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1 Introduction and outline

Correlation functions of primary operators in four-dimensional superconformal theories have
attracted much attention from different points of view, and many important results have been
obtained over the years. One of the most powerful techniques used for these investigations is
supersymmetric localization,1 which reduces functional integrals over fields to finite integrals
over matrices [2]. Exploiting localization, it has been shown [3–7] that the 2- and 3-point
functions of primary operators in the Coulomb branch of N = 2 superconformal gauge theories
can be obtained from the 2- and 3-point correlators of operators defined in an interacting
matrix model whose specific features depend on the field content of the superconformal gauge
theory [2]. In this way the computations are drastically simplified, making it possible in

1See for example [1] and references therein.
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several instances to obtain exact results valid for all values of the coupling constant at least
in the planar limit. In the case of the N = 4 Super Yang-Mills (SYM) theory, the matrix
model arising from localization is purely Gaussian and the calculations become even simpler.

In the matrix model one can obviously compute also correlators with four or more
operators, but these correlators do not provide information on the 4- or higher-point correlation
functions of primary operators in the superconformal gauge theory. Only for the so-called
“extremal” correlators it possible to exploit conformal invariance combined with supersym-
metry and fix the functional form of the correlation functions up to coefficients that can
be captured by a matrix-model calculation [6].

Recently, however, it has been shown that localization techniques can be used to derive
integrated correlation functions of four primaries in N = 4 SYM. The argument is as follows.
First, one places N = 4 SYM on a 4-sphere and deforms it with a mass parameter m while
preserving N = 2 supersymmetry. In this way one obtains the so-called N = 2∗ SYM, whose
partition function ZN=2∗ can be computed using matrix model techniques [2, 8]. Then,
one can prove that [9]

∂τp∂ τp∂2
m logZN=2∗

∣∣∣
m=0

=
∫ 4∏

i=1
dxi µ({xi})

〈
Op(x1)Op(x2)J (x3)J (x4)

〉
N=4 . (1.1)

Here τp are τp are the couplings associated to chiral and anti-chiral Coulomb-branch operators
Op(xi) and Op(xi) which are gauge-invariant superconformal primaries of dimension p

constructed with the scalar fields of the vector multiplet. When p = 2, these scalar operators
are in the 20′ representation of the R-symmetry group SU(4) of N = 4 SYM inside the
stress-tensor multiplet. Instead, J (xi) is the moment-map operator associated to the mass
deformation of the N = 2∗ theory on the sphere. This is a dimension 2 operator constructed
from the scalar fields of the adjoint hypermultiplet which can be written as a particular
combination of 20′ operators (see for example [9, 10] for details). Therefore, for p = 2 the
relation (1.1) provides information on the correlation function of four primaries of dimension 2
belonging to the 20′ representation, integrated with a suitable integration measure µ({xi})
that is fixed by conformal invariance and supersymmetry. The explicit expression of this
measure can be found in [9], but it is not needed for our purposes.

If we normalize the 2-point function of the Coulomb-branch operators in the canon-
ical way as

〈
Op(x1)Op(x2)

〉
N=4 = G(0)

p(
4π2|x1 − x2|2

)p , (1.2)

then, using the results of [9], one can show that in the planar limit

lim
λ→∞

∂τp∂ τp∂2
m logZN=2∗

∣∣∣
m=0

G(0)
p

= p − 1
2 (1.3)

where λ is the ’t Hooft coupling. This simple result follows from the strong-coupling behavior
of the integrated correlators (1.1) given in [9] adapted to our conventions, and the fact that
the coefficients G(0)

p do not depend on λ in the planar limit.
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Following the initial proposal of [9], the relation (1.1) has been investigated in a series
of papers [11–14] and also generalized to

∂4
m logZN=2∗

∣∣∣
m=0

=
∫ 4∏

i=1
dxi µ̂({xi})

〈
J (x1)J (x2)J (x3)J (x4)

〉
N=4 . (1.4)

This new relation provides further information on the 4-point correlation function of 20′

primaries integrated with a new measure µ̂({xi}). Many features of the integrated correla-
tors (1.1) and (1.4) have been explored in the last few years, in particular by identifying their
modular and weak-coupling properties [15–20], by introducing general gauge groups [21, 22],
by considering operator insertions with generic [23] or large conformal dimensions [24–27].
Moreover, mixed integrated correlators involving local operators and a Wilson line in N = 4
SYM have been recently considered in [28, 29].

Another interesting development concerns the study of integrated correlators in supercon-
formal gauge theories with N = 2 supersymmetry. In [30–32] the integrated 4-point functions
of moment-map operators have been studied in N = 2 superconformal QCD (SQCD) using
localization and matrix-model techniques. Starting from the free energy of a deformed version
of SQCD with massive hypermultiplets, integrated insertions of moment-map operators have
been obtained by taking derivatives with respect to the hypermultiplet mass. In this way
an exact relation between the fourth mass-derivatives of the free energy of the massive
SQCD and the integrated 4-point function of moment-map operators has been established,
in strict analogy with (1.4).

In this paper we further elaborate on the integrated correlators of N = 2 SYM theories
but, differently from [30–32], we consider mixed correlation functions between Coulomb-branch
operators and moment-map operators, like those in (1.1). We do so in a particular N = 2
superconformal gauge theory, called E-theory [33, 34], in which the hypermultiplets transform
in the rank-2 symmetric and anti-symmetric representations2 of SU(N). The E-theory is
interesting because it arises with a combination of orbifold and orientifold Z2-projections
from a parent N = 4 SYM with gauge group SU(2N) and shares many properties with the
latter while having a reduced amount of supersymmetry. In fact, all E-theory observables
involving operators that are even (or untwisted) under the Z2-projections coincide with those
of the parent N = 4 SYM in the planar limit and differ only in the sub-leading non-planar
corrections. On the contrary, for all quantities that are odd (or twisted) under the orbifold or
orientifold parities, the differences with respect to N = 4 SYM already appear at the planar
level. On top, at strong coupling the E-theory admits a dual description in terms of Type
II B strings on AdS5 × S5/Z2 [35, 36] and thus it is a relatively simple playground to test
the holographic correspondence when supersymmetry is not maximal.

To obtain the integrated correlators along the lines discussed above for N = 4 SYM, we
place the E-theory on a 4-sphere and then give a mass m to the symmetric and anti-symmetric

2We recall that in a N = 2 SU(N) SYM theory with Nf fundamental, NS symmetric and NA anti-symmetric
hypermultiplets, the β-function coefficient is β0 = 2N − Nf − NS(N + 2) − NA(N − 2). Therefore, with the
field content of the E-theory (Nf = 0, NS = NA = 1) the β-function identically vanishes for all N .
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hypermultiplets.3 The resulting massive theory, which is still N = 2 supersymmetric but
obviously no longer conformal, will be called E∗-theory, and its partition function ZE∗ can
be studied using supersymmetric localization. Then, we compute

∂τp∂ τp∂2
m logZE∗

∣∣∣
m=0

(1.5)

which, in analogy with (1.1), provides information on the mixed integrated correlator among
two Coulomb-branch operators and two moment-map operators of the E-theory. Indeed,
the action of a N = 2 SYM theory with massive hypermultiplets on a 4-sphere of radius
r, contains among others a term of the form i mi

r

∫
d4x

√
g J i, where J i is the moment-map

operator associated to the i-th hypermultiplet (for details see, for example, [9, 30–32]). In our
case this term becomes proportional to m

∫
d4x

√
g J , where J is the moment-map operator

in the symmetric plus anti-symmetric representation.4 Thus, derivatives with respect to m

correspond to integrated insertions of J , and the integrated correlator associated to (1.5)
can be schematically written as∫ 4∏

i=1
dxi µ′({xi})

〈
Op(x1)Op(x2)J (x3)J (x4)

〉
E (1.6)

where the integration measure is again fixed by conformal invariance and supersymmetry.
The main goal of this paper is to study the quantity in (1.5). We do so by using the

matrix-model approach that allows us to obtain an explicit expression for the partition
function ZE∗ that is valid for all values of the ’t Hooft coupling in the planar limit. Then,
in analogy with (1.3), we argue that

lim
λ→∞

∂τp∂ τp∂2
m logZE∗

∣∣∣
m=0

Gp
= p − 1

2 (1.7)

where Gp is the normalization factor of the 2-point functions of Coulomb-branch operators
in the E-theory. We analytically check this relation for all even p, while for odd p we
provide compelling evidence of its validity based on numerical results. When p is even the
relation (1.7) can be demonstrated following the same steps as in N = 4 SYM, since all
quantities appearing in the calculation are even under the orbifold/orientifold projections
that lead to the E-theory and thus are planar equivalent to those of N = 4 SYM. Instead,
for odd p the relation (1.7) is highly non-trivial since it involves quantities that are odd
under the orbifold/orientifold projections and are not planar equivalent to those in N = 4
SYM. Indeed, both the numerator and the denominator in the left-hand side are complicated
functions of the ’t Hooft coupling, and the fact that at strong coupling these two functions
coincide in the planar limit up to an overall numerical factor is quite remarkable.

3As we will explain in section 2, we could give different masses to the two types of hypermultiplets. However,
to highlight similarities and differences with respect to the N = 2∗ theory in the simplest and most direct way,
here we assume that both masses are equal to m. Furthermore, we will see that choosing different masses
induces effects that are sub-leading in the large-N expansion with respect to those obtained when the masses
are equal.

4In SU(N) we have N ⊗ N = 1 ⊕ adj and N ⊗ N = 1 ⊕ symm⊕ anti-symm. Thus, the combination
symmetric plus anti-symmetric is very similar, but obviously not identical, to the adjoint representation. For
this reason we use the same symbol J for the moment-map operators in the two cases.
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The outline of the paper is as follows. In section 2 we review the matrix-model description
of the E and E∗-theories, and identify the matrix operator which represents the integrated
insertion of two moment-map operators. As shown in [37, 38] the matrix model corresponding
to the E-theory is characterized by an interaction action that in the planar limit can be
written in terms of convolutions of Bessel functions with a particular kernel. This expression
is exact in the coupling constant and can be fruitfully used to investigate the strong-coupling
regime. It turns out that also the operator that accounts for the integrated insertion of the
moment-map operators can be written in the matrix model in terms of convolutions of Bessel
functions, but with a different kernel. Despite this difference, the same techniques used to
study the matrix model of the E-theory can be applied to study the mass corrections in the
E∗-theory. We do this in section 3, where in particular we find an exact expression for the
first mass correction of the free energy of the E∗-theory which is valid for all values of the
coupling constant in the planar limit. From it we then obtain the leading strong-coupling
behavior of the free energy using techniques similar to those developed in [39, 40] to study
the asymptotic expansion of the octagon form factor in N = 4 SYM at large coupling. In
section 4 we study the matrix-model representation of the integrated correlators in a simple
case corresponding to insertions of Coulomb-branch operators of conformal dimension 2, first
in N = 4 SYM where the underlying matrix model is Gaussian, and then in the E-theory.
In both cases we obtain an explicit expression that we subsequently generalize in section 5
to insertions of operators with arbitrary dimension p, proving (1.7). Finally, in section 6
we present our conclusions while in the appendices we collect many technical details that
are useful to reproduce our results.

