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Abstract

Most studies of genome organization have focused on intra-chromosomal (cis) contacts because
they harbor key features such as DNA loops and topologically associating domains. Inter-
chromosomal (trans) contacts have received much less attention, and tools for interrogating
potential biologically relevant trans structures are lacking. Here, we develop a computational
framework that uses Hi-C data to identify sets of loci that jointly interact in trans. This method,
trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an
input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in
three increasingly complex models of established trans contacts: the Plasmodium falciparum var
genes, the mouse olfactory receptor “Greek islands”, and the human RBM20 cardiac splicing factory.
We then apply trans-C to systematically test the hypothesis that genes co-regulated by the same
trans-acting element (i.e., a transcription or splicing factor) co-localize in three dimensions to form
“RNA factories” that maximize the efficiency and accuracy of RNA biogenesis. We find that many
loci with multiple binding sites of the same DNA-binding proteins interact with one another in
trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered
binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci.
We observe that these trans-interacting loci are close to nuclear speckles. These findings support
the existence of trans interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C
provides an efficient computational framework for studying these and other types of trans
interactions, empowering studies of a poorly understood aspect of genome architecture.

Running title: Identification of trans interacting DNA domains

Introduction

Mammalian interphase chromosomes are exquisitely folded in three dimensions to enable precise
regulation of gene expression (reviewed in Hafner and Boettiger 2023). The study of such organization has
been greatly advanced by sequencing-based chromosome conformation capture (3C) technologies, chiefly Hi-C
(Lieberman-Aiden et al. 2009), and by orthogonal imaging approaches (Jerkovic and Cavalli 2021). A rapidly
growing body of evidence indicates that while a sizeable portion of 3D genome architecture is relatively
invariant across cell types, specific dynamic changes play a critical role in regulating gene expression in
different cell types (Tan et al. 2023; Schaeffer and Nollmann, 2023; Winick-Ng et al. 2021; Duan et al. 2021) and
in disease (Krumm and Duan, 2019; Zheng and Xie, 2019).

Most of our current understanding of 3D genome architecture centers around chromatin folding within
individual chromosomes, that is, on intra-chromosomal or cis contacts. These contacts give rise to a variety of
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hierarchical features at different genomic scales, including different types of DNA loops (i.e., cohesin-mediated
looping and promoter-enhancer pairing), topologically associating domains (TADs; sub-megabase domains of
preferential self-interaction; Dixon et al. 2012}, and A/B compartments (chromosome-wide segregation of
active/inactive chromatin resulting from sparse intra-TAD interactions driven mainly by phase separation of
heterochromatin; Hildebrand and Dekker 2020). In contrast, interactions across different chromosomes (inter-
chromosomal or trans contacts) are poorly understood.

Chromosome-wide trans genome architecture of non-holocentric chromosomes in eukaryotic species
exhibits two non-mutually exclusive features: Rabl-like configuration (i.e., featuring centromere clustering,
telomere clustering, and/or a telomere-to-centromere axis) and chromosome territories (Hoencamp et al.
2021). The latter is typical of mammalian chromosomes, which tend to occupy distinct domains of the
interphase nucleus (Cremer and Cremer, 2010). Although chromosome territories limit the possibility for trans
contacts — compared to an alternative model of “spaghetti” DNA fibers (Longo and Roukos, 2021) — they do
not represent hard boundaries: regions that overcome territorial topological restrictions engage with each
other within mRNA and tRNA factories, polycomb domains, the nucleolus, nuclear speckles, and potentially
other nuclear subcompartments (Fig 1A; Bhat et al. 2021). Some of these trans contacts involve specific loci
whose interactions are important to gene regulation in enhancer hubs (Monahan et al. 2019), transcription
factories (Osborne et al. 2004, 2007; Papantonis et al. 2012), and splicing factories (Bertero et al. 2019).
Despite these and a few other examples, whose discovery was serendipitous or informed by domain-specific
prior knowledge (De Wit et al. 2013; Takizawa et al. 2008; Ito et al. 2016), the systematic discovery of
functional trans interactions is currently very challenging.

One reason for this difficulty is that in a typical Hi-C matrix the number of reads from trans contacts is 2 to 4
times smaller than that from cis contacts, depending on cell type and assay type. Furthermore, the number of
possible pairs of loci that can interact in trans is also much larger than the number of possible pairs of loci that
can interact in cis. Collectively, therefore, trans contact data is typically quite sparse. Most importantly, there is
a lack of robust statistical and computational approaches to confidently identify reproducible trans contacts. In
particular, available methods are limited to the identification of pairwise trans contacts (Cook et al. 2020) or
large patterns of trans contacts across broad subnuclear structures (Joo et al. 2023). There remains an
important knowledge gap in detecting smaller, specific sets of trans contacts (cliques) that could underlie
important local regulations of DNA and RNA biochemistry.

In this manuscript, we overcome this limitation by providing a computational framework that
systematically finds sets of jointly interacting loci from Hi-C data. The method, trans-C, takes as input a Hi-C
contact map as well as, optionally, one or more seed loci and uses a random walk with restart algorithm to
identify sets of trans-contacting loci. Trans-C provides a powerful way to uncover and measure various types of
trans interactions, empowering both discovery and hypothesis-driven studies of genome structure-function
relationships.

Results
Trans-C randomly walks through the Hi-C graph

Our goal is to algorithmically identify, from a given set of Hi-C data, a collection of genomic loci that exhibit
strong trans interactions with each other (i.e, a “clique”). We represent the Hi-C data as a matrix, referred to as
a “contact map”, in which each axis corresponds to the complete genome and entries in the matrix represent Hi-
C contact counts (Fig 1B). In practice, the genomic axes are discretized using fixed-width bins. The bin size is
thus inversely proportional to the effective resolution of the contact map. The contact map can be thought of as
the adjacency matrix of a corresponding Hi-C graph, in which nodes are genomic loci (bins) and edges are
weighted by the corresponding contact counts (Fig 1C). Our goal is thus to find dense subgraphs in this Hi-C
graph.

The problem of dense subgraph discovery arises in many application domains and consequently has been
very widely studied. Depending on the exact formulation and the notion of density, theoretical computer
science has shown that the problem complexity ranges from easily solved in linear time via a max flow
algorithm (Khuller and Saha, 2009) to computationally intractable (NP-hard; Charikar, 2000). Common
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techniques to approximate the latter case, to which our specific problem belongs, are greedy approaches, which
iteratively select the best option available at the moment without guaranteeing that this strategy will bring the
global optimal result, (Charikar, 2000) and semi-random models, which account for model errors by
incorporating both adversarial and random choices in instance generation (Bhaskara et al. 2010). Trans-C
approaches the discovery task of finding strongly interacting loci in trans using a random walk with restart
algorithm (Fig 1C). This general approach has been applied successfully in domains as diverse as web searching
(Gibson et al. 2005), protein remote homology detection (Weston et al. 2004), and gene functional prediction
(Mostafavi et al. 2008). Prior to the random walk operation, trans-C performs three pre-processing steps on the
provided Hi-C contact map. First, to control for sequencing and accessibility biases, Hi-C counts are ICE-
normalized (Imakaev et al. 2012). Second, the resulting matrix is processed using a binomial model to estimate
interaction p-values based on an empirical null model that accounts for potential biases arising from
chromosomal territorialization (i.e., small, gene-rich chromosomes generally occupying the nuclear interior and
interacting more with each other than with large, gene-poor chromosomes, and vice versa; Lieberman-Aiden et
al. 2009; Bertero et al. 2019). This step allows the algorithm to focus on interactions that stand out from the
noise. Third, the negative log p-values are used as weights for the network edges and subsequently refined
using a “donut filter” (Rao et al. 2014) to highlight points that are local maxima. The post-processed Hi-C
interaction matrix is finally represented as a weighted graph, in which each node corresponds to a bin and the
weight on each edge corresponds to the negative log p-value computed in the previous step. Trans-C then
carries out a random walk with restarts algorithm which exploits global patterns of connectivity on the graph.
Each walk is initiated from a randomly selected “seed” locus and moves from a node to a neighboring one
probabilistically based on the weight of the edge. A parameter a controls the probability that the walk will
restart at a new, randomly selected seed locus. Mathematically, as an infinite number of walks are performed,
the frequency with which each node is visited converges to a stationary distribution. This can be computed
analytically using the Perron-Frobenius theorem. We use the stationary distribution to obtain a ranked list of
trans interacting bins (Fig 1D), because the most frequently visited nodes are the ones that interact most
strongly with the seed loci. Highly ranked genes are most likely to be functionally related with the seed loci, and
therefore a putative clique is obtained by extracting the top ranked loci.

Trans-C uncovers the clustering of var genes critical for P. falciparum immune evasion

Having developed trans-C, we set out to test its ability to uncover known sets of loci that interact together in
trans in three different organisms. First, we focused on the protozoan Plasmodium falciparum, the parasite
responsible for the most lethal form of malaria. The three-dimensional organization of the P. falciparum
genome is strongly associated with gene expression (Ay et al. 2014), particularly for genes involved in
pathogenesis, immune evasion, and master regulation of gene expression (Bunnik et al. 2018). Among these are
the variant antigenic repertoire (var) genes, a family of 60 virulence genes responsible for the antigenic
variation of the parasite and evasion of the host immune system. Only a single var gene is active at a given time,
the other var genes being maintained in a perinuclear cluster of heterochromatic telomeres (Fig 24; Duffy et al.
2017). This cluster is an excellent test case to validate the ability of trans-C to uncover a group of biologically
important genes that co-localize in 3D from Hi-C data.

