rd) H9HL2(]Rd);

(#4) we have:
WT(f’ g) = Wl—‘r(ga f)

In particular W f is real-valued;

(#i7) we have: A
Wr(fvg)(x’w) = Wlf‘r(fvg)(_wa 37);

(iv) Moyal’s formula: for f;,g; € L*(R%),i = 1,2,

(2.84) (We(f1,91), Wr(f2, 92)) 2 (geay = (f1, fo) L2(ra) (91, 92) 12 (ma)-
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2.3.2 Representations of operators

For the following result we address the reader to [82] Theorem 14.3.5] and [35], (4.37) and (4.38)].
Although 7-pseudo-differential operators Op, (o) will be introduced later in (2.206)), we state the
theorem now for sake of clarity.

Theorem 2.3.20. Let us consider T: S(R?) — S"(R?) linear and continuous. Then there exist
Kr,nr € 8'(R??) and, for every 7 € [0,1], al' € S'(R??) such that the operator T has the
following representations:

(i) as an integral operator:
(2.85) (Tf.9)={Kr,gof), VfgeSR?;

(i4) as a T-pseudo-differential operator:

(2.86) T = Op,(al);
(#i1) as a continuous superposition of time-frequency shifts:

(2.87) Tz/ nr(z)m(z) dz,
R2d
in the sense that for every f,g € S(R?)
(Tf.9) = (nr,Vyg).

Definition 2.3.21. Let T: S(RY) — S'(R?) be a linear and continuous operators and consider
the tempered distributions Kr,nr,al € S'(R??) coming from Theorem .

We call Kt the (integral) kernel of the operator T and the following formal expression is
called integral representation of T':

(2.88) Tf(x) = y Kr(z,y)f(y) dy.

We call nr the spreading function of the operator T and the formal expression (2.87) is

called spreading representation of T
We call a’ the T-symbol of T

The kernel Kp and the spreading function np of T are related by the following formula
(2-89) nr(e,w) = /d Kr(y,y —x)e 27 dy.
R

Remark 2.3.22. If the notation used for the operator T is particularly cumbersome, we shall
adopt the following equivalent notations

(2.90) K(T) = Kr, n(T) == nr.
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2.3.3 TFA tools on G LCA group

The definitions given above on R? are here extended to any G LCA group. We adopt the space
of special test functions S¢(G), introduced in [88] and defined below, and perform some explicit
computations in Lemma [2.3.30| taken from [§]. The definition of S¢(G) is based on the following
result.

Theorem 2.3.23 (Structure theorem). ([96, Theorem 24.30]) Let G be a LCA group. Then there
exist d € No, Go LCA group containing a compact open subgroup IC, such that G is isomorphic
as topological group to RY x Gy:

g = Rd X go.

Consequently, being the dual group of the Cartesian product the Cartesian product of the
dual groups and R? = R?, we have the decomposition

Q\ng XQ\Oa

where the dual group éo contains the compact open subgroup K+, see e.g. [81, Lemma 6.2.3].
We recall that .
Kt={¢cG|z)=1 VreKk}

Definition 2.3.24. For x € G, ¢ € G and a function f: G — C we define the translation
operator T,, the modulation operator M, and the time-frequency shift (TFS) n(z,§) as

(2.91) Tof(y) = fly—=), Mcf(y)=&ufly), 2,8 = M.

For f,g € L?(G), the short-time Fourier transform (STFT) of f with respect to g is
given by

292) V&)= (frle o) = [ S0 Oady, e €GxG

where (-,-) is the inner product on L?*(G).
Once again, T, and M; fulfil the commutation relations
(2.93) MT, = (&, x)T, M.
The following definitions come form [88] Section 2] and they rely on the Structure theorem
Definition 2.3.25. We define the generalized Gaussian on G as
(2.94) o(x1,x9) = 6_7”6%)()@(.%2) = o1(21)pa(x2), Y(x1,22) € R? x Gy,

and the set of special test functions
(2.95) Se(9) = span {r(x)¢ | x = (2,€) € G x G} € L*(9).

Definition 2.3.26. Given f,g € L?(G), we define the cross-Rihaczek distribution of f and
g by

(2.96) R(f,9)(z,€) = f(2)§(©)(€,z),  V(z,6) € GG,

g being the Fourier transform of g. When f = g, R(f, f) is called the Rihaczek distribution
of f.
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The following result comes from [g].

Lemma 2.3.27. Let o be as in (2.94). Then for x = (v1,72) € R1xGy and & = (&1,&) € Rdxéo,
the Rihaczek distribution of ¢ is

(2.97) R, 0)(2,€) = e(O){E whe ™D @ e s (2, 62),
where ¢(KC) > 0 is a constant depending on the compact subgroup K.
Proof. Tt is sufficient to compute as follows:
R(p, ¢)(x, ) = R(p1, 1) (21, §1) R(p2, 02) (22, &2)
= 72T e (29)e(K) xc (62) (€2, o)
o(K)e2miem =m0, ma) X (w2, €2)
c(O)E 2)e ™ D) @ x s (22, &),

for the constant ¢(KC) coming from the factor R(p2, p2) see [88]. O

Hence R(y, ¢)(x, &) is up to a positive constant and a “chirp” a Gaussian on R2? x (Gy x Q\O),
where we fixed K x K* as compact open subgroup of the not Euclidean component.

Definition 2.3.28. We denote by J is the topological isomorphism
(2.98) T:GxG—GxG, (2,6 = (~& ).
Remark 2.3.29. (i) Clearly, 7= (&, 2) = (z,—=¢);
(ii) If we take G = RY, then we have J = —.J, J being the operator defined in (2.212)).

We recall the following covariance property |88, Lemma 4.2 (i)]: for x = (z,£),y = (y,1) € GxG,
fa g€ SC (g)v

(2'99) R(W(X).ﬂ 71—(Y)g) = <77> T — y>M‘7(y7x)T(z,n)R(f7 g)-
In what follows we shall need also the following identity:
(2.100) Ve(w,6) = e(l)e BT @ s (22, 6),

see [88] for calculations. Using a similar argument as in the estimate [88], formula (12)], one can

-~

show that R(f,¢) and V, f arein L? (G x G), 0 < p < oo, for arbitrary moderate weight functions
and any f,g € S¢(G). Similarly, every function in S¢(G) belongs to LP (G), 0 < p < oo. Recall
that for any f,g € L*(G) [88, formula (8)]

(2'101) VMnTngwTuf(x7 f) = <§ — W, u> <77a r— U>T(ufy,w7n)‘/gf($> f)

The previous formula, jointly with (2.99)), allows us to write explicitly every STFT and cross-
Rihaczek distribution of elements in S¢(G).

Lemma 2.3.30. (|8, Lemma 2.1]) Consider f,g € Sc(G), hence

f = Zakﬂ-(uk)w7 g = ijﬂ—(yg)907
k=1 j=1
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for some n,m € N, ap,b; € C and vy = (ug,wk),y; = (y;,1;) € G X G. Then for every
(2,§) €G xG:

(2102) ‘/gf(‘r7 5) = Z Z akbj <€ — Wk, Uk><7737 T — Uk>Tuk_y] VLPQD(ZU, 6)7
k=1 jfl

(2103) (fv ) Zzakb My, Uk — yJ>M.7(y-—uk)T(ukﬂ73)R(§07 )( ag)
k=1j5=1

Proof. We write x = (z,£). The first claim follows from (2.101)) after the following rephrasing:

Vof(x) = Zakﬂf (ur)p, ™ )Zb'ﬂ—(Yj)(p>

=SS il () X (Ve o () ().
k=1 j=1

k=1 j=1

For the second issue we write

=33 arbym(u) (@) ly; )e(€)E, 2)
k=1j=1

—ZZakb R(r(wg)p, 7(y,)9) (%)
k=1 j=1

and use (2.99). O

2.3.3.1 The case G =Zy
When dealing with the cyclic group Zy, N € N, we make the following identification:
(2.104) CN = 2(Zy).

Namely, every complex N-tuple (zg,...,2y_1) € CV is identified with the unique function
f:Zn — C? such that f(t) = z for every t = 0,..., N — 1. So that the Euclidean product
on C¥ coincides with the standard inner product on ¢?(Zy). Notice that we take the indexes
ranging from 0 to N — 1. Moreover, the argument of f € CV, i.e. of f: Zy — CV, is always
taken modulus N, even if not explicitly stated. Hence, e.g., we shall write f(N) meaning f(0),
etc. . We shall denote by 1 € CV the constant function equal to 1. It is useful to observe the
Zy is self-dual, i.e.
In =Ty
In the finite discrete case translation and modulation operators take the following form
Tef () = f(t = k), Mif() =% f(1),
where fe CN,t=0,...,N -1, k,l € Z.
There is an exact analogue of the objects described in Definition in the finite discrete
case, see [64]. In fact, if T: CNV — CV is a linear operator then its kernel K7 is just its matrix
representation and we can define its spreading function as

N-1

(2.105) nr(u,v) = Z Kk, k—u)e
k=0

—2mikv
N
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So that T' can be seen as a finite superposition of TF-shifts, which in the finite dimensional case
are an orthonormal basis, so every matrix can be uniquely described by its spreading function:

N—-1N-1

T=>"> nrlk )k,

k=0 [=0

Of course, 7(k,1) :== M;T}, and we define the STFT of a signal f € C¥ w.r.t. the window g € CV

as the matrix in CV*N
N-1 i
Vof(u,v) = (f,m(u,v)g) = Y flk)g(k —u)e™ ~
k=0

where (-,+) is the inner product on ¢2(C¥), i.e. the Euclidean product on C¥.

Definition 2.3.31. The discrete Fourier transform (DFT) on C¥ is the linear operator
represented by the following N x N complex matriz

(2.106) (Fn)ps =€~
which inverse if given by
1 omik
(fﬁl)k,l _ Nez Nkl )

We shall denote by f the vector Fn f, f € CV.
The discrete two-dimensional Fourier transform of a matrix a € CN xCN and its inverse
are defined as

N—-1N-1
727\'iuk —2mivl
Faa(u,v) : a(k TN e N,
k=0 (=0
N—1N-1
1 1 21rLuk 27rwl
F5 a(u,v) = =Wz a( N
k=0 1=0

The action of Fy on the (pointwise) product of a and b in CV*N = CN x CV is well-known
and we mention it for sake of completeness:

1
(2107) Fa(a-b) = 575 (Faax Fab),

where the (two-dimensional discrete) convolution on the right-hand side is defined similarly to
(2.221).

Definition 2.3.32. The Kronecker delta function § € CV is defined as

(2.108) S(u) =" Jor u=0,
0 for u=1,...,N—1

We recall also the following identity which is due to the subsequent (2.113)) and the normal-
ization chosen for the Fourier transform :

Fu <zlv1) (u) = 5(u).
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In some of the subsequent computations we shall need the function introduced in the following
definition. Let us consider two numbers «, 3 such that

N N
(2.109) a, B €N, A:EEN’ B::EEN.

We shall see that they are the core of rectangular lattices defined in (2.138)).

Definition 2.3.33. Let a,3,A,B € N as in (2.109)). We call impulse train, or Dirac comb,
the function so defined:

A-1B-1
(2.110) Oy, (u,v) ZZéu—ap )d(v — Bq)
p=0 g=1
= XaZn u) X,BZN( )
] NoiN-d
7@2 0(u — ak)d(v — pl),
k=0 =0

foru,v=0,...,N —1.

For sake of the reader, we recall and present a proof of the Poisson summation formula
(2.111)) and its two-dimensional analogue in the following lemma, see [78] and [I10, Theorem
2.1].

w

Lemma 2.3.34. Let o, 3, A, B € N as in (2.109). Then:

(2.111) FNXazy = AXAZy»

(2.112) Folll(, 5) = ABIIL 4 p).

Proof. Before showing the computations, we recall the following well-known identity for u,v =
0,...,N—1:

N-1 .
miuk —27miv N f =
(2.113> Z 62 i ke 2N k _ 1 'LL. v,
0 otherwise.
k=0
Hence
1 g 2mik 2mile
Folll(o, ) (u,v) = —52 Z kE—ap)o(l—Bgle” ¥ e ¥
k,1=0 p,q=0
1 phly —27rmpu Nl —Qmﬁqu
= — e
Oéﬁ p=0 q=0
Due to (2.113)), we see that
N1 727\'1041)14 N lf au = 0 mOdN
e
— 0 otherwise
p=0
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and ou =0 mod N is equivalent tou = Al for ] =0,...,a—1. Arguing similarly for the second
summation we have

a—1 B—1
1
Folll(, 5y (u,v) = a—ﬁN > 6(u— AN > 6(v— Bk)
=0 k=0

I
b
W

=

S

)

=

S

This concludes the proof. O

Definition 2.3.35. The discrete symplectic Fourier transform of a matrix a € CVN*V s

defined as

1 2ri(lu—kv)
N

(2.114) Fsa,('u,71)> =

with u,v =0,..., N — 1.

Hence the relation between Fy and F, is as follows:
(215) Fra(u,v) = -Fa(a”)(~u,v) = ~Faa(v, ~u)
. sa(u,v) = —Fa(a u,v) = +Faa(v, —u),

a” being the transpose of a. Recall that given two vectors f,g € C¥, the tensor product
f®ge CN*N is the matrix

f®glu,v) = f(u)g(v), u,v=0,...,N —1.
Eventually we mention that

(2.116) Fs(f®g) =9 f.

2.4 Frames in Hilbert spaces

In this section we present frame theory which can be seen as a generalisation of basis theory
in Hilbert spaces. Moreover, frames became very popular because they resulted useful in appli-
cations. Frame theory allows us the passage from a continuous representation of a signal as in
to a discrete one. For further details about frame theory and Gabor frames, we suggest
1211, 35, [82].

Definition 2.4.1. Let (H, (-,-)n) be an Hilbert space. A sequence {x,}n C H is a frame if there
exist constants 0 < A < B such that:
(2.117) Al <> e za)ul® < Bll;,, Yz e

n=1
The constants A and B are called lower and upper frame bound respectively. We call optimal
lower (upper) frame bound the largest (smallest) possible lower (upper) frame bound.

Remark 2.4.2. By frame inequality (2.117) we have that ||({-, zn)1)nllp= is an equivalent norm
for H. Moreover, if A=1= B, then |||l = [|((,Zn)#)nllp2-
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Definition 2.4.3. Let (H,(-,)3) be an Hilbert space and consider a frame {x,}, C H.
(1) If A= B, then {x,}n is called an A-tight frame, or simply tight frame;
(ii) if A=1= B, then {x,}, is called a Parseval frame;

(#it) if {zn}n ceases to be a frame whenever any single element is removed from the sequence,
then it is called an exact frame.

Remark 2.4.4. (i) We observe that in a frame the zero vector and repetition of elements are
allowed;

(ii) if {xn}n is a frame for H, then > ., (2, ) 3| is absolutely convergent. Hence the

series is unconditionally convergent. This proves that {2,(,)}n is still a frame for any
permutation o of N;

(#i7) every orthonormal basis (0.n.b.) {e,}n is a Parseval and exact frame;

(iv) if {xp}n is a frame for H, then it is complete. Indeed consider x € ({x,}n)*, then by

frame inequality (2.117)) we have:

Allzll3, <Y (@ @n)al® = 0.
n=1

This implies © = Oy, hence span{z,}, = H.

Definition 2.4.5. Let (M, (-,)3) be an Hilbert space and consider a sequence {xp}n C H. {Tn}n
is a Bessel sequence if

(2.118) > Haan)ul’ < 400, VzeH.
n=1

Remark 2.4.6. A frame {x,}, for an Hilbert space H is always a Bessel sequence.

Proposition 2.4.7. Let (H,(-,-)») be an Hilbert space and consider a Bessel sequence {xy}n, C
H. Then

(2.119) C: H — *(N)
x— ((, Tn)H)n

1s well defined and it is a linear and continuous operator. The square of the operator norm
_7 2

(2.120) B = ||C||OlD >0

is called Bessel constant for the Bessel sequence {z,}.

Definition 2.4.8. The operator C: H — (2 defined in (2.119)) is called coefficient, or analysis,
operator associated to the Bessel sequence {z,},.

Proposition 2.4.9. Let (H, (-,-)3) be an Hilbert space and consider a Bessel sequence {xp}, C H
with Bessel constant B. Then:

(i) if ¢ = (cn)n € 2(N), then the series > - | cpy is unconditionally convergent in H;
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(2.121) D: *(N) — H
(cn)n — Z Cniy
n=1

1s well defined and it is a linear and continuous operator;
(iti) D* =C and [|D|o, = Cllo, = VB;
(i) if {zn}n is also a frame, then C is injective and D is surjective.

Definition 2.4.10. The operator D: {2 — H defined in ([2.121)) is called reconstruction, or
synthesis, operator associated to the Bessel sequence {z,}.

(i) The operator S :=DC: H — H is called frame operator.
(ii) The operator G := CD: {*> — ¢? is called Gram operator or Gram matrix.

Theorem 2.4.11. (Reproducing formulae for a frame)
Let (H, (-,-)3) be an Hilbert space and consider a frame {xp }n C H with frame bounds 0 < A < B.
Then:

(i) the frame operator S: H — H is a topological isomorphism, self-adjoint and positive, with
Al < S < BI,
where I is the identity on H;
(ii) S is a topological isomorphism, self-adjoint and positive, with
B7lI< S t< ATl
(iii) {S~ 'z, }n is a frame for H with frame bounds 0 < B~1 < A~1;

(iv) for each x € H, the following reproducing formulae hold true:

(2.122) T = Z(m, Silxnﬁ.[xn = Z(m,meS*lxm
n=1 n=1

and the above series converge unconditionally in H;

(v) if the frame is A-tight, then S = AI,S™' = A~'I, and for every x € H

1 o0
T =~ T;@, T ) H T

Definition 2.4.12. Let (H,{-,-)3) be an Hilbert space and consider a frame {xn}n, C H with
frame operator S. Then the frame {S™'x,}, is called canonical dual frame.

We leave as an exercise for the reader to prove that the frame operator for the canonical dual
frame {S~1z,}, is S7L.

Definition 2.4.13. Let (H,(-,)2) be an Hilbert space and consider a frame {x,}n C H. A
sequence {yn}n C H such that

o

T = Z<$,yn>yl‘n Ve eH

n=1

with unconditional convergence is called alternative dual for {z,},. If {yn}n is also a frame,
then is called alternative dual frame.
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2.4.1 Gabor frames on Euclidean space

We restrict our attention to the Hilbert space L?(R%) and introduce a specific type of frames,
the Gabor ones. They are the most commonly used and studied due to their rather simple
construction and being handy for applications.

Definition 2.4.14. We call lattice on R?? a set of the following type:
aZ® x Bz,

where a, B > 0. The numbers o and B are called lattice parameters.
Fiz a non-zero window function g € L*(R?) and lattice parameters o, 3 > 0. We call Gabor
system the following set:

g(gaavﬂ) ::{TamMﬁng | mﬂ’LGZd}.
If a Gabor system G(g, a, B) is a frame for L*(R%), then it is called Gabor frame.

Due to the commutation relations (2.65)), the frame operator S associated to a Gabor frame
G(g, @, B) has the form

Sf= > (f,TamMpng)TomMaong = > Vyf(am, fn)MpyTamg.

m,neZd m,nez

If necessary, we write S;*gﬁ or Sy 4 instead of S in order to emphasize the dependence from the
window function and the lattice parameters. Anyway, the reason for this notation will be clarified
later.

Remark 2.4.15. A Gabor frame can be equivalently defined as
G(g,a,p) = {M,BnTamg | m,nEZd}
because of commutation relations (2.65)).

Gabor frames are named after the electrical engineer and physicist, most notable for inventing
holography, Dennis Gabor (1900-1979). In his paper [73] Gabor conjectured that the Gabor

system G(,1,1), where ¢(t) = e~ is the 1-dimensional Gaussian, was a basis for L2(R).
Indeed, he claimed that every function f € L?(R) could be represented as

F=Y" cmn(f)MyTrnep,

m,n€”’

for some scalars ¢,, ,,(f). His conjecture was false, but the previous expansion makes sense using
frame theory.

Proposition 2.4.16. Consider G(g,a,3) a Gabor frame for L*(R?) with frame operator S, ,.
Then

(2.123) v=25,49

is such that G(, a, B) is the canonical dual frame of G(g, a, B). Consequently, every f € L*(R%)
has the following frame expansions:

(2'124) f= Z <faTamMﬂng>TamMﬁn"Y: Z <faTo¢mM,8n'Y>TamM/3nga

m,neLd m,nez
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with unconditional convergence in L?(R%). Further, the following norm equivalences hold:

(2.125) AlfIZ: < S0 1 TamMang)> < B f1l32,
m,n€Z

(2.126) BUfl32 < S 1 TamMpu)* < AV £,
m,neZ

where A, B are the frame bounds for G(g, «, B).

The window defined in (2.123]) is called canonical dual window.
Consider g,7 € L?(R?) and a, 3 > 0. We introduce the following type of operator on L?(R?):

(2.127) SePf = 3" f, TamMpng)TamMsn7,
m,neZl
defined whenever the series makes sense. Then (2.124) can be rephrased as
B
S;"ﬁ -

where [ is the identity on L?(R?). Eventually we observe that, if we set A := aZ x BZ, then
the operator can be written as

SeBf =S (fm(Nghm(A).

AEA
Sometimes we write G(g, A) instead of G(g, , ).

Corollary 2.4.17. Consider G(g, o, ) a Gabor frame for L*(R%) with frame operator Sy .
Consider the canonical dual window v = S;;g. Then:

-1
Sg,g - S’Y,’Y'

Remark 2.4.18. Proposition[2.4.16] provides a discrete time-frequency representation of signals.
If G(g,a, B) is a frame for L?(R?), then ([2.124)) is a discrete version of the inversion formula
for the STFT. Moreover, (2.124) provides a Gabor expansions of f with the canonical set of
coefficients given by ¢ = (f, TamMpn7y). The series expansion (2.124) can be rephrased in
terms of the STFT as
=" Vef(am,Bn)Mg,Tamv,
m,nez

which is a reconstruction of the signal f from samples of its STFT.

If we focus on functions g compactly supported in an interval of length 1/, then there exist
Gabor frames G(g,a, 3) for L?(R) where we can also take g smooth, if we choose the lattice

parameters «, 3 properly. This was done first by I. Daubechies, A. Grossmann, Y. Meyer in [3§],
and they were called painless nonorthogonal expansions, since they were easy to construct.

Theorem 2.4.19. (Painless Nonorthogonal Expansions)
Consider lattice parameters o, 3 > 0 and g € L*(R).

(i) Ifsupp(g) C [0, B871], then G(g, a, B) is a frame for L*(R) if and only if there exist constants
A, B > 0 such that
(2.128) Ap < Z lg(z — ak)|* < BB a.e..
keZ

In this case, A and B are the frame bounds for G(g,, 3).
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(ii) If 0 < af3 < 1, then there exists g such that supp(g) C [0, 371] that satisfies (2.128)) and
can be as smooth as we like, even infinitely differentiable.

(iid) If a = 1, then any function that is supported in [0, 371] and satisfies (2.128)) is discon-
tinuous.

(iv) If aB > 1 and g is supported in [0,371], then ([2.128) is not satisfied and G(g,c,(3) is
incomplete in L?(R).

We end up this section recalling an important result concerning Gabor systems G(¢, a, )
where ¢(t) = e~ is the Gaussian function. The following important result is proved indepen-
dently by Y. Lyubarskii [I11] and by K. Seip and R. Wallstén [123], [124] using complex analysis
methods.

Theorem 2.4.20. Consider the 1-dimension Gaussian function ¢(t) = et

G(p,a, B) is a frame for L*>(R) if and only if a8 < 1.

. Then the system

The generalisation to the d-dimensional case can be found in [4I], Proposition 10].

Theorem 2.4.21. Consider o(t) = 24/4¢=7 ¢ RY. Then the system G(p, o, B) is a frame
for L2(R?) if and only if af < 1.

2.4.2 Gabor frames on G LCA group

In what follows we generalize the notion of Gabor frame to any LCA group G. Not every
LCA group G admits a lattice, see definition below, such as p-adic groups Q) ,hence we use a
particular construction due to K. Grochenig and T. Strohmer in [88]. Having Gabor frames for

L?(G) shall enable us to generalize the convolution relations for modulation spaces firstly given
in [9, Proposition 3.1], see Proposition [5.2.14] from [§].

Definition 2.4.22. A lattice in G is a discrete subgroup A such that the quotient group G/A is
compact.

If G admits a lattice, there is a relatively compact U C G, called fundamental domain for
A, such that

6= w+0), (@+U)n@+U)=g for w#u
weA

Definition 2.4.23. Let D C Gy a collection of coset representatives of Go/K and A € GL(R?).
We define U == A[0,1)¢ x K. The discrete set A = AZ? x D is called quasi-lattice with
fundamental domain U.

Observe that we have the following partition

g=J w+0).

weA

Remark 2.4.24. According to_the above definition and the Structure Theorem[2.3.23, a quasi-
lattice on the phase-space G X G is of the type:

(2129) A= Al X AQ = (AlZd X Dl) X (AQZd X Dg) = ALQsz X D172
with fundamental domain

(2.130) U :=Us x U == (A1]0,1)% x K) x (A2[0,1)* x K) =2 A1 5[0,1)%* x (K x K*),
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where Dy C _C'70 is a set of coset representatives of _C'TO/ICJ- and

(2131) A]_’Q =

A O
0 A

:| s Dl)g = D1 X DQ.

We shall denote elements of a quasi-lattice A in G x G as
w = (w, 1) = (w1, ws), (1, 12)) € A=Ay x Ay CG x G.

Definition 2.4.25. Given a quasi-lattice A C G X G and windows g,h € L*(G), the Gabor
system generated by g is

{m(w)g|w e A} ={m(W)g}wen-
The coeflicient or analysis operator is given by
(2.132) Cl=Cy: L(G) = L2(A), f = (£, m(W)9))wen -

Its adjoint is called reconstruction or synthesis operator and has the form

(2.133) Cl =Cr P(A) = L*(9), (cw)yen > Y CwT(W)g.
weA

The Gabor frame operator Sy, 4 is given by

(2.134) Sﬁ,g = 8Shof =CiCof = Z (f,m(w)g)ym(w)h.

weA

We say that {n(W)g}wea is a Gabor frame for L?(G) if there exist A, B > 0 such that

(2.135) AllflZe < Y0 Kfmw)g)* < Bllflz=.  Vf € L*(9);

weA

this is equivalent to saying that Sy 4 is invertible on L*(G). If A = B the frame is called tight.
Moreover, if h € L*(G) is such that

(2.136) Sh.g = Sg.n = I12,
then h is named dual window for the frame {m(W)g}wen.

We note that Theorem 2.7 in [88] is still valid for the case of the Gaussian ¢ and considering
a Gabor frame not tight. Namely,

Theorem 2.4.26. Let A == aZ? x D15, a € (0,1), be a quasi-lattice in G x G. Consider the
Gaussian ¢ in (2.94). Then

(2.137) {m(w)p|w € A}

is a Gabor frame for L*(G).
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2.4.2.1 Gabor frames on G = Zy
We now pick the group G = Zy. Recall that Z;V =~ Zx and also the identification CV = (2(Zy)

@.104).

Definition 2.4.27. A rectangular lattice in Zy X Zy is a set of the following type:

N N
(2.138) AN=aZy x BZyn, o,B€EN, A::EEN, B:ZEEN

Notice that, since «, 8 are divisors of N, A is indeed a (discrete) subgroup of Zy x Zy such
that the quotient is compact. Therefore in this case we no need quasi-lattices.

Definition 2.4.28. The Gabor system generated by a window g € CV and lattice \ as

in ([2.138]) is the set

G(g,a,B) = {n(k,l)g, (k1) € A}
= {r(ak,Bl)g, k=0,...,A—1,1=0,...,B—1}.

We say that G(g, a, 8) is a Gabor frame for CV if

BS

B
(2.139) CilIflls < (f, m(ak, BD)g)> < Co |l £,  VfecCN,

|
—

i
o
Il

o

for some C1,Cy > 0.

We point out that in the above equation

N-1

(f,m(ak, Blg) = > fu)m(ak, Bl)g(u)

u=0
and |[-||, is the induced norm.

Remark 2.4.29. Since we are in finite-dimension, to ask G(g,a, ) to be a frame for CN is
equivalent to ask that it spans CN [Z1|], where the bounds Cy, Co describe the numerical properties
of the transform and the quantity \/C2/C} is the condition number of the analysis, see [5].

2.5 Modulation spaces

The core of this section are function spaces which norm aims to measure the time-frequency
concentration of functions or tempered distribution, namely the class of modulation spaces. These
normed spaces were introduced by H. G. Feichtinger in early 1980’s.

We want to investigate how to measure the time-frequency concentration of a function or a
distribution. We define a function space whose elements share the same decay properties in the
time-frequency plane. To reach this goal, we impose a norm on the SFTF and thus we get the
so-called modulation spaces.

In order to remain within the setup of Schwartz functions and tempered distributions, we will
present the theory of modulation spaces under the following assumptions:

Assumptions 2.5.1. Every weight on R?, R?? or on any of their subgroups, is assumed to have
at most polynomial growth at infinity (see (2.8))).
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For sake of clarity, we recall that this means there exist sg, C' > 0 such that
(2.140) m(z) < C(z)*° = Cus, (2),

for z in R, R2? etc. .

Assumptions|2.5.1] even if not explicitly stated, are made through all the present thesis work
except for: Section Section of Chapter |3] For more details and the case of other weight
classes, namely exponential ones, we refer to [82, Chapter 11].

We shall first define modulation spaces on R? in the wider quasi-Banach setting, whereas for
modulation spaces on G LCA group in this section we stick to the Banach case. The quasi-Banach
case on G shall be one of the main result of Chapter [5| see [§] by E. Cordero and the author.
On R?, we prove some new convolution relations due to E. Cordero, F. Nicola and the author
[9], see Proposition 2.5.19} This result will be extended to any LCA group in Chapter [5 [§],
see Proposition [5.2.14] See Proposition [2.5.20] 2-5.21] and Corollary [2.5.22] are about inclusion
relations and an equivalent semi-discrete quasi-norm on MP:4(R%), see [7]. Proposition
was presented in [3].

2.5.1 MP4 on Euclidean space, 0 < p,q < o0

Definition 2.5.2. Fir a non-zero window g € S(RY), a weight m € M, (R??) and 0 < p,q < co.
We define the modulation space as the following set of tempered distributions:

(2.141) MPYRY) = {feS'[RY | V,feLliR™)}.

For shortness, we write MP, (R?) in place of MP;P(R?) and MP4(R%) if m = 1. Due to Remark
[2:2:8it’s legit to consider v = v,, even if v, is not submultiplicative for s > 0.

Remark 2.5.3. Roughly speaking, MP4(R%) contains all those generalised functions such that
they behave locally like elements of FLY(R®) and “decay” like elements of LP(R?) at infinity.

The most famous modulation spaces are those MP:9(R9) with 1 < p,q < oo, invented by H.
G. Feichtinger in [56]. In that paper he proved they are Banach spaces, whose norm does not
depend on the window g, in the sense that different window functions in S(R?) yield equivalent
norms. Moreover, the window class S(R?) can be extended to the modulation space M}!(R?)
(so-called weighted Feichtinger algebra). The modulation spaces ME4(RY), with 0 < p < 1
or 0 < g < 1, were introduced almost twenty years later by Y.V. Galperin and S. Samarah
in [75] and then studied in [104] 119, 149] (see also references therein). In this framework, it
appears that the largest natural class of windows universally admissible for all spaces MF:4(R%),
0 < p,q < oo, (with m having at most polynomial growth) is the Schwartz class S(R?).

Proposition 2.5.4. Fiz a non-zero window g € S(R?), a weight m € M,(R??) and 0 < p,q <
oo. Then the application

1 f gz = VoSl ppas ¥ f € MEIRY),

is a quasi-norm on ME4(R?), it is a norm if 1 < p,q < oco.

From now on we omit the explicit choice of the window function according to the equivalence
above.

Theorem 2.5.5. Fiz a weight m € M,(R??) and 0 < p,q < cc.
Then (MP4(R9), Il pzya) s a quasi-Banach space. It is a Banach space if 1 < p,q < cc.
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For the following important result we refer to [35, Theorem 2.4.17] or |75, Theorem 3.4].

Theorem 2.5.6. Consider my,my € M,(R?*?) with my < my. Take 0 < p; < py < 0o and

~

0 < q1 < g2 <oo. Then we have the following continuous inclusion:
(2.142) MPH3(RY) s MP2:92(RY),
As a consequence, we can extend the result [82, Corollary 11.1.10] which is implicitly used
in Theorem
Corollary 2.5.7. Consider m € M,(R??). Take 0 < p,q < co. Then
(2.143) MEAR?) C My, (RY).
Proposition 2.5.8. Consider m € M,(R??) and 1 < p,q < co. Then

Mgy (R = M7y (R,

where p' and q' are the conjugate exponents and

(2.144) Mf/',q'<f7 9 = - Vif(2)Vihg(z) dz,

for every h € M}(R?) ~ {0}, f € Mf;;?; (RY) and g € ME9(RY).

We shall simply write
<fa g> = M{’;VQ’ <f7 g>M7pnfq'
As a consequence, we have a Holder’s inequality for modulation spaces.

Corollary 2.5.9. Consider m € M,(R??), 1 < p,q < oo and let p’ and ¢ be the conjugate
exponents. Then

(2.145) [(fr9)] < HfllMg’qllglle;,qu feMEIRTY), g € MY, 0 (RY).

for every f € Mf}’nq; (RY) and g € MP9(RY).

The duality properties for modulation spaces with indices p < 1 or ¢ < 1 where studied in
[105] and completed in [149, Proposition 6.4, page 163].

Proposition 2.5.10. Let s € R and 0 < p,q < co. If p > 1 we denote by p' the conjugate
exponent of p, i.e.

1 1
-+ - = 1,
p p
if 0 <p <1 we setp :=oc0. Similarly for q. Then
(2.146) (MF,, (RY) = Mgl (R?).

Proposition 2.5.11. ([82, Proposition 11.3.2, Theorem 11.3.7])
Consider m € M, (R??). Assume g € M}(R?) \ {0}, 1 < p,q < oo. Then every f € MP4(R?)
can be written as vector-valued integral in a weak sense as follows:

1
- 2
g1z Jree

and the equality holds in MEP;4(R?).

(2.147) f Vo f(z,w)M,Tyg drdw,
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Remark 2.5.12. The above vector-valued integral has to be interpreted as follows: if f €
MPA(RY) and p € S(RY), then

(f, ) = /R2d Vo f(x,w)(M,Teg, ) drdw = /RM Vof(z,w)Vyp(x,w) drdw.

In the next proposition we need the subsequent polynomial type weights:

To(z,w) = (W)* =(1 + |w|*)*/?, Vz,w € RY;
polw,w) = (@) =(1+ )2, Va,we R
Proposition 2.5.13. Fiz two indices 0 < p,q < oo and s € R. Among the modulation spaces
the following function spaces occur:
(i) L2-spaces:
M (R = L2(RY)
(i1) weighted L?-spaces:
M: (RY) = LY(RY) = {f € L*RY) | f(z)(x)® € L*(RT)};
(791) Sobolev spaces:
M2 (RY) = H*(RY) = {f € L*(R") | f(w)(w)* € L*(R)};
(iv) Shubin-Sobolev spaces:
(2.148) M2 (RY) = L2(RY) N H*(RY) = Q,(R%);
(v) spaces LY :
Ly (RY) € Mg (RY);
(vi) the Schwartz class:
N M9(RY) = SR
s>0
(vit) space of tempered distributions:
N M (R = S'(RY).
s>0
Roughly speaking a weight in w regulates the smoothness of f € M?4 whereas a weight in
x regulates the decay of f € M1
Remark 2.5.14. We remark that
SRY) ¢ (] MP(RY).
p>0

The idea in order to prove the previous strict inclusion is the following. The problem is trans-
ported to the discrete case: if f € S(RY), then Vyf € S(R*) and (Vyf(X))rea € €°(A) for every
s >0, where A C R?? is a suitable lattice. We have the following inclusion

ez ()@
s>0 p>0
which can be proved to be strict by constructing a suitable sequence which is in ﬂp>0 P but is

not rapidly decreasing, i.e. is not an element of [\ 5 €.
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For proofs of the following density result we refer to [82, Proposition 11.3.4] for the Banach
case, to [0, Remark 14] for the quasi-Banach one.

Theorem 2.5.15. Consider m € M,(R??) (having at most polynomial growth) and 0 < p,q <
oo. Then S(RY) is a dense subspace of MP4(R).

Modulation spaces provide a natural setting for time-frequency analysis, thanks to discrete
equivalent norms produced by means of Gabor frames. The key result will be Theorem
(see [82, Corollary 12.2.6] for 1 < p,q < oo, and [75, Theorem 3.7] for 0 < p,q < 1). In order to
state it, we briefly introduce the analysis and synthesis operators on modulation spaces.
Consider m € M,(R??). Fix a,3 > 0, then we denote the restriction of m to the lattice
A = aZ® x BZ% as follows:

ma(k,n) = m(ak, fn), Vk,n € Z4,

similarly for v.

The next proposition summarizes definition and well-posedness of the analysis, or coefficient,
operator C;vﬁ for modulation spaces. For the Banach case we refer to [82] Theorem 12.2.3|, for
the quasi-Banach case see |75, Theorem 3.5].

Proposition 2.5.16. Consider m € M,(R?*¢). Fiz g € S(RY), a,8 > 0 and 0 < p,q < oo.
Then the analysis operator

a,p . ) d s 2d
(2.149) CoP: MPA(RT) — (29 (724

ma

f — (<fa 7T<ak7 5n)g>)k,n€Zd
is well defined and bounded.

We establish an analogue result for the synthesis, or reconstruction, operator which
summarises [82, Theorem 12.2.4] and [75, Theorem 3.6].

Proposition 2.5.17. Consider m € M,(R?*%). Fiz g € S(RY), a,8 > 0 and 0 < p,q < oo.
Then the synthesis operator

(2.150) Do 21 (724) — MPI(R)
(oo}

(Ckyn )k nezd — Z ek (ak, fn)g
k,neza

is well defined and bounded. Moreover, if p,q < oo then Dg’ﬁc converges unconditionally in
MP:9(R?), otherwise D;’BC converges weak-x in Mffv(Rd).

Then we define
a,B . pa,Bpoa,
(2.151) Soo8 = pieess,
which can be seen defined on L?(R%) or MP:4(R9), according to the context.

Theorem 2.5.18. Consider m € M,(R?%). Fiz o, > 0, g,7 € S(R?) such that S;‘,f =1 on
L?(RY). Define A :== aZ% x BZ*. Then

(2.152) F=> L mNgrN)y =D (frWNT(N)g, Vfe MEIURY,

AEA AEA
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with unconditional convergence in ME:4(RY) if 0 < p,q < oo and with weak-+ convergence in

Mf;’v(Rd) otherwise. Furthermore, there are constants 0 < A < B such that, for all f €

MEA(RY),

T
Q=

(2.153) Allflaze < | Y2 | D2 1(f w(ak, Br)g) [Pm(ak, Bn)? < Bl|fllaza,
nezZd \kezad

independently of p,q, and m. Similar inequalities hold with g replaced by ~y.

Then the above theorem can be summarised as:
(2.154) [ Iarze ey = N(CF m (NG gpaay = (Vo f (A))allena a)-

We present new convolution relations for modulations spaces proved in [9]. Let us recall that,
for the Banach cases, convolution relations were studied in [28] and [I36] [137]. The approach
used in [9] is general, the techniques use Gabor frames via the equivalence , plus Holder’s
and Young’s inequalities for sequences.

Proposition 2.5.19. ([9, Proposition 3.1])
Let v be weight on R? and consider 0 < p, q,r,t,u,vy < 0o such that:

(2.155) Lyl
' uw o oty

and
1 1 1

(2.156) ~+-=1+-  for 1<r <o,
p q r

whereas

(2.157) p=q=r for 0<r<l.

Fiz m € M,(R??) and define the restrictions to R? x {0}, my and vi, and to {0} x R%, my and
va, as in (2.10). Then we have the following continuous inclusion:

(2.158) Mo, (RY s« MIT L (RY) — MT(RY),
i.e. forany f € Mﬁl’f®u(Rd) and h € Mgl’%vzy_l(Rd)
ey < p,u t
15 = bl S g, Wlme

Proof. We use the key idea in [28, Proposition 2.4] to measure the modulation space norm with
respect to the Gaussian windows go(x) = e~ and g(x) = 9-d/2¢=ma%/2 = (g0*go)(x) € S(R?).
It is useful noting that M, (g5) = (M,go)*, similarly for g. A straightforward computation shows

Vof(@,w) = e ™59 (f % (Mug)*) (),

where actually g can be any window in L2(RY). Consider now f € MP" (RY) and h €

mi Qv

M (RY), using the identity M, (g5 * g3) = Mugs * Mg we can write the STFT of

V1 Quarv—1
f = h as follows:

Vo(f * h)(z,w) = e‘zﬂix‘w((f * h) * (Myg)*)(z)
= e_Qle'w((f * ngg) * (h * ngé))(x)
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In the following, we first use the norm equivalence (2.153)), written in terms of the STFT as
|-z =< (Vg - (A)aeallerr(a), where A = oZ® x BZ7. Then we majorize m by
m(ak, Bn) S m(aka O)U(Oa ﬁ?’l;) =m (Oék)’Ug(ﬂTL),

and finally use Young’s convolution inequality for sequences (Theorem [2.2.32)) in the k-variable
and Holder’s one (Theorem [2.2.33)) in the n-variable. The indices p, ¢, 7,7, t, v fulfil the equalities
in the assumptions. We show in details the case when r,v,t,u < oo:

£ * hllagz =< (1((Vy(f * h))(ak, Br)m(ak, Bn))knller z2a)
v/r el
S0 D 1+ Mpng) * (B Mpngs)(ak)["ma (ak)" va(Bn)?
nezZd \kezd
1/~
= ST * Maagd) * (b Mangi)l7, oy v2(Bn)
nezd !
1/~
S ST * Mangi 13 e 1% Mpngi 13y oy v2(B)
~ nJoller, (azd) prdolled (azd)
nezd
u 1
* || w u * U2<5n)t
S ODDIF * Mangs 1%, (azayv(Bn) Dl Mg g; s, (029 (Fn)t
nezd nezd
= [I(Vao YODAer (4 II((quh)(A))Aqu»t® N
V] @uov
=gy, Wollagee
o @uay

where we wrote m; ® v and v; ® vor ! instead of (m; @ v)a and (v; ® var~1)a, and so on. This
concludes the proof. The cases when one among the indexes 7,7v,t,u is equal to oo are done
similarly. O

We need to introduce an alternative definition of modulation spaces we shall use in the
sequel. For k € Z%, we denote by Q. the unit closed cube centred at k. The family {Qx}ycza is
a covering of R%. We define || := max;—1__q|&], for £ € RY. Consider now a smooth function
p: R? — [0,1] satisfying p(¢) = 1 for |¢| < 1/2 and p(€) = 0 for |¢| > 3/4. Define

(2.159) p(€) = Tup(€) = p(§ — k), Vk e L7,
that is, py is the translation of p at k. By the assumption on p, we infer that pg(§) = 1 for
£ € Qp and
> k() =1, VEER?
kezd
Denote by

N J1(3)
(2.160) o) = Diez pu(€)’

Observe that oy (£) = 0¢(& — k) € D(R?) and the sequence {0} }yeze is a smooth partition of
unity

Ve eRY k ez

> on(§) =1, VEeR™

kezd
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For k € Z%, we define the frequency-uniform decomposition operator by
(2.161) Oy = F o, F.

The previous operators allow to introduce an alternative quasi-norm on the weighted modulation

spaces Mp:d (R?) inspired by [148] as follows.

Proposition 2.5.20. ([7, Proposition 2.2]) For 0 < p,q < 0o, h,w € M,(R?) have

q

@y = | D IOuflfpw®) | . feS'RY,

kezd

(2.162) 1l

hQw

with obvious modification for ¢ = co.

Proof. The case p,q > 1 is well known, see for example [35, Proposition 2.3.25]. The cases
0<p<lor0<q<1arean easy modification of that proof. Namely, let us point out the main
changes. If 0 < p < 1, we consider

Onf = FlowFf = FlowTeoFf, for €€ Q,

since quib = 1 in supp o for £ € Q. Using Young’s inequality for distributions compactly
supported in the frequencies (see [104, Lemma 2.6], which holds also for L}, 0 < p < 1, with h
being v-moderate), for £ € Qf, we obtain

Ok fllee SNF orllg| F TedF fllpe S INF TedF £l e

The rest of the proof is analogous to the Banach case and we leave the details to the interested
reader. O

An useful embedding is contained in what follows.

