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Data-To-Text Generation (DTT) is a subfield of Natural Language Generation
aiming at transcribing structured data in natural language descriptions. The
field has been recently boosted by the use of neural-based generators, which
exhibit great syntactic skills without the need of hand-crafted pipelines, but
do not currently guarantee a fully faithful natural language transduction. Two
different approaches can help to reach this goal: the direct copy of some input
content into the generated output, and the ability to avoid the generation of
information which is not included in the input data – usually called hallucina-
tions. In this thesis, both issues are analyzed, and new methods are introduced
to deal with them.

We present an end-to-end sequence-to-sequence model with attention, en-
riched by a copy mechanism which reads and generates at a character level.
Such architecture includes two major features: (i) the possibility to alternate
between the standard generation mechanism and a copy one, which allows
to directly copy input facts to produce outputs, and (ii) the use of an original
training pipeline that further improves the quality of the generated texts.

In order to treat hallucinations, we introduce a Multi-Branch Decoder which
is able to leverage word-level labels to learn the relevant parts of each training
instance. These labels are obtained following a simple and efficient scoring
procedure based on co-occurrence analysis and dependency parsing. The re-
sults obtained demonstrate a greater faithfulness of the generated text to input
data.
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Chapter 1

Introduction

On March 17, 2014, a magnitude 4.4 earthquake1 struck the Los Angeles zone,
in the south-western USA, at 13:25:36 UTC. Three minutes later, the Los Angeles
Times published the following news article:

A shallow magnitude 4.7 earthquake was reported Monday morn-
ing five miles from Westwood, California, according to the U.S.
Geological Survey. The temblor occurred at 6:25 a.m. Pacific time
at a depth of 5.0 miles.

According to the USGS, the epicenter was six miles from Beverly
Hills, California, seven miles from Universal City, California, seven
miles from Santa Monica, California and 348 miles from Sacra-
mento, California. In the past ten days, there have been no earth-
quakes magnitude 3.0 and greater centered nearby.

This information comes from the USGS Earthquake Notification
Service and this post was created by an algorithm written by the
author.2

As suggested by the last sentence, Ken Schwencke, formal author of the ar-
ticle, just had to hit a “Publish” button3, as the actual content was written
by Quakebot, an automatic Natural Language Generation system that reads
United States Geological Survey’s earthquake reports and extracts from them
the relevant information. Quakebot is a simple real-world example of Data-
To-Text generation.

Data-To-Text generation (DTT) is an instance of Natural Language Generation
(NLG). Reiter and Dale (1997) define NLG as “the subfield of artificial intelli-
gence and computational linguistics that is concerned with the construction of
computer systems than can produce understandable texts in English or other
human languages from some underlying non-linguistic representation of in-
formation”. Data-To-Text generation has been later characterized, in a more
fine-grained way, as “the problem of generating descriptive text from database
records” (Wiseman et al., 2017). This definition still includes a broad range of
applications, including:

• summary of hospital patients conditions (Banaee et al., 2013; Gatt et al.,
2009);

1https://earthquake.usgs.gov/earthquakes/eventpage/ci15476961
2https://www.latimes.com
3https://slate.com

https://earthquake.usgs.gov/earthquakes/eventpage/ci15476961
https://www.latimes.com/socal/glendale-news-press/news/tn-gnp-earthquake-47-strikes-in-los-angeles-early-monday-20140317-story.html
https://slate.com/technology/2014/03/quakebot-los-angeles-times-robot-journalist-writes-article-on-la-earthquake.html
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• current news reports (Leppänen et al., 2017);

• weather forecasts (Goldberg et al., 1994; Ramos-Soto et al., 2015; Reiter
et al., 2005; Turner et al., 2007);

• financial reports (Plachouras et al., 2016);

• soccer matches chronicle (D. L. Chen & Mooney, 2008; Theune et al.,
2001);

• museum-specific interactive information about archaeological finds, paint-
ings, or sculptures (O’Donnell et al., 2001; Stock et al., 2007);

• persuading and motivating content (Carenini & Moore, 2006; Reiter et
al., 2003).

Traditionally, the DTT problem has been faced via pipeline models, in which
each submodule addresses a specific sub-task (detailed in Subsection 3.1). Sym-
bolic systems were the de facto standard, even if they typically require hand-
crafted rules heavily exploiting domain experts’ work, and are very far from
being generalizable. The rise of data-driven architectures, and particularly of
Deep Learning-based ones in the last decade, reverberated on the Natural Lan-
guage Processing field, including DTT. Modern architectures have typically an
end-to-end architecture: their data-driven design allows the development of
general models for DTT, but they require a significant amount of data to reach
satisfactory performances. The need for larger and more complex datasets
led the research community to the publication of new datasets (Gardent et al.,
2017a; Lebret et al., 2016; Novikova et al., 2017b; Parikh et al., 2020; Wiseman
et al., 2017), still used nowadays.

Interesting challenges arose from the joint use of Deep Learning architectures
and massive datasets. What is the most effective way to encode database
records? How do differences between DTT and NLG can be exploited to build
better architectures? How datasets sizes affect the way they are built, and
what are the consequences? How can we build models which are robust to
noisy datasets?

The above challenges can be summarized by a single question: how can we
ensure faithful generation using data-driven models? This thesis focuses on
faithful Data-To-Text Generation. In particular, it (i) investigates the effec-
tiveness of a copy-based model specifically designed for DTT, whose general-
ity is enforced by a character-level tokenization, and (ii) it addresses the hal-
lucination problem via a specifically built architecture, which minimizes the
negative consequences of noisy, big-sized datasets.

In Chapter 2 the Data-To-Text task is formalized. Classical architectures are
presented in Chapter 3, together with a brief overview of related work. Chap-
ter 4 presents a copy mechanism for Data-To-Text Generation, applied in a
character-wise fashion; in Chapter 5 the hallucination problem is presented and
faced with a specially designed neural framework. Chapter 6 draws the con-
clusions of this thesis and suggests some research lines for future work.
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Chapter 2

Data-To-Text Generation

2.1 Generating text from structured data

Data-to-Text Generation (DTT) is the subfield of Computational Linguistics
and Natural Language Generation (NLG) that is concerned with transcribing
structured data into natural language descriptions, or, said otherwise, tran-
scribing machine understandable information into a human understandable
description (Gatt & Krahmer, 2018). DTT objectives includes coverage, i.e. all
the required information should be present in the text, and adequacy, i.e. the
text should not contain information that is not covered by the input data.

DTT is a domain distinct from other NLG task (e.g. machine translation (Wise-
man et al., 2017), text summarization (Kryscinski et al., 2019)) with its own
challenges (Wiseman et al., 2017), starting with the nature of inputs (Narayan
& Gardent, 2020; Reiter & Dale, 1997). Such inputs include and are not limited
to databases of records, spreadsheets, knowledge bases, sensor readings, and
they can effectively be expressed through the idea of tables.

In the DTT context, input tables are defined as variable-sized sets of key-value
pairs, in which the key consist of a single vocabulary token, and the value is a
sequence of words. Every table defines an entity: an example of a single-entity
DTT dataset is the WikiBio dataset. Recent developments of DTT also involves
multiple-entity inputs (Wiseman et al., 2017), as shown in Table 2.1. Fig. 5.1
shows a a WikiBio instance, where a data table containing information about
Kian Emadi is paired with the corresponding natural language description
found on Wikipedia.

Early approaches to DTT relied on static rules hand-crafted by experts, in
which content selection (what to say) and surface realization (how to say it)

Dataset Domain Cont. selection Noisy Entity

WeatherGov (Liang et al., 2009) Weather forecast 3 7 Single
WikiBio (Lebret et al., 2016) Biographies 3 3 Single
WebNLG (Gardent et al., 2017a) Various 7 7 Single
E2E (Novikova et al., 2017b) Restaurants 7 7 Single
RotoWire (Wiseman et al., 2017) Sportscast 3 3 Multiple
SBNation (Wiseman et al., 2017) Sportscast 3 3 Multiple
ToTTo (Parikh et al., 2020) Various 3 7 Single

TABLE 2.1: Most commonly used Data-To-Text Generation
datasets and their main features.
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Dataset
No. of instances Vocabulary

size
Avg. target

lengthTrain Valid. Test

WeatherGov (Liang et al., 2009) 29 528 (total) 345 30.6
WikiBio (Lebret et al., 2016) 582 659 72 831 72 831 ∼ 400 000 26.1
WebNLG (Gardent et al., 2017b) 25 298 (total) 8077 22.7
E2E (Novikova et al., 2017b) 42 061 4672 4693 ∼ 3000 14.3
RotoWire (Wiseman et al., 2017) 3398 727 728 ∼ 11 300 337.1
SBNation (Wiseman et al., 2017) 7633 1635 1635 ∼ 68 600 805.4
ToTTo (Parikh et al., 2020) 120 761 7700 7700 136 777 17.4

TABLE 2.2: Size of the Data-To-Text Generation datasets in-
cluded in Table 2.1

are typically two separate tasks (Ferreira et al., 2019; Reiter & Dale, 1997). In
recent years, neural models have blurred this distinction: various approaches
showed that both content selection and surface realization can be learned in
an end-to-end, data-driven fashion (Liu et al., 2019a; Mei et al., 2016; Pudup-
pully et al., 2019a). Based on the now-standard encoder-decoder architecture,
with attention and copy mechanisms (Bahdanau et al., 2015; Bonetta et al.,
2021; Roberti et al., 2019; See et al., 2017), neural methods for DTT are able to
produce fluent text conditioned on structured data in a number of domains
(Lebret et al., 2016; Puduppully et al., 2019c; Wiseman et al., 2017), without
relying on heavy manual work from field experts.

Such advances have gone hand in hand with the introduction of larger and
more complex benchmarks. In particular, surface-realization abilities have
been well studied on hand-crafted datasets such as E2E (Novikova et al., 2017c)
and WebNLG (Gardent et al., 2017a), while content-selection has been ad-
dressed by automatically constructed datasets such as WikiBio (Lebret et al.,
2016) or RotoWire (Wiseman et al., 2017). These large corpora are often con-
structed from internet sources, which, while easy to access and aggregate, do
not consist of perfectly aligned source-target pairs (Dhingra et al., 2019; Perez-
Beltrachini & Gardent, 2017). Consequently, model outputs are often subject to
over-generation: misaligned fragments from training instances, namely diver-
gences, can induce similarly misaligned outputs during inference, the so-called
hallucinations.

2.2 Data-To-Text tasks

Traditionally, the DTT problem has been faced by addressing a number of sub-
tasks, simplifying the global objective of generating natural language from
structured data. Reiter and Dale (1997) identify the following six sub-tasks:

Content selection: determining the subset of the input information to include
in the generated text;

Text structuring: ordering the information in an accessible way;

Sentence aggregation: splitting the information in sentences, both at the seman-
tic and at the syntactic level;

Lexicalization: deciding the words and phrases that verbalize information
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Referring Expression Generation (REG): choosing the words and phrases that un-
ambiguously identify domain objects. The essential difference with lex-
icalization is that REG, consists in a discrimination task. This problem
is in turn split in the determination of referential forms (pronoun, proper
name, definite or indefinite description) and referential contents (set of
properties that identify the target entity);

Surface realization: generating the final well-formed, syntactically correct sen-
tences. This involves ordering the sentence components, ensuring mor-
phological correctness, producing function words and punctuation. Sur-
face generation typically faces the generation gap and can be interpreted
as a mapping between non-isomorphic structures (Ballesteros et al., 2015).

Splitting the DTT task expose generation systems to the generation gap (Meteer,
1991), defined as the presence of mismatches between early and later com-
ponents, so that antecedent decisions in the pipeline have unexpected, and
possibly unfavorable, consequences on the later ones (Gatt & Krahmer, 2018).
The problem can be attenuated by merging two or more tasks, such as con-
tent selection and text structuring (Duboué & McKeown, 2003), lexicalization
and surface realization (Elhadad et al., 1997), or content selection and REG (En-
gonopoulos & Koller, 2014). Data-driven end-to-end systems take this idea to
an extreme, as they solve the DTT generation problem as a whole, without the
need for splitting it in sub-tasks and therefore avoiding the consequences of
the generation gap.
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Chapter 3

Data-To-Text Models

Recent Data-To-Text Generation literature highlights two parallel global trends
in research (Gatt & Krahmer, 2018). On the one hand, architectures formerly
composed of a pipeline of self-contained, subsequent modules are now blur-
ring the boundaries between their sub-tasks, turning into integrated end-to-
end systems. On the other hand, symbolic or knowledge-based systems are
giving way to domain-independent data-driven methods, whose behavior is
strongly defined by the examples they are fed.

These trends are embodied by neural generation systems, that are nowadays
the state-of-the-art in DTT (Clive et al., 2021; Rebuffel et al., 2020a), as well as
in other NLP tasks (Shoeybi et al., 2019; Yang et al., 2019). Neural methods
for DTT are typically borrowed from Neural Machine Translation and Neural
Summarization ones (Dusek & Jurcícek, 2016; Mei et al., 2016), but they can be
further adapted to the task at hand.

Following the historical development of DTT methods, we briefly describe
modular architectures in Section 3.1. We then present integrated data-driven
models in Section 3.2, focusing on neural-based models, which range from
Recurrent Neural Networks (and their improvements given by the attention
mechanism) to the Transformer architectures.

3.1 Modular architectures

The classical three-stage pipeline architecture, originally introduced by Reiter
(1994), consist of a Text Planner, a Sentence Planner, and a Linguistic Realizer.
This abstract model, outlined by Figure 3.1, has been described as the “de
facto standard” (Reiter, 2010; Reiter & Dale, 1997), even if a fair number of
systems relax or violate it (Gatt & Krahmer, 2018).

The Text Planner is in charge of content selection and text structuring. It is
often referred to as Macroplanner, and it determines “what to say”. On the
other side, the Sentence Planner incorporates sentence aggregation, lexicaliza-
tion and referring expression generation. In opposite with the Text Planner, it

FIGURE 3.1: The classical three-stage pipeline architecture (Re-
iter, 1994)
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Token Description

<s> Start of sequence
</s> End of sequence
<unk> Unknown, out-of-vocabulary word
<pad> Padding (used in mini-batching)

TABLE 3.1: Special tokens included in the vocabulary V , and
their respective roles.

is often referred to as Microplanner, and it determines “how to say”. Finally,
the Linguistic Realizer carries out the surface realization task alone.

All the above sub-models have shared the historical path from earlier domain-
dependent, rule-based methods (Dale, 1989; Hovy, 1987; McKeown, 1985; Re-
iter et al., 1995; Reiter et al., 2005; Scott et al., 1991) to more recent data-driven
ones (Althaus et al., 2004; Belz, 2008; Venigalla & Eugenio, 2013; Viethen &
Dale, 2008; White & Howcroft, 2015). Architectures which are simultaneously
modular and data-driven are less common, as the shift to data-driven tech-
niques occurred in parallel with the movement of the research interest towards
end-to-end architectures, described in the following Section.

3.2 Integrated architectures

3.2.1 Notation

Neural sequence-to-sequence architectures take a sequence {x1, . . . , xTx} as in-
put, and output another sequence {y1, . . . , yTy}. Both input and output se-
quences consist of lists of embedded tokens. Their lengths are Tx and Ty,
respectively. Input sub-sequences ranging from 1 to j are referred to as x1:j,
defining in this way x = x1:Tx . Similarly, output sub-sequences ranging from
1 to t are referred to as y1:t, defining y = y1:Ty .

More specifically, in Data-To-Text Generation inputs are variable-sized sets of
key-value pairs 〈k; w1:Tk〉, in which the key k consist of a single vocabulary
token, and the value is a sequence of Tk words. Input and output sequences
share the same vocabulary V , defined as the set of all possible V = |V| tokens,
including the special ones shown in Table 3.1.

Weight matrices and vectors, whose values are learned via back-propagation,
are referred to as W∗ and b∗ respectively; subscripts are used to distinguish
them from each other. Hidden states sizes (or model sizes) will be generically
referred to as emb ∈N+, regardless of their possible variations between layers.

3.2.2 RNN Encoder-Decoder

The Recurrent Neural Network Encoder-Decoder architecture (Cho et al., 2014b;
Sutskever et al., 2014) consist of two separate RNNs, the encoder and the de-
coder, that play different roles.
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Name Reference Formula Notes

Additive Bahdanau et al. (2015) bᵀ · tanh(W · [d; h]) b ∈ Remb,
W ∈ Remb×2·emb

General T. Luong et al. (2015) d ·W · h W ∈ Remb×emb

Dot-product T. Luong et al. (2015) d · h
Scaled dot-product Vaswani et al. (2017) d·h√

emb

TABLE 3.2: Different approaches for computing score(d, h) in
the attention mechanism.