2 The E∗-theory and its matrix-model description

The E∗-theory is a N = 2 massive deformation of the superconformal E-theory with gauge
group SU(N) in which the rank-2 symmetric and anti-symmetric hypermultiplets acquire a
mass mS and mA, respectively. Using supersymmetric localization, the partition function of
the E∗-theory can be written as an integral over a Hermitian matrix a as follows [2]5

ZE∗ =
(8π2N

λ

)N2−1
2
∫

da e−
8π2N

λ
tr a2

∣∣∣Z1−loop(a, mS , mA)Zinst(a, mS , mA, λ)
∣∣∣2 . (2.1)

Here λ is the ’t Hooft coupling and Z1−loop(a, mS , mA) and Zinst(a, mS , mA, λ) are the 1-loop
and the non-perturbative instanton contributions. In the limit N → ∞ with λ fixed, we
can neglect the instanton part and set Zinst(a, mS , mA, λ) = 1. The 1-loop term, instead,
is not trivial and can be written compactly as

∣∣∣Z1−loop(a, mS , mA)
∣∣∣2 =

∏
v∈W (adj)

H(iv · a)

∏
R=S,A

[ ∏
wR∈W (R)

H(iwR · a + imR)
] (2.2)

5In our conventions, a =
N2−1∑

b=1

ab Tb where the normalization of the generators of SU(N) is tr TbTc = 1
2 δbc.

We have also inserted a normalization factor which clearly drops out in expectation values but which is useful
to simplify some of the following formulas. Furthermore, we have set the radius of the 4-sphere to one.
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where v are the weights of the adjoint representation of SU(N), wR are the weights of the
representations R of the hypermultiplets (namely the rank-2 symmetric and anti-symmetric)
and H is defined as6

H(x) =
∞∏

n=1

(
1− x2

n2

)n

e
x2
n ≡ e(1+γ)x2

G(1 + x)G(1− x) (2.3)

with G being the Barnes G-function and γ the Euler-Mascheroni constant.
Since we are interested in small deformations around the E-theory, we may expand the

previous expressions for small values of mS and mA. Doing so and exploiting the fact that
H is an even function, we easily obtain∣∣∣Z1−loop(a, mS , mA)

∣∣∣2 =
∣∣∣Z1−loop(a)

∣∣∣2 (1− 1
2
∑

R=S,A

∑
wR∈W (R)

m2
R ∂2 logH(iwR · a) + . . .

)
(2.4)

where the ellipses stand for higher order terms in the mass expansion and

∣∣∣Z1−loop(a)
∣∣∣2 =

∏
v∈W (adj)

H(iv · a)

∏
R=S,A

[ ∏
wR∈W (R)

H(iwR · a)
] (2.5)

is the 1-loop term of the E-theory. If we rewrite (2.4) in exponential form as

∣∣∣Z1−loop(a, mS , mA)
∣∣∣2 = exp

[
−
( ∑
R=S,A

∑
wR∈W (R)

logH(iwR · a)−
∑

v∈W (adj)
logH(iv · a)

)

− 1
2
∑

R=S,A

∑
wR∈W (R)

m2
R ∂2 logH(iwR · a) + . . .

]
, (2.6)

we can view |Z1−loop(a, mS , mA)|2 as an interaction action added to the Gaussian matrix
model, that consists of a mass-independent term

S̃0 =
∑

R=S,A

∑
wR∈W (R)

logH(iwR · a)−
∑

v∈W (adj)
logH(iv · a) , (2.7)

and a tail of mass-corrections, the first of which being

S̃2 = 1
2
∑

R=S,A

∑
w∈W (R)

m2
R ∂2 logH(iwR · a) . (2.8)

Thus, for small masses the partition function of the E∗-theory can be written as

ZE∗ =
(8π2N

λ

)N2−1
2
∫

da e−
8π2N

λ
tr a2 e−S̃0−S̃2+... . (2.9)

6Here we follow the conventions of [8] with x ↔ i x and define, differently from [2], the function H with the
extra exponential factor. In this way the dependence on (1 + γ) will cancel in all formulas.
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Note that if R were the adjoint representation, S̃0 would vanish and S̃2 would reduce to
the first mass correction in the matrix model describing the N = 2∗ theory [8]. Using the
explicit form of the weights v, wS and wA, we can write S̃0 and S̃2 in terms of the eigenvalues
au (u = 1, . . . , N) of the matrix a, finding

S̃0 =
∑
u≤v

logH(i au + i av) +
∑
u<v

logH(i au + i av)− 2
∑
u<v

logH(i au − i av) (2.10)

and

S̃2 = 1
2m2

S

∑
u≤v

∂2 logH(i au + i av) +
1
2m2

A

∑
u<v

∂2 logH(i au + i av) . (2.11)

From (2.9) we can easily derive the mass-expansion of the free energy FE∗ = − logZE∗ ,
whose first terms are

FE∗ = FE +
〈
S̃2
〉
+ . . . (2.12)

where the notation ⟨f⟩ means the expectation value of f in the matrix model of the E-
theory, namely

⟨f⟩ =

∫
da e−

8π2N
λ

tr a2 e−S̃0 f∫
da e−

8π2N
λ

tr a2 e−S̃0

. (2.13)

In (2.12) the term FE ≡ FE∗
∣∣
mS=mA=0 represents the free-energy of the E-theory. This

has been thoroughly studied both at weak and at strong coupling in [41, 42] to which we
refer for details. Here, instead we concentrate on the first mass correction ⟨S̃2⟩. To compute
it we first rescale the matrix a according to

a →

√
λ

8π2N
a , (2.14)

so that the quadratic term in (2.13) acquires a canonical Gaussian normalization, and then
expand in powers of λ taking advantage of the formula

logH(x) = −
∞∑

n=1

ζ2n+1
n + 1 x2n+2 (2.15)

where ζk is the Riemann ζ-value ζ(k). Proceeding in this way and rewriting (2.10) and (2.11)
in terms of the traces of powers of a, after some algebra we find

S̃0 → S0 = 4
∞∑

n,ℓ=1
(−1)n+ℓ (2n + 2ℓ + 1)! ζ2n+2ℓ+1

(2n + 1)! (2ℓ + 1)!

(
λ

8π2N

)n+ℓ+1
tr a2n+1 tr a2ℓ+1 , (2.16)

and

S̃2 → S2 = −m2
S + m2

A

2 M− m2
S − m2

A

2 M′ , (2.17)

– 7 –
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where

M = −
∞∑

n=1

2n∑
ℓ=0

(−1)n (2n + 1)! ζ2n+1
(2n − ℓ)! ℓ!

(
λ

8π2N

)n

tr a2n−ℓ tr aℓ , (2.18)

M′ = −
∞∑

n=1
(−1)n (2n + 1) ζ2n+1

(
λ

2π2N

)n

tr a2n . (2.19)

A few remarks are in order. Firstly, we see that both S0 and M are quadratic in the traces of a

and, even if the coefficients are not the same, their structure is analogous. We therefore expect
that the techniques developed in [37, 38] to study S0 can be used also for M. Secondly, we
observe that M is very similar to the operator M0 that accounts for the first mass-correction
in the N = 2∗ theory. Indeed, the latter is given by (see for instance eq. (5.9) of [29])

M0 = −
∞∑

n=1

2n∑
ℓ=0

(−1)n+ℓ (2n + 1)! ζ2n+1
(2n − ℓ)! ℓ!

(
λ

8π2N

)n

tr a2n−ℓ tr aℓ , (2.20)

which differs from M in (2.18) only by an additional factor of (−1)ℓ. The operator M′,
instead, is new and has no analogue in the N = 2∗ theory.

The structure of S2 in (2.17) suggests to introduce the following combinations

m2 = m2
S + m2

A

2 and m′ 2 = m2
S − m2

A

2 . (2.21)

Due to the analogy between M and M0, we easily realize that m2 plays a role similar to
that of the mass deformation in N = 2∗, while the second combination clearly vanishes when
the masses of the symmetric and anti-symmetric hypermultiplets are equal. With these
definitions, the free energy (2.12) becomes

FE∗ = FE − m2 〈M〉
− m′ 2 〈M′〉+ . . . . (2.22)

Thus, up to quartic order in the masses the calculation of FE∗ reduces to the evaluation of
the vacuum expectation values ⟨tr ak tr aℓ⟩ and ⟨tr ak⟩ in the matrix model of the E-theory.
In turn, these vacuum expectation values can be written in terms of the vacuum expectation
values in the Gaussian matrix model, denoted by a subscript 0, according to

〈
tr ak tr aℓ〉 =

∫
da e− tr a2 e−S0 tr ak tr aℓ∫

da e− tr a2 e−S0
=

〈
e−S0 tr ak tr aℓ

〉
0〈

e−S0
〉

0

, (2.23)

and similarly for ⟨tr ak⟩.

