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Abstract
Most empirical metacommunity studies rely solely on morphological identification of taxa, precluding the species-level 
identification of several biotic groups, which can influence the characterization of metacommunities. DNA metabarcoding 
enables inference of species and even intraspecific diversity from community samples but has rarely been used to infer 
metacommunity structure. Here, we combined morphology and metabarcoding to improve the characterization of an insect 
metacommunity at different identification levels. We included measures of taxonomic, functional and phylogenetic richness, 
and we evaluated drivers affecting metacommunity structure (i.e., environmental filtering and dispersal). Communities were 
sampled from an area that included nine perennial, two near-perennial and two intermittent sites in a river network character
ized by high hydrological variability. We identified organisms to a mixed (family to species) taxonomic level using morphology, 
and to operational taxonomic unit (OTU) and haplotype levels using metabarcoding of the mitochondrial cytochrome c oxidase 
gene. Diptera and Ephemeroptera showed the greatest increases in taxonomic and phylogenetic richness but not biological trait 
richness with increasing taxonomic resolution. The joint effect of environmental filtering and dispersal was more important than 
their individual effects in shaping metacommunity structure at all identification levels. Mixed-level and OTU-level identification 
were more effective than family and haplotype in characterizing the drivers of metacommunity structure. We demonstrate that 
the greater taxonomic resolution enabled by metabarcoding could improve understanding of metacommunities within river 
networks, thus enhancing our capacity to predict ecological responses in ecosystems adapting to global change.

Keywords: Exact sequence variant, IRES, taxonomic sufficiency, habitat filtering, taxonomic surrogacy

Introduction

Quantifying biodiversity is essential to understand 
how it is shaped in space and time, and this is even 
more important in a context of ongoing global 
change and biodiversity loss. Metacommunity 

theory provides a framework in which to explore 
the factors structuring biological communities 
(Leibold & Chase 2018). Dispersal and environ
mental filtering play key roles in assembling meta
communities and, to date, their contributions have 
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typically been quantified using morphologically 
identified taxa. However, for smaller, less conspicu
ous and taxonomically complex biotic groups such 
as most of the invertebrates, algae and protists, mor
phological approaches can preclude species-level 
identification and often result in mixed-level identi
fication being used as a surrogate for inferring spe
cies-level patterns (Jackson et al. 2014; Zimmer- 
mann et al. 2015; Gauthier et al. 2020a). How- 
ever, taxonomic levels coarser than species can 
alter the characterization of assembly processes 
because of differences in species response to envir
onment and dispersal (Heino & Soininen 2007; 
Laini et al. 2020).

Mixed-level taxonomic identification is typically 
done to the “lowest practical taxonomic” level 
(Guerold 2000; Jones 2008; Filstrup et al. 2014) 
because of (i) the scarcity of taxonomic experts, (ii) 
the time needed to identify to species level com
pared to coarser levels, and (iii) difficulties in iden
tifying morphologically complex and cryptic taxa, 
early instar insects and damaged specimens (Jones  
2008; Gauthier et al. 2020a). Mixed-level taxo
nomic identification can complicate data analysis if 
ambiguous parent–child pairs (e.g., Baetidae and 
Baetis) are present, and the methods used to resolve 
this issue can alter the results obtained (Cuffney 
et al. 2007; Meredith et al. 2019). The effectiveness 
of coarser taxonomic levels as surrogates for species- 
level identification depends on multiple factors, 
including the ratio of species to coarser taxonomic 
levels and the distribution of species numbers 
among these coarser levels (Jones 2008; Rosser  
2017). The influence of these factors and their inter
actions is context dependent, preventing generaliza
tions about the use of coarser taxonomic levels to 
characterize metacommunity structure and infer 
related processes such as dispersal and environmen
tal filtering (Heino & Soininen 2007; Angiolini et al.  
2017; Laini et al. 2020).

