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We introduce an entropy function for supersymmetric accelerating black holes in four-dimensional anti–
de Sitter space that uplift on general Sasaki-Einstein manifolds X7 to solutions ofM theory. This allows one
to compute the black hole entropy without knowing the explicit solutions. A dual holographic microstate
counting would follow from computing certain supersymmetric partition functions of Chern-Simons-
matter theories compactified on a spindle. We make a general prediction for a class of such partition
functions in terms of “blocks,” with each block being constructed from the partition function on a three-
sphere.
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Introduction.—Obtaining a precise microstate counting
interpretation of black hole entropy is one of the major
achievements of string theory. This was first studied in the
context of supersymmetric and asymptotically flat black
holes in [1] and this led to an enormous literature of further
work. More recently, starting with [2,3], there has been a
growing body of similar work in the context of super-
symmetric and asymptotically anti–de Sitter (AdS) black
holes. In contrast to the earlier work, where it is the Cardy
formula that underlies the microstate counting, instead the
results for AdS black holes use holography and exact
localization results for supersymmetric partition functions.
The present Letter builds on [4–7], which introduced an

entropy function for a large class of supersymmetric AdS4
black holes in M theory. The seven-dimensional internal
space X7 is taken to be an arbitrary Sasaki-Einstein
manifold, with the three-dimensional holographic duals
being Chern-Simons-matter theories. The entropy function,
similar in spirit to that of Sen [8], allows one to compute the
entropy without knowing the explicit supergravity solu-
tions: the inputs are only X7, the topology of the black hole
horizon Σ, taken to be a Riemann surface, and the magnetic
charges. This entropy was shown to match a dual compu-
tation using the localization results of [9,10], for infinite
families of black holes.
In this Letter, we extend [4–6] to accelerating black

holes in AdS4. This leads to a number of novel features

[11]: the black holes have different horizon topologies, with
conical deficit angles; supersymmetry is preserved in a
novel way; and when the deficit angles are appropriately
quantized, so that the horizon Σ is an orbifold known as a
spindle, remarkably, the uplifted D ¼ 11 solutions are
completely smooth on and outside the horizon.
We will explain how to compute the entropy function for

a general class of accelerating AdS4 black holes, which
takes a simple “gravitational block” form, vastly extending
[12–14]. This leads to a general prediction for the partition
functions of supersymmetric Chern-Simons-matter theories
compactified on a spindle, with magnetic fluxes switched
on for flavor and baryonic global symmetries, in the largeN
limit [15]. We also point out a striking relation of our
entropy function to the on-shell action of the black holes in
various examples and comment on including angular
momentum and electric charges in this formalism.
Supersymmetric AdS2 solutions.—Our starting point is

the following general class of supersymmetric AdS2
solutions to D ¼ 11 supergravity introduced in [16] and
clarified in [17]:

ds211 ¼ e−2B=3ðds2AdS2 þ ds2Y9
Þ;

G ¼ volAdS2 ∧ ½J − dðe−BηÞ�: ð1Þ

Here ds2AdS2 is a unit radius metric on AdS2, with volume
form volAdS2 andG is theD ¼ 11 four-form. The Gauntlett-
Kim (GK) space Y9 has a canonically defined Killing
vector field ξ, called the R-symmetry vector, and it plays a
central role. The metric on Y9 takes the form

ds2Y9
¼ η2 þ eBds2T; ð2Þ
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where the one-form η is dual to ξ, ds2T is a Kähler metric
transverse to η, with associated Kähler two-form J and
Ricci two-form dη ¼ ρ. The function eB ¼ 1

2
R, where

R > 0, is the scalar curvature of the Kähler metric.
The metric and four-form in (1) give supersymmetric

solutions to D ¼ 11 supergravity provided also

□R ¼ 1

2
R2 − RabRab; ð3Þ

where Rab denotes the Ricci tensor for the Kähler metric,
and □ is the Laplacian operator. However, to define our
entropy function, we wish to go off shell [4], and in
particular, we will not directly impose (3) in what follows.
Near horizon limits of black holes.—For the solutions of

interest, the D ¼ 11 vacuum solution, without the black
hole, is AdS4 × X7, where X7 is a Sasaki-Einstein mani-
fold. A putative black hole may then carry conserved
charges associated with various massless U(1) gauge fields
in AdS4. The latter arise from Kaluza-Klein reduction on
X7, either from isometries of X7 (“flavor symmetries”) or
from homology cycles (“baryonic symmetries”).
Sasaki-Einstein manifolds X7 have a Uð1Þs isometry,

where necessarily s ≥ 1, and we may choose an associated
normalized basis of Killing vector fields ∂φi