2.1 Mass-corrections in the large-N limit

As discussed in [38, 43, 44], in the large-N limit it is convenient to change basis and, instead
of tr ak, use a new set of operators Pk that are normal-ordered and orthonormal in the
Gaussian model at leading order7 for N → ∞, namely

⟨Pk⟩0 = 0 , (2.24)
7From now on, we will understand that all equations hold at leading order for the N → ∞. We will

explicitly indicate the presence of the sub-leading corrections when necessary.
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and

⟨Pk Pℓ⟩0 = δk,ℓ . (2.25)

The relation between the two basis can be worked out explicitly in full generality [45] and
reads as follows

tr ak =
(

N

2

) k
2

⌊ k−1
2 ⌋∑

ℓ=0

√
k − 2ℓ

(
k

ℓ

)
Pk−2ℓ + ⟨tr ak⟩0 . (2.26)

If we substitute this in (2.16), the interaction action S0 takes a remarkably simple form
and becomes

S0 = −1
2

∞∑
k,ℓ=1

P2k+1 X2k+1,2ℓ+1 P2ℓ+1 (2.27)

where the λ-dependent coefficients can be written in terms of a convolution of Bessel functions
of the first kind according to [37, 38]

Xn,m = 2 (−1)
n+m+2nm

2 +1 √nm

∫ ∞

0

dt

t

1
sinh(t/2)2 Jn

(
t
√

λ

2π

)
Jm

(
t
√

λ

2π

)
(2.28)

for n, m ≥ 2. Notice that while the initial expression (2.16) is an expansion in powers of λ

and thus is valid at weak coupling, the expression (2.27) is a resummation of the perturbative
series and can be used for all values of λ. Indeed, the coefficients (2.28) are well-defined for
any λ and admit a simple asymptotic expansion at strong coupling that can be obtained using
the Mellin-Barnes method [38, 41, 43, 44]. For later purposes, it is convenient to introduce
the matrices Xodd and Xeven according to

(Xodd)k,ℓ ≡ X2k+1,2ℓ+1 and (Xeven)k,ℓ ≡ X2k,2ℓ (2.29)

and neglect the mixed even/odd elements X2k,2ℓ+1 which will not play any role in the following.
Using this notation, the interaction action (2.27) becomes

S0 = −1
2

∞∑
k,ℓ=1

P2k+1 Xodd
k,ℓ P2ℓ+1 . (2.30)

As realized in [37], in the planar limit the vacuum expectation value of a product of
many Pk’s in the Gaussian theory can be simply computed using Wick’s theorem, with
the contraction given in (2.25). Thus, we can associate to each operator Pk a real variable
pk and write

〈
Pk1 Pk2 . . .Pkn

〉
0 =

∫
Dp pk1pk2 . . . pkn e−

1
2 pT p + O(N−1) (2.31)

where p is a column vector with components pk and the integration measure is

Dp =
∏
k

dpk√
2π

. (2.32)
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Splitting p into its odd and even parts podd and peven, whose components carry respectively
odd and even indices, we have

pT p = pT
even peven + pT

odd podd and S0 = −1
2 pT

odd Xodd podd , (2.33)

while the integration measure clearly factorizes as Dp = Dpeven Dpodd. Therefore, in the
planar limit the partition function of the E-theory becomes

ZE =
∫
Dpeven e−

1
2 pT

even peven
∫

Dpodd e−
1
2 pT

odd(1−Xodd)podd = det
(
1 − Xodd)− 1

2 , (2.34)

corresponding to the free energy

FE = 1
2 Tr log

(
1 − Xodd) . (2.35)

As mentioned above, this free energy has been studied in detail in [41, 42] where in particular
its strong coupling behavior has been obtained using the asymptotic properties of the X
matrix and the corresponding Bessel kernel.

In the following, we will need also the 3-point functions of the P operators. As one
can see from (2.31) with n = 3, they vanish at the leading order in the large-N expansion
and become non-trivial only at the sub-leading order 1/N . Furthermore, for parity reasons,
these 3-point functions are non-zero only when there are either zero or two operators with
odd indices. In these cases, one finds [34, 43]:

⟨P2k P2ℓ P2n⟩0 = 1
N

d2k,2ℓ,2n , (2.36a)

⟨P2k P2ℓ+1 P2n+1⟩0 = 1
N

d2k,2ℓ+1,2n+1 , (2.36b)

where

dk,ℓ,n =
√

k ℓ n . (2.37)

Also the operators M and M′ in (2.18) and (2.19) can be conveniently written in the
P-basis. In plugging (2.26) into (2.18), we have to pay attention to the fact that both
even and odd traces appear and, since

〈
tr a2k

〉
0 is non-zero, the resulting expression will

contain terms with zero, one or two P’s. Therefore, after some algebra we can write (see
appendix A for details)

M = M(0) +M(1) +M(2) , (2.38)

with

M(0) = N2 M0,0 + M1,1 −
1
6

∞∑
k=1

√
2k + 1M1,2k+1 + O(N−2) , (2.39a)

M(1) = 2N
∞∑

k=1
M0,2k P2k + O(N−1) , (2.39b)

M(2) =
∞∑

k,ℓ=1

[
M2k,2ℓ P2kP2ℓ − M2k+1,2ℓ+1 P2k+1P2ℓ+1

]
, (2.39c)
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where the λ-dependent coefficients are given by the following convolutions of Bessel functions

M0,0 =
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

[
1− 16π2

t2λ
J1

(
t
√

λ

2π

)2]
, (2.40a)

M0,n = (−1)
n
2 +1 √n

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

( 4π

t
√

λ

)
J1

(
t
√

λ

2π

)
Jn

(
t
√

λ

2π

)
, (2.40b)

Mn,m = (−1)
n+m+2nm

2 +1 √nm

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 Jn

(
t
√

λ

2π

)
Jm

(
t
√

λ

2π

)
(2.40c)

for n, m ≥ 1. Notice the similarity between Mn,m in (2.40c) and Xn,m in (2.28): the only
difference is in the factor that multiplies the Bessel functions inside the integrand. Again,
while the initial expression of M given in (2.18) is a perturbative expansion in powers of
the ’t Hooft coupling, the final expressions (2.39) and (2.40) are exact in λ and thus can be
used also at strong coupling. The coefficient M0,0 which contributes to the planar limit of
M agrees with the results of [8], while the other coefficients M0,n and Mn,m appear also in
the study of the holographic correlators in N = 4 SYM presented in [11]. The reason for
this it that the first mass-correction of the N = 2∗ theory is described by the operator M0
in (2.20) which is very similar to that of the E∗-theory, namely

M0 = M(0)
0 +M(1)

0 +M(2)
0 (2.41)

where

M(0)
0 = M(0) , M(1)

0 = M(1) , M(2)
0 =

∞∑
k,ℓ=1

Mk,ℓ Pk Pℓ . (2.42)

The difference between M and M0 is only in the quadratic part and simply amounts to a
different sign between the even and odd terms which however does not change the structure
of the coefficients.

Let us now consider the operator M′ in (2.19). Since this is a superposition of single
traces, when we express it in the P-basis we only get terms with one P or with no P.
Thus, we can write

M′ = M′ (0) +M′ (1) . (2.43)

By inserting (2.26) into (2.19), one can immediately realize that

M′ (1) = O(N0) and M′ (0) = O(N) . (2.44)

Indeed, in M′ (1) the N -dependence disappears, while in M′ (0) a net overall factor of N

remains in the product between ⟨tr a2n⟩0 (whose expression is given in (A.4)) and the terms
accompanying the ’t Hooft coupling in (2.19). By comparing M′ (0) and M′ (1) with M(0) and
M(1) in (2.39a) and (2.39b), we see that the former have a power of N lower than the latter.
Therefore M′ provides contributions that are sub-leading in the large-N limit compared to
those arising from M. For this reason from now on we will focus on M. This choice is clearly
equivalent to assuming that the masses of the symmetric and anti-symmetric hypermultiplets
are equal, i.e. mS = mA = m, which implies m′ = 0.
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3 The first mass-correction to the free energy

In this section we describe the large-N expansion of ⟨M⟩, which according to (2.22) gives the
first mass-correction to the free energy proportional to m2. This calculation will also provide
useful results for the analysis of the integrated correlators presented in the following sections.

From the explicit expression of the various components of M in (2.39), it is clear that
we need to compute the 1- and 2-point functions of the operators Pk in the E-theory. These
operators are normal-ordered and orthonormal in the Gaussian model but they are no longer
so in the interacting matrix model of the E-theory, and thus their 1- and 2-point functions
are non trivial. Indeed, as shown in [43, 44], one finds

⟨P2k P2ℓ⟩ = δkℓ + O(N−2) , (3.1a)

⟨P2k+1 P2ℓ+1⟩ = (Dodd)k,ℓ + O(N−2) (3.1b)

where8

Dodd = 1 + Xodd + (Xodd)2 + (Xodd)3 + . . . = 1
1 − Xodd . (3.2)

Similarly one has

⟨Pn⟩ = 0 + O(N−1) (3.3)

where the appearance of sub-leading corrections is due to the fact that in the definition (2.26)
we used the vacuum expectation values of the Gaussian model and not those of the interacting
theory. As we shall see in the following, the O(N−2)-corrections in the 2-point functions (3.1)
will not play any role since they will affect only sub-leading non-planar terms in the free energy
that we will not consider. On the contrary, the O(N−1)-terms in the 1-point functions (3.3)
are important and cannot be neglected: they enter in the vacuum expectation value of
M(1), which has an explicit factor of N in front, and thus contribute to the O(N0)-part
of the free energy.

Let us now proceed in order and compute the various contributions to ⟨M⟩ in the
large-N expansion.

• N2-terms. The only contribution proportional to N2 comes from the first term in M(0),
and we simply have

⟨M⟩
∣∣
N2 = N2 M0,0 (3.4)

with M0,0 given in (2.40a). Note that this is the same result for the first mass-correction of
the free energy in the N = 2∗ theory [8]. Therefore, to see some deviations in the E∗-theory
we have to consider the sub-leading terms.

• N1-terms. Contributions of order N could originate from M(1), but they contain ⟨ P2k ⟩.
As one can see from (3.3), this 1-point function is O(N−1), and thus

⟨M⟩
∣∣
N

= 0 . (3.5)
8With an abuse of notation, we denote the inverse of a matrix A by 1

A .
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• N0-terms. The terms of order N0 are interesting since they show a deviation from the
N = 2∗ theory. They have three sources:

1. The terms of order N0 in ⟨M(0)⟩, namely

⟨M(0)⟩
∣∣
N0 = M1,1 −

1
6

∞∑
k=1

√
2k + 1M1,2k+1 . (3.6)

2. The terms of order N0 in ⟨M(1)⟩ which originate from the sub-leading correction in
the 1-point function ⟨P2k⟩ (see (3.3)). As shown in appendix C, this 1-point function is

⟨P2k⟩ = −
√
2k

N
λ ∂λFE + O(N−3) (3.7)

where FE is the free energy of the E-theory given in (2.35). Using this result, we find

⟨M(1)⟩
∣∣
N0 = −2λ ∂λFE

∞∑
k=1

√
2k M0,2k = 2λ ∂λFE M1,1 (3.8)

where in the last step we have exploited the relation (B.1) that follows from the
recurrence relations of the Bessel functions.