Dispersal is influenced by species-specific physio
logical, morphological and behavioral adaptations, 
density-dependent processes, and geographic and 
environmental constraints (Clobert et al. 2012; 
Heino et al. 2017). This complexity introduces 
variability within taxonomic levels; for example, dis
persal-related adaptations can vary within insect 
genera (Sarremejane et al. 2020a). Community 
responses to abiotic variables can also differ depend
ing on taxonomic resolution (Heino & Soininen  
2007; Vilmi et al. 2016), and although niche con
servatism is expected among congeneric species 
(Wiens & Graham 2005), minor differences can 
influence metacommunity structure. For example, 
the response of aquatic invertebrate juveniles to 

drying in intermittent water bodies differs among 
congeneric species within the true fly genus 
Polypedilum (Diptera, Gusev et al. 2014) and the stone
fly genus Taeniopteryx (Plecoptera, López-Rodríguez & 
de Figueroa 2006). Moreover, cryptic species and con
geners within species complexes can differ markedly in 
their tolerance of environmental stressors (Sturmbauer 
et al. 1999; Eisenring et al. 2016; Macher et al. 2016). 
Methods that provide species-level or even intraspecific 
information for whole communities could thus advance 
understanding of metacommunity processes (Tesson & 
Edelaar 2013; Gounand et al. 2018; Gauthier et al.  
2020a).

DNA metabarcoding provides high-resolution 
taxa lists from bulk samples (e.g. samples containing 
invertebrates collected from the investigated sites) 
by targeting specific DNA regions (Taberlet et al.  
2012; Yu et al. 2012). Metabarcoding can reach or 
exceed the taxonomic level achieved by morpholo
gical identification, despite some discrepancies due 
to primer bias and rare species (Hajibabaei et al.  
2011; Elbrecht & Leese 2015, 2017; Kuntke et al.  
2020). The taxonomic resolution obtained with 
metabarcoding depends on the targeted region, as 
well as the completeness of the reference database 
against which sequences are compared (Elbrecht 
et al. 2017; Meyer et al. 2021). Genetic information 
can be grouped into operational taxonomic units 
(OTUs) (Floyd et al. 2002; Rognes et al. 2016), 
a commonly used classifier of biodiversity that fre
quently aligns to the biological species concept 
(Blaxter et al. 2005). Furthermore, intraspecific 
diversity can be described using “exact sequence 
variants”, such as haplotypes for the mitochondrial 
cytochrome c oxidase (COI) gene, which have the 
potential to further improve the characterization of 
metacommunity patterns (Turon et al. 2020; Zizka 
et al. 2020; Antich et al. 2021). In addition, phylo
genetic relationships inferred from DNA-based 
methods can enhance the detection of metacommu
nity assembly processes (Vamosi et al. 2009; Hill 
et al. 2019; Li et al. 2021).

We studied metacommunity patterns in a small river 
network using morphological and DNA metabarcod
ing data, and compared measures of (i) taxonomic 
richness, (ii) phylogenetic composition and (iii) biolo
gical traits inferred through the two approaches. We 
selected aquatic insects, which are abundant, biodi
verse, and include taxa that have diverse biological 
trait profiles (sensu Tachet et al. 2010) and which are 
often difficult to identify at species level (Jones 2008; 
Heino et al. 2017). The taxonomic identification levels 
typically achieved vary considerably among insect 
orders and families, and coarser taxonomic levels are 
frequently used as surrogates for species (Jones 2008). 
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First, we predicted that increasing taxonomic resolu
tion would alter estimates of the overall taxonomic, 
functional, and phylogenetic richness of different insect 
orders due to greater characterization of species-level 
and intraspecific diversity; and second we predicted 
that the inferred importance of local environmental 
conditions and dispersal in structuring metacommu
nities would increase with taxonomic resolution.