, i ¼ 1;…; s.
X7 is equipped with a Killing spinor, and without loss of
generality, we choose the basis so that this spinor has
charge 1

2
under ∂φ1

and is uncharged under the remaining
vector fields. Via the Kaluza-Klein mechanism, massless
U(1) gauge fields Ai in AdS4 are obtained by gauging
dφi → dφi þ Ai in the metric on X7, together with
adding a corresponding term to the D ¼ 11 six-form
potential C6, given in (4) below, where dC6 ¼ �11G.
On the other hand, if ΣI ⊂ X7 form a basis of 5-cycles,
I ¼ 1;…; b5ðX7Þ ¼ dimH5ðX7;RÞ, then reducing C6 on
each 5-cycle ΣI also leads to massless U(1) gauge fields AI
in AdS4. Altogether, we have the linear perturbation

δC6 ¼
Xs
i¼1

Ai ∧ ωi þ
Xb5ðX7Þ

I¼1

AI ∧ ωI: ð4Þ

Here both ωi and ωI are coclosed five-forms on X7, but ωI
is closed, while dωi ¼ ∂φi

⌟ volX7
[18], for a suitably

normalized volume form on X7. Notice that in (4) we
are free to shift ωi → ωi þ

P
I c

I
iωI , for arbitrary con-

stants cIi , which is precisely the freedom to mix baryonic
symmetries into flavor symmetries in field theory. This
correspondingly shifts AI → AI −

P
i c

I
iAi and hence the

notion of baryonic fluxes in the reduced theory on AdS4.
Consider introducing a supersymmetric extremal black

hole into this AdS4 vacuum. The near horizon limit should
be AdS2 × Σ, where the two-dimensional surface Σ is the
black hole horizon [19]. For an accelerating black hole,
we take Σ to be a spindle [11]. This is topologically a

two-sphere, but with conical deficit angles 2πð1 − 1=m�Þ
at the poles, specified by two coprime positive integersm�.
The nonaccelerating case is recovered simply by setting
m� ¼ 1, so Σ ¼ S2.
Now consider turning on flavor magnetic charges, for the

gauge fields originating from isometries of X7, with

1

2π

Z
Σ
dAi ¼

pi

m−mþ
; ð5Þ

the magnetic flux through the horizon. This precisely fibers
X7 over Σ to give a GK geometry of the form

X7 ↪ Y9 → Σ: ð6Þ

The fibration is well defined [20] when the flavor magnetic
charges pi are integers [21]. Imposing supersymmetry
requires [21] that

p1 ¼ −σmþ −m−; ð7Þ

where recall that the first copy of U(1) is singled out by the
Killing spinor being charged under this symmetry. Here
σ ¼ �1 are called “twist” and “antitwist,” respectively.
On the other hand, the D ¼ 11 seven-form flux satisfies

the Dirac quantization condition

1

ð2πlpÞ6
Z
ϒ
dC6 ¼ Nϒ ∈ Z; ð8Þ

where lp is the D ¼ 11 Planck length, and ϒ ⊂ Y9 is any
7-cycle. When Y9 takes the fibered form (6) there is a
distinguished such cycle, namely, a copy ϒ ¼ X7 of the
fiber, and we identify N ≡ NX7

with the number of M2-
branes generating the original AdS4 × X7 vacuum [22]. If
we pick representatives of the 5-cycles ΣI ⊂ X7 that are
invariant under the Uð1Þs action, then via (6) these will fiber
over the spindle Σ to give associated 7-cycles ϒI ⊂ Y9. We
denote the corresponding flux numbers in (8) as NI ≡ NϒI

,
and analogously to (5) define flux magnetic charges PI ≡
NI=N [24]. Notice that via (4) these fluxes will in general
include contributions from the flavor magnetic charges pi

in (5), and also baryonic magnetic charges ð1=2πÞ RΣ dAI .
However, as explained above, defining the latter, in general,
requires (arbitrary) choices, and so we instead parametrize
the baryonic magnetic charges of the black hole via the PI .
This accounts for all quantized fluxes on Y9.
Entropy function.—We have seen how fixing the mag-

netic charges pi, PI of the black hole encodes the twisting
of the fibration (6) and also quantized flux numbers (8) for
the corresponding near horizon AdS2 × Y9 solution. This
can be related to geometric data on Y9 as follows [4]. First,
evaluating the left-hand side of (8) on the background (1)
gives
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1