To this end, we examined Hi-C for two stages of the P. falciparum life cycle, trophozoite and schizont, both of
which are characterized by trans contacts between var genes (Ay et al. 2014). To visually highlight the var
cluster (Gardner et al. 2002), we extracted the bins containing var genes and also drew 60 bins at random from
the full set of genomic loci. The submatrix of trans contacts formed by the concatenation of the two sets of bins
showed a striking contrast between the var and non-var loci, as anticipated (Fig 2B). Next, we selected three var
genes at random to act as seed loci and examined whether trans-C (with @ = 0.5) could automatically identify
the remaining 57 var gene loci. For comparison, we used a method based on a greedy heuristic which iteratively
selects the bins that interact most strongly with the selected loci (Supplemental Methods). For each approach,
we plotted a receiver operating characteristic (ROC) curve, in which each element is a genomic bin, labeled as
positive (var gene) or negative (other loci; Fig 2C and Supplemental Fig S1A). In both Plasmodium life stages,
trans-C quickly found the majority of the var genes by ranking their corresponding bins highly: of the top 50
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bins, 28 contained a var gene, and all 60 var genes were recovered within the top 280 bins. Trans-C
outperformed the greedy heuristic baseline, with an area under the ROC curve (AUROC) of 0.94 compared to
0.88 for the trophozoite analyses (Fig 2C), and similar findings in schizont (Supplemental Fig S1A). This
demonstrates that a random walk approach is more suited to the task of identifying trans cliques even in the
context of a clear example.

As a negative control, we run trans-C starting from three seed loci that were randomly re-selected until a
trio could be identified so that its trans subnetwork showed the same or greater total interaction strength as
the one for the three var genes previously used as seeds. We repeated this procedure, which henceforth will be
referred to as “matched random control”, for a total of 1000 times in order to estimate empirical p-values for
the var genes-associated subnetwork: this proved extremely significant (p-value = 3 x 10-1%>and 3 x 10-171for
trophozoite and schizont, respectively; Fig 2C and Supplemental Fig S1A). Visualization of the var genes-
associated trans interaction subnetworks for the top 40 loci ranked by trans-C in both plasmodium life cycle
stages showcased the remarkable intricacy of highly significant contacts (Fig 2D and Supplemental Fig S1B).

Identification of Greek islands regulating the expression of mouse olfactory receptor
genes

To further validate trans-C we turned to the mouse and its larger diploid nuclear genome. In mouse
olfactory sensory neurons (mOSN), chromatin regions associated to olfactory receptor gene clusters from 18
chromosomes make specific and robust inter-chromosomal contacts that increase in strength with
differentiation (Lomvardas et al. 2006; Markenscoff-Papadimitriou et al. 2014; Monahan et al. 2017). These
contacts are orchestrated by intergenic olfactory receptor enhancers that form a multi-chromosomal super-
enhancer driving the monoallelic and stochastic expression of a single mouse olfactory receptor gene (Fig 3A;
Monahan et al. 2019). The mOSN-specific trans contacts are arguably the strongest trans contacts in a
mammalian genome known to date. The regions involved in such interactions were dubbed "Greek islands”,
since they are sprinkled across the chromosomes as the tiny islands are in the Mediterranean sea. Importantly,
in horizontal basal cells (HBCs), the quiescent stem cell progenitors of mOSNs, these inter-chromosomal
contacts are absent.

We applied trans-C to mOSN Hi-C data (Monahan et al. 2019), randomly selecting five Greek islands from
the previously reported list of 63 to use as seeds in order to measure the ability of trans-C to uncover the
remaining 58. Besides running a matched random control, as a biological negative control we used HBC Hi-C
data. As expected, trans-C successfully found the Greek islands in mOSNs (AUROC = 0.93; p-value = 6 x 10-194;
Fig 3B and Supplemental Table S1), while it failed to do so effectively in HBCs (AUROC = 0.71; Supplemental Fig
S2A). At a false positive rate of 10%, 95% of known Greek islands were identified in mOSNs, though we
speculate that some of the false positives may actually represent previously unidentified Greek islands.

To visually verify whether trans-C detected specific inter-chromosomal contacts, we selected the top 60
predicted bins from the ranked stationary distribution (30% of which are known Greek islands). For each pair
of loci from this set of 60, we extracted from the Hi-C data a 21 by 21 matrix centered at their interaction, and
then averaged these matrices (Fig 3C). The resulting contact heatmap exhibited very strong punctuated signal
in the middle, suggesting that the top 60 loci ranked by trans-C form specific interactions that are not driven by
larger, non-specific “neighborhood” features. Visualization of the Greek islands-associated trans interaction
subnetwork for the top 40 loci ranked by trans-C in mOSNs revealed a very dense network that greatly
increases in significance when HBCs differentiate in mOSNs (Fig 3D). Collectively, trans-C efficiently pinpoints
trans cliques even in a complex eukaryotic genome.

We also used the Greek island data set in mOSNs to evaluate how strongly the behavior of trans-C depends
on its primary parameter, the random walk restart probability a. We varied a between 0 (no restart) to 1
(restart after every step) in small increments. We observed that the performance of trans-C was stable in the
range [0.3, 0.7], while it deteriorated significantly in the two extremes when it approached 0 or 1
(Supplemental Fig S2B). This behavior is expected theoretically: when ais close to 0 the random walk restarts
infrequently and so its stationary distribution becomes less dependent on the seeding bins and is mostly
determined by the topology of the Hi-C graph. At the extreme, when a = 0 the walk is “memoryless” and entirely
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independent of the starting seed loci. On the other hand, when a is close to 1 there is little or no exploration
along the graph. In this setting, the Hi-C data is essentially ignored, and consequently no discoveries can be
made. As an additional benchmarking, we evaluated the performance of trans-C with respect to the number of
trans reads in the input Hi-C matrix. For this, we run trans-C with @ = 0.5 using 100% of the trans contacts
(@436 M) versus decreasing sub-samples down to EI87 M (Supplemental Fig S2C). Trans-C maintained a
comparable performance when 80% of the matrix was used, and an acceptable performance at 60% sub-
sampling, while 40% and 20% of contacts proved insufficient, as could be anticipated. Lastly, we re-
benchmarked trans-C against the greedy heuristic: also in the context of Greek island discovery in mOSNs, our
algorithm delivered a larger AUROC (0.93 versus 0.92; Supplemental Fig S2D).

Dissecting the RBM20 splicing factory during cardiomyocyte differentiation

We next sought to explore the sensitivity of trans-C in a more challenging model in the human genome. We
previously identified a network of gene loci that increase their association inter-chromosomally during cardiac
development of human pluripotent stem cells (hPSCs) and are targets of the muscle-specific splicing factor
RBM20 (Fig 4A). Functional experiments indicated that the main RBM20 target, the large TTN pre-mRNA
(which contains over 100 binding sites for RBM20), nucleates RBM20 foci. Secondary RBM20 targets interact in
trans with TTN at RBM20 foci, which maximizes the efficiency of their alternative splicing (Bertero et al. 2019).
We therefore dubbed the network a “trans interacting chromatin domain” (TID) and the resulting structure a
“splicing factory”. Of note, however, the cumulative interaction score of the TID calculated from shallow Hi-C
data (@90 M contacts) was only modestly enriched compared to a null model (p-value = 0.05). Thus, these
interactions are less easily detected by Hi-C, and are likely to be much more transient in nature compared to
those involving the Greek islands.

We set out to test whether trans-C would re-identify the RBM20 TID in an independent, more deeply
sequenced Hi-C dataset of hPSC differentiation into the cardiac lineage (B3 billion read pairs per sample; Zhang
et al. 2019). Besides various progenitors and early hPSC-derived cardiomyocytes (hPSC-CMs), this dataset also
contains late hPSC-CMs obtained after 80 days of in vitro differentiation. Moreover, older hiPSC-CMs were
FACS-purified using an expression reporter for the mature marker ventricular myosin light chain 2 (MLC-2v;
MYLZ gene). We first attempted to recover the trans network of 16 RBM20 target genes from our original
report, using five of them (TTN, CACNA1C, CAMKZD, KCNIP2, CAMK2G) as seeds for trans-C. Figure 4B shows the
ROC curve for day 0 (hPSCs), 15 (early CMs) and 80 (late CMs). The best performance was achieved using Hi-C
data from day 80 (AUROC = 0.84, p-value = 5 x 10-122; Supplemental Table S2); second was day 15 (AUROC =
0.78, p-value = 2 x 10-105; Supplemental Fig S3B); and last was day 0 (AUROC = 0.75, p-value = 6 x 10-10%
Supplemental Fig S3A). The improvement in ROC area as differentiation advances is in line with the important
role of RBM20 in cardiac maturation (Guo et al. 2012). RBM20 is not expressed at day 0, moderately expressed
at day 15, and maximally expressed at day 80. We note, however, that the performance at day 0 was better than
random, suggesting that some structure that brings the loci close together is present even in undifferentiated
cells. Benchmarking of trans-C against a greedy heuristic demonstrated a strong increase in performance for
late CMs (AUROC 0.84 versus 0.72; Supplemental Fig S3C), highlighting the advantages of the approach
particularly to find trans cliques that do not stand out strongly from the noise.