3. The terms of order N0 in ⟨M(2)⟩, which are

⟨M(2)⟩
∣∣
N0 =

∞∑
k,ℓ=1

[
M2k,2ℓ ⟨P2k P2ℓ⟩ − M2k+1,2ℓ+1 ⟨P2k+1 P2ℓ+1⟩

]
(3.9)

=
∞∑

k=1
M2k,2k −

∞∑
k,ℓ=1

M2k+1,2ℓ+1 (Dodd)k,ℓ = TrMeven − Tr
(
Modd Dodd)

where in the second line we have used (3.1) and introduced the even and odd parts of
the matrix M in analogy with (2.29).

Collecting all contributions, we obtain

⟨M⟩ = N2 M0,0

+
[(
1 + 2λ ∂λFE

)
M1,1 −

1
6

∞∑
k=1

√
2k + 1M1,2k+1 +TrMeven − Tr

(
Modd Dodd)]

+ O(N−2) . (3.10)

This formal expression is exact in λ. Indeed, all its terms are written using the matrix
elements of X and M, which are valid for all values of the ’t Hooft coupling.

For later convenience, we report also the result for first-mass correction of the free
energy in the N = 2∗ theory, namely ⟨M0 ⟩0. From the expression of M0 given in (2.41),
one easily finds

⟨M0 ⟩0 = N2 M0,0 +
[
M1,1 −

1
6

∞∑
k=1

√
2k + 1M1,2k+1 +TrMeven +TrModd

]
+ O(N−2)

= N2 M0,0 +
[ ∞∑

k=1
Mk,k − 1

6

∞∑
k=1

√
2k + 1M1,2k+1

]
+ O(N−2) . (3.11)

– 13 –



J
H
E
P
0
1
(
2
0
2
4
)
1
5
4

Notice that ⟨M0 ⟩0 is not obtained from ⟨M⟩ by simply turning-off the terms depending on
the interaction action. Indeed, this would only reduce the interacting vacuum expectation
values ⟨ ⟩ to the free one ⟨ ⟩0 without changing M into M0.

3.1 Weak coupling

If λ → 0 we can expand the Bessel functions inside the convolution integrals and easily
compute the matrix elements Xn,m and Mn,m as power series in λ whose coefficients are
proportional to odd Riemann ζ-values. Proceeding in this way, it is not difficult to show that

Xn,m = O(λ
n+m

2 ) and Mn,m = O(λ
n+m

2 ) . (3.12)

Therefore, if we are interested in obtaining the weak-coupling expansion up to a given
perturbative order, we can systematically truncate the infinite matrices X and M to finite
matrices and the computation of the infinite sums and of the traces appearing in (3.10) is
reduced to manipulations of finite expressions that can be effectively automated. Applying
this method to (3.10) at the first few perturbative orders, we have found

⟨M⟩ = N2
[ 3 ζ3

2 λ̂ − 25 ζ5
8 λ̂2 + 245 ζ7

32 λ̂3 − 1323 ζ9
64 λ̂4 + 7623 ζ11

128 λ̂5 + O(λ̂6)
]

−
[ 3 ζ3

2 λ̂ − 25 ζ5
8 λ̂2 − 175 ζ7

32 λ̂3 + 6615 ζ9 + 360 ζ3 ζ5
64 λ̂4

− 24255 ζ11 + 1260 ζ3 ζ7 + 900 ζ2
5

32 λ̂5 + O(λ̂6)
]
+ O(N−2) (3.13)

where λ̂ = λ/(4π2). These expansions can actually be pushed to very high orders without
much computational effort, and then used for numerical investigations.

In a similar way, we can obtain the weak-coupling expansion for the first mass-correction
of the N = 2∗ theory which is

⟨M0 ⟩0 = N2
[ 3 ζ3

2 λ̂ − 25 ζ5
8 λ̂2 + 245 ζ7

32 λ̂3 − 1323 ζ9
64 λ̂4 + 7623 ζ11

128 λ̂5 + O(λ̂6)
]

−
[ 3 ζ3

2 λ̂ − 25 ζ5
8 λ̂2 + 245 ζ7

32 λ̂3 − 945 ζ9
64 λ̂4 + O(λ̂6)

]
+ O(N−2) . (3.14)

Notice that in this expression, differently from (3.13), all terms are linear in the Riemann
ζ-values and the difference with respect to the E∗-theory starts in the O(N0)-part at order λ̂3.

3.2 Strong coupling

The strong-coupling analysis of ⟨M⟩ is less straightforward. The planar contribution,
N2 M0,0, was studied in [8] where it was found that

M0,0 ∼
λ→∞

log λ

2 + O(λ0) . (3.15)

Let us now consider the O(N0)-terms in the square brackets of (3.10). The strong-coupling
behavior of the matrix elements Mn,m can be derived by applying the Mellin-Barnes method.
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Inserting the identity

Jn

(
t
√

λ

2π

)
Jm

(
t
√

λ

2π

)
=
∫ i∞

−i∞

ds

2πi
Γ(−s) Γ(2s + n + m + 1)

Γ(s + n + 1)Γ(s + m + 1)Γ(s + n + m + 1)

(
t
√

λ

4π

)2s+n+m

(3.16)

in (2.40c) and performing the integral over t, we get

Mn,m = (−1)
n+m+2nm

2 +1 √nm × (3.17)

×
∫ i∞

−i∞

ds

2πi
Γ(−s) Γ(2s + n + m + 1)Γ(2s + n + m + 2) ζ2s+n+m+1

Γ(s + n + 1)Γ(s + m + 1)Γ(s + n + m + 1)

(√
λ

4π

)2s+n+m

.

For large λ we can close the integration contour over s counter-clock wise and pick-up the
residues over the poles on the negative real axis. In this way we find

Mn,m ∼
λ→∞

−1
2 δn,m +

√
n m√
λ

+ O(λ− 3
2 ) (3.18)

for any n, m > 0. On the other hand, the analysis presented in [41] shows that

FE ∼
λ→∞

√
λ

8 + O(λ0) . (3.19)

Therefore, we can easily conclude that the leading strong-coupling behavior of the first
O(N0)-term in (3.10) is

(
1 + 2λ ∂λFE

)
M1,1 ∼

λ→∞
−
√

λ

16 + O(λ0) . (3.20)

Let us now consider the second O(N0)-term in the square brackets of (3.10). To find its strong-
coupling behavior, we first make use of the identity (B.5) and then use the Mellin-Barnes
method to get

−1
6

∞∑
k=1

√
2k + 1M1,2k+1 = − 1

12

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
J2

(
t
√

λ

2π

)
∼

λ→∞
− 1
24 + O(λ− 1

2 ) . (3.21)

This term is sub-leading with respect to (3.20) and thus does not contribute at leading order.
We now analyze the last two terms in the square brackets of (3.10). Using the identi-

ties (B.7) and (B.12), we can rewrite these terms as follows

TrMeven − Tr
(
Modd Dodd) = M1,1 +

1
2

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J0

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
− Tr

[
Modd (Dodd − 1

)]
. (3.22)

The strong-coupling behavior of the first line can be easily obtained using (3.18) and applying
again the Mellin-Barnes method to the convolution of Bessel functions. In this way we find

M1,1 +
1
2

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J0

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
∼

λ→∞
−1
4 + O(λ− 1

2 ) . (3.23)
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Also this contribution is sub-leading with respect to (3.20) and can be neglected at lead-
ing order.

We thus remain with the term in the second line of (3.22). Its strong-coupling behavior
cannot be deduced from a straightforward application of the Mellin-Barnes method due
to the presence of (infinitely) many terms with multiple insertion of Xodd arising from
the interaction action. However, the leading term at strong coupling can be obtained by
applying the techniques developed in [39, 40] for the study of the octagon form factor of
N = 4 SYM in the strong-coupling regime. In appendix D we provide some details on
these techniques and show that

−Tr
[
Modd (Dodd − 1

)]
∼

λ→∞
−
√

λ

24 + O(λ0) . (3.24)

Collecting all contributions, from (3.15), (3.20) and (3.24) we conclude that

⟨M⟩ ∼
λ→∞

N2 log λ

2 − 5
√

λ

48 + O(N−2) . (3.25)

We observe that this strong-coupling behavior is similar but not identical to that of the free
energy in the N = 2∗ theory which is given by [8]

⟨M0 ⟩0 ∼
λ→∞

N2 log λ

2 −
√

λ

6 + O(N−2) . (3.26)

The difference between (3.25) and (3.26) in the O(N0)-terms signals the non-planar inequiva-
lence of the N = 2∗ and E∗ theories also at leading order in the strong-coupling expansion.

Before concluding this section, for completeness we briefly mention that if we had chosen
different values for the hypermultiplet masses of the E∗-theory, we would have found an
O(N)-contribution to the free energy proportional to m′ 2 coming from ⟨M′ (0) ⟩ (see (2.44)).
At large N , however, this is sub-leading with respect to the contribution proportional to m2

which is O(N2) and comes from ⟨M(0) ⟩. Thus, to obtain the first mass-correction of the
free energy of the E∗-theory at leading order in the large-N expansion, one can neglect M′

and just consider M. On the other hand, as we will see, the manipulations we performed
to obtain the sub-leading O(N0)-terms of ⟨M⟩, are extremely useful for the integrated
correlators to which we now turn.