ð2πlpÞ6
Z
ϒ
η ∧ ρ ∧ 1

2
J2 ¼ Nϒ; ð9Þ

while imposing that the integral of (3) over Y9 holds givesZ
Y9

η ∧ ρ2 ∧ J2 ¼ 0: ð10Þ

The integrals (9) and (10) are functions of Kähler class
parameters [J] and the R-symmetry vector, which we may
write as

ξ ¼
Xs

μ¼0

bμ∂φμ
: ð11Þ

Here ∂φ0
is a Killing vector field rotating the spindle Σ,

fixing its poles. The Kähler class parameters lie in the basic
cohomology ½J� ∈ H2

BðF ξÞ associated with the foliationF ξ

defined by ξ. One can show that the total number of such
parameters is dimH5ðX7;RÞ þ 2. On the other hand, fixing
the flux magnetic chargesPI , together withN and imposing
(10), imposes the same number of constraints. Although we
do not have a general argument, in all examples fixing pi,
which determines the topology of Y9, together with PI and
N fixes all the Kähler class parameters. This leaves the
R-symmetry vector (11) still unspecified, apart from the
constraint b1 ¼ 1, which corresponds to the Killing spinor
necessarily having charge 1

2
.

The main result of [4] is that solutions to the partial
differential equation (3) extremize the “entropy function,”

S ≡ 4π

ð2πÞ8l9
p

Z
Y9

η ∧ ρ ∧ 1

3!
J3: ð12Þ

For fixed X7, spindle data m�, magnetic charges pi, PI ,
and N, we have S ¼ SðbμÞ is a function only of the
R-symmetry vector. The near horizon AdS2 solution
necessarily extremizes this, as a function of ðb0; b1 ¼
1; b2;…; bsÞ, with the black hole entropy SBH ¼ Sðb�μÞ
being the entropy function evaluated at the critical point.
Gravitational blocks.—Using Stokes’s theorem, one can

show that the entropy function (12) can be written in the
block form

S ¼ 4π

ð2πÞ7l9
p

b1
b0

½VolðXþ
7 Þ − VolðX−

7 Þ� ð13Þ

(see Ref. [23] for details). Here X�
7 are the copies of X7 over

the two poles of the spindle [25], and VolðX�
7 Þ ¼

R
X�
7
η ∧

ð1=3!ÞJ3 is the volume induced by the choice of Kähler
class. For toric X7, which by definition have s ¼ 4 and so at
least Uð1Þ4 isometry, this was called the “master volume”
in [5], and Refs. [5,23] describe in detail how to compute
this master volume in terms of toric data.

In practice, (9) and (10) are quadratic in the Kähler class
parameters, and for more than one such parameter it is
typically difficult to solve for [J] in closed form and thus
obtain the entropy function S as described after Eq. (12). In
the remainder of this Letter [26], we will hence focus on a
restricted, but still very rich, class of examples that we refer
to as “flavor twists.” This generalizes a similar class studied
in [6], where by definition we impose that ½JjX�

7
� ∝ ½ρjX�

7
�. It

can be shown that (13) leads to the result

S ¼ 8π3N3=2

3
ffiffiffi
6

p
b0

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VolSðX7Þjb⃗þ
q −

σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolSðX7Þjb⃗−

q
1
CA: ð14Þ

Here σ ¼ �1 as in (7), and VolSðX7Þ is the Sasakian
volume of X7, introduced in [27]. This is a function only of
the R-symmetry vector b⃗ ¼ ðb1 ¼ 1; b2;…; bsÞ (i.e.,
excluding the b0 spindle direction), with

b⃗þ ≡ b⃗ −
b0
mþ

ð1;−aþp2;…;−aþpsÞ;

b⃗− ≡ b⃗þ b0
m−

ðσ;−a−p2;…;−a−psÞ; ð15Þ

where a� are integers satisfying a−mþ þ aþm− ¼ 1. Such
a� exist by Bézout’s lemma, as m� are coprime. They are
not unique, but different choices amount to a different
choice of basis for the Uð1Þsþ1 action on Y9, with
generators ∂φμ

, μ ¼ 0; 1;…; s, and the black hole entropy
that extremizes (14) is independent of this choice.
For fixed X7, the entropy function (14) is manifestly a

function of only m�, N the flavor magnetic charges pi, and
the R-symmetry vector ðb0; b1 ¼ 1; b2;…; bsÞ. The flavor
charges p2;…; ps are here arbitrary, but in this class of
examples the flux charges PI are determined by the
remaining data. Specifically, one can show [23]