Encouraged by these results, we decided to use trans-C to expand our knowledge of the RBM20 TID. Our
original list of 16 genes was not the result of an unbiased search but rather reflected our prior knowledge of
RBMZ20 biology: these 16 genes were the known splicing targets of RBM20 in both human and rat hearts that
were also upregulated in hPSC-CMs. As an alternative strategy to identify genes involved in the RBM20 TID in
an unbiased fashion, we hypothesized that such genes would encode for transcripts most strongly bound by
RBMZ20 and thus enriched within the splicing factory. To test this hypothesis we leveraged a recent dataset that
measured RBM20 binding to RNAs using enhanced UV crosslinking and immunoprecipitation (eCLIP; Van
Nostrand et al. 2016).

We used RBM20 eCLIP data from hPSC-CMs (Fenix et al. 2021) and counted the number of peaks that fall in
each genomic bin (mapping RNAs to the encoding DNA loci). We selected the five bins with the most eCLIP
peaks, which contained the genes TTN, SLC8A1, OBSCN, NEATI, and LBD3. Using these as seed loci, we ran
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trans-C with a@= 0.5 on Hi-C matrices from differentiating hPSC-CMs (Zhang et al. 2019). Our goal was to test
whether trans-C would uncover the remaining 202 bins with eCLIP peaks. We note that this experimental setup
is very different from the previous one. Here, we used Hi-C data to find binding sites in an orthogonal eCLIP
dataset. Moreover, only a single seed locus, TTN, was shared between this analysis and the one reported in
Figure 4B. The resulting ROC curves (Fig 4C) show the same trend: best performance was at day 80 (AUROC
0.82; p-value = 4 x 10-120; Supplemental Table S3), second at day 15 (AUROC 0.79; p-value = 1 x 10-106;
Supplemental Fig S3E), and last at day 0 (AUROC 0.72; p-value = 4 x 10-%; Supplemental Fig S3D), consistent
with biological expectations.

Next, we performed a second performance recall analysis in the same trans subnetwork identified by trans-
C from RBM20 eCLIP data, but in which we restricted the list of RBM20 targets to those whose RNA is bound by
RBMZ20 on at least three sites and is differentially spliced in hPSC-CMs with RBM20 knocked out (Fenix et al.
2021). The resulting list of 45 high confidence RBM20 targets was efficiently recovered in day 80 hPSC-CMs,
with AUROC = 0.84 and a p-value of 2 x 10-125 (Supplemental Fig S3F), a performance improvement compared
to the full list of RBM20 bound loci.

Similarly to our observation for trans contacts between the Greek islands (Fig 3C), the aggregated contact
frequency heatmap for loci involved in the RBM20-associated trans interaction subnetworks identified from
RBM20 eCLIP data showed a clear punctuated pattern, supporting the spatial specificity of these interactions
(Fig 4D). Visualization of this subnetwork showed that it is quite dense and that it clearly increases in
significance when hPSC differentiate in CMs, and even more when CMs mature (Fig 4E). Similar results were
obtained for the subnetwork identified from established RBM20 targets (Supplemental Fig S3G).

Since the ENCODE Project generated a large number of Hi-C matrices for the left ventricle (LV; The ENCODE
Project Consortium 2012), we used this model to both evaluate the reproducibility of trans-C and determine
whether the RBM20 splicing factory could be identified in adult, fully mature cardiomyocytes. We ran trans-C
starting from the same five seed bins prioritized using RBM20 eCLIP data, and compared the resulting list of
ranked bins: the Pearson’s correlation for analyses in the 10 biologically independent LV samples was very high
(range 0.77 - 0.85; Supplemental Fig S3H), while negative control analyses in non-cardiac samples showed a
low correlation (range 0.50 — 0.70; Supplemental Fig S3H). The AUROC for recovering high-confidence RBM20-
bound mRNAs in LV Hi-C data was high (range 0.73 - 0.79), further supporting the existence of a measurable
RBMZ20-associated trans clique also in vivo.

In all, we conclude that trans-C captures even weak and/or unstable yet biologically meaningful trans
subnetworks associated with RNA biogenesis.

Loci strongly bound by DNA-binding proteins often exhibit significant interactions in
trans

The identification of dense subnetworks of trans Hi-C contacts that are enriched for RBM20 targets
supports our hypothesis that RNA biogenesis influences 3D chromatin organization by bringing into proximity
co-regulated nucleic acids, so as to maximize the efficacy and specificity of their processing (Fig 5A; Bertero
2021). We specifically propose that, as in the case of RBM20, “RNA factories” arise from the clustered binding of
trans-acting factors to one or more core co-regulated genes and/or their encoded transcripts. These, in turn,
recruit accessory targets of the same factors. This hypothesis predicts the existence of both transcription
factories specialized for certain transcription factors (TFs) and/or chromatin regulators, and other RNA
factories specialized for various RNA-binding and regulatory proteins. We set out to test this hypothesis
systematically using trans-C, as an example of its potential applicability to address biological questions.

First, we focused on DNA-binding proteins (DBPs), hypothesizing that the genes most strongly bound by a
given DBP would be associated with strong TIDs. To test this notion, we used the most deeply sequenced Hi-C
dataset reported to date: an ultra-deep Hi-C map of human GM12878 lymphoblastoid cells (Harris et al. 2023).
The ENCODE Project produced chromatin immunoprecipitation sequencing (ChIP-seq) data for 110 DBPs in
this cell line (The ENCODE Project Consortium 2012), providing an ample resource to test our hypothesis in a
systematic manner. For each ChIP-seq dataset we counted the number of peaks in each genomic bin.
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First, we took the 40 bins with the most peaks for each DBP and calculated the weight of the subnetworks
formed by these bins. The distribution of this subnetwork weight across all 110 DBPs is shown in pink in Figure
5B. For comparison, we randomly drew 1000 sets of 40 bins and plotted the distribution of their weight in gray.
Clearly, the subnetworks of loci selected based on ChIP-seq peak density formed stronger interactions in trans
than random sets of loci. This is a first important hint that many DBPs may be indeed involved in specific trans
contact networks.

Second, for each DBP individually, we formed a seed by selecting the five bins with the most peaks from its
corresponding ChlP-seq track, and we ran trans-C to identify a set of potential interactors in trans. We took the
top 40 predicted bins for a given DBP, and observed that these bins were enriched with ChIP-seq peaks not only
for the DBP that spawned the seed, but also for ChIP-seq peaks of other DBPs (Supplemental Fig S4A). This is
not surprising because many DBPs act in concert, and many loci contain proximal binding sites of several DBPs
(Ibarra et al. 2020). When examining the weights of subnetworks formed by trans-C (“Top 5 DBP-bound seeds”,
orange in Fig 5B), we noted that they were heavier on average than the subnetworks based on the ChIP-seq
signal only (“Top 40 DBP-bound loci”, pink). This observation validates that trans-C finds loci that interact even
more strongly in trans with the seed bins than just the bins most bound by the respective DBP.

We also assessed how well trans-C can build dense subnetworks when it is seeded from biologically
unrelated loci. To that end, we first drew 1000 times five random loci to use as seeds and ran trans-C (Fig 5B;
green). The subnetworks it built were significantly weaker than the DBP-based ones. This is likely due to the
fact that a randomly drawn seed set likely includes loci that are not interacting with one another, while the loci
in the DBP-based seed tend to have strong interactions in trans. Thus, in order to establish a more stringent
baseline, for each DBP we performed 1000 matched random controls with seeds of five random bins for each
DBP (Fig 5B, yellow). When using this matched random seed, the subnetworks that trans-C found were once
again weaker on average than the ones it found using DBP-based seed (Mann-Whitney U test p-value = 0.006).
At an individual level, the weight of subnetworks for 53% (58 out of 110) DBPs identified from the DBP-based
seeds were significantly stronger than those from matched random seeds (p-value < 0.05; Fig 5C). Visualization
of the two strongest subnetworks, associated to the TFs PAX5 and MAX, and the two most significant
subnetworks compared to their matched random controls, linked to the TF FOS and chromatin regulator
MLLT1, demonstrated that these are interconnected with strong significance (Fig 5D and Supplemental Fig 4D).

Next, we performed an additional control where matched random seeds were selected from a network that
was previously randomly shuffled to remove all specific signals resulting from inter-chromosomal structure: as
could be expected, the resulting cliques were on average the weakest recovered by trans-C (Fig 5B; light blue),
and individual comparisons for DBP-associated cliques were all significant compared to this type of control
(Supplemental Fig S4B). This confirms that inter-chromosomal genome architecture is far from random, and
that trans-C identifies signals much stronger than random noise. In all, these observations confirm the common
sense conception that the inter-chromosomal interactions of biologically unrelated loci are mostly noise, while
providing more rigorous support to the hypothesis that co-regulated loci are often enriched for trans contacts
(Bertero 2021).