4 Integrated correlators: a first example

In this section we begin a detailed study of the quantity introduced in (1.5), namely

∂τp∂ τp∂2
m logZE∗

∣∣∣
m=0

≡ Cp . (4.1)

However, as a warm-up we first review what happens in N = 4 SYM considering

∂τp∂ τp∂2
m logZN=2∗

∣∣∣
m=0

≡ C(0)
p (4.2)

for p = 2. This exercise is useful because it allows us to easily retrieve the results of [9] using
our approach, paving the way for the generalization to the E-theory.
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4.1 p = 2 in N = 4 SYM

When p = 2 we can take advantage of the standard complexified gauge coupling

τ = θ

2π
+ i 4πN

λ
, (4.3)

where θ is the topological vacuum angle and show that [12]

C(0)
2 = 1

4 ∆τ ∂2
m logZN=2∗

∣∣∣
m=0

. (4.4)

Here we have adopted the same conventions as in [15, 16], and introduced the hyperbolic
Laplacian ∆τ = 4(Im τ)2 ∂τ ∂τ . On the other hand, exploiting the localization results
presented in sections 2 and 3 we can write

C(0)
2 = 1

2 ∆τ ⟨M0 ⟩0 (4.5)

where M0 is the operator defined in (2.20) and whose vacuum expectation value is given
in (3.11) in the large-N expansion. Since the topological vacuum angle is set to zero, we can
express the hyperbolic Laplacian only in terms of derivatives with respect to the ’t Hooft
coupling according to ∆τ = (2λ∂λ + λ2∂2

λ). Hence, we have

C(0)
2 = 1

2
(
2λ ∂λ + λ2 ∂2

λ

)
⟨M0 ⟩0 . (4.6)

Using (3.11) and the explicit form of the coefficients Mn,m in terms of Bessel functions, one can
verify that this expression exactly reproduces the results of [15, 16] in the large-N expansion.

We now observe that

λ∂λ⟨M0 ⟩0 = ⟨tr a2M0 ⟩0 − ⟨tr a2⟩0 ⟨M0 ⟩0 . (4.7)

This relation can be proved by writing ⟨M0 ⟩0 as a matrix integral over a and performing
the inverse rescaling (2.14) in such a way that all λ-dependence is removed from M0 and
put entirely in the Gaussian term in the exponent and in a Jacobian prefactor produced by
the integration measure. In this way one can realize that a λ-derivative can be traded for an
insertion of tr a2 in the matrix integral coming from the Gaussian term, and an insertion of
⟨tr a2⟩0 = (N2 − 1)/2 coming from the Jacobian. If we now introduce the operator

O
(0)
2 = tr a2 − ⟨tr a2⟩0 =

√
N2

2 P2 , (4.8)

we can rewrite (4.7) simply as

λ∂λ⟨M0 ⟩0 = ⟨O(0)
2 M0 ⟩0 . (4.9)

The operator O
(0)
2 defined in (4.8) is the matrix-model counterpart of the chiral and anti-

chiral operators O2(x) and O2(x) of the N = 4 SYM, and its 2-point correlator yields the
normalization coefficient G(0)

2 of the 2-point function introduced in (1.2), namely

G(0)
2 = ⟨O(0)

2 O
(0)
2 ⟩0 = N2

2 ⟨P2 P2⟩0 = N2

2 (4.10)

where in the last step we have used (2.25).
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Proceeding along the same lines, one can show that

λ2∂2
λ⟨M0 ⟩0 = ⟨O(0)

2 O
(0)
2 M0 ⟩0 − ⟨O(0)

2 O
(0)
2 ⟩0 ⟨M0 ⟩0 − 2 ⟨O(0)

2 M0 ⟩0 . (4.11)

Therefore, inserting (4.9) and (4.11) into (4.6) we find

C(0)
2 = 1

2 ⟨O(0)
2 O

(0)
2 M0 ⟩0 −

1
2 ⟨O(0)

2 O
(0)
2 ⟩0 ⟨M0 ⟩0 ≡ 1

2
〈〈

O
(0)
2 O

(0)
2 M0

〉〉
0 . (4.12)

This result clarifies the meaning of the operations to be performed on the logarithm of the
partition function to obtain C(0)

2 . Indeed, the τ -derivatives produce two insertions of O
(0)
2

which is the matrix-model representative of the Coulomb-branch operators with dimension 2
of the gauge theory, while the mass-derivatives associated to the integrated insertions of two
moment-map operators correspond effectively to the insertion of M0 inside a “connected”
correlator that we have denoted with the symbol ⟨⟨ ⟩⟩0. One can therefore conclude that
the integrated 4-point function of two Coulomb-branch operators with dimension 2 and
two moment-map operators in N = 4 SYM is captured in the matrix model by the 3-point
connected correlator defined in the right-hand side of (4.12).

4.2 p = 2 in E-theory

The previous analysis can be easily extended to the E-theory. In this case we have of course
to replace M0 with the operator M defined in (2.18) and also pay attention to the fact
that the Coulomb-branch operators O2(x) and O2(x) of the E-theory are not any more
represented in the matrix model by O

(0)
2 . Indeed, the latter is normal-ordered with respect

to the free Gaussian matrix model but not with respect to the interacting matrix model
so that one has to subtract its expectation value in the E-theory vacuum. Therefore, the
appropriate dimension-2 operator in the E-theory is

O2 =
√
G(0)

2
(
P2 − ⟨P2⟩

)
. (4.13)

Using this definition we find

G2 = ⟨O2 O2⟩ = G(0)
2
(
⟨P2 P2⟩ − ⟨P2⟩2) = G(0)

2
[
1 + O(N−2)

]
(4.14)

where in the last step we have used (3.1a) and taken into account the 1-point functions are
O(N−1) as shown in (3.7). We thus retrieve a well-known fact, namely that G2 and G(0)

2
are the same in the planar limit [34].

Following the same steps described above for N = 4 SYM, one can show quite straight-
forwardly that

C2 = 1
2 ⟨O2 O2 M⟩− 1

2 ⟨O2 O2⟩ ⟨M⟩ ≡ 1
2
〈〈

O2 O2 M
〉〉

. (4.15)

This result provides the matrix-model representation of the mixed integrated correlator among
two Coulomb-branch operators of dimension 2 and two moment-map operators in the E-theory.

5 Integrated correlators: the general case

We now study the integrated correlators for generic p, starting again from N = 4 SYM.
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5.1 Integrated correlators in N = 4 SYM

Let us consider the quantity C(0)
p defined in (4.2). As discussed in [6], in the matrix model

the derivatives with respect to the couplings τp, and τ̄p produce insertions of normal-ordered
operators O

(0)
p which correspond to the Coulomb-branch operators Op(x) and Op(x) of the

gauge theory. Thus, in analogy with the p = 2 case in (4.12), we have

C(0)
p = 1

2
〈〈

O(0)
p O(0)

p M0
〉〉

0 . (5.1)

In the large-N limit the operator O
(0)
p is given by

O(0)
p =

√
G(0)

p Pp , (5.2)

with G(0)
p = p (N/2)p. Indeed, at large N the P-operators have canonical a 2-point functions up

to sub-leading corrections, see (2.25), and the G(0)
p factor restores the standard normalization

of the Coulomb-branch operators of the field theory.
In large-N limit we can use in (5.1) the explicit expression of M0 given in (2.41)

and (2.42), and obtain up to sub-leading terms

C(0)
p

G(0)
p

= N
∞∑

k=1
M0,2k ⟨Pp Pp P2k⟩0 +

1
2

∞∑
k,ℓ=1

Mk,ℓ

(
⟨Pp Pp Pk Pℓ⟩0 − ⟨Pp Pp⟩0 ⟨Pk Pℓ⟩0

)
. (5.3)

In the first sum we can insert the value of the 3-point correlators (2.36), while in the second
sum we can evaluate the 4-point correlator using Wick’s theorem which reduces it to product
of 2-point correlators. In this way we find

C(0)
p

G(0)
p

= p
∞∑

k=1

√
2k M0,2k + Mp,p = Mp,p − p M1,1 (5.4)

where the last step follows from the identity (B.1). If we use the definition (2.40c) of the
matrix elements Mn,m we easily realize that C(0)

p is a convolution integral of Bessel functions
proportional to (J2

p − J2
1 ) in perfect agreement with the results of [9].

From (5.4) we can also extract the leading strong-coupling behavior of the integrated
correlator in a straightforward way. Indeed, exploiting (3.18) we have

C(0)
p

G(0)
p

∼
λ→∞

p − 1
2 + O(λ− 1

2 ) (5.5)

which is precisely equation (1.3).

5.2 Integrated correlators in E-theory

In the E-theory we have to consider the correlators

Cp = 1
2
〈〈

Op Op M
〉〉

(5.6)

and distinguish the cases in which p is even or odd.
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Even operators. When p = 2q, the calculation is similar to that of N = 4 SYM. Indeed,
the operators O2q are as in (5.2) except for the subtraction of their expectation value, namely

O2q =
√
G(0)

2q

(
P2q − ⟨P2q⟩

)
. (5.7)

From this we immediately find

G2q = ⟨O2q O2q⟩ = G(0)
2q

(
⟨P2q P2q⟩ − ⟨P2q⟩2) = G(0)

2q

[
1 + O(N−2)

]
. (5.8)

These two equations are the obvious generalizations of (4.13) and (4.14).
Inserting (5.7) into (5.6) and using the large-N expansion of the operator M given

in (2.38) and (2.39), we have

C2q

G2q
= N

∞∑
k=1

M0,2k

〈〈
O2q O2q P2k

〉〉
+ 1

2

∞∑
k,ℓ=1

M2k,2ℓ

〈〈
O2q O2q P2k P2ℓ

〉〉
− 1

2

∞∑
k,ℓ=1

M2k+1,2ℓ+1
〈〈

O2q O2q P2k+1P2ℓ+1
〉〉

. (5.9)

The fact that the ⟨⟨ ⟩⟩ correlators are M-connected implies that there must be some non-
trivial contraction between the O and the P operators. This has the immediate consequence
that the last term in (5.9) vanishes in the planar limit due to the different parities of the
O and P operators. We thus have only to consider the first line of (5.9). The correlator
in the first term is〈〈

O2q O2q P2k

〉〉
=
〈〈(

P2q − ⟨P2q⟩
)(
P2q − ⟨P2q⟩

)
P2k

〉〉
= ⟨P2q P2q P2k⟩conn (5.10)

Indeed, by removing the contributions that are disconnected from the operator P2k coming
from M, we simply obtain the connected expectation value of three P operators. When
all these operators are even, the interaction action of the E-theory matrix model does not
play any role and the analogue of (2.36a) holds, namely

⟨P2q P2r P2s⟩conn = 1
N

d2q,2r,2s = 1
N

√
(2q)(2r)(2s) . (5.11)

Thus, we have

〈〈
O2q O2q P2k

〉〉
= 1

N
2q

√
2k . (5.12)

The remaining correlator to be considered in (5.9) is〈〈
O2q O2q P2k P2ℓ

〉〉
=
〈〈(

P2q − ⟨P2q⟩
)(
P2q − ⟨P2q⟩

)
P2k P2ℓ

〉〉
. (5.13)

Here the leading terms in the Wick decomposition at large N are given by the product of
two 2-point functions of P operators, which are of order N0; instead, the terms involving
the 1-point functions are sub-leading since ⟨P2q⟩ is O(N−1) as we have seen in (3.7). Thus,
in the planar limit (5.13) reduces thus to〈〈

O2q O2q P2k P2ℓ

〉〉
= 2 ⟨P2q P2k⟩ ⟨P2q P2ℓ⟩ = 2 δq,k δq,ℓ . (5.14)

– 20 –



J
H
E
P
0
1
(
2
0
2
4
)
1
5
4

Inserting these findings into (5.9) we get

C2q

G2q
= 2q

∞∑
k=1

M0,2k

√
2k + M2q,2q = M2q,2q − 2q M1,1 . (5.15)

This result is identical to that of N = 4 SYM given in (5.4). At strong coupling, using (3.18),
we easily see that

C2q

G2q
∼

λ→∞

2q − 1
2 + O(λ− 1

2 ) (5.16)

which is precisely equation (1.7) for p = 2q.