Proposition 2.5.21. (|7, Proposition 2.3]) Given 0 < p1,p2,q1,q2 < 00, with m,s1,s2 in R,
one has

(2.163) MPT e R = MPSE L, (RY)
if and only if
(2.164) < p2
and
1 1
(2.165) q1 < q2, 512> 52 o @ >q L4 >2y-

d ¢ d g

Proof. The Banach case when m = 0 was originally shown by H. G. Feichtinger in [56]. We use
similar arguments as in that proof. The discrete modulation norm defined in (2.162)) is given by

q

1. = | D2 I0SIL,  (°

77L®<.>S
kezd

The necessity of follows from the fact that FLP! is locally contained in FLP?? if and only
if p1 < po (with strict inclusion if p; < po), cf. [I6, [71) 104, [I45]. The set of conditions in
in turn describes the inclusions between weighted ¢4 spaces: 5%51 C 6?352 if and only if
the indices’ relations in are satisfied, cf. for instance |91 Lemma 2.10|. This concludes
the proof. O
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Corollary 2.5.22. (|7, Corollary 2.4]) For 0 < ¢ < g2 < o0, d € N, m,s,7r € R, r > s+
d(1/q1 — 1/q2), we have the following continuous embeddings:

00,q d 00,q d 00,q d
(2.166) Mgy (R = MG (o (RY) = Mg (s (RY).

Proof. The first embedding is a straightforward application of the inclusion relations in (2.142]).
The second one follows by the embedding in Proposition 2.5.21] O

Let m € M,(R2?). We denote by MP?:7(R9) the closure of S(R?) in the MP:%-norm:

(2.167) MPARY) = SRAY ki
Observe that MP;4(R?) = MP:9(R?), whenever the indices p and q are finite. Notice that these
spaces enjoy the duality property

(MPE:) = M’lj//’g; with 1<p,q< 0.

Proposition 2.5.23. ([3, Proposition 2.2]) Consider 1 < p,q < oo, with p’,q’ being conjugate
exponents of p, q, respectively.

(i) For1<p,q<oo, fe MPURY), h e MP7(RY), we have that f + h € Co(R%);
(i4) Forl < p,q < oo, f € MP(RY), h e MP"¢(R%), we have that f x h € Co(R?);

(iii) If either f € M°Y(R?) and h € MV >(R?) or f € MY(R?) and h € M>(R?), then
fxhe Cb(Rd).

Proof. These results are well known, see [53] and [54]. For sake of clarity we provide a direct
proof.

(i) Using the density of S(R?) in both spaces we can find sequences {f,}n, {hn}n € S(R?)
such that ||fn, — fllaee — 0 and ||hn — k|l yerer — 0, now fi, * by, € S(RY) — Co(R?) so that,
using

| h@&)] = [F,TIR)| < N flaera IBZ0) agorar = I fllagmallBllpgorar, VE € RY,

[ fn % ha = f 5 hl|oe <[ frn * (h — B)[[Loe + [[(fa = f) * hllLee
< anHMM”hn - h”MP’vq’ + ||fn - fHMP*th”MP’vq’-

Hence f * h € Cy(R?). Ttem (ii) is obtained by the same argument as in (7).
(#it) Using the convolution relations of Proposition [2.5.19| we infer

Mo (RY) « MV (RY) — M>>H(R?) and M'(R) « M>(R?) — M>>!(R?).
It follows immediately from the definition of the modulation space M°!(R%) that
(2.168) M>H(R?) C (FL'(R?))ioe N L= (R?) C Cy(RY)
and we are done. O
Remark 2.5.24. We observe that the convolution relations
MY(R?) « M= (RY) C Cy(RY)

where already shown in [65, Lemma §].
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2.5.2 MP49 on G LCA group, 1 <p,qg< o0

Since several descriptions are available for modulation spaces on G LCA group, we chose the
following which can be found e.g. in [88]. We shall summarize briefly their main properties
which corresponds to the ones for M?:4(R?).

Definition 2.5.25. Let m € M, (G x Q\), consider 1 < p,q < co and let ¢ be as in (2.94). For
f € Sc(G) we define the application
d€> ;

with obvious modifications if at least one between p and q is 0o. Then we define the modulation
space M[9(G) to be the completion Sc(G) w.r.t. |||y if p,g < co:

Q=

(2.169) 1l = 1V Fll e = ( /g ( /g Vo (2, O ma, )7 dx)

<~ e,
MEA(G) = Se(G) M,
if at least one between p and q is oo we take the w-x closure.

As usual, we adopt the notation MP? := MP? and MP, = MF:P.

-~

Theorem 2.5.26. Let m € M,(G x G) and 1 <p,q < co. Then ME4(G) endowed with ||| yzp.a
defined in is a Banach space. Moreover, it is independent of the window function in
M} (G) ~ {0}, in the sense that given any g € My (G) ~ {0} the application ||Vy:| . is a norm
on M2(G) equivalent to the one defined in (2.169).

Remark 2.5.27. (i) We want to highlight the following inclusion
Sc(G) € MX(G).
So that every nonzero function in Sc(G) is a suitable window for MP:4(G);

(ii) Taking G = R% we recover the very same modulation spaces which were introduced in

Definition[2.5.2

Proposition 2.5.28. (i) Let 1 < p,q < oo and consider the conjugate exponents p’ and ¢'.
Then

(ME(G)) = M2 (G);

(ii) ML (G) and MY (G) are the dual spaces of

,00

Nl agoe —l
SC(Q)H HMl/m and Se (g) Mll/m ,
respectively;

(iii) If f € MS>YG) and g € Mll/iz, then (f,9) = [g.g Ve (x)Vog(x) dx is well-defined and
1,001 S 1 gz gl

m
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2.5.2.1 The Feichtinger algebra Sy(G)

The Feichtinger algebra Sp(G) [49, B0, [51] has numerous equivalent descriptions, we address the
reader to [I01] for an exhaustive tour.

Definition 2.5.29. We call Feichtinger algebra over G the Banach space
So(G) == M*(G).

Let v be a submultiplicative weight on G X §, then the weighted Feichtinger algebra over G
18

M, (G).

We shall tackle mainly the unweighted case. Of course, if we endow Sy(G) with the norm

llsy = M-/l ars

we have a Banach space which dual is given by S{(G) = M (G), which is also called set of mild
distributions. In the case of Sy(G) = M'(G), we can pick any window in Sp(G) itself in order
to compute the norm. Namely, given any g € So(G) \ {0} the application ||V,-||,, is a norm on
the Feichtinger algebra and different window in Sp(G) yeld equivalent norms.

An equivalent description of Sy(G), e.g., is the following:

So(G) = {f € L*(G)|3g € L*(G) ~ {0} : V,f € L (G x §)}.
In the following proposition we list just some of the main properties of the Feichtinger algebra.

Proposition 2.5.30. Let us consider f € L*(G) such that V,f € LY(G x é) for some g €
L?(G) ~ {0}, i.e. f € 8o(G). Then:

(i) FISo(9)] = So(G)

i) 7(x)f € So(G) for every x € G x G;
jii) So(G) € Co(9);

(i) f,Zf, f* € So(G);

(v) if f#0, then g € So(G);

Proposition 2.5.31. Sy(G) is a Banach algebra under convolution and pointwise multiplication,
ie. if f,9 € So(G), then fxg,f g€ So(G) with norm estimates

1f*glls, S flls, Nglls, > IF-glls, S 1flls, Nglls, -

2.6 Some specific function spaces

In the present section we shall recall the following function spaces which will be used in the
upcoming chapters: Wiener amalgam spaces W (LP, L2 )(R4) with indexes 0 < p,q < oo; Besov
spaces BP4(R%) [145]; the class of smooth symbols S™(R?4) [127]; weak L™ spaces [145]. Orig-
inal results, by E. Cordero and the author, here presented and both published in [7] are: Lemma
which generalizes a characterization of Hérmander’s class 5§, proved in [87, Lemma 6.1],
and the subsequent Lemma [2.6.9
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2.6.1 Wiener Amalgam spaces with local component L’(RY) 0 < p < oo

For more about Wiener amalgam spaces we address the reader, e.g., to [53] b4, (5|, [72] [75] O3]
119, [120].

Definition 2.6.1. Consider p,q € (0,0], m € M,(R?) and the compact set Q = [0,1]%. The
Wiener amalgam space with local component L?(R%) and global component L% (R%),
denoted by W (LP, L% ) (RY), consists of equivalence classes of functions f: RY — C equal a.e.
such that f € Lloc(Rd) and for which the control function:

(2.170) FP (k)= [ Tixoll,, € ¢, (2%,  vkez®

The quasi-norm on W (LP, L4) (RY) is given by

m

1wz ey = |FF ®)],

= ||Ilf - Texe

oolles,

(2.171) = (/ FOF xq(t—Fk )dt)gmq(k) :

kezd
with suitable adjustments for the cases p,q = oo

This special definition allows us to grasp the sense of the amalgam: we first view f “locally”
through translations T} x¢ of the sharp cutoff function x¢g, and measure those local pieces in
the LP-norm, then we measure the global behaviour of those local pieces according to the ¢4 -
norm. The “window” through which we view f locally need not be a unit d-dimensional cube,
cf. |54, [75, 93] [T20]. In the sequel we shall use the following properties:

(7) Inclusion relations: For 0 < p; < py < 00, 0 < g2 < q1 < 00, we have
(2.172) W (LP2, L92)(R?) — W (LP', L%)(RY).

(#4) Convolution relations (for the quasi-Banach case see [75, Lemma 2.9]): Consider m; € M,,
0 <pi,q <o0,i € {1,2,3}, and p3 > 1. Assume that LP* * LP? — [P and (J} * {2 —
£Fs ., then

(2.173) W(LPY, L3 )« W(LP2, L2 ) — W (LP*, L ).

(74¢) For m € M,, 0 < p < oo, we have

(2.174) LP = W(LP, LP).
Proposition 2.6.2 (Multiplication relations) ([9, Proposition 2.3]) Consider m,w € M,, 0 <
i, ¢ < 00, i =1{1,2,3}. Assumep—l—1———1)—3 and——k—-—, then
(2.175) W(LP, L8 - W(LP2, L2, ) s W(LPs, L%).

Proof. The result is well known for 1 < p;, g; < oo, cf. [53,03]. Here we show that the same proof

works for quasi-Banach spaces. Indeed, since the standard Hoélder inequality holds for Lebesgue
exponents in (0, 00|, for f; € W(LPr, L), fo € W(LP2, L‘i}z/m) we have

Il f1feTexqlles = I(f1TkxqQ)(f2TrxQ)llLes < [[f1TexqllLe: [l f2Thxqll r2 -
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Defining ar, = ||f1Texollp, and by = | foTkXxqllp, and using Hélder’s inequality for sequences
(1492 — (% for 1/q1 +1/ga = 1/q3 (0 < ¢; < 00, i = 1,2, 3), we obtain

larbrw(k)less = |[(arm(k))(brw(k) /m(k))less < [lagm(k)|en [[byw(k)/m (k)] es= -

This completes the proof. O

Concerning the theorem below, we address to [75, Theorem 3.3] (see also [82], Theorem 12.2.1]
for p > 1).

Theorem 2.6.3. Assume that m € M,(R??). For 0 < p < 1 let g be a non-zero window in
M!(RY), » < p. For1 < p < oo, the function g can be chosen in the larger space ML(R?). If
f e MP(RY), 0 <p< oo, then Vof € W(L®,LE,) and there exists C > 0, independent of f,
such that

IV fllw oo, e,y < ClIVyfl

m

P .
L

2.6.2 Besov spaces

Definition 2.6.4. Consider 1o,v € S(RY) and set ¥j(w) = ¥(27w) for w € R? and j € N.
Suppose that:

supp ¥ C {w € R : |w| < 2}
supp ¥ C {w € R%: 1/2 < |w| < 2}

Yo(w) + D> Y@ Iw) =1, YweR"
j=1

Let 0 < p,q < 0o and s € R. Then the Besov space B?4(R%) consists of all tempered distribu-
tions f € 8'(R?) such that the quasi-norm

1/q

(2.176) £llpps = [ D2 F (0 FF)IIL
j=0

(with usual modifications when ¢ = 00) is finite.

Besov spaces are generalizations of both Holder-Zygmund and Sobolev spaces, see e.g. [145].
Precisely, we recapture the Sobolev spaces when p = ¢ = 2, s € R: B22(R%) = H*(R%). For
s > 0, BX>(R%) = C*(R?), the Holder-Zygmund classes, whose definition is as follows. For
s > 0, we can write s = n + ¢, with n € Ny and € < 1. Then C*(R9) is the space of functions
f € C™(R?) such that for each multi-index o € N¢, with |a| = n, the derivative 0° f satisfies the
Holder condition |0% f(x) — 0% f(y)| < K|z — yl¢, for a suitable K > 0.

Inclusion relations between modulation and Besov spaces B3 were first obtained for 1 <
¢ < oo (the Banach setting) in [I37, Theorem 2.10] and then for 0 < ¢ < oo in [I48]: for
0 < g < o0, set 8(q) = min{0,1/q — 1}, then

(2.177) B RY) = Myl (RY) — B34, /(RY), s€R.



72 CHAPTER 2. PRELIMINARIES

2.6.3 A class of smooth symbols introduced by Sjostrand

In [127] J. Sj6strand continued his study on pseudo-differential operators with rough symbols
and he also considered the symbol class object of study of [7], see Chapter [4 Namely, the class
S™(R2%) defined below.

Definition 2.6.5. For m € R, we define the class of smooth symbols S™(R??) as
(2.178) S™(R2) = {o € CP(R??) : |0%(2)] < Co(2)™, ae N2 ze R},
where (z) has been defined in (2.6)).

Remark 2.6.6. (i) Notice that this is a special instance of the class S(w) introduced in [127,
Formula (3.2)/;

(ii) S™(R2?) contains the so called Shubin classes [0, 0 < p <1 defined as [125):
(2.179) I (R?*) = {0 € C®(R*)) | |9°0(2)| < Calz)™ 71, a € N34, 2 € R*%}
and can be seen as their limit case for p = 0;

(#ii) or m =0 we recover the Hérmander class S§ o(R*®).

For any fixed m € R, the class S™(R??) in (2.178)) is a Fréchet space when endowed with the
sequence of norms {| -

(2.180) |o|Nm == sup sup |[0%(2)|(z)"™, N € Ny.
|| <N zeR24

For n € Ny, m € R~ {0}, we define by C(R??) the space of functions having n derivatives
and satisfying (2.180) for N = n, whereas C"(R??) is the space of functions with n bounded
derivatives. Clearly we have the equalities
S™R*) = () Ch(R*), m e R~ {0}, S°R*) = () c"(R*).
n€Np n€Np

A characterization of the class S°(R?*?) = S0 ;(R??) with modulation spaces was announced
by Toft in [I38, Remark 3.1] and proved in [87, Lemma 6.1].

Lemma 2.6.7. We have the equalities

(2.181) () C"(RY) = () Mgy (RY) = () Mg,

n€ENg s>0 s>0

Hence S°(R*) = Nazo Mtz ®()* J(R?) = MNaxo Mlﬁ?@%)S(RQd)-

In what follows we extend the previous outcome to all the classes S™(R??), m € R.

Lemma 2.6.8. (|7, Lemma 2.2]) For m €¢ R, 0 < ¢ < 0o, n € Ny, s € (0,400), we have the
equalities of Fréchet spaces

m 2d n 2d oo 2d 00,q d
(2.182) S™R) = () Cn®) = () M; (R = () M52 g (RY)
neNy neNy s>0

with equivalent families of quasi-norms

(2-183) {| : |n,m}nENov {” HMOC a }neNov {H ||M°° a }‘20'

(DT ()™ ()T

In particular, for every n € Ny,

(2.184) 1 llares < C(n,m)|flnm-

(yTme)n
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Proof. The equality S™(R??) = Mnen, M<°§ lm®< yn ,(R?9) was proved in [97, Remark 2.18]. The
embeddings in ([2.166|) then give the equalities in (2.182) with the equivalent families of quasi-

norms in (2.183)).
Let us show the estimate (2.184). For f € C(R%) (C*(R?) if m = 0) and any multi-index

a € N¢ with |a| < n, we consider the function 0%(f7,g). Taking its Fourier transform we get
(2.185) F(0°(FT.9)) (@) = Criw) " F(fT,) (@) = (2miw)V, (3, ).

In what follows we use the boundedness of F : L}(R?) — Cy(R?), Peetre’s inequality (z)~™ <
2=m(x — t)ImI(t)=™ and Leibniz’ formula:

() " IF O (fTeg))llpee < (@)~ 10%(fTeg)| 1

= @) (g) 9 T,0° %5

B<a o
<2y ( >|| @) () e 10> P ) ()™ 1
B<a

<27 sup [[(8°f)() " |~ Ma
1Bl<n

“Vil(a*=Bg)(.\Iml
< (5) 1090 o
- Ca,g,m|f|n,m7
where Cy o m = 27™M, maxg<, (g)||(8“*ﬂ§)<~>‘m‘||y with M, = #{8 € N¢,3 < a}. The
estimate above and formula (2.185)) yield

(2.186) SuPd |ng(x,w)|<x>7m < Cg,a,m|f|n,m|wa|71a lw| #0, V]a| <n.
zeR

Now if f € M,en, Cn " (R?) then for every a € N¢ there exists C' = C,, > 0 such that the estimate
in (2.186) holds true. Since (w)™ < 2 |a|<n Calw®| for suitable c, > 0, we obtain

sup [V f(z,w)[(z)"™(w)" < C|flnm, n € No,

z,weR
for a suitable C' = C(n,m) > 0 that is (2.184). O

In particular, for m = 0 we recapture the outcome of Lemma
For the case m = 0 we can characterize the Hérmander class S°(R??) = S§ ((R??) by Hélder-
Zygmund classes C*(R??) = B>>°(R??) and by Besov spaces.

Lemma 2.6.9. (|7, Lemma 2.3]) For 0 < ¢ < 0o, we have the equalities
(2.187) o(R¥) = (e (R*) = () BX9(R*) = (] Mgl (R*),
s>0 s>0 s>0

with equivalent families of quasi-norms

(2.188) {I-lsee=tsz0, Al lsatszo, Al large s

1®(-)*

Proof. 1t is a straightforward consequence of Lemma and the inclusion relations in (2.177]).
O
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2.6.4 Weak L"*> spaces
We address the reader to [145].

Definition 2.6.10. For r € [1,00), the weak L" space L™*°(R?) is the space of measurable
functions f : R* — C such that

(2.189) Ifllpree = sg% a)\f(a)% < 400,

where
A(e) = p({t e R [f(t)] > a}), >0,

1 being the Lebesgue measure.

Note that the quantity in (2.189)) is a quasi-norm.
For convenience, we write L (R%) := L>(R?). Observe that weak L" spaces are special

instances of Lorentz spaces and L"(R?) C L™>(R%), 1 < r < oo.

Lemma 2.6.11. (|3, Lemma 2.8]) For r € [1,00), A > 0 and o(t) = e ™", t € R%, we consider

—mAt?

the rescaled Gaussians @y (t) = e . Then we have

(3r) 2
2.190 oo (RA) = o e
( ) ”SO)\”L (R4) F(%#—l))ﬁ
Hence,
_d
(2.191) leallLroo ey = C(d, 7)™ 2",

4
with C(d,r) = e~ 2r (L) 4 +1)!

Proof. Observe that for o > 1 we have {t : |pa(t)] > a} = @. For 0 < a <1, {t: |par(t)| >
a} ={t: |t| < 7~ /2X71/2(log(1/a))'/?}. The Lebesgue measure of the set is given by

log(1/a)2
Axi=u{t: ) <722 10g(1/a)) 2} = B
I'(g+1)Az
Now, using the definition of the quasi-norm in (2.189)),
1
ol Lro (may = sup ap({t: ler(t)] > a})~
1
= sup adj
0<a<l
L £

=———— sup a(log(l/a))r
T+ e S (log(1/a))

An easy computation shows that the function y(a) := o (log(1/a)) ¥ on (0,1) admits the max-

imum point ¢3; := e~ 3¢ and the maximum is y(tps) = (d/(2r))%/2r)e=2/(2") 5o that we obtain
the claim. O

We observe that in the L™ spaces the rescaled Gaussians behave like in the usual L" spaces,
meaning ||@x ||, = ||@allpre < ATYC,
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2.7 Main operators

The operators presented in this section shall be object of study of next chapters. We shall see:
localization operator A¥*¥2 both on R? and G, Gabor multipliers G192 on R¢ and GY*+92 on
Zy, pseudo-differential operators Op, (o) and Born-Jordan operators Opy (o) on R? Kohn-
Nirenberg operators Opg(c) on G LCA group, Fourier multiplier 7},, on R? and linear time
invariant filters H on CN = (2(Zy) (recall (2.104)).

2.7.1 Localization operators on R?

Definition 2.7.1. Consider a symbol a € S'(R??) and non-zero windows 11,1, € S(R%) ~
{0}. Then the localization operator

A2 S(RY) — S'(RY)

is defined by the formal integral

(2.192) AVrv2 f(t) = / a(x,w)Vy, f(z,w)MyTys(t) dedw,
R2d

or we can give the definition in a weak sense as follows:
(2193) <Ag)17¢2f7 g> = <a’7 V¢1fV’L/12g>v vf?.g € S(Rd)7

where (-,-) in the left-hand side is the sesquilinear duality between S'(RY) and S(R?) and in the
right-hand side between S'(R?*?) and S(R??).

Localization operators are also called STFT multiplier because of (2.192).

Remark 2.7.2. AY1%2 js well defined as mapping AV+¥2: S(RY) — S'(RY). In fact, for any
f?g)w1)¢2 S S(Rd) we have
Vi, £, Vi g € S(R??)

by Theorem [2.3.1)] Moreover
Vi f € SR =V, feSER™M).
Since the Schwartz class is closed under pointwise multiplication, we get
Vi FVig € S(R*)

and thus {a, Vy, fVi,g) makes sense since a € S'(R??).
The linearity of AY1%2 comes straightforward from ([2.193). Indeed

le : (.’IJ,W) = <'3MwTwwl>

is linear, the duality between S'(R??) and S(R2?) is antilinear in the second argument, hence the
complex conjugation over Vi, f makes of AY1¥2 a linear operator.

A localization operator A¥1%2 is defined whenever the vector-valued integral makes
sense, hence we could chose other sets as spaces of symbols and windows respectively. In
the brackets (-,-) would express the duality on a suitable pair of dual spaces (B’, B) and extend
the inner product on L?(R??). For example, later we shall pick the Gelfand-Shilov space B =
SM(RY).
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Remark 2.7.3. AYv¥2 defined as in is well defined and continuous from S(R?) to S'(R9)
(endowed with the w-* topology). In particular if one considers a symbol a in the Lebesgue space
L1(R2?) (1 < q < 00) and window functions 11,y in the Feichtinger algebra M*(R?), then the
localization operator AY1¥2 is in the Schatten class J9 (see [28]). In this case, the localization
operator AY1¥2 is a bounded and compact operator on L*(R%).

We report the following important characterization of A¥1:%2 € JP(L?(R%)), [29, Theorem
1].

Theorem 2.7.4. Consider 1 < p < oc.
(i) The mapping
MP(RY) x MY (RY) x MY (RT) — TP(L*(RY)), (a, %1, ) = AH¥2
s bounded with norm estimate

||Afl’w2”jp < Bllal| yrp.oo 101l a1 102 31
for a suitable constant B > 0;

(i) Assume that AY1%2 € JP(L?(RY)) for all windows 1,19 € M (RY) and that there exists
a constant B > 0 depending only on the symbol a such that

|45 %2| 7, < Bl 2l Yoo, v2 € S(RY).
Then a € MP>(R2%).

Remark 2.7.5. If ¢4 (t) = e~ = Pa(t), then A, = AY1¥2 is the classical anti-Wick operator
and the mapping a — AYv¥2is a quantization rule in quantum mechanics [17), [39, (125, [152)].

The terminology localization operator appears for the first time in 1988, in a paper by I.

Daubechies [37]. Writing A¥1¥2 f as the integral makes this choice clearer. Think of f
as a signal, an element of L?(R?) is suitable, then we analyse the signal via its STFT. For sake
of simplicity consider the symbol a of type xq, where Q C R2? is a compact subset of the time-
frequency plane. The product aVy, f is the restriction of the analysed signal to a compact subset
in the phase space. Eventually we obtain the modified signal A¥**¥2 f multiplying by M,, T, and
integrating. According to this perspective, 11,19 are called analysis and synthesis window
respectively.
In [9] even rough symbols are considered (see Remark , no assumptions on the geometry or
support of the generalised function a are made. Besides, the related localization operator A¥1:%2
is not necessarily a self-adjoint operator. It is easy to check that the adjoint of a localization
operator is given by

(Agrve)t = AP

hence the self-adjointness property forces the choice 1)1 = 15 and the symbol a real valued, as for
the case Aﬁ;}w mentioned above. The framework of [9] can allow the use of two different windows
11 and 1o to analyse and synthesize the signal f, respectively. Moreover, the symbol a can be
a complex-valued function.
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2.7.2 Localization operators on ¢ LCA group

We address the reader to Wong’s book [152] for a detailed treatment of localization operators on
locally compact Hausdorff groups and point out the recent works [I08] [109]. Since the equivalent
of the Schwartz class on G, i.e. the Schwartz-Bruhat class, is quite cumbersome to deal with, we
adopt the more handy Feichtinger algebra Sp(G).

-~

Definition 2.7.6. Consider windows 11,12 € So(G) and symbol a € S)(G x G). Then the local-
ization operator with symbol a and windows 1,9 in So(G) is the linear and continuous
operators

AGHP2: 8(G) — Sy(9)

formally defined by
(2.194) AVrv2 f(z) = / _a(u,w)Vy, fu,w) My, Tyutpa(x) dudw.
gxg

Equivalently, its weak definition is
(2195) <Afl’¢2fa9> = <a7V¢1fV’¢'29>v vages()(g)

Remark 2.7.7. (i) It is straightforward computation to check that A¥v¥2: Sy(G) — S4(G) is
well defined, linear and continuous as claimed (cf. [101, Theorem 5.3]);

(i7) Concretely, we shall mainly consider windows 11,12 € Sc(G) rather than in the whole
Feichtinger algebra. Notice that if a € LP(G x G), for any 1 < p < oo, then A¥1¥2 €
B(L?*(G)), cf. [152, Proposition 12.1, 12.2, 12.3].

2.7.3 Gabor multipliers

We address the reader to [66], [122] for more about Gabor multipliers.

Definition 2.7.8. Let a,3 > 0 and consider the lattice A = oZ? x BZ?, then the Gabor
multiplier with windows g1, g> € L?>(R?) and symbol a can formally be defined as

(2.196) G f = > alak,Bn)Vy, f(ak, fn)TaxMpngs, Vf € L*(RY),
k,nez2d

Observe that a Gabor multiplier is the discrete version of a localization operator; in fact it
can be obtained from (2.192)) by replacing the Lebesgue measure dxdw with the discrete measure
V= Zk nezd dak,pn; the integration with respect to v becomes the summation

/ F(z,w)dv(z,w) = Z F(ak,fn).
R24 k,nezd

Note that this is a particular instance of a continuous frame multiplier, a (discrete) frame mul-
tiplier and their relation, see [2 4l [6].

2.7.3.1 Gabor multipliers on G = Zy
Recall the identification CN 22 ¢2(Zy) (2.104).
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Definition 2.7.9. Given a rectangular lattice N C Zn x Zn as in (2.138)), windows g1, g2 € CV,
mask or lower symbol a € CN*VN | we define the (finite) Gabor multiplier applied to f € CV
as follows:

A-1B-1

(2.197) GI2f =Y > alak, BI)Vy, f(ak, Bl)m(ak, Bl)gs

k=0 1=0
Whenever clear, we shall write G192 in place of Ggll’\m.

Remark 2.7.10. If we pick o =1 = 3, the the relative finite Gabor multiplier GI192 is just the
localization operator (or STET multiplier) A992 on Zy .

It is straightforward to obtain the matrix representation of G¥'2%*:

A-1B-1
e — 2mm(u v)
(2198)  K(GI%)(u,0) = alak, Bl)g (v — ak)ga(u — ak)e ==
k=0 (=0
Let us introduce the notation
(2.199) S := Fsa,

where a € CNV*¥ is the symbol of a Gabor multiplier and F, the discrete symplectic Fourier
transform (2.114). In [46] many results for the interrelation of spreading function and Gabor
multiplier are shown. Here we give the related finite dimensional result, like the following:

Proposition 2.7.11. ([3, Proposition 6.3]) The spreading function of a (finite) Gabor multiplier

Gz is given by
N a—1p-1
(2.200) n(GIA) (u, v) = B Z Z S(u+ Bk,v — Al)V,, ga(u,v).
1=0 k=0
Proof. A direct computation gives
N-1 s
(G ) (u,v) = > K(GI#)(t,t —u)e™~
t=0
N—1A-1B-1
_— 27r1Blu —2mitv
= a(ak, Bl)g1(t —u — ak)ga(t — ak)e e N
t=0 k=0 1=0
A-1B-1 —_—
= a(ak, Bl)e
k=0 1=0
N_l— 2mit
(2.201) X g1t —u—ak)ga(t —ak)e” ~
t=0
Performing the substitution ¢’ = ¢ — ak in (2.201]) gives
gl 1— 27rm —27i(t fak)v
D g1t —u—ak)g(t —ak)e —Zgz gt —u)e™ ¥
t=0

W S
t'=0

—2miakv

092(u, v)e”
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Hence, recalling the definition of III(, ), Fs, F2, and using Lemma [2.3.34| together with (2.107),
we get

.
L
ool
L

2mwifBlu —2miakv

(G (u,v) a(ak, Bl)e ¥ e” T NV, ga(u, )

(]

|

= =
I
o
T
o

FS (a’ ’ m(aaﬁ)) (uv U)Vgng(ua U)
aT : H‘[%:l,ﬁ)) (_u7 ’U)V!MQQ(U’ U)
a’ 1 (g,0)) (—u,0) Vg, g2(u, v)

I
u ul
M)
~/

[\
—~

=

= 2 (FQaT * FQHI(BJX)) (_U” U)‘/;?192(u7v)

2
L
2
L

FgaT(—u — kv = D)Folll (g o) (K, 1)V, g2 (u, v)

|
Z|= =

Z

LA

27

-
=

Fsa(u+k,v —)ABI g a)(k,1)Vy, g2(u,v)

\
2=
b
o |
=)
= ~
|
| o
—

Fsa(u + Bk,v — Al)V,, g2(u, v).

=5

N
Il
=
=~
Il
<

This concludes the proof. O

We shall frequently denote the periodization of S by S54:

a—1p6-1

(2.202) SEA(u,v) =Y S(u+ Bk,v— Al),

=0 k=0

the periodicity is meant in the sense that
(2.203) SEA(u,v) = SEA(u + Bk, v + Al)

foru,v=0,....N—land k=0,...,6—-1,1=0,...,a—1.
So that (2.200) can be written as

N
(2.204) MG (0.0) = 2 SEA (10) Vg v).
’ Q
The factor N/af is also called redundancy. In the finite dimensional case the interpretation of
this number is straightforward, because one uses A - B to represent a vector in RY. This leads

to an oversampling of
AB_NN1 _ N
N a BN ap
By using the convolution theorem for F, cf. (2.107) and (2.115) and see [64, Theorem 4.3], and

Lemma [2.3.34] we get

a—1p-1
1
Fs (a : Hl(a,ﬁ)) (u,v) = OTB Z Z S(u+ Bk,v — Al).
1=0 k=0
Therefore

(2.205) SEA(u,v) = aBF, (a- My ) (u,v).
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spectrogram after bandpass filter spectrogram after STFT-multiplier

-200 -200
-150 -150
-100 -100

-50 -50

0 0

50 50
100 100
150 150
200 200

-200 -100 0 100 200 -200 -100 0 100 200

Figure 2.1: The left part shows the (Gaussian) spectrogram of the output of an “ideal
band-pass filter” with cut-off frequency R = 80, applied to a random signal in CV, N =
480. The right hand side represents the spectrogram of the output of the corresponding
STFT multiplier GJ'*72. Here we use the number of samples as normalization on time
and frequency scale.

Example 2.7.12. As example, we consider a low pass filter as it is often implemented in prac-
tice. We choose the frequency response heCN equal to the characteristic function, which is 1
on [—R,R] and zero elsewhere. The resulting convolution operator H is compared to the filter
generated by a Gabor multiplier G192 with symbol a =1 ® h. As analysis and synthesis window
for GI1:92 we choose the Gaussian window normalized by the factor 1/N, which is the redundancy
since we take o = 8 = 1. Both operations are applied to a random vector fy.

A graphical comparison of the LTI filter approach and of the Gabor multiplier one is shown
in Figure[2.]]

2.7.4 Op,(0) operators

Definition 2.7.13. Consider a tempered distribution o € S'(R?*?) and 7 € [0,1]. Then the
T-quantization Op, (o) of o is the continuous mapping

Op,(0): S(RY) — S'(RY)

(S'(R?) endowed with the w-* topology) defined by the formal integral as:

(2.206) Op-(0)f(t) = /RM T o (1 — )t 4 1o, w) f () dodw,
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or defined weakly by

(2.207) (Op-(0)f,9) = (0. Wr(g, f)).  Vf.g.€ SRY,

where (-,-) in the left-hand side is the sesquilinear duality between S'(R?) and S(R?) and in the
right-hand side between S'(R?*?) and S(R??).

Naturally, o is the 7-symbol of the operator Op, (o), see Definition When 7 = 0,
we call Opg(o) the Kohn-Nirenberg quantization of o and o is called Kohn-Nirenberg
symbol of Opy(0).

When 7 = 1/2, we call Op,/3(c) Weyl transform (or quantization) of o, the distribution o
is called then Weyl symbol of the operator. For Weyl operators we adopt also the following
alternative notation:

Lo := Opy/5(0).

Remark 2.7.14. Op, (o) is well defined as mapping Op,(0): S(R?) — S'(R?). In fact, for any
f,9 € S(RY) we have W, (g, f) € S(R?*?) by Lemma , Thus (o, W (g, f)) makes sense since
o € S'(R%). The linearity of Op,(c) follows immediately from the weak definition of Op, (o)
because of the relation between Wigner distribution and STFT, Lemma . Then W.(g,-)
is antilinear and (o, W,(g,-)) is linear since (-,-) is the sesquilinear duality between S'(R?*?) and
S(R24),

Remark 2.7.15. (i) The Schwartz Kernel Theorem, stated for S(R?) and S'(R?) as in [82,
Theorem 14.8.4], implies that if T: S(RY) — S'(R?) is a continuous operator (where
S’ (RY) is endowed with the w-x topology), then there exists o € S'(R%4) such that

T=1L,.
See in particular [82, Theorem 14.5.5/;

(#i) It is always possible to write L, as the T-quantization of some symbol o, T # 1/2. In

fact, we have from [35, (4.37) and (4.38)] that
2d
Or = ———
|1 —2d|"

—mi(1—27)zw

(2.208) L, =O0p,(o;) & % o(z,w).
Hence the Schwartz Kernel Theorem can be expressed in term of any T-quantization, T €
[0,1]. Namely, given T: S(R?) — S'(R?) linear and continuos and T € [0, 1], then there
ezists o, € S'(R?4) such that

T= OpT (UT)'

This fact has been reported in Theorem [2.3.20

As highlighted in Remark A¥1:¥2 is continuous from S(RY) to S’(R?) whenever a €
S'(R??) and 91,95 € S(R?). Hence there exists 0 € S'(R??) such that A¥v¥2 = L,. A
calculation in [17, 68, [125] reveals that the Weyl symbol associated to A¥1:%2 is

(2209) g =a#* W(w2>¢1)7
then
(2.210) ATV = Losw (g pn)-

In [IT, Proposition 2.16], in the Gelfand-Shilov setting, every 7-symbol of A%1%2 was explicitly
calculated. We state the following result without proof since the one of subsequent Proposition
2.8.16] applies almost verbatim.
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Proposition 2.7.16. Consider a € S'(R??), 11,19 € S(R?) and 7 € [0,1]. Then

A2 = Op,(a % Wy (1h2,91)).

The crucial relation between the action of any 7-quantization Op,(o) on time-frequency
shifts and the short-time Fourier transform of its symbol is contained in [32, Lemma 4.1].

Lemma 2.7.17. Consider T € [0,1], g € S(R?), ®, :== W, (g,9) € S(R??). If 0 € S'(R??), then
(2.211) {Op+ (o) (=), m(w)g)] = Va0 (Tow,2), J(w — 2))[, V2w € R,

where z = (21, 22),w = (w1, wy) € R?? and T, and J are defined as follows:

(2.212) Tr(w,z) = ((1 = T)wy + 721, Twe + (1 — 7)22), J(z) = (22, —#1).

Notice that J = —J in the case G = R?, J defied as in (2.98). The following lemma can be
viewed as a form of the inversion formula ([2.74]). We present the proof later for the same result
stated in the Gelfand-Shilov setting, as was published in [I1, Lemma 3.2].

Lemma 2.7.18. Let 7 € [0,1] and 0 € S'(R*?). If g € S(RY) with |g||;> =1 and f € S(RY),
then

(2.213) Ob:(0) = [ Vo () Op(0)(n(2)g) d.
]R2d
in the sense that
Op,(0)1.9) = [ Vol () Op-(0)(m(2)a) o) =, Vi € SR,

We first recall Schatten class results for the Weyl calculus in terms of modulation spaces,
initially proved for 1 < p < oo in [I7, Theorem 4.5, for 0 < p < 1 we refer to [142, Theorem 3.4].

Theorem 2.7.19. If the Weyl symbol o € MP}(R%4) for some 0 < p < oo, then the operator
L, belongs to the Schatten class JP with

[Lollge < lloflazp-
In particular, L, is a compact operator on L?(R%).

2.7.5 Born-Jordan operators

We suggest [26 [40] to the interested reader.

Definition 2.7.20. Let f,g € S(RY). We call Born-Jordan distribution of f and g the
function given by

(2.214) Wa(f.0) = [ Wrlr.g)dr

The Born-Jordan operator with symbol o € S§'(R?) is then defined as

(2.215) (Oppy(0)f.9) = (0, Wgs(g, f)), Vf,g€SRY.
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2.7.6 Pseudo-differential operators on G LCA group
Definition 2.7.21. Let o € Sé(g X Q\) Then the pseudo-differential operator with Kohn-
Nirenberg symbol o is the linear and continuous operator

Opo(0): So(G) — S5(9)
defined by the formal integral

(2.216) Opo(0) f(z) = /3 o(x, ) f(E)(E, x) dE, Va € G.

Equivalently, we can define it weakly by

(2.217) (Opo(0)f,9) = (0. R(g, f)),  Vf,9 € So(9),
where (1) = s5;(,")s, and R(g, f) is the cross-Rihaczek distribution of f and g as in (2.96).

To see that Opg(o) in the above definition is actually well-defined, linear and continuous
from Sp(G) into S{(G) see, e.g., [T0T], Corollary 4.2, Theorem 5.3].

2.7.7 Fourier multiplier

Fourier multipliers [I3] are well known in both partial differential equations and signal analysis.
They can be viewed as a special instance of Kohn-Nirenberg operators with symbol which depends
only on the frequency variables w € R%.

Definition 2.7.22. Let m € S'(R?). The Fourier multiplier with multiplier m € S'(R?) is
the linear and continuous operator

T, : S(RY) — S'(RY)
defined by
(2.218) T f(t) = F (mF[)(t) = (F 'mx f) (t), VfeSRY).
The function
(2.219) h=F"'m

is called the impulse response or transfer function in signal processing [110].

Such operator is a well-defined linear mapping from S(R?) to S’'(R?). Boundedness properties
of Fourier multipliers T}, : LP(R?) — L9(R%) are studied in the classical paper by Hérmander
[98]. The most important examples of Fourier multipliers can be obtained by taking p = ¢ = 2.
Then T), is bounded if and only if the multiplier m € L>*(RY) and || T, | 5(z2) = ||m||p~. For
p=g¢q=1and p =g = oo the only bounded Fourier multipliers are Fourier transforms of
bounded measures. For the cases p = ¢ € (1, 00) \ {2} only sufficient conditions on m are known.
The assumptions m € L is necessary, though. The main result by Hérmander in [98, Theorem
1.11] (see also its generalization to locally compact groups [I]) states:

Theorem 2.7.23. If1 <p <2< q< oo, me L"®(RY) with
(2.220) 1/¢g=1/r+1/p,
then Ty, is bounded T, : LP(RY) — LI(R%).

Here L™>°(R?) is the weak L"-space, see (2.189). For example, every m on R? with |m(w)| <
Clw|=%7, C > 0, satisfies m € L™>(R?). For simplicity, we defined L°>>°(R?) := L>*(R%), so
that, inserting r = oo in Theorem [2.7.23] we recapture the boundedness of the multiplier 7T;,, on
L2(RY).
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2.7.8 Linear time invariant filters on G = Zy

Here we apply the identification CV 2 (2(Zy), see ([2.104). In the finite discrete setting, i.e.
G = Zy, Fourier multiplier are also named linear time invariant (LTT) filters [115].

Definition 2.7.24. A Fourier multiplier on Zy, or linear time invariant (LTI) filter on
CN, or convolution operator

H:CcVN >N
is the linear operator uniquely determined by the so called impulse response h € CV wia
circular convolution

N—
(2.221) Hf(u):=hxf(u):=Y h(u—k)f(k), YfeC" u=0,...,N—1,
k=0

Ju

where u — k is considered modulus N .

Clearly, h = H§ where ¢ is as in and
Hf(u) = h+ f(u) = (FR"Fxh o F P ) (w) = Fi* (B f) (),

see (|2.219)), h is also called frequency response. It is straight forward to see that a LTI filter
H on CV has matrix representation

(2.222) Kg(u,v) = h(u —v), u,v=0,...,N—1.
We can define the associated discrete spreading function ng € CV*V as

(2.223) ng(u,v) = h® 0(u,v).

2.8 Gelfand-Shilov setting

We now revisit sections and in the framework of Gelfand-Shilov spaces S7 (R¢) and
Y7 (R?). For some references about the Gelfand-Shilov setting we address, e.g. to [76] 118 141}
143]. We introduce the Gelfand-Shilov spaces, then define the STFT for ultra-distributions and
give the definition of ultra-modulation spaces, eventually localization and 7-pseudo-differential
operators are shown in the present setting.

In this section, we drop Assumptions [2.5.1 about polynomial growth of the weights involved.
In fact, we shall consider the weights w; defined in .

Proposition was published by N. Teofanov and the author in [II], it extends the
convolutions for modulation spaces presented in Proposition [9). Also Lemma and
Proposition appeared for the first time in [11].

2.8.1 Ggelfand-Shilov spaces and their duals
Let h,v,7 > 0 be fixed. Then Sz;h(Rd) is the Banach space of all f € C°>°(R?) such that

PYa
(2.224) Hf”SZ;h ‘= sup sup aabiCal

—_— e < +0
p,qeNg z€R? hlpl+lal|pim |g| !ty 7

endowed with the norm ([2.224)).
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Definition 2.8.1. Let v, 7 > 0. The Gelfand-Shilov spaces S)(R%) and ¥ (R?) are defined
as unions and intersections of S’Z;h(Rd) with respective inductive and projective limit topologies:

=J SR and TI(RY) =[S, (RY).
h>0 h>0

Note that X7 (R?) # {0} if and only if 7+~ > 1 and (7,7) # (1/2,1/2), and SY(R%) # {0}
if and only if 7 + v > 1, see |76, [I18]. For every 7,7, > 0 we have

(2.225) YY(RY) < SY(RY) — TITE(RY) — S(RY).

If 7+~ > 1, then the last two inclusions in are dense, and if in addition (7,v) # (1/2 1/2)
then the first inclusion in is dense. Moreover, for v < 1 the elements of S?(R?) can be
extended to entire functions on C¢ satisfying suitable exponential bounds, [76].

In the sequel we will also use the following notations:

d d dy .__ d * d
SORY) :=2I(RY),  SUHRY) :=S)(R?) and S*(RY),
where * stands for () or {v}.

Definition 2.8.2. The Gelfand-Shilov distribution spaces (SY)'(R?) and (£7)'(R%) are the
projective and inductive limit respectively of (S:;h)/(Rd), the topological dual of Sz;h(Rd):

(SR = [V (57)RY) and (57)'(RY) = (] (57,,) (RY).

h>0 h>0
It follows that &'(R?) — (S82)'(R?) when 7 + v > 1, and if in addition (7,7) # (1/2,1/2),
then (S7)'(RY) — (£7)'(RY).
The Gelfand-Shilov spaces enjoy beautiful symmetric characterizations which also involve

the Fourier transform of their elements. The following result has been reinvented several times,
in similar or analogous terms, see [22] [89] 102, [114].