PI ¼
π

3b0

�
VolSðΣIÞ
VolSðX7Þ

����
b⃗þ

−
VolSðΣIÞ
VolSðX7Þ

����
b⃗−

�
; ð16Þ

where these are again Sasakian volumes. Various methods
for computing these volumes, for different classes of X7,
were given in [27], including using toric geometry, a fixed
point theorem, and a limit of an equivariant index.
The entropy function (14) may thus be written down for

infinite families of accelerating AdS4 black holes in M
theory, with general flavor magnetic charges pi, and
extremized over the R-symmetry vector to obtain the
entropy. We present some examples in the next section.
The AdS4=CFT3 correspondence relates the free

energy of the dual field theory (here typically Chern-
Simons-matter theories) on the three-sphere S3 [28–30]
to a gravitational quantity via F S3ðb⃗Þ ¼ 21=23−3=2π3=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolSðX7Þjb⃗

q
. This has been shown in many examples,
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although we are not aware of a general proof. We may then
write (14) as

S ¼ 4

b0
½F S3ðb⃗þÞ − σF S3ðb⃗−Þ�: ð17Þ

Here the free energy blocks are functions of the shifted R-
symmetry vectors b⃗�, which in field theory correspond to
certain shifted trial R-symmetry assignments for the fields.
Finally, consider settingm� ¼ 1, so that the horizon Σ ¼

S2 and there is no acceleration, and also taking the limit
b0 → 0 so that the R-symmetry vector is purely tangent to
X7. From (14) [or (17)], we then obtain

S ¼ 4
Xs

i¼1

pi
∂

∂bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π6

27VolSðX7Þjb⃗

s
N3=2; ð18Þ

and here we should take b1 ¼ 1 after taking the derivative.
This recovers the results of [5,6], where the derivative
operator precisely acts on F S3ðb⃗Þ.
Examples.—There are two particularly interesting

classes of examples of the flavor twist construction
described above, where in particular cases we may also
make contact with various explicit solutions. The first is
when there are no baryonic symmetries, i.e.,
H5ðX7;RÞ ¼ 0. In this case, J is necessarily exact on
X7, and the condition (16) is vacuous. A simple example is
X7 ¼ S7, for which s ¼ 4 and in a natural choice of basis
for Uð1Þ4 we have

VolSðS7Þjb⃗ ¼
π4

3b2b3b4ðb1 − b2 − b3 − b4Þ
: ð19Þ

One can check that the entropy function (14) agrees with
the entropy function in [14] (after a simple linear change of
variable) and, moreover, extremizing the function to obtain
the entropy one finds a result that agrees with the explicit
near horizon supergravity solutions in [31]. Instead, the
nonaccelerating result (18) was in this case already known
[32] to reproduce the entropy of the family of STU
supergravity black hole solutions in [3]. Another example
in this class, treated in [23], is X7 ¼ V5;2, for which no
explicit supergravity solutions are known.
The second class of examples are referred to as the

“universal antitwist.” These correspond to the explicit
accelerating black hole solutions constructed in [11].
They are universal in the sense that the solutions exist
for arbitrary choice of Sasaki-Einstein X7 with rational R-
symmetry vector [see (20) below]. Moreover, the solutions
exist only in the antitwist case, with σ ¼ −1, as we shall see
momentarily [33]. The universal antitwist may be charac-
terized geometrically by saying that the flavor twisting is
only along the R-symmetry direction of the Sasaki-Einstein
metric. This is equivalent to imposing

p⃗ ¼ p1

bþ1
b⃗þ ¼ p1

b−1
b⃗−: ð20Þ

Using a homogeneity property of the Sasakian volume, one
can show [23] that (14) leads to the simple result

S ¼ 1

4b0
½ðbþ1 Þ2 − σðb−1 Þ2�F S3 : ð21Þ

Here the free energy F S3 ¼ F S3ðb⃗�Þ is computed using
the (extremal) Sasaki-Einstein metric. In (21) one should
set b1 ¼ 1 and extremize over b0 to obtain the entropy. If
σ ¼ þ1, there are no extrema, forcing σ ¼ −1. One
can check that the (positive) extremal value SBH ¼ S� is
given by

SBH ¼ ð2m2
− þ 2m2þÞ1=2 −m− −mþ

2m−mþ
F S3 ; ð22Þ

which precisely agrees with the entropy of the explicit
family of supersymmetric accelerating black holes in [11].
On-shell action.—One might wonder how the entropy

function we have introduced is related to other approaches
to computing black hole entropy and the associated
thermodynamics. An immediate issue for extremal black
holes in AdS4 is that the infinite AdS2 throat leads to an
(IR) divergence in the holographically renormalized on-
shell action I, which is thus ill defined without some form
of regularization.
In [34], a complex locus of supersymmetric but non-

extremal accelerating black holes was considered that, in
addition, have nonzero rotation and electric charge. This
complex locus has well-defined but complex action,