To provide additional validation, we examined the strength of the DBP-associated cliques in an orthogonal
dataset based on split-pool recognition of interactions by tag extension (SPRITE; Quinodoz et al. 2022), a
proximity ligation-independent method to detect higher-order interactions within the nucleus. Specifically, we
processed a SPRITE interaction matrix for GM12878 cells (Quinodoz et al. 2018), and evaluated whether the
cliques trans-C identified using the Hi-C data exhibited strong interactions in this orthogonal SPRITE dataset.
All of the 110 DBP-based cliques showed much higher weight than a background of 1000 randomly drawn sets
of loci (p-value = 6 x 1048, Mann-Whitney U test; Supplemental Fig S5A). To use a more stringent background
model, we statistically assessed whether the trans-C-derived subnetworks for each of the analyzed DBPs were
stronger than their “matched random” controls in the orthogonal SPRITE data (Supplemental Fig S5B). We
observed that the majority (30 of 58) of the DBP-based subnetworks that were significantly stronger than their
matched random controls in the Hi-C data were also significantly stronger than their matched random controls
in the SPRITE data (Supplemental Fig S5C). Notably, our top five most significant cliques were all significant in
the SPRITE data. These findings suggest that trans-C reliably identifies cliques that exhibit strong interactions
in trans also when these are measured by proximity ligation-independent sequencing approaches.
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Lastly, we evaluated whether the loci that are part of a trans-C clique are physically closer to one another.
To that end, we used orthogonal imaging measurements with multiplexed error-robust fluorescence in situ
hybridization (MERFISH; Su et al. 2020). We computed the trans-interaction proximity matrix for loci in the
IMR-90 fibroblast cell line, and downloaded the corresponding Hi-C matrix along with the ChIP-seq tracks for
16 DBPs available in the ENCODE portal. Because the MERFISH study involved only 1041 loci, we devised a
two-fold experiment. First, we subsetted the Hi-C matrix to the loci surveyed in the MERFISH study and ran
trans-C using the five loci most bound by a given DBP as a seed. We calculated the average trans-proximity in
the MERFISH dataset for the loci in the subnetworks trans-C found using the Hi-C data, and compared them to
1000 randomly selected sets of loci. We found that the trans-C cliques exhibited significantly higher proximity
in the orthogonal imaging dataset (p-value = 3 x 10-11, Mann-Whitney U test; Supplemental Fig S6A). Second,
we ran trans-C on the full Hi-C matrix with the five loci most bound by a given DBP as a seed to obtain a ranking
of all loci, and then we looked at the proximity of the 40 MERFISH loci that were ranked closest to the top of the
trans-C ranking versus the proximity of the 40 MERFISH loci that were ranked closest to the bottom. We
observed that for all DBPs the trans-C top-ranked MEFISH loci had significantly higher proximity than the
bottom-ranked ones (p-value = 3 x 10-5, binomial test; Supplemental Fig S6B). These data extend the cross-
validation of trans-C predictions of DBP-associated trans cliques from Hi-C data with orthogonal methods,
including those based on imaging.

DNA-binding-protein-associated trans cliques are proximal to nuclear speckles

Our hypothesis is that DBP-associated cliques represent specialized RNA factories. To test this, we
examined the nuclear localization of loci involved in trans interacting subnetworks identified by trans-C.
Specifically, we asked whether they are near nuclear speckles, membraneless subnuclear organelles involved in
various aspects of DNA and RNA metabolism (Galganski et al. 2017). To that end, we turned to data generated
by tyramide signal amplification sequencing (TSA-seq; Chen et al. 2018). TSA-seq is an experimental protocol
that provides a “cytological ruler” for estimating mean chromosomal distances from nuclear landmarks
genome-wide. We used the log, fold change of TSA-seq signal compared to an input control from the
lymphoblastoid K562 cell line (Chen et al. 2018). This measurement captures the distance to a target protein
from loci genome-wide, with higher values corresponding to shorter distances and lower values to longer
distances. First, for each DBP subnetwork we calculated the average TSA-seq signal strength when probing the
SON protein, which plays a crucial role in the formation of nuclear speckles. Indeed, the SON TSA-seq score is
proportional to the cytological distance of genes from nuclear speckles, and that it can be even calibrated to
estimate mean distance in micrometers (Chen et al. 2018). Next, as a control, for each DBP we took the 40 bins
ranked lowest by trans-C but containing at least one ChIP-seq peak, and we compared their average SON TSA-
seq score to that of the trans-C-identified subnetwork (Fig 5E). We observed a statistically significant shift to
higher values for the trans-C subnetworks, supporting the conclusion that these loci are closer to nuclear
speckles. An analogous analysis leveraging on TSA-seq data for phosphorylated SC35 (p-SC35), a splicing factor
that also marks nuclear speckles, led to similar results (Fig 5F). We noticed that cliques that were significantly
stronger than their matched random controls appeared to be particularly close to nuclear speckle markers,
particularly SON (Fig 5E). Indeed, the SON TSA-seq score was significantly higher for these cliques compared to
the other cliques (Fig 5G). Collectively, these observations suggest that several DBP-associated cliques
identified by trans-C represent RNA factories located at nuclear speckles.

Examining the distribution of the trans-C subnetwork weights identified for different DBPs (Fig 5B, orange)
we noticed a bimodal distribution, indicating that some DBPs are associated with stronger TIDs. This
bimodality did not correlate with differences in the expression level of the two groups of DBPs, nor in their
preference to bind to loci in the A or B compartments (Supplemental Fig S4C). Intrinsically disordered regions
(IDRs) within proteins, which lack a defined tertiary structure and are thus prone to self-aggregation, are
emerging as an important mediator of subcellular condensates involved in multiple aspects of cell function,
including nuclear regulations (Hirose et al. 2023; Wright and Dyson 2015). We thus investigated the correlation
between the intrinsic disorder in DBP structure and the strength of the trans-C subnetworks they are
associated with. For this analysis, we took the DBPs whose seeds gave rise to the strongest and weakest
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subnetworks (top and bottom 25% along the Y axis in Fig 5C; Supplemental Table S4). We calculated the
average intrinsically disordered protein (IDP) score for each DBP in the two groups (Meszaros et al. 2018}, and
plotted them in Figure 5H. The difference between the two groups was statistically significant (Mann-Whitney
U test p-value = 1.4 x 10-5), suggesting that the DBPs with more intrinsically disordered regions form stronger
interactions in trans. In all, trans-C allowed us to identify a large set of DBP enriched for IDR regions that are
involved in strong TIDs proximal to nuclear speckles and that may thus be important in efficient transcriptional
regulation of their target genes.

Selected RNA-binding proteins are associated to significant nuclear speckle-proximal
trans cliques

Encouraged by the results on DBP subnetworks, we also examined whether RNA-binding proteins (RBPs)
are generally associated with TIDs. Only a few RBP binding profiles are available for GM12878. Thus, for this
analysis we turned to K562 cells, another human lymphoblastic line, for which ENCODE reports 139 eCLIP
datasets and a deep Hi-C matrix. Similar to our DBP analysis, we counted the number of peaks in each genomic
bin for each RBP (mapping RNAs to the encoding DNA loci). Then, for each RBP individually, we formed a seed
by selecting the five bins with the most peaks and ran trans-C to identify a set of potential interactors in trans.
To form a null model per RBP, we repeatedly drew 1000 contact frequency-matched random seeds. We report
the average total weight of the matched random seeds compared to the RBP seed in Figure 6A. Most RBP
subnetworks built by trans-C were comparatively as dense as those from the corresponding matched random
control, lying broadly along the y = x line. Nevertheless, several outliers were notably denser. To assess this
observation quantitatively we performed a signed ranked test per RBP and FDR controlled the corresponding
p-values. Thirteen proteins had corrected p-values lower than 0.05, which we considered as a significance
threshold (indicated in red in Fig 6A and listed in Supplemental Table S5). Distinctly from DBPs, RBPs
associated with significantly stronger trans-C subnetworks were not characterized by higher IDP scores
(Supplemental Fig S7A), indicating that other characteristics may explain their specific behavior in trans
genome organization.

We repeated the analyses of TSA-seq data and observed a very strong and significant global correlation
between the trans-C subnetworks and both SON and p-SC35 signal (Fig 6B and Supplemental Fig S7B). This
indicates that the trans-C eCLIP subnetworks are close in cytological distance to nuclear speckles. This same
trend manifested for POL1RE TSA-seq signal, a measurement of proximity to transcription factories
(Supplemental Fig S7C). We observed the opposite result when we examined the Lamin A TSA-seq signal,
indicating that the trans-C subnetworks are significantly further away from the nuclear lamina (Figure 6C). This
finding is in line with the notion that sites of active RNA biogenesis are localized in the euchromatic
nucleoplasm and away from heterochromatin regions associated with the nuclear lamina.

Visualization of significant RBP-associated subnetworks showed that these are noticeably interconnected
(Fig 6D), more so than DBP-associated subnetworks of similar strength (Fig 5D); on the other hand, the
individual pairwise interactions were less significant, possibly due to a more transient nature. In all, trans-C
allowed us to identify a subset of RBPs associated with nuclear speckle- and transcription factory-proximal
TIDs that may contribute to gene regulation.

Discussion

Potential interactions between pairs of loci on different chromosomes occupy 90-95% of the pairwise 3D
DNA contact space (Supplemental Table S6) and a sizable fraction of experimentally measured interactions
(Supplemental Table S7). Although in certain species whose nucleus is characterized by chromosome
territories — such as humans and other mammals — a large fraction of trans contacts are likely nonspecific,
illuminating an even small fraction of specific and functional inter-chromosomal interactions may provide
important advances in our understanding of nuclear mechanisms such as transcription and splicing. In this
context, trans-C is an important step towards refined analytical methods to probe the trans contact space for
functional gene networks.
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The study of trans contacts requires statistical methods designed for the specific task at hand. Approaches
devised for the analysis of cis interactions control for some biases that are not applicable to trans ones, such as
correction for the linear genomic distance between the interacting loci. To date, most analytical tools for Hi-C
data have been limited to cis interactions (Lin et al. 2019). Recent network-based strategies to study inter-
chromosomal interactions from bulk and single cell Hi-C (Kaufmann et al. 2015; Bulathsinghalage and Liu,
2020; Joo et al. 2023) proposed probabilistic models that focus on identifying large patterns of trans contacts
(i.e., those involved in nuclear speckles and nucleoli) rather than small sets of interactions linked to a specific
process. Trans-C, in contrast, controls for chromosome territory biases to identify cliques that “stand out” from
other trans interactions resulting from the random intermixing of neighboring chromatin domains. Given that
the combinatorial number of possible sets is astronomical (4.7 x 10131 for sets of 40 loci in the human genome
binned at 100 kb resolution), this problem cannot be solved directly. Trans-C addresses this challenge by
applying a random walk algorithm to obtain a highly reproducible, approximate solution.