The encoder is in charge of reading the input sequence token by token, updat-
ing its hidden state vector hj ∈ Remb:

hj = RNNenc(xj, hj−1), j = 1, . . . , Tx. (3.1)

The decoder updates its hidden state conditioned by the previous generated
token and by the encoder’s final hidden state, used as its initial one (i.e. d0 =
hTx ):

dt = RNNdec(yt−1, dt−1), t = 1, . . . , Ty. (3.2)

At each time step t, the corresponding decoder’s hidden state dt is projected
to a vocabulary-sized vector ot, which is in turn converted to a categorical
probability distribution:

ot = Wᵀ
do · dt (3.3)

P(yt|y1:t−1, x) = softmax(ot), (3.4)

where Wdo ∈ Remb×V . The probability P(yt|y1:t−1, x) is used to generate the
output token yt.

A typical RNN Encoder-Decoder shows the following features:

• the RNN variants used for both the encoder and the decoder are Long
Short-Term Memory (Gers et al., 2000; Hochreiter & Schmidhuber, 1997)
or, less frequently, Gated Recurrent Units (Cho et al., 2014b). Those archi-
tectures reduce the exploding or vanishing gradient problems (Bengio et
al., 1993; Bengio et al., 1994) and better deal with long-term dependen-
cies inside sequences;

• the encoder is bidirectional (Schuster & Paliwal, 1997), as the whole in-
put sequence is typically available and information from both left and
right tokens can be informative;

• the decoder uses input feeding, i.e. “attentional vectors are fed as inputs
to the next time steps to inform the model about past alignment deci-
sions” (T. Luong et al., 2015);

• the whole architecture is trained end-to-end, using Back-Propagation
Through Time (Rumelhart et al., 1986; Williams & Zipser, 1989) and
Teacher Forcing (Williams & Zipser, 1989).
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FIGURE 3.2: The Encoder-Decoder with attention architec-
ture (Bahdanau et al., 2015; T. Luong et al., 2015)

3.2.3 RNN Encoder-Decoder with Attention

The Recurrent Encoder-Decoder with attention (Bahdanau et al., 2015; T. Lu-
ong et al., 2015) is an improvement of the aforementioned RNN Encoder-
Decoder architecture. The latter requires that the input information read by
the decoder is contained in a fixed-sized vector d0 = hTx produced by the en-
coder. This fixed size is problematic, as it may lead to either overfitting or
information loss, depending on the ratio between the amount of information
to store and the RNNs’ hidden size. Indeed, Cho et al. (2014a) observed that
“the performance of the neural machine translation suffers significantly from
the length of sentences”. The attention mechanism overcomes this problem.

The attention mechanism is a neural network technique that consists in per-
forming a weighted sum over a list of values, whose weights depend on their
comparison with a query vector. The result of the weighted sum is called the
context vector. Given the last decoder’s hidden state dt−1 and the sequence of
the encoder’s hidden states hj (j = 1, . . . , Tx), the main components of the
attention mechanism are:

(i) the alignment model γtj

γtj = score(dt−1, hj), 1 ≤ j ≤ Tx, 1 ≤ t ≤ Ty, (3.5)

which scores how well input in position j-th and output observed in the
t-th time instant match. It can be computed in several ways, as shown in
Table 3.2.
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(ii) the attention probability distribution αtj

αtj =
exp(γtj)

∑Tx
k=1 exp(γtk)

= [softmax(γt)]j, 1 ≤ j ≤ Tx, 1 ≤ t ≤ Ty,

(3.6)

where γt ∈ RTx is the vector whose j-th element is γtj, i.e. γt := γt,1:Tx .

(iii) the context vector Ct, weighted sum of the encoder annotations hj

Ct =
Tx

∑
j=1

αtjhj, 1 ≤ t ≤ Ty. (3.7)

In the RNN Encoder-Decoder with Attention, the update of the decoder’s hid-
den state only includes the currently useful input information, via the context
vector Ct computed at each time step:

d̃t−1 = tanh(Wᵀ
dc · [dt−1; Ct]), t = 1, . . . , Ty (3.8)

dt = RNNdec(yt−1, d̃t−1), t = 1, . . . , Ty, (3.9)

where d̃t−1 brings the information from both the decoder’s last hidden and the
context vector, and Wdc ∈ R2·emb×emb is a trainable parameter.

According to Bahdanau et al. (2015), the context vector Ct is the key element
for evaluating the final conditional probability P(yt|y1:t−1, x) to output a target
token yt, given the previously outputted tokens y1:t−1 and the input x. In fact,
they express this probability generalizing Eq. 3.3 as:

P(yt|y1:t−1, x) = g(yt−1, dt, Ct), (3.10)

where g is a non-linear, potentially multi-layered, function. So doing, the ex-
plicit information about y1:t−1 and x is replaced with the knowledge of the
context Ct and the decoder’s state dt.

3.2.4 Transformer

Recurrent architectures are inherently sequential, which precludes paralleliza-
tion and negatively affect computation times, especially for longer sequences.
The Transformer architecture (Vaswani et al., 2017) overcomes these limita-
tions, eschewing recurrence and relying entirely on the attention mechanism.

Similarly to the architectures presented earlier, it is composed by an encoder
and a decoder, which mainly rely on improvements of the attention mecha-
nism. Multi-head attention is a linear combination of independently computed
scaled dot-product attentions (see Table 3.2); self-attention aims at finding rela-
tionships within a sequence’s tokens.

The Transformer encoder is a stack of identical modules, each one consisting of
a multi-head self-attention followed by a feed-forward layer. The Transformer
decoder differs from the encoder in the facts that multi-head self-attention is
followed by multi-head input-output attention, and it includes a linear pro-
jection and a softmax activation as final layers, determining the categorical
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distribution from which the t-th output token is sampled, similarly to Equa-
tions 3.3 and 3.10.

3.2.5 Data-To-Text adaptations

The main difference between Data-To-Text and other text-to-text tasks, such
as Machine Translation, Automatic Summarization, and Dialogue Response
Generation, is the non-linear structure of the input. Despite that, all the neu-
ral models described above assume the data they are fed with to be a se-
quence. Data tables can have either a key-value structure (Lebret et al., 2016;
Novikova et al., 2017b), or a more complex table form (Wiseman et al., 2017):
they need a pre-processing step called linearization, which makes them com-
patible with neural sequence-to-sequence systems. Linearization of the input
involves (i) creating embedding vectors that encode it in a convenient way,
and (ii) determining an arbitrary order for inherently unordered data.

Key-value pairs can be treated as independent subsequent embedded tokens,
delegating to the network the task of distinguishing tokens belonging to data
keys, from those belonging to the corresponding values (Dusek & Jurcícek,
2016). A more refined approach consists in concatenating the field embedding
and each value token’s one (Sha et al., 2018), possibly adding a linear projec-
tion and a non-linear activation, such as the hyperbolic tangent (Wiseman et
al., 2017; Yang et al., 2017). The representation of the field relative of a given
token can be enriched by such token’s position, counted from both the start
and the end of the sequence (Lebret et al., 2016; Liu et al., 2018).

Different ordering of key-value pairs during training impacts the resulting
generation systems’ performance (Kedzie & McKeown, 2020). In particular,
when the order of the pairs matches the output sentence’s realization order,
models tend to be more controllable. Transformer-based models’ faithfulness
is less affected by the ordering of the pairs, as their architecture is less in-
fluenced by input tokens’ positions. The positional encoding of the Trans-
former encoder can be simply removed, preserving the unorderedness of the
input (Rebuffel et al., 2020a).

3.3 Previous work

Neural models for Data-To-Text generation gained popularity increasingly dur-
ing the last decade.

Conditioned Neural Language Models Wen et al. (2015a) proposed the first
neural system specifically designed for this task, which consists in a RNN
Language Model (Mikolov et al., 2010), conditioned by a one-hot represen-
tation of the input data structure. The model is enriched by a CNN sentence
model, which checks the generated sentence for semantic consistency, and by
a backward RNN-based reranker. The architecture has been later improved by
extending the recurrent LSTM architecture with a gating “sentence planning
cell”, yielding better results (Wen et al., 2015b).

Standard RNN Encoder-Decoder An RNN Encoder-Decoder with attention
(see Section 3.2.3) for DTT has been developed by Dusek and Jurcícek (2016),
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aiming to generate either a deep syntax dependency tree, realized by an exter-
nal module, or the final sentence, in an end-to-end fashion. Again, a reranking
strategy is applied, penalizing the absence of required information and the ad-
dition of irrelevant one. As an alternative to reranking, Chisholm et al. (2017)
propose an auto-encoding strategy: an RNN Encoder-Decoder with attention
is used to generate the natural language description of the input table, and
then to get such table from the generated utterance. This constrains output
sequences to only express the facts that are present in the data.

Improved Attention Mechanisms The encoder-aligner-decoder architecture
(Mei et al., 2016) is an RNN Encoder-Decoder with a “coarse-to-fine align-
ment” mechanism. Standard attention weights are re-weighted by the proba-
bility of each input token of being selected, computed by a pre-selector solely on
the basis of the input. This allows a more picky content selection phase. Differ-
ently from the previous architectures, the encoder-aligner-decoder takes rid of
beam search, reranking and auto-encoding, simply relying on greedy genera-
tion. Sha et al. (2018) replace the conventional attention mechanism with a dis-
patcher, that uses a soft switch to choose between the standard content-based
attention and a link-based attention, that learns the transition between table
fields during decoding, explicitly modeling the generation order of the input
fields. A more complex architecture is proposed by Puduppully et al. (2019b),
as they interpose a content selection gate and a neural planner between the
encoder and the decoder’s attention mechanism, that uses the generated plan
as the attention keys.

Encoding Structured Data The main difference between DTT and Machine
Translation, i.e. the structured form of the data, has led to work on the en-
coding side. Lebret et al. (2016) use a novel table encoding and embedding
strategy to condition a neural Manguage Model, both locally and globally.
They also include copy actions, taking into account that input tables often con-
tain output tokens. This encoding strategy has been included in an Encoder-
Decoder architecture by Liu et al. (2018). Their encoding RNN is a modi-
fication of the LSTM cell, in which the cell state is updated using also the
field information. Their dual attention mechanism uses the product of inde-
pendent word-based and field-based attention weights to compute the final
context vector. Differently, Puduppully et al. (2019d)’s model creates entity
representations which are dynamically updated. Their attention mechanism
has a hierarchical structure, and it takes into account both the input data and
the entity representations. Hierarchical encoders are proposed by Liu et al.
(2019b) and Rebuffel et al. (2020a) as well. The former use a word-level and
an attribute-level LSTM, and the respective attention weights are combined
via an element-wise product. The latter encodes entities from records, and
data-structures from entities, taking advantage of Transformer-based architec-
tures. This allows to encode multiple-entity data structures such as the ones
included in the RotoWire (Wiseman et al., 2017) dataset.

The Decoding Side Compared to the encoder, relatively little work has been
focusing on the decoder. In fact, generating human-like sentences is not an ex-
clusive property of DTT, unlike encoding data tables. Wiseman et al. (2018)
propose a neural reinterpretation of template-based models: their Hidden
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Semi-Markov Model (HSMM) decoder architecture “learns latent, discrete tem-
plates jointly with learning to generate”. Such templates are easily interpretable
and facilitate the controllability of the generation, even if the quality of the re-
sulting sentences is quite far from state-of-the-art models.

3.4 Perspectives

As seen in this Chapter, DTT is nowadays an ever-growing field of research.
New models are still being proposed in the literature, mainly focusing on find-
ing more convenient ways to encode structured data. However, sticking to the
information provided by the input tables remains an open problem in this do-
main, as current systems do not guarantee a fully faithful natural language
transduction. Faithfulness can be obtained by two main features. In the one
hand, the ability to directly transcript input content to the generated output –
in short, to copy; on the other hand, the ability to avoid the generation of in-
formation which is not included in the table, still allowing to produce content
that can be inferred from it. In this thesis both components are analyzed, and
new methods are subsequently introduced: Chapter 4 describes a character-
level system which integrates a copy mechanism, while Chapter 5 presents a
framework for reducing hallucinations, made of a word-level labeling proce-
dure and a multi-branch deep neural model.
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Chapter 4

A Copy Mechanism for
Data-To-Text Generation

4.1 Introduction and related work

Recurrent Encoder-Decoder models with Attention have proved to be very
effective in Data-To-Text Generation (DTT) and Natural Language Generation
(NLG) tasks (Karpathy & Li, 2015; Mei et al., 2016; Wen et al., 2015b), as well
as in machine translation (Bahdanau et al., 2015; Cho et al., 2014c; Sennrich
et al., 2016b; Sutskever et al., 2014) and in language modeling (Al-Rfou et al.,
2019).

In this Chapter we present a character-level model that results in a completely
neural end-to-end architecture for DTT. When compared to traditional word-
based approaches, character-based ones entail several benefits:

• word-based models involve the non-trivial choice of a tokenization al-
gorithm, which implies constraints on the vocabulary size, the presence
of Out-Of-Vocabulary (OOV) words, finding (often non-optimal) sub-
words. The character-based approach implies, by definition, a predeter-
mined and straightforward way of splitting inputs;

• OOV words are often delexicalized in data-to-text generation, i.e., table
values are replaced by a key-dependent placeholder that needs to be
post-processed when generated by the system. Character-based models
do not include any OOV token, eliminating the delexicalization - relexi-
calization procedure;

• lowercasing words is a common strategy to reduce the vocabulary size
in word-based models, leading to a loss of useful information and to
the need for a post-processing phase called truecasing. Character-based
approaches bypass the issue, as they have a natively small vocabulary;

• differently from word-based paradigm, the character-based vocabulary
does not depend on a specific domain’s set of terms, but rather on a
general, small-sized alphabet.

As we will see, our an approach achieves rather interesting performance re-
sults and produces a vocabulary-free model that is inherently more general.
According to our experiments, it never hallucinates words, nor duplicates
them. Because of this, it opens up the possibility to adapt already trained
networks to deal with different datasets.
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FIGURE 4.1: Encoder-Decoder with Attention model, de-
scribed in Section 3.2.3

In sequence-to-sequence frameworks (Aharoni et al., 2016; Cho et al., 2014c;
Sutskever et al., 2014), data are usually represented word-by-word both in in-
put and output sequences; anyway, such schemes can’t be effective without a
special, non-neural delexicalization phase that handles unknown words, such
as proper names or foreign words (see Wen et al. (2015b)). The delexical-
ization step has the benefit of reducing the dictionary size and, consequently,
the data sparsity, but it is affected by various shortcomings. In particular, ac-
cording to Goyal et al. (2016) (i) it needs some reliable mechanism for entity
identification, i.e. the recognition of named entities inside text; (ii) it requires
a subsequent “re-lexicalization” phase, where the original named entities take
back placeholders’ place; (iii) it cannot account for lexical or morphological
variations due to the specific entity, such as gender and number agreements,
that can’t be achieved without a clear context awareness.

Some recent works tried to solve this problem: Gu et al. (2016) describe Copy-
Net, a word-based technique that can integrate output generation with a copy-
ing mechanism which can choose portions of the input sequence and include
them in the final sentence. Similarly, in the word-based Pointer-Generator Net-
work (See et al., 2017), a soft switch determines whether the next output token
is generated or copied from the input, re-using the attention distribution. Such
techniques, albeit conceived for words, can be adapted to the character copy-
ing task, leading to more robust and effective models. T. Luong et al. (2015)
tries to extend neural networks with a post-processing phase that copies words
as indicated by the model’s output sequence. Some character-level aspects ap-
pear as a solution of the issue as well, either as a fallback for rare words (M.-T.
Luong & Manning, 2016), or as subword units (Sennrich et al., 2016b).

A significantly different approach consists in employing characters instead
of words, for input slot-value pairs tokenization as well as for the genera-
tion of the final utterances, as done for instance in Agarwal and Dymetman
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(2017) and Al-Rfou et al. (2019). One of the very first attempts to model nat-
ural language via a character-level mechanism is described by Sutskever et
al. (2011). According to this paper, a simple variant of the vanilla recurrent
neural network can generate well-formed sentences after being trained based
on sequences of characters. A representative case of character-based systems
is Goyal et al. (2016), but this model incorporates prior knowledge in the form
of a finite-state automaton to prevent “the generation of non-words and the
hallucination of named entities”.

In this Chapter we present a character-level sequence-to-sequence model with
attention mechanism that results in a completely neural end-to-end architec-
ture. More specifically, our model shows two important features, with respect
to the architecture proposed by Bahdanau et al. (2015): (i) a character-wise
copy mechanism, consisting in a soft switch between generation and copy
mode, that disengages the model to learn rare and unhelpful self-correspon-
dences, and (ii) a peculiar training procedure, which improves the internal
representation capabilities, enhancing recall; it consists in the exchange of en-
coder and decoder RNNs, – GRUs (Cho et al., 2014c) in our specific case – ,
depending on whether the input is a tabular Meaning Representation (MR) or
a natural language sentence.