I ¼ � 1

iπ

�
φ2

ω
þ
�
m− −mþ
4m−mþ

�
2

ω

�
F S3 : ð23Þ

Here the two signs correspond to two different complex
branches, and φ, ω are chemical potentials associated with
electric charge and rotation. These satisfy the constraint
φ ¼ ðχ=4Þω� iπ, where χ ¼ ðmþ þm−Þ=m−mþ is the
orbifold Euler characteristic of the spindle horizon. The
entropy is obtained in a standard way from this, as minus
the Legendre transform of I, passing from grand canonical
to microcanonical ensemble. Remarkably (21) and (23)
satisfy I ¼ −S, via the change of variable

ω ¼∓ 2πib0: ð24Þ

The Legendre transform of I thus extremizes S, and since ω
is a chemical potential for rotation of the horizon, and b0 is
the component of the R-symmetry vector rotating the
horizon, (24) is a natural identification.
On the other hand, I is an on-shell quantity for the AdS4

black holes, while S is an off-shell quantity for the
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associated near horizon AdS2 solutions. It is therefore hard
to see how these might be related physically, although by
construction both are entropy functions, in the sense that
extremizing both gives the (same) black hole entropy.
There is a similar relation between the entropy function
(18) in the case of X7 ¼ S7 and the on-shell action of the
STU black holes computed in [35] (see also [14,36]),
suggesting this relation is not accidental.
Angular momentum and electric charge.—It should be

possible to generalize the analysis of this Letter and also
turn on both angular momentum J and electric charges qi,
QI for the AdS4 black holes. The fact that these are zero
here is simply due to (1): adding rotation and electric
charge modifies this ansatz [37].
In [23], some additional observables in gravity are also

introduced, namely, the geometric R charges [38],

Rþ
a ≡ 4πmþ

ð2πlpÞ6N
Z
Sþa

η ∧ J2

2!
;

R−
a ≡ 4πσm−

ð2πlpÞ6N
Z
S−a

η ∧ J2

2!
: ð25Þ

Here S�a are a set of Uð1Þs-invariant supersymmetric 5-
submanifolds of the fibers X�

7 , and note that these exist
even when dimH5ðX7;RÞ ¼ 0. These geometric R charges
are dual to R charges of baryonic operators associated with
M5-branes wrapping the submanifolds. When X7 is toric,
the cones over these are precisely the toric divisors in the
Calabi-Yau cone CðX7Þ, labeled by a ¼ 1;…; d. In this
toric case we have the identity [23]

1

2

Xd
a¼1

ðRþ
a þ R−

a Þ ¼ 2 −
m− − σmþ
mþm−

b0: ð26Þ

In the universal antitwist case, with the identification (24),
we then note we may identify the chemical poten-
tial φ ¼ �ðiπ=4ÞP4

a¼1ðRþ
a þ R−

a Þ.
For the special case of X7 ¼ S7, where the index a may

be identified with the flavor index i, we can define the
“master entropy function”

S≡ S − i

�
4b0J −

1

4

Xd
a¼1

ðRþ
a þ R−

a Þqa
�
F S3 : ð27Þ

Here S is the entropy function already introduced, depend-
ing on spindle data, magnetic charges, and R-symmetry
vector b0, bi, i ¼ 1;…; 4. In (27), we have further
introduced angular momentum J, conjugate to b0, and
electric charges qa, conjugate to the R charges (25). This is
a natural generalization of the entropy function conjectured
for the nonaccelerating STU black holes in [3], and
moreover, we have checked that extremizing S and impos-
ing that S and the conserved charges are real, precisely

leads to the entropy of the family of near horizon solutions
constructed in [36]. These were conjectured to be the near
horizon limits of general dyonically charged, rotating, and
accelerating black holes in AdS4 in STU gauged super-
gravity, which uplift on X7 ¼ S7 to solutions of M theory.
In the case with only a single dyonic pair of charges turned
on for the graviphoton, these are precisely the black hole
solutions in [34].
More generally, the flavor and baryonic charges are

naturally combined in toric geometry via the index
a ¼ 1;…; d, and it is natural to conjecture that (27) is
the correct entropy function with general charges, not just
for X7 ¼ S7 but for more general classes of X7.
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