Methods

Field sampling, environmental variables and 
morphological identification

Sampling campaigns were conducted from the 17th to 
24th of April 2018 at 13 sites on the River Ceno and 
five of its tributaries, northern Italy (9.65°E, 44.6°N). 
Two sites are intermittent and dry annually, two are 
near-perennial and dry only rarely, and nine are per
ennial (Figure 1). Due to the high variability of hydro
geological features in this area, the targeted river 
network provides a natural laboratory for testing pat
terns that shape ecological dynamics at broader regio
nal scales. Intermittent and near-perennial sites dried 
completely during summer 2017, whereas only inter
mittent sites dried in 2018, as inferred from tempera
ture data loggers (HOBO® model UA-002-08, Onset 
Computer Corporation, MA, USA). Insects were 

sampled from cobble-dominated (grain size 
6–20 cm) riffle mesohabitats to minimize variability 
introduced by taxa with different habitat preferences. 
Samples were collected using a Surber net (0.05 m2; 
500 µm mesh), sorted in situ and organisms preserved 
in 99% ethanol. The ethanol was replaced once <24 h 
after collection and samples stored at 4°C. Organisms 
were counted and identified morphologically to 
a mixed taxonomic level, from species to family 
(Table SI).

Metabarcoding

Metabarcoding analysis was performed following 
Elbrecht and Leese (2015) but using a two-step PCR 
protocol as described in Zizka et al. (2019). Each 
sample was dried overnight at room temperature, 
then ground with an IKA® Ultra Turrax® Tube 
Drive Control (Staufen, Germany) for 30 min at 
4000 rpm. DNA was extracted with a modified salt 
extraction protocol (Sunnucks & Hales 1996; Elbrecht 
et al. 2017) and RNA digested with RNase A (10 mg 
mL−1) to improve downstream analysis steps. DNA 
was purified using a NucleoSpin® Gel and PCR 
cleanup kit (MachereyNagel, Germany). DNA sam
ple concentration was equilibrated to 25 ng μL−1 and 
the first PCR step (20 cycles) performed using the 

Figure 1. Location of the 13 sampling sites on the River Ceno and its tributaries, indicating sites with perennial, intermittent and near- 
perennial flow regimes, and the river location in northern Italy (see inset).
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BF2 + BR2 primers (Elbrecht & Leese 2017) and the 
Qiagen Multiplex PCR Plus kit in 25 μL reactions. 
Two replicate samples were multiplexed following the 
tagging strategy described in Elbrecht and Steinke 
(2019) during the second PCR (15 cycles), also in 
25 μL reaction volumes. The final DNA barcode 
library was prepared by pooling an equal quantity of 
amplicons for each sample, which was then purified 
using 0.76 × SPRIselect (Beckman Coulter, 
Germany). The library was sequenced using an 
Illumina HiSeq Rapid Run 2 × 250 bp (Illumina, 
CA, USA) as part of a library containing 288 samples 
(by Eurofins, Constance, Germany). Illumina reads 
have been deposited in the SRA database under the 
accession number PRJNA943200.

Metabarcoding data were analysed with JAMP ver
sion 0.69 (https://github.com/VascoElbrecht/JAMP), 
an R-based metabarcoding pipeline that integrates 
functions of USEARCH 11.0.667 (Edgar 2010) and 
VSEARCH 2.10.4 (Rognes et al. 2016). The sequen
cing files were demultiplexed according to the sample 
tags and quality checked using FastQC v0.11.9. Paired- 
end reads were merged and reverse complements built 
where needed. Primers were trimmed with Cutadapt 
(Martin 2011) and sequences filtered according to the 
maximum expected error (Edgar & Flyvbjerg 2015), 
after which only the sequences ± 10 bp of the expected 
length (421 bp) were retained. The number of reads per 
sample was subset to the lowest number of reads found 
in our samples (n = 351,600) due to differences in 
sequencing depths. OTU clustering was done using 
USEARCH with a clustering threshold of 97% similar
ity and reads including singletons matched against 
OTUs to generate an OTU table. OTUs with read 
abundance <0.01% and those present in only one repli
cate sample were discarded prior to data analysis. 
Haplotypes were inferred using the unoise3 algorithm 
(Edgar 2016) following the denoising approach 
described in Elbrecht et al. (2018).