Odd operators. When p = 2q + 1 there are some important differences. First of all, the
correlators of two odd P’s are not diagonal in the E-theory (see (3.1b)). This fact implies
that the matrix-model operators O2q+1 representing the Coulomb-branch operators O2q+1(x)
and O2q+1(x) of the gauge theory, which have diagonal 2-point functions, must be obtained
from the odd P’s by a Gram-Schmidt procedure with the result that

O2q+1 =
√
G(0)

2q+1

(
P2q+1 −

∑
q′<q

Qq,q′P2q′+1

)
. (5.17)

The coefficients Qq,q′ are determined by demanding that O2q+1 be orthogonal to all operators
of lower dimension and, as shown in [34, 37, 38], can be explicitly expressed in terms of the
coefficients (Dodd)q,r appearing in the 2-point functions (3.2).

Using the expansion (5.17), we see that the odd integrated correlators

C2q+1 = 1
2
〈〈

O2q+1O2q+1M
〉〉

(5.18)

are determined by the quantities

Πq,r =
〈〈
P2q+1 P2r+1 M

〉〉
. (5.19)

In fact, one has

C2q+1

G(0)
2q+1

= 1
2

(
Πq,q − 2

∑
q′<q

Qq,q′Πq′,q +
∑

q′,q′′<q

Qq,q′Πq′,q′′Qq,q′′

)
. (5.20)

Let us then consider in more detail the coefficients Πq,r. Using arguments similar to those
employed in the even case, we see that the fact that the “external” operators P2q+1 and
P2r+1 in (5.19) have to be connected with M implies that this time it is only the odd part
of M(2) that matters. Indeed, we find

Πq,r = 2N
∞∑

k=1
M0,2k

〈〈
P2q+1 P2r+1 P2k

〉〉
−

∞∑
k,ℓ=1

M2k+1,2ℓ+1
〈〈
P2q+1 P2r+1 P2k+1 P2l+1

〉〉
. (5.21)

Since the
〈〈 〉〉

correlators are M-connected, in order to have a non-vanishing contribution
there must be a contraction between the external operators and those whose indices are
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summed over. Thus in the large-N limit upon using Wick’s theorem we get9

Πq,r = 2N
∞∑

k=1
M0,2k⟨P2q+1 P2r+1 P2k⟩conn − 2

∞∑
k,ℓ=1

M2k+1,2ℓ+1 ⟨P2q+1 P2k+1⟩⟨P2r+1 P2l+1⟩ .

(5.22)

The connected 3-point correlators appearing in the first sum above have been studied in
detail in [43] where it was shown that

⟨P2q+1 P2r+1 P2k⟩conn = 1
N

d2q+1 d2r+1
√
2k + O(N−2) (5.23)

with

d2q+1 =
∞∑

q′=1
(Dodd)q,q′

√
2q′ + 1 . (5.24)

Using this result and the 2-point correlators (3.1b), we can rewrite (5.22) as

Πq,r = 2 d2q+1, d2r+1

∞∑
k=1

M0,2k

√
2k − 2

∞∑
k,ℓ=1

M2k+1,2ℓ+1 (Dodd)q,k (Dodd)ℓ,r

= −2 d2q+1 d2r+1 M1,1 − 2
(
Dodd Modd Dodd)

q,r
(5.25)

where in the second line we have used once again the identity (B.1). Inserting this result
into (5.20), the expression of C2q+1 can be worked out in principle for any value of q. It
simplifies a lot for low values of q, and specifically for q = 1 when it reduces to

C3 = 1
2 G(0)

3 Π1,1 . (5.26)

It also simplifies for arbitrary q in the strong-coupling limit λ → ∞ in which we are particularly
interested. Let us then give some details for this case.

At strong coupling the expression (5.17) for O2q+1 becomes [43]

O2q+1 ∼
λ→∞

√
G(0)

2q+1

(
P2q+1 −

√
2q + 1
2q − 1 P2q−1

)
. (5.27)

It then follows that

C2q+1

G(0)
2q+1

∼
λ→∞

1
2

(
Πq,q − 2

√
2q + 1
2q − 1 Πq,q−1 +

2q + 1
2q − 1 Πq−1,q−1

)
(5.28)

where in the right-hand side we obviously must use the asymptotic form of the Π-coefficients
for λ → ∞. To find this, let us consider the two terms in (5.25). The first term is under
full control analytically, since in [43] it was shown that

d2q+1 ∼
λ→∞

2π√
λ

√
2q + 1 q (q + 1) (5.29)

9Notice that the term ⟨P2q+1 P2r+1⟩
∑∞

k,ℓ=1 M2k+1,2ℓ+1 ⟨P2k+1 P2l+1⟩ cancels in a M-connected correlator.
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and M1,1 behaves as stated in (3.18). Thus, altogether we have

−2 d2q+1 d2r+1 M1,1 ∼
λ→∞

4π2

λ

√
(2q + 1) q (q + 1)

√
2r + 1 r (r + 1) + O

(
λ− 3

2
)

. (5.30)

As for the second term in (5.25), we did not succeed in deriving its large-λ behavior in
an analytic way. However, we have studied it numerically for the lowest values of q and
r and found that (

DoddModdDodd)
q,r

∼
λ→∞

O(λ− 3
2 ) (5.31)

(see appendix D.2 for details). Based on this numerical evidence, we conjecture that the
behavior (5.31) holds for generic q and r so that the second term in (5.25) can be neglected
with respect to the first one being sub-leading at strong coupling. Thus, we can use the
approximation

Πq,r ≃ −2 d2q+1 d2r+1 M1,1 (5.32)

and the asymptotic form (5.30). Note that here the dependence on q and r is totally factorized.
As a consequence, when we plug this expression into (5.28) we get

C2q+1

G(0)
2q+1

≃ − M1,1

(
d2q+1 −

√
2q + 1
2q − 1 d2q−1

)2
∼

λ→∞

1
2

( 4π√
λ

√
2q + 1 q

)2
+ O(λ− 3

2 ) . (5.33)

Let us compare this behavior with that of the 2-point function G2q+1 = ⟨O2q+1 O2q+1⟩,
for which one has [43]

G2q+1

G(0)
2q+1

∼
λ→∞

8π2

λ
(2q + 1)q . (5.34)

Taking the ratio between (5.33) and (5.34), the λ-dependence drops out and we simply obtain

C2q+1
G2q+1

∼
λ→∞

q + O(λ− 1
2 ) , (5.35)

which is (1.7) for p = 2q + 1.

6 Conclusions

Using matrix-model techniques based on supersymmetric localization, we have presented
a detailed analysis of the quantities

Cp = ∂τp∂ τp∂2
m logZE∗

∣∣∣
m=0

(6.1)

which provide the integrated correlators of two Coulomb-branch operators and two moment-
map operators in the E-theory. As mentioned in the Introduction, this theory admits sectors
with observables that are planar equivalent to those of N = 4 SYM. These include, for
example, the coefficients in the 2- and 3-point functions of Coulomb-branch operators with
even dimensions [34, 37, 38]. Here we have shown that also the integrated correlators Cp
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with even p belong to this class. Indeed, comparing (5.15) and (5.4) with p = 2q, in the
planar limit we find

C2q = C(0)
2q = G(0)

2q

(
M2q,2q − 2q M1,1

)
. (6.2)

On the other hand, there are observables of the E-theory which are not equivalent to those
of N = 4 SYM even in the planar limit. Among these there are the 2- and 3-point functions
of Coulomb-branch operators with odd dimensions [34, 37, 38], but also the integrated
correlators Cp with odd p. This is easily seen in the simplest case p = 3. In fact, in N = 4
SYM we have (see (5.4))

C(0)
3 = 3N3

8
(
M3,3 − 3M1,1

)
, (6.3)

whereas in the E-theory we have (see (5.26))

C3 = −3N3

8
[
d2

3 M1,1 +
(
Dodd Modd Dodd)

1,1

]
. (6.4)

These two expressions are clearly different. Similar, but more complicated, formulas can
be worked out for p = 2q + 1 with the result that

C2q+1 ̸= C(0)
2q+1 . (6.5)

The matrix-model techniques described in the previous sections allow us to express the
integrated correlators Cp (but also C(0)

p ) through the coefficients Mn,m and (Dodd)n,m which
in turn are given in terms of convolutions of Bessel functions and are valid for all values
of the ’t Hooft coupling λ. Thus, the resulting expressions for the integrated correlators,
like those in (6.2)–(6.4), are exact in the planar limit.

When λ is small, we can expand these exact integrated correlators and find their
perturbative expansions in the weak-coupling regime. For example, from (6.4) we find

C3 = 3N3

8

[ 9 ζ3
2 λ̂ − 45 ζ5

2 λ̂2 + 105 ζ7 λ̂3 − 1890 ζ9 + 45 ζ3 ζ5
4 λ̂4 + O(λ̂5)

]
. (6.6)

where λ̂ = λ/(4π2). Doing a similar expansion for C(0)
3 in (6.3), we get

C(0)
3 = 3N3

8

[ 9 ζ3
2 λ̂ − 45 ζ5

2 λ̂2 + 735 ζ7
8 λ̂3 − 2835 ζ9

8 λ̂4 + O(λ̂5)
]

. (6.7)

It is interesting to observe that the difference between the E-theory and N = 4 SYM starts
at three loops with the terms proportional to ζ7. This makes checking such a difference
with ordinary field-theory diagrammatic methods quite challenging. Nevertheless, it would
be interesting to carry out this 3-loop test.