We first validate the ability of trans-C to detect known examples of functional trans contacts. We find that it
outperforms a simple greedy heuristic even in the case of the small haploid genome of P. falciparum (22.9 Mb),
which is characterized by remarkable trans contacts among var genes. In more complex and larger mammalian
genomes, trans-C not only identifies with high precision the mOSN Greek islands, but also the less striking
example of trans contacts represented by the RBM20 splicing factory. Thus, trans-C may find applicability
across nuclear genomes with different sizes and types of organization, and trans contacts of varying strength.

We demonstrate the broader utility of trans-C by using it to systematically search for trans cliques around
loci most strongly bound by one of many DBPs or RBPs. These analyses support the existence of alarge number
of statistically significant TIDs readily measurable from Hi-C data, particularly in the case of intrinsically
disordered DBPs. Orthogonal analyses of TSA-seq data confirm that such loci are proximal to nuclear speckles.
The concept of “bookmarked” transcription factories, Pol II clusters that are specifically enriched for a set of
DBPs and their target loci, was proposed over a decade ago (Cook 2010). However, examples of this
phenomenon have been sparse (reviewed in Bertero 2021). Our analysis of 110 DBPs provides an important
piece of evidence to support this model for over 50% of such DBPs, including leukemia-associated TFs (i.e.,
PAX5, MAX, and FOS) and chromatin regulators (i.e.,, MLLT1; Sigvardsson 2023; Zhou et al. 2018). Nevertheless,
a mechanistic dissection of these leads will be required to further validate this model.

The few RBPs associated with significant TIDs are involved in a wide variety of functions. Not only do we
identify several factors involved in major and minor spliceosomes (PRPF8 and BUD13), but we also identify
alternative splicing regulators (ZRANB2), a multifunctional RNA processing factor (TARDBP), a component of
the RNA exosome complex (EXOSC10), a ribosomal protein (RPS11), and even a DNA helicase involved in
homologous recombination (WRN). We speculate that these factors exemplify a wide range of chromatin
structures involving both cis and trans interactions that regulate not only transcription but also other aspects of
nucleic acid biology such as DNA replication and repair, or various aspects of RNA biogenesis. In line with this
hypothesis, recent evidence published during the revision of our manuscript supports the notion that genome
organization around nuclear speckles drives mRNA splicing efficiency (Bhat et al. 2024). Notably, several of the
RBPs highlighted by our trans-C analysis are known to be mutated in severe human monogenic diseases: PRPF8
in retinitis pigmentosa (McKie et al. 2001), WRN in Werner syndrome (Yu et al. 1996), and TARDBP in
amyotrophic lateral sclerosis (Sreedharan et al. 2008). Moreover, mutations in ZRANB2 have been linked to
unfavorable prognosis in breast and liver cancer (Tanaka et al. 2020), while RPS11 has been shown to be a key
player in poor outcomes of glioblastoma patients (Dolezal et al. 2018). Whether disorganization of trans
genome architecture is implicated in the pathogenesis of these diseases is an interesting topic for future
investigation.

Using trans-C we confirmed the existence of significant RBM20-associated trans cliques in both hPSC-CMs
from a different laboratory and in vivo samples of the human left ventricle. These findings support the
physiological relevance of muscle-specific inter-chromosomal splicing factories involving RBM20. We have
previously shown that preventing TTN transcription disrupts RBM20 clustering, decreases the proximity of
RBMZ20 targets to the TTN locus, and impairs their RBM20-dependent alternative splicing in trans (Bertero et
al. 2019). TTN is the most commonly mutated gene in both familial and sporadic dilated cardiomyopathy (DCM;
Herman et al. 2012; Kayvanpour et al. 2017). While RBM20 is mutated in only B2% of DCM patients, it leads to
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a particularly aggressive disease characterized by conduction system disorders (230%), malignant ventricular
arrhythmia (@44%) and a rapid progression to heart failure (Kayvanpour et al. 2017; Refaat et al. 2012). We
and others recently showed that RBM20 mutations in the RS domain hotspot lead to nuclear mislocalization of
RBMZ20 and severe changes in gene expression (Fenix et al. 2021; Schneider et al. 2020). We speculate that
these or other mutations in RBM20, TTN, and /or other RBM20-associated targets may lead to disease in part
through disruption of inter-chromosomal genome architecture. Trans-C will be a useful instrument in testing
this hypothesis.

Although we validate and apply trans-C using seed loci selected from a priori hypotheses about inter-
chromosomal genome architecture, either related to specific genes or to a general mechanism, trans-C can be
run using all possible sets of seeds of a given size to conduct discovery. However, this approach is
computationally challenging since the number of sets of possible seeds can become combinatorially very large.
Moreover, the strongest cliques may not necessarily be the most biologically interesting, as showcased by our
example for RBM20, which would not have stood out in an unbiased analysis of all hPSC-CM cliques.

It is important to point out that while trans-C identifies sets of loci that significantly interact with one
another, this does not rule out the possibility that some of these interactions may be biologically unrelated.
Indeed, in many cases, if we select seed bins at random, requiring only that they display trans interactions
comparable in strength to those involving genes most strongly bound by DBPs or RBPs, we observe that trans-C
sometimes identifies strong cliques. This observation is in line with the understanding that in mammals active
chromatin tends to be situated at the periphery of chromosome territories (Di Pierro etal. 2016,2017; Cheng et
al. 2020; Su et al. 2020). Thus, while statistical assessment of trans-C results can allow the identification of
cliques that are significantly stronger than matched random controls, a sizable portion of the signal is likely to
nevertheless arise from compartmental interactions. Accordingly, predictions of novel cliques should be
confirmed via orthogonal methods or experimentally validated for their biological significance, particularly if
trans-C is applied to discovery research with no a priori hypothesis.

Another limitation to keep in mind is that the performance of trans-C analyses is strongly dependent on the
sequencing depth of the Hi-C matrices. This could represent a bottleneck, since the generation of ultra-deep
matrices not only requires substantial resources, but also large enough cell numbers to capture a sufficient
number of contacts for each locus. For rare samples, this may be infeasible even if the economic resources were
available. When challenged by this situation, a compromise would be to reduce the resolution of genomic
binning at the expense of increased noise and more complex biological interpretation of results.

Overall, our work focuses on poorly studied between-chromosome contacts and provides an efficient
computational framework for identifying potentially biologically important sets of loci that interact in trans. We
demonstrate the flexibility and sensitivity of trans-C and provide examples of how our approach can be used to
identify candidate gene sets for subsequent hypothesis-driven studies. Application of trans-C to the growing
number of Hi-C datasets from the ENCODE (The ENCODE Project Consortium 2012) and 4D Nucleome
consortia (Reiff et al. 2022) will reveal novel cell- or disease state-specific trans networks. We also provide
preliminary evidence that trans-C also allows exploration of SPRITE data (Quinodoz et al. 2018); minor
adaptations of the approach will enable investigation of other proximity-ligation independent assays, such a
GAM (Beagrie et al. 2017), and will collectively offer the potential to accurately characterize inter-chromosomal
architecture at varying spatial resolutions.

Methods

Overview

The full mathematical formulation of trans-C is reported in the Supplemental Methods. In short, trans-C
takes as input a Hi-C contact matrix H of interaction counts and an initial set S of loci of interest (“seed loci”);
after processing, it outputs a set of loci U (containing S) that interact strongly together in trans. In practice, we
model the Hi-C interaction matrix H as a weighted graph G = (V,E,W), in which nodes V correspond to the
genomic loci (bins) of H, edges E between pairs of nodes correspond to interactions between their respective
loci, and weights W on the edges reflect the strength of the interactions represented by the edges. For instance,
the weight wjon edge ejbetween loci i and j corresponds to the Hi-C matrix entry h;. The goal of trans-C is to
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find a subset of loci that exhibit strong inter-chromosomal contacts. To solve this problem, which is
computationally intractable to solve exactly, we employ a random walk with restart algorithm over the graph G.
In essence, this reformulates the problem as a dense subgraph optimization.