Theorem 2.8.3. Let v, 7 > 1/2. The following conditions are equivalent:
(i) f€SIRY) (resp. f€XIURY));
(i) There exist (resp. for every) constants A, B > 0 such that

l2? £ (@)l S AP and o f(w)z= S Bal", Vp,q € Ng;
(791) There exist (resp. for every) constants A, B > 0 such that
27 f (@)l 2= S APIp|I" and [|09f ()|~ S B'|q|", Vp,q € N;
(iv) There exist (resp. for every) constants h,k > 0 such that
1 (@)= T L < o0 and || f(w)e 7 L < +oo;
(v) There exist (resp. for every) constants h, B > 0 such that

(2.226) 19 £) (@)= |l 1 < Bldljgl, Vg e N
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Moreover, we could consider any LP-norm, 1 < p < oo instead of L*°-norm in Theorem [2.8.3
of. [107].

By using Theorem it can be shown that the Fourier transform is a topological isomor-
phism between 87 (R%) and ST(R), v, 7 > 1/2
(F(S7)(R?) = ST(R?)), which extends to a continuous linear transform from (S7)'(R%) onto
(S7) (R9). Similar considerations hold for partial Fourier transforms with respect to some choice
of variables. In particular, if v = 7 and 7 > 1/2 then F(87)(R?) = SJ(R?), and if moreover
v > 1/2, then F(£7)(R%) = %2(R?), and similarly for their distribution spaces. Due to this fact,
corresponding dual spaces are referred to as tempered ultra-distributions (of Roumieu and
Beurling type respectively), see [I1§].

The combination of global regularity with suitable decay properties at infinity (cf. )
which is built in the very definition of S)(R?) and ¥7(R%), makes them suitable for the study of
different problems in mathematical physics, [76] [80, 114]. We refer to [33] [34] 134} 135] for the
study of localization operators in the context of Gelfand-Shilov spaces. See also [139] 142, [143]
for related studies.

2.8.2 Time-frequency distribution and operators

As done for the framework of the Schwartz class S(R?) and its dual S’'(R?) in Section we
can defined the STFT of f € SW'(RY) w.r.t. g € S (RY):

Vof(z,w) = (f,m(x,w)g), z,w e R?,

where the dual pair (-,-) is the one between S’ (R%) and S (R?). Since S (R?) C L2(RY), the
definition of W, (f,g) makes sense for f,g € S (R?) too. In particular we recall the following
results.

Lemma 2.8.4. Let g € SM(R?) \ {0} and f € SV (RY).
(¢) If T € (0,1), then

1 o2mitwr 1 1 2d.,
Q227 Wilfg)ew) = e vATgf(l_Tx,Tw) Y (a,w) € R,

(1) if T =0, then

WO(.fa g)(l’,w) - 6727rixwf(x)g(w) = R(f; g)(:c,w), v(wi) € R2d;

(#i1) if T =1, then

Wi(f,9)(z,w) = ™ g(@) f(w) = R(g, [)(z,w), V¥ (z,w)e R

Theorem 2.8.5. Let S*(R?) denote SUHRY), v > 1/2, or SO(RY), v > 1/2. Moreover, let
g € S*(R?) ~ {0} and 7 € [0,1]. Then the following are true:

(i) if f € S*(RY), then W, (f,9),V,f € S*(R*);
(i) if f € (S*)(RY) and W, (f,g) € S*(R??) or V, f € S*(R??), then f € S*(RY).

Proof. The proof for the STFT and W, /5 can be found in several sources, see e.g. [89, 132, 139].
The case T € [0,1], T # 1/2, can be proved in a similar fashion and is left for the reader as an
exercise. O
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2.8.3 Ultra-modulation spaces

We use the terminology ultra-modulation spaces in order to emphasize that such spaces may
contain ultra-distributions, contrary to the most usual situation when members of modulation
spaces are tempered distributions. However, ultra-modulation spaces belong to the family of
modulation spaces introduced in [56]. We refer to e.g. [141], [143] for a general approach to the
broad class of modulation spaces.

Recall that the weight class 22 (R??) was introduced in Subsubsection

Definition 2.8.6. Fiz a non-zero window g € SW(R?), a weight m € Pg(R?*?) and 0 <
p,q < co. The ultra-modulation space MP:9(R?) consists of all tempered ultra-distributions
f e SO (RY) such that the quasi-norm

(2.228) £ lazza == 1V fllpne = </Rd (/}Rd Ing(x,w)lpm(x,w)de> » dw>

(obvious modifications with p = oo or ¢ = o0) is finite.

We collect properties for ultra-modulation spaces them in the following theorem in the same
manner of [I47], T42], see references therein also.

Theorem 2.8.7. Consider 0 < p,p1,p2,q,q1,q2 < 00 and weights m,my,my € P(R%?). Let
[ gz, be given by ([2.228) for a fived g € SM(RY) ~ {0}. Then:

(1) (Mﬁ{q(]Rd), ||'||M£L,q) is a quasi-Banach, if p,q > 1 it is a Banach space too;
(i) if g € SM(RY) ~ {0}, § # g, then it induces a quasi-norm equivalent to Nl agea s

1 d A[p N d 7‘{ N d 1) dy.

(iv) if p,q < oo, then :

(MEA(RY) = M7 (R,

where

1% if 1<p<ox

. {oo if 0<p<l1

and similarly for q'.

Remark 2.8.8. Point (ii) of the previous theorem tell us that the definition of MP9(R?) is
independent of the choice of the window. Moreover, it can be shown that the class for win-
dow functions can be extended from SM(RY) to M7 (RY), where r < p,q and v € Pr(R?>?) is
submultiplicative and such that m is v-moderate, [172].

We refer to [23] for the density of S (R?) in MP:9(RY).

The following proposition is proved in e.g. [133, Theorem 4.1], [I39, Theorem 3.9].

Proposition 2.8.9. Consider v > 1 and 0 < p,q < co. Then

SO (RY) = My q(Rd) U M{’/‘j‘)k
k>0 k>0
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In some situations it is convenient to consider ultra-modulation spaces as subspaces of
S1/2Y(RY) (taking the window g in S{1/2}(R%)), see for example [23, 142]. However, for our
purposes it is sufficient to consider the weights in Z25(R2?), and then MP;9(R%) is a subspace of
SW'(RY). We address the reader to [142, Proposition 1.1] and references quoted there for more
details.

We restate [33], Proposition 2.6] in a simplified case suitable to our purposes.
Proposition 2.8.10. Assume 1 < p,q < oo, m € Zg(R*) and g € SV (R?) such that ||g| ;> =
1. Then for every f € MP:9(RY) the following inversion formula holds true:

(2.229) f=/ Vof(z,w)M,Tyg drdw,
R2d

where the equality holds in MP;9(R).

The embeddings between modulation spaces are studied by many authors. We recall the

recent contribution [90, Theorem 4.11], which is convenient for our purposes and which will be
used in Lemma [3.3.3

weights vy, vs; defined as in (2.7). Then

Theorem 2.8.11. Let 0 < pj,q; < 00, 85,5 € R for j = 1,2 and consider the polynomial
) d ) d
M, (RY o MEE, (R
if the following two conditions hold true:

(1) (p1,pe,t1,ta) satisfies one of the following conditions:

1 1
(C1) — < —, to < ty,

P2 p1

1 1 1 to 1 t1
C — > —, —+ - <=4+
(C2) P2 p1 p2 d p1 d

(17) (q1,q2,51,S2) satisfies one of the conditions (C1) or (C2) with p; and t; replaced by g; and
s; respectively.

Discrete equivalent norms produced by means of Gabor frames make of ultra-modulation
spaces a natural framework for time-frequency analysis. We address the reader to [75] [82] 1411
147].

Theorem 2.8.12. Consider m,v € Pr(R?*?) such that v is submultiplicative and m is v-
moderate. Take A := oZ% x BZY, for some o, B > 0, and g, h € SN (R?) such that Sgn =1 on
L?(RY). Then

f=Y (fmNgrNh =Y (faNh)r(N)g, ¥ fe MRIRY),

AEA AEA

with unconditional convergence in MP:4(RY) if 0 < p,q < oo and with weak-+ convergence in
My, (RY) otherwise. Moreover, there exist 0 < A < B such that, for every f € MP9(R?),

B
Q=

Alflaze < | S2 S 108, w(ak, Br)g)Pm(ak, pn)? < B|\fllaze,

nezZd \kezd
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independently of p,q, and m. Equivalently:

(2.230) 1f Tz ey = (1(CF (Mg ez ay = (Ve A))allezis -
Similar inequalities hold with g replaced by h.

Now we are able to prove the convolution relations for ultra-modulations spaces which will
be used to prove the main results of Section [3:3]in Chapter [3] For the Banach cases with weight
of at most polynomial growth at infinity, convolution relations were studied in e.g [28], [136], [137].
We modify the technique used in [9] to the Gelfand-Shilov framework presented so far. The
essential tool is the equivalence between continuous and discrete norm .

Proposition 2.8.13. (|11, Proposition 2.24]|) Let there be given 0 < p,q,r,t,u,v < oo such that

111
w ot
and
1 1 1
-+ -=1+ -, for 1<r<oo
p q r
whereas

p=q=r, for 0 <r <1,

Consider m,v,v € Pg(R??) such that m is v-moderate. Then

M2 (RT) s« MO L(RY) — MIY(RY),

mi1 Qv V1 Quar ™

where my, v1, ve are defined as in (2.10)).

Proof. First observe that due to Lemma [2.2.11] and Lemma [2.2.12] it follows that the ultra-
modulation spaces which came into play are well defined.

The main tool is the idea contained in [28], Proposition 2.4]. We take the ultra-modulation
norm with respect to the Gaussian windows go(z) == e ™ € S{I/2/(R?) and g(z) := 2-%/2¢="2"/2 =
(90 * g0)(z) € SU/2HRY).

Since the involution operator g*(z) = g(—z) and the modulation operator M, commute, by
a direct computation we have

My, (g0 * 95) = Muge * Mgy

and .
Vof(,w) = e 275 (f + Mog*) ().
Thus, by using the associativity and commutativity of the convolution product, we obtain
Vo(f % h)(w,w) = e ((f 5 h) * Mug®) (z) = e 727 ((f % Mugg) * (h* Mugs)) (@) -

We use the norm equivalence (2.230)) for a suitable A = aZ? x Z¢, and then the v-moderateness
in order to majorize m:

m(ak, fn) < m(ak,0)v(0, Bn) = mq(ak)ve(Bn).

Eventually Young’s convolution inequality for sequences is used in the k-variable and Holder’s
one in the n-variable. Indeed both inequalities can be used since p, q, 7, v, t, v fulfil the assump-
tions of the proposition. We write in details the case when r,~,t,u < oo and leave to the reader



90 CHAPTER 2. PRELIMINARIES

the remaining cases, when one among the indices r,v,t,u is equal to co, which can be done
analogously.

1f * Pllaggo =< (Vo (f * h))(ak, Bn)ym(ak, Bn))k.nllers z20)

v/r el
S | D0 I+ Mpags) = (h s+ Mgngs)(ak)|"ma (ak)" v2(Bn)?
n€Z* \kezZd
1/y
| S0 5 Mng) 5 (b x Mang) I, (oyea(Bm)”
nezd !
1/~
S D0 I Meugg 3 azay 1P % Mpngg 13y oz v2(Bn)”
~ ; Eml (QZ ) 0 e'ul (OéZ )
neEZ
3 )
* || U u * UQ(ﬂn)t
S Z 1f * Mgngo ||e£’n1(azd)V(ﬂn) Z A Mingg ||zgl(azd)W
nez? nezd
= (Voo Mg, ) VY MDallger )
v] ®uov

<z, ellgme

P

Here we wrote m; ® v in place of (my ® v)a, similarly for the other weights appearing in the
lower indexes.This concludes the proof. O

2.8.4 Localization operators and T-quantization

Localization operators A¥1¥2 and 7-pseudo-differential operators Op, (o) can be defined also
in the setting of Gelfand-Shilov spaces. Namely, in the definition given in (2.193) and (2.207])
substitute the dual pair (S§,S) with (SM’, SMW).
The proof of the following lemma is omitted, since it follows by a slight modification of the proof
of [32, Lemma 4.1].

Lemma 2.8.14. Consider 7 € [0,1], g € SD(RY), &, = W,(g,9) € SV(R?). Ifo €
SW'(R24), then

(2.231) |(Op,(0)m(2)g, m(w)g)| = Vo, 0 (T-(w, 2), J(w — 2))|, Vzwe RQdﬂ
where z = (21, 22),w = (w1, wy) € R?? and T, and J are defined as in (2.212)).
The following lemma can be viewed as a form of the inversion formula (2.229)).

Lemma 2.8.15. (|1, Lemma 3.2]) Let 7 € [0,1] and 0 € SV (R*). If g € SO(RY) with
lgll 2 =1 and f € SO(RY), then

(2.232) Op.(0)f = /]R Vel (2) Opr(0)(n(2)g) dz,
in the sense that

(Op-(0)f. ) = /R Vof(2) (Opr(0)(m(2)g) ) dz, Ve € SD(RY).
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Proof. Consider 7 € (0,1) and recast the 7-Winger distribution W, (¢, f) using the operator
A, f(t) = f (==1t) introduced in (2.83):

1 Titwr 1 1
W (o, f)(@,w) = ™7V s ( x, W>
T 1—-7 "7

U

1 )
_ - 2migwa (o, leTl%l'ATj)

9

d
1 .
:dezmiwm<< T ) Av T o M_1,0, f)

1—7 -7

3

T R2d 1—7 T

d
1 1 _— T
:7627”10\13? ‘/gf(z><(> Al*TTfﬁwM 1w90a7T(Z)g> dz

*

dezméww“a’leTl%mATW(Z)!ﬁ dz
2d T . ’

1

/
i1 1 1
:/ Vol (2) ™™ 7 Ve, n(a)g (1557 “) 4
R T
/

-7

Vol (2) Wr (g, m(2)g) (2, w) dz.

Therefore

(Op-(0)1,0) = (0. W (0. f)) = o, / Vo () Wi, m(2)g) (@,w) d2)

R2d

_ /R Vo () (0, W, w(2)g) () ds = / V, (=) (Ops (0)(r(2)g), ) d=

R2d

and (2.232) holds true when 7 € (0,1).
For the cases 7 = 0,1 we need the operator J defined in (2.212)) and the following equalities
which come from easy computations (cf. [82]):

Vo f(z,w) = e 2V, f(w, —x), FT, = M_oF, FM, = T,F, TyM,, = e~ 2" M, T,.

Therefore ([2.232)) is proved for 7 = 0,1 in the following manner. We put z = (z,w) and let
o acts on functions of variables (y,n):

(Opo(0) f, ) = {o, ™™ p(y) f (1))
— (e () [ V@m0 dx)

R2d

— (0. [ VTG o) TR (T30 )
= [ Vel (e o) nEla o) d:

= [ Vol Yo Walim(2)0) dz

= [ Vel () Omo()m(2)g. )



The case 7 =1, i.e.
Oni(@)f.) = | Vol ()Op1(a)(2)g. o) d=
can be proved in the same manner. The details are left to the reader. O

Proposition 2.8.16. (|I1, Propositio 2.16]) Consider a € S'(R?4), 11,19 € S(RY) and 7 €
[0,1]. Then
AZJIJPZ = Op'r(a * Wf(iﬁzﬂbl)).

Proof. For any 7 € [0,1], let us define
Ay}’% = Op‘r(a * WT(wQ) ¢1)>7

where 1,1 € SO(R?) and a € SM' (R2?). We show that A2 = A2 for every T € [0,1],

using the Schwartz kernel theorem for S(*) (R%) and s’ (R?). From the weak definition of A¥1:¥2
it follows that B
(Agv¥2 f,g) = (K(AY2),9 @ f),

where the kernel K (AY1¥2) of the operator AY+¥2 is given by

(2.233) K(AVY2)(t y) = / a(w, w) M, Ty (y) My, Toptbs (t)dadw.
R2d

It remains to calculate the kernel of A¥',*>. By the commutation relation T, M, = e~ "< M, T,,
and the covariance property of 7-Wigner transform:

WA (T M, f, TeMug)(p,q) = Wo(f,9)(p — x,q — w),

we calculate a * W (2, 1) and obtain

a * WT(/IZ}27 1/11)(19» (]) = / a(l’,W)WT(Tme(pg, TzMw@l)(p7 q)dxdw
R2d

= / a(wi) </ Mwad)Q(p + TS)MwTaﬂ/}I (p - (1 - 7)3)62mqsd8> dxdw,
R2d Rd

Now by using a suitable interpretation of the oscillatory integrals in the distributional sense, and
appropriate change of variables (cf. [I35]) we get

(AL f.g) = ax Wr(¢2,91), Wr (g, f)
= [ o) [ ([ Mo+ r ST~ (1= 7))
x e~ 2G4+ ) f(p— (1 — 7)r)dsdr)dpdgdzdw
= [, L cw ) M a e ST ) o)1 e
— (K(AP), g0 ),
where K (AY1%2) is given by . By the uniqueness of the kernel we conclude that
Az = At

and the proof is finished. O



Chapter 3

Eigenfunctions of localization
operators on R4

The core of this chapter are some new results of decay and smoothness for eigenfunctions of
localization operators on modulation and ultra-modulation spaces, presented by E. Cordero, F.
Nicola and the author in [9] and by N. Teofanov and the author in [IT]. The main results state
that, roughly speaking, if f € L?(R%) is an eigenfunction of AY¥2 with suitable symbol a, then
one of the following may occur:

fe(M'®RY, feS®RY), feSTRY,
>0

see Theorem [3.2.1} [3.2.9] and [3.3.6] respectively.

In order to study A¥1%2, we investigate first Weyl operators L, and got results concerning
boundedness on modulation spaces and L?-eigenfunctions, this is done in Section Section
reports the main results of [9], see in particular Theorem and Eventually, in Section
results of similar flavour in the Gelfand-Shilov setting are presented from [11].

We recall that the necessary backgrounds can be found in Chapter [2| and warn the reader
that in Section of the current chapter Assumptions are dropped, i.e. we shall consider
not only weights of polynomial growth but of (sub-)exponential growth as well.

3.1 Preliminary results on Weyl operators

The target of this section is Theorem ([9, Theorem 3.3]) which will tell us when, according
to the symbol o, it is possible to extend the Weyl operator L, to modulation spaces and which
ones are allowed. The proof presented here is independent and alternative to the one present in
[A.
We then derive some consequences about eigenfunctions for L, which we require only to be in
L2(R%).

The proof of the following criterion is contained in [82] Lemma 6.2.1], it will be a useful tool
in the sequel.

Lemma 3.1.1. (Schur’s boundedness test)
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(1) Consider an infinite matriz a = (agn)knez C C and 1 < p < co. Suppose that:

supz |ak7n\ <(C; < +00, supz \ak,n| < (5 < +0o0.
kEZ nez nez keZ

The linear operator
A: KP(Z) — EP(Z),C — ((Ac)k-)k:eZ7

defined by the matriz-vector multiplication

(Ac)y = Z Ak Crs

neEZ

is well defined and bounded. Moreover the following estimate holds:
lAllo, < G177
(ii) Consider a measurable function K:R?*? — C and 1 < p < co. Suppose that:

ess sup |K (z,w)] dw < C1 < +o00, ess sup |K(z,w)| de < Cy < +00.
z€Rd  JR4 weRd  JR4

The linear operator
A: LP(RY) — LP(RY), f — Af,

defined as integral operator with kernel K by

Af(z) = » K(z,w)f(w) dw,

is well defined and bounded. Moreover the following estimate holds:
lAllo, < C17 €.

Theorem 3.1.2. ([9, Theorem 3.3])

(1) Consider 0 < p,q,v < oo such that
1 1 1
(3.1) S4-==
P q 0

If o € Mp’nli“{l’”Y}(RQd), then the Weyl operator
Ly: S(RY) — S'(RY)
extends uniquely to a bounded linear operator from MI(R?) to M"(R?);

(ii) Consider s,r >0, t>r+s, and a symbol o € M (R2?). Then the Weyl operator

Vs @t
Ly: S(RY) — S'(RY)

extends uniquely to a bounded linear operator from M2 (RY) into M2 (R%).

Urts
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Proof. (i) Assume v > 1, then, by , p>v>1andq > >1. The claim was proved by Toft
in [I36, Theorem 4.3]. The case v < 1, p,q € (0, 0] was again proved by Toft in [142] Theorem
3.1]. For sake of completeness we provide an alternative and independent proof.

Assume first v > 1, then, by , p>v>1and ¢ >y >1 and the claim was proved by Toft
in [I36, Theorem 4.3].

Consider now the case 7 < 1 and p,q < co. We set

(3'2) GM,)\ = <LJ(7T()\)g),7T(/L)g>, A€ A,

where A = aZ?? is a lattice in R??, g € S(R?) and (-,-) is the sesquilinear duality between S’(R?)
and S(R?). Notice that, by Lemma with 7 =1/2,

(3.3) |Gua| =

A
qu(“;, (,LA)>', A€ A,

where ® := ®; 5 := W (g, g) and J(21,22) := (22, —21) for 21, 20 € R We want to show that the
operator defined by the matrix (G» ,)x,, is well defined and continuous, namely:

G:lU(A) = 0(N),c= (ex)r = (Gew)p,
where

Gey, = Z Guach.

AEA

We choose the Gaussian window ¢(t) = 24/ 46*7”2, t € R%. Tt is a straightforward calculation
to show that the related Wigner distribution is the rescaled Gaussian ® = W (g, g)(z,w) =
2de=27(x"+w%)  Now, the Gabor system G(®, A x A) is a frame for L2(R2?), whenever A = aZ2¢,
for any a > 0 satisfying a? < 1/2, as shown by M. de Gosson in |41, Proposition 10] (take
h = 1/(4w)). Hence we choose a < 1/4/2. Since v < 1, from Theorem we have the
continuous inclusion

O(A) = (D),
therefore for any a € £7(A) we have

(3.4) laller S llallgn -
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We can now compute as follows:

1Gellen = (Z IGCHIV)

pnEA

) (ZA )

(z (z Gl |))

=I(Gu,xex)alln

using (B-4) < Z((mem )

;J,EA AEA

)
V@U(A_Fu J(p— A) |c,\|'y>
Vo (252 )| W)”
V¢U<2u+J( ) )‘ leur s )v
Voo (MJ(X), A) P) % (Z |cu+J()\’)|q) ,
peh

2
where: in last inequality we applied Holder’s inequality with

Z Gy e

AEA

IN

2=

using = Z Z

HEANEA

=22

AEA pEA

(3.5) =1> >

ANeApeA

P>

NeEA \peA

|

QR
2=

IN

in (3.5) we set
No=Jpu—-N)=Jpu) —J\) €A

which implies
JN)=J%(p) = J*N) = —p+XA = A=JN)+

Hence, performing the change
p+JN)=X"€eA

in the last sum we get ||c||¢a. Let us observe that the following inclusions occur:

Acin,  3acia
2 2
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Then the change of variables

1 3
pu+JN)/2=p € A+ §A: §A

allows us to majorize as follows

R
2=

P

1Geller S llelles | D (D

MNeA \peA

i
Voo (W’X)

X
P

=llellea | Do | Do Vao (W X))

)\/EA /J’E%A

SR SN
5 R v 2=
2=

<lelles [ >0 | Do Vao (W, NI

NeFA \wetA

=llelles | D° | D Howmlu, )@

NeFA \weiA

We apply the the previous argument, from [41l Proposition 10] we have that G(®, %A X %A) is a
frame for L?(R?) if an only if

a2 1
— - & 2.
(2) <3 a<V2

Since we chose o < 1/v/2, G(®, %A X %A) is a frame; by assumption o € MP?(R?%) and, using
the characterization in Theorem [2.5.18] this is equivalent to saying

SR

(3.6) lollazma = | D | D Howm(, A )@)P

NeFA \weiA

Therefore by (3.6) we get continuity for the linear operator G:

SR
2

IGelle Slielles | D° | D Hovmlu, X)@) S llclleallol|arr.

NeFA \wetA

As shown in [86], G(g, A) = G(g, a, @) is a frame if & < 1 and it admits a dual window h € S(R?).
Then, thanks to Theorem [2.5.18] we can expand f € S(R?) C M9(R?) by means of the Gabor
atoms

f=Y_(f,m(Nh)m(N)g

AEA

and write

(37) Lof = Z<f7 ﬂ-()‘)h>La(7T()‘)g)

AEA
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Expanding now the function L, f and using (3.7) we get

Lof =Y (Lof,m(w)g)m(m)h

pneEA

= O R Lo (1(\)g), (1) g)m (1)
HEA NEA

= (f,m(A)h) (Lo (m(N)g), 7(1)g) 7(p)h.
HEZM;\?/_/ 9),m(p)g) m(p

Ci () =G

Recall the continuity properties of the coefficient operator C;® from MP9 into ¢79(A) and
of the synthesis operator D;"* from ¢79(A) into MP9, 0 < p,q < oo (Proposition [2.5.16| and
Proposition , then we have just shown that L, (considered as linear operator with dense
domain S(R%) C M?(R%)) can be decomposed as

L, =D; "o GoCp*
and the following diagram is commutative:
L,
Mq _— M’Y
cpe e

G

A al

Since we proved the continuity of the operator G from ¢? into 7, L, is a continuous and linear

operator with dense domain, hence it admits a unique continuous linear extension.
The cases when v < 1 and p = co or ¢ = oo can be treated similarly.

(ii) Let g € S(R?) with ||g|/2 = 1 and consider f € S(R?) C M2 (R?). From (2.213) with
7 =1/2 we have

(39 Lof = [ VafG)La(a(z)g)dz,
in the sense that for every ¢ € S(R?) the distribution L, f acts as follows:
(Lot0) = [ Vol ) {Eam(2)g). )
We can express the STFT of the tempered distribution L, f as
Vil ) = Lo fn(wla) = [ | Vof(2) (Lon(2)g.n()) dz

where w € R%¢. The desired result thus follows if we can prove that the map
.72 (m2d 2 2d
M(o): L, (R*) — vas(R ), F'— M(o)F

defined by
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is continuous. Setting ® = W (g, g) and using (2.211]), we see that it is sufficient to prove that
the integral operator with integral kernel

Vao (Z;w,J(w—z))

()7 G+

is bounded on L?(R??). This follows from Shur’s test, Lemma m Indeed, by assumption
oe M= (R24), so that performing a change of variables

Vs QU
/ sup V¢U<Z+w,J(w—z)>
R2d zcR2d 2

we used sup instead of esssup since every function involved is continuous. Thus

sup / V¢0<Z+w,J(w—z)>
2€R2d JR2d 2

sup
weR2d JR2d

Hence it is sufficient to prove that for some positive constant C' > 0 we have

(z 4+ w)*(w — 2)'dw < +o0;

(z4+w)*(w — 2)" dw < +o0

and similarly

(z4+w)*(w — 2)" dz < +o0.

Voo <Z+2“’,J(wz)>

(3.9) (z+w) 5w —2)7H2) T(w)T <O, Vw,z e R*.

Let us prove the estimate (3.9). Setting z = z + w, y = w — z, the inequality (3.9) can be
rephrased as

(3.10) (@) () e —y) w4y <C, Va,yeR™

For |z| < 2ly|, observe that |z + y| < 3|y| and since t > r + s we get the estimate (3.10]). For
|z| > 2]y|, we use (x + y) < (z — y) < (z) and (3.10) immediately follows. O

The following corollary is a easy consequence due to Proposition 2.5.13] We recall that a
description of the Shubin-Sobolev spaces @5 is given in (2.148]).

Corollary 3.1.3. (|9, Corollary 3.4])
If s,7>0,t>1r+s, and the symbol o € M;fé)lvt (R2), then the pseudo-differential operator L,

extends uniquely to a bounded operator from Q,(R) into Q,,(RY) .

An application of the previous theorem concerns the study of eigenfunctions’ properties for
Weyl operators.

Proposition 3.1.4. (|9, Proposition 3.5])
Consider a Weyl symbol o € MP? for some 0 < p < oo and every v > 0. Any eigenfunction
f € L2RY) of Ly is in NysoM7(RY).

Proof. We use Theorem with ¢ = 2: if the symbol ¢ is in MP(R2?), for every v > 0, then
the Weyl operator acts continuously from M?(R?) into M7 (R?), where 7; is such that
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Since p < 0o, we have
/vi=1/p+1/2>04+1/2=0<y <2

Since o € MP™ir{t7}(R24) by Theorem part (i) L, admits a unique continuous linear
extension

Lo: M*(RY) = L2(R?) — M (RY).

If f e M?(RY) = L?(R?) is an eigenfunction of L, with eigenvalue X # 0, we have

1

f=xLofe M (RY).

Starting with f € M7 (R?), we repeat the same argument, obtaining that the eigenfunction f is
in the smaller modulation space M2 (R%), with -y, solution of

1 1 1

4=

p N Y2

We observe that 0 < v, < 71 since p < oo. Indeed since o € MP™ir{l2}(R24) by Theorem
part (i) L, admits a unique continuous linear extension

Ly: M (RY) — M™2(RY).

If f € M (R?) is an eigenfunction of L, with eigenvalue A # 0, we have
1
f=xLof €M™ (RY).

Continuing this way we construct a decreasing sequence of indices v, > 0 which explicit expres-

sion is

B 2

C2n/p+ 1

The proof is a simple induction argument which is left to the reader. Hence
fe () M (®Y.

neNy

Y n € Ny.

Moreover lim,, o, 7, = 0 and the claim follows from the inclusion relations for modulation spaces
Theorem 2.5.61 O

A boot-strap argument similar to the previous one allows us to prove the following regularity
result for L2-eigenfunctions of Weyl operators.

Proposition 3.1.5. ([9, Proposition 3.6])
Consider a Weyl symbol o € M;’jgyt (R24) for some s > 0 and every t > 0. Any eigenfunction
f € L*(R?) of Ly is in S(RY).

Proof. We use Theorem part (i) with » = 0. If the symbol o is in Mﬁf(;@lv (R24), for some
s > 0 and every ¢ > 0, then the Weyl operator L, acts continuously from M2 (R‘i) = L%(R%) into
M? (R?). Starting now with the eigenfunction f in M2 (R?) and repeating the same argument
with ¢ > s we obtain that the eigenfunction is in MEH (R?). Proceeding this way we infer that

s

f € Npeng ME (R4). The inclusion relations for modulation spaces and the property
Nr>oM; (RY) = S(RY),

see (vi) Proposition [2.5.13] prove the claim. O
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3.2 Decay and smoothness results

Eventually we state and prove the main results about decay and smoothness for eigenfunctions
of localization operators which are supposed to be in L*(R%). The essential meaning of the
main decay’s statement, Theorem ([9, Theorem 3.7]), will be made explicit via Parseval
Gabor frames. We present regularity properties for L2-eigenfunctions of some A¥1:%2 which is a
simple consequence of Proposition Eventually we tackle the case of AY1'¥2 with symbol in
L% (R%), 1 < ¢ < o0.

Theorem 3.2.1. (|9, Theorem 3.7])
Consider a symbol a € MP>(R??), for some 0 < p < 00, and non-zero windows 11,y € S(RY).
Any eigenfunction f € L?(R?) of AY1¥2 satisfies f € N0 M7 (R9).

Proof. Since the windows 1,12 € S(R?), the cross-Wigner distribution is in S(R??) C M%7 (R24),
for every 0 < q,v < co. We next apply the convolution relations for modulation spaces
withu =00, t=yandv=m=v=1.

If p > 1, choose ¢ =1, so that » = p, and

0= a*x W(thy, 1) € MP°(R*) « M1 (R2D) — MPY (R, Wy > 0.
If 0 < p <1, choose p=¢q =r so that
0 i 0k Wtz tn) € MP(R2) 5 MP7(R) < MPI(REY), Wy > 0,

In both cases we obtain that o € MP7(R29), for every v > 0. Hence the claim immediately follows
by Proposition and the realization of the localization operator as a Weyl one: A¥1:%2 = [,
where o = a x W (g, 7). O

Remark 3.2.2. Notice that f € )
Remark[2:5.17)

Remark 3.2.3. We want to emphasize the vast class of symbols which are included in assump-
tions of Theorem [3.2.1 For example, a rough symbol as the Dirac delta § is allowed. Indeed,
consider g € S(R??) and compute:

>0 MY (R?) does not imply f € S(R?), as pointed out in

‘/g(S(Z, ’LU) = <57 Mszg>
— eZﬂiwtg(t _ Z)|t:0
=g(0 — z).
Hence 6 € MYV>°(R?%) and Theorem holds true for any L?-eigenfunction of Ag}l’wz, with
1,9 € S(Rd)

As a consequence of Theorem the eigenfunctions of a localization operator A¥1:¥2 are
extremely concentrated on the time-frequency space, having very few Gabor coefficients large
whereas all the others are negligible.

Definition 3.2.4. Consider a Gabor frame G(g,«, ) for L*(RY). For N € N, we define the set
of all linear combinations of Gabor atoms consisting of at most N terms as

(3.11) YN =<(p= Z cenm(ak, fn)g| ckn € C, F C 74 x 7%, #F <N
k,neF
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Given a function f € L?*(R?), the N-term approximation error in L*(R?) (with respect to
the Gabor frame G(g, o, B)) is

(312) on(f) = inf S =l

Remark 3.2.5. Note that X is not a linear subspace since X + Xy = Xon. That is why the
approximation of a signal f by elements of X is often referred to as non-linear approximation.
Namely, on(f) is the error produced when f is approzimated optimally by a linear combination
of N Gabor atoms.

Assume f € MP(RY) for some 0 < p < 2. Thus, in particular, f € L?(R?) since MP(R%) C
M?*(RY) = L%(RY) for 0 < p < 2. Consider now a Parseval Gabor frame G(g,A) for L%(R%),
where A = aZ? x Z% and g € S(R?). The series of Gabor coefficients in

2 2
1z = D K fm(Ng)l
AEA
is absolutely convergent, hence also unconditionally convergent. Thus we can rearrange the
Gabor coefficients |(f, 7(\)g)| in a decreasing order. Precisely, set ¢ ., == (f, w(ak, Bn)g), k,n €
74, and let + : N — Z% x Z% be any bijection satisfying
|CL(1)‘ > |CL(2)| > 2 |CL(m)| > ‘CL(m+l)| >

Such a bijection always exists due to the convergence of the series. The sequence (¢, )men =
(|cb(m) [)men is called the non-increasing rearrangement of (cj )k above. With this nota-
tions, the best approximation of f in Xy is

N

Popt = Z cL(m)ﬂ-([’(m))g

m=1

and the the N-term approximation error becomes

on(f) = nf 1f = pllzz = If — poptllze = ( > 0L<m>|2> :

m=N+1

We observe that ¢, the non-increasing rearrangement (&, )men and pop: are not unique. Anyway
different best approximations p,,; and p;pt both realize the N-term approximation error.

By abuse of notation, given a = (am)m, am > 0 for every m, a non-increasing sequence (
a1 > a3 > > Ay 2 Gyl > -0 - ) We write

1
oo 2
on(a) = ( Z a72n> .
m=N+1
The key tool is now the following lemma from [82], see also [129] and [43].
Lemma 3.2.6. ([82) Lemma 12.4.1])
Let a = (am)m, am > 0 for every m, be a non-increasing sequence and consider 0 < p < 2. Set
(3.13) =1 1.
. = >3 :
Then there exists a constant C' = C(p) > 0, such that

S

(3.14) %Ha”w < (Z(N’YUNl(a))pi[> < Clal|ev-

N=1
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Proposition 3.2.7. (|9, Proposition 3.8])

Assume f € MP(R?) for some 0 < p < 2. Consider a Parseval Gabor frame G(g,A) for L?(R),
where A = aZ4 x BZ2, a, B >0, and g € S(R?). Then, there exists C = C(p) > 0 such that the
N-term approximation error with respect to the Parseval Gabor frame G(g, \) satisfies

(3.15) on(f) < Cllfllar N7,

where v > 0 is defined as in (3.13).

Proof. The sequence of Gabor coefficients of f, given by ((f, 7(ak,8n)g))i neza, is in fP(A) by

Theorem with
| fllare = [[((f, w(ak, B1)g) ) k,nller(a)

and the sequence (|(f,7(cak, Bn)g)|)k.n can be rearranged in a non-increasing one (G )men, as
explained above. Applying Lemma [3.2.6] to such a sequence, from the right-hand side inequality

in (3.14) we infer (3.15)). O

Corollary 3.2.8. (|9, Corollary 3.9])

Consider a Parseval Gabor frame G(g,A) for L?>(R%), where A = aZ® x BZ4, o, 3 > 0, and
g € S(RY). Under the assumptions of Theorem any f eigenfunction of AYv¥2 is highly
compressed onto a few Gabor atoms 7w(\)g, in the sense that its N-term approzimation error (with
respect to G(g,\)) satisfies the following property: for every r > 0 there exists C' = C(r) > 0
such that

(3.16) on(f) < ON.

Proof. By Theorem [3.2.1) the eigenfunction fulfils f € MP?(R?), for every p > 0. Hence the
assumptions of Proposition [3.2.7) are satisfied for every 0 < p < 2. The claim follows by choosing

r:==v=1/p—1/2, as defined in (3.13]). O

We next consider the case of localization operators with symbols a € 1?50®1(R2d), s>0. In
this case L2-eigenfunctions reveal to be Schwartz functions, as shown below.

Theorem 3.2.9. (|9, Theorem 3.10])
Consider a symbol a € My, (R??), for some s > 0, and non-zero windows 11,12 € S(RY). If
f € L3(RY) is an eigenfunction of AY+¥2 then f € S(R?).

Proof. The assumption ¢y, ¢y € S(R?) implies
W (b, 91) € S(R*) C Mg, (R?),

Vr QUi

for every r,t > 0. We next apply the convolution relations for modulation spaces (2.158)),
obtaining that AY1%2 = L, with 0 = a * W(¢,91) € Mi’gm (R24), for some s > 0 and every
t > 0. Hence the claim immediately follows by Proposition [3.1.5] O

Remark 3.2.10. From Proposition and inclusion relations between modulation spaces
Theorem we have that the previous theorem holds true also for symbols of the type a €
L (R2%), for some 0 < p < oo and s > 0.

Remark 3.2.11. The nice properties of eigenfunctions for localization operators studied so far
seem to depend on the fact that such operators are not only compact but belong to the Schatten
class JP, 0 < p < oo (cf. [29, Theorem 1]). C. Ferndndez and A. Galbis in [67, Theorem 3.15]
characterize compact localization operators. Namely, fix go € S(R?) and a € M>(R??), then the
following conditions are equivalent:
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(i) The localization operator AY*%2 is compact on L*(R?) for every 1,y in S(R?);

(1) For every R > 0,

(3.17) lim sup |[V,a(z,w)| =0.

|| =00 |w|<R

It seems that for symbols satisfying condition the techniques developed above do not
work anymore. It would be very interesting to know whether for compact operators that
are not in the Schatten class JP, 0 < p < oo, the L? eigenfunctions do gain any additional
smoothness and reqularity.

We now consider localization operators with symbols in weighted Lebesgue spaces. Let us
recall that any localization operator A¥*%2 with windows in S(R?) and symbol a € LI(R??), with
1 < g < o0, is a compact operator, cf. [I52, Proposition 13.3]. The case of weighted Lebesgue
spaces and, more generally, Potential Sobolev spaces was treated in [I7]: let us stress that any
localization operator AY*¥2 with Schwartz windows and symbol a in L4, (R?4), with 1 < ¢ < oo
is a compact operator on L?(R%).

Theorem 3.2.12. (|9, Theorem 4.1]) Let m € M., m(z) > 1 for every z € R?*?, a € L4, (R??),
1 < ¢ < 00, and non-zero windows y,vs € S(RY). Any eigenfunction f € L?(R%) of AVr-¥z
satisfies [ € (s ME (R?).

Consider the eigenvector f € L?(R%) and the window v; € S(R?). Then by Theorem the
STFT Vy, f is in the Wiener amalgam space W (L>°, L?)(R??). Proposition yields that
aVy, f € W(L9, LP1)(R24), with

Proof. By assumption and using (2.174)), we start with a symbol a in L%, (R??) = W (L4, L” iide).

1 1 1

rAET
so that the index p; satisfies p; < min{g, 2}. Consider now a non-zero window g € S(R?). Using
the weak definition of AY1:¥2

V(A% f)(w) = (AP1¥2 £, m(w)g) = / (@Vip £) () (m ()2, 7 (w)g) =

de
= [, @) (@) m(=2)e(w)g) d:
= [ @V ) (e ml = 2)g) s

so that,

(3.18) [Va(AZ2 f)(w)] < /nw [(aVip, )(2)| [Vgha(w — 2)|dz = |aVy, f|  [Vgibo|(w).
We estimate

[Va(AZY2 ) (w)] < aVi, f* [Votpa|(w) € W (LT, L) (R*) + W (L, Ly)(R*).
Observing that W (L, L1)(R24) — W(LY,L})(R?%) and applying the convolution relations

[2:173) we infer |V, (A1 ¥2f)| € W (L, LP}) < LP!. This proves that A%z f € MP1(R?).
Recalling the assumption AY1¥2f = \f, A\ # 0, we infer f € MP!(R?).
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We now repeat the previous argument starting with f € MP:(R9). By Theorem 3[the STFT
Vi f € W(L>®, LEY)(R??) and aVy, f € W (L4, LF?,) < W (L%, LP?), (since m? > m), with

1 1 1

¢ m o p2

so that ps < p1. Arguing as above we infer |V, (AY1¥2 f)(w)| € W (L>°, LP2) < LF2. Thus, the
eigenfunction f belongs to the smaller space MP2.
Continuing this way we construct a strictly decreasing sequence of indices p,, > 0 and such that

lim p, = 0.
n—oo

By induction and using the same argument as above one immediately obtains that if f € M2 (R?)
then f € MA*" (R?). This concludes the proof. O

3.3 Gelfand-Shilov setting

This last section presents the main results achieved in [11] about localization operators A¥1:%2
in the framework of ultra-modulation spaces. Once more, we stress that Assumptions [2.5.1] are
dropped in the current section.

In the following item, we show how the T-quantization Op, (o), 7 € [0,1], can be extended
between ultra-modulation spaces under suitable assumptions on the weights. We remark that
the following theorem is contained in more general [I42] Theorem 3.1|. A more elementary proof
of the same claim when Lebesgue parameters are greater than or equal to 1 is given in [140]
Theorem A.2]. In contrast to [140], [I42], different arguments were used in [II] and are presented
below. Namely, the Schur test in combination with Lemmas and is used. We note
that [9, Theorem 3.3] (Theorem is a particular case of Theorem when restricted to
polynomial weights and the duality between S(RY) and S’(R9), taking 7 = 1/2.

Theorem 3.3.1. ([II, Theorem 3.3]) Consider 7 € [0,1], mo € Pr(R*) and mi,ms €
Pr(R?Y) such that

(319) SmO((liT)x+TvaW+(177_)77’(*}7773@’71’)3 Vw,w,y,nGRd.
Fiz a symbol o € M (R*). Then the pseudo-differential operator Op, (o), from SW(R?) to

SW(RY), extends uniquely to a bounded and linear operator from MP, (RY) into MP, (R?) for
every 1 < p < oo.

Proof. Let g € SW(R?) with [|g||;» = 1 and consider f € SO (R?) C MP, (R?). Due to the
normalization chosen ||g||,> = ||g]|;- and we recall the inversion formula (2.229)) which can be
seen as a pointwise equality between smooth functions in this case (see [82], Proposition 11.2.4]):

f= fde ng(z)Tr(z)g dz.
By Lemma [2.8.15 we have

V(O (0) f)(w) = (Ops (o) f, w(w)g)
(3.20) / V,£(2) (Ops(0)7(2)g, w(w)g) d=.
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In the next step we prove that the map M, (o) : F'+— M, (0)F, defined by

Mr(o)P(w) = [ | () (Op:(0)n(2)g, (w)g) d-

is continuous from L2, (R%*¥) to L, (R2?).
Using (12.231)), we see that it is equivalent to prove that the integral operator with kernel

Kﬂaw%=Waowﬂwwhﬂw—dﬂgﬁgmﬂw7

where T, ans J are defined in ([2.212)), is bounded on LP(R?%). We do this using the Schur test,
see Lemma [3.1.1] First we majorize K, with another integral kernel @), using the condition
(3-19) with w = (x,w) € R?? and z = (y,7n) € R*%:

ma(w)mo(Tr (w, 2), J (w — 2))
my (2)mo(Tr(w, 2), J(w — 2))
S Vo, o(Tr(w, 2), J(w = 2))| mo(T7(w, 2), J(w = 2))
=: Q,(z,w).