Data analysis

Functional and phylogenetic trees

Trait trees for families, mixed-level taxa, OTUs 
and haplotypes were built with complete linkage 
clustering on a distance matrix calculated using 
the biological traits of Tachet et al. (2010): dis
persal, feeding habit, preferred food, life cycle 
duration, locomotion and substrate relation, resis
tance forms, respiration, maximum potential size, 
aquatic stages and voltinism. Each trait includes 
multiple categories (e.g., different body sizes) and 

each taxon can show an affinity for more than one 
category. We standardized the trait matrix as pro
portional affinities for each category within each 
trait. We averaged traits for each taxon when using 
family-level data. We used the mixed-variables 
coefficient to calculate an among-taxa distance 
matrix (Pavoine et al. 2009). Traits of the nearest 
taxon in the taxonomy were assigned to OTUs 
and haplotypes, resulting in the assignment of 
the same traits to more than one OTU or 
haplotype.

Phylogenetic trees were built for OTU and haplo
type sequences, using phylogenetic placement to 
position new sequences on an existing reference tree 
(Matsen et al. 2010; Berger et al. 2011). Since COI 
data alone cannot create a robust backbone phylo
geny, the reference phylogenetic tree was built using 
concatenated alignments of small and large subunit 
(SSU and LSU, respectively) ribosomal RNA gene 
sequences from the SILVA database (Quast et al.  
2013) as well as COI sequences from the NCBI 
nucleotide database (https://www.ncbi.nlm.nih.gov/ 
nucleotide/). The SILVA database was filtered to 
retain only freshwater species, as classified by the 
freshwaterecology.info database (Schmidt-Kloiber & 
Hering 2015). COI sequences were retrieved with the 
R package rentrez (Winter 2017) and aligned 
separately for each order with MUSCLE using 
default settings (Edgar 2004). Alignments were 
inspected visually and misaligned sequences 
removed. We retained only sequences belonging to 
species in SSU or LSU alignments, and randomly 
selected one representative sequence for each species. 
Poorly aligned positions and divergent regions of 
SSU, LSU and COI alignments were identified and 
removed with GBlocks (Castresana 2000). The three 
alignments were concatenated, and a phylogenetic 
tree was inferred using a general time reversible 
model (GTRCAT), with automated, rapid boot
strapping analysis (autoMR) used to search for the 
best scoring maximum likelihood tree in one program 
run with RaxML version 8 (Stamatakis 2014). 
Analysis was partitioned to estimate empirical base 
frequencies and evolutionary rates separately for 
SSU, LSU and COI. For COI, we inferred distinct 
model parameters jointly for all first and second 
codon positions and separately for the third position. 
Metabarcoding sequences were aligned with the 
reference sequence alignment using MAFFT 
(Katoh et al. 2002) and phylogenetic placement was 
performed with the evolutionary placement algorithm 
(Berger et al. 2011).
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Taxonomic, functional and phylogenetic richness of 
insect orders at different identification levels

We explored the richness of different orders at 
family and mixed levels determined with morphol
ogy and OTU and haplotype resolutions determined 
with metabarcoding. Taxonomic and functional 
richness were calculated for all four identification 
levels, and phylogenetic richness was calculated for 
OTU and haplotype levels. Functional and phyloge
netic richness were calculated as the sum of the 
branch lengths of a trait and phylogenetic tree, 
respectively, connecting all species (Faith 1992; 
Petchey & Gaston 2002). Developed to measure 
diversity, this approach also provides a functional 
and phylogenetic generalization of taxonomic rich
ness (Chao et al. 2014).