Random walk with restart

The random walk traverses the graph by moving probabilistically from one node to another. The walk is
initiated from a specified set S of seed loci. The goal of the random walk is to highlight the nodes that are
strongly connected to those in S (Hristov et al. 2020). At each step, with a fixed probability a the walk restarts
from a randomly selected seed locus, and with probability 1 — a the walk moves to a neighboring node picked
probabilistically based upon the weights W. Specifically, if N(i) are the nodes that i interacts with, then the walk
goes from node i to node j AIN(f) with probability proportional to w;;. That is, for any node i, if at time ¢ the walk
is at i, then we calculate the probability p; that it will transition to node j at time £ + 1 using only Wand a. Hence,
the random walk is fully described by a stochastic transition matrix P with entries p; Importantly, this
stochastic matrix P has certain mathematical properties (Supplemental Methods) which guarantee that, by the
Perron-Frobenius theorem, the random walk converges. That is, the probability of the walk being at any given
node at time ¢ is constant as t Bloo. This probability , known as the “stationary distribution” of the walk, can be
analytically computed. Further, the probability 7; reflects how well the node i is connected to the seed nodes
because more strongly connected nodes are more frequently visited. The loci that have the largest probabilities
are most frequently visited and, therefore, are more likely to be relevant because they are strongly connected to
the seed loci. We use these probabilities as scores to rank all loci and include the top £ loci in U, where £ is a
user-specified parameter. In this work, we use £ = 40 unless otherwise stated.

Data pre-processing

Prior to running the trans-C random walk algorithm, we perform three pre-processing steps on the Hi-C
matrix to ensure that the weights W on the edges are not influenced by many of the biases common in Hi-C
data.

First, we normalize the matrix using the iterative correction and eigenvalue decomposition (ICE) procedure
(Imakaev et al. 2012; Servant et al. 2012). This procedure iteratively normalizes rows and columns of the
matrix, equalizing their sum. We note that we carry out this procedure on the entire Hi-C matrix, including cis
and trans contacts.

Second, we adjust the matrix entries to account for the fact that chromosomes tend to occupy chromosome
territories; as a result, some pairs of chromosomes interact more frequently. We do this by using a binomial
model to estimate interaction p-values based on an empirical null model that accounts for this territorialization
(Supplemental Methods).

Third, we process each matrix entry using a “donut filter” as previously described (Rao et al. 2014). This
step allows us to emphasize points that are local maxima in the contact map.

Matched random seed

We run trans-C with 1000 matched random seeds to generate a background model of cliques that are
seeded at biologically unrelated loci that form a starting network of comparable strength to the loci of interest.
This background model allows us to assess statistically (by Mann-Whitney U test) whether the clique trans-C
found using the original seed is significantly stronger than the matched random background. Specifically, the
procedure is as follow:

1. Given a seed S of bloci S = (54,52,-,55), calculate the strength of that seed score(S) = Z,-,,-SW,-,,-
2. Repeat 1000 times:
2.1. draw sets of b random loci R = (ry,1,..,1) until score(R) 2 score(S)

2.2. use the set R as a seed to run trans-C to find a clique trans-C(R)

12
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2.3. add trans-C(R) to the background list of cliques obtained from a “matched random seed”

3. Assess statistically whether trans-C(S) is significantly stronger than the matched random background

Clique visualization

To visualize the cliques we use the Cytoscape software version 3.10.1(Shannon et al. 2003).

Datasets

Validation experiments relied on Hi-C data from three organisms available publicly as either MCOOL or HIC
files: P. falciparum trophozoite and schizont stages, binned at 10 kb resolution (GEO id: GSE126074; Bunnik et
al. 2018); mouse olfactory sensory neurons, binned at 250 kb resolution as in the original analyses (4DN Portal
id: 4DNFI3M67261; Monahan et al. 2019); human cardiomyocyte differentiation from embryonic stem cells
(4DN Portal id: 4DNFITS5YVTLO, 4DNFIIOUG5RF, and 4DNFIBRH55DO; Zhang et al. 2019). For this last dataset,
we used the cooltools package (Abdennur et al. 2024) to extract from each MCOOL file the interaction counts
for its corresponding Hi-C matrix binned at 10 kb resolution. Then we aggregated the Hi-C matrix to 100 kb
resolution by summing the counts in each ten consecutive bins of size 10 kb. RBM20 eCLIP data were
previously reported (GEO id: GSE175886; Fenix et al. 2021), and analyzed as described below using 100 kb
bins. Human left ventricle and unrelated tissue controls Hi-C were obtained from the ENCODE portal (ids:
ENCFF193CQL, ENCFF546TZN, ENCFF341WO0Y, ENCFF033WGK, ENCFF294GFP, ENCFF294GFP,
ENCFF251VFA, ENCFF556RLR, ENCFF591MHA, ENCFF004YZQ; The ENCODE Project Consortium 2012), and
binned at 100 kb resolution.

Discovery analyses involved ChIP-seq data for 110 human DBPs in the GM12878 cell line and 139 eCLIP for
RBPs in the K562 cell line from the ENCODE portal (ids listed in Supplemental Tables 4 and 5). We used the IDR
thresholded peaks provided by ENCODE. We split the human linear genome in 100 kb bins, and for a given
protein t counted the number of peaks in each bin, producing a count vector C:. For the DBP analysis in the
GM12878 cell line we used an ultra-deep sequenced Hi-C matrix (ENCODE id: ENCSR410MDC; Harris et al.
2023), which contains 3.7 billion trans contacts. We performed our analysis at 100 kb resolution, which results
in non-zero counts for 85% of all pairwise trans contacts. For the RBP analysis in the K562 cell line we used an
intact Hi-C matrix (ENCODE id: ENCFF621AIY), which has 360 million trans contacts and was binned at 100 kb
resolution.

For the SPRITE analysis, we downloaded the processed SPRITE interaction matrix in GM12878 cells (4DN
Portal id: 4DNFIUOOYQC3), and normalized it using the steps described above as done for the Hi-C matrices,
binning at 100 kb resolution. For the imaging analysis, we downloaded the computed (x,y,z) coordinates (files:
genomic-scale.tsv and genomic-scale-with transcription-and-nuclearbodies.tsv available at
https://zenodo.org/records/3928890) of 1041 loci studied by MERFISH (Su et al. 2020), and we used the
scripts provided by the authors to compute the trans-interaction proximity matrix. Since the study was done in
the IMR-90 fibroblast cell line, we used a corresponding Hi-C matrix (ENCODE id: ENCFF281ILS) and ChIP-seq
data (ENCODE ids: ENCFF483ERE, ENCFF459DPT, ENCFF470FUH, ENCFF770ISZ, ENCFF585XWYV,
ENCFF567GON, ENCFF1240RZ, ENCFF170WDS, ENCFF718BQI, ENCFF566MPI, ENCFF890WEE,
ENCFF150MNG, ENCFF453XKM, ENCFF786CKM, ENCFF44870], ENCFF699YD]). For the nuclear speckles
analysis, we used TSA-seq data in K562 cells (4DN Portal ids: 4DNFI2ZWK5IVI, 4DNFI1TWULK53,
4DNFII37TNR5, 4DNFIXWDLHDL).

Software Availability

The trans-C code and the custom scripts used for data processing and figure preparation are available in the
https://github.com/Noble-Lab/trans-C repository as well as a Supplemental Code file.
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Main Figures Legends

Figure 1. The trans-C algorithm. (A) Schematic of typical inter-chromosomal genome organization in mammals.
Inter-chromosomal (trans) interactions mainly involve genomic domains that extrude from chromosome
territories and engage with a variety of membraneless structures involved in gene regulation. (B) A Hi-C matrix
captures the contact frequency of loci in a genome-wide fashion. Besides intra-chromosomal (cis) contacts,
specific loci can exhibit strong inter-chromosomal (trans) contacts among themselves. (C) Trans-C employs a
random walk algorithm that traverses the Hi-C contact graph choosing to move to a node (bin) probabilistically
based on the strength of the edge (interaction). (D) The output is a list of loci ranked by how frequently they
are visited during the random walk: more frequently visited loci interact more strongly in trans as a clique.

Figure 2. Trans-C identifies the var genes cluster in Plasmodium falciparum. (A) Schematic of P. falciparum in
the trophozoite stage of its red blood cell life cycle, with a zoomed in view of the nucleus highlighting its Rabl-
like structure and the clustering of the var genes in a repressive heterochromatic cluster. (B) Contact heat map
comparing trans contact counts among all 60 var genes versus 60 randomly selected 10 kb bins. Cis contacts are
grayed out. (C) Performance evaluation of trans-C-mediated identification of var gene clustering. We plot the
receiver operating characteristic (ROC) curve for the trophozoite life stage of P. falciparum. The var genes are
uncovered by the random walk algorithm of trans-C with high area under ROC curve (AUROC; 0.94). The
cumulative distribution is statistically significant (p-value = 3 x 10-165) from a null model of 1000 random walks
performed from seeds selected randomly but with an equal or greater collective interaction strength (matched
random; line reports the average and shaded area the 95% confidence interval). We also report the
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performance of a simpler greedy heuristic. (D) Visualization of the var genes-associated trans clique identified
by trans-C in P. falciparum trophozoite. Nodes are color-coded by chromosome and sequentially numbered
based on their relative position along each chromosome (expressed in Mb). Edges are color-coded based on
trans interaction significance (cis contacts are not plotted). The seed loci for the random walk are indicated by
solid black lines around the nodes.