We also introduce a new dataset, described in Section 4.3.1, whose particular
structure allows to better highlight improvements in copying/recalling abili-
ties with respect to character-based state-of-art approaches.

In Section 4.2 we detail our model: Section 4.2.1 is devoted to explaining the
copy mechanism while in Section 4.2.2 our peculiar training procedure is pre-
sented. Section 4.3 includes the datasets descriptions, some implementation
specifications, the experimental framework and the analysis and evaluation of
the achieved results.

4.2 Model Description

4.2.1 Learning to Copy

We build a character-based copy mechanism, depicted in Figure 4.2, inspired
by the Pointer-Generator Network (See et al., 2017), a word-based model that
hybridizes the Bahdanau traditional model and a Pointer Network (Vinyals et
al., 2015). Basing on these ideas, in our model we identify two probability dis-
tributions that, differently from what done by See et al. (2017) and Wiseman et
al. (2017), act now on characters rather than on words: the alphabet distribution
Palph and the attention distribution Patt.

The former is the network’s generative probability of sampling a given char-
acter at time t, similarly to eq. (3.10):

Pt
alph = softmax(W[dt; Ct] + b), (4.1)

where W and b are trainable parameters.

The latter is the distribution reminded in eq. (3.6), created by the attention
mechanism over the input tokens, i.e. in our case, over input characters:

Ptj
att ≡ αtj (4.2)
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In our method this distribution is used for directly copying characters from
the input to the output, pointing their input positions, while in Bahdanau et
al. (2015) Patt is used only internally to weigh the input annotations and create
the context vector Ct.

The final probability of outputting a specific character c is obtained combining
Palph and Patt through the quantity pt

gen, defined later, which acts as a soft switch
between generating c or copying it:

Pt(c) = pt
gen · Pt

alph(c) + (1− pt
gen) ∑

j|xj=c
Ptj

att(c), (4.3)

where Pt
alph(c) is the component of Pt

alph corresponding to that character c.

The backpropagation training algorithm, therefore, brings pt
gen close to 1 when

it is necessary to generate the output as in a standard Encoder-Decoder with
Attention (Pt(c) ' Pt

alph(c)); conversely, pt
gen will be close to 0 (i.e. Pt(c) '

∑j|xi=c Pj
att(c)) when a copying step is needed.

The model we propose therefore learns when to sample from Palph for selecting
the character to be generated, and when to sample from Patt for selecting the
character that has to be copied directly from the input.

This copy mechanism is fundamental to output all the unknown words present
in the input, i.e. words which never occur in the training set. In fact, gener-
ating characters in the right order to reproduce unknown words is a sub-task
not “solvable” by a naive sequence-to-sequence model, which learns to output
only known words.

The generation probability pt
gen ∈ [0, 1] is computed as follows:

pt
gen = σ(Wy · ỹt−1 + Ws · dt + Wp · pt−1

gen + Wc · Ct) (4.4)

where σ is the sigmoid function, ỹt−1 is the last output character’s embedding,
dt is the current decoder’s cell state and Ct is the current context vector. Wy,
Ws, Wc and Wp are the parameters whose training allows pt

gen to have the con-
venient value.

We highlight that in our formulation pt−1
gen , i.e. the value of pt

gen at time t− 1,
contributes to the determination of pt

gen. In fact, in a character-based model it
is desirable that this probability remains unchanged for a fair number of time
steps, to correctly complete the word; knowing its last value helps this behav-
ior. Conversely, in word-based models (such as See et al. (2017)), copying for
a single time step, when required, is typically enough.

We also help the model to learn when it is necessary to start a copying phase,
using the following formulation of P(c) (Bonetta et al., 2021):

Pt(c) = pt
gen · Pt

alph(c) + (1− pt
gen) ∑

j|xj=c
Pt,j−1

att (c) (4.5)

Sometimes, our model has difficulty in focusing on the first letter it has to
copy. This may be caused by the variety of characters it could be attending on;
instead, it seems easier to learn to focus on the most largely seen characters,
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FIGURE 4.2: The copy mechanism included in our model. The
final output Pt(c) is the sum of Pt

alph and Ptj
att, weighted by pt

gen.

FIGURE 4.3: An example of shifting the attention distribution

as for instance ‘ ’ and ‘[’. As these special characters are very often the prefix
of the words we need to copy, when this focus is achieved, we would like the
attention distribution to be translated one step to the right, over the first letter
that must be copied. Therefore, the final probability of outputting a specific
character c, introduced in eq. (4.3), is modified to Pt,j−1

att , i.e. the attention dis-
tribution shifted one step to the right and normalized. Figure 4.3 shows the
convenience of this approach.

Notice that Pt,j−1
att is the only shifted probability, while Pt

alph remains unchanged.
Therefore, if the network is generating the next token (i.e. pt

gen ' 1 ), the shift
trick does not involve Pt(c) and the network samples the next character from
Pt

alph, as usual. This means that the shift operation is not degrading the gener-
ation ability of the model, whilst improving the copying one.

4.2.2 Switching GRUs

Aiming at improving performance, we enrich our model’s training pipeline
with an additional phase, which forces an appropriate language representa-
tion inside the recurrent components of the model. In order to achieve this
goal, the encoder and the decoder do not own a fixed GRU, differently from
what happens in classical end-to-end approaches. The recurrent module is
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passed each time as a parameter, depending on which one of the two training
phases is actually performed.

Three main reasons make this switching procedure possible: (i) the charac-
ter-based architecture, that leads the encoding and decoding RNNs to share
the same vocabulary; (ii) the neural networks’ effectiveness in Multi-Task Learn-
ing, (Abu-Mostafa, 1990; Caruana, 1997; Raffel et al., 2020) – both encoding
and generating characters, in this case; (iii) the fact that both RNNs are bidi-
rectional, and the decoder ignores the backward part of the recurrent output,
as reported in Section 4.3.4.

In the first phase, similar to the usual one, the GRU assigned to the encoder
deals with a tabular representation x as input, the GRU assigned to the de-
coder has to cope with natural language, and the model generates an output
utterance ỹ = Φ(x). Conversely, in the second phase, GRUs are switched, and
we use as input the just obtained natural language utterance ỹ to generate a
new table x̃ = Γ(ỹ) = Γ(Φ(x)). Therefore, the same model can build both Φ
and Γ, thanks to the switch of GRUs, as shown by Figure 4.4.

In other words, the learning iteration is performed as follows.

• A dataset example (x, y) is given. x is a tabular meaning representation
and y is the corresponding reference sentence.

• We generate an output utterance ỹ = Φ(x)

• We perform an optimization step on the model’s parameters, aiming at
minimizing Lforward = loss(ỹ, y)

• We reconstruct the meaning representation x̃ back from the previously
generated output: x̃ = Γ(ỹ) = Γ(Φ(x))

• We perform a further optimization step on the model’s parameters, this
time aiming at minimizing Lbackward = loss(x̃, x)

The higher training time, direct consequence of the just described technique,
is a convenient investment, as it brings an appreciable improvement of the
model’s performance (see Section 4.3.5).

4.3 Experiments

4.3.1 Datasets

We tested our model on four datasets, whose main descriptive statistics are
given in Table 4.1: among them, the most known and frequently used in lit-
erature is the E2E dataset (Novikova et al., 2017b), used as benchmark for the
E2E Challenge organized by the Heriot-Watt University in 2017. It is a crowd-
sourced collection of roughly 50,000 instances, in which every input is a list
of slot-value pairs and every expected output is the corresponding natural
language sentence. The dataset has been partitioned by the challenge orga-
nizers in predefined training, validation and test sets, conceived for training
data-driven, end-to-end Natural Language Generation models in the restau-
rant domain. Table 4.2 shows a typical E2E data instance: in this dataset every
Meaning Representation (MR) has 8.1 reference sentences on average; in turn,
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FIGURE 4.4: In the training procedure detailed in Section 4.2.2,
the encoder and the decoder do not own a fixed GRU. The con-
figuration on the left models Φ; the one on the right models Γ.

Dataset Number of instances Avg. number of characters

training validation test MRs NL sentences

E2E 42,061 4,672 4,693 112.11 115.07
E2E+ 42,061 4,672 4,693 112.91 115.65
Hotel 2,210 275 275 52.74 61.31
Restaurant 2,874 358 358 53.89 63.22

TABLE 4.1: Descriptive statistics: on the left, sizes of training,
validation and test sets are shown. On the right, the average
number of characters, respectively for Meaning Representa-

tions and natural language sentences, are presented

each MR is composed of a set of key-value pairs. The ontology consists of 8
attributes of different types.

However, during our experiments, we noticed that the values contained in
the E2E dataset are a little naive in terms of variability. In other words, a slot
like name, that could virtually contain a very broad range of different values,
is filled alternating between 19 fixed possibilities. Moreover, values are parti-
tioned among training, validation and test set, in such a way that test set al-
ways contains values that are also present in the training set. Consequently, we
created a modified version of the E2E dataset, called E2E+, as follows: we se-
lected the slots that represent more copy-susceptible attributes, i.e. name, near
and food, and conveniently replaced their values, in both meaning representa-
tions and reference sentences. New values for food are picked from Wikipedia’s
list of adjectival forms of countries and nations1, while both name and near are
filled with New York restaurants’ names contained in the Entree dataset pre-
sented in Burke et al. (1997). It is worth noting that none of the values of name
are found in near; likewise, values that belong to the training set are not found
in the validation set nor in the test one, and vice versa. This value partitioning

1https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_
countries_and_nations, consulted on August 30, 2018

https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
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Meaning Representation References

name[The Wrestlers],
eatType[coffe shop],
food[Indian]
priceRange[less than L20]
area[city centre]
familyFriendly[yes]
near[Raja Indian Cuisine]

Indian food meets coffee shop at The Wrestlers
located in the city centre near Raja Indian Cuisine.
This shop is family friendly and priced at less than
20 pounds.

Near Raja Indian Cuisine, The Wrestlers provides
the atmosphere of a coffee shop with Indian food.
At less than 20 pounds, it provides a family friendly
setting for its customers right in the city centre.

The Wrestlers is a coffee shop providing Indian food
in the less than L20 price range. It is located
in the city centre. It is near Raja Indian Cuisine.

TABLE 4.2: An E2E data instance. The Meaning Representation
appears in the dataset once for each reference sentence.

shall ensure the absence of generation bias in the copy mechanism, stimulating
the models to copy attribute values, regardless of their presence in the train-
ing set. The MR and 1st reference fields in Table 4.6 are instances of this new
dataset.

Finally, we decided to test our model also on two datasets, Hotel and Restau-
rant, frequently used in literature (for instance in Wen et al. (2015b) and Goyal
et al. (2016)). They are built on a 12 attributes ontology: some attributes are
common to both domains, while others are domain specific. Every MR is a
list of key-value pairs enclosed in a dialogue act type, such as inform, used
to present information about restaurants, confirm, to check that a slot value
has been recognized correctly, and reject, to advise that the user’s constraints
cannot be met. For the sake of compatibility, we filtered out from Hotel and
Restaurant all inputs whose dialogue act type was not inform, and removed
the dialogue act type. Besides, we changed the format of the key-value pairs
to E2E-like ones.

Tables are encoded simply converting all characters to ASCII and feeding ev-
ery corresponding index to the encoder, sequentially. The resulting model’s
vocabulary is independent of the input, allowing the application of the trans-
fer learning procedure.

4.3.2 Metrics

We evaluated the models’ performance on test sets’ output utterances using
the Evaluation metrics script2 provided by the E2E NLG Challenge organizers.
It rates quality according to five different metrics:

• BLEU (Papineni et al., 2002), a length-penalized precision score over n-
grams, n ∈ J1, 4K, optionally improved with a smoothing technique (B.
Chen & Cherry, 2014).

• NIST (Doddington, 2002), a variant of BLEU which gives more credit to
rare n-gram and less credit to common ones.

2https://github.com/tuetschek/E2E-metrics

https://github.com/tuetschek/E2E-metrics
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Hyperparameter Value

Embedding size 16
GRU hidden size 256
N. of recurrent layers 4
Attention size 128

Learning rate 10−4

β1; β2 for Adam (Kingma & Ba, 2015a) 0.9; 0.999
Max gradient norm (Pascanu et al., 2013) 1
Batch size 16
Max no. of epochs 30

TABLE 4.3: Model hyperparameters and training settings used
in our experiments.

• METEOR (Banerjee & Lavie, 2005), that tries to overcome the fact that
BLEU does not take recall into account, and it only allows exact n-gram
matching. Hence, METEOR uses the F-measure and a relaxed matching
criterion.

• ROUGE_L (C.-Y. Lin, 2004), based on a variation of the F-measure where
the precision and recall are computed using the length of the longest
common subsequence between hypothesis and reference.

• CIDER (Vedantam et al., 2015), that weighs each hypothesis’s n-gram
based on its frequency in the reference set and in the entire corpus. The
underlying idea is that frequent dataset’s n-grams are less likely to be
informative/relevant.

4.3.3 Baselines

In order to show the effectiveness of our proposed Encoder-Decoder model
with Attention, Copy and Switch (hereafter EDA_CS), we compare it with the
following models:

• EDA, a character-based Encoder-Decoder model with Attention (Bah-
danau et al., 2015), a standard baseline in literature (Agarwal & Dymet-
man, 2017; Goyal et al., 2016; See et al., 2017).

• TGen (Dusek & Jurcícek, 2016), the strong word-based baseline of the
E2E challenge (Dusek et al., 2018). Its pipeline consists of a delexical-
izer, a neural Encoder-Decoder system which outputs a syntax tree using
beam search with reranking, a surface realizer, and a relexicalizer.

4.3.4 Implementation Details

We developed EDA and EDA_CS using the PyTorch framework3, release 0.4.14.
The training has been carried out as described in Subsection 4.2.2: this training
procedure needs the two GRUs to have the same dimensions, in terms of input
size, hidden size, number of layers and presence of a bias term. Moreover, they

3Code and datasets are publicly available at https://github.com/marco-roberti/
char-dtt-tailored

4https://pytorch.org/

https://github.com/marco-roberti/char-dtt-tailored
https://github.com/marco-roberti/char-dtt-tailored
https://pytorch.org/
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EDA

BLEU 0.4999
NIST 7.1146
METEOR 0.3369
ROUGE_L 0.5634
CIDER 1.3176

EDA_C

BLEU 0.6255
NIST 7.7934
METEOR 0.4401
ROUGE_L 0.6582
CIDER 1.7286

EDA_S

BLEU 0.6538
NIST 8.4601
METEOR 0.4337
ROUGE_L 0.6646
CIDER 1.9944

EDA_CS

BLEU 0.6705
NIST 8.5150
METEOR 0.4449
ROUGE_L 0.6894
CIDER 2.2355

TABLE 4.4: The ablation study on the E2E dataset. All five
metrics considered in Section 4.3.2 are reported next to each
model. The study evidences the final performance improve-
ment reached by our model. Best values for each metric are

highlighted (the higher the better)

both have to be bidirectional, even if the decoder ignores the backward part of
its current GRU. We minimize the negative log-likelihood loss using teacher
forcing (Williams & Zipser, 1989) and Adam (Kingma & Ba, 2015a), the lat-
ter being an optimizer that computes individual adaptive learning rates. As a
consequence of the length of the input sequences, a character-based model is
often subject to the exploding gradient problem, that we solved via the well-
known technique of gradient norm clipping (Pascanu et al., 2013). The training
stopping criterion was based on the absence of models’ performance improve-
ments (Dusek & Jurcícek, 2016).

Three-fold cross-validation was used to find the optimal hyperparameters and
training settings values, using the BLEU metric (Papineni et al., 2002) for evalu-
ating each model. In the resulting configuration shown in Table 4.3, our model
has 9, 719, 920 trainable parameters.

Training and inference have been performed on 24GB NVIDIA GPUs (TITAN
RTX and Quadro P6000). The training time is in the order of magnitude of
∼10 hours, depending on the hardware. Generation at inference occurs in real
time, i.e. roughly 2 minutes for the 4,693 test instances.

As for the TGen baseline, we used the code originally provided by Dusek and
Jurcícek (2016)5.

4.3.5 Results and Discussion

In order to show that our model represents an effective and relevant improve-
ment, we carry out two different experimentations: an ablation study and a
quantitative and qualitative analysis, in comparison with the baselines de-
scribed in Section 4.3.3

Our first experimentation, the ablation study, refers to the E2E dataset be-
cause of its wide diffusion, and is shown in Table 4.4; “EDA_CS” identifies
our model, and ‘C’ and ‘S’ stand for “Copy” and “Switch”, the two major im-
provements presented in this work. It is evident that the partially-improved

5https://github.com/UFAL-DSG/tgen

https://github.com/UFAL-DSG/tgen
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networks are able to provide independent benefits to the performance. Those
components cooperate positively, as EDA_CS further enhances those results.
Furthermore, the obtained BLEU metric value on the E2E test set would allow
our model to be ranked fourth in the E2E NLG Challenge, while its baseline
TGen was ranked tenth.