Drivers of metacommunity structure

We inferred the importance of drivers of metacom
munity structure using the metacommunity assem
bly by trait selection approach (mCATS, Brown 
et al. 2018), which simulates the selection of com
munities from the regional species pool under dis
persal, trait selection and dispersal–trait selection 
scenarios. We used trait selection as a measure of 
environmental filtering and extended this approach 
to simulate phylogenetic selection. For each site, the 
dispersal scenario was simulated by randomly select
ing taxa from the regional pool with the probability 
of selection set as inversely proportional to three 
spatial distances (Euclidean, network and least- 
cost) to other sites. Least-cost distances were calcu
lated as the path of least resistance to movement, 
where landscape resistance was estimated using a 
10 × 10 m digital terrain model. Least-cost distances 
assume overland dispersal and can better reflect the 
role of overland dispersal in structuring invertebrate 
metacommunities (Tonkin et al. 2018). Since all 
spatial distances were highly correlated (Mantel 
test: r ≥ 0.90, p < 0.001) we only present the results 
obtained with least-cost distances. For the trait 
selection scenario, taxa were iteratively selected 
from the regional pool until the community mean 
trait/phylogenetic distance and skewness ranged 
between ±2.5% of the observed value. For the dis
persal-trait model, we combined occurrences from 
the dispersal and trait selection scenarios.

For each scenario, 10,000 simulations were per
formed, with the number of taxa kept constant for 
each site. For each simulation, the Jaccard similarity 
between the simulated and observed communities 
was calculated (García-Girón et al. 2019) and pre
sented as standardized effect sizes (SES), using:

SES ¼
μmod � μnullð Þ

σnull 

where μmod is the mean similarity of the simulated 
communities (dispersal, trait selection and joint dis
persal-trait selection), and μnull and σnull are the mean 
and SD of the similarity from a random scenario built 
by randomly selecting taxa from the regional pool 
irrespective of spatial distances.

The effect of different scenarios (dispersal, trait selec
tion, joint dispersal–trait selection) and taxonomic reso
lutions (family, mixed-level, OTU, haplotype) on SES 
was assessed with linear mixed-effects models (LMM). 
LMM included scenario, taxonomic resolution and 
their interaction as fixed effects and site as a random 
effect. To control for heteroscedastic residuals, scenario 
was used as a grouping factor to correct the model 
variance structure and SES were square-root trans
formed. The significance of the fixed effects was eval
uated with Wald’s Chi-square tests. Pairwise differ- 
ences between estimated marginal means were then 
compared using the Tukey adjustment for multiple 
comparisons. We report pairwise comparisons by refer
ring to scenarios including functional or phylogenetic 
information as e.g., OTU-traits or haplotype-phylo, 
respectively, and to the taxonomic level alone to refer 
to both information types for OTU and haplotypes.

Analyses were performed in R (R Core Team  
2020) using the packages ape (Paradis & Schliep  
2019), biomonitoR (Laini et al. 2022), emmeans 
(Lenth et al. 2020), gdistance (van Etten 2017), 
nlme (Pinheiro et al. 2020), picante (Kembel et al.  
2010), raster (Hijmans et al. 2020) and vegan 
(Oksanen et al. 2019), with dplyr (Wickham et al.  
2020) and tidyr (Wickham 2020) used to manage 
data and ggplot2 (Wickham 2009) to plot results.

Results

Morphology vs DNA metabarcoding and 
metacommunity structure

We identified 64 mixed-level taxa in 41 families using 
morphology, and 222 OTUs and 537 haplotypes using 
metabarcoding (Figures S1, S2). Haplotypes belonged 
to 97 OTUs due to the stricter quality filtering (denois
ing) used to infer haplotypes (Antich et al. 2021). 
Metabarcoding was effective in detecting taxa identified 
with morphological identification (usually at family/ 
subfamily/genus level), consistently increasing the taxo
nomic resolution (e.g., Athericidae to Atherix margin
ata, Torleya to Torleya major, etc.). Of the identifications 
based on metabarcoding approaches, 54% (66 hits out 
of 123 total metabarcoding taxonomic assignments) 
belonged to the species level (Figure 2, Table SII). 
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Overall, the order Diptera contributed the most 
families, OTUs and haplotypes, whereas Plecoptera 
and Diptera had the most mixed-level taxa. Diptera 
also contributed most to family, mixed-level taxa and 
OTU functional richness, whereas Ephemeroptera had 
the highest values for phylogenetic richness of OTUs 
and haplotypes, and Plecoptera for the trait richness of 
haplotypes (Figure 3).