K (z,w) = Vo, 0(T:(w, 2), J(w — 2))|

We now show that @, satisfies the Schur conditions. By appropriate change of variables
(w' = wl(w) = J(w — z), where z is fixed) we obtain

esssup/ Q- (2, w)| dw :/ esssup Voo (z,w')|mo (z,w") dw’
R2d R

z€R2d 2d zeR2d

Furthermore, by the change of variables w’ = w!, (z) := J(w — z) for every w fixed, we obtain

esssup/ |Q+ (2, w)| dz :/ esssup |V, o (w,w")| mo (w,w") dw'’
R2d

weR?d R2d weR2d

Since K, < @Q-, it follows that

esssup/ |K,(z,w)| dw < 400 and esssup/ | K (z,w)| dz < +00.
z€R2d R2d weR2d R2d

Hence from the Schur test it follows that M, (o) is continuous, and due to (3.20)) we notice
that
Vg0 Opr(0)f = M(0)oVyf,

where the right hand-side is continuous and takes elements of S (R?) C M2, (R?) into L2, (R2?).
Therefore Op, (o) is linear, continuous and densely defined. This concludes the proof. O

Schatten class properties for various classes of pseudo-differential operators in the framework
of time-frequency analysis are studied by many authors, let us mention just [82 29] 113} [142].
However, for our purposes it is convenient to recall [106, Theorem 1.2] about Schatten class
property for pseudo-differential operators Op, (o) with symbols in modulation spaces.
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Theorem 3.3.2. Let 7 €[0,1],0<p<2,deN and

2d
(3.21) u>=—d.
p

Consider o € anl (R24), where m7, is defined as in [2.17). Then

Op-(0) € JP(L*(RY)).

Lemma 3.3.3. ([II, Lemma 3.5]) Let 7 € [0,1], v > 1 and d € N. Fiz

u, s,t > 0, l>u+d, 7> u.
Then
M;géw: (R*) — M%), (R*) < M2 o, (R*) < M2, (R*).

Proof. The first inclusion is due to the inclusion relations between ultra-modulation spaces since

v ®@v; S w)l ®w]. The last inclusion follows similarly since m, < v, ® vy, as it is shown in

Remark 2.2.141
For the second inclusion we use Theorem [2.8.11} (o0, 2,1, u) fulfils the condition (C3) and
(1,2, j,u) fulfils the condition (C1). This concludes the proof. O

On account of the following corollary all the operators considered in Theorem [3:3.5] are
compact on L?(R%).

Corollary 3.3.4. ([I1, Corollary 3.6]) Let 7 € [0,1], v > 1 and s,t > 0. Consider o €
M;%éuﬂ (R24). Then Op, (o) is compact on L?*(R?).

Proof. The claim follows by Lemma with u satisfying (3.21]), after choosing any 0 < p < 2,
in addition with Theorem B.3.2] O O

Now we prove the decay property of the eigenfunctions of Op, (o) when the symbol belongs
to certain weighted ultra-modulation spaces. This result improves Theorem ([9, Theorem
3.10]), in the sense that we show how faster decay of the symbol implies stronger regularity and
decay properties for the eigenfunctions of the corresponding operator. More precisely, Theorem
deals with polynomial decay, whereas Theorem allows to consider sub-exponential
decay as well.

Theorem 3.3.5. (JII, Theorem 3.7]) Fiz 7 € [0,1], v > 1 and s > 0. Consider a symbol
oe ML (R2) for everyt > 0. Any f € L2(RY) eigenfunction of Op, (o) belongs to SO (RY).

w2®w?

Proof. We first observe that o € M;ow’é)w7 (R24) for every t > 0 is equivalent to require that ¢
s t
fulfils (2.11]) due to the inclusion relations. By (2.12) from Lemma [2.2.13|it follows that

w), (2, w)

5

o Sereul (0=t (=00, 0=y =),

for every x,w,y,n € R, where s’,7' > 0 and ' which fulfils ([2.11). We consider first the case
1/2<7<1landfix s =s>0.

Take ' =0, t > s7/7, and apply Theorem with p=2,my=w!Qw/, m =w] and
mg = w] which satisfy (3.19). Thus Op- (o) extends to a continuous operator from Mig (RY) =

L?(RY) to Miz (R?). Starting with f € L*(R?) we get f = A~' Op,(0)f € M2, (R%).



Now, take ' = s, t > s+ st'/7, and apply Theorem with p = 2, mg = wl ® w/,
my = w] and mg = wy, which satisfy (3.19). Thus Op, (o) restricts to a continuous operator
from M2, (R%) to M2, (R?), so starting with f € M2, (R%) we get f = A™' Op,(0)f € M2, (R?).

s 2 s 2

s s

Repeating the same argument, and using the inclusion relations between ultra-modulation
spaces we obtain:

fe () M2 (RY) = () M3 (RY) = ST(RY).
n€Ny k>0

The case 0 < 7 < 1/2 is done similarly. This concludes the proof. O

We conclude the chapter with the analogue of Theorem [3.2.9] Note that by Corollary [3.3.4]it
follows that the localization operators A¥:%2 in the following statement are compact on L?(R%).

Theorem 3.3.6. (|11, Theorem 3.8]) Consider v > 1, s > 0, a € M3, (R*?) and 11,1y €
SM(RY). Any f € L*(R?) eigenfunction of AY¥2 belongs to SO (R?).
Proof. Since 1,y € SM(R?) it follows that W (vg, ) € SM(R24) C Moo (R24), for every
” t
r,t > 0. It is easy to check that w) ® w; is w) ® w}-moderate for every ¢ > 0 and every r > s,
ie.
w] @ w] ((z,w) + (y,1) < w) © w] (z,w)w] ©w](y,n), @,w,y,1€R™

We write AY1:%2 = Op1/2(0) with o = ax W (1)2,41), and then apply Proposition [2.8.13|in order
to infer o € Mﬁéw” (R24) for every t > s/21/7:

a1 (R2) % My, (R2) = M25e - (R*).

wi @y

The claim now follows by Theorem [3.3.5] O



Chapter 4

Characterization of smooth symbol
classes by Gabor matrix decay

The present chapter illustrates a characterization of the symbol class S™ (R2) , introduced
by J. Sjostrand in [I27], by mean of the Gabor matrix of Op. (o). The results reported in what
follows are due to E. Cordero and the author [7]. In particular, the first part of the main result
can be roughly summarized as follows.

Fix m € R. The following properties are equivalent:

(i) o € 5™ (R2);

(ii) o0 € & (RZd) and for every s > 0, 0 < q < oo, there exists a function H, € L<_>S(R2d),
with
|Hlls, <€ ¥r e 0.1)

such that

(Op, (o) 7 (=) 9.7 () g)] < Hy(u—2)(To(z,u))™,  Vu,z € R™.

Above, T is the transformation defined in .

We provide also a discrete version of the above item (i7), see Theorem m For the Hormander
class S°(R??) = 5 ,(R??), the Gabor matrix characterization for Weyl operators was shown by
K. Grochenig and Z. Rzeszotnik in [87, Theorem 6.2] (see also [121]) in the case ¢ = co. So this
result can be viewed as an extension to any 0 < ¢ < oo and 7 € [0,1]. The key tool in order
to prove such generalization is Lemma which proof is contained in Chapter [2] and which
gives the characterization

S = (Y M

s>0

where 0 < ¢ < oo and the weights (-)~™, (-)* were introduced in (2.7).

Section shows some estimates for the STFT of o € &' (R?*?) war.t. W.(g,9) € S(R*)
uniform in 7 € [0, 1]. In particular, a proof alternative to the one published in [7] is provided for
Proposition
The main result mentioned above is achieved by proving a characterization of similar flavour for
the modulation spaces

00,9 2d
M<.>7'm®<.>a‘(R ))
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where m, s € R and 0 < ¢ < co. See Theorem [4.2.1]in Section As a consequence, we are able
to infer boundedness properties for 7-pseudo-differential operators on modulation spaces along
with a uniform bound in 7 € [0, 1] for the norm on Op, (o), see Subsection In Subsection
[4:2:2] we give an estimate for the Gabor matrix of a Born-Jordan operator, Theorem and
obtain as straightforward consequence some continuity results for Opp; between modulation

spaces, Corollary [£.2.12]

We remind to the reader that the necessary preliminaries and definitions can be found in
Chapter [2] in particular the definitions of C®, C™ and C;!, can be found in Subsection In
this chapter Assumptions [2.5.1] hold, i.e. every weight is supposed of at most polynomial growth.

4.1 Uniform estimates in 7

In this section, we focus on the quasi-norm of MP:4(R?4) computed w.r.t. the window W, (g, g) €
S(R?4) and prove that it does not depend on 7 € [0,1], in the sense of (4.2). After stating
and proving Proposition [£.1.1] we exhibit a number of unpublished lemmas in order to give an

alternative proof of (4.2)).

Let us first represent the Gabor matrix as a kernel of an integral operator. Consider a linear
and bounded operator T from S(R?) into S’(R?). The inversion formula (2.147) for g € M!(R?),
llgll2 = 1 is simply V'V, = I. The operator T' can be written as

(4.1) T =V V, TV} V.

The linear transformation V, TV is an integral operator with kernel given by the Gabor matrix
of T which was defined in (2.77):

Gr(u,z) = (Tr(2)g, n(u)g), Vu,z € R,

By definition and the inversion formula, Vj is bounded from MZ9(R?) to LE?(R*) and V*
from LP4(R2?) to MP4(RY). Hence the continuity properties of 7' on modulation spaces can be

obtained by the corresponding ones of the operator V,TV " on mixed-norm L%;? spaces. These

issues will be studied in Proposition [£:2.7 and Corollary [£.2.12] and can be achieved by studying
the Gabor matrix decay of T

Proposition 4.1.1. (|7, Proposition 3.1]) Consider 0 < p,q < oo, 7 € [0,1], w € M, (R*) of
at most polynomial growth, G € S(R2?)~ {0}, g € S(R?) \ {0} and define ®, := W.(g,g). Then
there exist A = A(v,g,G) >0, B = B(v,g,G) > 0 such that

(4.2) AlVaollpye < Ve, ol pne < Bl[Vao| ppa,
for every T € [0,1] and o € MP4(R?).
Proof. By Proposition 2.2 and Remark 2.3 in [42], the mapping

(7, f,9) = W(f,9)

is continuous from R x S(R?) x S(R?) to S(R??) and locally uniformly bounded. Since ®, for
7 € [0, 1] belongs to a bounded set in S(R??), the result follows immediately from [82, Theorem
11.3.7] for p,q > 1 and [75, Theorem 3.1] for 0 < p, ¢ < oco. O

For sake of completeness, we give an alternative and independent proof of previous Proposi-
tion In order to do so, we need some technical lemmas.
We begin with a generalization of [27, Lemma 3.2].
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Lemma 4.1.2. Consider T € [0,1] and define
2 2 2
(4.3) )=, U(rw) = T W= W (Y, ),

for t,z,w € R, Then for v submultiplicative weight on R? there exists a constant C > 0 such
that

(4.4) Ve, <C, vr € [0, 1].
Consequently
(4.5) W £C, vr € ]0,1].

Proof. We first observe that any submultiplicative weight function v on R*¢ can grow at most
exponentially, i.e.; there exist C' > 0 and b > 0 such that

(4.6) v(z) < Ce?l, Vz € R,

see, e.g. [35] Lemma 2.1.4]. Following the proof in [27] and using (4.6, we can majorize in the
following manner:

22422
vV <Oy e TIrae 1dz1dzo
Vo, |, <C "2 b1 ded

RrR2d

- z%«i»z% b
< Cl/ e " 2m2-2r+5¢ (\21\+|22|)Il dzleZ,
R2d

where C' > 0 depends only on the weight v and I; is an integral over R2¢ which can be controlled
from above by

(1—27’)22%

(1-27)2:3 4 _al1-27]
(272 —27+42)(272—27+5)

~ a|l—27|
[1 < C’Qeﬂ(272—21—+2)(2r2—21—+5) 2722742

2722742

|z2| = + [21]
€ b

for some a > 0 and Cs > 0 independent of 7. Hence setting Cy = C} Cs we have

323 (1-27)222 a|l—27|

||V\I/q/T||L1 < 02/ 6_7272727+5+ﬂ—(272727+2)(272727+5)+27272T+2IZlH—b‘Zl‘ dz
v R

2,2 2.2
_ 323 (1—27)%25 all—27|
X/ e “272_2T+5+7T(272_2r+2)(2r2_2r+5)+2T2_2T+2|22|+b|22‘dZQ
R4

322 (1-27)22% all—27]
=Cy / e TaZ args T G ey et marie) T a2 oar s A0l dz
Rd

::12
The integral I can be controlled as

—C5>0

—
3(2r2—2r42)—(1-27)2 2 [1—27]
I, :/ e_w(272727+2)(272727+5)Zl+(a272727+2+b)‘Zl‘le S/ e—‘:ngzf—&-(aC —I-b)lzlldz17
R4 R4

being

O = min 32r° —21+2)—(1-27)> 1 Cr = max t-27 1
BT o (2r2 =27 +2)(2r2 —27+5) 20 ' recoy22—2r4+2 2
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C
Since e~™ 22 t0slml 5 0 as |z1] — o0, for ¢ > 0 fixed there exists R > 0 such that
e~ T Ol < ¢ for every z; ¢ Bgr(0). Therefore

I, < / e—ﬂcszf+cs|21| dz :/ e—‘ﬂ'cszf-"cslzﬂ dz _|_/ e—‘ﬂ'cszf-"cslzﬂ dz
R4 Br(0) R~ Br(0)

. 7 Caz2 _ %32
< eC°R/ e 7% +5/ e T2 A dz < +00,
Br(0) R4~ BR(0)

Hence there exists C' > 0 such that ||[Vy ¥, ||, < C, uniformly w.r.t. 7 € [0,1]. The equivalence
”\I/THMg = ”V\I’\IJTHLi
concludes the proof. O

Corollary 4.1.3. Fiz G € S(R??) and consider an even, submultiplicative weight v on R*¢. Let
U, be the function defined in (4.3)). Then there exists a constant C' > 0 such that

(47) ||V‘I’rGHL11} < C? VT € [07 1}

Proof. The claim is a straightforward consequence of Lemma [£.1.2] the switching property of
the STFT (see, e.g., |35, Lemma 1.2.3])

Vo G(z,() = e 7™ Va U, (-2, —(), V(z,¢) € R,
and the even property of the weight v. O

In the following lemma we summarize |27, Lemma 2.5, Lemma 2.6, Corollary 2.7]. For
7 € (0,1), define the matrix

1—7
TId

B e
Lemma 4.1.4. Let f,g € S(R?), 7 € [0,1] and define ®, = W.(g,9). Consider z = (21,22),( =
(C1,G) € R If 7€ (0,1), then

Vo, W (f, [)(2,0) = e ™22V, f(z21 — 7¢a, 22+ (1 = 7)C)Va f (21 + (1 = T) 2, 22 — 7(1)
(4.9) = 6_2‘"22(2‘/;]]((2: ++/7(1— T)BIC)qu(Z +/7(1—=7)B:Q);,

where BL stands for the transpose of B .

(4.8)

If 7 =1, then

(4.10) Vo, Wi(f, F)(2,0) = €722V, f(21 = G, 22)Vy f (21, 22 — (1)
If 7 =0, then

(4.11) Va,Wo(f, ) (2,¢) = e ™22V, f(21, 25 + Q)Vo (21 + (2, 22).
Remark 4.1.5. Notice that, for ( = ((1,¢2) € R?? and 7 € (0,1), we have
(4.12) VT =B = | =GP+ (1 =76 < G+ 16 = (¢
Therefore

(4.13) (V11 =7)B,C)* < ()%,  Vr€(0,1), V¢ € R*? Vs > 0.
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Lemma 4.1.6. Consider f,g € S(RY) ~ {0}, 7 € [0,1], v a submultiplicative weight on R*® of
at most polynomial growth, and define ®, = W.(g,g). Then there exists a constant C > 0 such
that

(4.14) Vo Wo(f, Dlly <€ VT e01].

Proof. We divide the proof in three cases: 7 € (0,1), =1 and 7 = 0.
For 7 € (0,1) we apply (4.9)), the change of variable y = z + \/7(1 — 7)B.(, so that z +
V7(1 — 7)BY¢ = y— J¢ (where J is as in (2.212))), the submultiplicativity of v as well as the (at

most) polynomial growth, and finally Remark

Vo, W0 Dl = //ny TV F()| 0ly — V7@ —7IB.C, ) dydc

< [ Vot = TOV, )] o 00(— /7T = 71, 000(0.C)
S [ L Vet = IOVt )" /7T = D180 ()" g

= /de /RM Vo f (y = JOVo [ ()] (4)*(0)*(C)* dydC

B /R (Va1 [Vaf (D) (JO)(C)* d¢
= Vol Vo f (Yl ,, < +oo.

The convergence is due to the fact that f,g € S(R?), therefore V, f € S(R??).
For 7 =1 we apply (4.10)) and the change of variable y; = 21, y2 = 22 — (1; arguing as in the
previous stage we obtain the result. In detail,

WorWalf sy = [ [ Watto = JOVaF] lans v + o0 Ga. )
< [ Vet = TV, )] o(0:0)0(0,0.61,0)0(0,) dyde
R2d JR2d

S [ LVt o= J0Va @l ) (600 duc
< [ LWVt = IOVt ) () duc
= [ W= Vo) GO0 dc
= IV # Vo d (Pl < +oc.

The case 7 = 0 follows the same argument as before via (4.11)).

In each case we found the same upper bound which does not depend on 7 € [0, 1]. The proof
is concluded. O

Corollary 4.1.7. Consider T € [0,1], v a submultiplicative weight on R of at most polynomial
growth, g € S(R?) \ {0} and define ®, = W,(g,g). Then there exists a constant C > 0 such
that

(4.15) @], <C, Y e[0,1].
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Proof. Fix a window G € S(R??) \ {0} and consider the functions ¢ and ¥, defined in (4.3)).
Using the change-window property of the STFT (see, e.g., [35, 1.2.29]), Moyal’s formula for
7-Wigner distributions (see (2.84)) and Young’s inequality for mixed-normed spaces (see Propo-

sition or, e.g., [35, Theorem 2.2.3]),

—4
IVa®, I, < Vi, @7 5 Vool 1y < 10172 [ Vir, @ s Va2l -

1
[(Wr, Wr)l
The desired result follows now by Lemma [£.1.2] [£.1.6] and the fact that
1P+ l[ars = [Va®rllLy

where the constants involved do not depend on 7 € [0,1]. This concludes the proof. O

Corollary 4.1.8. Consider 7 € [0,1], v an even submultiplicative weight on R*® of at most
polynomial growth, G € S(R*) < {0}, g € S(R?) \ {0} and define ®, = W.(g,g). Then there
exists a constant C' > 0 such that

(4.16) V.Gl <C.  Vrelo1].

Proof. The proof is a straightforward consequence of Corollary [{.1.7] and the switching property
of the STFT, cf. the proof of Corollary [£.1.3] O

Alternative proof for Proposition[{.1.1 Let ¥, = W, (¢, ), and ¢ be as in (4.3). Using the
change-window property of the STFT (see, e.g., [35, 1.2.29]), Moyal’s formula for 7-Wigner

distributions (2.84)) and Young’s inequality for mixed-normed spaces (see, e.g., [35, Theorem

2.2.3]), and Corollary

! —4
Ve, ol < g IVanol s Vo, Bl o < 19152 1V ol g Vo, ¥l
(P, )| ;
—4
< Ol 2 1V, o]l g
4 1
< Ol e m [Vaol|* Ve, G|l 1zq

—4 -2

< Clllz Gl 2 Vaoll e Ve, Gl
= —4 -2

< C||¢||L2 HGHL2 ||VGU||L£;‘1’

with C' > 0 and independent of 7. Similarly,

= —4 —4
IVaollpre < ClYl L2 l9llzz Ve, ol 1o -

w

The choice
A 4 ~ —4 -
A=C Wl gl B=CllWl IGlzs

let us conclude the proof. O

In what follows, |32, Lemma 4.1] is needed. It was reported in Lemma [2.7.17]
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4.2 Main results

In order to obtain the announced characterization of S™(R??), we first characterize T-pseudo-
00,q

differential operators with symbols in M<,>,,,L®<.>S(R2d). After that we shall describe the class

S™(R24) in terms of the Gabor matrix of Op, (o) and provide some continuity results for such
operators. In the last Subsection Born-Jordan operators shall be considered.

Theorem 4.2.1. (|7, Theorem 3.2]) Consider g € S(R?) \ {0} and a lattice A C R*? such that
G (g,M) is a Gabor frame for L? (Rd). For 7 € [0,1], let T, be the transformation defined in
(2.212). For any s,m € R, 0 < q < 0o, the following properties are equivalent:

() o€ M3 . (R2);

(ii) o € 8" (R*) and there exists a function H, € LMS(RM) satisfying

(4.17) 1H g, <C, VT e[01],
such that
(4.18) {Op, (0) 7 (2) g, 7 (u) )| < Hr(u—2)(To(z,u))™,  Vu,z € R*

(iti) o € 8" (R*) and there exists a sequence h, € E(Z-V(A)’ with ||hr||e‘<1_>s < C for every
7 € 10,1], such that

(4.19) [(Op, (o) 7 (1) g, (N) @) < he (A= p)(Tr (s, A))™, VA, p €A

Proof. The proof follows the pattern of the corresponding one for Weyl operators with symbols
in weighted Sjostrand’s classes [83) Theorem 3.2].

(¢) = (i7) This implication comes easily from the characterization (2.211)). In details, observing
that (Ju) = (u),

(0D, (0) 7 () 9.7 (w) )| = Va0 (T (2.) ] (.~ 2))
sup (Vi 0w, J (u— 2) [{w) ™) (T (z,)"

weR24d

= H,(u—2)(To(z,0))™,

IN

where
H;(u) := sup (|Va,o(w, Ju)[{w)™™).

weR2d
For 0 < ¢ < o0,

i#tsr,, = ([, [ s, (oot 2wy )] <u>“du); S

weR2d (mme)s’

Hence by Proposition we obtain the estimate (4.17)). The case ¢ = oo is analogous.
(#4) = (i) Consider the change of variables y = 7, (z,u) and ¢t = J(u — z), so that

2(y,t) =y—-UJ [Tld 0 ]
4.20 U,z = = T,(0,
20 {u@,t) — y+ (g — U,) Tt =0 q-n =702
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and u(y,t) — z(y,t) = J~t. For 0 < ¢ < oo, using (2.211)) and (4.18)),

q 7
o agoe-s = (/ (sup IV@TU(y,t)I<y>"”> <t>"5dt>
(DTme()? R2d \ yeR2d

) </ ( 200, 10 (@) ey, 1) g (ula, 1) 9| <7;<z,u>>’”> <t>qsczt>

Q=

yeRQd

< (L momor a)

SCa

where we used (4.17). The case ¢ = oo is analogous.
(i1) < (i11) The argument requires that G (g, A) is a Gabor frame for L? (R?). Then the equiva-
lence can be proved similarly to [30, Theorem 3.1] and [83, Theorem 3.2]. O

Remark 4.2.2. Under the assumptions of the previous theorem, let us consider the following
statements:

(i) o €S8 (R?*) and

{Op, (0) 7 (2) g, 7 (u) 9)| < Hr(u—2)(Tr(z,u)™,  Vu,z € R*,
for some € (0,1] and H, € L}, (R*);
(iii) o € S (R*) and
[(Op, (o) 7 (1) gsm (N) g)| < he (X = p)(T7 (1, )™, VA, p €A,

for some 7 € [0,1] and h, € Z?_>S(A).

Then the proof of Theorem shows that the (i) and (iii)" imply (i), i.e. o € Mi‘;fm@_)s (R24).

We possess all the instruments for the characterization of S™(R2?).

Theorem 4.2.3. (|7, Theorem 1.1]) Consider g € S(RY) \ {0} and a lattice A such that G (g, A)
is a Gabor frame for L? (Rd), Fix m € R. The following properties are equivalent:

(i) o€ 5™ (R);

(ii) o € & (RQd) and for every s > 0, 0 < q < oo, there exists a function H, € L<_>S(]R2d),

satisfying ([L17)
|Hols < C, vreo1],

such that
(4.21) {Op, (0) 7 (2) g, 7 (u) g)| < Hr(u—2)(To(z,u))™,  Vu,z € R*;

(iii) o € 8" (R*®) and for every s >0, 0 < q < oo, there exists a sequence h, € E%S(A), with
HhT”Z({I')S < C for every T € [0, 1], such that

(4.22) [(Op, (0) 7 (1) g: 7 (N) )| < he (A= p)(Tr (i, )™, VA, u €A
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Proof. The proof is a direct application of the characterization of the classes S™(R??) presented

in (2.182) and Theorem O

Remark 4.2.4. Observations similar to the ones in Remark [{.2.4 can be made for the above
theorem.

For m =0, 7 = 1/2 and ¢ = oo, we recapture the characterization for the Hérmander class
SO(R*?) = S0 5(R??) shown by K. Grochenig and Z. Rzeszotnik in [87, Theorem 6.2] (see also
[121]).

The following issue is an improvement of [24, Theorem 2.4] and relies on the new character-
ization of S™(R??) proved in Lemma

Proposition 4.2.5. ([7, Proposition 3.3]) Consider g € S(R?) \ {0}, m € R and o € S™ (R*?).
For any n € Ny there exists C = C(n) > 0, which does not depend on o or 7, such that

(T (z,w))™
(u—2z)n

Proof. Using the characterization of the Hérmander classes S™(R2?) in (2.182) we infer that
o€ M<O§—‘nl®<,>n(R2d) and, for any n € Ng, the norm estimate in (2.184)) says that there exists
C = C(n,m) such that

(4.23) {Op, (o) (2) g, 7 (u) g)| < Clo|n,m , vr €[0,1], Yu,z € R%,

(4.24) 1o/l azes < C(n,m)lolnm,

(YTmee)n"

where C(n,m) > 0 is independent of o. For z,w € R?? we use Lemma and the norm
estimate in (4.24]) which yield

[{Op, (o) 7 (2) g, 7 (uw) 9)| = [V, 0 (T- (2,u) , J (u = 2))|

that is the desired result. O

For s € [0, +00) \ Ny, the estimate reads as follows.

Proposition 4.2.6. (|7, Proposition 3.4]) Consider g € S(RY) . {0}, 7 € [0,1], m € R and
oesm (R2d). For any s € [0,4+00) \ Ny there exists C = C(s,m) > 0, which does not depend
on o or T, such that

(4.25) (Op, ()7 () 907 ()3} < Clolupr T, vz € B2

where n = [s] is the integer part of s.

Proof. The result is attained by the the same argument as Proposition [4.2.5] and the inclusion
relations between modulation spaces in Theorem [2.5.6 O
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4.2.1 Boundedness results

The characterization of the class S™(R??) in Lemma and Theorem are the key tool
for boundedness properties of 7-pseudo-differential operators on weighted modulation spaces.

Proposition 4.2.7. ([7, Proposition 3.5]) Consider 7 € [0,1], m € R, o € S™(R?4), 0 < p,q <
00. Then Op..(0), from S(R?) to S'(R?), extends uniquely to a bounded operator

Op,(0): M3, (RY) — ML (RY),

for every r € R.

Proof. Choose g € S(R?) and a lattice A such that G(g, A) is a Gabor frame for L?(R%). Define
t := min{l,p,q} and choose s > (2d + |r|)/t. Using the equivalent discrete quasi-norm for
the modulation space , the estimate in and Young’s convolution inequality in [74]
Theorem 3.1], we obtain the result. Namely,

100, (4) Fllaszy. = 1Va(OP- (@) ), ) < [ % [Vas 1)

< bl WVaF O e, < CllF larra

(-)S(N) yr+m

KP 4 (A)

Alternatively, since o € S™ = (1,5 Méx;’qm@( o .(R24) by Lemma one can use [142] Theorem

3.1] with p = 0o and ¢ < 1 small enough to yield the claim. O
Remark 4.2.8. (i) Foro € S°(R*?) = 53 4(R*?) and we recapture the continuity of

Op,(0): MYL(RT) — M{yL(RY).
This was already shown in [I37] for p,q > 1, for the quasi-Banach cases see [1]2)];

(ii) For p = q = 2 we have the continuity between the Shubin-Sobolev spaces Q,m(R?) and
Qr(RY).

Corollary 4.2.9. ([T Corollary 3.7]) Consider m,r € R, o € S™(R?*?), 0 < p,q < oo. Let
|0p,(0)|| denote the norm of Op, (o) in B(M,... (RY), Mf)‘i (R9)). Then there exists a constant
C > 0 such that

(4.26) IOp. ()| <C,  Vrelo1].
Proof. The claim is evident from proof of Proposition O

4.2.2 Born-Jordan operators

We recall that Born-Jordan operators Opp ;(0) were defined in (2.215]).

Theorem 4.2.10. ([7, Theorem 3.8]) Consider g € S(RY) \ {0}. For m € R consider o €
Sm (R2d). Then for every s > 0, 0 < ¢ < o0, T € [0,1] there exists a function H, € L< >S(]de)

which satisfies (4 and such that

(4.27) |[{Opg; (o)7(2) g, 7 /H u—z) Vu, z € R%.
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Proof. For o € S'(R??), Opp (o) is linear and continuous from S(R?) into S’(R?), see [42]. For
z,u € R? o € S™(R?) and g € S(R?) we compute

(Opp,;(0)m(2)g, m(u)g) = (o, Wr.(7(u)g,7(2)9))

J
/deg v) / W (m(u)g, m(2)9)(y) drdy =: I.

From [42, Proposition 2.2, Remark 2.3] we have that the mapping

R x S(R?) x S(RY) — S(R2), (¢, ,9) = Wi(p, 1)

is continuous and locally uniformly bounded. Thus Wg;(p,v) € S(R?*?) and the integral I is
absolutely convergent, so that

1
I —/ /RM (u)g, m(2)g)(y) dydr :/0 (Op, (o) 7 (2) g, 7 (u)g) dr.
By Peetre’s inequality:
(Tr(z,u)™ = (21 + 7(ur — 21), 22 + (1 = 7)(uz — 22))™
S ()™= 2,

for every u = (u1,us), z = (21, 22) € R??. Hence, using Theorem m

1 1
1] < / [(Op, (0) 7 (2) g, 7 (u) g)| dr 5/ Ho(u—2) (u—z)l™ dr ()™
0 0
Then the function H,(z) (z)!™l satisfies condition (#.17). O

Remark 4.2.11. (i) For ¢ > 1, we can define H(z fo z)dr. Using Minkowski’s integral
inequality we infer H € L'Z»S(RM) and the estzmate - becomes
{Oppy (o) 7 (2) g,m (u) g)| < H(u—2) ()™,  Vu,z€R™.

Notice that for 0 < g < 1 Minkowski’s integral inequality is not true in general.

(ii) Arguing as in Theorem|4.2.10, we may discretize the Gabor matriz decay in (4.27) as follows:
consider g € S(R?) \ {0} and a lattice A in R*® such that G (g, A) is a Gabor frame for L? (R?).

If o € 8™ (R2d) then for every s > 0, 0 < ¢ < oo, there ezists a sequence h, € K?_V (A) with
||hTH5<<1_)S < C for every T € [0,1] such that

(0D (0) 7 () o7 (V) g)] < ()™ / heh—p)dr, YA pE A

Corollary 4.2.12. (7, Corollary 3.10]) Consider m € R, o € S™(R??), 0 < p,q < oo. Then
Oppg, (o), from S(RY) to S'(RY), extends uniquely to a bounded operator

OpBJ( ) MéD;IH—m (Rd) - Mgm}qr (Rd)7

for every r € R.



Proof. The proof is similar to the one of Proposition [4.2.7] using the decay for Gabor matrix

of Opg (o) found in Theorem {.2.10, with h, replaced by fol hr(-)dr. Then, for t > 1 we use
Minkowski’s inequality to write

‘/;w-w

For t < 1 we use the inclusion relations ([2.40) and majorize

‘ /O1 he(-)dr /O1 he()dr

with § > 0 such that 1/t 4+ s/(2d) < 1+ 5/(2d), that is

1
< [ il ar <.

t
e(->s

/S ‘

et

1
() é(.).s

2
5> 7d(1—t),

and we proceed as above. O



Chapter 5

Quasi-Banach modulation spaces
and localization operators on locally
compact abelian groups

The first important achievement presented in this chapter is a new definition, due to E. Cordero
and the author [8], of modulation spaces M9 over a LCA group G with indexes 0 < p, ¢ < oc.
Concretely, we shall set

MEA(G) = {[ € 84(9) | Vof € W(L®, Li?)(G x G)},
where 8}(G) is the dual of the Feichtinger algebra, g is a suitable window and W (L, L:9)(G x G)
the Wiener amalgam space on G x G with local component L* and global one L?:¢. The quasi-
norm is the natural one:

1 ez = Vol may

q 1
4 q

L[ e Wl megrar) )
g G (u,w)€Q+(x,8)

where Q C G X G is a suitable unit neighbourhood; the modifications when p = co or ¢ = oo are
obvious.

We shall see that such definition recovers all the already known modulation spaces, i.e. it
coincides with

(1) MEA(R?) with 0 < p,q < o0;
(#1) MP9(G) with 1 < p,q < oo, any G LCA group.

m

The novelty of the definition here presented relies in the fact that it allows us to deal with
the quasi-Banach case, i.e. p < 1 or ¢ < 1, on every G LCA group, not only the Euclidean
space R?. Moreover, we prove that if G is discrete or compact, then we can consider the “usual”

LP-9-quasi-norm of the STFT instead of the Wiener one. Namely, if G is discrete or compact,

then

~

MEUG) = {f € §(9) |Vof € LG x G)}-
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If the above equality holds true for every LCA group is still an open problem.

Technically speaking, the new definition of M?:%(G) was inspired by the idea of H. G. Fe-
ichtinger and K. Grochenig in [58]: to view modulation spaces on G as particular coorbit spaces
over the Heisenberg group G x G xT. However, the coorbit theory proposed by H. G. Feichtinger
and K. Grochenig in their works [58, 59, [60] is not suitable for the quasi-Banach case. The right
construction is provided by the new coorbit theory started by H. Rauhut in [I19] and developed
by F. Voigtlaender in his Ph.D. thesis [147]|, see also the more recent contribution [146]. The
reader can find a short survey of the mentioned coorbit theory for quasi-Banach spaces in Chap-
ter 2], Section [2.2

The second most important contribution shown in this chapter is a number of bounded-
ness results for cross-Rihaczek distribution R(f, g) (2.96) and pseudo-differential operators with
Kohn-Nirenberg symbol Opg(c) (2.216). Concerning the mapping R between modulation spaces,
we address the reader to Proposition which borrows techniques from[31, Theorem 3.1] and
[25, Theorem 4]|. As a consequence, we have the boundedness result for Opg(o) between modu-
lation spaces, which generalizes [31], Theorem 5.1]. A result similar to Theorem is obtained
for Kohn-Nirenberg operators as well, although the techniques are way much different due to the
high level of technicalities. Indeed, we first need to prove Gabor frame expansions for MZ:9(G),
which are done by mean of quasi-lattices on groups [88], then we work on a quotient group derived
form G x G instead of the whole phase-space. See Theorem and its proof carefully. Once
this result is established, we easily infer Proposition about L2-eigenfunctions of Opg(o).
We report the statement for sake of clarity:

Consider a symbol o on the phase space such that for some 0 < p < oo we have o €
N,s0 MP7(G x G). If X € op(Opo(0)) \ {0}, then any eigenfunction f € L?(G) with eigenvalue
A satisfies f € ()50 M (G).

Moreover, once we have proved Theorem [5.2.11) and [5.2.12] i.e. continuity for coefficient C,
and synthesis C; operators on modulation spaces, we get new convolution relations for MP1(G)
in Proposition This is the natural generalization of what is proved for the Euclidean case

in [9], see Proposition [2.5.19

The third and last major contribution this chapter presents concerns localization operators
A¥1%2 in the same fashion of [9], see Theorem Namely, using the representation of A¥1:%2
as Kohn-Nirenberg operator

A2 = Opo(a R(y2,91)),

see Proposition the main result of [8] Theorem is obtained:

Let 0 < p < 0o and a € MP>(G x _C'j) Consider 11,92 € Sc(G) ~ {0}. Suppose that
op(AY¥2) {0} # @ and N € ap(A¥1Y2) {0}, Then any eigenfunction f € L*(G) with
eigenvalue A satisfies

fe M (9).

v>0

The chapter is structured as follows. Section [5.1]is devoted to the construction of modula-
tion spaces over G and the study of their main expected properties. There we make a specific
choice for every item from A to J presented in Chapter [2] Subsection [2:2.5] Subsection [5.2.1]
deals with continuity for the Rihaczek distribution between modulation spaces and a first re-
sult for Kohn-Nirenberg operators Opg(c). In Subsection we put to work quasi-lattices in
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order to have frames expansion in the new modulation spaces. The new convolutions relations

for MP:9(G) Proposition [5.2.14] are presented here. Subsection contains the result for L2-
eigenfunction of Opg(c). Eventually, Section is devoted to the main result Theorem [5.3.3]
about L2?-eigenfunction of localization operators A¥1:%2 over G LCA group.

We recall that Assumptions [2.:2.2 on G hold in this chapter even if not explicitly stated.

5.1 Quasi-Banach modulation spaces on LCA groups

The following concepts are taken for granted and can be found in Chapter[2} left L, and right R,
translations, relatively separated families, a discrete space Yy associated to Y, BUPUs, maximal
functions Mg f, Wiener amalgam spaces Wg(Y) = Wg(L>™,Y). Definition contains the
hypothesis on weights and the class M, used in what follows. Note that the coorbit space con-
struction is listed in items A — J (unitary representation p, wavelet transform W{ f, assumptions
on weights, sets G,, A?, T,, R,) in Subsection of Chapter [2l Each of these items will be
revisited in this section under specific choices, see list A’ —~J’ below.

Relying on the theory Chapter [2 Subsection 2:2.5 we are able to give a definition of mod-
ulation spaces on LCA groups which covers Feichtinger’s orginal one [56] and deals with the
quasi-Banach case. The subsequent construction of MF:9(G) was suggested for the Banach case
in [58] p. 67], although the coorbit theory applied here is different.

Since the group Hg defined below is noncommutative, we adopt the multiplicative notation
for its operation.

Definition 5.1.1. Let T be the torus with the complex multiplication. We define the Heisenberg-
type group associated to G, Heisenberg group for short, as

(5.1) Hg ::gngx’]I‘,

endowed with the product topology and the following operation:

(5.2) (z,6,7)(a", & 7") = (@ +a", £+ &, 77(¢, ),
for (x,&,7), (¢, &, 7") € Hg.

The group Hg is also called Mackey obstruction group of G x G\ , see [20, Section 4], in
particular Example 4.6 therein.

Lemma 5.1.2. (|8, Lemma 3.2|) The topological product space Hg with the operation in (5.2)) is a
topological LCH, o-compact, noncommutative, unimodular group with Haar measure the product
measure ded&dr, dx and d€ being dual Haar measures on G and G and dr(T) = 1.

Proof. Hausdorfl property, local compactness, o-compactness and noncommutativity are trivial.
For the proof that Hg is a topological unimodular group we refer to Theorem 3 in [100], for the
bi-invariance of dxd&dr see [100, p. 12] or, alternatively, [20, Lemma 4.3]. O

The identity in Hg is (e, é,1) and the inverse of an element (x,&,7) is
(SL’, 57 T)_l = (_1.7 _£7F<§1 (E>)
Lemma 5.1.3. ([8, Lemma 3.3]) The mapping
(5.3) 0: Hg — U(L*(G)), (2,£,7) > TMT,

is a unitary, strongly continuous, irreducible, integrable representation of Hg on L*(G). We call
o Schrédinger representation.
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Proof. Well-posedness of g is trivial, from the commutations relations ([2.93) it is straightforward
to see that o is a group homomorphism. Observe that

mT: G X QA—> Z/{(Lz(g)), (z,8) = MT,

is a projective representation in the terminology of [20, Definition 4.1]. In fact, (i) 7(e, é) = Ip2;
(ii) from the commutation relations (2.93)) we obtain

T ((x7£) + (x/afl)) = <§/,$>7T(JZ,§)7T($I,§,),

where (-,-) is continuous on G x G; (iii) the continuity of the STFT guarantees the required
measurability. To verify that o is strongly continuous, one can proceed as in the Euclidean case,
see e.g. [35]. The result then follows from [20, Lemma 4.4 (ii)].

The fact that g is irreducible was proved in [I00], see page 14 before §5. For the integrability,
consider the Gaussian ¢ € L*(G) in and observe that the torus is compact and ’W£<p| =

Vo] (see (2.41)) for the definition of W2p). Then from (2.100) we have Vo € L'(G x Q\) and
Wip € L'(Hg). This concludes the proof. O

-~

Definition 5.1.4. We define the extension of m € M, (G x G) as
(5.4) m: Hg — (0,400), (x,&,7) — m(x,§).

For 0 < p,q < oo, the space LY (Hg) consists of those equivalence classes of measurable complex-
valued functions on Hg, where two functions are identified if they coincide a.e., for which the
following application is finite

1
E q
65 1Pl = ¥l = (/g(/g [Fla. &) e, d d&h) 7
X

obvious modifications for p = oo or ¢ = oc.
(L (Hg), Il pra sagy) is @ solid QBF space on Hg. If m is moderate with respect to a

submultiplicative weight v on G X Q, then m is left- and right-moderate w.r.t. ¥ on Hg, v as in
(5-4). Therefore LE:?(Hg) is left and right invariant, see Definition [2.2.15

Lemma 5.1.5. Consider 0 < p,q¢ < oo. Then ||| pa(m,y is an 7-norm on L3%(Hg) with
r = min{l,p, q}.
Proof. This is just Lemma [2.2.26| with X =G and Y = Q\ x T. O

~

Lemma 5.1.6. ([8, Lemma 3.6]) Consider m € M, (G xG) and 0 < p,q < co. Then there exists
C = C(m,v) > 0 such that for any F € L2 (Hg) and (z,&,7) € Hg

(5.6) 1R Fll oo < Co(=2,~&) | Fllpna s | Len Fllppa < Col@, &) 1Pz

Proof. The claim is a straightforward calculation which follows by the bi-invariance of the Haar
measure on Hg. For p,q # oo,

1B r) P s = /g B ( /g |F<<u,w7t)(:c,sw)wm(u,w,wpdu) duodt

<[ ( / |F<u',w',t’>|pm<u',w',t'>pa<<x,5,r)1>Pdu')p dudt
m,v JGXT g
— o=, )1 [l

Left translations are treated similarly, as well as the cases p = 0o or ¢ = oc. O
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Due to the symmetry of v (Definition , the first inequality in reads as
IRwer Pl o < Co(@, ) I1F | o
Lemma 5.1.7. ([8, Lemma 3.7|) Let 0 < p,q < co. Fiz Vg C G and Vg C G open, relatively
compact, neighbourhoods of e € G and é € G, respectively. Define
(5.7) V=V x Vg xT.
Consider m € My(G x G). Then there exists C = C(m,v) > 0 such that for every (z,&,7) € Hg

(5.8) |HR($7€7T)’||Wv(L%;q)~)WV(L1:~Y’Lq) < Cv(—m, =§).

Proof. V is a open, relatively compact, unit neighbourhood and the set

(5.9) Vig=Vg x Vg

is also open, relatively compact, unit neighbourhood in G x G. For F € Le (Hg)
(5.10) My [Rz.e.r)Fl = My (g6, F,

see [147, Lemma 2.3.18, 1.]. For any (z,&,7) € Hg

V(z,& 1) = (Vg +x) x (Vz+¢&) x U Tr{¢,u) = (z,&,7)V.

ueVg
If e Wy (L2?) and (z,&,7) € Hg, from what just observed we obtain:

MV[R(w,E,T)F](ua w, t) = €sssup |F(y7 UR 8)‘ = R(a:,g,T)[MVF(uvwv t)]
(y:m,5) € (w,w,t) (2,€,7)V

Eventually by using (|5.6))

HR(CU,&T)FHWV(L’IP;;‘Z) = HMV[R(wxgaT)F]HL?Lq = HR(I’&T)[MVF]HL%LQ
< Col2,€) My Fll 0 = Ool—2,~6) [ Fll (50

for some C' = C(m,v) > 0. This concludes the proof. O

As already highlighted, inequality (5.8]) can be equivalently written with v(z,&) in place of
v(—xz, —E). Observe that the constant C' involved in (5.6) and (5.8)) is the one coming from the
v-moderateness condition: m((z,§) + (u,w)) < Cv(z, &)m(u,w).