Our second experimentation, the comparison study, is shown in Table 4.5.
The character-based design of EDA_CS led us to explore in this context also
a possible behavior as a transfer learning capable model: in order to test this
hypothesis, we used the weights learned during training on the E2E+ dataset
as the starting point for a fine-tuning phase on all the other datasets. We chose
E2E+ because it reduces the generation bias, as discussed in Subsection 4.3.1.
We named this approach EDA_CSTL.

A first interesting result is that our model EDA_CS always obtains higher met-
ric values with respect to TGen on the Hotel and Restaurant datasets, and three
out of five higher metrics values on the E2E dataset. However, in the case of
E2E+, TGen achieves three out of five higher metrics values. These results sug-
gest that EDA_CS and TGen are comparable, at least from the point of view of
automatic metrics’ evaluation.

A more surprising result is that the approach EDA_CSTL allows to obtain bet-
ter performance with respect to training EDA_CS in the standard way on the
Hotel and Restaurant datasets (for the majority of metrics); on E2E, EDA_CSTL

outperforms EDA_CS only in one case (i.e. METEOR metric).

Moreover, EDA_CSTL shows a BLEU increment of at least 14% with respect to
TGen’s score when compared to both Hotel and Restaurant datasets.

Finally, the baseline model, EDA, is largely outperformed by all other exam-
ined methods. Notice that its scores do not drop below a certain threshold
because, even if new names are not correctly reproduced, values occurring in
other fields of the generated sentences are generally still correct. We hypothe-
size that their performances would be even worse on datasets containing un-
seen values on other fields as well (e.g. food, near).

Therefore, we can claim that our model exploits its transfer learning capabili-
ties effectively, showing very good performances in a context like data-to-text
generation in which the portability of features learned from different datasets,
in the extent of our knowledge, has not yet been explored.

We highlight that EDA_CS’s model’s good results are achieved even if it con-
sists in a fully end-to-end model which does not benefit from the delexicalization-
relexicalization procedure, differently from TGen. Most importantly, the latter
represents a word-based system: as such, it is bound to a specific, limited vo-
cabulary, in contrast to the general-purpose character one used in our work.

Table 4.6 reports the output of the analyzed models for a couple of MR, taken
from the E2E+ test set. The EDA’s inability to copy is clear, as it tends, in its
output, to substitute those values of name, food and near that do not appear
in the training set with known ones, guided by the first few characters of the
input slot’s content. Besides, it shows serious coverage issues, frequently ’for-
getting’ to report information, and/or repeating more times the same ones.
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E2E+ E2E Hotel Restaurant

EDA

BLEU 0.3773 0.4999 0.4316 0.3599
NIST 5.7835 7.1146 5.9708 5.5104
METEOR 0.2672 0.3369 0.3552 0.3367
ROUGE_L 0.4638 0.5634 0.6609 0.5892
CIDER 0.2689 1.3176 3.9213 3.3792

TGen

BLEU 0.6292 0.6593 0.5059 0.4074
NIST 9.4070 8.6094 7.0913 6.4304
METEOR 0.4367 0.4483 0.4246 0.3760
ROUGE_L 0.6724 0.6850 0.7277 0.6395
CIDER 2.8004 2.2338 5.0404 4.1650

EDA_CS

BLEU 0.6197 0.6705 0.5515 0.4925
NIST 9.2103 8.5150 7.4447 6.9813
METEOR 0.4428 0.4449 0.4379 0.4191
ROUGE_L 0.6610 0.6894 0.7499 0.7002
CIDER 2.8118 2.2355 5.1376 4.7821

EDA_CSTL

BLEU - 0.6580 0.5769 0.5099
NIST - 8.5615 7.4286 7.3359
METEOR - 0.4516 0.4439 0.4340
ROUGE_L - 0.6740 0.7616 0.7131
CIDER - 2.1803 5.3456 4.9915

TABLE 4.5: Performance comparison, according to the five
metrics considered in Section 4.3.2, reported next to each
model. Note the absence of transfer learning on the E2E
dataset, as in this case the training and fine-tuning datasets
are the same. Best values for each metric are highlighted (the

higher the better)

These troubles are not present in EDA_CS output utterances: the model nearly
always renders all of the input slots, still without duplicating any of them.
This goal is achieved even in absence of explicit coverage techniques thanks
to our peculiar training procedure, detailed in Section 4.2.2, that for each in-
put sample minimizes also the loss on the reconstructed tabular input. It is
worth noting that the performance of TGen and EDA_CS are overall compa-
rable, especially when they deal with names or other expressions not present
in training.

The joint analysis of the matrix of the attention distribution Ptj
att and the vector

pt
gen allows a deeper understanding of how our model works.

In Figure 4.5 every row shows the attention probability distribution “seen”
when an output character is produced at the t-th time instant (i.e. the vector
Ptj

att, 1 ≤ j ≤ Tx), while every column shows values of the attention distribution
corresponding to a specific input position j (i.e. the vector Ptj

att, 1 ≤ t ≤ Ty). We
can therefore follow the white spots, corresponding to higher values of atten-
tion, to understand the flow of the model’s attention during the generation of
the output utterance.

Moreover, pt
gen values, which lie in the numeric interval [0, 1], help us in the



Chapter 4. A Copy Mechanism for Data-To-Text Generation 26

(A) On an E2E instance.

(B) On an E2E+ instance.

FIGURE 4.5: Attention matrix and vector pgen, as calculated by
the model. The former is a matrix of values between 0 (black,
less attention) and 1 (white, more attention) with one column
for each input character and one row for each generated one.
The i-th attention row is associated to the i-th value of pgen,

which ranges from 0 (black, copy) to 1 (white, generation)
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MR name[New Viet Huong], eatType[pub], customer rating[1 out
of 5], near[Ecco]

1st reference The New Viet Huong is a pub near Ecco that has a customer rating of
1 out of 5.

EDA_CS New Viet Huong is a pub near Ecco with a customer rating of 1 out of
5.

TGen New Viet Huong is a pub near Ecco with a customer rating of 1 out of
5.

EDA Near the riverside near the ERNick Restaurant is a pub near the ER-
Nicker’s.

MR
name[La Mirabelle], eatType[restaurant], food[Iraqi],
priceRange[high], area[riverside], familyFriendly[yes],
near[Mi Cocina]

1st reference
La Mirabelle is a children friendly restaurant located in the Riverside
area near to the Mi Cocina. It serves Iraqi food and is in the high price
range.

EDA_CS La Mirabelle is a high priced Iraqi restaurant located in the riverside
area near Mi Cocina. It is children friendly.

TGen La Mirabelle is a high priced Iraqi restaurant in the riverside area near
Mi Cocina. It is child friendly.

EDA
La Memaini is a high priced restaurant that serves Iranian food in the
high price range. It is located in the riverside area near Manganaro’s
Restaurant.

TABLE 4.6: A comparison of the three models’ output on some
MR of the E2E+ test set. The first reference utterance is re-

ported for convenience

interpretation of the attention: they are represented as a grayscale vector from
zero (black) to one (white) under the matrices. Values close to 0 mean copying
and those near 1 mean generating.

We can note that our model’s behavior varies significantly depending on the
dataset it has been trained on. Figure 4.5a shows the attention probability
distribution matrix of EDA_CS (together with pt

gen vector) trained on the E2E
dataset: as observed before, attribute values in this dataset have a very low
variability (and are already present in the training set), so that they can be
individually represented and easily generated by the decoder. In this case, a
typical pattern is the copy of only the first, discriminating character, clearly no-
ticeable in the graphical representation of the pt

gen vector, and the subsequent
generation of the others. Notice that the attention tends to remain improperly
focused on the same character for more than one output time step, as in the
first letter of “high”.

On the other hand, the copy mechanism shows its full potential when the sys-
tem must learn to copy attribute values, as in the E2E+ dataset. In Figure 4.5b
the diagonal attention pattern is pervasive: (i) it occurs when the model actu-
ally copies, as in “Harley Davidson” and “Coco Pazzo”, and (ii) as a soft track
for the generation, as in “customer rating”, where the copy-first-generate-rest
behavior emerges again.

A surprising effect is shown in Figure 4.6, when the model is expected to copy
words that, instead, are usually generated: an initial difficulty in copying the
word “The”, that is usually a substring of a slot value, is ingeniously overcome
as follows. The first character is purely generated, as shown by the white
color in the underlying vector, and the sequence of the following characters,
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FIGURE 4.6: Copying common words leads the model to “un-
certain” values of pt

gen

“he_”, is half-generated and half-copied. Then, the value of pt
gen gets suddenly

but correctly close to 0 (black) until the closing square bracket is met. The
network’s output is not affected negatively by this confusion and the attention
matrix remains quite well-formed.

As a final remark, the metrics used, while being useful, well-known, and
broadly accepted, do not reflect the ability to directly copy input facts to pro-
duce outputs, so settling the rare word problem.

4.4 Limitations and future work

The major drawback of relying on a character-based model is the increased
length of the sequences it deals with. As an example, the average English
word length is 4.7 characters (Mayzner & Tresselt, 1965); therefore, one may
expect a roughly 5× increase when switching from words to characters.

Recent developments in the field, however, may mitigate this issue in vari-
ous ways: (i) the non-autoregressive nature of the more recent Transformer
model (Vaswani et al., 2017) allows for a more aggressive parallelization of the
computation flow than RNN-based methods such as EDA_CS. The quadratic
space complexity of the former, that is generally considered as its major per-
formance bottleneck, has already been faced in various ways (Child et al.,
2019; Choromanski et al., 2021; Dai et al., 2019; Kitaev et al., 2020); (ii) the
introduction of pre-trained character-based models, such as (Ma et al., 2020),
should sharply reduce the training time requirements; and (iii) the hardware
improvements in GPU and TPU’s design and parallelization techniques re-
main a strong ongoing trend nowadays. Future work should include the in-
corporation and adaptation of such novel techniques to the model presented
in this Chapter.
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Chapter 5

Controlling Hallucinations at
Word Level

5.1 Introduction

In this Chapter, we specifically address the issue of hallucinations, which is
currently regarded as a major issue in DTT (Narayan & Gardent, 2020). In-
deed, experimental surveys show that real-life end-users of DTT systems care
more about reliability than about readability (Reiter & Belz, 2009), as unfaith-
ful texts can potentially mislead decision makers, with dire consequences.

Even if the concept of hallucination is intuitive, a formal and universally ac-
cepted definition has not been stated yet. In this work, we stick to the one
given by Dhingra et al. (2019): “Hallucination (K. Lee et al., 2019; Rohrbach et
al., 2018) refers to when an NLG system generates text which mentions extra
information than what is present in the source from which it is generated.”.
Dhingra et al. (2019) also state that the phenomenon occurs when “the refer-
ence contains extra information which no system can be expected to produce
given only the associated table. We call such reference texts divergent from
the table.”

Hallucinations-reduction methods such as the one presented here have ap-
plications in a broad range of tasks requiring high reliability, like news re-
ports (Leppänen et al., 2017), in which hallucinations may give rise to fake
news, or summaries of patient information in clinical contexts (Banaee et al.,
2013; Portet et al., 2009). When corpora include a mild amount of noise, as
in handcrafted ones (e.g. E2E, WebNLG), dataset regularization techniques
(Dusek et al., 2019; Nie et al., 2019) or hand crafted rules (Juraska et al., 2018)
can help to reduce hallucinations. Unfortunately, these techniques are not
suited to more realistic and noisier datasets, as for instance WikiBio (Lebret
et al., 2016) or RotoWire (Wiseman et al., 2017). On these benchmarks, several
techniques have been proposed, such as reconstruction loss terms (S. Lin et
al., 2020; H. Wang, 2019; Wiseman et al., 2017) or Reinforcement Learning (RL)
based methods (Liu et al., 2019c; Perez-Beltrachini & Lapata, 2018; Rebuffel
et al., 2020b). These approaches suffer however from different issues: (1) the
reconstruction loss relies on the hypothesis of one-to-one alignment between
source and target which does not fit with content selection in DTT; (2) RL–
trained models are based on instance-level rewards (e.g. BLEU (Papineni et al.,
2002), PARENT (Dhingra et al., 2019)) which can lead to a loss of signal because
divergences occur at the word level. In practice, parts of the target sentence
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key value

name kian emadi
fullname kian emadi-coffin
currentteam retired
discipline track
role rider
ridertype sprinter
proyears 2012-present
proteams sky track cycling

Ref.: kian emadi (born 29 july 1992) is a british
track cyclist .

FIGURE 5.1: An example of a WikiBio instance, composed by
an input table and its (partially aligned) description.

express source attributes (in Fig. 5.1 name and occupation fields are correctly
realized), while others diverge (the birthday and nationality of Kian Emadi are
not supported by the source table).

Interestingly, one can view DTT models as Controlled Text Generation (CTG)
ones focused on controlling content, as most CTG techniques condition the
generation on several key-value pairs of control factors (e.g. tone, tense, length)
(Dong et al., 2017; Ficler & Goldberg, 2017; Hu et al., 2017). Recently, Filippova
(2020) explicitly introduced CTG to DTT by leveraging an hallucination score
simply attached as an additional attribute which reflects the amount of noise
in the instance. As an example, the table from Fig 5.1 can be augmented with
an additional line (hallucination_score, 80%)1. However, this approach re-
quires a strict alignment at the instance-level, namely between control factors
and target text. A first attempt towards word-level approaches is proposed
by Perez-Beltrachini and Lapata (2018) (also PB&L in the following). They de-
sign word-level alignment labels, denoting the correspondence between the
text and the input table, to bootstrap DTT systems. However, they incorpo-
rate these labels into a sentence-level RL-reward, which ultimately leads to a
loss of this finer-grained signal.

In this Chapter, we go further in this direction with a DTT model by fully
leveraging word-level alignment labels with a CTG perspective. We propose
an original approach in which the word-level is integrated at all phases:

• we propose a word-level labeling procedure (Section 5.3), based on co-
occurrences and sentence structure through dependency parsing. This
mitigates the failure of strict word-matching procedure, while still pro-
ducing relevant labels in complex settings.

• we introduce a weighted multi-branch neural decoder (Section 5.4),
guided by the proposed alignment labels, acting as word-level control

1The reader may disagree with such a strong hallucination score. Indeed, while the birthdate
and nationality are clearly divergences, the rest of the sentence is correct. This illustrates the
complexity of handling divergences in complex datasets, where alignment cannot be framed as
a simple word-matching task.
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factors. During training, the model is able to distinguish between aligned
and unaligned words and learns to generate accurate descriptions with-
out being misled by un-factual reference information. Furthermore, our
multi-branch weighting approach enables control at inference time.

We carry out extensive experiments on WikiBio, to evaluate both our label-
ing procedure and our decoder (Section 5.6). We also test our framework on
ToTTo (Parikh et al., 2020), in which models are trained with noisy reference
texts, and evaluated on references reviewed and cleaned by human annotators
to ensure accuracy. Evaluations are based on a range of automated metrics as
well as human judgments, and show increased performances regarding hallu-
cinations reduction, while preserving fluency.

Moreover, our approach makes training neural models on noisy datasets pos-
sible, without the need to handcraft instances. This work shows the benefit
of word-level techniques, which leverage the entire training set, instead of re-
moving problematic training samples, which may form the great majority of
the available data.

5.2 Related work

Handling hallucinations in noisy datasets. The use of Deep Learning based
methods to solve DTT tasks has led to sudden improvements in state of the
art performances (Lebret et al., 2016; Liu et al., 2018; Puduppully et al., 2019a;
Wiseman et al., 2017). As a key aspect in determining a model’s performance is
the quality of training data, several large corpora have been introduced to train
and evaluate models’ abilities on diverse tasks. E2E (Novikova et al., 2017c)
evaluates surface realization, i.e. the strict transcription of input attributes into
natural language; RotoWire (Wiseman et al., 2017) pairs statistics of basketball
games with their journalistic descriptions, while WikiBio (Lebret et al., 2016)
maps a Wikipedia info-box with the first paragraph of its associated article.
Contrary to E2E, the latter datasets are not limited to surface realization. They
were not constructed by human annotators, but rather created from Internet
sources, and consist of loosely aligned table-reference pairs: in WikiBio, al-
most two thirds of the training instances contain divergences (Dhingra et al.,
2019), and no instance has a 1-to-1 source-target alignment (Perez-Beltrachini
& Gardent, 2017).