Drivers of metacommunity structure

The standardized effect size (SES) obtained with the 
mCATS approach varied depending on taxonomic 
resolution (χ2

(5) = 104.5, p < 0.001), scenario of 

metacommunity assembly (χ2
(2) = 639.6, p < 0.001) 

and their interaction (χ2
(10) = 98.8, p < 0.001), indi

cating that the importance of environmental filtering, 
dispersal and their interaction differed depending on 
taxonomic resolution. SES > 2 indicate approximate 
significance (two-tailed test; Ulrich & Gotelli 2007) 
and thus, in our study, the proximity of SES to 2 in 
scenarios with higher SES (e.g., joint scenarios for 
OTUs; Figure 4c–d) indicated a weak effect in most 
of the taxonomic levels.

Although the effect was weak, significant differ
ences were found among scenarios within the 
same taxonomic resolution and among taxonomic 
resolutions within the same scenario. For the 
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Figure 2. Species identified with metabarcoding and the corresponding taxonomic level used for morphological identification. Two or 
more species identified with metabarcoding can be assigned to more than one taxon identified with morphology because of missing 
diagnostic characters of early instars and damaged specimens (e.g. Baetis alpinus and Baetis rhodani with metabarcoding, Baetis and 
Baetidae with morphological identification). Coloured dots represent taxa identified with morphology.
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Figure 3. Taxonomic, phylogenetic and functional richness of six aquatic insect orders, as measured at family (F) and mixed taxa (M) level 
using morphology, and as operational taxonomic units (O) and haplotypes (H) using metabarcoding. Square size and colors are 
proportional to relative richness, calculated for all recorded taxa.

Figure 4. Simulated community selection for dispersal, environmental filtering and joint scenarios at (a) family, (b) mixed, (c, d) OTU and 
(e, f) haplotype levels, using phylogenetic (c, e) and functional (trait-related) information (d, f). The dashed line at 2 indicates an 
approximate significant effect of the scenario on metacommunity composition (two-tailed test).
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dispersal scenario, mean SES were higher for 
OTU than for family (Wald’s Chi-square test, 
p < 0.01), and haplotype SES were lower than 
for other levels (p < 0.001; Figure 4). For the 
trait selection scenario, family-level SES were 
lower than OTU-phylo (p < 0.05). For the joint 
dispersal–trait selection scenario, SES were com
parable among all taxonomic levels, except OTU- 
phylo was greater than haplotype-phylo (p < 0.05) 
and OTU-traits greater than haplotype-traits 
(p < 0.05; Figure 4). Within taxonomic levels, 
SES for the trait selection scenario were generally 
lower than for dispersal and joint scenarios 
(p < 0.001), except in the comparison between 
dispersal and environmental scenarios within hap
lotype-phylo (p < 0.01) and haplotype-traits 
(p < 0.05). For the dispersal and joint scenarios, 
SES were comparable for family, mixed and OTU 
levels (p > 0.05). SES were higher for the joint 
than the dispersal scenario for haplotype-phylo 
(p < 0.01) and haplotype-traits (p < 0.001).