Figure 3. Trans-C identifies the Greek islands cluster in mouse olfactory sensory neurons. (A) Schematic of
trans contacts in a mouse olfactory sensory neuron (mOSN). The Greek islands form a multi-enhancer hub that
is segregated from the inactive olfactory receptor (OR) genes. (B) Performance evaluation of trans-C-mediated
identification of Greek islands clustering. We plot the ROC curve for @ = 0.5 in mOSNs versus their progenitors
(horizontal basal cells, HBCs). Trans-C correctly identifies Greek islands clustering specifically in mOSNs in a
way that is statistically significant (p-value = 6 x 10-1°%) versus a matched random seed null model (average and
95% confidence interval from 1000 runs). (C) Aggregated heatmap of trans contacts among the top 60 loci
selected by trans-C in mOSNs. Each square in the grid represents an average 250 kb bin in a Hi-C matrix of 21 x
21 bins centered at each interacting pair of loci (reference). The exhibited spot-like structure highlights the
highly specific nature of the inter-chromosomal interactions of the Greek islands. (D) Visualization of the Greek
island-associated trans clique identified in mOSNs by trans-C, showcasing the increased significance of loci
interactions after differentiation of HBCs, plotted as described for Figure 2D.

Figure 4. Trans-C identifies the RBM20 splicing factory in human cardiomyocytes. (A) Schematic of the RBM20
splicing factory, a muscle-specific inter-chromosomal structure organized by the TTN pre-mRNA. This pre-
mRNA binds to more than 100 copies of RBM20 and nucleates foci that engage with other RBM20 targets to
promote their alternative splicing (blue arrows). (B) Performance evaluation of trans-C in uncovering the
RBM?20 splicing factory in early (day 15) versus late (day 80) cardiomyocytes (CMs) differentiated from human
pluripotent stem cells (hPSC; also analyzed as “day 0” baseline control). Results for late CMs are statistically
significant (p-value = 5 x 10-122) versus a matched random seed null model (average and 95% confidence
interval from 1000 runs). Seed loci and ROC curves are based on a list of established RBM20 targets (Bertero et
al. 2019). (C€) Similar to B, but seed loci and ROC curves are based on loci directly bound by RBM20 as
determined by eCLIP; p-value = 4 x 10-120, (D) Aggregated heatmap of trans contacts between the top sixty loci
selected by trans-C in late CMs starting from eCLIP data. Each square in the grid represents an average 100 kb
bin in a Hi-C matrix of 41 x 41 bins centered at each interacting pair of loci extracted from the Hi-C data
(reference). The denser region in the middle reveals the specific nature of the trans interactions at the RBM20
splicing factory. (E) Visualization of the RBM20-associated trans clique identified by trans-C in late CMs starting
from eCLIP data, showcasing the increased significance of loci interactions during hPSC differentiation and CM
maturation, plotted as described for Figure 2D.

Figure 5. Trans-C identifies DNA-binding protein-associated trans cliques proximal to nuclear speckles. (A)
Schematic of the mechanistic hypothesis for the formation of specialized RNA factories involving trans
interacting chromatin domains. Multiple copies of trans-acting regulatory factors (i.e., transcription or splicing
factors) bind to core nucleic acids, aggregate to form new clusters and/or enrich pre-existing ones, and recruit
accessory co-regulated nucleic acids. RNA factories promote the efficacy and accuracy of RNA biogenesis
processes (thicker black arrows). (B) Trans-C-identified subnetworks in lymphoblastoid cells built from loci
characterized by strong binding of 110 DBPs have dense contacts. We plot the distribution of subnetwork
weights for six types of sets of forty loci: (1 - pink) loci with the highest number of ChlIP-seq peaks for a given
DBP; (2 - gray) randomly drawn loci; (3 - orange) top loci ranked by trans-C from a seed of five loci with the
highest number of ChIP-seq peaks for a given DBP; (4 - yellow) top loci ranked by trans-C from a random seed
of five loci whose starting subnetwork weight was matched to the seed of group 3; (5 - green) top loci ranked
by trans-C from a seed of five randomly drawn loci; and (6 - light blue) top loci ranked as for group 4 but
starting from an interaction matrix that has been randomly shuffled. On average, sets seeded from loci most
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strongly bound by DBPs interact more strongly in trans than any of the other five types of sets of loci, including
the stringent “matched random” control (p-values by Mann-Whitney U test). (C) For each DBP analyzed in B, we
compare the weights of subnetworks obtained with trans-C from “Top 5 DBP-bound” seeds (single data point)
and “Matched random” seeds (average of 1000 subnetworks + standard deviation). In red are comparisons with
significantly different weights (p-value < 0.05 after FDR correction). Shaded areas highlight the top and bottom
quartile of DBP-based subnetwork weights. (D) Visualization of selected significant DBP-associated trans
cliques in lymphoblastoid cells, plotted as described for Figure 2D (PAX5 & MAX: strongest cliques; FOS &
MLLT1: highest fold change of clique strength over average strength of cliques in the matched random null
model). (E,F) Proximity to nuclear speckles of loci within trans-C-identified cliques, measured as the average
SON and p-SC35 TSA-seq signal for the corresponding genomic regions. For each subnetwork, the signal is
compared with that of an equal number of loci at the opposite end of the trans-C ranking. DBP-based cliques are
overall significantly more proximal to both SON and p-SC35 than matched control sets (p-values by Mann-
Whitney U test). Cliques that are significantly stronger compared to the null model in the analysis from panel C
(Sign.) are in red, while non-significant ones (N.s.) are in blue. (G) The proximity to SON for significant versus
non-significant cliques from panel C is significantly different by Mann-Whitney U test. (H) The strongest DBP-
based subnetworks correspond to DBPs with a higher intrinsically disordered protein (IDP) score. We plot the
IDP scores for DBPs resulting in the bottom and top quartile of DBP-based subnetworks from panel C. The
difference is statistically significant by Mann-Whitney U test.

Figure 6. Trans-C identifies RNA-binding protein-associated trans cliques proximal to nuclear speckles. (A) A
subset of trans-C-identified subnetworks in lymphoblastoid cells built from loci characterized by strong binding
of RBPs have denser contacts than the corresponding matched random null model. We plot the weight of a RBP-
based subnetwork and the average weight of 1000 matched random seed subnetworks (error bars correspond
to the standard deviation) for 139 RBPs. In red and listed by name are those with significant p-values after FDR
correction. (B,C) RBP-associated cliques identified by trans-C are significantly closer to nuclear speckles
(stronger SON TSA-seq signal) and significantly further away from the nuclear lamina (weaker Lamin A TSA-
seq signal) than matched control sets at the opposite end of the trans-C rankings. (D) Visualization of selected
significant RBP-associated trans cliques in lymphoblastoid cells, plotted as described for Figure 2D.
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Supplemental Figures
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Supplemental Figure S1: Related to Figure 2. (A) Performance evaluation of trans-C-mediated identification of var
gene clustering in schizont stage P. falciparum (AUROC 0.93); p-value = 3 x 107'™" versus a matched random seed
null model (average and 95% confidence interval from 1000 runs). (B) Visualization of the var genes-associated trans
clique identified by trans-C in P. falciparum schizont, plotted as described for Figure 2D.
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Supplemental Figure S2: Related to Figure 3. Performance evaluation of trans-C in recovering the Greek islands in:

(A) HBCs, p-value = 8 x 1073 versus a matched random seed null model (average and 95% confidence interval from
1000 runs). (B) mOSNs, running trans-C with different values of the parameter alpha. (C) mOSNs, comparing the
results with those obtained using as input various sub-samples of the Hi-C matrix. (D) mOSNs, comparing it with a
simpler greedy heuristic.
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Supplemental Figure S3: Related to Figure 4. (A-C) Performance evaluation of trans-C in recovering established
RBM20 targets starting from a subset of them in: (A) hPSCs, p-value = 6 x 10~ %! wersus a matched random seed null
model (average and 95% confidence interval from 1000 runs); (B) early CMs, p-value = 2 x 1071% yersus the same type
of control; (C) hPSCs, early CMs, and late CMs (see Fig. 4B) compared to a simpler greedy heuristic. (D,E) Same
analyses as panels A and B, respectively, but evaluating the recovery of RBM20-bound mRNAs starting from a subset
of those most bound (p-value = 4 x 107°% and 1 x 107'% for D and E, respectively). (F) Same analysis as panels D
and E except in late CMs and using a recall list of 45 high confidence RBM20 targets (>2 binding sites & differentially
spliced in RBM20 KO) in late CMs; p-value = 2 x 107'?°. (G) Visualization of the RBM20-associated trans clique
identified by trans-C in late CMs starting from established RBM20 targets, showcasing the increased significance of loci
interactions during hPSC differentiation and CM maturation; plotted as described for Figure 2D. (H) Reproducibility
evaluation of trans-C in ranking loci starting from eCLIP data. We report the Pearson’s correlation of ranked loci
stationary distributions for 10 Hi-C matrices of left ventricle and 5 unrelated tissues used as controls.
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Supplemental Figure S4: Related to Figure 5. (A) Enrichment for DBP ChIP-seq peaks in subnetworks built by
trans-C from DBP-based seeds (refer to Fig. 5B, orange plot). Each row corresponds to a DBP and each column to
a DBP-based subnetwork built by trans-C. For each DBP-based subnetwork we report enrichment for peaks of other
DBPs using a hypergeometric test, and report the negative logarithmic p-value in the corresponding cell. (B) For each
DBP analyzed in Fig. 5B, we compare the weights of subnetworks obtained with trans-C from “Top 5 DBP-bound”
seeds (single data point) and “Matched in random network” seeds (average of 1000 subnetworks =+ standard deviation).
All comparisons are significantly different (p-value < 0.05 after FDR correction). (C) Refer to Fig. 5B, orange plot.
DBPs that yielded the top and bottom quantiles of subnetwork strength show no difference in their preference to bind
loci in the A or B compartments. The y-axis measures the fraction of bins bound by a DBP that are in A compartment.
(D) For each of the DBPs analyzed in Figure 5D, we show one of its corresponding matched random controls, plotted
as described for Figure 2D. These subnetworks are noticeably less dense than the subnetworks trans-C obtained using
DBP-bound loci as seed.
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Supplemental Figure S5: Related to Figure 5. (A-B) For each DBP analyzed in Figure 5, we compare the weights
in SPRITE data of subnetworks originally obtained from Hi-C data using trans-C from “Top 5 DBP-bound” seeds to
that of random sets of loci (A) or “Matched random” controls (B; average of 1000 subnetworks, error bars correspond
to the standard deviation). For B, in red are comparisons with significantly different weights (p-value < 0.05 after FDR,
correction). (C) For each DBP analyzed, we calculate the fold change of the subnetwork weights obtained with trans-C
from “Top 5 DBP-bound” seeds and their corresponding “Matched random” seeds (average of 1000 subnetworks). We
plot this ratio for the Hi-C data (x-axis) and SPRITE (y-axis) and color the subnetworks based on the dataset(s) they
are significant in. The top subnetworks are significant in both datasets (blue dots).
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Supplemental Figure S6: Related to Figure 5. (A) We compute the proximity of 16 DBP-associated trans-C cliques
obtained using the IMR-90 fibroblasts Hi-C submatrix, subsetted to only the loci measured by MERFISH, and compare
it to the average proximity of randomly selected sets of loci in the same MERFISH dataset. (B) For each DBP, we
compare the proximity of the 40 loci measured by MERFISH ranked closest to the top of the trans-C raking on the
full IMR-90 fibroblasts Hi-C matrix to that of the 40 loci measured by MERFISH and ranked closest to the bottom of