Corollary 5.1.8. ([8, Corollary 3.8]) Let 0 < p,q < co. Consider Q C Hg measurable, relatively

compact, unit neighbourhood and m € M,(G x G). Then there exists Co = C(Q,m,v) > 0 such
that for every (z,&,7) € Hg

(5.11) |||R(1’7§77')|||WQ(L£./;Q)~>WQ(L%;(I) < Cou(=2,—¢).

Proof. The claim follows from the independence of the Wiener Amalgam space W (L2?) from
the window subset (Lemma [2.2.24) together with Lemma O
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Remark 5.1.9. ([8, Remark 3.9]) Consider the (generalized) wavelet transform induced by the
Schrédinger representation o in (2.41) taking G = Hg and f,g € H = L*(G):

(5.12) Wpf:Hg — C, (2,8, 7) = (f, TMcT,g) 12(g)-

This is a continuous and bounded function. It is straightforward to see that
(5.13) Wi f(e, &) = {f,TMcTog) =TV, f(2,€), V(z,&,7) € Hg,
which implies

(5.14) (W f(z,&7)] = Ve f(z,8), V(z,&7)€Hg.

Therefore for f,g € L*(G), being T compact,

-~

(5.15) Wif e LP(Hg) <« Vyfe LG xG)
and
(5.16) Wef € W(L™(Hg), L4 (Hg)) & Vyf € W(L™(G x §), LE(G % §)).

We are now able to revisit steps A — J, in Subsection [2:2.5] of Chapter [2] as follows.

A’. For G = Hg the Heisenberg group associated to G, H = L*(G) and p = o: Hg — L?(G)
the Schrodinger representation, the requirements of A are fulfilled due to Lemma [5.1.2]
and .13

B'. W¢f was described in (5.12)) and the integrability of ¢ was proved in Lemma as well
as that every element of S¢(G) is admissible for p.

C'. Take Y = L% (Hg) (Definition [5.1.4) and r = min{1, p, ¢} (Lemma [5.1.5).

D’. The right invariance for each measurable, relatively compact, unit neighbourhood @ C Hg
of Wg(L*>, LE:?) is guaranteed by the right invariance of L2%(Hg), Lemma and
Lemma [2.2.24] Since Hg is unimodular, (2.42) and (2.43) can be summarized as

(517) ’LU(%,&,T) g., H|R(‘”a57"')ilH|WQ(L%‘I)HWQ(L5’;;Q)’

for some (hence every) measurable, relatively compact, unit neighbourhood @ C Hg.

-~

Therefore, on account of (5.11)) and the definition of M, (G x G), we can take w = ¥ the
extension of v defined as in (5.4]).

E’. We take 0 as control weight for L2?(Hg), see E.

F’. The class of good vectors we are considering is
(5.18) Gy ={ge L*G)|W2ge L;}.
We shall prove that it is nontrivial.

G’. Our class of analysing vectors is

(5.19) vo={g€L*G)|Wpg e WH(L> W(L>,L;))}.
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It is due to [I47, Lemma 2.4.9] that AL is a vector space, as observed in the proof of [147,
Theorem 2.4.9], and that

(5.20) Wylg € WH(L®, W (L, Ly))
for every g,h € AL.

Lemma 5.1.10. (8, Lemma 3.10]) Let us define

(5.21) dy = a5(G) = [ A}

0<r<1
The following inclusions hold true:
(5.22) Sc(9) C % C Gy.

Proof. The only inclusion to be shown is the first one, the second one was already mentioned in
Remark [2.2.35| (ii). Fix 0 < r < 1. First, we show that the Gaussian ¢ € L?(G) in (2.94) belongs
to AZ. From (2.100):

Wep(x,€,7) = Te(K)e T+ @ xy i (w0, &) = TV,pp(, £),

for some ¢(K) > 0. Take V C Hg as in (5.7) and observe that if F' € L (Hg)

loc

Mv[MgF](ZL‘,f,T) = ess sup
(u,w,t)E(x,&,7)V

esssup  |F(y,n,8)|| < esssup  |[F(y,n,5)]|.
(y,m,8)EV (u,w,t) (y,m,8)EV (2,§,7)V

If F'= W&y, adopting notation of (5.9)), we get
My [MEWSp](z,6,7) < esssup  [5Vp(y,n)| = ess sup Voo (y, )|
(y,n,8)EV (2,£,7)V (¥, €V, 24 (2,6)+ V1,2
= esssup  [Voo(y,n)| = Mav, , Vip(z, ),
(y,m€(x,€)+2V1,2

where 2V} 5 := Vj 2 + Vi 2 is a open, relatively compact, unit neighbourhood in G x QA
From the solidity of LZ,

(5.23) HWQESOHWR(W(Lg)) = HW£<'DHW{}(WV(L§))) < [[Mav, , Voo L7(Gx8)

and we shall prove the right-hand side to be finite. Due to the arbitrariness of Vg and Vg, we
can assume that

(524) VLQ = Vg X Vé = (El X Dl) X (E2 X DQ) = (El X Eg) X (Dl X Dg),

where By, By C R?* D; C Gy and Dy C G\ are open, relatively compact, unit neighbourhoods.
As done previously,

Ei9:=FE; x By CR* Djy:=D x Dy C Gy x Go,
2B =FE1 2+ E12, 2D13:= D2+ Dip.
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Hence

Mav, , Vop(z, §) = ¢(K) ess sup
((y1,m1),(y2,m2))€
((z1,61),(w2,€2))+2E1,2X2D1 2

T (2 2
e TWIM) e (y2,72)

= ¢(K) ess sup e 5 witni)

(y1,m)€(w1,€1)+2E1 2

ess sup IXrcxxcs (Y25 m2)] -
(y2,m2)€(x2,62)+2D1 2

Since v(z, £) is submultiplicative, using the structure theorem we can majorize as follows:
v(z,§) = v((z1,61), (22,€2)) < v((21,£1), (€0, €0))v((0,0), (22, &2)),

where z = (21, 32) € R x G, £ = (£1,&) € R x Gy. Let us define
v1(z1,&1) = v((21,81), (€0, €0)),  v2(22,&2) = 0((0,0), (2,&2)),

(z1,&) € R?® and (z2,&) € Gy ¥ 507 which are still submultiplicative. Hence

o r
[Mav, , Vool Zr(gng) <c(K)" ess sup e By (20,6)" daydéy
' v R24 (y1,m)€(x1,61)+2E1 2
::11
X / R ess sup XK xict (Y2, m2)| v2(22, &2)" dw2dEs .
GoxGo (y2,m2)€(x2,82)+2D1 2
=15

For N > 2d and considering the weight (-) := (14 | - |?)}/2, we can write
N
I :/ (@, &) €ss sup
R2d

. e~ 5 Wwitni)
<(5E1,€1)> (y1.m)€E(x1,€1)+2E1 2

v1(w1,61)" dwydé

1 T (0,2 2
g/ R o5 SUp [6—7(91"'771)1}1(?]1;nl)r<(y17771)>N} dz1d&;
R2d <(=’171,§1)>N(ylﬂll)e(xl’&)'i_QEl'z
1 rTm 2 2
< [y e [ F ) (nm) ] dede
R2d <($1a§1)>N(y17771)€R2d

In fact,

esssup e~ T (2 €)YV (21, 6)"
(y1,m)€E(x1,€1)+2E1 2

< €SS sup [6_%@%”%)1}1(91, 771)r<(y17 771)>N
(y1,m)€(w1,61)+2E1 2

—rT 12 ,
< le7=" 1 Ul(')<'>NHL°°(]R2d) < +oo

because vy is submultiplicative so it can grow at most exponentially [35] Lemma 2.1.4]. Hence
Il < +00.

We now study the integral Is. Observe that the integrand is not equal to zero if and only if
(K x K1) N ((w2,&) + 2Dy 2) # @, which means that there exist k € K x K+ and h € 2D o,
all depending on (x2,&2), such that k& = (z2,&) + h if and only if (z9,£3) = k — h, which
implies (z2,&2) € K x K+ — 2D; 5. Equivalently, (29,&) ¢ K x K+ — 2D; 5 if and only if

ess sup IXicxicr (Y2, m2)| = 0, that implies
(y2,m2)€(x2,82)+2D1 2

€ss sup IXKoxxcs (Y25 m2)] < chx)ci72D1,2($27§2)~
(y2,m2)€(22,§2)+2D1 2



5.1. QUASI-BANACH MODULATION SPACES ON LCA GROUPS 129

Note that K x K1 —2D; 5 is relatively compact, hence of finite measure. The local boundedness
of the submultiplicative weight vy, shown in [I47, Theorem 2.2.22], ensures that the integral on
Go % éo is finite.

So far we have shown ¢ € AL. We now consider f = >")'_; apm(ug, wi)e € Sc(G) and apply

-~

(5-23), Lemma [2.3.30| and left /right invariance of Way, , (L (G x G)):

o — ~
HWff ’w&(vvvug)) < M2vioVidllygxg) = 1Vl ,riiox0)
= Z aRa; <£ - Wk, uk><wj7 T — uk>T(uk.,wk)f(uj,wj)vtp@(x7 f)
k=1 Wav, , (L5(GxG))
S D 1w | T~y Ve @ Ol 1riggy) < T0°
n,r k=1 ,
This concludes the proof. O

Of course, <7 is a vector space. We shall use the extended notation <% (G) only when
confusion may occur. It is also clear that writing % (G x G) we mean the weight v to be defined

-~

on (G x G) x (G x G), as done in the subsequent Corollary

~

Corollary 5.1.11. ([8, Corollary 3.11]) Let f,g € Sc(G), then R(f,g) € (G x G).

Proof. The proof follows the same arguments in Lemma|5.1.10} together with (2.97) and Lemma
2.3.30) O

H'. For a fixed g € G ~ {0}, the space of test vectors is
(5.25) To={feL?G)|Wif € L;(Hg)}
endowed with the norm

(5.26) fllr, = WAl

(75, 1I-l7) is a g-invariant Banach space which embeds continuously into L*(G) and it is inde-
pendent from the choice of the window vector g € G5 ~\ {0}, see [I47, Lemma 2.4.7].

Lemma 5.1.12. (|8, Lemma 3.12]) For any g € Sc(G) \ {0}, the following equality holds true
(5.27) Go=Ts = {f € LAV, f € LLGx D}

Proof. The second equality is just Remark [5.1.9] for the first one the proof follows the pattern
of [I5, Proposition 3.6]. From [I47, Lemma 2.4.7]: Gz C 7. Being the Duflo-Moore operator
(JAT, Theorem 3]) the identity, the orthogonality relations for f,h € L?(G) and g,v € G5 are

(W, WEh)12m4) = (7, 9)12(9) ([ M) L2(9)
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see [147, Theorem 2.4.3|. Fix f € T5, take v = g # 0, h = o(x, &, 7) f and using Fubini’s Theorem,
symmetry and submultiplicativity of © we compute

o
HWff I

::L/’ U, 0w, €.7) )| 8(as €, 7) dadédr

Hg

= **}54’/f |(Wg £ Wglole. &, 7) )] (. &, 7) ddgdr
H9HL2 Hg

HgH /IHI / f(y,n, s)Welo(x, &,7) f1(y,m, )| dydnds 0(x, &, 7) dwdédr
L2 <

glA;UVf@n,l(/!WW x&ﬂﬂ@m#ﬂﬂ%&Tﬂﬂﬁh>@mﬂ&
L2 g

Observe
Welo(x, &, 1) f1y:m,8) = (e(a, &, 7)f, ey, m, 5)g) = WEf ((2,6,7) " (y.m.5)) ,
so that
we L we
[ = g [, st
X </H \Wef ((z.&7)  (y,m,9))| 0z, 7) dxdgdr) dydnds
1
S W@ s 1y
< oz L, Wi )
x \We @' e )o@, &, 7)oy, n, s) da'd€'dr'" ) dydnds
H
1 2
— Wg /7 /7 ! ~ /7 /7 /d/d/d/
i UL 1€ty
1 2
o2 ng 1 < 00
||g||i2 H g HL17
Hence f € G3 and the proof in concluded. =

Lemma 5.1.13. (|8 Lemma 3.13]) Sc(G) is dense in (

)

Proof. In Lemma [5.1.10[ we have shown that the Gaussian ¢ in (2.94) belongs to G3. Then from
[147, Lemma 2.4.7, 5.] we have that

S¢(G) = span{o(x, £, 7)¢| (z,¢,7) € Hg}
is dense in (75, ||| ). The claim follows from the trivial fact that S¢(G) = Se(G). O

0y "

I’. The reservoir is the Banach space
(5.28) Ry =T, ={f: Tz = C|antilinear and continuous} .

Remark 5.1.14. (|8, Remark 3.14]) Recall the definition of So(G) given in Definition|2.5.29. If
v =1, then

(5.29) Ti=G1=8(9), Ri=S8(9).
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If v is not constant, then

(5.30) To =G5 = So(G), R+ SH(9).
Corollary 5.1.15. (|8 Corollary 3.15|) The following inclusion holds true:
(5.31) ;5 € Co(G),

the latter being the space of continuous complex-valued functions on G which vanish at infinity.

Proof. Combining Lemma [5.1.10] and Remark |5.1.14| we have o C Gz = Tz C So(G). We
conclude using the fact that Sy(G) C Cy(G), see e.g. [10I, Theorem 4.1]. O

J’. We extend the wavelet transform to f € Ry and g € Ts:
(5.32) Wgf:Hg — C,(2,8,7) = », (f, TMcTog) T, -
From now on we shall simply write (-,-). Observe W¢ f € C(Hg) N L35 (Hg).

Remark 5.1.16. ([8, Remark 3.16]) The class Sc(G) defined in actually depends on the
compact open subgroup K in Gy, where G = R% x Gy. Then we might write S(’:C in place of Sc.
Observe that if K' is a compact open subgroup different from KC Lemma is still valid. More
generally, if K is the class of all compact open subgroups in Gy:

(5.33) Se(9) = | SE(9) € o C Gs.

KeK
Therefore, coorbit spaces (defined in the subsequent (5.34)) are independent of the window g €
Se(G). Concretely, this gives us the freedom to chose the subgroup K which fits better to our

purposes, as done m2 the proof of Lemma . Arguing similarly, we_could replace e~ in
(2.94) with any e=%*1, a > 0. This fact will be used in Proposition |5.2.14,

From now on, for sake of simplicity, we shall only use the notation S¢(G) with the convention
that K and the coefficient of the Gaussian on R% can be chosen freely, so that we shall never
explicitly use the symbol S¢(G).

K'. The coorbit space on Hg with respect to L2%(Hg), 0 < p,q < 00, is, for some fixed non-zero
window g € S¢(9),

(5.34) Co(LP(Hg)) := Co(LE?) = {f ERs|W2fe W(L>, LE(Hg)) }
endowed with the quasi-norm

(5.35) 11l co(zray = HngfHW(Loo,Lgf) :

We stress that Co(L}?) is independent of the window g and ( Co(L%), ||| ¢ Lz:ﬁ,’q)) is a quasi-
Banach space continuously embedded into Rj. Moreover, |-l Co(zr:y is @ r-norm, with r =
min{1,p, ¢}. Notice that

Co(LE(Hg)) = {f € Ry |V € W(L™, LE!(G x §)) }

Remark 5.1.17. ([8, Remark 3.17]) It is clear from the general coorbit theory presented in
C’hapter@, that the set of; defined in (5.21)) is the mazimal window space for all the coorbit
spaces Co(LE?), 0 < p,q < oo. For sake of simplicity we shall mainly work with window

functions in the smaller class S¢(G) and adopt the whole space <75 only when necessary, as done
in Section[5.2
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The coorbit spaces are independent of the reservoir, in the sense shown below.
Proposition 5.1.18. ([8, Proposition 3.18]) Fiz a non-zero window g € S¢(G), then
(5.36) Co(Ly(Hg)) = {f € So(G) | Wi f € W(L>, L' (Hg)) } ,
in the sense that the restriction map

{fesu@)wyf e WLy} — Co(Ly!(Hg)), f — flr,
s a bijection.

Proof. If v = 1 the claim is trivial since 71 = Sy and Ry = S}, with equal norms, see Remark
5.1.14] If v is not constant, then v 2 1 (since v is bounded from below), and the thesis follows
from what observed in Remark [5.1.14] and [147, Theorem 2.4.9, 3.]. O

-~

Definition 5.1.19. Consider m € M,(G x G) and 0 < p,q < oo. The modulation space
MP1(G) is defined as
(5.37) Mp9(G) = Co(Ly(Hg)),
endowed with the quasi-norm
(5.38) gz = Il cozmn -
We adopt the notations MP, = MEPP and MP1 = M9,

Theorem 5.1.20. (|8, Theorem 3.20]) For 0 < p,q < oo, the modulation spaces (ME;9(G), |||l yrp.a)
are quasi-Banach spaces continuously embedded into Ry which do not depend on the window func-
tion g € Sc(G) ~ {0}, in the sense that different windows yield equivalent quasi-norms.

Proof. Since (ME(G), ||| pgz9) = ( Co(LE (Hg)), || co(zza)), the claim follows from the coorbit
spaces theory, Lemma [5.1.10| and [I47, Theorem 2.4.9]. O

Remark 5.1.21. ([8, Remark 3.21]) If g, h € Sc(G) ~ {0} (or o5~ {0}) and f € ME:9(G), then
from the proof in [T]7, Theorem 2.4.9] we see that

%qun :thﬂu
e lglla G TP

where r = min{1,p, q} as in C’; actually we could replace r with any r' such that 0 < v’ <r.
In the Banach case we have r = 1 and recapture [82, (11.33)], after taking into account Theorem

[5.733 and Remark[5 137

In order to prove the expected inclusion relations between modulation spaces, we need par-
ticular types of relatively separated families, BUPUs and discrete spaces. The proofs of some
subsequent lemmas are omitted because well known or trivial.

o
(3:39) Wi gy S W3 Fllwenray

Lemma 5.1.22. (|8, Lemma 3.22]) Let Q, Q" C Hg be relatively compact, unit neighbourhoods
and § = {(x1,&, 1) her C Hg relatively separated family, consider 0 < p,q < oo and m €
My(G x G). Then
(L7 (Hg))a(S, Q) = (L3 (Hg))a(F, Q)
with equivalent quasi-norms. Moreover, the equivalence constants depend only on Q, Q', m and
v:
1Oiesll o mona@.0) 0. 1Oerlasay.@.en -

In particular, they do not depend on § or p and q.
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Proof. From (5.6 we have that for every 0 < p,q < oo and (z,&,7) € Hg
1B el ooy prs < Co(2,6),

where C' = C/(m,v) > 01is the constant of v-moderateness for m. Since L2?(Hg) is right invariant,
the proof goes like the one of [147, Lemma 2.3.16] applying the additional majorization above. [J

Lemma 5.1.23. ([8, Lemma 3.23]) Let Q,U C Hg be relatively compact, unit neighbourhoods,
A = {0;}1er, U-BUPU on Hg with U-localizing family § = {(x1,&, 1) her € Hg, consider

-~

0<p,qg<ooandmée M,(GxG).Then

1 w2zt 6163y 0% o 1100 Fliodierll oo igyyusn -
In particular, the equivalence constants do not depend on p and q.

Proof. The result come from the proof [147, Theorem 2.3.17], see (2.26]), together with Lemma
5.1.29] O

Lemma 5.1.24. (|8, Lemma 3.24|) Consider X = {z;}icr € G, E = {{}jes C Gand T =
{T2}2ez C T relatively separated families. Then X = X x E x T is a relatively separated family
m Hg.

We remark that if the group is o-compact, then any relatively separated family is (at most)
countable, Lemma

Lemma 5.1.25. ([8, Lemma 3.25]) Let U C G and D C G be relatively compact, unit neigh-
bourhoods. Consider U = {1;}icr U-BUPU with localizing family X = {x;}icr and T = {v;};es
D-BUPU with localizing family = = {§;};cs. Then

(5.40) PRTRL:={¢;®v @x, (i,j) € I x J}
is a U x D x T-BUPU in Hg with localizing family X = X x E x {1}.

The following is a generalization of Lemma [2.2.19] and we follow the pattern of its proof.
Although we present it for the Heisenberg group Hg = G x (é X T), it can be easily adapted to

any product group G; X Ga, G; and G5 even not abelian. A similar result for 1 < p=¢ < 0
had been stated in [64, Remark 4, p. 518] without proof.

Lemma 5.1.26. (|8, Lemma 3.26]) Consider X = {z;}icr € G and Z = {{;}jes C G relatively

-~

separated families, X as in Lemma 5.1.25, andV = Vg x Vg xT as in (5.7). Form € M,(G xG)
and 0 < p,q < o0,

(5.41) (L3 (Hg)) (X, V) = €04 (I x J),
where
(5.42) mx: I xJ —(0,+00), (i, j) = m(zi, &),

with equivalence of the relative quasi-norms depending on X, =, Vg, Vg, v, p and q.
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Proof. The proof is divided into four cases.
Case p,q < oo. Consider a sequence (\;);; € C!. For every x € G, we define I, the subset of
indexes

(5.43) Io={i€l|xe4vs(x) #@} C{iel] (zi+Vg)N(x+{e}) # 2}.
From [147, Lemma 2.3.10], we have
(5.44) #liel] (z;+Vg)N(z+{e}) # 9} < Cx v, < +o0, Vr € g,

Cxv, € Nasin (2.18). Whence #I, < Cy 3 and

p
<Z [Ail Xai v ($)> < (#L - max{|\i] [i € LY < CF 5 max{|\if” i € I}

icl

= Cﬁ)ﬂvg Z A" = C;,Vg Z Al Xas+ve (2)-

i€l el

Vice versa

<Z|)‘iX$i+Vg(x)> > (max{|A;] i € I,})" = max{|\;[" |i € L}

i€l
2 Ol DA = O, D A e (),
el i€l

Hence we have shown the equivalence

(5.45) (Z I\l Xes 4 Vg (ﬂf)> = N X v ().

el i€l

Analogous equivalences hold for every relatively separated family and sequence on the corre-
sponding set of indexes, which under our hypothesis are always countable. Due to the chosen
v,

X(m,é_i»l)\/(x7 57 T) = Xz;+Vg (*T)Xij +Vg (6) v (‘T7 57 T) € Hg.
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Taking a sequence (Xij);c; ic; € C*J and using twice the equivalence (5.45)), we compute

q 1
p 7 a

— /g /g S sl o6 (@)xe, v, (6) | e, €7 da] dedr

L2 (H %V_
(L2 (Hg))a (X,V) ey

H()‘ij)i,j

L1
Q=

)

/(j /g Z |)\z‘j|pxm+vg(x)XEjJrVgA(g)m(x’g)pdx d¢

iel,jed

aq
p

ZZ|>\¢j|p/gm(xa§)pri+vg($)d17X§,~+V§(f) d¢

jEJ i€l

I
S

a9
P

=[x (Z al? [ e €700 2) d:c> Yo, (€) de

jeJ \iel

Q=

q

= Z/VA <Z|)\ij|p/v m(m+xi,£+§j)pdx) de¢

= el

The monotone convergence theorem justifies the interchanges of integration with summation
performed. From [I47), Corollary 2.2.23] we have

(5.46) ( sup v) m((z, &) + (u,w)) < m(u,w) < ( sup v> m((z, &) + (u,w)),

V1,2U—V1,2 V1,2U—V1,2

for every (u,w) € G x G and (z,€) € Vi, with V4 5 defined in (5.9). Therefore, if £ € Vz, we
have

G [ meragrgpde x| omng)de = m, &P de(s)

V12

Using the equivalences above,

1

H()‘ij)i,j

q
= )\i»p/ m(x + 2,6 +&)Pdx | d
‘(Li,;"mg))d(x,w Z/vg <Z| L™ e ¢

jeJ iel
q

- (Zuiﬂ”m(m,@)P)p - [

jeJ \iel

e (IxT)
Case p=q = oc. For (z,£) € G x G we define

Arguing as for (5.43) and (5.44), we have that there exists N = N(X,V12) = Cxv,, €N
(see (2.18)) such that #I(, ¢ < N, where X := X x Z and Vi3 as in (5.9). Using (5.46), for
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()‘ij)ieI,jeJ € (CIXJ’

(5.48) Z INijl X(aie5)+va 0 (T m(, §) = Z Al m(zi + wi(z), § + w;(§))
iel,jeJ (4:7)€l(z,6)
= > Pylm(i &)
(4,5) €L (w,¢)

= Z |A”‘ m(x%gj)x(wi,ﬁj}%‘/l,z(xag)v

iel,jedJ

where (ui(2),w;(§)) € V1,2 for every (i,j) € Lz¢). Consider now (Xij);c;ic; € €y (I X J).
Then

‘()‘ij)i,j

- = ()‘ij)i,j &
(LF (Hg))a(X,V) (LR (GxG))a(X,V1,2)

= Z ‘)‘ij‘X(iufj)'i‘VLz (1775)771(1775)

iel,jed Lm(gxé)

> il (@i €)X @)+ i (7€)

X

icl,jed Lw(gxé)
< DD sup N ml@n €)X gy 4via (@ 6)

ichjes b* L (Gx0)
< )\‘ HN A’ A:NHAl—-..‘ .
< || Qs s to, (IxJ) X6xG|| L (gx) (Kig)is e (IxJ)

Vice versa, if (Aij);c; ey € (L (Hg))a(X, V),

)\’ = s Xiilmx(,7) = su Niil Xz, . x;, & )m(x;, &5
H( ZJ)z,j Z?,?X(IXJ) iEIl;ljréJ| ZJ| X( ’]) ie[,jpeJ| 1,]|X(»L1,§])+V1,2( 175]) ( Zagj)
< 11X X80+ v2.2 (2, M (2, )| g6

< sup 1Y Il X v e (7, E)ml, €)
i€l jed lel,seJ L>(GxG)

= Z I/\lS|X(zL,£S)+V1,2 (x7£)m(x7£)

lel,seJ Loo(gxé)

= |,

‘(L;?(Iﬂg))d(x,\/) '

Case p = 00 and q < co. We show the equivalence

(5.49) esssup > [Nig| mx (i, )X vo (%) Xe, v, (6)
T€0 el jes

:XV ZGSS sup Z |/\Z]| mX(ivj)X:cﬁVg (x)X§j+V§(§)'
=76 ey €9 er
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In fact, arguing as in (5.43) and (5.44), for £ € G fixed and Je ={j € J|xe;+v,(§) # @}, there
exists M = M(Z,Vz) € N such that #.J; < M. Therefore,

=, Vg
€SS sup Z |>\13| mX( a])Xﬂcﬁ-Vg( )ij"rV" = €8s SUP Z Z IAl]‘ Xz; +Vg )mx(l,])
z€G iel jed jeJe 1€l
< Z €ss Sup Z |)\l]|X$1+Vg )mx(l,])
jede TEY  er
= 3 esssup 3 g v (hmx i), 474 9)
jedJ z€g el

On the other hand,

ZGSSSUP D gl Xt ve (@)mx (i, §)xe 1, (€) = D ess sup > i Xarvg (@)mx (4, 5)
jedJ z el j€Je z el
< Mmax{esssup Y _ |Nij| Xa,4+vg ()mx (i, ) | j € Je}
T€9 el
< Messsup Y > [N Xar v (@)mx (i, 5)
€Y e iel
- MGSS Sup Z Z |/\1] | Xﬂarﬁ-Vg )mx(i’j)X£j+V§(€)'
jeJ iel

Finally, using the previous cases, the equivalences in (5.48)) and (5.49)), we can write

Q
Q

€sssup Z ‘)‘ZJ ‘ Xz +Vg ( )XE_;’-‘!-VQA (f)m(x, 5) d'f
zeG iel,jeJ

S~

H(/\ij)i,j

‘(L?f’q(Hg))d(%,V)

q 7
Z ess sup Z |Xij| mx (4, 7) Xai+vg (@Xﬁﬁ%(ﬁ) df)

jes *€9 e

)
m\

1

q q
N /‘ S il mx (i )X, 4 v (-) Xe;+v5(8) | d€
9 \jes llier L*>(G)
a i
= /Q\ ZH(/\iij(i’j)>i€IH(L°°(g))d(X,Vg) X§j+V§(§) d£
jed
q K
= /G Z||(>\ijmx(i7j))i€]“goo(1) X§j+V§(§) df
jeJ
= (Aiymx(4,7)), - )
‘(H JHex EIH[ (1) jeJ (Lq(é))d(E,Vg)
= ‘ (H Aigmx (i, ) ieIHEOO(I))jEJ 0 = H()‘ij)i,j ‘éﬁgé‘(lx])'
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Case p < oo and ¢ = oo. Similarly to what has been done before,

p

— esssup /g S Dl Xersve (@) v, ()| mle, €)7de

ceG i€l jeg

(o

(L2 (Hg))a(X,V)

P

X

ess sup / Z |>\1;| X, +Vg( )X§7+VA(§)m(SU,§)pdm
£eg zEI JjeJ

p

X

ess sup Z |)\ij|pm(xi,fj)prj+V§(§)

£eg icl,jet

ess sup Z (Z INij [” m(z;, &5)P > ng-s—Vg(g)

3599 jeJ \iel

X

esssup Z H )\ijx(l -7 ZEIHZP([ XfJJFVA(g)
359 jeJ

JjeJ

H (H()\ijmx(i,j))ie[||ep(1))

XH()\J

The proof is concluded. O

(L>=(G))a(E,Vg)

lemse (rx.1)

Remark 5.1.27. (|8 Remark 3.27]) We want to state explicitly the equivalence constants involved
in the previous lemma. We distinguish four cases, as done in the proof.
Case p,q < co. We have

A*IBH i), <H /\‘ <ABH i
Citdiallgg ey = 1P | o mopyaceny = AP NODsllg (1)
where
= 3+l
A= A(X,:,Vg,Vg,v,p) = C’ngCgVA sup v |,
’ e V1,2U—V12
B := B(Vg, V§7p7 Q) = dﬂS(Vg); df(vé)a
Case p = q = 0o. The equivalence is
)\Z‘ SH)\Z‘ < sup v |Cxr )\Z’ .
H( J)z,g Z;’gX(IxJ) ( J)Z,J (L (Hg))a(X,V) V172U7V1’2 X, Vi ( J)z,J Z;’gx(IXJ)

Case p =00 and ¢ < co. We got

D H(/\ij)iﬂ' 0338(I.T)

<), . EHAZ ’
= H( ])7,,] (L (Hg))a(X,V) — ( ])l’] Loy (IxJ)
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where

Case p < 0o and ¢ = co. The last equivalence is given by

L H(/\ij)i,j ()‘ij)i,j

M (Aij)id

| <u|
(L5 (Hg))a(X,V)

<|
L (IxJ) i

where

L
3

-1
L= L(X,E Vg, Vg,v,p) =C 7. O2 1VA sup v dx(Vg)
A 2 ’2U7V1,2

M = M(X,E,Vg,VgA,v,p) = CXng Vs ( sup U) dx(Vg)%.
Vi2U=Vy 2

[ »o

We recall that the definition of the constants Cy Vo Cg Vg Cx v, , is given in (2.18]).

@0’

=
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On account of the constants shown in the previous remark, we have the following corollary.

Corollary 5.1.28. (|8, Corollary 3.28]) Fiz 0 < § < co and take p,q such that 0 < é < p,q < oo.

Under the same assumptions of Lemma[5.1.26] there are two constants

Cy = C(X, 2, Vg, Vg,v,6) >0 and Cy:= Cl(X,E7Vg,VgA,v,5) >0

such that
(& H (Aig);

< {(N;5). .
B (IxJ) ~ H( i)

Cy H(Aij)i,j

| ‘ <
7 (L%9(Hg))a(X,V)

for every sequence (N;j), ; in (L (Hg))a(X, V) = €59 (I x J).

i,

3 (Ix.7)

Proof. We notice that if b > 1, then b7 is a strictly decreasing function of p € (0, c0) and by > 1.
Likewise b~ 7 is strictly increasing and 0 < b r < 1. The claim follows now from Remark

0.1.27]

O

Remark 5.1.29. Although in Lemma M we considered V' = Vg x Vg x T with Vg and Vg
open, this last assumption can be relaxed into measurability. Fven in this case the above lemma

and the subsequent Corollary [5.1.30 hold true.

Corollary 5.1.30. (|8, Corollary 3.30]) Consider 0 < p; < pa < 00, 0 < ¢1 < ¢2 < 0 and
mi,ma € My(G x G) such that ma < my. Let V, X, E and X be as in Lemma|5.1.26. Then

(5.50) (L3, " (Hg)) , (X, V) = (L33, (Hg)) , (X, V).

Proof. 1t is a straightforward consequence of Lemma [5.1.26] and the continuous inclusions

(5.51) B (I x J) = 039 (1 x J),

mi,x

since max S m1 x.-
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Proposition 5.1.31. ([8, Proposition 3.31]) Consider 0 < p; < ps < 00, 0 < g1 < g2 < 00 and

-~

my,ma € M,(G x G) such that ma < my. Then we have the following continuous inclusions:
(5.52) MEPLI(G) — MPLE2(G).

Proof. Under the hypothesis of Lemma [5.1.25 it is always possible to find a BUPU on Hg of
the type (5.40)), see [I47, Lemma 2.3.12]. For such a BUPU

\II®F®H:{7/JZ®7]®X']IU (i,j)EIXJ},

the corresponding localizing family X = X x = x {1} fulfils the requirements of Corollary [5.1.30
To get the desired result we use the equivalence of quasi-norms shown in (2.26]):

1 largzyez = (WG Fllyy gy = H(H(wi ® % @x1) Wef| )

mo

BIN(LE2 72 (Hg))a(X,V)

= H(HW% ® v ® XT) - WngHLoo)

SIINLEL M (Hg))a(X,V)

= Hngf”W(Lﬁgl*“) = HfHMf#l’ql :

This concludes the proof. O

-~ -~

If m € M,(GxG), from the submultiplicativity and symmetry of v we have 1/m € M, (GxG).
This remark is implicitly used in the following issue.

Proposition 5.1.32. (|8, Proposition 3.32|) If 1 < p,q < 0o, then (M?:9(G))" = Mf};‘jl'(g) under
the duality

(5.53) (f,h) = <nga Vgh>L2(gX§)7

for all f € MP(G), h € MP"q’(g) and some g € S¢(G) ~ {0}.

1/m

Proof. For 1 < p,q < oo, LP29(Hg) is a solid bi-invariant Banach function space continuously
embedded into L}, (Hg). Therefore, from Theorem [2.2.39| combined with Remark we have

-~

(5.54) M79(G) = Co(Ly(Hg)) = Cora (L (Hg)) = {f € Ro |V, f € LG x G)}

with

(5.55) vaf”W(LT,;ﬁ) = ||ng||Ll,;¢q ‘

The proof then goes as in [82, Theorem 11.3.6], after noticing that we can identify (Ll )" with
L‘f?m since under our assumptions G x G is o-finite, similarly for mixed-norm cases. O

Theorem 5.1.33. ([8, Theorem 3.33])
(1) If 0 < p,q < oo, then Sc(G) is quasi-norm-dense in ME4(G);

(1) If 1 < p,q < oo and at least one between p and q is equal to oo, then S¢(G) is w-+-dense
in MP:1(G).
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Proof. For any 0 < p,q < 0o, S¢(G) is a subspace of MP%(G), cf. the computations in the proof
of Lemma [5.1.10| and the inclusions in .

(i) Let ¢ be as in (2.94) and consider the relatively compact unit neighbourhood Uy coming
from Theorem Without loss of generality we can assume Uy = Vg X Vg x T =V as
in (5.7), see the proofs of [147, Theorem 2.4.19] and [147, Lemma 2.4.17]. Then there exists a
Uop-BUPU with localizing family X = {(x,&;,1)} i j)erxs such that any f € MP:9(G) can be
written as

(5.56) f= Z ij(flo(zi, &, 1) = Z Aij (F)m (@i, &5)p,

i€l jeg i€l jed

with unconditional convergence in ME:9(G) since the finite sequences are dense in ¢5;9 (I x J) =
(L3 (Hg))a(X, V), p,q < oo
(#1) We show the case p = ¢ = 00, the remaining ones are analogous. From Proposition [5.1.32

ME°(G) can be seen as the dual of Mll/m (G). Therefore, with ¢ the Gaussian in ([2.94]),

(5.57) tSe(G) ={f € M)y, [{Vof, Voh) =0, VheSc(9)}.
For fixed (u,w) € G x G consider h = 7(u,w)p € S¢(G). From Lemma
(558) V@h(fﬂ,g) = <§ - w7u>T(u,w)V¢§0(x7£)'

In particular, from (2.100), V,,h(u,w) # 0 and it is continuous. Therefore if f € 1Sc(G)
(Vo f. Voh) = / Vo f (e, OVoh(z, ) dede =0 = V,fVoh = Oace,
Gxg

but since V, fV,h is continuous this implies V. f(x, &)V h(z,&) = 0 for every (z,§) € G X Gg.
Necessarily V,, f vanishes on a neighbourhood of (u,w). On account of the arbitrariness of the
point (u,w) € G x G, we have V,, f = 0 which also means W¢f = 0. Since the application

W£2 Rz — C(Hg) N LT%;(HQ)

is injective, see [147, Lemma 2.4.8], we infer f = 0. Therefore +S¢(G) = {0} and

—— = w—x*
Se

@) = (*8c(9) = ({on*t = M (9).

This concludes the proof. O

-~

Lemma 5.1.34. (|8, Lemma 3.34]) For every , 0 < p,q < oo and m € M,(G x G)
5(G) € MpA(G).

Proof. We just need to show that for every 0 < r <1 the inclusion

(5.59) 25(G) € M(9)

holds true, then the claim follows from the inclusion relations for modulation spaces. From ([5.20))
and the inclusion relations in [147), p. 113], if g € o% C AL and ¢ is the Gaussian as in ([2.94),
we get that
R(100 o) T o] r
W2geWw (L, W(L*>®,LL)) < W(L*>, LL).

Hence g € M7 (G). O
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Corollary 5.1.35. (|8, Corollary 3.35]) If 0 < p,q < oo, then @ is quasi-norm-dense in

MEA(G).
Proof. The claim follows from the above theorem, the previous lemma and the inclusion S¢ C
. O

Corollary 5.1.36. ([8, Corollary 3.36]) For every f € Sy(G) there exists a net (fa),cq € Sc(9)
such that

(560) iier[}4<fom h>L2(g) = 8} <f7 h>50a Vhe SO(g)

Proof. From Lemma [5.1.13| we have that S¢(G) is norm-dense in T; = Sp(G). From [101], Propo-
sition 6.15] there exists a bounded net (fs)ger € So(G) such that

(5.61) (fo: P12y = sp(frh)ses VR € So(G).

lim
BERB
This concludes the proof. O

Remark 5.1.37. (|8, Remark 3.37])

(i) From Theorem[5.1.33 and relations (5.54) and (5.55) it follows that the modulation spaces
introduced in Definition |5.1.19 coincide with the classical ones in [56, [88]. This implies
that

!/
(5.62) M, (G) 2 (closuzs, (Se()))

/

the dual of the closure of Sc(G) with respect to the norm on ijm(g). If f e M2YG)
and g € Mll/ﬁ(g), then for ¢ as in (2.94)

(5.63) Vol Vod) agucy| S 1 sge lollass = -

See [88, Proposition 2.2];

(ii) The theory for G = R? developed in [75] is recovered for every 0 < p,q < co. In fact, it
was observed in [119, Section 8] that from [75, Lemma 3.2] follows the equality

Co(Ly!(Hga)) = {f € S'|Vyf € LEIR*)} 0 <p,q < oo,
with equivalent quasi-norms.

For a general LCA group G it is an open problem whether a construction of the type

-~

{f €eRs|Vyf € LVUG x G)},

with obvious quasi-norm, could make sense or not when at least one between p and ¢ is smaller
than 1. However, we are able to answer affirmatively if G is discrete or compact, see the lemma
and corollary below.

Lemma 5.1.38. (|8, Lemma 3.38]) Let 0 < p,q < oo. Suppose G is discrete or compact. Then
there exists C > 0 such that for every f € MP:(G)

(5-64) ||ngf||W(L,’;;q) <C ||ngf||Lf7;q ’

for some g € S¢(G) ~ {0}.
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Proof. If we prove for some suitable unit neighbourhood @ C G x G that there exists C > 0 such
that

(5.65) WV vz < C VoSl

then (5.64) holds true, see Remark Moreover, as shown in Proposition [5.1.18] we can

consider the modulation spaces as subsets of S)(G).

Case G discrete. G is compact and the structure theorem reads as G = Gy and G = éo. In
the definition of the Gaussian function (2.94) we take, Remark |5.1.16 the open and compact
subgroup K = {e}, therefore

o() = x{e} (z) = ().
We also choose @ = {e} x G , which is a measurable, relatively compact, unit neighbourhood. Fix
f € MPA(G), from [I0I, Proposition 6.15], we have that there exists a bounded net (fo)aca C
So(G) such that

(5.66) lim (fa, hyr2g) = 5 (fi h)sa, V€ So(9).
Recall that S¢(G) C Sp(G), then adopting the widow function ¢, we compute

Vo f(2,6) = {f,n(2,£)d¢) = lim (fa, 7(2, €)de) = lim D falw) (€ u)d, (u)

ueyg
= altlenifa(x)@va» = <§7I> Oltler%fa(x)v
MoVef(z,§) = esssup  |(n,y) lirgfa(y)' = esssup _ ligfa(y)‘
(y.m)E(x,6)+{e} x G ac (ymefa}xG 1*€
= ilérj‘fa(x) = [V f(z,8)].
Therefore

1V F ey czmiry = IMQVi Fllgin = Vil

Case G compact. The argument is identical to the previous one, take K = G and Q := Gx{é}. O

Corollary 5.1.39. ([8, Corollary 3.39]) Suppose G is discrete or compact. Consider m € M, (G x
G) and 0 < p,q < co. Then

ME(G) = {f € S)(9) | Vof € Li1(G x G)}
and
(5.67) 1 lazze = Vo fllge s
for some g € Sc(G) ~ {0}.
Proof. We consider MP:9(G) as a subspace of S{(G) instead of R (Propo. The

claim then follows from the continuous embedding W (L2 ?) < L% Lemma |5.1.38/ and Remark

EI9 O
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5.2 Continuity of the Rihaczek and Kohn-Nirenberg opera-
tors

In this section we investigate the continuity of the Rihaczek distribution (2.96) on modulation
spaces and infer boundedness results for the Kohn-Nirenberg operators, defined in (2.216)).

5.2.1 Boundedness results

We first study the boundedness of the Rihaczek distribution on modulation spaces. The tech-
niques are mainly borrowed from [3I, Theorem 3.1] and [25, Theorem 4] for the Wigner distri-
bution on R<.

From now on we shall mainly work with Sy(G) and S{(G) instead of T3 and R (Proposition

FLIS).

We need to extend [88] formula (51)] to wider classes of functions. Namely,

Lemma 5.2.1. ([8, Lemma 4.4]) Consider ¢ € Sc(G) and f,g € S)(G). Then

(5.68) Vr,p) (9, [)(@,8), (w,u) = (€ u)Vpg(z,§ + w)Vy f(z + u, §),
with x,u € G and §,w € é

Proof. For f,g,v € Sc(G) formula (5.68) is proved in [88] formula (51)]. Consider now f,g €
84(G). From Corollary [5.1.36| there exist nets {fq}aca and {gotaca in So(G) which converge
pointwisely to f and g in S{(G). Therefore for every z,u € G and € € G,

b Vi fa -+ 0,€) = i fo 7o+ w0, ) = (£7(o + 0, 0) = Vo + u,€),

and similarly for V,,g. For the left-hand side of ([5.68), observe that

R(fa,g0)(,€) = (€, 2) Fa(fo © 7o) (2, ).