Discussion

Variability in the taxonomic resolution of a biological 
dataset can affect the detection of processes driving 
metacommunity structure, because coarser taxo
nomic levels may not effectively represent species- 
level or intraspecific patterns (Heino & Soininen  
2007). By identifying organisms to multiple levels 
using morphological and metabarcoding approaches, 
we show how taxonomic resolution affects the funda
mental properties and inferred drivers of taxonomic, 
functional (trait-based) and phylogenetic metacom
munity structure. OTUs and haplotypes most effec
tively characterized the richness of species-rich 
families with complex diagnostic characteristics such 
as Heptageniidae and Chironomidae, influencing our 
capacity to infer metacommunity structure. Across 
identification levels, the joint effect of dispersal and 
environmental filtering had the greatest influence on 
metacommunity structure. However, the taxonomic 
levels achieved by metabarcoding either increased 
(OTU) or decreased (haplotype) the inferred impor
tance of dispersal compared to morphological identi
fication. As cost-effective methods to quantify bio- 
diversity using DNA rapidly increase (Taberlet et al.  
2012; Deiner et al. 2017), our results highlight the 
potential of the finer-level taxonomic resolution 
achieved by metabarcoding to enhance characteriza
tion of metacommunity structure in dynamic river 
networks.

Taxonomic, functional and phylogenetic richness of 
insect orders at different identification levels

Insect orders contributed differently to the overall 
taxonomic, functional, and phylogenetic richness 
among taxonomic levels, partly supporting our first 
prediction. Ephemeroptera and Diptera increased, 
due to notable OTU and haplotype richness in the 
Heptageniidae and Chironomidae, respectively. 
Heptageniidae is the mayfly family with the highest 
species richness in Europe (Schmidt-Kloiber & Hering  
2015) and its genera Electrogena and Rhithrogena, 
found frequently in our samples, have ambiguous tax
onomy and include cryptic species (Vuataz et al. 2016; 
Polášek et al. 2018; Tenchini et al. 2018). The 
European Chironomidae comprise >1000 species in 
nearly 200 genera (Serra et al. 2016) but are usually 
identified to coarse taxonomic levels due to their com
plex diagnostic characteristics and despite their spe
cies-specific responses to environmental variability 
(Milošević et al. 2013; Cañedo-Argüelles et al. 2016; 
Beermann et al. 2018). In contrast, Plecoptera relative 
richness was stable across taxonomic levels, and the 
relative taxonomic richness of Trichoptera, Coleoptera 
and Heterop-tera decreased from family to haplotype, 
despite including species with complex taxonomy.

Our results for the mixed morphological identifi
cation level are partially driven by the taxonomic 
resolution. Subfamily and family-level identification 
of families including Chironomidae and Simuliidae 
probably reduced taxonomic richness estimates of 
Diptera. Moreover, treating haplotypes as distinct 
entities inflated taxonomic richness estimates at 
this level, because many haplotypes represent intras
pecific variants (537 haplotypes but only 97 OTUs). 
Our results thus indicate that the potential of meta
barcoding to contribute to a finer description of how 
biodiversity varies among insect orders and is parti
cularly high for morphologically difficult to identify 
and at the same time species-rich taxa.

Phylogenetic richness showed similar patterns to 
taxonomic richness. A strong, positive relationship 
between these richness metrics is expected in regions 
with large, diverse species pools and when evolutiona
rily distinct species with narrow geographic distribution 
are lacking (Tucker et al. 2012; Tucker & Cadotte  
2013). In our study, nearly all recorded orders occurred 
at each site, facilitating observation of this relationship. 
The major contribution of Ephemeroptera and Diptera 
to phylogenetic richness found in this study likely 
reflects their regional richness and also their higher 
rates of molecular evolution compared to other orders 
(Welch et al. 2008; Elliott et al. 2018).
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Patterns of functional richness are driven in part 
by evolutionary history. For example, we recorded 
both major lineages of Plecoptera, Systellognatha 
and Euholognatha, which differ in traits including 
preferred food, feeding strategy, size and lifespan 
(Tachet et al. 2010; Tierno de Figueroa & López- 
Rodríguez 2019). However, trait richness did not 
closely match phylogenetic richness patterns. We 
likely underestimated any increase in trait richness 
associated with increasing taxonomic resolution 
(Schmera et al. 2017), because of the coarse taxo
nomic level at which traits were assigned to some 
groups, e.g., subfamily (Chironomidae) or family 
(Athericidae; Tachet et al. 2010). Using genus or 
species-level trait information could enhance assess
ment of trait richness, due to intra-family and intra- 
generic differences in biological traits (Waringer 
et al. 2013; Serra et al. 2016; Sarremejane et al.  
2020a).