On datasets with a moderate amount of noise, such as E2E, data pre-processing
has proven effective for reducing hallucinations. Indeed, rule-based (Dusek
et al., 2019) or neural-based methods (Nie et al., 2019) have been proposed,
specifically with table regularization techniques, where attributes are added
or removed to re-align table and target description. Several successful at-
tempts have also been made in automatically learning alignments between the
source tables and reference texts, benefiting from the regularity of the exam-
ples (Gehrmann et al., 2018; Juraska et al., 2018; Shen et al., 2020). For instance,
Juraska et al. (2018) leverage templating and hand-crafted rules to re-rank the
top outputs of a model decoding via beam search; Gehrmann et al. (2018) also
leverage the possible templating formats of E2E’s reference texts, and train an
ensemble of decoders where each decoder is associated to one template; and
Kasner and Dusek (2020) produce template-based lexicalizations and improve
them via a sentence fusion model. The previous techniques are not applicable
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in more complex, general settings. The work of Dusek et al. (2019) hints at
this direction, as authors found that neural models trained on E2E were prin-
cipally prone to omissions rather than hallucinations. In this direction, Shen
et al. (2020) were able to obtain good results at increasing the coverage of neu-
ral outputs, by constraining the decoder to focus its attention exclusively on
each table cell sequentially until the whole table was realized. On more com-
plex datasets (e.g. WikiBio), a wide range of methods has been explored to
deal with factualness such as loss design, either with a reconstruction term
(H. Wang, 2019; Wiseman et al., 2017) or with RL-based methods (Liu et al.,
2019c; Perez-Beltrachini & Lapata, 2018; Rebuffel et al., 2020b). Similarly to
the coverage constraints, a reconstruction loss has proven only marginally ef-
ficient in these settings, as it contradicts the content selection task (H. Wang,
2019), and needs to be well calibrated using expert insight in order to bring
improvements. Regarding RL, Perez-Beltrachini and Lapata (2018) build an
instance-level reward which sums up word-level scores; Liu et al. (2019c) pro-
pose a reward based on document frequency to favor words from the source
table more than rare words; and Rebuffel et al. (2020b) train a network with a
variant of PARENT (Dhingra et al., 2019) using self-critical RL. Note that data
regularization techniques have also been proposed (Thomson et al., 2020; H.
Wang, 2019), but these methods require heavy manual work and expert in-
sights, and are not readily transposable from one domain to another.

From CTG to controlling hallucinations. Controlled Text Generation (CTG)
is concerned with constraining a Language Model’s output during inference
on a number of desired attributes, or control factors, such as the identity of
the speaker in a dialog setting (Li et al., 2016), the politeness of the generated
text or the text length in machine-translation (Kikuchi et al., 2016; Sennrich
et al., 2016a), or the tense in generated movie reviews (Hu et al., 2017). Earlier
attempts at neural CTG can even be seen as direct instances of DTT as it is cur-
rently defined: models are trained to generate text conditioned on attributes
of interest, where attributes are key-value pairs. For instance, in the movie re-
view domain, Ficler and Goldberg (2017) proposed an expertly crafted dataset,
where sentences are strictly aligned with control factors, being either content
or linguistic style aspects (e.g. tone, length).
In the context of dealing with hallucinations in DTT, Filippova (2020) recently
proposed a similar framework, by augmenting source tables with an addi-
tional attribute that reflects the degree of hallucinated content in the associ-
ated target description. During inference, this attribute acts as an hallucination
handle used to produce more or less factual text. As mentioned in Section 5.1,
we argue that a unique value can not accurately represent the correspondence
between a table and its description, due to the phrase-based nature of diver-
gences.

Based on the literature review, the lack of model control can be evidenced
when loss modification methods are used (Liu et al., 2019a; Rebuffel et al.,
2020b; H. Wang, 2019), although these approaches can be efficient and trans-
posed from one domain to another. On the other hand, while CTG deals with
control and enables choosing the defining features of generated texts (Filip-
pova, 2020), standard approaches rely on instance-level control factors that do
not fit with hallucinations, which rather appear due to divergences at the word
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FIGURE 5.2: The reference sentence of the example shown in
Fig. 5.1. Every token is associated to its Part-of-Speech tag and
hallucination score st. Words in red denote st < τ. The depen-
dency parsing is represented by labeled arrows that flow from
parents to children. Important words are kian, emadi, 29, july,

1992, british, track, and cyclist.

level. Our approach aims at gathering the merits of both trends of models and
is guided by previous statements highlighting that word-level is primary in
hallucination control. More particularly, our model differs from previous ones
in several aspects:

(1) Contrasting with data-driven approaches (i.e. dataset regularization)
which are costly in expert time, and loss-driven approaches (i.e. recon-
struction or RL losses) which often do not take into account key subtasks
of DTT (content-selection, world-level correspondences), we propose a
multi-branch modeling procedure which allows the controllability of the
hallucination factor in DTT. This multi-branch model can be integrated
seamlessly in current approaches, allowing to keep peculiarities of exist-
ing DTT models, while deferring hallucination management to a parallel
decoding branch.

(2) Unlike previous CTG approaches (Ficler & Goldberg, 2017; Filippova,
2020; Li et al., 2016; Sennrich et al., 2016a) which propose instance-level
control factors, the control of the hallucination factor is performed at the
word-level to enable finer-grained signal to be sent to the model.

Our model is composed of two main components: (1) a word-level alignment
labeling mechanism, which makes the correspondence between the input ta-
ble and the text explicit, and (2) a multi-branch decoder guided by these align-
ment labels. The branches separately integrate co-dependent control factors
(namely content, hallucination and fluency). We describe these components in
Sections 5.3 and 5.4, respectively.

5.3 Word-level Alignment Labels

We consider a DTT task, in which the corpus C is composed of a set of entity-
description pairs, (e, y). A single-entity table e is a variable-sized set of Te key-
value pairs xj := (k j, vj), j = 1, . . . , Te. A description y := y1:Ty is a sequence
of Ty tokens representing the natural language description of the entity; we
refer to the tokens spanning from indices t to t′ of a description y as yt:t′ . A
description is made of statements, defined as text spans expressing one single
idea (Appendix A.1 presents in detail the statement partitioning procedure).
We refer to the first index of a statement as ti, so that yti :ti+1−1 is the ith statement
itself. Fig. 5.1 shows a WikiBio entity made by 8 key-value pairs together with
its associated description.
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First, we aim at labeling each word from a description, depending on the
presence of a correspondence with its associated table. We call such labels
alignment labels. We drive the word-level labeling procedure on two intuitive
constraints: (1) important words (names, adjectives and numbers) should be
labeled depending on their alignment with the table, and (2) words from the
same statement should have the same label.

With this in mind, the alignment label for the tth token yt is a binary label: lt :=
1{st>τ} where st refers to the alignment score between yt and the table, and τ is
set experimentally (see Sec. 5.5.3). The alignment score st acts as a normalized
measure of correspondence between a token yt and the table e:

st := norm(max
x∈e

align(yt, x), y) (5.1)

where the function align estimates the alignment between token yt and a key-
value pair x from the input table e, and norm is a normalization function based
on the dependency structure of the description y. Fig. 5.2 illustrates our ap-
proach: under each word we show its word alignment score, and words are
colored in red if this score is lower than τ, denoting an alignment label equal to
0. Below, we describe these functions (Appendix A.1 contains reproducibility
details).

Co-occurrence-based alignment function (align(·, x)). This function assigns
to important words a score in the interval [0, 1] proportional to their co-occurrence
count (a proxy for alignment) with the key-value pair from the input table. If
the word yt appears in the key-value pair x := (k, v), align(yt, x) outputs 1;
otherwise, the output is obtained scaling the number of occurrences coyt,x be-
tween yt and x through the dataset:

align(yt, x) :=


1 if yt ∈ x
a · (coyt ,x−m)2 if m ≤ coyt ,x≤ M
0 if 0 ≤ coyt ,x≤ m

(5.2)

where M is the maximum number of word co-occurrences in the dataset vo-
cabulary and the row x, m is a threshold value, and a := 1

(M−m)2 .

Score normalization (norm(·, y)). According to the already stated assump-
tion (2) – words inside the same statement should have the same score – , we
first split the sentence y into statements yti :ti+1−1, via dependency parsing and
its rule-based conversion to constituency trees (Borensztajn et al., 2009; Han
et al., 2000; Hwa et al., 2005; Xia & Palmer, 2001). Given a word yt associ-
ated to the score st and belonging to statement yti :ti+1−1, its normalized score
corresponds to the average score of all important words in this statement:

norm(st, y) =
1

ti+1 − ti

ti+1−1

∑
j=ti

sj (5.3)

This in-statement average depends on both the specific word and its context,
leading to coherent hallucination scores which can be thresholded without af-
fecting the syntactical sentence structure, as shown in Fig. 5.2.
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5.4 Multi-Branch Architecture

The proposed Multi-Branch Decoder (MBD) architecture aims at separating
targeted co-dependent factors during generation. We build upon the standard
DTT architecture, an encoder-decoder with attention and copy mechanism,
which we modify by duplicating the decoder module into three distinct par-
allel modules. Each control factor (i.e. content, hallucination or fluency) is
modeled via a single decoding module, also called branch, whose output rep-
resentation can be weighted according to its desired importance. At training
time, weights change depending on the word currently being decoded, induc-
ing the desired specialization of each branch. During inference, weights are
manually set, according to the desired trade-off between information reliabil-
ity, sentence diversity and global fluency. Text generation is thus controllable,
and consistent with the control factors.

Figure 5.3 illustrates a training step over the sentence “Giuseppe Mariani was
an Italian art director”, in which Italian is a divergent statement (i.e. is not sup-
ported by the source table). While decoding factual words, the weight asso-
ciated to the content (resp. hallucination) branch is set to 0.5 (resp. 0) while
during the decoding of Italian, the weight associated to the content (resp. hal-
lucination) branch is set to 0 (resp. 0.5). Note that the weight associated to the
fluency branch is always set to 0.5, as fluency does not depend on factualness.

The decoding modules’ actual architecture may vary, as we framed the MBD
model from a high-level perspective. Therefore, all types of decoder can be
used, such as Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986),
Transformers (Vaswani et al., 2017), and Convolutional Neural Networks (Gehring
et al., 2017). The framework can be generalized to different merging strategies
as well, such as late fusion, in which the final distributions are merged, instead
of the presented early fusion, which works at the decoder states level.

In this Chapter, experiments are carried out on RNN-based decoders, weight-
ing their hidden states. As stated above, the Transformer architecture (Vaswani
et al., 2017) is perfectly compatible with our framework; however, its decoding
module is slower than RNNs at inference (Zhang et al., 2018), as it recomputes
the attentions over the whole sequence at every step. This drawback would
be worsened by the multi-branch architecture, hence the choice of sticking to
a more agile recurrent decoder.

The model works at the word level: character-based approaches, such as the
one presented in Chapter 4, are not appropriate, as they do not preserve the
one-to-one correspondence between word-level hallucination labels and the
neural model’s tokens. The need for word-level hallucination labels has been
discussed in Section 5.2.

Section 5.4.1 presents the standard DTT encoder-decoder architecture; Sec-
tion 5.4.2 shows how it can be extended to MBD, together with its peculiarities
and the underlying objectives and assumptions.

5.4.1 Standard DTT architecture

Neural DTT approaches typically use an encoder-decoder architecture (Wise-
man et al., 2017) in which (1) the encoder relies on a RNN to encode each
element of the source table into a fixed-size latent representation hj (elements
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FIGURE 5.3: Our proposed decoder with three branches asso-
ciated to content (in blue – left), hallucination (in red – middle)
and fluency (in yellow – right). Semi-transparent branches are

assigned the weight 0.

of the input table are first embedded into Te N-dimensional vectors, and then
fed sequentially to the RNN (Wiseman et al., 2017)), and (2) the decoder gener-
ates a textual description y using a RNN augmented with attention and copy
mechanisms (See et al., 2017). Words are generated in an auto-regressive way.
The decoder’s RNN updates its hidden state dt as:

dt := RNN(dt−1, [yt−1, Ct]) (5.4)

where yt−1 is the previous word and Ct is the context vector obtained through
the attention mechanism. Finally, a word is drawn from the distribution com-
puted via a copy mechanism (See et al., 2017).

5.4.2 Controlling Hallucinations via a Multi-Branch Model

Our objective is to enrich the decoder in order to be able to tune the con-
tent/hallucination ratio during generation, aiming at enabling generation of
hallucination-free text when needed. Our key assumption is that the decoder’s
generation is conditioned by three co-dependent factors:

• Content factor constrains the generation to realize only the information
included in the input;

• Hallucinating factor favors lexically richer and more diverse text, but may
lead to hallucinations not grounded by the input;

• Fluency factor2 conditions the generated sentences toward global syntac-
tic correctness, regardless of the relevance.

Based on this assumption, we propose a multi-branch encoder-decoder net-
work, whose branches are constrained on the above factors at word-level, as
illustrated in Fig. 5.3. Our network has a single encoder and F = 3 distinct
decoding RNNs, noted RNN f respectively, one for each factor. During each
decoding step, the previously decoded word yt−1 is fed to all RNNs, and a

2Wiseman et al. (2018) showed that the explicit modeling of a fluency latent factor improves
performance.
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final decoder state dt is computed using a weighted sum of all the correspond-
ing hidden states,

d f
t := RNN f (d f

t−1, [yt−1, Ct]) (5.5)

dt :=
F

∑
f=1

ω
f
t d f

t (5.6)

where d f
t and ω

f
t are respectively the hidden state and the weight of the f th

RNN at time t. Weights are used to constrain the decoder branches to the
desired control factors (ω0

t , ω1
t , ω2

t for the content, hallucination and fluency
factors respectively) and sum to one.

During training, their values are dynamically set depending on the alignment
label lt ∈ {0, 1} of the target token yt (see Sec. 5.5.3). While a number of
mappings can be used to set the weights given the alignment label, early ex-
periments have shown that better results were achieved when using a binary
switch for each factor, i.e. activating/deactivating each branch, as shown in
Fig. 5.3 (note that fluency should not depend on content and therefore its as-
sociated branch is always active).

During inference, the weights of the decoder’s branches are set manually by
a user, according to the desired trade-off between information reliability, sen-
tence diversity and global fluency. Text generation is then controllable and
consistent with the control factors.

5.5 Experimental setup

5.5.1 Datasets

We evaluated the model on two representative large size datasets, which have
been collected automatically and present a significant amount of table-text di-
vergences for training. Both datasets involve content selection and surface
realization, and represent a relatively realistic setting.

WikiBio (Lebret et al., 2016) contains 728, 321 tables, automatically paired
with the first sentence of the corresponding Wikipedia English article. Ref-
erence text’s average length is 26 words, and tables have on average 12 key-
value pairs. We use the original data partition: 80% for the train set, and 10%
for validation and test sets. This dataset has been automatically built from the
Internet; concerning divergences, 62% of the references mention extra infor-
mation not grounded by the table (Dhingra et al., 2019).

ToTTo (Parikh et al., 2020) contains 120, 761 training examples, and 7, 700 val-
idation and test examples. For a given Wikipedia page, an example is built
up by pairing its summary table and a candidate sentence, selected across the
whole page via simple similarity heuristics. Such a sentence may accordingly
realize whichever table cells, making content selection arbitrary; furthermore,
its lexical form may strongly depend on the original context, because of pro-
nouns or anaphoras. Divergences are of course present as well. Those issues
have been addressed by Parikh et al. (2020) by (1) highlighting the input cells
realized by the output, and (2) removing divergences and making the sen-
tence self-contained (e.g. replacing pronouns with their invoked noun or noun
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phrase). Fig. 5.6 exemplifies the difference between noisy and clean ToTTo
sentences. In our experiments, we limit the input to the highlighted cells and
use the original, noisy sentence as output. Noisy texts’ average length is 17.4
words, and 3.55 table cells are highlighted, on average.

5.5.2 Baselines

We assess the accuracy and relevance of our alignment labels against the ones
proposed by Perez-Beltrachini and Lapata (2018), which is, to the best of our
knowledge, the only work proposing such a fine-grained alignment labeling.

To evaluate our Multi-Branch Decoder (MBD), we consider five baselines:

• stnd (See et al., 2017), a LSTM-based encoder-decoder model with atten-
tion and copy mechanisms. This is the standard sequence-to-sequence
recurrent architecture.

• stnd_filtered, the previous model trained on a filtered version of the train-
ing set: tokens deemed hallucinated according to their hallucination
scores, are removed from target sentences.

• hsmm (Wiseman et al., 2018), an encoder-decoder model with a multi-
branch decoder. The branches are not constrained by explicit control
factors, but they are rather a neural transposition of the HSMM theo-
retical model (Yu, 2010). This model is used as a baseline to show that
the multi-branch architecture by itself does not guarantee the absence of
hallucinations.

• hier (Liu et al., 2019a), a hierarchical sequence-to-sequence model, with a
coarse-to-fine attention mechanism to better fit the attribute-value struc-
ture of the tables. This model is trained with three auxiliary tasks to
capture more accurate semantic representations of the tables: auxiliary
sequence labeling, text auto-encoder and multi-label classification.

• halWO (Filippova, 2020), a stnd-like model trained by augmenting each
source table with an additional attribute (hallucination ratio, value).