-~

The partial Fourier transform F» is a topological isomorphism from Sp(G x G) onto Sp(G x G)

-~

and from S{(G x G) onto S{(G x G). Write x = (z,¢) and w = (w, u),

ii& VR(T,ZJ,T,/})R(fOM ga)(x7 w) = i1£<m—7:2(fa ® ga)v 7T(X, W)R(w, 1p)>

= <<a>}—2(f ®§)7W(X7W)R(¢a¢)>
= Ve R(f, 9)(x,w),

being R(1,1) € Sp(G x G). This concludes the proof. O

Proposition 5.2.2. ([8 Proposition 4.5]) Consider p, q,p;, q; € (0,00], i = 1,2, such that

(5.69) Pis¢i <q, =12
1 1 1 1 1 1
(5.70) mill{+,+}2+.
b1 P2 ;1 Q2 p q

Let v be a even submultiplicative weight bounded from below on G X QA, and J the isomorphism

in (2.98). For g € MPv1(G) and f € MP2%2(G), we have R(g, f) € M{’gmj,l(g X G), with

(5.11) IR(g, Dllagme S lgllgzaon 1FLagpae -
1QuoJ
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Proof. Consider ¢ € S¢(G), f € MP>%2(G), g € MP»%(G). By Lemma the STFT of the
Rihaczek distribution is given by

(5.72) Vew.w) B9, [)((2,8), (w,u)) = (€, wVpg(z, &+ 0)Vy f 2 + u, ),

with z,u € G and §,w € G. Corollary [5.1.11| shows that R(v,v) € dmﬁ_l(g X é) Consider

Vg C G and Ve C é open, relatively compact, unit neighbourhoods. According to the notation

in we define
(5.73) Vip=Vgx Vg, Vor1:=VgxVg, O=ViaxVy1xT.
Set
Hy((,€), (w,u),7) = Vyg(z,6 +w) and  Hy((w,), (w,u),7) = Vi fz +u,8),
which are functions on the Heisenberg group associated to G x G. Notice
Mo [TVr(y,p) R(9, f)] = Mo[H, - Hf] < Mo[Hy| - Mo[Hj].
We compute

Mo[H,l((x,§), (w,u),7) = esssup  |Vyg(y,n+ )|
((y,m),(v,2),8)€
((@.€),(w,u),m)O

= esssup ess sup |T(e,—y) Vog(y,n) ‘
vEw+Vg (y,m)€(z,€)+Vi 2

= esssup (Mv, , [T(e, 1) Vipgl(2, )
VEUJ+V§

= €Sssup (T(e,—u) [MVszwg(xa 5)])
V€w+V§

=esssup (My, ,Vyg(z,&+v)).
V€w+V§

Similarly,

MolHy]((2,€), (w,u),T) = €35 Sup (T2 My , Vi f (2, 6)])

=esssup (My, , Vo f(z + 2,)) .
zeu+Vg
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-~

By the modulation spaces independence of the window in ,;af (STt (G x G), we can write

T

1R e = ([ (] MolrVig. ke, D). €). w0 ded)

x v?o T w,u) dwdudr) ’

< (/gg (/g esssup My Vo (e, € +1))"

xG vew+Vg

a 1
x esssup (My, , Vi f(z + 2,€))" dzdf) "o T w,u) dwdu) ’
zeu+Vg

(/ (( esssup
Gxg

My o Vg € + )P My, Vo (4 2, €)P dzdf)
v,z2)€(w,u)+Va 1 QXG

x v?o T w,u) dwdu) .

S

Q=

The inner integral can be rephrased using the left-right invariance of Haar measure and the
involution h*(-) :== h(—-) as follows:

/ Mus aVog(@,€ + )P Mys Vi f (o + 2, )P dadé
gxg

/g M Voo €)My Vi (0 €) + (o)

- / My Vig) (2, €77 My, Vi £ (2, —v) — (o, €"))P da"de”
gxg

= (le,szg)* P (le,szf)p(»z’ —V)

= (MV1,2V¢9)* P (MV1,2V¢f)p © jil(Va Z)

Whence, using [147, Lemma 2.3.23], we majorize

esssup  (My, ,Vypg)*? x (My, , Vi, f)P o T (v, 2)
(v,z)€(w,u)+Va 1

€sssup (MV1,2V@/19)* P (MVl,szf)p(zlv I/)
(z wveJ Hwu)+T Va1

= MJ_1V2,1[(MV1,2V¢9)* P (MV1,2V¢f)p](‘-7 l(wvu))
< [MJ’lVQ,l [(MVLleZ)g)* p] * (le,zvlbf)p}(j 1( ,U))
= [MJ_1V2,1 [(MV1,2V¢9)*Z]] * (MV1,2V7J}f)p} oJ"~ 1(wvu)'
Setting U =

—J YWa1 + Vi, which is an open, relatively compact, unit neighbourhood, we
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obtain
MJ_1V2,1[(MV1,2VTP9)* p](u7w) = €sssup €sssup |V¢g(x7€)|p

(y,me(u,w)+T Va1 (z,£)€E—(y,m)+Vi 2

< ess sup ess sup [Vpg(z, &)|°
(ym€E(u,w)+IT Va1 (z,€)€

—(u,w) =T " 'Va 1+ V12
= ess sup Vypg(z,&)[°
(z,8)e

—(u,w) =T Vo, 14V 2
= Mo Vyg(—u, —w))” = (MuVyg(u,w)]")".
Observe that for positive functions h,l on G x Gandva submultiplicative weight we can write
(5.74) ((hx Do) (2,€) < (hv ) (2,8),  (2,€) €G %G,
moreover vP is submultiplicative as well. Therefore
»

7 Dl 5 ([ (Vs « M Voo 7))

! Gxg

Q=

x v?0 T Hw,u) dwdu)

1
q

B

< ([ ((MyVyg]™ - v)?  (My, , Vi f - 0))

gxg

= ||([|\/|UV¢9]* )P (My, , Vi f - U)sz/qI;p(gng) :

By Young’s convolution inequality and following the same argumenta as in the proofs in [31,
Theorem 3.1 and [25], Theorem 4| for the Euclidean case (replacing the Wigner distribution with
the Rihaczek) we infer the estimate

o J Hw,u) dwdu)

(5.75) 1B (g, Dllagze S lgllagzvar 1 llagpz ez
with indices satisfying the conditions (5.69) and (5.70). Following the patterns of [25] [31] the
same result is obtained when p = 0o or ¢ = oc. 0

The boundedness properties of the Rihaczek distributions enter the study of Kohn-Nirenberg
pseudo-differential operators Opg(o), defined in and , in the same fashion of [8§].

The boundedness result for Weyl operators in the Euclidean setting [31I, Theorem 5.1] can
be written for Kohn-Nirenberg operators on groups as follows.

Theorem 5.2.3. ([8, Theorem 4.6]) Consider p,q,p;,q; € [1,00], i = 1,2, such that:

(576) q< mln{pllv qll7p2a Q2};

1 1 1 1 1 1
(577) min{+,,+,}2/+l.

b1 Py @1 Qo p q
Consider v submultiplicative weight even and bounded from below on G X G. Ifo € Mfgloj—l (G x
G), then Opo(0) is a bounded operator from MPv9(G) dnto Mf/zl’}qg (G) with estimate
(5.78) 10po(0) Fllazzen < lollagrs, Il

v 1Q 50T~

Proof. It follows by duality using Proposition and the weak definition of Opg(c) in (2.217).
O
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5.2.2 Gabor frames on quasi-lattices

The key tool in the boundedness properties of Kohn-Nirenberg operators on quasi-Banach mod-
ulation spaces is the Gabor frame theory. For a detailed treatment of frame theory see, e.g., [21].
In what follows we shall recall and prove new properties for Gabor frames on a LCA group. As
a byproduct, we generalize the convolution relations for modulation spaces firstly given in [9]

Proposition 3.1|, see Proposition [5.2.14
Lemma 5.2.4. Gy/K and Q\O/ICJ- are discrete.

Proof. We show only the case Gy/K, the remaining one is identical. Let po: Go — Go/K be the
projection and consider a point [z] € Go/K. Then py*([x]) = =+ K is open since K is. Therefore,
being every point open, the space is discrete. O

Lemma 5.2.5. (|8 Lemma 4.7]) Let A C G x G be a quasi-lattice as in ([2.129). Then A is a
relatively separated family.

Proof. We use Lemma [5.1.24] The fact that A;2Z2? is relatively separated in R?? is trivial.
We only have to show that D, is relatively separated in Gy; D5 is treated similarly. For a fixed
compact set Qo C Gy we have to show that

CD17Q0 = zu[l;) #{y€D1| (Z‘+Q0)ﬂ(y+Q0)7é®}<+OO.

Since Qg is compact and K is an open subgroup, there exist q1,..., ¢, € Qo such that

Qo C U (¢ +K) = Qp.
i=1
For z,y € Dy, if (x + Qo)N(y + Qo) # @ then (z + QL) N(y + Qf) # &, hence Cp, o, < Cp,,q,-
Assume that (z 4+ Qp) N (y + Q) # <, then there are ig,jo € {1,...,n} and k;,, kj, € K such
that
T+ qig T Rig =Y+ qio T Rjo & Y=+ iy — G + Kig — Kjo.-
Fix x € Dy, quotienting by I,

(5.79) W* =z +aq, —4o)* = #{yeDi|(@+Qy)N(y+Qpy # 2} <n?
where [y]® denotes the projection of y € Gy onto the quotient Go/K. This proves Cp, g, <
Cp,,q, < +00. The desired result follows now from Lemma[5.1.24] O

Corollary 5.2.6. (|8, Corollary 4.8]) Let A C G x G be a quasi-lattice. Then A is at most
countable.

Proof. We use the fact that A is a relatively separated family and Lemma [2.2.17] O

In the following issue about the existence of a particular BUPU, we use the quasi-lattice A
both as localizing family and as indexes’ set. The argument was presented in [57, Remark 2.5].

Lemma 5.2.7. (|8, Lemma 4.9]) Let A C G x G be a quasi-lattice as in (2.129) with fundamental
domain U as in (2.130). Then there exist two open, relatively compact, unit neighbourhoods @
and V12 in G x G, where Vi 5 as in (5.9)), such that Q C Vi2 and there is a V1 2-BUPU

{tw ® 'Wb}(w,u)eA
with localizing family A and such that for every (w,p) € A

Vo @y =1  on  (w,p)+Q.
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Remark 5.2.8. ([8, Remark 4.10]) Without loss of generality, the unit neighbourhood Q of the
previous lemma can be chosen such that

(5.80) ({0ma} x K) x ({Oma} x K*) C Q.
Therefore for every (w,pn) € A = Ay X Ay we have
Yy =1 on w+ ({Opa} x K), V=1 on p+ ({0pa}x KY).
The following is a consequence of Theorem [2.4.26]

Corollary 5.2.9. (|8, Corollary 4.13|) There ezists o € (0,1) such that the Gabor frame
{m(w)p|w € A} defined in (2.137) admits a dual window h € 2.

Proof. We first tackle the problem of finding a dual window. The proof is similar to that in [88]
Theorem 2.7]. We distinguish three cases.
Case G = R%. In this case the frame we are considering is

(5.81) {ﬂ(wl,ul)e_m?, (wy, 1) € aZ??}, a€(0,1).

We fix o such that a?? < (d+1)~!. Then the existence of a dual window 7, for the Gabor frame
generated by the first Hermite function Hy (the Gaussian) was proved by K. Grochenig and Y.
Lyubarskii, see [85], [86]. In particular in [86] Remarks 2| was observed that g belongs to the

Gelfand-Shilov space S,/5(R?), cf. [76].
Case G = Go. In this case the frame that we are dealing with is the orthonormal basis for L?(Go)

(5.82) {7 (w2, p2)xx(v2), (w2, p2) € D12}

Therefore yi is a dual window itself.
Case G =2 R4 x Gy. The frame in this case is the tensor product of the previous ones:

(5.83) {r(w)p, w = ((wi,ws), (11, p2)) € A = (aZ% x D1) x (aZ? x D)},

where ¢(z1,72) = 67’””?)“ (z2) = (1 ®p2) (w1, T2). Recall that the functions of the type f1 ® fa,
with f; € L?(R%) and fy € L?(Gp), are dense in L?(R¢ x Gg). Let us show that

(5.84) h(z1,22) = (70 @ xic) (21, 22)

is a dual window. In fact,

S (1 @ foum(w)e) (W0 @ xi

weA

= Z (fr,m(wi, pa)pr)m(wi, g )vo Z (f2, 7 (w2, pa)pa)m (w2, p2) XK

(w1,p1) (w2,p2)

= f1® f23

similarly,

Z (f1® f2, 7 (W)y0 ® xx)T (W) = f1 @ fa.

weEA

The claim follows by density argument.
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We now prove that h € o7 in the general case G = R? x Gy. Similarly to the wavelet
transform of the generalized Gaussian ¢ in (2.94)), see (2.100)), we obtain

(585) th(iE,f,T) :70(’0‘/7070 (X)XICXK:L (xaé-)

Since V470 € 511/22 (R24), see e.g. [11, Theorem 2.13|, calculations similar to the ones performed
in Lemma [5@{

yield the desired result. O

Lemma 5.2.10. ([8, Lemma 4.14]) Let A = aZ?? x D15, a € R, be a quasi-lattice in G x G.
Consider the function

(5.86) ©°(x) = @°(z1, 22) = 2_%mea£;(IC)e_%“Jf ® xk(z2) €

for x = (x1,22) € R x Gy = G, where meas(K) is the (finite) measure of the compact open closed
subgroup K in Go. Then there exist o € (0,1) and a function h® € of; such that

(5.87) {m(w)p°®|w e A}
is a Gabor frame for L*(G) with dual window h°.
Proof. The result is obtained using the same arguments as in Theorem [2.4.26] and Corollary

combined with [35, Lemma 3.2.2]. O

Theorem 5.2.11. (|8, Theorem 4.15]) Let A C G x G be a quasi-lattice with fundamental domain

~

U. Consider 0 < p,q < 0o, m € M,(GxG) and g € o/5. Then the coefficient operator Cy admits
a unique continuous and linear extension

(5.88) Cy: MEPA(G) — £5:1 (A),

where my s the restriction of m to A. Moreover, if 0 < § < 0o is such that 0 < § < min{p, ¢} <
00, then there is a constant C = C(0) > 0, such that

Colllarzya e < C
for allp,q > 6. The constant C = C(§) may depend on other elements, but not on p and q.

Proof. Consider f € MF:(G). Let {tw ® Vu}(w,uyea be the BUPU on G x G constructed in
Lemma Since tensor product of BUPUs is a BUPU (Lemma [5.1.25) it follows that {1, ®
Y ®XT}(w,pyea is a V-BUPU on Hg, V' as in (5.7), with localizing family X = A x {1} and such
that

(5.89) (Yw @7 @ x)(w, p,1) =1 V¥ (w,p) € A

Hence

[(fym(w, W) = |(Pw @7 @ x1) (W, 11, 1) - WEf (w, 1, 1)| < || (o @ 7 @ x1) - W2EF|| e -
By Lemma [5.1.26

||Cgf||mg\(/\) = (<f77r(w7/’[’)g>)(w,u)€A (A

(6w @ 3 @ x2) - W], )

IN

JW)EA ,
(w,p)EA||gr:a (a)

)

(et © e @ xr) - W)

(W) EA[(Lpay, (V)

X

HWngHW(Lgf) = ||f||MM s

m
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where in the last equivalence we used Lemma [5.1.23] see also (2.26]). The last claim comes from
Lemma [5.1.23| and Corollary [5.1.28 O

Theorem 5.2.12. (|8, Theorem 4.16]) Let A C G x G be a quasi-lattice with fundamental domain

-~

U. Consider 0 < p,q < oo, m € M,(G X G) and g € of;. Then the synthesis operator C; admits
a unique continuous and linear extension

(5.90) Cg: 0 (A) = MEY(G),

where my is the restriction of m to A. If p,q # oo, then the series representing C;(c) converges
unconditionally in M;(G). Otherwise C(c) w-x-converges in My} (G). Moreover, if 0 < § < oo
is such that 0 < 6 < min{p, q} < oo, then there is a constant C = C(8) > 0, such that

|

for all p,q > 6. The constant C = C(§) may depend on other elements, but not on p and q.

<C

P,q pP,q —
Ly = My

Cy

Proof. The proof follows the pattern displayed in [75]. Let (z,£,7) € Hg and ¢ = (cw)yea €
29 (A), then we write

\Wf[cg(c)](ﬂ?afﬁ)’ =1V Z Cwﬂ'(w)g‘| (z,8)| = Z Cng7T(W)g(x,§)|
wEA weA
< 3 lewl [TVagle, ) = F2(w,6,7).

weA

Let {¢w ® Yy} (w,uyea be the Vi 5-BUPU on G x G constructed in Lemma Then {¢, ®7,®
XT}(w,pea is a V-BUPU, V as in (5.7), on Hg with localizing family X = A x {1}. Using the
norm equivalence in (2.26) and Lemma [5.1.26]

C3laspr = 15Ol gy S [ (100 © 20 8 x0) - FE ) e |

(LMa(X,V)

< (1w @7 @ x1) - Fello) e e w)’

We control the latter sequence as follows:

(@ ¥ @ X1) - Fll oo <D leu|  esssup  [TuVyg(z, 6]
S @OewtVig

= Z ‘Cwl MVI,ZVgg(W - u)
weA

— ((|Cu|)u * (le,ngg(U))u) (w).

We set ¢ = min{l,p} and s = min{1,p,q}. Using the convolution relations for the sequences’
spaces in [75, Lemma 2.7|, we obtain

HC;(C)HM,’Q" I~

<(<|cu>u + (le,Qvggm))u)(w))

weAllene (A)

S llellena H(MVLZVOQ(W))WA-HEZ’;'(A) :
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Arguing as in the proof of Theorem [5.2.11} and using Lemma [5.1.26| and (2.26]) again

||(MV1,2V_;]9(W))WGA||53}\I7(A) < H (H(ww &V ®X'H‘) : MVnggHLoo)

weMle

= H (H(ww ®’7,u ®X'[F) . MVnggHLoo)

weAMl(LL)a(x,V)

= [IMv3gllyr, (1o = MyMy W]l

< M2 = (W0l

where we set V2 := VV (multiplicative notation in Hg). As reported in Remark [2.2.35| for any
0 < r <1 we have the continuous inclusion

(5.91) WHR(L>® W(L*>, LL)) < W(L>®, LL).

Arguing as in Proposition and taking r < min{¢, s} we obtain

(5.92) W(L>®,LE) < W(L>, L.

The fact that g is in % (defined in (5.21))) implies then
HW;)gHWVZ(L%’S) < +00

and

(5.93) ||C;(C)HM57<1 S HCHF’E’ (A) -

mp

Unconditional convergence for the series defining C; (¢)in M2:9(G) if p, g # oo, and w-x-convergence
in M79, (G) otherwise, is inferred as in [82, Theorem 12.2.4]. The last claim comes from Lemma

and Corollary [5.1.28 O

Theorem 5.2.13. ([8, Theorem 4.17]) Let 0 < p,q < 0o, m € M, (G x (3) and ¢ as in (2.94)).
Consider h € 75 such that

(5.94) Sh,o = Spn =112,
for a suitable quasi-lattice A = Ay x Ay C G X é Then

(5.95) F=Y (faw)e)r(wih =Y (f,m(w)h)m(w)e

weA weA

with unconditional convergence in MP:1(G) if p,q # o0, and w-*-convergence in My, (G) other-
wise. Moreover, for every f € MP:1(G) we have the following quasi-norm equivalences:

q

Q=

(5.96) [l = | > ( > |V¢f(w7u)pm(w7u)p> = (Ve F WD wenllima a)
pnEAy \weEA

Hf”M,’;Lq = Z ( Z |Vhf(w7:u)|p m(waﬂ)p> = H(Vhf(w))wEAHng?\(A) )
nEA2 \weEA;

and similarly if p = co or ¢ = co.
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Proof. The proof is based on the continuity of C,, C3, Ci and Cj. The pattern is the same of
[82, Corollary 12.2.6]. O

Expansions and equivalences analogous to (5.95) and (5.96]) hold for ¢° and h° defined in
Lemma 52100
The following is a generalization of Proposition [2.5.19, which treated treated only the group R<.

Proposition 5.2.14. Consider m € M, (G x QA), define forz € G and £ € G
(5.97) mi(z) =m(z,é), wvi(z) =0v(zx,é), v2(§):=0(e ).

Let v(€) > 0 be an arbitrary weight function on G such that

-~

(5.98) my @ v,v; @ vav ™t € My(G x G).

Let 0 < p,q,r,t,u,v < 0o, with

(5.99) ! + L1
' w t

and
1 1 1

(5.100) —t-=1+-, forl<r<oco
p q r

whereas

(5.101) p=gq=r, for 0 <r<1.

Then

(5.102) Mo, (G) * MY, 1 (G) = M (G)

with quasi-norm inequality

(5.103) 1 * gllamg S W lagme Ngllpgee

my®v v @ugr—1

Proof. We follow the patter displayed in [9, Proposition 3.1]. A direct computation gives @ * ¢ =
©°, where @ is defined in (2.94)) and ¢° in ((5.86)). Similarly, the following identities can be easily
checked:

Vif(2,8) = (& x) (f * M[l7]) (), Me[p®|(2) = (Me[p™] * Me[p™]) ()

(recall the involution h*(x) = h(—=x)). Using associativity and commutativity of the convolution
product we can write

(5.104) Vio (f + 9)(w, ) = (&, ) ((f * Me[p™]) * (9 % Me[@™])) ().

In what follows we will use the frame expansions in Theorem [5.2.13] with ¢° in place of ¢, see
Lemma [5.2.10] We majorize the weight m by

m(w) = m(w, p) S m(w, e)v(e, ) = mi(w)va(p) W= (w,p) €A,
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use Young’s convolution inequality for sequences in the w-variable and Hélder’s one in the p-
variable. The indices p, ¢, 1,7, t,u fulfil the equalities in the assumptions. We show in details the
case when 7,7y, t,u < co. The others are similar. Namely,

(Vo (f # 1) (w)m(w)) e

X

I1f gl g

£r (A)
2\ ¥
=1 > <Z Vw(f*g)(ww)le(w,M)’”)
HEA, weN
5 1
S (Z <f*Mﬂ[so*D*<g*Mﬂ[¢*]><w>|"m1<w>T> va ()
nEAy \weEA
1
* * v
= | X [ Mule D) < (05 Ml D@D e, w2l
HEA2 ml( v
Y Y
< ML * ‘ ML *
S D DY (ERRIARICOINEN BN ((TERIAC OO I
HEAL
1
YN\ v
NP CEALL) )
v(p)Y
1
u w “
<[ X @ Ml D@D en, |, V)
1)
HEA2
+
¢ va(p)t |
(9 x My [¢™])(w)),,
(&H Shtllen, ) v()!
= [I(v% wEAHZf’T;";@W(A) H(Vsag(w))weAqu"® -1 ()
miQuov
= HfHMf:L’;"@V ”gHMzit@vQ,rl )
the last equivalence is (5.96]). This concludes the proof. O

Let us introduce the closed and compact subgroups of G x G and G x G, respectively:
(5.105) U(G) = ({O0gra} x K) x ({O]Rd} X ICJ‘) , U(QA) = ({ORd} X ICJ‘) X ({Opa} x K).

Given x € G x G, we will denote its projection on (G x Q\)/U(g) by

x or [x]°

and similarly for the projection of £ € G x G onto Q x G)/U( )

Let A = A, 2Z 2d Dy5 C G x GandT = Az 47 d x Dsg 4 C G x G be quasi-lattices, then their
projections

(5.106) P2G)=2(G, A1) =A and  D(G) = D(G, As,) =
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are discrete and at most countable LCA groups. Given a distribution f in Rg, or &), and a
window g € %, the function

(5.107) Vof(x):= sup [V f(x+2)| =Myg)V,f(x)
zcU(G)
is well defined on the quotient group (G x é) /U(G). In fact, if u is such that X = 1, then there
exists n € U(G) such that u = x + n. Setting y = n + z € U(G) we have
sup [Vyf(u+2) = sup [Vf(x+ntz)|= sup [Vfx+y)l.
zcU(G) zc€U(G) yeu(g)

-~

Similarly, given a weight m € M, (G x G), the function

(5.108) m(xX) == sup m(x+z)
zcU(G)

is well defined on the quotient.

Lemma 5.2.15. (|8 Lemma 4.19]) Consider a quasi-lattice A in G x G. Let g € o5, 0 < p,q <

~

oo, m € My(G x G) and define the mapping
(5.109) ys ba30(0) » 852 2@). o> (Vor )
m wED(G)

where the weight m is understood to be restricted on 2(G). Then there exists a constant C' > 0
such that for every f € ME:9(G) we have

(5.110) Cof <O fllyppe

£9(2(9))
Proof. The BUPU {#¢,, ® v, ® xT, W = (w, ) € A} coming from Lemma is such that
Y @y, =1 on  w+U(G).

Noticing that the projection of A onto 2(G) is one-to-one we have without ambiguity

Vo f ) < (b @7 @ X2) - Vil poo = || (s © 7 © x) - WEF .

where (w, p) is the only representative of w in the quasi-lattice. Since U(G) is compact there
exists a constant C' = C(U(G),v) > 0 such that

(5.111) ém(x—l—z) <m(x) < Cm(x + z),

for every x € G x G and z € U(G), sce [147, Corollary 2.2.23]. For x = w € A, taking the
supremum over z in U(G) we can unambiguously write

(5.112) m(w) < m(w).
All together we have

Cof

(V0760 i)

5(2(9) | WEP(9) || gr.a(2(g))

< H (HWw ® Yu ® XT) - Wt';gf”Loo 'm(w)>weA £ra(A)
P,q

Then we conclude as in the proof of Theorem [5.2.11 O



156 CHAPTER 5. QUASI-BANACH MY AND AY*%? ON G LCA

5.2.3 Eigenfunctions of Kohn-Nirenberg operators

We have now all the instruments to study the eigenfunctions for Kohn-Nirenberg operators. Let
us first introduce the Gabor matrix of Opg (o).

Definition 5.2.16. Consider g € S¢(G) and o € S4(G x G). The Gabor matrix of the
Kohn-Nirenberg operator Opg(c) (with respect to g) is defined by

(5.113) [M(0)lxy = (Opo(o)n(y)g, 7(x)g),  Vx,y €GxG

The machinery developed in the previous subsection let us generalize what stated in [0
Thereom 3.3 (i)] (Theorem for Weyl operators on R¢ and proved separately in [136, Theo-
rem 4.3] and [142, Theorem 3.1]. We will then obtain properties for the eigenfunctions in L?(G)
of Opg (o) similar to the ones for Weyl operators on the Euclidean space, cf. [9, Proposition 3.5]

(Proposition [3.1.4)).

We start with the boundedness properties of Kohn-Nirenberg operators.

Theorem 5.2.17. (|8, Theorem 4.21|) Consider 0 < p,q,v < oo such that

(5.114) S+ ==

and a symbol o € MP™Y (G x G). Then Kohn-Nirenberg operator Opy(c): So(G) — SH(G)
admits a unique linear continuous extension

Opo(0): M*(G) = M7(G).

Proof. We distinguish two cases: v <1 and v > 1.
Case v < 1. Let ¢ be as in (2.94) and consider h € % and a quasi-lattice A such that
Sh,w = S%h = I;>. Write

(5.115) Opo(0) = Cj; 0Cyp 0 Opg(0) 0C 0 Cp, =: Cjy 0 M (o) 0 Cp.

We shall prove that the Gabor matrix M (o) is linear and continuous from ¢9(A) into ¢7(A). It
is sufficient to prove that the diagram
e Opo(o) M

go M)

YAl

is commutative. We show in detail the cases p < 400 and ¢ < 400, the others are similar. For
f € M1(G), using the decomposition in (5.115) and the notation for the Gabor matrix (5.113]),
we have

Opo(0)f = Y Y (Opo(o)m(w)p, m(W)e)(f, m(w)h)m(w)h

weA ueA

=3 > [M(0)] g (f. T(W)R) T (W),

weEAueA
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so that

M(o): L9(A) = 07 (A),  (cw)wen — (Z [M(U)]w,u cu> )

ueA

From the weak definition (2.217) and (2.99) we can write each entry of the (discrete) Gabor
matrix of Opg(o) as follows:

[M(0)]y . = (Opo(0)m(w)ep, m(W)ep)

= (o, R(m(w)p, m(u)p))

= (0, (v, 0 — WM 7 (u—w)L(w) R(p, )
= (v, w —u)Vao (w,v), T (0 —w)),

where w = (w, 1), u = (u,v) and ® := R(p, p) € (G x G). We introduce the mapping

(5.116) To: (g X é) x (g X 5) = GxG, ((w,p), ()~ (w,v)
and write
(5.117) M ()] o] = Voo (To(w, ), T (u = ).

Since v < 1, we have ||c||,» < ||¢||,s and we estimate

HM(U)CHm(A) = (Z

weA

D M)y Cu

ueA

(5 ()

weA \ueA

< (Z > @), |>
wEA ueA

= (Z > Vao (To(w,w), T (u—w))[” Icu|">

weEA ueA

2=

Let us majorize each entry of the matrix as follows:

Voo (To(w,u),J(u—w))| < sup Voo (To(w,u) + 2z, J(u—w) +6)]
z€U(G),6€U(0)

(5.118) = Voo ([To(w,w)]* [T (u—w)]),

where the function on the quotient group was introduced in ([5.107). Fix w,u € A and consider

x = (2,€),y = (y,n) such that w = x and u = y. Then there exist unique z = (z,¢) =
((0, 22), (0,¢2)),n = (n,¢) = ((0,m2), (0,12)) € U(G) such that

X =W+ 2Z, y=u-+n.
Therefore

To(x,y) = To(W+ z,u+n) = (w1, ws + 22), (V1,2 + 12))
= To(Wﬂl) + ((0, 22), (0, L2))
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where ((0, 22), (0,2)) € U(G), so that we have shown

=xu=y = [To(w,u)*=[To(x,y)".

Se

(5.119)

Similarly,

Jy-x)=Ju+n-w-z)=J(u—w)+ J(n—2)

and being J(n — z) € U(G) we have proved
(5.120) ok t=y > J-w =Ty -0

Hence the function in ([5.118)) depends only on the cosets of w and u, so that the application

(5.121) H(&,w) = Vao ([To(w,w)]* [T (u—w)]*)

is well defined. A sequence ¢ = (cw)wea On the quasi-lattice A uniquely determines a sequence
on 2(G) = A simply by

(5.122) &= (cv.v - CW)v'veg@

with

c

llellgagay = ta(2(6))

Using Hélder’s inequality in the u variable (observe 1/(p/)+1/(q/~) = 1) and the consideration
above:

IN

||M(‘7)C||ew(A)

(Z S H(A W) |cu|”>

2=

I
E\o
Ny
&
ce
m
N
s
e
o
Se
=
o
ce
2
513 ~—
2=

QR

v

IN

S| aweri| [ O

we2(G) \ue2(g) Ue2(G)

Ce
u

lelwy | S0 | 30 Veo ([To(w,w)*, [7(u—w)]*)?

weP(G) \uez(G)

Let us perform the following change of variables:

(5.123) 0 = [T(u—w)* € 2(G) = [TA].

Notice that JA C Q\x G is a quasi-lattice. Then there exists § € U(A) such that 046 = J(u—w)
and

u-w=J"40+8) = w=u-J 10 -T ) = w=[u-T 0)°,
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since — 7 ~1(8) € U(G). Recalling (5.119) and writing 6 = (6, s) = ((61,02), (s1,52)) € TJA, we

have
[To(w, w)]* = [To(u—T71(8),w)]* = [To((u—s,v+0), (u,v))]*
=[(u—=s,0)]" =[u—(s,)]".
In the above calculation we can choose as representative of é the only one in JA without loss
of generality. In fact, write A = (aZ? x D;) x (aZ% x Dy), JA = (aZ¢ x —D3) x (aZ? x Dy),

and consider n = (n,1) = ((m,n2), (l1,12)) such that 0 — nand n ¢ JA. Being U(G) =
({Oga} x K+) x ({Oga} x K), it necessarily follows that 6, = n; and s; = I; in aZ?, [62]* = [12]*

in Go/KL, [s9]* = [la]* in Go/KC and [(1,¢)]* € A.

Eventually we set

(5.124) S =u— (s8] € 2(G) = A
and using Lemma

<.Z <.Z &w(mm)r,[ ) )
) -

(Z vaze)

6c2(G) ‘2€2(9)

5 ||O-||Mp,v(g><§) < +o0.

Y
\/
2=

éq)O'

27 (2(G)x D(G))

Case v > 1. Observe that p > v > 1 and ¢ > v > 1. Con51der first p # oco. The desired
result is obtained by duality. By Proposition o\ M7(G) = (M (g))’, we hence show that if
f € M%(G) then Opg(o)f is a continuous hnear functional on M7 (G). Let g € M (G), from

the weak definition (2.217) and the fact that MP1(G x G) = (MP">°(G x G))' we get:

|<Opo(0’) >| = [{o, R(g, )] < ol ppon 1R(g: )l ager oo -
The indexes’ conditions in and ( - ) become

(5.125) v, q < oo,
1 1_1

(5.126) L
v qg p

The first one is trivial, the second follows from the assumption (5.114)). Therefore

1B(g: )l ager oo S Ngllag 11l aza
and the boundedness of Opg (o) from M9(G) into M7 (G) follows.
If p = oo the argument is similar, we use the duality (5.63) between M°! and M1:°. O

Proposition 5.2.18. ([8, Proposition 4.22]) Consider a symbol o on the phase space such that
for some 0 < p < 0

(5.127) ge [ MP(GxG).
v>0
Any eigenfunction f € L?(G) of Opo(o) satisfies f € ﬂ,y>0 M(G).
Proof. We use Theorem [5.2.17| and follow the proof pattern of [9, Proposition 3.5]. O
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5.3 Localization Operators on Groups

The aim of this section is to infer a result for L?-eigenfunctions of localization operators which
extends the one obtained in the Euclidean setting in Theorem [9]. We recall that the

definition of A¥1¥2 was given in (2.194).
Given a function F on G x G, we introduce the operator Ty:

(5.128) o F(z,u) = F(z,u — x).

Recall that F» stands for the partial Fourier transform with respect to the second variable of
measurable functions ¢ defined on G X G. We shall consider F50 to be defined on G x G, instead of

-~

GxG , due to the Pontryagin’s duality. ¥; and F5 are automorphisms of Sp(G X G) and Sp(G x G),

-~

respectively, which extend to automorphisms of S)(G x G) and S}(G x G) by transposition.

-~

Lemma 5.3.1. ([8, Lemma 5.2]) Consider o € S{(G x G) and f,g € So(G). Then

(5.129) (Opo(0)f,9)12(0) = (ko 9 ® f)r2(G%0)

where the kernel k, is given by
(5.130) ko (z,u) = K(Opg(0))(z,u) = /éa(sc,f)(u —x,&)d§ = Tp(Fao(x,u)).

Proof. The proof carries over from the Euclidean case almost verbatim, see e.g. [35, formula
(4.3)]. O

The following issue presents the connection between localization and Kohn-Nirenberg oper-
ators on LCA groups, extending the Euclidean case proved in Proposition [2.8.16| [I1].

Proposition 5.3.2. ([8, Proposition 5.3]) Consider windows 1,12 € So(G) and a symbol a €

-~

S4(G x G). Then we have
(5.131) AY¥2 = Opo(a * R(t2, 1))

Proof. The proof is similar to the Fuclidean case. We detail it for sake of clarity. We first
compute the kernel K (AY1¥2) of AY1-¥2:

(Ay-P2f,g) = /

g

o) ( / i) | e iato dy) e

= f(u)g(y)k(y, u) dydu,
gGxg

with

K(A2) (g, ) = /g (e, €7@ E)Pr () (, €)ha(y) dvde.

g



Using Lemma we set Ty 0 Fa(0) = K(AY1¥2) and compute o using (2.99) as follows:

Frlom ' = [

GxG

ala, ) F; " 0 Tyt (v, )02 & (@, b1y, w)) dods

ala, §)F; " (wla, pay) - 7w, )01 (u+y)) ded

Q)

X

X

alz, €)m(z, E)a(y) /g (@ 01 (a T ) (w, u) dudedt

Q)

a(x, )7 (x, §)a(y)(w, y) F (n(x, 1) (w) ddg

X
Q)

e — o

a(z, §) R(m(z, &), m(x, )¢1)(y, w) dwdE

xG

Aa(x’ §)R(¢2, ¢1)((y7 w) - (xv 5)) d:l?df

gGxg

* R(%, 1/’1)(317 w)'

We then infer the thesis from the kernels’ theorem [50, Theorem B3]. O

Il
o

s}

-~

Theorem 5.3.3. (|8, Theorem 5.4]) Let 0 < p < 0o and a € MP>*(G x G). Consider 11,12 €
Sc(G) ~ {0}. Any eigenfunction f € L*(G) of AY+¥2 satisfies

(5.132) fe (M)

v>0

~

Proof. Observe that for 1,12 € Sc(G) we have R(1q,11) € (G x G), by Corollary [5.1.11
Therefore R(t)2,11) belongs to every modulation space on the phase space; this is easily seen

by using (5.21), the inclusion relations (2.49) and the inclusion between modulation spaces in
5.1.31

Proposition Then the argument is the same as in [9, Theorem 3.7]: we write A¥1¥2 in
the Kohn-Nirenberg form (Proposition [5.3.2))
(5.133) AY> = Opg(a = R(12,11)),

use the convolution relations in Proposition and infer the thesis applying Proposition
b2I8 O






Chapter 6

Localization operators as Fourier
multipliers

In this chapter we investigate under which conditions is it possible to write a localization operator
A¥1¥2 or STFT multiplier accordingly to the terminology adopted in [3], with symbol only in
the frequencies, i.e. symbols of type a = 1 ® m with m defined on R?, as a Fourier multiplier
first on R?, then in the framework of Zy. Namely, we study when the equality

AVLY: =T, on S(RY), MY R?Y), or L*RY

holds true. Of course, in the finite discrete case the equality above reduces to an equality
between N x N matrices. We recall that a localization operator A¥+¥2 on Zy is just a finite
Gabor multiplier GJ-92 and we talk about linear time invariant (LTI) filters H (2.221])
rather than Fourier multipliers.
To give a hint of the results in chapter, the equality A’l%’:,/}f = Tyn, holds true on S(RY) is and
only if

my =m* F 1 (Cyy ),

with m, ma € 8'(R%), 41,12 € S(RY) or other suitable function spaces, and Cy, ., is the window
correlation function defined in (6.2)) below as

(6.1) Con e (y) = (T2 % 1) (y),

7 being the reflection operator. We address the reader to Theorem
In particular, if we choose m = mo the equality Aﬁ%’;’i‘" = T,, holds for any multiplier m € S(R?)
if and only if

CTZHJPQ =1 in Sl(Rd).

The equality above is very restrictive, so that All%’:ff = Tpn, on S(R?) never holds for classical

mt

. . . ) . . . .
anti-Wick operators, i.e. ¢ =9y =€ , whose Gaussian windows provide a smoothing effect.

Indeed, Theorem [6.4.3] states that

If1<p<2<q<oo, mée LR with indices satisfying (6.13), then the anti-Wick
operator A‘fgﬂb is bounded from LP(R?) into LI(R?).

Please note the similarity (and differences) to Hormander’s result, Theorem [2.7.23]). The
previous result holds true for more general STFT multipliers A;%fﬁz with 11,19 € S'(R?) such
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that the window correlation function satisfies Cy, 4, € L?(R%) N L>®(R?), cf. Theorem in
Section below. For p = 2, the boundedness of the Fourier multiplier T}, in Theorem [2.7.23
forces the indices’ choice: ¢ = 2 and r = oo, whereas condition in (6.13))

< -+

S| =

Q| =
DI

is more flexible, allowing to choose ¢ > 2 and r < oo. The necessity of condition for anti-
Wick operators is proved in Theorem [6.4.4] We just mention that the problem of representation
and approximation of linear operators by means of Gabor multipliers (and suitable modifica-
tions) was studied by M. Dérfler and B. Torrésani in [46], further investigations are contained
in [77, [107]. More generally, approximating problems for pseudo-differential operators via STFT
multipliers (“wave packets” were exhibited in the work by A. Cordoba and C. Fefferman [36], see
also Folland [68] and the Ph.D. thesis [48]). However here the focus is strictly different.

All the results the chapter presents are due to [3], it is structured as follows. Section
is devoted to the study of the already mentioned window correlation function Cy, ,, also a
boundedness result on modulation spaces for AY1'¥2 is obtained. The equality All%’:ff =T, in
considered in Section @ whereas the case m = ms is tackled in Section @ The smoothing
effect of a STFT multiplier, Theorem [6.4.1] is the main object of Section[6.4] in Subsection [6.4.1]
the anti-Wick case is taken into account. Eventually, Section [6.5 deals with the finite discrete
setting of Zy and it is an extension of [48, Chapter 2.

We recall that all the needed definitions and backgrounds can be found in Chapter [2]and As-
sumptions 2.5.1 hold in the present chapter. Moreover, we shall assume every weight continuous
and even.

6.1 Window correlation function

In the following theorem we present an optimal result for MP-?-boundedness (and in particular
L?-boundedness) of STFT multipliers. We extend Theorem 5.2 in [31] and Theorem 1.1 in [28].

Theorem 6.1.1. ([3, Theorem 2.4]) Consider s > 0, p1,p2,q1,q2 € [1,00], with 1/p1+1/p2 > 1,
1/(]1 + 1/(]2 > 1. Ify, € M&l’ql(Rd), o € M&z,qz(Rd)’ and a € Moo’l(R2d), then Agllﬂbz 8
bounded on every Mf)’s’q(Rd), p,q € [1,00]. In particular, the operator AY1¥2 s bounded on the
Shubin-Sobolev space Qs = M2 (In particular, for s =0, AY"¥2 is bounded on L?(R?)).

Proof. If ¢y € MPr©(RY), oy € MP292(R?) with 1/py + 1/p2 > 1, 1/q1 + 1/q2 > 1, by [25]
Theorem 4| we infer that their cross-Wigner distribution W (12, ¢1) is in M. 11®°§ (R24). Rewriting
the STFT multiplier A¥1%2 as a Weyl operator L, with o = a * W (1q,%1), the convolution
relations for modulation spaces in Proposition [2.5.19] give

o€ M (R?) « M (R) — M7y, (R*).

Vs

The result follows by the continuity properties of Weyl operators in [31, Theorem 5.2].

For sake of completeness let us recall [28, Corollary 4.2]:

Proposition 6.1.2. If a € M>(R?%) and 91,99 € M}(R?), w € M, then AV1¥2 is bounded
on MPA(R?) for 1 < p,q < oco. In particular, it is bounded on L?(RY).
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Definition 6.1.3. Let ¢1,%> € L?>(R%). The window correlation function of the pair
(1h1,12) is defined by

(6.2) Con 2 (y) = (T x 1) (y), Yy € RY.

The shifted window correlation function of the pair (V1,15) is defined for all t,y € R?
as:

(63) Gora(t.9) = [ alt =iy = wdu.

Remark 6.1.4. (i) The window correlation function Cy, p, is a continuous function and it
enjoys several properties depending on the function/distribution space of the two windows

V1,2, ¢f- Proposition[6.1.5};

(i1) It is straightforward to show that G, 4, € L= (R?d). Observe that the definition of Gy, 4,
also works for windows 11, 1o belonging to function/distributions spaces other than L?(R?)
(see Proposition ‘ We can rewrite the shifted window correlation function Gy, 4, on
R?? gs a time shift of the mapping Cyr 0 O R? defined in . In fact, a straightforward
computation shows that

(6.4) Gy () = Cyy (¥ — 1) = TiCyy s, (y),  VE,y €RY
Let us study the properties of Cy, v, -

Proposition 6.1.5. ([3, Proposition 2.6]) The window correlation function Cy, 4, enjoys the
following properties.

(i) If 11,2 € S(RY), then Cy, 4, € S(RY).

(ii) If either ¢y is in S'(R?) and o € S(R?) or ¢y is in S(RY) and ¢y € S'(R?) then
Cur o € C(RY) with at most polynomial growth.

(i) If 1 € LP(RY), g € LP'(RY), with 1 < p < oo, 1/p+1/p = 1, then Cy, 4, € Co(RY).
If either p =1 (p' = 00) orp = 0o (p' = 1) then Cy, 4, € Cp(RY). The same statements
hold if we replace the Lebesgue space LP(R?) (resp. LP (RY)) with the modulation space
MP(R?) (resp. MP (RY)).

(iv) If 1 € MET, (RY), oo € MIL  (RY), with 1 < p,q,r,t,u,y < 0o satisfying
1 1 1
o>
u t Ty
and

1 1 1

- + - 2 1 + R

p q r

and the weights as in the assumptions of Proposition then Cy, 4, is in € MI7T(RY),
with norm inequality

1Cys o llaar S Nlallngm

w1®,,||1/]2”M5i7®

v2,,71

Proof. The proofs of items (), (i) follow by the convolution properties for the Schwartz class
S, its dual &' respectively, see, e.g., the textbooks [70, [04]. Item (¢i7) is a consequence of the
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convolution properties for LP(R?) spaces which can be found e.g., in [70, ©94]. For modulation
spaces MP we use the convolution properties in Proposition [2.5.23]
(iv). By assumption all the weights under consideration are even, so that Zy, € M%* — _ (R%)

V1 Quav
whenever ¥ € MU1 Quar-1 (R%). Moreover modulation spaces are closed under complex conjuga-
tion, hence the result immediately follows by applying the convolution relations in Proposition

2.5.19 O
Example 6.1.6. ([3, Example 2.7]) In what follows we exhibit examples of window correlation
functions.
(i) Consider two L*-normalized Gaussian functions ¢ (t) = s(t) = 2d/4e=mt* ¢ R, In
this case, the window correlation function Cy, v, in (6.2) is a Gaussian as well

(6.5)  Cyypalt) = T(1 * T(ha))(t) = 2Y2(e™ 5 emO%) () = e 5, 1 € RY

(4i) Consider 11 = xjo1]4, Y2(t) = 1, for every t € R<. Observe vy € L'(RY), ¢y € L>®(RY).
Then the window correlation function becomes

Conn () = 11 % T () (—t) = /[O A= e RY.