When λ is large, we can take advantage of the asymptotic behavior of the coefficients
Mn,m and (Dodd)n,m for λ → ∞ that can be deduced from their exact expressions in terms
of Bessel functions. Clearly, in the case of even integrated correlators, because of (6.2), we
obtain the same simple leading behavior as in N = 4 SYM given in (5.16). What is less
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obvious is that a similar simple result also holds for the odd integrated correlators, as shown
in (5.34). This is a highly non-trivial result since in the E-theory the integrated correlators
C2q+1 and the 2-point functions G2q+1 are two different functions of the ’t Hooft coupling.
However, at leading order in the strong-coupling expansions these two functions become
identical up to a simple factor related to the conformal dimensions of the Coulomb-branch
operators. Therefore, in the planar limit N → ∞ we can conclude that

lim
λ→∞

Cp

Gp
= p − 1

2 , (6.8)

for any p, just like in N = 4 SYM.
It would be very interesting to retrieve this simple strong-coupling result with a super-

gravity calculation using the AdS/CFT correspondence. This analysis would also help to
understand the meaning in the holographic dual theory of the integrated insertions of two
moment-map operators or, equivalently, of the matrix-model operator M. Extensions of
our present analysis to other N = 2 superconformal gauge theories, like for example the
circular quiver theories considered in [43, 46, 47] which also have a simple holographic dual,
would also be interesting and could be useful to clarify the whole picture in a set-up where
supersymmetry is not maximal.
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A The operator M

Here we give some details on how to derive the large-N expansion of the operator M presented
in (2.39). We recall that the initial expression of M is (see (2.18))

M = −
∞∑

n=1

2n∑
ℓ=0

(−1)n (2n + 1)! ζ2n+1
(2n − ℓ)! ℓ!

(
λ

8π2N

)n

tr a2n−ℓ tr aℓ , (A.1)

and that the P operators are defined by (see 2.26))

tr ak =
(

N

2

) k
2

⌊ k−1
2 ⌋∑

ℓ=0

√
k − 2ℓ

(
k

ℓ

)
Pk−2ℓ + ⟨tr ak⟩0 . (A.2)
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When we insert (A.2) into (A.1) we find terms with zero, one or two P operators given,
respectively, by

M(0) = −
∞∑

n=1

n∑
ℓ=0

(−1)n (2n + 1)! ζ2n+1
(2n − 2ℓ)! (2ℓ)!

(
λ

8π2N

)n

⟨tr a2n−2ℓ⟩0 ⟨tr a2ℓ⟩0 , (A.3a)

M(1) = −2
∞∑

n=1

n∑
ℓ=0

ℓ∑
q=0

(−1)n (2n + 1)! ζ2n+1
(2n − 2ℓ)! (2ℓ)!

(
λ

8π2N

)n(N

2

)ℓ√
2ℓ − 2q

(
2ℓ

q

)
× P2ℓ−2q

〈
tr a2n−2ℓ〉

0 , (A.3b)

M(2) = −
∞∑

n=1

2n∑
ℓ=0

⌊ 2n−ℓ−1
2 ⌋∑

k=0

⌊ ℓ−1
2 ⌋∑

q=0

(−1)n (2n + 1)! ζ2n+1
(2n − ℓ − k)! k! (ℓ − q)! q!

(
λ

16π2

)n

×

×
√
2n − ℓ − 2k

√
ℓ − 2q P2n−ℓ−2k Pℓ−2q . (A.3c)

Notice that in (A.3a) and (A.3b) we have taken into account that only the traces of even
powers of a have non-zero vacuum expectation values. In the large-N expansion these vacuum
expectation values can be obtained using the recursion relations based on the fusion/fission
identities discussed in [7, 37], with the result that

⟨tr a2ℓ⟩0 = N ℓ+1

2ℓ

(2ℓ)!
ℓ! (ℓ + 1)! −

N ℓ−1

2ℓ+1
(2ℓ)!

ℓ! (ℓ − 1)!

(
1− ℓ − 1

6

)
+ O(N ℓ−3) . (A.4)

Inserting this into (A.3a), after some straightforward algebra we get

M(0) = −N2
∞∑

n=1

n∑
ℓ=0

(−1)n (2n + 1)! ζ2n+1
(n − ℓ + 1)! (n − ℓ)! ℓ! (ℓ + 1)!

(
λ

16π2

)n

+
∞∑

n=1

n∑
ℓ=0

(−1)n (2n + 1)! ζ2n+1
(n − ℓ + 1)! (n − ℓ)! ℓ! (ℓ − 1)!

(
1− ℓ − 1

6

)(
λ

16π2

)n

+ O(N−2) . (A.5)

Through the identity

(2n + 1)! ζ2n+1 =
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 t2n , (A.6)

we rewrite (A.5) as

M(0) = −N2
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
n=1

n∑
ℓ=0

(−1)n

(n − ℓ + 1)! (n − ℓ)! ℓ! (ℓ + 1)!

(
t
√

λ

4π

)2n

+
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
n=1

n∑
ℓ=0

(−1)n

(n − ℓ + 1)! (n − ℓ)! ℓ! (ℓ − 1)!

(
t
√

λ

4π

)2n

(A.7)

− 1
6

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
n=1

n∑
ℓ=0

(−1)n

(n − ℓ + 1)! (n − ℓ)! ℓ! (ℓ − 2)!

(
t
√

λ

4π

)2n

+ O(N−2) .

After relabeling the summation indices we can resum the above series using the expansion
of the Bessel functions of the first kind

Jα(x) =
∞∑

n=0

(−1)n

n! (n + α)!

(
x

2

)2n+α

, (A.8)
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and get

M(0) = N2
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

[
1− 16π2

t2λ
J1

(
t
√

λ

2π

)2]
−
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 J1

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
(A.9)

− 1
12

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
J2

(
t
√

λ

2π

)
+ O(N−2) .

In terms of the matrix elements defined in (2.40) we have

M(0) = N2 M0,0 + M1,1 −
1
6

∞∑
k=1

√
2k + 1M1,2k+1 + O(N−2) (A.10)

where we have used the identity (B.5) to rewrite the last term. This is the expression
reported in (2.39a) of the main text.

With very similar manipulations we can treat the term M(1) in (A.3b) which, after
using (A.4), becomes

M(1) =− 2N
∞∑

n=1

n∑
ℓ=0

ℓ∑
q=0

(−1)n (2n + 1)! ζ2n+1
(2ℓ − q)! q! (n − ℓ + 1)! (n − ℓ)!

(
λ

16π2

)n

×
√
2ℓ − 2q P2ℓ−2q + O(N−1) . (A.11)

Proceeding as before, we find

M(1) = −2N

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
k=1

∞∑
q=0

∞∑
p=0

(−1)k+p+q
√
2k P2k

p! (p + 1)! (q + 2k)! q!

(
t
√

λ

4π

)2p+2q+2k

+ O(N−1)

= −2N

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
k=1

(−1)k
√
2k P2k

( 4π

t
√

λ

)
J1

(
t
√

λ

2π

)
J2k

(
t
√

λ

2π

)
+ O(N−1)

= 2N
∞∑

k=1
M0,2k P2k + O(N−1) (A.12)

which is the expression reported in (2.39b) of the main text.
Finally, using the identity (A.6) in (A.3c) and relabeling the summation indices we get

M(2) = −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
p=1

∞∑
k=0

(−1)
p
2 +k √p

k! (k + p)!

(
t
√

λ

4π

)p+2k

Pp ×

×
∞∑

q=1

∞∑
ℓ=0

(−1)
q
2 +ℓ √q

ℓ! (ℓ + q)!

(
t
√

λ

4π

)q+2ℓ

Pq

= −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
p,q=1

(−1)
p+q

2
√

p q Jp

(
t
√

λ

2π

)
Jp

(
t
√

λ

2π

)
Pp Pq

=
∞∑

p,q=1
(−1)pq Mp,q Pp Pq . (A.13)

Taking into account that P1 = 0 due to the tracelessness of a, we easily recognize the same
expression reported in (2.39c) of the main text.
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B Sum rules for Mn,m

Here we prove some useful relations satisfied by the matrix elements Mn,m or combina-
tions thereof.

• Proof of
∞∑

k=1

√
2k M0,2k = −M1,1 (B.1)

Using (2.40b), we can rewrite the left-hand side as

∞∑
k=1

√
2k M0,2k = −

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 J1

(
t
√

λ

2π

) ∞∑
k=1

(−1)k 4k J2k

(
t
√

λ
2π

)(
t
√

λ
2π

)
= −

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 J1

(
t
√

λ

2π

) ∞∑
k=1

(−1)k
[
J2k−1

(
t
√

λ

2π

)
+ J2k+1

(
t
√

λ

2π

)]
(B.2)

where the last line follows from the recursion relation of the Bessel functions:

2α Jα(x)
x

= Jα−1(x) + Jα+1(x) . (B.3)

Performing the sum over k we find

∞∑
k=1

√
2k M0,2k =

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 J1

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
= −M1,1 . (B.4)

• Proof of
∞∑

k=1

√
2k + 1M1,2k+1 = 1

2

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
J2

(
t
√

λ

2π

)
(B.5)

Using (2.40c) we rewrite the left-hand side as

∞∑
k=1

√
2k + 1M1,2k+1 = −

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

) ∞∑
k=1

(−1)k (2k + 1) J2k+1
(

t
√

λ
2π

)(
t
√

λ
2π

)
= 1

2

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
J2

(
t
√

λ

2π

)
(B.6)

where the sum over k has been performed using again the recursion relation (B.3) of the
Bessel functions.

• Proof of

TrModd = 1
4

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)2 [
J1

(
t
√

λ

2π

)
J3

(
t
√

λ

2π

)
− J2

(
t
√

λ

2π

)2 ]
(B.7)
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Using (2.40c) the left-hand side becomes

TrModd = −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
k=1

(2k + 1) J2k+1

(
t
√

λ

2π

)
J2k+1

(
t
√

λ

2π

)

= −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 K
(

t
√

λ

2π
,
t
√

λ

2π

)
(B.8)

where

K(x, y) =
∞∑

k=1
(2k + 1) J2k+1(x) J2k+1(y) =

x y
[
x J3(x) J2(y)− y J2(x) J3(y)

]
2(x2 − y2) (B.9)

is a Bessel kernel [48]. Using the recursion relation (B.3) of the Bessel functions and the
property

2 J ′
α(x) = Jα−1(x)− Jα+1(x) , (B.10)

it is not difficult to show that

K(x, x) = x

4
[
x J2(x) J ′

3(x)− x J3(x) J ′
2(x) + J2(x) J3(x)

]
= −x2

4
[
J1(x) J3(x)− J2(x)2] .