We ran our own implementations of stnd, stnd_filtered and halWO. Authors of
hier and hsmm models kindly provided us their WikiBio’s test set outputs. The
metrics described in Sec. 5.5.4 were directly applied on them.

5.5.3 Implementation Details

During training of our multi-branch decoder the fluency branch is always ac-
tive (ω2

t = 0.5) while the content and hallucination branches are alternatively
activated, depending on the alignment label lt: ω0

t = 0.5 (content factor) and
ω1

t = 0 (hallucination factor) when lt = 1, and conversely. The threshold τ
used to obtain lt is set to 0.4 using human tuning to optimize for highest ac-
curacy3. All hyperparameters were tuned in order to optimize the validation
PARENT F-measure (Dhingra et al., 2019). In particular, we use the [0.4 0.1 0.5]

3Note that accuracy is not heavily impacted by different choices of τ. We report in Ap-
pendix A.2 the respective accuracy scores of our proposed automated labels for different values
of τ.
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weight combination during inference. See Sec. 5.6.2 for a discussion about
weight combinations and Appendix A.2 for other implementation details.4

5.5.4 Metrics

To evaluate our model, we carried out (1) an automatic analysis and (2) a hu-
man evaluation for a qualitative analysis of generated sentences.

For the automatic analysis, we use five metrics:

• BLEU (Papineni et al., 2002), introduced in Section 4.3.2. Despite be-
ing the standard choice, recent findings show that it correlates poorly
with human evaluation, especially on the sentence level (Novikova et
al., 2017a; Reiter, 2018), and that it is a proxy for sentence grammar and
fluency aspects rather than semantics (Dhingra et al., 2019).

• PARENT (Dhingra et al., 2019) computes smoothed n-gram precision and
recall over both the reference and the input table. It is explicitly designed
for DTT tasks, and its F-measure shows “the highest correlation with
humans across a range of settings with divergent references in WikiBio.”
(Dhingra et al., 2019)

• The hallucination rate computes the percentage of tokens labeled as hal-
lucinations (Sec. 5.3).

• The average generated sentence length in number of words.

• The classic readability Flesch index (Flesch, 1962), which is based on
words per sentence and syllables per word, and is still used as a stan-
dard benchmark (Kosmajac & Keselj, 2019; Smeuninx et al., 2020; Stajner
& Hulpus, 2020; Stajner et al., 2020).

Finally, we perform qualitative evaluations of the results obtained on WikiBIO
and ToTTo, following the best practices outlined by van der Lee et al. (2019)
for intrinsic evaluation, including multiple annotators, well-defined ranking
criteria, Likert-scaled or continuous ranking, report of Inter-Annotator Agree-
ment, random ordering of instances. We selected ∼20 human annotators from
several countries across Europe, between 20 and 55 years old and proficient in
English. They have been assigned two different tasks: (i) hallucination label-
ing, i.e. the selection of sentence pieces which include incorrect information,
and (ii) sentence analysis, i.e. evaluating different realizations of the same ta-
ble according to their fluency, factualness and coverage. Scores are presented
as a 3-level Likert scale for Fluency (Fluent, Mostly fluent, or Not fluent) and
Factualness (likewise), while coverage is the number of cells from the table
that have been realized in the description. To avoid all bias, annotators are
shown a randomly selected table at a time, together with its corresponding
descriptions, both from the dataset and the models that are being evaluated.
Sentences are presented each time in a different order. Following Tian et al.
(2019), we first tasked three expert annotators to annotate a pilot batch of 50
sentences. Once confirmed that Inter-Annotator Agreement was approx. 75%
(a similar finding to Tian et al. (2019)), we asked 16 annotators to annotate a

4Code is given to reviewers and will be available upon acceptance.



Chapter 5. Controlling Hallucinations at Word Level 40

Labels Accuracy Precision Recall F-measure

PB&L 46.9% 21.3% 49.2% 29.7%
ours 87.5% 80.6% 59.8% 68.7%

Labels BLEU

PARENT

Precision Recall F-measure

PB&L 32.15% 76.91% 39.28% 48.75%
ours 40.51% 77.71% 45.01% 54.57%

TABLE 5.1: Performances of hallucination scores on the Wik-
iBio test set, w.r.t. human-designated labels (upper table) and
MBD trained with different labeling procedures (lower table).
Our model always significantly overpasses PB&L (T-test with

p < 0.005).

bigger sample of 300 instances (where each instance consists of one table and
four associated outputs), as Liu et al. (2019a).5

5.6 Results

We perform an extensive evaluation of our scoring procedure and multi-branch
architecture on the WikiBio dataset: we evaluate - the quality of the proposed
alignment labels, both intrinsically using human judgment and extrinsically
by means of the DTT downstream task and - the performance of our model
with respect to the baselines. Additionally, we assess the applicability of our
framework on the more noisy ToTTo benchmark, which represents a harder
challenge for today’s DTT models.

5.6.1 Validation of Alignment Labels.

To assess the effectiveness of our alignment labels (Sec. 5.3), we first compare
the alignment labels against human judgment, and then explore their impact
on a DTT task. As a baseline for comparison we report performances of PB&L.

Intrinsic performance. Tab. 5.1 (top) compares the labeling performance of
our method and PB&L against human judgment. Our scoring procedure sig-
nificantly improves over PB&L: the latter only achieves 46.9% accuracy and
29.7% F-measure, against 87.5% and 68.7% respectively for our proposed pro-
cedure. Perez-Beltrachini and Lapata (2018) report a F-measure of 36%, a dis-
crepancy that can be explained by the difference between the evaluation pro-
cedures: PB&L evaluate on 132 sentences, several of which can be tied to the
same table, whereas we explicitly chose to evaluate on 300 sentences all from
different tables in order to minimize correlation.

We remark that beyond F-measure, the precision of PB&L’s scoring procedure
is at 21.3% compared to 80.6% for ours, and recall stands at 49.2% against
59.8%. We argue that selecting a negative instance at random for training
their classifier leads the network to incoherently label words, without appar-
ent justification. See Figure 5.4 for two examples of this phenomenon; and

5An eyesight of our platform is available in Appendix A.3.
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key value

name patricia flores fuentes
birth_date 25 july 1977
birth_place state of mexico , mexico
occupation politician
nationality mexican
article_title patricia flores fuentes

Ref.: patricia flores fuentes -lrb- born 25 july 1977 -rrb- is a mexican
politician affiliated to the national action party .
PB&L: patricia flores fuentes -lrb- born 25 july 1977 -rrb- is a mexican politician
affiliated to the national action party .
Ours: patricia flores fuentes -lrb- born 25 july 1977 -rrb- is a mexican
politician affiliated to the national action party .

(A)

key value

name ryan moore
spouse nichole olson -lrb- m. 2011 -rrb-
children tucker
college unlv
yearpro 2005
tour pga tour
prowins 4
pgawins 4
masters t12 2015
usopen t10 2009
open t10 2009
pga t9 2006
article_title ryan moore -lrb- golfer -rrb-

Ref.: ryan david moore -lrb- born december 5 , 1982 -rrb- is an american
professional golfer , currently playing on the pga tour .
PB&L: ryan david moore -lrb- born december 5 , 1982 -rrb- is an american
professional golfer , currently playing on the pga tour .
Ours: ryan david moore -lrb- born december 5 , 1982 -rrb- is an american
professional golfer , currently playing on the pga tour .

(B)

FIGURE 5.4: WikiBio instances’ hallucinated words according
either to our scoring procedure or to the method proposed by
Perez-Beltrachini and Lapata (2018). PB&L labels word inco-
herently (a), and sometimes the whole reference text (b). In
comparison, our approach leads to a fluent breakdown of the

sentences in hallucinated/factual statements.
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Model BLEU↑
PARENT↑ Halluc.

rate↓
Mean sent.

length Flesch↓
Precision Recall F-measure

Gold - - - - 23.82% 19.20 53.80%
stnd 41.77% 79.75% 45.02% 55.28% 4.20% 13.80 58.90%
stnd_filtered 34.66% 80.90% 42.48% 53.27% 0.74% 12.00 62.10%
hsmm 35.17% 71.72% 39.84% 48.32% 7.98% 14.80 58.60%
hier 45.14% 75.09% 46.02% 54.65% 10.10% 16.80 56.20%
halWO 36.50% 79.50% 40.50% 51.70% - - -

MBD 41.56% 79.00% 46.40% 56.16% 1.43% 14.60 58.80%

TABLE 5.2: Comparison results on WikiBio. ↑ (resp. ↓ ) means
higher (resp. lower) is better. “Gold” refers to the gold stan-

dard, i.e. the reference texts included in the dataset.

Appendix A.4 for other comparisons. In contrast, our method is able to de-
tect hallucinated statements inside a sentence, without incorrectly labeling the
whole sentence as hallucinated.

Impact on a DTT downstream task. Additionally, we assess the difference of
both scoring procedures using their impact on the WikiBio DTT task. Specifi-
cally, Tab. 5.1 (bottom) shows the results of training MBD using either PB&L’s
or our labels. We observe significant improvements, especially in BLEU and
PARENT-recall (40.5% vs 32.2% and 45% vs 39.3%), showing that our labeling
procedure is more helpful at retaining information from training instances (the
system better picks up what humans picked-up, ultimately resulting in better
BLEU and recall).

5.6.2 Automatic System Evaluation

Comparison with SOTA systems. Tab. 5.2 shows the performances of our
model and all baselines according to the metrics of Sec. 5.5.4. Two qualitative
examples are presented in Figure 5.5 and more are available in Appendix A.4.

First of all, reducing hallucinations is reached with success, as highlighted
by the hallucination rate (1.43% vs. 4.20% for a standard encoder-decoder
and 10.10% for the best SOTA model on BLEU). The only model which gets
a lower hallucination rate (0.74%, corroborated by its PARENT-precision of
80.9%), stnd_filtered, achieves such a result at a high cost. As can be seen in
Figure 5.5 where its output is factual but cut short, its sentences are the short-
est and the most naive in terms of the Flesch readability index, which is also
reflected by a lower BLEU score. The high PARENT precision – mostly due
to the shortness of the outputs – is counterbalanced by a low recall: the F-
measure indicates the overall lack of competitiveness of this trade-off. This
shows that the naive approach of simply filtering training instances is not the
appropriate solution for hallucination reduction. This echoes (Filippova, 2020)
who trained a vanilla network on the cleanest 20% of the data and found that
predictions are more precise than those of a model trained on 100% but that
PARENT-recall and BLEU scores are low.

At the other extreme, the best model in terms of BLEU, hier, falls short regard-
ing precision, suggesting that often the generated text is not matched in the
input table; this issue is also reflected by the highest hallucination rate of all
models (10.10%). A reason could be the introduction of their auxiliary training
tasks which often drive the decoder to excess in mimicking human behavior.
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Weights
BLEU

PARENT

ω0 ω1 ω2 Precision Recall F-measure

0.5 0.0 0.5 38.90% 80.37% 44.96% 55.29%
0.4 0.1 0.5 41.56% 79.00% 46.40% 56.16%
0.3 0.2 0.5 42.68% 72.99% 45.81% 53.74%
0.2 0.3 0.5 22.64% 53.92% 32.96% 36.55%
0.1 0.4 0.5 2.03% 57.88% 4.82% 6.79%
0.0 0.5 0.5 0.32% 85.01% 1.02% 1.78%
0.0 0.4 0.6 1.07% 62.71% 2.47% 3.66%
0.0 0.3 0.7 2.81% 42.86% 6.15% 7.94%
0.0 0.2 0.8 7.30% 41.78% 16.58% 18.68%
0.0 0.1 0.9 15.51% 56.93% 32.85% 36.88%

TABLE 5.3: Performances of MBD on WikiBio validation set,
with various weight settings. Weights’ order is (ω0 – content,

ω1 – hallucination, ω2 – fluency).

While BLEU score improves, overall factualness of outputs decreases, showing
that the model picks up domain lingo (how to formulate ideas) but not do-
main insight (which ideas to formulate) (see Figure 5.5). This is in line with
(Filippova, 2020; Reiter, 2018) who argue that BLEU is an inappropriate metric
for generation tasks other than machine translation.

The analysis of hsmm, and especially of its relatively weak performance both
in terms of BLEU and PARENT, highlights the insufficiency of the multi-branch
architecture by itself. This reinforces the need of the additional hallucinations
supervision provided by our labeling procedure.

Finally, in the comparisons with halWO, we can see that while it achieves one of
the highest performances in term of precision (79.5%), this comes at the cost of
the lowest recall (40.5%) of all models and thus poor F-measure. This confirms
our hypothesis that, while effective at producing mostly factual content, mod-
eling hallucination only as a fixed value for a whole instance is detrimental
to the content generation procedure. Finer-grain annotations are required, as
shown by our model recall (46.4%), coupled with a robust precision (79.0%).

Weight impact on decoding. As we deal with a CTG system, we can guide
our network at inference to generate sentences following desired attributes.
The impact of different weight combinations is explored in Tab. 5.3. In par-
ticular, we can see that changing weights in favor of the hallucination factor
(top five lines) leads to decreases in both precision and recall (from 80.37% to
57.88% and 44.96% 4.82% respectively). We also observe that strongly relying
on the hallucinating branch dramatically impacts performances ([0.0 0.5 0.5]
obtains near 0 BLEU and F-measure), as it is never fed with complete, coherent
sentences during training. However, some performance can still be restored
via the fluency branch: [0.0 0.1 0.9] performs at 15.51% BLEU and 36.88% F-
measure.

It is interesting to note that the relaxation of the strict constraint on the con-
tent factor in favor of the hallucination factor, ([0.4 0.1 0.5]→ [0.5 0.0 0.5]) ob-
tains better performances (56.16% vs 55.29% F-measure). This highlights that
strictly constraining on content yields sensibly more factual outputs (79% vs
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name zack lee
birth_name zack lee jowono
nationality indonesian
occupation actor , boxer , model
birth_date 15 august 1984
birth_place liverpool , merseyside , england , uk
years_active 2003 – present
parents hendra and ayu jowono
spouse nafa urbach ( 2007 – present )
article_title zack lee

Gold zack lee ( born 15 august 1984 ) is an indonesian actor , model and boxer of british
descent .

stnd zack lee jowono ( born 15 august 1984 ) is an indonesian actor and model .
stnd_filtered zack lee ( born zack lee jowono ; 15 august 1984 ) is an indonesian actor .
hsmm zack lee jowono ( born 15 august 1984 ) is an indonesian actor who has appeared

in tamil films .
hier zack lee jowono ( born 15 august 1984 ) , better known by his stage name zack lee

, is an indonesian actor , model and model .
MBD[.4, .1, .5] zack lee ( born zack lee jowono ; 15 august 1984 ) is an indonesian actor , boxer

and model .

(A)

name wayne r. dynes
birth_date 23 august 1934
occupation professor , historian , and encyclopedist
article_title wayne r. dynes

Gold wayne r. dynes ( born august 23 , 1934 ) is an american art historian , encyclopedist
, and bibliographer .

stnd wayne r. dynes ( born august 23 , 1934 ) is an american historian and encyclopedist
.

stnd_filtered wayne r. dynes is a professor .
hsmm wayne r. dynes ( born august 23 , 1934 ) is an american historian , historian and

encyclopedist .
hier wayne r. dynes ( born august 23 , 1934 ) is an american professor of history at the

university of texas at austin .
MBD[.4, .1, .5] wayne r. dynes ( born august 23 , 1934 ) is an american professor , historian , and

encyclopedist .

(B)

FIGURE 5.5: Qualitative examples of our model and base-
lines on the WikiBio test set. Note that: (1) gold references
may contain divergences; (2) stnd and hsmm seem to perform
well superficially, but often hallucinate; (3) stnd_filtered doesn’t
hallucinate but struggles with fluency; (4) hier overgenerate
"human-sounding" statements, that lacks facutalness; (5) MBD
sticks to the fact contained by the table, in concise and fluent

sentences.
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Model Fluency Factualness Coverage

Gold 98.7% 32.0% 4.47
stnd_filtered 93.5% 86.1% 4.07
hier 97.4% 55.0% 4.45
MBD 99.6% 76.6% 4.46

TABLE 5.4: Results of the human evaluation on WikiBio6.

Model BLEU↑
PARENT↑ Human evaluation

Precision Recall F-measure Fluency↑ Factualness↑ Coverage

Gold(noisy) - - - - 97.1% (97.1) 91.2% (79.4) 3.618
stnd 21.27% 56.60% 25.16% 29.71% 55.9% (26.5) 53.0% (20.6) 2.824
stnd_filtered 19.48% 56.69% 22.31% 27.18% 29.4% (8.8) 70.6% (50.0) 2.706
halWO 17.06% 77.64% 22.65% 29.38% 61.7% (38.2) 61.8% (32.4) 2.725

MBD 18.35% 50.44% 25.25% 28.25% 91.2% (50.0) 85.3% (55.9) 3.613

TABLE 5.5: Comparison results on ToTTo. ↑ (resp. ↓ ) means
higher (resp. lower) is better. In human evaluation for Flu-
ency, reported are for “Fluent” and “Mostly Fluent”, with only

“Fluent” in parentheses. Same for Factualness.