. Y1,
6.2 Study the equality A} * =T,
The following issue has been already anticipated at the beginning of the chapter.

Theorem 6.2.1. ([3, Theorem 3.1]) Fiz multiplier symbols m,my € S'(R?) (resp. m,msy €
M>(R%)) and windows 11,12 in S(R?) (resp. in M'(R?)). Then the equality

(6.6) Ai%’,ﬁz =Ty, on S(R?) (resp. M*(R?)
holds if and only if
(6.7) ma =mxF N Cpypn) in S'(RY) (resp. M (R?)).

The same conclusions hold under the following assumptions:

(i) The symbols m,my in S(RY) (resp. in M'(R?)) and the window functions ({y1,12) in
S'(RY) x S(R?) (resp. M>=(R?) x M (R9));

(ii) The symbols m,my in S(RY) (resp. in M*(RY)) and the window functions (1,12) €
S(RY) x S'(R?) (resp. M*(R?) x M>(R9)).

Proof. Assume m,my € 8'(RY) and (1, 12) € S(R?) x S(RY). First, we show that the operators
Alfém? and T,,, are well defined and continuous from S(R?) to &'(R¢4). For every f,g € S(R?),
the weak definition of STFT multiplier and the standard properties of the STFT give
the result, since Vy, f € S(R??) and Vg € S(R?*?) and the mappings Vy,, Vi, are continuous
on S(R?), see for example [35, Chapter 1]. For the Fourier multiplier we use the continuity of F
(resp. F~1) on S(R?) (resp. S'(R?)) and of the product S(R?) - S'(RY) — S’(RY).

Writing them as integral operators we obtain

AL = [ KAL) 00) f)dy,
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with kernel

K(AYLY2)(t, y) /]R ) /R ) 2= (W)ho (t — ) (y — @) dwdw

(6.8) = )Gy s (£, Y) = Te(MCyy ,) (),
and
(6.9) mzf / K(T, mz )t y) f(y)dy,

with kernel
(6.10) K(T)(t9) = [ D ma(w)ds = ina(y — 1) = Taina(y).
R

By the Schwartz’ kernel theorem the operators All%’;ff and T,,, coincide if and only if their

kernels K (A;%’f) and K (T,,) coincide in &'(R??). Equating the kernels we obtain (6.19).

Consider now case (i): m,my € S(R?) and (¢1,12) € S'(RY) x S(RY). We use similar
arguments as above, observing that the STFT Vy, f € S'(R%*) for every f € S(R?) (cf. [35,
Chapter 1]). The case (i7) is analogous and left to the reader.

Second, assume m,mg € M>®(R9), 11,1 € M (R?). We use the same arguments as in the
first step, simply replacing S with M! and its dual &’ with (M!') = M. Hence, we obtain
that T,,, and the STFT multiplier A'fé’iz are well-defined linear and bounded operators from
M*(R?) into M>°(R?). Rewriting them as integral operators and using the kernel theorem in
the framework of modulation spaces [50} 6I] we come up to the result. The cases: (i) m,mg €
MY(RY), oy € MY(RY) 1y € M>®(RY), (ii) m,mg € MY(R?), 1y € M>®(R?) 1y € M (RY) are
similar. O

In this case the symbol m of the STFT multiplier is smoothed by the convolution with the
Fourier transform of the window correlation function Cy, ., and the result is a multiplier symbol
my of T,, smoother than m. For example, if you consider m € M>(R%), 1,15 € M (R?), as
explained in Proposition (iv), then we have

my =mx FH(Cpyp,) € MP(RY) x FIMY(RY).
Using the convolution property in Proposition [2.5.19]
(6.11) my € M®(RY) « FTLMY(RY) = M2 (RY) « MY (R?Y) € M>1(R?) C Cy(RY)

and we infer that the multiplier symbol ms belongs to Cy(R?). Then one can play with the
convolution properties for modulation (and other function) spaces to obtain a Fourier multipliers’
symbol mg in different function spaces.

For applications it is often useful to consider windows 1,y € L?(R?) and multiplier m €
L (R?). In this case the multiplier ms enjoys the smoothing below.

Lemma 6.2.2. (|3, Lemma 3.2]) Assume 11,2 € L*(R?), m € L>(R%). Then ms as in
belongs to Cy(RY).

Proof. For 1,1, € L*(R?), the window correlation function satisfies F~1Cy, 4, € L'(R?), since
Iipa, 0y € Lz(Rd) and

F Cpry) € FHLARY) + L*(RY) = F ' L2(RY) - F'LP(RY)
= L*(RY) - L*(RY) C L' (RY).
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Hence, by Proposition (7i1) we obtain
ms € L®(RY) « L'(RY) C Cy(RY),
as desired. 0

QUIQUIQUI

6.3 Study the equality AVLY> =T,

First, we recall that the Hérmander’s condition p < 2 < ¢ in Theorem is sharp. More
precisely, if there exists a function F such that {F > 0} has non-zero measure and for all
m : RY — R with |m| < |F|, T,,, : LP(RY) — L4(RY) is bounded, then p < 2 < ¢ (cf. [98]
Theorem 1.12]). Moreover, also is necessary by the LP inequalities for potentials (see
[130, pag. 119]). We present a direct proof by rescaling arguments of the following necessary
condition. L™ denotes the weak L" spaces (2.189)), we use [, = lIll» where LP(R%) is the
usual Lebesgue space.

Proposition 6.3.1. (|3, Proposition 1.2]) For p,q,r € (1,00] we assume that the Fourier mul-
tiplier T, satisfies

(6.12) 1T fllg < Cllmllroel| fllp,  forevery f, m € S(R?),
then we must have the indices’ relation:
(6.13)

< -+

S| =

| =
SRR

Proof. Let us choose the multiplier m(t) = ma(t) := @x(t) = e™*" and the function f(t) =
oa(t) as well. Observe that py(£) = A~/26=mA7E g that we compute

A241 .2
_ﬂ—%g

Ty ox(t) = A"42F (e
=(\+ 1)_d/26_*'§7jr1t

)(®)

2

The L? norm of the function above is given by
_d

4
I Tmapallg < A2 (A2 +1)7,

with ¢’ being the conjugate exponent of g. We have ||y, < A~4/(2P) - Assuming now (6.12)) in
our context
[Tmspally < C < llmallzre<lleallp

we get
d
ATE(AZ 4 1)V < OATEFATE.
Letting A — 0T we obtain the desired estimate (6.13]). O

For any symbol a(z,w) = (1 ® m)(z,w) = m(w), r,w € R%, the STFT multiplier All%ﬁQ can

be formally re-written in terms of the related correlation function. Assume for simplicity that
the windows 11, 12 and multiplier m = m(w) are in S(R?). We start with f € S(R%); for every
fixed t € R, the integrals below are absolutely convergent and we are allowed to use Fubini’s
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Theorem. Moreover, it is straightforward to see that All%’:ff f € S(RY). Simple computations

give

AL ) = [ Emie) [ )Gy, g (b )dd
(6.14) = [ e [ et T, sy
(6.15) = [ ) F T ) )

Note that, if we assume condition (6.1)), then T;Cy, 4, = 1 for every t € R? and Afé’iz =T,
as desired.

The equality (6.15)) suggests the introduction of a new time-frequency representation closely
related to the STFT.

Definition 6.3.2. For ¢ € LY(R?%),v» € L}(R?), we define the two-window short-time
Fourier transform of a signal f € L*(RY) by

ft,w),

Copy 4pn

(6.16) / e f () TiCopy vy (W) dy = {f, M, TiCopy ) = Vi
]Rd

for every (t,w) € R??.

For ¢ € L'(R%), 4 € L?(R?), Young’s Inequality gives Cy, 4, € L?(R%). Thus, the integral
above is absolutely convergent for every f € L?(R?). The same argument applies if we replace
the condition 11 € L*(R%),vy € L?(R?) with the more general one v; € LP(R?),1, € LI(R?)
such that 1/p+1/¢ = 3/2.

Using , the action of the STFT multiplier Ai%’:ﬁz can be rewritten as

(6.17)  AYL2 () = / Xt (W) Vs
Rd

Cupy pn

flt,w)dw = F5 [mVg,  f(t,))(t), teR?

where F, ! denotes the partial Fourier transform w.r.t. the second coordinate w. The formal
equality above can be made rigorous by studying the properties of the two-window short-time
Fourier transform Vz ~ and the multiplier symbol m(w).

Y1,v2

The following issue stems from Theorem [6.2.1] with m = ms.

Corollary 6.3.3. ([3, Corollary 4.2]) Fiz a multiplier symbol m € S'(R?) (resp. m € M>(R%))
and windows 1,y in S(RY) (resp. in M*(R?)). Then the equality

(6.18) AYLY =T, on S(RY) (resp. M'(RY))
holds if and only if
(6.19) MCypy i =M in S'(RY) (resp. M>®(R?)).

The same conclusions hold under the following assumptions:
(i) The symbol m in S(RY) (resp. in M'(R?)) and the window functions (11,12) in S'(RY) x
S(RY) (resp. M>=(R?) x M (RY));

(i) The symbol m in S(R?) (resp. in M*(R?)) and the window functions (1,1)9) € S(RY) x
S'(RY) (resp. M'(R?) x M>=(R?)).
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Straightforward consequences of the result above are the following.

Corollary 6.3.4. ([3, Corollary 4.3]) Consider either (11,12) € S'(R?) x S(RY) or (11,2) €
S(R?) x S'(R%). Then the equality (6.19) holds for every symbol m € S(R?) if and only if
condition (6.1)) is satisfied.

Proof. The condition (6.1) immediately follows if we take m(w) = e~ € S(R?) in the equality
6.19). O

Corollary 6.3.5. (3, Corollary 4.4|) It is not possible to find 1,19 € S(R?) such that the
equality (6.18) holds for every multiplier m € S'(R?).

Proof. Taking m(w) = ™" ¢ S(RY) in the equality (6.19) we obtain condition (6.1]). Since

V1,12 € S(R?Y), by Proposition we infer Cy, 4, € S(R?), thus condition (6.1)) is never
satisfied. N

Let us try to understand the condition better for operators having windows/symbols
in modulation spaces.

Notice that under the assumption 11,12 € M*(R?) the window correlation function Cy, 4,
is in M'(R?) (use Proposition (iv) or the well-known fact that M! is an algebra under
convolution). As a consequence of Theorem if we want condition to be satisfied for
every multiplier m € M°°(R?), the window correlation function Cy, ., must satisfy

(6.20) Corn(t) =1, teRL

But this is not possible since Cy, 4, € M*(R?) C Cp(RY).
To overcome this issue, we look for windows in a bigger class that could guarantee condition
(6.20)). This requires smoother symbols.

Theorem 6.3.6. (|3, Theorem 4.5|) Consider p1,p2,q1,q2 € [1,00], with 1/py + 1/pa > 1,
1/qi+1/q2 > 1, ¢y € MPr3(RY), g € MP2:92(RY), and m € M1 (R?). Then both the Fourier

multiplier T, and the STFT multiplier A'l%’:f are well-defined linear and bounded operators on

L?(R%) and the equality (6.18) holds on M (R?) if and only if condition (6.19) is satisfied on
M>(R?). As a consequence, if we want (6.19) to be fulfilled for every symbol m € M (R?),
the window correlation function Cy, 4, must satisfy (6.20).

Proof. We start with 1,9 € MY (RY) — MP4(R%), for every p,q € [1,00]. Notice that, if the
multiplier m € M°1(R9), then the localization symbol (1 ® m) is in M°>1(R??), since

(1 ®m) c Moo,l(Rd) ®Moo,1(Rd> c Moo,l(R2d)
and we have 1 € M°>}(R%). In fact, for any fixed non-zero g € S(R?%), we work out
Vql(mvw) = F(Tx9)(w) = M—wé(w)’ (z,w) € de’

so that
11 aroet ey < (Vg1 poonmeay = 9]l ey = l9llFLr ey < +o0.

Hence by Theorem the STFT multiplier A%é’:ﬁ? is bounded on any M?-4(R) and in partic-
ular on L?(R%). This is also the case for the Fourier multiplier T}, with m € M°1(R?), since
the inclusion relation in gives in particular m € L*(R?) and hence T,, € B(L?) [98].
Using Theorem such operators coincide whenever condition is satisfied.
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Next, consider 11 € MP131 (R?), hy € MP2%2(R?) satisfying the assumptions. We shall show
that the related kernel K (AY40?) of AYLY? is in M°°(R??). In fact, Proposition (iv) gives
the window correlation function Cy, y, € M°1(R?). If the multiplier m € M>I(R9), then
m € W(FL®, L) (R?) — W(FL>®,L*)(R?) = M>(R%) (cf., e.g., [35, Chapter 2|) and the
multiplication relations for modulation spaces [35, Prop. 2.4.23]

1Coy wallaree S [Illaree ICy, o laree . S lImllagee 1901 [ ageran [[02 ]| agpaiaa < 00.
Hence we obtain condition (6.19)). O

Thanks to the results above, if the window functions 1; and 5 are non-smooth, they can
satisfy condition (6.1]), as in the following issue.

Example 6.3.7. (|3, Example 4.6]) An example of window correlation functions Cy, , satisfying
(6.1). Consider o =1 € M°Y(R?) and any ¢ € MV>°(R?) satisfying

(6.21) Gi(y)dy = 1.
Rd

This gives (6.20). In particular, observe that (6.21)) is fulfilled if we consider 1 (t) = e €
SRY) € MY>=(R%). Hence, the operators All%’mQ and T, coincide for every multiplier m €
M>1(RY).

The realm of modulation spaces seems the only possible environment to get the equality
All%’;ﬁz = T,,. Also for the standard case of L?-window functions the equality fails, as shown
below.

Theorem 6.3.8. (|3, Theorem 4.7]) Consider 11,19 € L?(R%), and the multiplier m € L>(R?).
Then both the Fourier multiplier T,, and the STFT multiplier Alfé’:ﬁ? are well-defined linear and
bounded operators on L*(RY) and the equality

(6.22) AYLY =T, on L*(RY)

holds if and only if condition (6.19)) is satisfied. As a consequence, if we want (6.19)) to be fulfilled

for every multiplier m € L*>(R%), the window correlation function Cy, », must satisfy (6.20)),
and this is never the case.
Proof. The boundedness of A}%’#f on L?(R%) is shown in [I5I]. For the Fourier multiplier
we recall that T), is bounded on L?(R%) since m is in L>(R?) [98]. Condition (6.19) then
follows by Theorem The window correlation function Cy, 4, never satisfies (6.19) because
¥1,v2 € L2(R?) implies Cy, 4, € Co(R?), by Proposition (4id). O
A natural question is whether we can consider windows v¢; € MP(RY), ¢, € M P (RY),
1<p,p' <o0,1/p+1/p’ =1, and the multiplier m € L>(R?). This is the case explained below.

Proposition 6.3.9. ([3, Proposition 4.8]) If we consider ¢y € MP(R?), 1y € MP (RY), 1 <
p, 0 < oo, 1/p+1/p' =1, and multiplier m € L>(R?), then the result in Theorem holds
true. In particular, the equality in (6.19) is fulfilled if and only if condition (6.20)) is satisfied.

Proof. The Fourier multiplier T}, is obviously well-defined, linear and bounded from S(R%) to
S'(R%), since Ty, is bounded on L?(R%).
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We recall, for f,g,v € S(R?) with ||y||,> = 1, the switching property of the STFT [35, Lemma
1.2.3] and the change of window in [35, Lemma 1.2.29]. Indeed, for (z,w) € R24:

Vig(z,w) = e TV f(—a, —w),  [Vof(z,w)] < (Vo f|* Vgr) (z,w).

For the STFT multiplier Aql%’#ff, we use its weak definition in , Holder’s inequality, the
mentioned switching property and change of window; for every f,g € S(R%),
(AL £, )| = (@, Vi, [V 9)
< llall oo m2a) IV FVipo gll £ r2a)
< Il oo way | Vips £l Lo w2ay | Vipa 9|l 1o (2
= Il Loo ey Vo f * Vi Yl Lo 2y Vo9 * Vip, V| Lo (2
< lmll oo way [V fFll L2 r2ay Vi V| o r2a) [ VA 9l L1 R2a) [ Vipo V| 1o (20
= HmHL“’(Rd)||fHM1(JRd)||VW"/}1HLP(R“)HgHMl(Rd)HV’Yw2HLP’(R2d)
= [|ml oo gy 1f | a2 ey 191 | agv (ray W02 prwr (mety |91 a2 (R4

Since S(R?) — M*!(R?), the estimate above gives the continuity of A%’#f from S(R?) into
S’(R%). Then, arguing as in the proof of Theorem we obtain the claim. O

Considering 15(t) = 1 for every ¢t € R%, hence ¢y € L®(R?) C M>(R?), and any 1; €
M (R?) satisfying (6.21)), we provide examples for condition (6.20]) being satisfied.

6.4 Smoothing effects of STFT multipliers

Thanks to the smoothing effect of the two-window STFT we obtain boundedness results for
STFT multipliers which extend the case of Fourier multipliers. The main tool is to use the
representation of AY1%2 in (6.15)), that is

Afsn2 f(t) = / (W) F(fTCyy ) (@)dw = Fy  [mVz, - f(E,-)].
R ’

Theorem 6.4.1. (|3, Theorem 5.1]) Assume 1 < p < 2 < ¢ < oo, m € L">®(R?) such that
condition (6.13)) is satisfied. Consider windows 1,19 € S'(R?) such that the correlation function
satisfies

(6.23) Cy iy € L7 (R N L= (RY).
Then the STFT operator All%’:ff is bounded from LP(R?) into L1(R?).

Proof. Consider a function f in LP(R9), p < 2, then

IFTiCon il < NI TiCon s llpr = NFlplICus e, WE € R

and
1 TCos o llp < N F I TeCoi alloo < IFIplICu1 i lloos V2 € RY.

So that by complex interpolation, fT;Cy, 4, € L*(R?), for every 1 < s < p (hence 1/s > 1/p)
vt € R, with
IfTeCy1 ol s way < Cllf Lo roy
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for a constant C' > 0 independent of ¢.
By Theorem [2.7.23] if m € L”’O(Rd)7 then the Fourier multiplier

Tof = Fy ' imVg,  f(t,)] = Fy [mFo(fTiCy, )]

Copyun
acts continuously from LP(R?) — L(R%), with ¢ > 2 satisfying the index condition in (6.13). O

Remark 6.4.2. If vy € LY(RY) N L2(RY) and 1o € L?(R%) (or vice versa) then the win-
dow correlation function satisfies condition (6.23)). In fact, by Proposition it follows that
Cyr pp € L2H(RY) N L2 (RY) C LP' (RY), for every 2 < p' < o0.

This shows the smoothing effect of the two-window STFT ngl s f. For simplicity, let us

consider f € L?(R?). The Fourier multiplier 7T}, takes the function f € L?(R%) and considers
its Fourier transform f that lives in L2(R?%) by Plancherel theorem, but we cannot infer any

other further property for f. Instead, in the STFT multiplier A}%’fff we replace f with the two-
window STFT Vg~ f. Assuming the condition (6.23), we obtain that Vz ~ f € Cyp(R24) N
1:%2 1,%2

L*(R??) and uniformly continuous on R?¢ (cf. [35, Proposition 1.2.10, Corollary 1.2.12]), and
this implies Vo f(t,-) € Co(RY) N L2(RY) for every fixed ¢t € R?, so that the related multiplier

f{l[ngwl)wz f(t,-)] can enjoy the smoothing effect above, uniformly with respect to t € R%.

6.4.1 The anti-Wick case

Thanks to the discussions above, we can state that an anti-Wick operator Afgm, with Gaussian

windows ¢(t) = 2%/4¢=™" and multiplier symbol m € &'(R%), can never be written in the Fourier
multiplier form. In fact, recalling that the window correlation function in this case is given by
Copo(t) = e~ 5" cf. formula (6.5)), we infer that condition is never satisfied.

Let us better understand the smoothing effects for such operators. Using the expression in

(6.15), we can write
. s 2
ATE IO = [ @) F T E0)) @)
The anti-Wick operator in terms of the two-window STFT defined in (6.16]) can be written as
AGE f(t) = Fy tmVe,  f(t,9)], teR.

Roughly 2speauking7 here the signal f is first smoothed by multiplying with the shifted Gaussian
T,(e=%()7), that is

(6.24) 0 (W) = F)Ti(e 3O\ (y).

Then, the multiplier 75, is applied to the modified signal g;. In other words,
(6.25) ATZ L F() = Tolg:)(t),  f € LP(RY).

From the equality above, it is clear the smoothing effect of the anti-Wick operator Afégin with
respect to the Fourier multiplier T, stated in Theorem [6.4.3] that we are going to prove very
easily.

Theorem 6.4.3. ([3, Theorem 1.3]) If1 < p < 2 < ¢ < 00, m € L™(R?) with indices satisfying
(6.13), then the anti-Wick operator ATy, is bounded from LP(R?) into L1(R?).
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Proof. Since the window correlation function C, ,(t) = e=5% is in S(R?) — L¥' (RY) N L (RY),
for any 2 < p’ < oo condition in (6.23) is satisfied and the thesis follows by Theorem O

We end up this section by showing the necessity of the indices’ relation in (6.13)).

Theorem 6.4.4. ([3, Theorem 5.3]) If there ezists a C > 0 such that the anti-Wick operator
satisfies

(6.26) 14T Fllg < Cllmllzr | fllp,  Vf,m € SRY),
then condition (6.13)) holds true.

Proof. We write condition (6.26) for the multipliers mx(§) = pa(§) = ™ X\ > 0, and
functions fx(t) = @a(t) as well. Then we compute the anti-Wick operator Afz7  f. A tedious
computation shows

_ 2
Afééwmx f)\(t) =C\e ot )

with
2d/2 C2X(6A% 4+ 10A2 +9X + 1)

N R r D) T e DA 1

This yields the norm estimate

d
q

_d 220 +1
JAZE. fllg = exby ¥ = — @+ 1) _
A5 (6A2 44X + 1)27 (6A3 + 10A2 + 9\ + 1)%7

Letting A — 0T we infer the inequality in (6.13)). O

6.5 Finite discrete setting: representation of LTI filter as
Gabor Multiplier

Using intuition and visual comparison as an indication that the implementation of a LTI filter by
a Gabor multiplier seems to work quite well, but being aware of continuous results, we are now
going to analyse under which conditions it is analytically possible to have equivalence between a
LTI filter and a Gabor multiplier. We will see immediately in the first theorem that exactly the
most interesting class of perfect filters with characteristic function as frequency response does
not qualify as suited candidates.

The result below is a consequence of the general setting in Theorem [6.3.8] but the estimate

(6.27) is new.

Theorem 6.5.1. (|3, Theorem 6.5]) Let T,,,: L*(R) — L2(R) be a LTI filter with frequency
response ma = h = xq, @ C R interval. Then T,,, can never be represented exactly as Gabor
multiplier with symbol a =1 ® m, m € L*°(R), and

(627) HTmz - Gghgz HOp >

| =

for every and g1, g2 € L*(R).
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Proof. The spreading function is a Banach Gelfand Triple isomorphism between (5B, H,B’) and
(So, L?, S (R?), see [63] for notations. Therefore two operators are identical in (B, H,B') if and
only if their spreading functions are identical. The integral kernel of a Fourier multiplier with
symbol ms was calculated in and it is related to the spreading function as follows:

(T, ) (2, w0) = . K(To, ) (ysy — x)e= 27 dy

— / Tyma(y — x)e‘Qmwy dy
]Rd

= [ ina(—a)e2m dy
Rd

= (Zo F(me) ®9) (z,w)
= (h®)J) (z,w).

The spreading function of a Gabor multiplier G992 defined trough a lattice A = aZ¢ x BZ% is
given by

(6'28) W(GZ“”)(%W) = fs(a)(mw) ’ ‘/9192(‘7'""‘)) = %(CL‘,UJ) ’ Vg1g2(m7w)7

where @ = Fea = F~Y(m) @ F(1) = F~1(m) ® § is the (%, L)-periodic symplectic Fourier
Transform of the symbol @ = 1 @ m (compare [46]). Therefore a Gabor multiplier is equivalent
to a convolution operator if and only if

(6.29) (h®6) (z,w) = (F~1(m) ® 8) Vg, g2(,w) V(z,w) € R,
This gives
(630) h(l‘) = ‘F_l(m)V‘th(x’ 0) < h m* ]:( 0192( 0)) :

Let us calculate

F (Vg 92(-, = / / t)gi(t — ;v) dte™ 2™ dy.
= / / G
= F(g2) (@) F (1) (w).
Therefore
(6.31) h=mx* F(g2)F (g7).

Since the windows 91,92 belong to L?(R%), we have s(w) = F(g2)F (g1) € L'(R?) and the
right-hand side of is bounded and uniformly continuous. Since we are assuming h to be
the characteristic functlon of an interval Q2 C R, we obtained the first assertion of the thesis.
About estimate we distinguish two cases. If there is wg € R such that |s(wg)| = 1/2, being
the image of h the set {0,1}, then

. - 1
(o) = s(ewn)| 2 ||Awo)] — [s(w0)l| = 3
which implies
. 1
sup [(w) = ()| = T, = G20, > 5.
w€eR P 2

If the value 1/2 is never attained by |s(w)| the argument is identical. This concludes the proof. O
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In the finite discrete case the problem presents itself in a similar way. In the next theorem
we state the necessary conditions on the window functions in order to get perfect equivalence.
It can be seen that without subsampling perfect equivalence would in theory be always possible
if supp(h) C supp(Zg * g2). Numerically, we observe however the same behaviour as we have in
the continuous case.

Theorem 6.5.2. (|3, Theorem 6.6]) Le us fiz a LTI filter H: CN — C~ with impulse response

h € CN and lattice constants o, 3 > 1.

If H can be written as a Gabor multiplier G992 with lattice constants «, 3, for some symbol

a € CN*N and window functions g1, ga € CN, then the following hold for every Yu € supp(h):

1) Vg1g2(u’0) = (1791* 92)(u) = Co1,92 (u) # 0;

2) Vgyg2(u+ Bk,lA)=0,Vk=0,...,6—-1, Vi=1,...,a—1;

3) Vgygo(u+ BE,0) =0,Vk=1,...,6—1 st. (u+ Bk) ¢ supp(h);
(

4) Varg2(u+ Bk,0) = h%*j’“) Vyg2(u,0), Vk=1,...,8—1 st. (u+ Bk) e supp(h).

Vice versa, if there are window functions g1, g2 € CN fulfilling 1)-4), then there exists a symbol
a € CNXN gych that H = GJ192.

Proof. Let us assume that H = GY:92 for some a € CN*N g, g, € CN. Two operators are
identical if and only if their spreading functions are identical. From (2.223) and (2.204)), H =
G9192 if and only if

N
(632) (h ® 5) (u» U) = @SEA(UW U)Vg192 (u7 'U)
This, in turn is equivalent to
(6:33)  h(u) =N (aB) " SEA(u,0)V;,02(u,0),  uw=0,...,N -1
(6.34) 0=N(af) ! SEA (u, v)V,, galu, v), u,v=0,...,N—1, v#0.

From equation condition 1) follows. In fact, suing the switching property property of the
STFT [35, Lemma 1.2.3] V,,g2(u,0) = Vy,g1(—u,0) = Cy, 4,(u). Note that for SE4(u,0) = 0
by equation we get u ¢ supp(h). Hence by equation together with the periodicity
of SEA follows condition 2) follows. The periodicity of S§A in the time domain together with
equation gives condition 3). Finally by (6.33]) and (2.203) we compute

af h(u)
N Vgl 92 (U, 0)

% h(u + Bk)
N Vg, 92(u+ Bk, 0)

(6.35) =S54 (u,0) = SFA(u + BE,0) =

fork=1,..,8—1, (u+ kB) € supp(h), hence we get condition 4).
On the other hand, let us consider g;,g» € CV fulfilling conditions 1) — 4). Let us define for
u=0,...,N—1

(6.36) V(u) = V192(u, 0) if € supp(h)
. 1 otherwise

and

#{{u+ BZy} Nsupp(h)} it {u+ BZy}Nsupp(h) # 2
1 otherwise,

(6.37) C(u) = {



6.5. LTI FILTERS AS GABOR MULTIPLIERS ON Zy 177

we notice that C'(u + Bk)
Let us observe that

= C(u) for any k =0,..

.,B—1,since u+ BZy =u+ Bk + BZy.

N—

,_.

XBZN (k)

h
C.V *XBZN(U) = Z C( —ki)V(’U,—

We define

(6.38)

%

In order to verify (6.33), fix v € {0,...,

0,....6-1} =

where

Sin(u) == {k € {0,...
Sout(u) = {k € {0, ...

SgA(u,v) = % (

which is periodic in the sense of (2.203) since C(u + Bk) =

c-v

(h * XBZN> (u+ Bk) =

<:~

k:
k=0

h
* XBzZy | @ XAzy (U, V),

C(u) for any k=0,...,5—1 and

—~XBzy (u+ Bk — j)

N=1 .
. ZMXBZN Br(u—j)

T XBZn (u J)

(‘}i * XBZN) (u).

N — 1} and let us write the partition

Sin (U) U Sout (u) 9

,8—1}|u+ Bk ¢ supp(h)}.

Therefore if u € supp(h) we have 0 € S;,(u) # @, starting from the right-hand side of (6.33)

and using 4) we get

N(aB)~'SF" (u, 0)Vy, g2(u, 0)

671
192(u 0)

- C(u)

1 Z h(u + Bk)
C’(u = V(u + Bk)

1 h(u + Bk)
> Vor92(1,0)
(w) W Vg1 92(u + Bk, 0)

Z v, 92(u 0) Vi, 92(u,0)

k€Sin(u)

C(u)h(u).

Q

Q

(u

1
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If u ¢ supp(h) and S, (u) = @, then S54(u,0) = 0 and is fulfilled. If w ¢ supp(h) and
Sin(u) # @, then u + Bj = z € supp(h) for some j € S;,(u). Hence we can write u = z — Bj =
z 4+ Bs for a certain s € {0,...,8 — 1} and from 3) we get V,, g2(u,0) = Vg, g2(2 + Bs,0) = 0,
which guarantees (6.33).

Equation is fulfilled if v ¢ AZNx ~ {0}. Let us fix v € AZx ~ {0} and distinguish two
cases: if u appearing in belongs to supp(h) + BZy, then Vg, g2(u,v) = 0 due to 2) and we
are done; if u does not belong to supp(h) + BZy, then S54(u,v) = 0 and if verified once
more.

Eventually, in order to find a symbol a which gives the function S54 defined above, we use

2209
h
(6.39) afFs(a- My 8)(u,v) = %ﬂ (C’V * XBsz) ® Xazy (u,0).

Being F;! = F, and for (2.111]) we derive

1 h
a(u,v)[ﬂ(a,g)(u,v) = NFS ((C Vv * XBZN> oY XAZN> (u,v)

1 h
= NA_lvaN(u)’FN (C - V * XBZN) (U)

— o 0y (g ) (Dm0

h
= %FN <CV> (v) (4, gy (u, v).

So that a possible choice for the symbol is

(6.40) alu,v) = % <1 ® F <Chv>) (u,v).

This concludes the proof. L

Remark 6.5.3. Theorem can be seen as a special result on the reproducing property,
compare [99] or [131] equation (4):

f)=V2rT Y f(RT)e(t - kT).

k=—o0

If supp(h) C (—B,B) we would get perfect reproduction for Vg, g2(u,0) = 1 on u € supp(h)
and Vg, g2(u,v) = 0 outside the fundamental region of the adjoint lattice for (u,v) ¢ (—B, B) x
(—A, A). If supp(h) C (=B, B), the region X with supp(h) C X C (—B, B) introduces the free-
dom to choose (Zgy*g2)(u) having smooth decay on X. As for an LTI filter ng (u,v) =0 Vv #0,
see (2.223)), we have this freedom in the frequency domain for'Y = {(z,y): 0 < |y| < A} irre-
spective of the choice of h.

The conditions given in Theorem [6.5.2] will be central for the remaining part of this section.
Therefore a visual outline of them is shown in Figure [6.1] The next theorem can be seen as a
special case of the last result, having no subsampling, i.e. a = = 1.
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Representation of a LTI Filter as Gabor Multiplier - Shape of V, ga()

supp (h) C [-B, B] ‘ supp (h) ¢ [~ B, B]

60 -

40 -

20

20 [

40 -

60

supp(h)

— e — —

Vag2 #0 Vyg2=0

Frequency
o

h(u)

Vpug2(u + Bk, 0) = "By g, (4, 0)

* K ko

“I Vglg?:O

I I I I 1 I I I I .
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40
Time Time

Figure 6.1: This figure gives a visual outline of Theorem [6.5.2] on the representation of a
LTT filter by a Gabor multiplier. The conditions on the support of V;, g2 are shown once
for supp(h) C [-B, B] and once for supp(h) Z [—B, B]. Black lines indicate the regions
where Vj, g2 has to be zero.

Theorem 6.5.4. ([3, Theorem 6.8]) Consider a LTI filter H: CN — CN with impulse response
h € CN and g1,92 € CN with Cy, g,(u) # 0 for every u = 0,...,N — 1. Then the H can be
represented as Gabor multiplier G992 with a = 8 =1 and lower symbol

1 h
(6.41) o= 52 (107 (Z)).
N2 691792

Proof. Let us observe that, since « = 3 = 1, we have S = S54, see (2.199) and (2.205)). Taking
a as in (6.41)), recalling Zg; * g2(-) = Vj, 92(+,0) and Fn(N~'1)(v) = 6(v), we compute

_ 1 1 h(-) 1 h(u)
st =Fote) = 76 (10 (705) ) 00 = F gty 20

Similarly to what done in the proof of Theorem H and G992 coincide if their spreading
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functions do; on account of the previous computation we get

h ®6(u,v) = NS(u,v)Vy, g2(u,v) = m
g1 )

6(v)Vg, 92(u, v)

which is true since V,, g2(u,0) = Zgy * ga(u) = Cgy g,(u) # 0 for every u. This concludes the
proof. O

This means, given window functions, for which the convolution (up to Z and a conjugation)
is non-zero on the support of the impulse response h, a LTI filter H can always be represented
exactly as Gabor multiplier GJ1-92. The error between the LTI filter and the Gabor multiplier is
the error introduced through subsampling of the mask a. The representation is always possible
if we allow for the degenerate case of g1 = go = 1. We should, however, keep in mind that if we
want to have a meaningful parameter set for applications this is, after all, a very strong condition
on the smoothness of h. Even if met, for applications, the exact representation is not too well
suited due to poor calculation efficiency and bad numerical behaviour for Zg; * go close to zero.

Knowing from Theorem that every LTI filter with bandlimited impulse response h can
be represented as Gabor multiplier, we are now turning the focus to the opposite direction,
asking whether it is clear that a Gabor multiplier having a mask constant in time is equivalent
to a LTI filter. Reading equation the other way round, we see implicitly that a Gabor
multiplier with time invariant symbol is a convolution operator. The frequency response of this
convolution operator, however, is not exactly equal to the frequency mask of the Gabor multiplier
but smoothed by a convolution with the Fourier transform of the window functions. In Figure[6.2]
a visual representation can be found. Smooth window functions have the advantage of preserving
the edges of the frequency mask rather well at the cost of a longer time delay needed in return.
Theorem [6.5.5] formalizes this fact.

Theorem 6.5.5. ([3, Theorem 6.9]) Consider a Gabor multiplier G392 with no time subsam-
pling, i.e. a =1, windows g1, 9> € CN with g1 symmetric and symbol

(6.42) a=1®h

for some heCN. Then, it is also a LTI filter with impulse response

B—1
> (- + Bk)(g1 % 92)(-).

k=0

(6.43)

S

Proof. We start from the kernel representation of the Gabor multiplier (2.198) with o =1

K(GE9) (u,0) = 3 S alk, B)gi(v — R)ga(u — k)e™
k=0 [=0
N-1B-1 - .
= h(BDg1(v — k)ga(u —k)e N
k=0 [=0
= 2mifl(u—y) N~
(6.44) = TR N (o = R)gal(u— k).

Il
o
o~
Il

=0



Fixing v € {0,..., N — 1}, performing the change of variable ¢ = v — k and using the symmetry
of g1, we write the second factor as

N-1 N—

g1(v—Fk)ga(u—k) = gi(t)galu—v+1)

[u

k=0

~~
i

2

g1(t)ga(u —v —t)

Il
=]

= (g1 % g2)(u — v).

For the first factor in (6.44)), using (2.111)):

51 ~ 2miBl(u—v) —1,3
Y oh@Bhe = Fyt(h- xpzy)(u—v)
1=0
= f&lﬁ * ]:;rlXﬂZN) (u—v)
N—1
B
=) hlu—v—k)Txpzy(—k)
k=0
1=
= h(u — v + Bk)
B k=0
Eventually we get
1
(6.45) K(GIv92)(u,v) = 3 h(u — v+ Bk)(g1 * g2)(u — v)
k=0
and the result follows by ([2.222)). O

We observe that the convolution in is the restriction of Vg, g2 to the time-axis, since
we are considering a symmetric window g .
It is important to note that the LTI property is only valid in case of no time subsampling. In the
case of a common Gabor multiplier with « > 1, in contrast, the second sum in equation
would depend on u and be a—periodic, explicitly:

A—-1

Z g1 (v — ak)ga(u — ak).

k=0

Therefore as soon as we have time domain subsampling of the signal, the LTI property of the
operator is lost even though the mask being constant in time.

As already mentioned, it becomes apparent that an LTI filter can be considered as a special
case of a Gabor multiplier with degenerated window functions g1 = go = 1. We want to put
emphasis also on the interconnection between sharp frequency cut off of the filter and smoothness
of the window functions corresponding to a time delay in filtering. Condition 1) of Theoremm
requires the impulse response h to have a faster decay than Zg; * go. This means that in case
we want to have a sharp cut off in the frequency filter iL, which corresponds to a slow decay in
h, we have to choose a smooth window function which corresponds to a large time lag.
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difference spectrogram  the first 20 sing.values first singular vector
0.4} #¥ 0.05
L
o
pon 0
0.2 el
“ﬁ"T 0.05
0
5 10 15 20 20 40 60 80 100

Figure 6.2: The figure shows the effect of implementing a Gabor (STFT) multiplier with
mask a = 1®xq, = [-R, R], with R = 80 and N = 480. The resulting operator is still
an LTT operator as long as no subsampling is performed (o« = 5 = 1), but now looking at
the difference of the spectrograms given in the first plot, which is strongly concentrated
around the cut-off frequency. The central plot shows the 20 largest singular values of
the difference between the implemented STFT multiplier and the perfect low pass filter.
In the last plot, we show only a segment of the first singular vector of the difference, to
demonstrate the high regular oscillations.



Chapter 7

Quantum Harmonic Analysis

This last chapter presents the result by F. Luef and the author contained in [I0]. The main aim
is to provide a class of operators in quantum harmonic analysis (QHA) which is the counterpart
of the Feichtinger algebra Sy in classical harmonic analysis. For this reason, we shall name such
class the set of Feichtinger operators and denote it by Sy. The space Sy, which turns out to be
a Banach *-algebra, was introduced by H. G. Feichtinger and M. S. Jakobsen in [62] and can be
described as follows:

So = {S: S{(R?) — Sp(RY) | Sis linear, continuous and Kg € Sp(R??)},

where K is the integral kernel of S. Sy proves to be a valid alternative to the Fréchet space of
Schwartz operators &, introduced in [I03], which consists of all the pseudo-differential operators
with Weyl symbol in the Schwartz class S(R??). Roughly speaking, to work with Sy in place
of & is more advantageous as well as to work with Sy(R?) instead of S(R?). We also introduce
a weighted version of Sp, M!, and exhibit a characterization for & in terms of such weighted

S

classes. Theorem [7.3.0] states the following:

& =ML

s>0

As a consequence, we obtain a result in the spirit of [95]: Corollary shows that, if the STFT
of any 7-symbol a? of an operator S € B(L?) is rapidly decaying, then S belongs to the Schwartz
class 6.

As preliminaries, in order to show that Feichtinger operators are a suitable environment for
QHA, new tools are introduced and new perspectives on the well-known 7-quantization Op., are
shed. E.g., for every 7 € [0, 1] we define the 7-Wigner distribution of an operator S as follows:

WS (z,w) = / e T K (x4 Ttz — (1 — 7)) dt.
R

To give a flavour of our results concerning the interplay of Op, and W, we report the statement
of Theorem [7.2.7]

For every T € [0,1] the following mappings are linear and continuous:

Op,: SH(R*) — S}, Wr: So — So(R?).
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Moreover, Op, is the Banach space adjoint of W,: Op, = WZ, i.e. for every a € S)(R??) and
S eSSy

5,(a, W7 S)s, = 5,(Op~(a),S)s,-

The chapter is structured as follows. In Section [7.I] we recall the necessary preliminary tools,
e.g. convolutions between functions and operators a*.S or between operators and operators T'x.5,
and introduce some new ones. Namely: the 7-STFT V7, the 7-Wigner distribution for operators
W, the Fourier-7-Wigner transform for operators Fyy,, the 7-spreading representation operator
SR”. Section introduces Feichtinger operators Sy, recalling the important Outer and Inner
Kernel Theorems from [62], and studies them in the framework of QHA. In Subsection
the mappings Fy,. and W, are studied on Sy, as well as Op, and SR” on S)(R??). Subsection
extends the convolution * to elements in Sy and Sf,, showing that Feichtinger operators
are actually a suitable environment for QHA. As a consequence, we are able to extend Fyy,
and W, to S{. In Subsection we define the 7-Cohen’s class representation, with kernel
a, of an operator S Q7 (S) and the definition of Q% (f) from [I08] is recalled. Already known
objects will be recovered in the form of Q7 (S) and we shall observe that Q7 (S) coincides with
the 7-symbol of the mixed-state localization operator a x S. Some interplays between the Gabor
matrix of an operator, the 7-Cohen’s class, the trace and the 7-Wigner distribution are then
exhibited. Eventually, Subsection [7.3] introduces the weighted classes of Feichtinger operators
M! and provides a characterization for Schwartz operators & in terms of M.

7.1 Preliminaries

We recall the already known tools of QHA and introduce new one, such as V[ f, Fw, S, W5,
SR"a. The 7T-quantization Op, and the cross-7-Wigner distribution W.(f,g) can be found in
Chapter

Even if not specified, the parameter T always belongs to [0, 1].

7.1.1 A continuum of (new) time-frequency representations

Definition 7.1.1. Given 7 € [0,1], the T—time-frequency shift (r-TFS) at (z,w) € R?? s
defined to be

(7.1) T (2, w) = e T M T, = Mgy To Mg,

For 7 = 0 we recover the usual TFS 7° = 7. The following relations are due to easy
computations, hence we left them to the reader:

— e*QWi[(lff)zwlf'rm'w]ﬂ,T(x +$,,w +w/),

el () (0,0),

* 1—7'( —2mi(l—7)zw

7 (z,w) =1 T (—x,—w)=¢€ m(—z, —w).

Definition 7.1.2. For f,g € L*(R?) we define the T-short-time Fourier transform (r-
STFT) of f w.r.t g:

(7.2) Vi f(z,w) = (f, 7" (z,w)g), Vi, w € RY.
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Of course, the 7-STFT can be defined for any suitable dual pair. As can be easily verified,
each mapping
7™ R? — U(LA(RY)),

where U (L? (Rd)) denotes the unitary operators on L?, is a projective representation. So that
VT is the wavelet transform associated to 7", hence V, f is a continuous function.

Remark 7.1.3. Of course for 7 = 0 we come back to the usual STFT V° =V and we have
(7.3) V) f(z,w) = XTIV f(z,w).

1
From the above equation, we notice that Vi* f is exactly the cross-ambiguity function of f
and g A(f,9):

(7.4) Vi f(z,w) = A(f, g)(z,w).

7.1.2 Fundamental and new tools of QHA

In this subsection we introduce the fundamentals definitions of quantum harmonic analysis which
were introduced by R. Werner in [I50]. We shall see in Definition [7.2.18 how to extend the
following definitions.

Definition 7.1.4. Consider z € R*? and T € B(L?(R?)). The translation of T at z is
(7.5) o, (T) =m(z)Tr(z)".