the trans-C ranking.
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Supplemental Figure S7: Related to Fig. 6. (A) We plot the IDP scores for RBPs resulting in the bottom and
top quartile of RBP-based subnetworks from Figure 6A. The difference is not significant by Mann-Whitney U test.
RBP-associated cliques identified by trans-C are significantly closer to (B) transcription factories (stronger POL1RE
TSA-seq signal) and (C) nuclear speckles (stronger p-SC35 TSA-seq signal) than matched control sets at the opposite
end of the trans-C rankings.



Supplemental Methods

Overview

Trans-C takes as input a Hi-C contact matrix H of interaction counts and an initial set S of loci of interest
(“seed loci”) and outputs a set of loci U (containing S) that interact strongly together in trans. We refer to U
and its associated edges as a “dense subgraph.” We model the Hi-C interaction matrix H as a weighted graph
G = (V,E,W) with nodes V corresponding to the genomic loci (bins), edges E between pairs of loci, and
weights W on the edges reflecting the strength of the interactions represented by the edges. Thus, the weight
w;; on edge e;; between loci 4 and j corresponds to the contact matrix entry h;;. Our goal is to find a subset of
loci that exhibit strong inter-chromosomal contacts. We propose two methods to solve this problem, one that
uses a random walk with restart and a second that formulates the problem as a dense subgraph optimization
and solves it using a fast greedy heuristic.

H Hi-C matrix

hi;  Contact count between loci 7 and j
G Graph corresponding to H

v Set of all genomic loci

E Set of edges in G

%4 Set of weights on the edges of G
e;; edge connecting loci ¢ and j

w;,; weight associated with edge e; ;

U Set of all genomic loci
S Set of seed loci

l User-specified size of desired subgraph

P Inner radius of the donut filter

q Oter radius of the donut filter

C Vector of peak counts

v; Boolean indicating wether locus ¢ is in set U

Mij Boolean indicating wether locus ¢ interacts with j

Ay Change in the clique density score by adding loci k

T The stationary distribution the random walk converges to

Random walk with restart

Our first solution carries out random walks with restarts over the graph G and then uses the results of
the random walks to select the nodes in U. The walk is initiated from the set of seed loci S and its goal is
to highlight the nodes that are strongly connected to those in S. At each step, with probability « the walk
restarts from a randomly selected seed locus, and with probability 1 — « the walk moves to a neighboring locus
picked probabilistically based upon W. Specifically, if V(i) are the loci i interacts with, then the walk goes
from locus i to locus j € N (i) with probability proportional to w; ;/ Zke/\/(i) w; . That is, if at time ¢ the
walk is at locus ¢, then the probability that it transitions to locus j at time t + 1 is

i Wi, j j
Po = s 0]
where 7;; = 1 if j € N(¢) and 0 otherwise, and v; = 1 if j € U and 0 otherwise. Hence, the guided random
walk is fully described by a stochastic transition matrix P with entries p;;. This stochastic matrix is non-
negative and by the Perron-Frobenius theorem it has a right eigenvector m corresponding to eigenvalue 1.
Therefore, 7P* = 7, and the random walk converges. That is, the probability of the walk being at node i at
time ¢ is constant as ¢ — co. This probability is specified by the ith element of 7 and 7, known as stationary
distribution of the walk, can be efficiently computed. Further, the probability 7; reflects how well the node 7 is
connected to the seed nodes as more strongly connected nodes are more frequently visited. We obtain a score
for each locus j by finding the jth element of m. The loci that have the highest scores are most frequently
visited and, therefore, are more likely relevant as they are strongly connected to the seed loci. We use these



scores to rank all loci and include the top £ loci in U, where £ is a user-specified parameter. In this work, we
use ¢ = 40 unless otherwise stated.

Greedy heuristic

Our second solution builds a ranked list of loci in U in a greedy fashion. In this approach, we formalize
our goal as finding U € V such that the subgraph induced by |U]| is dense; i.e.,

score(U) = Z Wy j

i,j€U

is large. We note that when we constrain the size of U, the problem is computationally hard as it can be
reduced to the maximum clique problem, which is NP-complete. As in the previous approach, we assume
that the user specifies an initial set S of seed loci, as well as the desired subgraph size ¢. Thus, formally, the
optimization problem we aim to solve is

max score(U 1
|U|=¢,ScUeV ( ) ( )

We propose to maximize Equation 1 using a greedy algorithm. The procedure begins by adding the seed loci
S to the initially empty set U. Then, in each step the heuristic expands U by examining all loci not currently
in U and selecting to add to U the one that yields the largest increase in Equation 1. Mathematically, the
greedy step finds
max Ay = score(|U U k|) — score(U) = Wy k
max (0D = sore(t) = 3 .

Ties are broken randomly. The greedy selection proceeds as long as Ay > 0 and |U| < 40. In practice, in the
calculation of Ay we exclude the single strongest interaction between k and U. We do so because we do not
want a single very large wy , to dominate Ay; instead, our aim is that all loci in U interact strongly.

Data pre-processing

Prior to searching a given Hi-C matrix for dense subgraphs, we perform three pre-processing steps.

First, we normalize the Hi-C matrix using the iteractive correction and eigenvalue decomposition (ICE)
procedure (Imakaev et al., 2012). This procedure iteratively normalizes rows and columns of the matrix,
producing as output a matrix in which the marginal values are all equal to a specified constant. We carry out
the procedure on the entire Hi-C matrix, including cis and trans contacts, using the Python package “iced”
(Servant et al., 2015).

Second, we adjust the matrix entries to account for the fact that chromosomes tend to occupy specific
regions of the nucleus, called chromosome territories, and as a result some pair of chromosomes interact more
frequently. For each pair of chromosomes L and M (L # M) we find the total number of interactions between
any locus ¢ in L and j in M: T\ = ZVieL;VjEM hij. If T' is the total number of trans-interactions in H,
then we rescale contact count h;; as h;j = h; ; *T/Tp, ar. During this step, we set all cis contacts (¢ and j are
on the same chromosome) to zero.

Third, we process H using a “donut filter” to emphasize points that are local minima in the 2D contact
map (Rao et al., 2014). Given a trans contact (i, 7), we define its donut background as the set of all loci that
are at least p loci away from (4, j) but no further than ¢ loci away and which do not lie along the i or j axes.
Intuitively, p is the radius of the hole of the donut centered at (i, j), ¢ is the outer radius of the donut, and
the donut has been sliced in four pieces along the i and j axes. Mathematically,

itqg  J+q t+p  J+p 1—p—1 i+q j—p—1 Jjta

DN<z’,j>:DN1M S S b= S b= Y b= Y b= S him Sy

a=i—q b=i—q a=i—pb=i—p a=i—q a=i+p+1 b=j—q b=j+p+1

where we divide the sum by the total number of loci DN, , in the donut to obtain the average strength of
interactions in the donut. The enrichment for the contact (4, j) with respect to its local background can then
be calculated as h;;j/DN(i, j). In practice, we select p = 2 and ¢ = 20, and we set w;; = h; ;/DN(i, j).



This weight w; ; is finally placed on the edge between nodes 7 and j in the graph G to reflect the normalized
strength of interaction between loci ¢ and j.

We calculate a TSA-seq score per bin by aggregating the processed loga fold change values given at a
single nucleotide resolution from the 4DN Portal. We define the TSA-seq score for given clique as the average
TSA-seq score of each loci of the clique.



Supplemental Tables

Supplemental tables are available online:

Supplemental Table S1: Greek islands-based clique

Supplemental Table S2: Established RBM20 targets-based clique

Supplemental Table S3: RBM20-bound mRNAs-based clique

Supplemental Table S4: DBPs-based cliques

Supplemental Table S5: RBPs-based cliques

Supplemental Table S6: Intra- versus inter-chromosomal space in different species
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