Effects of taxonomic resolution on community assembly 
processes

We identified the joint effects of environmental fil
tering and dispersal as the best predictor of insect 
community composition. The spatial proximity of 
colonist sources determines the pool of taxa that 
can disperse to a site, whereas local environmental 
filtering selects taxa according to their biological and 
ecological traits. Macroinvertebrate communities 
identified to a mixed (family to species) level using 
a morphological approach thus appear to be struc
tured by both environmental filtering (Robinson 
et al. 2014; Li et al. 2020) and dispersal (Downes 
& Lancaster 2018; Gauthier et al. 2020b). These 
differences highlight dispersal and niche-based pro
cesses as context-dependent influences on meta
community structure (Tonkin et al. 2016) that vary 
according to the spatial scale studied (Viana & 
Chase 2019). Contrary to previous research at spe
cies-to-family levels (Martin et al. 2016), our results 
indicate that differences can be attributed to taxo
nomic resolution as well as spatial and environmen
tal context.

The inferred importance of dispersal in structur
ing local communities was weaker for haplotype 
than other taxonomic levels. This may reflect the 
method used to infer haplotypes from metabarcod
ing data, which is less effective in characterizing 
overall metacommunity diversity than the OTU 
level, due to the stricter filtering step (denoising) 
during sequence selection (Elbrecht et al. 2018). 
This finding may also reflect an inherent sampling 
bias, because few specimens (e.g. one individual for 
Velia currens) were collected for some taxa and thus 

intraspecific variation among sites may reflect sto
chastic effects (Zizka et al. 2020). However, small- 
scale (10–100 km) differentiation in haplotype fre
quencies can definitely occur between populations 
of one aquatic insect species, with some (typically 
rare at the global analysis level) haplotypes restricted 
to few sites (Hughes et al. 2003; Zickovich & 
Bohonak 2007; Elbrecht et al. 2014). Such a real 
population subdivision, but also stochastic selections 
from a diverse pool of COI haplotypes, may thus 
have contributed to the observed within-species dis
similarity. As such, it is a logical consequence that 
dispersal-limited arthropods can have a lower 
inferred dispersal of haplotypes compared to coarser 
taxonomic levels (Arribas et al. 2021).

We inferred weak effects of environmental filter
ing and/or dispersal on metacommunity structure. 
The weak effects of local environmental factors in 
predicting metacommunity structure and near- 
random structural patterns identified by metabar
coding data may indicate that stochastic processes 
influenced community assembly at fine taxonomic 
resolutions (Bush et al. 2020), as can also occur at 
mixed morphological levels (Sarremejane et al.  
2020b). Moreover, our representation of ecological 
patterns with metabarcoding may have been influ
enced by the omission of rare and scarce taxa, espe
cially at haplotype level due to methodological 
limitations (Zizka et al. 2020). Lastly, our limited 
number of samples could have constrained the char
acterization of the species pool and of the overall 
metacommunity structure.

Conclusions

Our study highlights the complex interplay between 
taxonomic resolution, functional and phylogenetic 
information, and how these factors influence the 
inference of metacommunity structure. Our results 
indicate that an increase in taxonomic resolution 
can improve estimates of the taxonomic, functional 
and phylogenetic richness of the main aquatic 
insect orders. In addition, the importance of dis
persal increased from family to haplotypes in our 
insect metacommunity. Accurate richness estimates 
can thus advance insights achieved at a coarser 
taxonomic resolution by revealing species-level 
and intraspecific dynamics. Our study contributes 
to an increasing body of evidence demonstrating 
that genetic methods can support effective quanti
fication of biodiversity and the factors driving meta
community structure in dynamic ecosystems 
including river networks, which could inform pre
dictions of metacommunity responses to global 
change.
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