80.37% precision), at the cost of constraining the model’s generation creativ-
ity (46.40% vs 44.96% recall). The [0.4 0.1 0.5] variant has more “freedom of
speech” and sticks more faithfully to domain lingo (recall and BLEU), without
compromising too much in terms of content.

5.6.3 Human evaluation

To measure subtleties which are not captured by automatic metrics, we report
in Tab. 5.4 human ratings of our model, two baselines and the gold. These
baselines have been selected because they showcase interesting behaviors on
automatic metrics: hier obtains the best BLEU score but a poor precision, and
stnd_filtered gets the best precision but poor BLEU, length and Flesch index.

First, coherently with (Dhingra et al., 2019), we found that around two thirds
of gold references contain divergences from their associated tables. Such data
also confirm our analysis on the stnd_filtered baseline: it’s training on truncated
sentences lead to an unquestionable ability to avoid hallucinations, while dra-
matically impacting both its fluency and coverage, leading to less desired out-
puts overall, despite the high PARENT-precision score.

The comparison between hier and MBD shows that both approaches lead to
similar coverage, with MBD obtaining significantly better performances in
terms of factualness. We also highlight that MBD is evaluated as being the
most fluent one, even better than the reference (which can be explained by the
imperfect pre-processing done by Lebret et al. (2016)).
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page_title Huge (TV series)
section_title Episodes
Original_air_date June 28 2010
U.S._viewers_(millions) 2.53

Gold (clean) The TV series , Huge , premiered on June 28 , 2010 with 2.53 million viewers.
Gold (noisy) The series premiered on June 28 , 2010 at 9 p.m. with 2.53 million viewers .
stnd On June 28 , 2010 , it was watched by 2.53 million viewers .
stnd_filtered was watched by 2.53 on June 28 , 2010 .
halWO June 28 , 2010 : Huge million viewers .
MBD[.4, .1, .5] Huge ’s first episode , aired on June 28 , 2010 , was watched by 2.53 million .

(A)

page_title LM317
section_title Specification
Parameter Output voltage range
Value 1.25 - 37

Gold (clean) LM317 produces a voltage of 1.25 V .
Gold (noisy) Internally the device has a bandgap voltage reference which produces a stable

reference voltage of Vref= 1.25 V followed by a feedback-stabilized amplifier with
a relatively high output current capacity .

stnd The Output is a Output range of 1.25 – 37 .
stnd_filtered range from 1.25 to 37 .
halWO Output voltage range 1.25 – 37 – 37 .
MBD[.4, .1, .5] The Output ’s range is approximately 1.25 .

(B)

FIGURE 5.6: Qualitative examples of MBD and halWO on
ToTTo. halWO’s poor generation quality is not detected by dis-
crete metrics. In contrast, MBD generates fluent and naively
factual sentences. Note that stnd and stnd_filtered have the
same behavior as on WikiBio: the former produces fluent but
nonsensical text; the latter generates very un-fluent, but fac-

tual, text.
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5.6.4 ToTTo: a considerably noisy setting

The ToTTo dataset is used in the following experiments to explore models’
robustness to the impact of extreme noise during training. As stated in Sec-
tion 5.5.1, we use as inputs only the highlighted cells, as content selection is arbi-
trary (i.e. the cells were chosen depending on the target sentence, and not vice
versa). On the other hand, we use as targets the noisy references, which may
contain both divergences and lexical issues. This setting is particularly chal-
lenging and is more effective in recreating a representational, hallucination-
prone real-life context than WikiBio. Other datasets (Gardent et al., 2017a;
Novikova et al., 2017c; Wen et al., 2015a) available in literature are too sim-
ilar to WikiBio concerning their goals and challenges, and are therefore less
interesting in this context.

Table 5.5 reports the performances of stnd, stnd_filtered, halWO and MBD with
regards to automatic metrics and human evaluation. Compared to their re-
spective performances on WikiBio, all models show significantly decreased
scores. They struggle at generating syntactically correct sentences but, at the
same time, they have still learned to leverage their copy mechanism and to
stick to the input. This behavior is illustrated in both examples of Fig. 5.6. In
particular, halWO’s high PARENT-precision score (77.64%) seems to be due to its
tendency to blindly copy input data without framing them in a sentence struc-
ture, as its low BLEU and PARENT-recall scores suggests (17.06% and 22.65%).
These lower scores are good indicators that the ToTTo task, as framed in this
Chapter, is difficult. Following the same evaluation protocol than for WikiBio,
we report human ratings of different models, also included in Table 5.5.

MBD’s factualness is judged favorably, with 55.9% hallucination-free texts,
and up to 85.3% texts with a single error at most. In contrast, halWO stands
at 32.4% and 61.8% for error-free texts and single-error texts respectively. In-
terestingly, stnd_filtered obtains the second best performance (70.6% texts with
a single error).

Fluency scores are also meaningful: halWO and MBD respectively obtain 61.7%
and 91.2%. Word-based filtering is not suitable for noisy datasets, as shown
by stnd_filtered’s worse fluency score, 29.4%.

As for coverage performances, our model MBD obtains the maximum cover-
age score 3.613, surpassing all baselines by at least 0.789 slots (the second best
coverage score is obtained by stnd at 2.824), and getting very close to the Gold
value (which stands at 3.618). These performances, and qualitative examples
of Figure 5.6, suggest that stnd_filtered and halWO try to reduce hallucinations
at the cost of missing some input slot, while MBD effectively balances both
goals.

The analysis of Factualness, Fluency and Coverage can be enhanced using
qualitative error analysis on randomly sampled generated texts (we report two
such examples in Figure 5.6). In particular, we want to highlight the following
considerations:

6Fluency reports the sum of “fluent” and “mostly fluent”, as “mostly fluent” often comes
from misplaced punctuation and doesn’t really impact readability. However, Factualness re-
ports only the count of “factual”, as “mostly factual” sentences contain hallucinations and can-
not be considered “factual”.
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• As most training examples are very noisy, sentence-level models fail at
learning from them. stnd_filtered has been trained on factual statements
only, at the cost of using mostly incomplete sentences during training.
On both examples of Figure 5.6, it generated truncated sentences, miss-
ing their subjects. Its relatively high Factualness and low Fluency scores
indicate that it did not learn to produce diverging outputs, nor complete
sentences. Differently, halWO generates incorrectly ordered sequences of
words extracted from the table (Fig. 5.6a), or repetitions (Fig. 5.6b). The
low number of training instances containing the input pair (hallucination
ratio, 0) does not allow to learn what a non-hallucinated sentence actu-
ally consists in.

• In contrast, our proposed finer-grained approach proves helpful in this
setting, as shown by the human evaluation: sentences generated by MBD
are more fluent and more factual. The multi-branch design enables the
model to leverage the most of each training instance, leading to better
performances overall.

• Finally, we acknowledge that despite over-performing other models, MBD
obtains only 55.9% of factual sentences. For instance, in Figure 5.6b, our
model does not understand that a range consists of two numbers. The
difficulty of current models to learn on very noisy and diverse datasets
shows that there is still room for improvement in hallucination reduction
in DTT.

5.7 Limitations and future work

We designed our alignment procedure to be general and easily reproducible
on any DTG dataset. One strength of our approach is that co-occurrences and
dependency parsing can be used intuitively to extract more information from
the tables than a naive word matching procedure. However, in the context of
tables mainly including numbers (e.g., RotoWire), the effectiveness of the co-
occurrence analysis is not guaranteed. A future work will be to improve upon
the co-occurrence analysis to generalize to tables which contain less semantic
inputs. For instance, the labeling procedure of Perez-Beltrachini and Lapata
(2018) might be revised so that adverse instances are not selected randomly,
which we hypothesize would result in more relevant labels.

Finally, experiments on ToTTo outline the narrow exposure to language of cur-
rent models when used on very noisy datasets. Our model has shown inter-
esting properties through the human evaluation, but it still shows itself to be
perfectible. Recently introduced large pre-trained Language Models, which
have seen significantly more varied texts, may attenuate this problem. In this
direction, adapting the work of (Z. Chen et al., 2020; Kale & Rastogi, 2020) to
our model could bring improvements to the results presented in this Chapter.
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Chapter 6

Conclusions and future work

This thesis focuses on the Data-To-Text generation task, characterized as the
development of systems that generate meaningful text from structured table
records. Most recent research has moved away from rule-based models, ac-
knowledging the better performance of end-to-end and data-driven methods,
in particular following the outbreak of deep learning. New challenges arise
from this shift, that are being faced by current research. Wiseman et al. (2017)
outlines some of them, such as the difficulty in performing content selection,
in keeping inter-sentence coherence, in avoiding redundance, and in being
faithful to the input. This thesis elaborates on this last issue.

In particular, we inquire on the properties a neural Data-To-Text Generation
system should own to ensure faithfulness of the generated outputs. The diffi-
culties deep learning models encounter on this matter arise from the fact that
they are data-driven to the core. The quality of the training data reflects itself
on the quality of the deployed model. Nevertheless, more modern deep learn-
ing systems are composed of a huge number of trainable parameters, which
results in the need for huge amounts of training data (LeCun et al., 2015).
Reasonably sized DTT corpora can only be constructed from internet sources,
resulting in roughly aligned source-target pairs (Dhingra et al., 2019). Non-
perfect alignment degrades the models’ performance. Manual data cleaning
is prohibitive for such amount of data: the development of faithful-ensuring
systems is therefore crucial (Filippova, 2020).

This work addresses the issue, arguing that faithful models for DTT must in-
clude two main features. First, the ability to copy input content to the output
should be able to establish strong links between the best-aligning parts of a
table and a corresponding utterance. Second, the ability to avoid the genera-
tion of information which is not included in the table weakens the alignment
between such table and the divergent part of the reference. Meanwhile, the
faculty of producing content that can be inferred from the table should not be
affected. Both desired features are taken into consideration: Chapter 4 intro-
duces a copy-enabled system working on characters, while Chapter 5 proposes
a framework for reducing hallucinations, composed of a labelling procedure
and a Multi-Branch Decoder. Experimental results validate the effectiveness
of the proposed frameworks, pushing the DTT field towards designing more
reliable and robust Natural Language Generation systems.

A qualitative analysis of the outputs generated by faithful-oriented systems
(Appendix A) draws attention to a tradeoff between sticking to the input facts
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and allowing for more complex (and risky) inferences. Once obtained suffi-
ciently precise models, their constraints should be relaxed to allow the inclu-
sion of some implicit information. In the biography domain, for example, the
age can be inferred from the year of birth, while the nationality should not be
deduced from the first name. Specialized submodules for logic reasoning (Shi
et al., 2020; P.-W. Wang et al., 2019) or mathematical deduction (J. Lee et al.,
2019; Schlör et al., 2020) may be integrated in neural DTT architectures. Be-
sides, handling numeric values can be included via a generalization of the
copy mechanism. As seen in Chapter 4, the binary soft switch determines the
current reasoning mode between generation and copy. An n-ary switch, in
contrast, would allow additional modes such as the numeric one. Another
research direction involves the development of neural submodules explicitly
tailored for macro and macro-planning, following the traditional pipeline ar-
chitecture described in Section 3.1 (Puduppully et al., 2019a). Such compo-
nents can naturally account for numeric and logic operations in the form of
actions.

As the proposed systems integrate a computational and memory overhead, ei-
ther in the training phase (such as the RNN switch described in Section 4.2.2)
or at inference (as in the Multi-Branch Decoder structure detailed by Section
5.4), future work should reduce such added costs. The introduction of the
Transformer (Vaswani et al., 2017) and, consequently, of pre-trained Language
Models (Devlin et al., 2019; Raffel et al., 2020), opens new possibilities in this
direction. The former’s architecture allows for more aggressive parallelization
strategies, resulting in faster optimization steps. The latter reduces the number
of steps required to obtain a well-working model, as the initial weights config-
uration already contains a general knowledge of natural language’s structure
and semantics. Recent developments in attention-based architectures, out-
lined in Sections 4.4 and 5.7, can be merged with the techniques proposed
and analyzed in this thesis, tracing a good path for bridging the gap between
research and production systems.
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Appendix A

Controlling Hallucinations at
Word Level

A.1 Alignment labels reproducibility

We consider as important words, i.e. nouns, adjectives or numbers, those which
are Part-of-Speech tagged as NUM, ADJ, NOUN and PROPN.

In order to apply the score normalization function norm(·, y), we separate sen-
tences y into statements yti :ti+1−1. To do so, we identify the set of introductory
dependency relation labels1, following previous work on rule-based systems
for the conversion of dependency relations trees to constituency trees (Boren-
sztajn et al., 2009; Han et al., 2000; Hwa et al., 2005; Xia & Palmer, 2001). Our
segmentation algorithm considers every leaf token in the dependency tree,
and seeks its nearest ancestor which is the root of a statement.

Two heuristics enforce the score normalization: (i) conjunctions and commas
next to hallucinated tokens acquires these lasts’ hallucination scores, and (ii) paired
parentheses and quotes acquire the minimum inner tokens’ hallucination score.

Part-of-Speech tagging has been done using the HuggingFace’s Transformers
library (Wolf et al., 2019) to fine-tune a BERT model (Devlin et al., 2019) on
the UD English ParTUT dataset (Sanguinetti & Bosco, 2015); Stanza (Qi et al.,
2020) has been exploited for dependency parsing.

A.2 Implementation details

Our system is implemented in Python 3.82 and PyTorch 1.4.03. In particular,
our multi-branch architecture is developed, trained and tested as an Open-
NMT (Klein et al., 2017) model. Sentence lengths and Flesch index (Flesch,
1962) are computed using the standard style Unix command.

Differently to Perez-Beltrachini and Lapata (2018), we did not adapt the orig-
inal WikiBio dataset4 in any manner: as we work on the model side, we fairly
preserve the dataset’s noisiness.

1acl, advcl, amod, appos, ccomp, conj, csubj, iobj, list, nmod, nsubj, obj, orphan,
parataxis, reparandum, vocative, xcomp; every dependency relation is documented in the
Universal Dependencies website.

2http://www.python.org
3http://www.pytorch.org
4https://github.com/DavidGrangier/wikipedia-biography-dataset

https://universaldependencies.org/u/dep/index.html
http://www.python.org
http://www.pytorch.org
https://github.com/DavidGrangier/wikipedia-biography-dataset
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Threshold Accuracy F-measure Precision Recall

0.0 70.2% 56.8% 42.2% 86.7%
0.4 86.0% 70.6% 67.0% 74.6%
0.8 85.8% 62.8% 77.3% 52.9%

TABLE A.1.1: Accuracy scores of our proposed word-level au-
tomated labels for different values of the threshold τ.

Model BLEU
PARENT

Precision Recall F-measure

MBD[.4, .1, .5] 42.50% 79.26% 46.09% 55.95%

TABLE A.1.2: The performances of our model on the WikiBio
validation set.

Word-level alignment labels are computed setting m = 5, following Mikolov
et al. (2013). As stated in Sec. 5.5.3, the threshold τ’s value is optimized for
highest accuracy via human tuning: Table A.1.1 shows accuracy scores of our
proposed automated labels for different values of τ.

We share the vocabulary between input and output, limiting its size to 20000
tokens. Hyperparameters were tuned using performances on the develop-
ment set: Tab. A.1.2 reports the performances of our best performing MBD on
the development set. Our encoder consist of a 600-dimensional embedding
layer followed by a 2-layered bidirectional LSTM network with hidden states
sized 600. We use the general attention mechanism with input feeding (T. Lu-
ong et al., 2015) and the same copy mechanism as See et al. (2017). Each branch
of the multi-branch decoder is a 2-layered LSTM network with hidden states
sized 600 as well.

Training is performed using the Adam algorithm (Kingma & Ba, 2015b) with
learning rate η = 10−3, β1 = 0.9 and β2 = 0.999. The learning rate is decayed
with a factor of 0.5 every 10000 steps, starting from the 5000th one. We used
minibatches of size 64 and regularized via clipping the gradient norm to 5 and
using a dropout rate of 0.3. We used beam search during inference, with a
beam size of 10.

All experiments were performed on a single NVIDIA Titan XP GPU. Num-
ber of parameters and training times are shown in Table A.1.3. Same model’s
differences between WikiBio and ToTTo are justified by the different datasets’
number of instances and input vocabulary sizes.

A.3 Annotation interface

The human annotation procedure is done via a web application specifically
developed for this research. Fig. A.2.1a shows how the hallucination tagging
user interface looked like in practice, while in Fig. A.2.1b a typical sentence
analysis page is shown.
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Dataset Model Size [M] Training time [h]

WikiBio

stnd 41 5
stnd_filtered 41 5
halWO 41 5
MBD 55 10

ToTTo

stnd 62 4
stnd_filtered 62 4
halWO 62 4
MBD 76 8

TABLE A.1.3: Sizes and training times of the implemented
models.