The involution of T is set to be:

(7.6) T:=1ITT.

Given a € L*(R??) and S € J*, trace class on L*(R%), the convolution between a and S is
the operator

(7.7) a*xS:=S8%a:= /}RM a(z)a,(S) dz,

where the integral has to be understood in weak sense. The convolution of two operators
S, T € J' is the function defined for every z € R?® gs
(7.8) SxT(z) = tr (Sa.(T)) .

It is straightforward to check that a,a, = a,4,. In this chapter, we reserve the symbol ®
for rank-one operators. Namely, given f,g € L?(R%):

(7.9) (fogw=(bg)f  VeL’R)
Trivially, the kernel of the operator f ® g is the tensor product of functions f(x)g(y):

(Foa)6(0) = .00 = [ 1O5w() de
So that, when we will need the functions’ tensor product f(x)g(y), we shall adopt the notation

(7.10) Kyrgg(x,y) = f(2)g(y),

K being the integral kernel of the operator S.
We now interpret (2.81)) as the cross-7-Wigner distribution of the rank-one operator f®g. Hence,
we naturally define the 7-Wigner distribution of an operator as follows.
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Definition 7.1.5. Let S be an operator with integral kernel Kg and let T € [0,1]. Then the
7-Wigner distribution of S is

(7.11) WS (z,w) = / e T K g(x + Tt x — (1 —7)t) dt.
Rd

Definition 7.1.6. For S € J! and 7 € [0,1], the Fourier-r-Wigner transform of S is
defined to be:

(7.12) Fw,S(z) =tr (77 (2)*S), Vz € R?
For 7 = 1/2 we recover the usual Fourier-Wigner transform [I50].

Definition 7.1.7. We call T-spreading representation of S € B(L?) an expression of type

(7.13) S = /]R?d h(z)n" (z) dz,

where the integral is understood in weak sense. The function h is called T-spreading function
of S.

We shall see the T-spreading representation as mapping which assign to a function an oper-
ator, hence we give the following definition.

Definition 7.1.8. For 7 € [0,1] and h € L*(R??) we define the T-spreading representation
operator as the mapping

(7.14) h+— SR™h := /R2d h(z)n"(2) dz.

Let F, denote the symplectic Fourier transform, we are know able to collect in the following
lemma a number of important relations which involve many of the tools presented so far. The
proofs are standard computations and the canonical decompositions of S and T' [126] are used,
we leave them to the interested reader.

Lemma 7.1.9. Let f,g,€ L*(RY), S,T € J', a € L*(R??) and 7 € [0,1]. Then:
(1) FoWr(f@g) =V]f;

(i) Fw,.(fog)=V]f;

i) WoS = FoFw.S;

Fw,S(x,w) = 6*2”(1/2*7)””‘”]:‘4/1/25(30,w);

)
(#i7)
)
) fg(S*T) = -FWTS . -FW1,TT = lefTS . .FWTT;
)
)

(iv
(v
(vi

(vii

1) Fw.(axS)=Fea-Fw.S;

Fw, S is the T-spreading function of S, i.e. S = [pou Fw, S(2)n7 (2) dz.

We notice that if we consider the rank-one operator S = f ® g, then item (ii) and (ii) of
the previous lemma give

(715) W‘r(f7g) = WT(f®g) = ]:o‘/ng-
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7.1.3 7-quantization of functions

Recall that given an operator S, we denote by a2 its 7-symbol, i.e. that tempered distribution
such that Op, (ad) = S.

Remark 7.1.10. Under suitable assumptions, for example a € L'(R??), straightforward calcu-
lations give

Op-(a) = - Fra(z)n" (2) dz,
and since also Fw,. Op,(a) is the T-spreading function of Op,(a) we have
(7.16) a = F,Fw, Op-(a).
Hence for S € J'
(7.17) ad = F,Fw.S = W,S.

Given a € S)(R??) and f,g € Sp(R?), we recall the definition of cross-r-Cohen’s class
representation of f and g, with kernel a:

(718) Qg(.ﬂg) ::a*WT(f7g)'

‘We shall extend this definition in the next section.

7.2 Feichtinger operators

In this section we summarize some important results concerning a class of operators studied
in [62]. For such operators, introduced below, we adopt the name “Feichtinger operators” for
reasons which will appear clear. We stick to the Euclidean setting in which we are interested,
although the treatment shown in [62] is far more general.

Definition 7.2.1. The set of Feichtinger operators is defined to be

So :={S: S)(R?) — So(R?)| S is linear, continuous and
(7.19) maps norm bounded w-x convergent sequences in S},

into norm convergent sequences in Sp}.
We adopt the following notation:
(7.20) S = B(So(RY), SH(RY))
and state the so called Outer Kernel Theorem [62, Theorem 1.1].

Theorem 7.2.2 (Outer Kernel). The Banach space S, is isomorphic to Sy(R?*?) via the map
T — K, where the relation between T and its kernel Kt is given by

S <Tf7g>50 = S} <KTaKg®f>$07 vag7 € SO(Rd)
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The following synthesized result goes under the name of Inner Kernel Theorem, we present
it in our setting, i.e. S is meant to be the sent of conjugate-linear continuous functionals on Sy.
To this end, we introduce the following notation: given o,v € S)(R?), we denote by v®@& the
unique element of S)(R2?) such that

5, (v@T, Kyap)s, = s, (V) sesy (0.@)se, V1,0 € So(R*).
We address the reader to [62, Theorem 1.3], Lemma 3.1 and Corollary 3.10 also.

Theorem 7.2.3 (Inner Kernel). The space of Feichtinger operators Sy is a Banach space if
endowed with the norm of B(S),So) and it is naturally isomorphic as Banach space to So(R??)
through the map T — K, where the relation between T and its kernel Kt is given by

S <I/,TO'>50 =5 <V(§)E, ,KT>50, Vo,v, € Sé(Rd)

Moreover, Sy is Banach algebra under composition. If S, T € Sy, then
(7.21) Koor(y,u) = / Kor(y 0Kt u) dr.
R

On account of Theorem and [7.2.3] Sj is the (conjugate) topological dual of Sy and the
duality is given by
s, (T,S)s, = s4(K1,Ks)s,-

Lemma 7.2.4. Let S € Sy, then there are two non-unique sequences {fn}n,{gntn C So(R?)
such that

n=1 n=1

= = n=1

Moreover,
So = J*

with

tr(S) = » Kg(x,x) du.

Proof. We just have to prove the continuous inclusion of Feichtinger operators into [J*!, all the

remaining statements can be found in [62], see in particular Corollary 3.15 and Remark 9. The
claim comes after an easy computation:

Il = () < [ 3@l do = 3 [ @@ de

oo oo
<D Mallzzllgnllze D lfalls, llgnlls, < oo-

n=1 n=1
Since Sp(R?9) = Sp(R?)®Sy(RY), see e.g. [62, Lemma 2.1], we get
1S+ S I1Ksls, = 1S,
and the proof is concluded. O
Together with the observations in [62, p. 4], we have
(7.22) So = J' — J? — B(L*(R%)) — S,
The fact that all Feichtinger operators are trace class implies the validity of Lemma [7.1.9]
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7.2.1 71-quantization of operators

The present subsection is devoted to the study of Op,, W., Fi_ and SR” on one of the following
spaces: Sp, Sf), So(R?9) and S} (R2?).

We shall see, e.g. that Op, can be interpreted as the Banach space adjoint of W, see Theorem
[7:2.6] and Theorem [7.2.7] The following remark is the key insight for the mentioned results.

Remark 7.2.5. Let us consider f,g € L*(R?) such that f # 0, a € L*(R®*?) and {f;}; o.n.b.
for L? with fi = f. Then we compute as follows:

(Op-(a)f,9) = (Op-(a) £, > (9, ;) f3) = > _(Op+(a) ((f5,9)1), F;)
j=1 j=1

(Op-(a f®g)fjvf]> = tr (Op-(a)(f ®9)).

j=1
Taking into account the weak definition of Op.(a) and ( we can write
(7.23)  (Op-(a)f,g) = (a,W-((f ® 9)")) = tr (Op+(a)(f @ g)) = 7 (Op-(a), (f ® g)") 71

We can perform computations similar to the ones above for S € J' with canonical decomposition
Y oreq Akfk @ gi after extending {fix}r to an o.n.b., in this case we obtain

(7.24) (a, W7.5) = tr (Op-(a)S7) = 7 (Op-(a), S) 7.

Theorem 7.2.6. For every T € [0,1] the following mappings are linear and continuous:
Op,: L*(R?*?) — 7>, Wy: J' — L2(R?Y).

Moreover, Op; is the Banach space adjoint of Wr: Op, = WX.

Proof. The boundedness of Op, is trivial; the proof of the continuity of W, follows the same
pattern shown in the proof of the subsequent Theorem The last claim is just (7.24). O

Theorem 7.2.7. For every 7 € [0,1] the following mappings are linear and continuous:
Op,: SH(R*) =S,  W,: Sy — So(R??).

Moreover, Op, is the Banach space adjoint of W,: Op, = W, i.e. for every a € SH(R?*?) and
S eSo

(7.25) St <CL,WTS>30 = A <Op7(a),5>§o.
Proof. The boundedness and linearity of Op, need no proof; using the formal representation of
Op-(a) we can given the formal expression for its kernel:

(7.26) Kop, (a)(t,7) = / =D q (1 — 1)t + 725, w) dw.
Rd

Let us consider first f, g € Sp, then a standard argument, see e.g. [35, Proposition 1.3.25], gives
that

Wo(f ®g) =Wr(f,9) € S(R*)  with  [W-(f@9)ls, < IIflls, I9lls,
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Since Lemma [7.1.9 - 9| holds true on Sy, we write W, = F,Fw. and use a representation for S of
type > oo | fn ® gn as shown in Lemma |7.2.4) - Now we compute:

Fw,S(2) = te(n” Zw “(fn © gn))

(7.27) Z )* frr Gn) = ZVg fu(2)

Taking a suitable window for the norm on Sp(R??) [I01, Theorem 5.3] we have

17w, Slls, < D Ve full s, = D2 Ifulls, lgalls, < +oo.
n=1

n=1
Therefore

(| Fw, SHSO < lnf{z ||fn||80 ||gnH$0 S= an ® gn}

n=1

< inf{z [ fullsy l9nlls, » Ks = Z Kf,@4.}
n=1 n=1
= [1Kslls, < [I51ls, -

We proved the boundedness of Fy, : Sg — So(R??), the continuity of the symplectic Fourier
transform F,: So(R??) — Sy(R?) is well-known, the continuity of W, : Sg — Sp(R??) follows.
Concerning the last claim, we proceed as follows:

o0
5,(0p~(a),S)s, = s;(Kop, (a):Ks)s, = s;(Kop, (a)» Z Kig9,)80

n=1

54 (Kop, () K fag.) 50 Zs’ Op-(a)gn,fn)s,
1

n=1

oo

:Z (@ We(fn @ gn))s, = s3( Z (frn®gn))s

the proof is concluded. O
On account of Theorem and it seems reasonable to interpret
W.S
as the 7-quantization of an operator in Sy or J'.

Corollary 7.2.8. (i) For every 7 € [0,1] the mapping W,: Sy — So(R?%) is a topological
isomorphism with inverse given by Op, : So(R?*?) — Sp;

(i3) A linear and continuous operator S: So(R%) — S)(R?) belongs to Sy if and only if W,.S €
So(R??) for some (hence every) T € [0,1].
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Proof. (i) We observed in (7.17) that W, S is just the 7-symbol a2 of S, here we take S € Sy.
Therefore
Op, oW, S = Op,(ad) = S.

We now show that if we start with a € Sy(R??), then Op,(a) belongs to Sy. From (7.26]), we
have that the kernel of Op;(a) can be written as

Kop, (a)(t,z) = / 62m(t_w)wa((1 — Tt + Tx,w) dw = \I/T]-'gla(t7:r),
]Rd

where: F5 !is the inverse of the Fourier transform in the second variable; ¥, is the change of
variables induced by the matrix so defined

(7.28) F N T _Tl

} , U, F(t,x) = F((1 —71)t+ 7a,t — x).

Being a in the Feichtinger algebra Sp(R??) we have F; 'a € So(R??), therefore also ¥, F, ‘a is
in So(R??) which means that Op, (a) is an element of Sy. The fact that Op, is continuous from
So(R2%) into Sy is clear from the applications F, Land U,. Eventually:

W, 0 Op,(a) = a®P7(@ = ¢,
(7i) The claim is a straightforward consequence of (7). O

Corollary 7.2.9. (i) For every T € [0,1] Fw.: So — So(R??) is a topological isomorphisms
with inverse given by the T-spreading representation

(7.29) SR”: S§y(R*}) = Sy, a — a(z)n"(z) dz;
R2d

(i3) Let us define

(7.30) SR™: S)(R?*1) — S a a(z)n7(z) dz,
R2d

where the integral has to be understood weakly as follows:
86<(SRTa)fag>So =S} <a7VJZ-g>So7 a € S(/)(R2d)7 fa g e SO(Rd)

Then SR as in (7.30) is well-defined, linear, continuous, extends (7.29)) and it is the
Banach space adjoint of Fy, in (i):

(7.31) SR™ = Fyy,
in the sense that for every a € S{(R?*?) and S € Sy

sylaFw, S)s, = s, (SR7a,S)s, = 55 (Ksr7a,K5)50;

(iii) Every function F € So(R%4) admits an expansion of the following type:
F = Z ng fnv
n=1

for some sequences { fr}n, {gn}n € So(R?) such that 377, [ fnllsy lgnlls, < +oo.
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Proof. (i) First we notice that if we start with a € Sy(R??), then SR”a is the Feichtinger operator
with kernel

Ksnra(a) = [ aly =0, dw = 75 faly = u.)](0).

Clearly SR” is continuous from Sp(R??) into So.

Since we have W, = F, Fy. and F, is an automorphism of Sy(R??), we can write Fy,. = F, W,
and which is an isomorphism due to Corollary |7.2.§ - To prove that SR” is the inverse of Fyy,
we use (7.27), take S =307, fn ® gn € Sp and ¥, f € So(R?):

s;{(SR™ o Fw, S)b,p)s, = Fw, S(2)s;(m" (2)¢,0) 5, dz

R2d

—Z/RM o fn()V](2) dz
Z (frs®)so55(gn 1) s,

=S} <Z S <¢,gn>50fm50>so

n=1
oo

= &) <Z(fn ® gn)¢a@>50

n=1

= &) <S1/}a90>507

in the third equality we used Moyal’s identity. For the composition Fy, o SR”, notice that this
is the identity on Sy(R??) due lo Lemma [7.1.9] (vii)

(73) Well-posedness, linearity and continuity of SR”™ from SH(R?4) into S, are standard. Trivially
extends . To see that SR is the Banach space adjoint of Fy, from Sy into Sp(R??),
take a € S{(R?*") and S € Sp. In the following calculations we use: the already mentioned (7.27),
the representation for Feichtinger operators and their kernel given in Lemma the Outer
and Inner Kernel Theorem:

o0

S} <av}—W.,-S>50 = ZS(’, <CL, Z SR a gnvfn>

ZS’ (Ksrra, K, 09,)5, = s55{Ksr7a,Ks)s,

n=1

=} <SRTG,S>SO .

(#91) The last claim is a direct consequence of the computations in ((7.27) and the surjectivity of
Fw... O

.

7.2.2 A suitable environment for QHA

In Section [7.I]we introduced convolutions between a function and an operator and two operators.
M. Keyl, J. Kiukas and R. Werner [I03] showed that such convolutions make sense for wider
classes of (generalized) functions and operators. We summarized here the main results; in what
follows & denotes the set of pseudo-differential operators with Weyl symbol in the Schwartz class
S(R?%) and &' those pseudo-differential operators with Weyl symbol in &'(R?4). On account of
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the Schwartz Kernel Theorem we can identify &’ with the linear and continuous operators from
S(R?) into S’ (RY).

Proposition 7.2.10. (i) Let us take S,T € &, A€ &', b€ S(R??) and a € S'(R?9). Then
the following convolutions can be defined and they extend the ones defined in Subsection

712
SxTeSR*¥), SxAcS(R*), bxS€6, axSbxAcE,;

/

(i) The Fourier-Wigner transform can be extended to a topological isomorphism Fw, )yt 6 =

S'(R*?);
(iii) We have Fo(S*T) = Fw, ,,S - Fw,,,T and Fw, ,(bxS) = Fob- Fw, ,S whenever S,T
and b are such that the convolutions are defined as in part (i);

(iv) The Weyl symbol of A € &' is given by FoFw,,,A.

The authors of [103] proved that the class of so-called Schwartz operators & has the structure
of a Fréchet space. Since we believe that Fréchet spaces can be rather cumbersome to work with,
in this subsection we show that the Banach space of Feichtinger operators Sy is a valid alternative
to &. We first need some preliminary results about Sy and Sp.

Lemma 7.2.11. Given f € S)(R?), there exists a sequence { fn}n C So(R?) which w-+ converges
to f and it is bounded by ”f”Sé’ i.e.

lim (fu.9) =s;(f:9)se Vg E€SoRY),  sup|fulls, < Ifs; -

n—-4oo

Proof. Let us fix f € S;(RY) \ {0} and call R = ||f\|86 From [101, Proposiiton 6.15|, there
exists a net {faltaca C So(R?) which w-x converges to f in S} and such that ”faHSé < R for
every o € A. Calling

Bri={f € StRY| Ifllgy <R} and Eni=So(R)N B,

where S is identified with its natural immersion in S, this means that

*

ErR CBrCEgr .
Er" " is bounded in SH(RY). In fact, if fo € Er"" ", then there exists a net {fa}aca C Egr
such that it w-* converges to fy, hence

Ifollsy < limint | full, = L inf{ll fallg, 1o % 8} < lim R = R,

In particular, this shows that ?Rw_* C Bpr and we get

———w—*

Er’ " = Bg.

Being Sy separable, from [I12] Therem 2.6.23] the relative w-* topology on Bp is induced by a
metric, hence the topological w-x closure of E equals its sequential w-* closure. Hence there
exists a sequence {f,}, C Er which w-* converges to f in Sj(R%). O

Remark 7.2.12. The above lemma holds also for any LCA second countable group G replacing
R?, see [£5, Theorem 2] for the separability of So(G).
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Lemma 7.2.13. Given S € S, there exists a sequence {Sy}n C So such that

(@) [1Sallsy < ISllsy 5

(4) limp oo sy ((S — Sn)f19)se| =0 for all f,g € So(RY).

Proof. it is a straightforward application of the Kernel Theorem [7.2.2] and [7.2.2 and of Lemma
[[211 O

Convergence as in item (7) of the above lemma will be also denoted by
S, Y38 in S| or S = w *-lim, S, in Sg.

Lemma 7.2.14. Let S: Sy — S| be in Sg. Then the Banach space adjoint S*: 8§ — Sp is in
Sg with kernel

(7.32) Ks+(y,u) = Ks(u,y).

Proof. We take f,g € So(R?), then

s (SF.9)s / Kr(y, w)g(y) f (u) dydu

= ‘/Rd f(u) - mg(y) dy du
= s5,(f,579)s,-

Hence S*g(y) = [pa Ks(u,y)g(w) du, this means Kg-(y,u) = Kg(u,y) which is an element of
So(R2%). O

Corollary 7.2.15. Sy is a Banach x-algebra.
We notice that (S*) = (S)*, so that from now on we shall simply write S* when necessary.
Lemma 7.2.16. (i) The following applications are surjective isometries:
(i—a) a.:So — So, for every z = (x,w) € R*, and
(7.33) K, s(y,u) = 2" WK (y — 2, u — x);
(i—10) *: Sg — Sg and
(7.34) Kg(y,u) = Ks(—y — u);

(i—c) a,:ShH—'S}), for every z € R?4;
(i—d) = S)— Sh;
(ii) Let S,T € Sy and b € So(R??), then

S+ T € S(R??), bx S € So;
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(i7) The kernel of the mized-state localization operator b* S is given by

(7.35) Kpes(y,u) = / b(,w) 2™ =% K g (y — 2, — ) dadw;
Rd

for very z = (x,w) € R?*® the kernel of Sa. T is

(7.36) Kgo, 1y u) = /d WY Ko (2 — y, o — t) Kg(t, u) dt.
R

Proof. (i) We leave all the direct computations to the interest reader, we just point out that
to prove a, 5,5 € Sy the result [62, Corollary 3.3] is useful. A continuous and linear operator
S: Sy — 8| is a Feichtinger operator iff

/ / |53 (S7(2)g1.7(w)g2)s, | dzdo

is finite for every g1, g2 € So(R?).

(73) We first tackle the convolution between two Feichtinger operators. On account of item (i) and
the fact that Sg is a Banach algebra under composition, we have that for every z = (z,w) € R??
Sa.T is in Sg. Then we compute using [62, Corollary 3.15]:

S+T(:) = 0(S0.T) = [ Kswrwa)dy= [ Kor(nt)Kis(t,y) dedy
- / =0 o (3 — 1 — 1) Ks(t, ) dtdy
R2d

= / ( Kp(x —y,x — t)Ks(t,y)e_Q’”t“’ dt) e2miyw dy
Rd R4
— f;lfl (@T(ﬂ,x)KT . KS) (w’w),
where F; and F3 are the partial Fourier transforms with respect to the first and second variable,

respectively, and ®F(t,y) :== F(—y, —t). Consider now f, g, h,l € So(R?), it is useful to compute
the following where P is the parity operator:

Fy ' P (T (0 Kt - Krog) (w,w) = /Rd

(/Rd hiz = )iz — 1) f(H)g(y)e ™" dt> 2TV gy

= [ fwe T elm Dt / S h(z — y) dy
R4 Rd

=Vuf(—z,w) Vorg(—z,w).

So that Fy ' Fi (PT (40 Knet - Kreg) (w,w) is in So(R??) as a function of (z,w). We consider
now two representation S =3 >, f, ® g, and T =>">" | h;, ® l,,, see Lemma so that

Ks=> Kjgg, Kr=> Kps-

n=1 n=1
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It follows that we can write

SxT(z)=F, ' F (@T(xx) > Kn,on, Y Kfn@,gn) (w,w)
M n=1

oo o0

=3 > F'F (T Knyet, - Ki.gq,) (@,w)
m=1n=1

=33 Vi, ful—2,w) - Vi, go(—2,w) € So(R*),
m=1n=1

the convergence is guaranteed by Lemma [7.2:4]
Concerning b x S, the subsequent estimate for every f,g € So(R¢) proves that bx S € S):

56{(bx ) f:9)s0| < /RM [b(2) s (S7(2)" f,m(2)" g)so | dz < 1Bl 1S lsy 1£1ls, Nglls, -

We exploit [62, Theorem 3.2 (ii)] to show that b S is in Sy, take g1, g2 € So(R?):

// st (0% S)m(w)g1 () ga) sy | duwdu < //wz)
R2d JR2d R2d JR2d JR2d

— 2)g1,m(u — 2)ga) $0| dzdwdu

sy (Sm(w)gr,m(u)ga)s, | dw’du’~/ |b(2)| dz < +o00.
R2d

S/

(ST(w
/RM L.

(7i1) We compute explicitly the kernel of the operator given by the convolution b x S, here
z = (z,w) € R

s;{(bx9)f,9)s, = /Rw b(x,w) /Rw Ks(y,uw)m(—2)g(y)m(—2) f (u) dydu dzdw
- /]R?d /de b(z, w)e2m(y7u)wKS(y, U)mf(u + ) dedw dydu.

The change of variables ¢y = y + u,u’ = u + = gives the desired result. The last claim is just a
direct application of (|7.33)), (7.34) and the Banach algebra property for S¢ [62, Lemma 3.10]. O

Corollary 7.2.17. Let S,T € Sy with representations S =Y >~ | fn®gn and T Yoo hn @y,
where { fo}n, {gntn, {n}n {ln}n © So(RY) with 3207 || fulls, llgnlls, < 400, 3202 [alls, linlls, <
+o00. Then, with the notations introduced in the proof of Lemma|7.2.16, for every z = (x,w) €
R24:

S*T(2) = Fy ' Fr (2T (4 K1 - Ks) (w,w)

(737) = Z Z VIlm fn(_wi) ° VIhmgn(_'r7 (.d).

m=1n=1

Definition 7.2.18. Let A € S}, a € S)(R??), S € Sg and b € Sy(R?*?). Consider any sequences
{An}n g SO and {an}n g SO(de) such that

A, U3 A in S and  ap, “=a in S)HR??).
n n
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Then we define the following convolutions:

(7.38) Sx A= wx-lim, S+ A, in SHR>?);
(7.39) a*x S :=S%a:=u x-lim,a, xS in  Sg;
(7.40) bxA:=Axb:=w x-lim,bx A4, in  Sg.

Remark 7.2.19. The reader may find useful to keep in mind the following simple identities,
they will be used in the proof of the subsequent proposition. Consider S € Sg, 1, ¢, f,g € So(R?)
and z € R?4;

(Y @ ¢) = m(2)Y @ 7(2)p;
(Y ®¢)(Kfeg) = (f,9) (¥ ® 9);
(Y ®p)*S(2) = s;(m(2)ST(2)",0) s, -

Proposition 7.2.20. The convolutions defined in Definition [7.2.18

(i) do not depend on the sequences chosen; moreover, taking A, a,S,b as in Definition|7.2.18:

(7.41) sp(S* Ab)s, = sy (Ka Ky, g4)50
(7.42) sy{(axS)f.9)s, = s1(a,(g ® ) * S*)sp;
(7.43) s ((bx A)f.9)s, = 51K A, K w90 £))So>

where b*(z) = b(—2z);
(i) extend the definitions given in Subsection[7.1.5;
(ii7) are commutative;

(iv) are associative, in particular if z € R2?, T,Q € Sy, 0 € So(R?*?) and A,a,S,b as in

Definition then:

(7.44) (S*x(T*b))(z) =((S*T) *b)(2);
(7.45) S*x(TxQ)=(S+T)*Q;
(7.46) (S*xb)xo=8*(bxo);
(7.47) Sx(Txa)=(S*T)*aq;
(7.48) Ax (T xb) = (AxT) b
(7.49) Sxk(TxA)=(S~T) A,

in the above identities * denotes the usual convolution between two functions or a function
and a distribution.

Proof. (i) If we show (7.41)), (7.42)) and (7.43]), then the rest claimed in (4) is obvious.
We start with(7.41). Let b € So(R??) and z = (z,w) € R?? in the subsequent computations we
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use Lemma [7.2.14] and [7.2.16;

sy (S * Ab)s, = ngrfoo si(S* Ansb)s, = ngrfoo - tr(Sa,A,)b(z) dz
S B R SR E
= lim / / / MWK (2 — g,z — ) Kg(t,y) didy b(z) dz
n—+00 Jp2d Jrd JRd
= lim / / / ™R (o ) Kg(w — 'z —y) dt' dy b(z) dz
n—+00 Jp2d Jrd JRd

= lim / Ka, (Y, t) ( Kg(z —t/,x — y')emv'—t)wp(z) dz) dy'dt’
Rrd JRrd R2d

n—-+oo

n—-+4oo

= lim / Ka, (y,t) < Ke(t! — z,y' — x)e2miv'—t)wp(z) dz) dy'dt’
Rd JRd R2d

lim / Ka,(y,t") ( Ke.(y — x,t! — x)e?mi'—t)wp(z) dz) dy'dt’
Rd JRA R2d

n—-+oo

SO B Y SRR e T
Rd JRd

n—-+4oo

About (7.42)), we take f,g € So(R?) and compute directly keeping in mind Remark [7.2.19

syllax5)f.9)s, = lim an(2)s;(m(2)S7(2)" f.9)s, dz
n o0 JR2d
= Jdim [ g FES T s d:
= nglfoo » an(2)(g® f)* S*(2) dz.
We tackle then ([7.43)):
sp{(bxA)f.g9)s, = lim s (Kpwa, Koo r)s,

n—-+oo

= lim

( bz, w)e?™ VWK, (y — 2,0 — x) dxdw)
n—+00 [p2d R2d

< g(y) f (u) dydu

= lim KAn(y’,u’)</ b(x, w)e2mily' —u)w
R2d

n—+00 [p2d

x g(y' +x)f(u +z) dxdw) dy' du’

= i [ Ea W) (] e

n—+00 [p2d R2d

x gy — ') f(u + ') dx’dw’) dy' du’

= lim Ka, (Y ) Kyesgop) (Y, w') dy'du’,

Nn—+00 [p2d

where for sake of brevity we put b*(z) = b(—z).
(#4) and (7it) are trivial.



7.2. FEICHTINGER OPERATORS 199

(iv) We prove just (7.44), (7.45) and (7.46]). The remaining identities can be derived easily by
the interested reader.
In order to show (7.44) we compute for z € R2:

“ir(seo. (( [ >aw”w)'>)
gs o[, o ((@ur)) dw) )

So W)y Oy wa)
R?d

(S (T xb))(

=tr (S o b(—w)aya, T dw’)
R2d

:/ b(—w') tr (Sav 4T dw',
R2d

where the last equality is due, e.g., to [I128, Proposition 2.9]. we can the rephrase the last
right-side term as

b(z — w") tr (SaT) dw'" = /de b(z —w")(S*T)(w"”) dw”
= ((S*T) *b)(2).

R2d

About (7.45)), the following property for the trace is useful:
/ tr(Say,T) dw = tr(S) tr(T),
R2d
where S,T € J'. Take now f,g € Sp(R?):

S+ TxQ)fas, = [ w(Ta.Q)s;l0:5 s, d:
- [, 6@a)i((a.5)( @ 9))
— [ [ n(Q@.Tau((@.5)( @ 9) dudz
RQ(]/ RQd
= [ [ 6 ©9)0uQa(@uD)s) dsdw
R2d RQd

- /  t(SauT) tr((@uQ)(f © 9)) du
= s {(S+T) Q) f.0)s
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Also the last identity comes from a direct computation, for f,g € So(R9):
(S0 *0) s, = [ otls xS < a)s, ds

= J(z)/ b(w)gé<(owa)7r(z)*f,7r(z)*g>50 dwdz
R2d R2d

= [ ] oebw)s (@S g)s, dudz
R2d JR2d

= [ [ o) r((@usaS)(f ) dudz
R2d JR2d

= / b(w) / o(z' —w) tr((axS)(f ® g)) dz'dw
RQd R2d

_ / (/ b(w)o (2 — w) d=') tr((axS)(f © 9)) dw
R2d JR2d

- /]de b U(ZI)56<(O‘Z’S)f79>SO dz’
S+ G s

The proof is concluded. O

Corollary 7.2.21. The mappings Fw, and W, defined on Sy can be extended to topological
isomorphisms
Fw,: Sy — SHR*)  and  W,: S) — SH(R??)

by duality:
(7.50) sy {(Fw, S,a)s, =g, (5,SR7a)s,, sy (WrS,a)s, = 5,(S,0pr a)s,,
where S € Sy and a € So(R%?). The inverses are given by

SR™: S)(R?*?) =S,  and  Op,: SH(R?*?) = S},
respectively.

Proof. The definitions in (7.50) rely on the fact that Op, = W and SR™ = Fjj, , see Theorem
and Corollary It is straightforward to see that if S € Sj, then Fy S and W.S
defined as in (7.50) are in S;(R24). Also linearity and boundedness of Fyy . : Sy — Sh(R??) and
W, : Sh — Sh(R?9) are easy to verify as well as the fact that they extend Fy . : Sg — Sp(R2%)
and W, : SO — S()(de).
We show that W, is an isomorphisms with inverse Op,, then Fyy_ is treated in the same way. W,
is injective because Op,: So(R??) — S is an isomorphism. Fix now a € S}(R??), there exists
a sequence {a,}, C So(R??) such that a, “—= a in SH(R??). Since W, is an isomorphism
between S and Sp(R24), there exists {A,}, C So such that a,, = W, A,,. We see that there is
A €S}y such that A, “3 A in S, in fact taking b € Sy(R?%)

n

sylab)s, = lim s (Wr A, b)s, = Jim g (An, Op; b)s,-

n—-+oo

Hence a = W, A, which proves that W, is onto. We show now that W, o Op, is the identity on
SH(R??), take a € S(R??) and b € Sp(R??):

S5 (Wr0Oprab)s, = Sh (Opr a, Op; b)s, = St (a,W; 0 Op;b)s, = S (a,b)s,-
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The first identity is just (7.50]), the second one is ((7.25]) and the last one is (i) of Corollary
For the other way round, take S € S, and T' € Sy:

5,(0pr oW S, T)s, = 5, (W7 S, W T)s, =5, (S, Opr oW:T)s, = g, (5,T)s,

The first identity is (7.25)), the second one is (7.50) and the last one is (i) of Corollary[7.2.8 O

7.2.3 7-Cohen’s class of operators

In the present subsection we define Q7 (.S) and the definition of Q% (f) from [I0§] is recalled. We
shall see which already known object can be recovered by Q7 (S) and observe that it coincides
with the 7-symbol of the mixed-state localization operator a x .S. Some interplays between the
Gabor matrix of an operator G, the 7-Cohen’s class, the trace and the 7-Wigner distribution
are exhibited afterwards.

Definition 7.2.22. For a € S)(R??) we define the T-Cohen’s class representation, with
kernel a, of an operator S € Sy as

(7.51) QL(S) =axW,.S.

Of course, the rank-1 case f ® g we recover the definition given in (7.18). We recall also
the definition given in [I08] of Cohen’s class representation of a function f € So(R?) w.r.t. the
operator S € S by

(7.52) Qsf=({®f)xS
It can be easily seen that for every z € R??
Qsf(2) = (f® f)*8(2) = ((a=9)F, f.)-

Remark 7.2.23. Consider a € S)(R?*?) and S € Sy, then we see that the 7-Cohen’s class
representation of S w.r.t. a is just the T-symbol of the mized-state localization operator a x S':

a?*S =W (a* S) = ax W,5 = Q7(S).

T

Lemma 7.2.24. Let S € Sy have a representation Y oo | fn @ gn, take f, 0,1 € So(RY) and
{hn}n € So(RY) with

o0
> llhnllz, < +oo.
n=1

. Then for every z € R?¢:

(7.53) T (S Z Vo In(2)Vygn(2);

(7.54) Qs (5:0) Z hn ® hy) Z Vool (

Proof. Clearly, it is sufficient to prove the first identity. We show first that for f, g € So(R?)

(7.55) QL(f,9) = (f ® g) * Opi_-(a).
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In fact, applying F, to the right-hand side first we get

Fo((f @ g) * Op1r(a)) = Fw, (f ® ) - Fw,_, Op1+(a) = Vj f - Foa.

We apply F, a second time:
(f ® 9) x Op1r(a) = Fo V) f * FoFoa = Wo(f,g) *a.

We can now compute as below:

i) () = Wi (,9) % WT&: fn ® gn) = f}l Wir (2, 2) % We (far 9n)
= il(fn ® gn) * Op1+ (Wi (9, 9)) = i(fn @ gn) * (P @ @)
= f:l Voo In(2)Vipgn(2),
where the last equality is due to [I08] 0

We denote by T' > 0 fact T being positive, i.e.
(Tf,f) 20, VfeL*RY)

An operator T € J' and T > 0 is also called a quantum state.
Let us take T' € S and ¢ € S, then the Gabor matrix of T (w.r.t. ¢) is defined as

(7.56) Gr(zw) = (Tr(w)p,m(2)¢),  z=(v,w),w = (u,v) € R*.
We notice that the Gabor matrix of an operator does not depend on 7, in the sense that
GT(Z,U)) = <T7T(w)<p77r(z)(p> = <T7TT(’UJ)()0,7TT(Z)()0>, Ve [Oa 1]

Remark 7.2.25. We point out that the diagonal of the Gabor matriz of T, w.r.t. ¢, is the
Cohen’s class representation of ¢ w.r.t. T up to a reflection:

(7.57) Gr(—z,—2) = Qrp(2).
In fact

Gr(—z,—z) = (Tn(=2)p,m(—2)p) = (T'm(2)"p,7(2)"¥)
= ((a:T)p,9,) = Qre(z).
Let F and H be functions of (z,w) € R* and let © be a real 4d x 4d matrix. Then the
twisted convolution induced by O is defined as

(7.58) Fte H(z,w) == / F(Z w)H(z — ' w — w')e?™@OE W) g gy
R2d JR2d

Lemma 7.2.26. Let T,S € J', T,S > 0. Then for every T € [0,1] we have

(7.59) tr(TS) = W.T(2)W,S5(z) dz.
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Proof. Since T and S are trace-class and positive, they can be described as

n=1

n=1

for some o.n. sets {f,}n and {g,}, in L? and \,, g1, > 0. Let {e,},, be an o.n.b. for L2(R?):

6(TS) = S (TSen en) = 3 Aopis | (29007
n=1 ]

On the other hand

WT( )W S( dZ*ZAj/h/ W f]( ) Tgv dZ*ZA]:u‘Z fj?gl>| I

d
R2 ) 1,J

where the last equality is due to Moyal’s identity. This concludes the proof. O

Remark 7.2.27. Since we assume S > 0, S is self-adjoint and for 7 = 1/2 we have that Wy 58
is real-valued. In fact, using the representation given in the proof of Lemma[7.2.20;

Wij2S = Z P Wi 2Gn
n=1
with every Wy ,2gy real-valued and ji,, > 0. Hence for T =1/2 we recover [95, lemma 2.7].
Lemma 7.2.28. Let T € J' and consider ¢ € S(R?) such that ||¢||,. = 1. Then

(7.60) trT = /de<(azT)<p, p)dz = /de Qryp(z)dz = - Gr(z,z)dz.

Proof. The proof follows from a direct computation using the representations presented in the
proof of Lemma and Moyal’s identity involving the function ¢:

<fja gl> = <thfj7 V(Pg’L>
We leave details to the interested reader. O

Lemma 7.2.29. Let T € J', T > 0 and consider ¢ € S(R?) such that |||, = 1. Then for
every z € R??;

(7.61) Qre(z) = » W.T(w)Wro(z + w) dw = W, T x (Wr)*(2),

where (Wr)*(w) = Wro(—w).
Proof. We compute directly
Qre(z) = (m(2)Tn(2)" ¢, ) = tr(T(7(2)"p @ 7(2)"p))

= Jopa VT @)W (m(2)70 @ m(z)7¢) (w) duw,

the last equation holds because of Lemma[7.2.26] An easy calculation gives

We(m(2) ¢ @ m(2)"p)(w) = Wrp(z + w),

which is also known as covariance property and concludes the proof. O
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Lemma 7.2.30. Let T € J', T > 0 and consider ¢ € S(R?) such that |¢||,. = 1. Then for
every z,w € R??:

Gr(z,w)]* < Qre(—2)Qre(—w).

Proof. The claim follows from the Cauchy-Schwarz inequality for the inner product induced by
the positive operator T" and Remark [7.2.25 O

Lemma 7.2.31. Let 04 and I denote the zero and identity d X d matrices, respectively. Let us
define

0g 05 04 04

I; 04 04 Og

O0¢ O0q4 04 Og

O0¢ 0a —Ig Og

0 =

Let T € J' and consider p € S(R?) such that ||¢|| ;. = 1. For z = (z,w),w = (u,v) € R*? we
have

(7.62) Gr(z,w) = Grie(Geay) (2, w)
— / GT(Z/aw/)(GgJ@go)*(Z _ Z,,’U) _ w/)eQWi(wx’—u’v) dz’dw’,
R2d JR2d
where 2’ = (z/,w'),w" = (v/,v') € R

Proof. We apply twice Moyal’s identity:

Grlzw) = [ VelTrtw)el (Vo RGIAE)

= /R - V[ (w)] (w )V [T*m (2 )] (w') (2" ), 7(2) ) dz' dw’
:/ Gr (2, w')(m(w)p, (W )p)(r (2 ) o, (2)p) dz'dw’.
R2d JR2d

It is then a direct, although tedious, calculation to show that

2mi(wx’ —u'v)

(m(2)p, m () ) (m(w) o, m(w)p) = (Gope)(z — 2, w —w')e

The proof is concluded. O

Lemma 7.2.32. Let T € J', T > 0 and consider ¢ € S(R?) such that || ;. = 1. Then for
any T € [0,1]:
!/ !/

(7.63)  W,T(z)= / / e 2millws’ —w' ) (- fr)elw +al] g (2 w, 2w dwd?’,
i Jpaa 2 2

where z = (v,w), 2 = (z/,w"),w = (u,v) € R¥,

Proof. We start rephrasing the 7-Wigner distribution of T"

W.T(z) = FoFw,T(z) = / e 2w =) b (27 (VT d2
R2d



7.3. A CHARACTERIZATION FOR SCHWARTZ OPERATORS 205

Recalling the properties for 77, see Section we see that

n( 24 /2) = 2HIOTD ST e (1 2y (2 /2)
_ 6% i(1—27)z’ W’ T(Z//2)7TT(ZI/2).

Taking the adjoint we get 77 (2/)* = e~ #i(1=20)2'w' 77 (21 )9)* 272/ /2)* and we write using Lemma
[(.2.28)

tr(wT(z’)*T) _ 67§i(1727)z'w' tI‘(?TT(Z//Q)*Tﬂ'T(Z,/Q)*)
_ efgi(lf%')z'w'/ <T7TT(Z//2)*7TT('LU)*()07WT(Z,/Q)T(T(IU)*()D> dw
R2d

6771(1 27)x w' (1 )z w’

[T 2 g 2 k)
= e B z (2 /2)m(—w w
/de< m(=2'[2)m(—w)p, 7 (2’ [2)m(~w)p) d

= ¢~ 3i(2-37)z"w / 6_2Wi$/U<T7T(—Z//2 —w)p, m(2' /2 — w)e) dw.
R2d

The proof is concluded. O

7.3 A characterization for Schwartz operators

In this section we introduced the weighted version of Sy and give an alternative description of
the class 6. We recall the polynomial weight defined in (2.7):

ve(z) = (142113, zeR™,

where s > 0. In order to avoid an extremely cumbersome notation, just for the weight functions
vs we shall use in the present chapter the following:

Vs @ Us(z,w) = Ky oo = vs(2)vs(w), Vz,w € R,
Definition 7.3.1. For s > 0 we define the weighted class of Feichtinger operators as
(7.64) M. = {S: SHRY) — So(RY) | S is linear, continuous with kernel Ks € M} o, (R**)}.
For S in M! we define the application
(7.65) ISllgy = 1Esllasy
Remark 7.3.2. (i) For s =0 we recover the unweighted Feichtinger operators So;

(i1) The application defined in is a norm on M and it is easy to see that (M, ||- [}¥e9)
18 a Banach space and the followmg continuous inclusion holds true for every s > 0:

(7.66) M! < Sq.
Lemma 7.3.3. Let S € ML, then there exist {fu}n, {gn}n C M} go,.(R*®) such that

S = an @ Gn, Z Hf"||M53 Hgn”Mgs < too, Ks = ZKfn®gn'

n=1 n=1 n=1



Proof. The proof follows from the fact that

Ml

VsQusg

See proof of Lemma [7.2.4] also. O

(R*) = M, (R)&M, (RT).

Theorem 7.3.4. For every T € [0,1] the mapping W.: M} — M} o (R?*?) is a topological

isomorphism with inverse given by Op,: M g, (R*) — M.
Proof. The proof follows the same patter of Theorem and Corollary O
Corollary 7.3.5. An operator S belong to M. iif for some (hence every) T € [0,1] W,.S €
Ml (RQd).

Vs @Us

Theorem 7.3.6. The following holds true:

(7.67) 6 =M.

s>0

Proof. On account of Corollary S belongs to the set on the right-hand side if and only if

WS € [ M), g, (R*) = S(R*).
s>0

The claim follows since Wy /55 is the Weyl symbol of S, i.e. af/Q =Wy ,3S. O

We recall that a function F on R?? is called rapidly decaying if for every multiindex «, 3 € N
we have
sup ’xo‘wﬁF(m,wH < 00,
z,weRd

where, if x = (21,...,24) and a = (a1, ..., aq),  stands for z{* ... z5".

In [95, Theorem 1.1] is given a sufficient condition for a positive trace-class operator to be
in &. Namely, if T € B(L?), T > 0, is such that W, T exists for some 7 € [0,1] and it is
rapidly decreasing, then T' € & and W, T exists for every 7 € [0, 1]. In this spirit, we provide the
following sufficient condition for a generic S € B(L?). Observe that we do not not require S to
be positive.

Corollary 7.3.7. Let S € B(L?) and assume that form some 7 € [0,1] W,.S exists. Suppose
also that, w.r.t. some non-zero window in L?(R??), the STFT of WS is rapidly decaying. Then
W, S exists for every T € [0,1] and S is in S.

Proof. Let us pick G € L%(R??) \ {0}. If VoW, S is rapidly decaying then S € M. for every
s > 0. The claim follows from Theorem [7.3.6] O
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