(A) Hallucination tagging

(B) Sentence analysis

FIGURE A.2.1: The human annotation tasks, as presented to
the annotators.
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A.4 Qualitative examples

Tables A.3.1 to A.3.5 show word-level labeling of WikiBio training examples.
Underlined, red words are hallucinated according either to our scoring proce-
dure or to the method proposed by Perez-Beltrachini and Lapata (2018).

In the subsequent tables, some WikiBio (A.3.6 to A.3.15) and ToTTo (A.3.16 to
A.3.18) inputs are shown, coupled with the corresponding sentences, either as
found in the dataset, or as generated by our models and baselines.
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key value

name susan blu
birth_name susan maria blupka
birth_date 12 july 1948
birth_place st paul , minnesota , u.s.
occupation actress , director , casting director
yearsactive 1968 – present
article_title susan blu

Ref.: susan maria blu -lrb- born july 12 , 1948 -rrb- , sometimes
credited as sue blu , is an american voice actress , voice director and
casting director in american and canadian cinema and television .
PB&L: susan maria blu -lrb- born july 12 , 1948 -rrb- , sometimes
credited as sue blu , is an american voice actress , voice director
and casting director in american and canadian cinema and television .
Ours: susan maria blu -lrb- born july 12 , 1948 -rrb- , sometimes
credited as sue blu , is an american voice actress , voice director and
casting director in american and canadian cinema and television .

TABLE A.3.1: Hallucinated words according either to our scor-
ing procedure or to the method proposed by Perez-Beltrachini

and Lapata (2018).

key value

name patricia flores fuentes
birth_date 25 july 1977
birth_place state of mexico , mexico
occupation politician
nationality mexican
article_title patricia flores fuentes

Ref.: patricia flores fuentes -lrb- born 25 july 1977 -rrb- is a
mexican politician affiliated to the national action party .
PB&L: patricia flores fuentes -lrb- born 25 july 1977 -rrb- is a
mexican politician affiliated to the national action party .
Ours: patricia flores fuentes -lrb- born 25 july 1977 -rrb- is a
mexican politician affiliated to the national action party .

TABLE A.3.2: Hallucinated words according either to our scor-
ing procedure or to the method proposed by Perez-Beltrachini

and Lapata (2018).
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key value

name ate faber
birth_date 19 march 1894
birth_place leeuwarden , netherlands
death_date 19 march 1962
death_place zutphen , netherlands
sport fencing
article_title ate faber

Ref.: ate faber -lrb- 19 march 1894 – 19 march 1962 -rrb- was a dutch
fencer .
PB&L: ate faber -lrb- 19 march 1894 – 19 march 1962 -rrb- was a dutch
fencer .
Ours: ate faber -lrb- 19 march 1894 – 19 march 1962 -rrb- was a dutch
fencer .

TABLE A.3.3: Hallucinated words according either to our scor-
ing procedure or to the method proposed by Perez-Beltrachini

and Lapata (2018).

key value

name alex wilmot sitwell
birth_date 16 march 1961
birth_place uk
occupation president , europe and emerging markets -lrb- ex-asia

-rrb- of bank of america merrill lynch
article_title alex wilmot-sitwell

Ref.: alex wilmot-sitwell heads bank of america merrill lynch ’s
businesses across europe and emerging markets excluding asia .
PB&L: alex wilmot-sitwell heads bank of america merrill lynch ’s
businesses across europe and emerging markets excluding asia .
Ours: alex wilmot-sitwell heads bank of america merrill lynch ’s
businesses across europe and emerging markets excluding asia .

TABLE A.3.4: Hallucinated words according either to our scor-
ing procedure or to the method proposed by Perez-Beltrachini

and Lapata (2018).
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key value

name ryan moore
spouse nichole olson -lrb- m. 2011 -rrb-
children tucker
college unlv
yearpro 2005
tour pga tour
prowins 4
pgawins 4
masters t12 2015
usopen t10 2009
open t10 2009
pga t9 2006
article_title ryan moore -lrb- golfer -rrb-

Ref.: ryan david moore -lrb- born december 5 , 1982 -rrb- is an
american professional golfer , currently playing on the pga tour .
PB&L: ryan david moore -lrb- born december 5 , 1982 -rrb- is an
american professional golfer , currently playing on the pga tour .
Ours: ryan david moore -lrb- born december 5 , 1982 -rrb- is an
american professional golfer , currently playing on the pga tour .

TABLE A.3.5: Hallucinated words according either to our scor-
ing procedure or to the method proposed by Perez-Beltrachini

and Lapata (2018).



Appendix A. Controlling Hallucinations at Word Level 58

title prince of noër
name prince frederick
image prinsen af noer.jpg
image_size 200px
spouse countess henriette of danneskjold-samsøe mary

esther lee
issue prince frederick , count of noer prince christian

louise , princess michael vlangali-handjeri
princess marie

house house ofschleswig-holstein-sonderburg-augustenburg
father frederick christian ii , duke of

schleswig-holstein-sonderburg-augustenburg
mother princess louise auguste of denmark
birth_date 23 august 1800
birth_place kiel
death_date 2 july 1865
death_place beirut
article_title prince frederick of

schleswig-holstein-sonderburg-augustenburg

Gold prince frederick emil august of schleswig-holstein-
sonderburg-augustenburg ( kiel , 23 august 1800 – beirut
, 2 july 1865 ) , usually simply known by just his first
name , frederick , “ prince of noër ” , was a prince of the
house of schleswig-holstein-sonderburg-augustenburg and a
cadet-line descendant of the danish royal house .

stnd prince frederick of schleswig-holstein-sonderburg-
augustenburg ( 23 august 1800 – 2 july 1865 ) was a member
of the house of schleswig-holstein-sonderburg-augustenburg
.

stnd_filtered prince frederick of schleswig-holstein-sonderburg-
augustenburg ( 23 august 1800 – 2 july 1865 ) was a german
.

hsmm prince frederick of schleswig-holstein-sonderburg-
augustenburg ( 23 august 1800 – 2 july 1865 ) was a danish
noblewoman .

hier prince frederick of schleswig-holstein-sonderburg-
augustenburg ( ) ( 23 august 1800 – 2 july 1865 ) was a
german prince of the house of schleswig-holstein-sonderburg-
augustenburg .

MBD[.4, .1, .5] prince frederick of schleswig-holstein-sonderburg-
augustenburg ( ; 23 august 1800 – 2 july 1865 ) was the
son of frederick christian ii , duke of schleswig-holstein-
sonderburg-augustenburg and princess louise auguste of
denmark .

TABLE A.3.6: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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name godgory
background group_or_band
origin karlstad , sweden
genre melodic death metal doom metal gothic metal
years_active 1992 – 2004
label nuclear blast
current_members matte andersson erik andersson
past_members mikael dahlqvist stefan grundel henrik lindström

fredric danielsson thomas heder
article_title godgory

Gold godgory was a swedish melodic death metal or death doom
metal band that was formed august 1992 by erik andersson (
drums ) and matte andersson ( vocals ) of no relation .

stnd godgory was a melodic death metal band from karlstad , swe-
den .

stnd_filtered godgory was a swedish metal band .
hsmm godgory ( 10 august 2004 – 4 january 2010 ) was a melodic

death metal band from karlstad , sweden .
hier godgory was a melodic death metal band from sweden , swe-

den .
MBD[.4, .1, .5] godgory was a swedish melodic death metal band from karl-

stad .

TABLE A.3.7: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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name christy mihos
image christy2006wp.jpeg
px|office massachusetts turnpike commission member
term_start july 1 , 1999
term_end july 1 , 2004
successor daniel grabauskas
birth_date 13 june 1949
birth_place brockton , massachusetts
nationality american
occupation convenience store franchise owner
spouse andrea mihos ( 1974-2013 ; divorce )
religion greek orthodox
alma_mater stonehill college
party republican
article_title christy mihos

Gold christy peter mihos is an american politician and businessman
from massachusetts .

stnd christy mihos ( born june 13 , 1949 in brockton , massachusetts
) is a former republican member of the massachusetts house
of representatives .

stnd_filtered christy mihos ( born june 13 , 1949 in brockton , massachusetts
) is an american politician .

hsmm christy mihos ( born june 13 , 1949 ) is an american politician
from the state of massachusetts .

hier christy mihos ( born june 13 , 1949 ) is an american politician
who served as the massachusetts state representative from
1999 to 2004 .

MBD[.4, .1, .5] christy mihos ( born june 13 , 1949 , in brockton , mas-
sachusetts ) is a former member of the massachusetts turnpike
commission .

TABLE A.3.8: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.

name duncan eagleson
nationality american
area painter , writer , penciller , colorist ,

sculptor , designer
article_title duncan eagleson

Gold duncan eagleson is an american self-trained painter and for-
mer graffiti artist .

stnd duncan eagleson is an american painter , writer , and penciller
.

stnd_filtered duncan eagleson is an american painter .
hsmm duncan eagleson ( born 1975 ) is an american comic book

painter and writer .
hier duncan eagleson is an american painter , illustrator , and de-

signer .
MBD[.4, .1, .5] duncan eagleson is an american painter , writer , and sculptor

.

TABLE A.3.9: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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name gerald warner brace
imagesize 208px
birth_date 24 september 1901
birth_place islip , long island , suffolk county , new york
death_date 20 july 1978
death_place blue hill , maine
occupation novelist , writer , educator , sailor , boat

builder
nationality american
genre fiction , non-fiction
article_title gerald warner brace

Gold gerald warner brace ( september 24 , 1901 – july 20 , 1978 )
was an american novelist , writer , educator , sailor and boat
builder .

stnd gerald warner brace ( september 24 , 1901 – july 20 , 1978 ) was
an american novelist , writer , and boat builder .

stnd_filtered gerald warner brace ( september 24 , 1901 – july 20 , 1978 ) was
an american novelist .

hsmm gerald warner brace ( september 24 , 1901 – july 20 , 1978 ) was
an american novelist and writer .

hier gerald warner brace ( september 24 , 1901 – july 20 , 1978 ) was
an american novelist , short story writer , educator , and sailor
.

MBD[.4, .1, .5] gerald warner brace ( september 24 , 1901 – july 20 , 1978 ) was
an american author , educator , sailor , and boat builder .

TABLE A.3.10: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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name robert b. murrett
image robertbmurrett.jpg
office 4th director of the national geospatial-intelligence agency

director of the office of naval intelligence
president george w. bush barack obama george w. bush
term_start 2006 2005
term_end 2010 2006
predecessor james r. clapper richard b. porterfield
successor letitia long tony l. cothron
alma_mater university at buffalo georgetown university joint military

intelligence college
branch united states navy
rank vice admiral 20px
article_title robert b. murrett

Gold vice admiral robert b. murrett was the fourth director of
the national geospatial-intelligence agency , from 7 july 2006
through july 2010 .

stnd robert b. murrett is a retired vice admiral of the united states
navy .

stnd_filtered robert b. murrett is the director of the national geospatial-
intelligence agency .

hsmm robert b. “ bob ” murrett ( born 1956 ) is an american naval
officer and the director .

hier robert b. murrett is a retired vice admiral in the united states
navy .

MBD[.4, .1, .5] robert b. murrett is a vice admiral in the united states navy .

TABLE A.3.11: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.



Appendix A. Controlling Hallucinations at Word Level 63

name rosane ferreira
image deputada federal rosane ferreira.jpg
office federal deputy for state of parná
term_start 1 february 2011
term_end actual
president dilma rousseff
order federal deputy for the state of roraima
birth_date 31 july 1963
birth_place clevelândia , parná , brazil
dead alive
nationality brazilian
party green party ( brazil )
article_title rosane ferreira

Gold rosane ferreira ( cleusa rosane ribas ferreira , born clevelândia
, paraná , july 31 , 1963 ) , is a nurse and a brazilian politician .

stnd rosane ferreira ( born 31 july 1963 in clevelândia , parná ) is a
brazilian politician .

stnd_filtered rosane ferreira ( born 31 july 1963 ) is a brazilian politician .
hsmm rosane ferreira ( born july 31 , 1963 ) is a brazilian politician

and the federal deputy .
hier rosane ferreira ( born 31 july 1963 ) is a brazilian politician and

the current federal deputy for the state of roraima .
MBD[.4, .1, .5] rosane ferreira ( born 31 july 1963 in clevelândia , parná , brazil

) is a brazilian politician .

TABLE A.3.12: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.

name polina miller
gender f
birth_date 23 november 1988
birth_place saint petersburg , russian sfsr , soviet union
discipline wag
article_title polina miller

Gold polina miller ( , born november 23 , 1988 in saint petersburg )
is a russian gymnast .

stnd polina miller ( born november 23 , 1988 ) is a russian artistic
gymnast .

stnd_filtered polina miller ( born november 23 , 1988 ) is a .
hsmm polina miller ( born 23 november 1988 in saint petersburg ) is

a russian artistic gymnast .
hier polina miller ( born 23 november 1988 ) is a russian rhythmic

gymnast .
MBD[.4, .1, .5] polina miller ( born 23 november 1988 in saint petersburg ,

russian sfsr , soviet union ) is a russian gymnast .

TABLE A.3.13: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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name pat burke
irish pádraig de búrca
sport gaelic football
code football
county dublin
province leinster
clposition corner forward
club kilmacud crokes
clubs kilmacud crokes
counties dublin
icprovince 1
birth_place dublin , ireland
article_title pat burke ( gaelic footballer )

Gold pat burke is an irish gaelic footballer who plays for dublin and
kilmacud crokes .

stnd pat burke is a gaelic footballer from dublin , ireland .
stnd_filtered pat burke is a gaelic footballer for dublin .
hsmm pat burke ( born in dublin ) is a former irish gaelic footballer

who played as a gaelic footballer .
hier pat burke is a former gaelic footballer for dublin .
MBD[.4, .1, .5] pat burke is a gaelic footballer from county dublin .

TABLE A.3.14: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.

name odiakes
background non_vocal_instrumentalist
birth_date march 22
origin tokyo , japan
instrument keyboard , synthesizer
genre j-pop , techno
occupation composer
years_active 1998 – present
article_title odiakes

Gold odiakes ( born march 22 ) is a japanese composer from tokyo ,
japan who has worked for a variety of visual novel companies
.

stnd , better known by his stage name odiakes , is a japanese com-
poser .

stnd_filtered odiakes is a japanese composer .
hsmm odiakes “ odiakes ” ( born march 22 ) is a japanese composer .
hier composer ( born march 22 ) is a japanese j-pop player .
MBD[.4, .1, .5] odiakes ( born march 22 in tokyo , japan ) is a japanese com-

poser .

TABLE A.3.15: A WikiBio input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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Club Istiklol
Season 2015
League Tajik League
page_title Parvizdzhon Umarbayev
section_title Club
section_text As of match played 29 July 2018

Gold In 2015 , Umarbayev signed for Tajik League FC Istiklol .
stnd Umarbayev joined Tajik League side Istiklol in 2015 .
stnd_filtered 2015 , he joined Istiklol in the Tajik League .
hal_WO Parvizdzhon joined Tajik League club Istiklol in 2015 .
MBD[.4, .1, .5] Umarbayev signed with Istiklol ahead of the 2015 Tajik League

season .

TABLE A.3.16: A ToTTo input table, coupled with the corre-
sponding sentence and the models-generated outputs.

Rank 5
Island Hulhumeedhoo
page_title List of islands of the Maldives
section_title Islands by area size
section_text This list ranks the top 10 islands of the Maldives by area .

Some islands in the Maldives , although geographically one
island , are divided into two administrative islands ( for
example , Gan and Maandhoo in Laamu Atoll ) .

Gold Hulhumeedhoo is the 5th largest island in Maldives .
stnd It has a area of Hulhumeedhoo km² ( Islands sq mi ) .
stnd_filtered is the fourth of the Maldives in Maldives .
hal_WO Hulhumeedhoo is the largest islands of the Maldives by area

size .
MBD[.4, .1, .5] Hulhumeedhoo is the fifth largest island by area size .

TABLE A.3.17: A ToTTo input table, coupled with the corre-
sponding sentence and the models-generated outputs.

Single 24.7 ( Twenty-Four Seven )
page_title Singular ( band )
section_title 2010

Gold In 2010 , Singular released its first single , “ 24.7 ( Twenty-Four
Seven ) ” .

stnd The first single , 24.7 ( Twenty-Four Seven ) , was released in
2010 .

stnd_filtered The band won the 24.7 ( Twenty-Four Seven ) .
hal_WO 24.7 ( Twenty-Four Seven ) .
MBD[.4, .1, .5] Singular released their first album , 24.7 ( Twenty-Four Seven

) .

TABLE A.3.18: A ToTTo input table, coupled with the corre-
sponding sentence and the models-generated outputs.
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