(B.11)

Upon inserting this result in (B.8), the identity (B.7) immediately follows.

• Proof of

TrMeven = M1,1 +TrModd + 1
2

∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

(
t
√

λ

2π

)
J0

(
t
√

λ

2π

)
J1

(
t
√

λ

2π

)
(B.12)

Using (2.40c) we write the left-hand side as

TrMeven = −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
k=1

2k J2k

(
t
√

λ

2π

)
J2k

(
t
√

λ

2π

)

= −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 H
(

t
√

λ

2π
,
t
√

λ

2π

)
(B.13)

where H is the following Bessel kernel

H(x, y) =
∞∑

k=1
2k J2k(x) J2k(y) =

x y
[
x J2(x) J1(y)− y J1(x) J2(y)

]
2(x2 − y2)

=
x y
[
y J0(y) J1(x)− x J0(x) J1(y)

]
2(x2 − y2) . (B.14)

From the last expression we easily obtain

H(x, x) = x

4
[
x J0(x) J ′

1(x)− x J1(x) J ′
0(x)− J0(x) J1(x)

]
. (B.15)
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On the other hand, we have

M1,1 +TrModd =
∞∑

k=0
M2k+1,2k+1

= −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2

∞∑
k=0

(2k + 1) J2k+1

(
t
√

λ

2π

)
J2k+1

(
t
√

λ

2π

)

= −
∫ ∞

0

dt

t

(t/2)2

sinh(t/2)2 G
(

t
√

λ

2π
,
t
√

λ

2π

)
(B.16)

where now the Bessel kernel is

G(x, y) =
∞∑

k=0
(2k + 1) J2k+1(x) J2k+1(y) =

x y
[
x J1(x) J0(y)− y J1(y) J0(x)

]
2(x2 − y2) . (B.17)

From the properties of the Bessel functions we deduce that

G(x, x) = x

4
[
x J0(x) J ′

1(x)− x J1(x) J ′
0(x) + J0(x) J1(x)

]
= H(x, x) + x

2 J0(x) J1(x) .

(B.18)

Using this relation in (B.16) and comparing with (B.13), it is straightforward to obtain
the identity (B.12).

It is interesting to notice that these same identities follow from topological recursion
formulas as discussed in detail in [11].

C The calculation of ⟨Pk⟩

The 1-point function of the operator Pk in the matrix model of the E-theory is

⟨Pk⟩ =

〈
Pk e−S0

〉
0〈

e−S0
〉

0

. (C.1)

Since the interaction action S0 contains only odd operators (see (2.27)) and the vacuum
expectation values of products of only odd operators vanish, the 1-point function of an odd
operator is trivially zero, namely

⟨P2k+1⟩ = 0 . (C.2)

Instead, the 1-point function ⟨P2k⟩ does not vanish. Expanding (C.1) in powers of S0 and
taking into account that ⟨P2k⟩0 = 0, we have

⟨P2k⟩ = −⟨P2k S0⟩0 +
1
2 ⟨P2k S0 S0⟩0 − ⟨P2k S0⟩0 ⟨S0⟩0 + . . .

= 1
2

∞∑
n,m=1

〈
P2k P2n+1 P2m+1

〉
0 Xodd

n,m (C.3)

+ 1
8

∞∑
n,m,p,q=1

〈
P2k P2n+1 P2m+1 P2p+1 P2q+1

〉
0 Xodd

n,m Xodd
p,q

− 1
4

∞∑
n,m,p,q=1

〈
P2k P2n+1 P2m+1

〉
0
〈
P2p+1 P2q+1

〉
0 Xodd

n,m Xodd
p,q + . . .
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where the second equality follows from the use of the expression of S0 given in (2.27).
Exploiting the form (2.36b) of the 3-point functions and applying Wick’s theorem with the
free contraction (2.25), we can simplify (C.3) and get

⟨P2k⟩ =
1
2N

∞∑
n,m=1

d2k,2n+1,2m+1
(
Xodd + (Xodd)2 + . . .

)
n,m

=
√
2k

2N

∞∑
n,m=1

√
(2n + 1) (2m + 1)

(
Dodd − 1

)
n,m

. (C.4)

In the second line we have used the expression of the coefficients d2k,2n+1,2m+1 given in (2.37)
and introduced the odd “propagator” Dodd as in (3.2).

Since the dependence on k is entirely in the prefactor, we can rewrite (C.4) as

⟨P2k⟩ =
√

k ⟨P2⟩ . (C.5)

On the other hand, from (2.26) it easily follows that

⟨P2⟩ =
√
2

N

(
⟨tr a2⟩ − ⟨tr a2⟩0

)
=

√
2

N

(
⟨tr a2⟩ − N2 − 1

2

)
. (C.6)

In turn, ⟨tr a2⟩ can be directly computed from the partition function

ZE =
∫

da e− tr a2−S
(0)
int =

(8π2N

λ

)N2−1
2
∫

dã e−
8π2 N

λ
tr ã2−S̃

(0)
int (C.7)

where in the last step we have performed the inverse rescaling (2.14) to remove all dependence
on λ from the interaction action and produce the prefactor in front of the quadratic term.
In fact, we have

λ ∂λ logZE = ⟨tr a2⟩ − N2 − 1
2 . (C.8)

Using this result in (C.6), we get

⟨P2⟩ =
√
2

N
λ ∂λ logZE = −

√
2

N
λ ∂λFE (C.9)

where FE is the free energy. Finally, from (C.5) we can conclude that

⟨P2k⟩ = −
√
2k

N
λ ∂λFE , (C.10)

as reported in (3.7) of the main text.

D Strong-coupling methods

In this appendix we provide a few technical details on the derivation of the strong-coupling
behavior of some of the quantities considered in the main text. First of all, we observe
that by setting

t =
√

x and g =
√

λ

2π
, (D.1)
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the matrix elements Xn,m and Mn,m defined in (2.28) and (2.40c) can be conveniently
rewritten as

Xn,m = (−1)
n+m+2nm

2
√

n m

∫ ∞

0

dx

x
χ(

√
x) Jn(g

√
x) Jm(g

√
x) , (D.2a)

Mn,m = (−1)
n+m+2nm

2

√
n m

8

∫ ∞

0
dx χ(

√
x) Jn(g

√
x) Jm(g

√
x) , (D.2b)

with

χ(x) = − 1
sinh(x/2)2 . (D.3)

These formulas are particularly useful for the strong-coupling analysis that we are going
to present.

D.1 Strong-coupling behavior of −Tr
[
Modd (Dodd − 1)

]
Here we derive the leading behavior of

−Tr
[
Modd (Dodd − 1)

]
= −

∞∑
k=1

Tr
[
Modd (Xodd)k] (D.4)

at strong coupling. Let us first consider the term with k = 1 in the above sum. Using (D.2)
we can write it as follows

−Tr
[
Modd Xodd

]
= −1

8

∫ ∞

0
dx

∫ ∞

0

dy

y
χ(

√
x)χ(√y)

[ ∞∑
ℓ=1

(2ℓ + 1) J2ℓ+1(g
√

x) J2ℓ+1(g
√

y)
]2

= −g4

8

∫ ∞

0
dx

∫ ∞

0
dy x χ(

√
x)χ(√y)K(g2x, g2y)2 (D.5)

where in the second line we have introduced the rescaled Bessel kernel (see (B.9))

K(t, t′) = K(
√

t,
√

t′)√
t t′

=
√

t J3(
√

t) J2(
√

t′)−
√

t′ J2(
√

t) J3(
√

t′)
2(t − t′) . (D.6)

At leading order when g → ∞ we can replace the Bessel kernel in (D.5) with its asymptotic
behavior when the arguments are large [39, 40], namely

K(g2x, g2y) ∼
g→∞

1
2πg(x y)1/4

[ sin(g√x − g
√

y)
(g
√

x − g
√

y) −
cos(g

√
x + g

√
y)

g
√

x + g
√

y

]
. (D.7)

The cosine part is a rapidly oscillating function which does not contribute to the integrals
and can be discarded. The sine part, instead, is peaked around x = y and, when we apply
it to an arbitrary test function f , we get10

∫ ∞

0
dy K(g2x, g2y) f(y) ∼

g→∞

∫ ∞

0
dy

1
2πg(x y)1/4

sin(g
√

x − g
√

y)
(g
√

x − g
√

y) f(y)

= 1
g2

∫ +∞

−∞
dz

sin z

πz

[
y1/4

x1/4 f(y)
]

y=(
√

x+ z
g

)2
= 1

g2 f(x) (D.8)

10See also eq. (4.5) of [39].
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where the last step follows from the Jordan lemma which instructs us to compute the quantity
in square brackets at z = 0. Applying this identity to the y integral in (D.5) yields

−Tr
[
Modd Xodd

]
≃ −g2

8

∫ ∞

0
dx x χ(

√
x)2 K(g2x, g2x) (D.9)

In a very similar way one can show that

−Tr
[
Modd (Xodd)k

]
≃ −g2

8

∫ ∞

0
dx x χ(

√
x)k+1 K(g2x, g2x) , (D.10)

so that (D.4) becomes

−Tr
[
Modd (Dodd − 1)

]
≃ −g2

8

∫ ∞

0
dx x

χ(
√

x)2

1− χ(
√

x) K(g2x, g2x) . (D.11)

From (D.7) we see that K(g2x, g2x) ≃ 1
2πg

√
x
. Inserting this expression into (D.11) and

changing integration variable by setting x = z2, we finally get

−Tr
[
Modd (Dodd − 1)

]
≃ − g

8π

∫ ∞

0
dz z2 χ(z)2

1− χ(z) = − g

8π

(2π2

3

)
= −

√
λ

24 , (D.12)

thus proving the claim (3.24). We have also performed a numerical analysis of this expression
by computing the perturbative expansion of the left-hand side up to very high orders and
then using the conformal Padé resummation to estimate the behavior of the function for
very large values of λ. These numerical results are in full agreement with the analytic
derivation presented above.

D.2 Strong-coupling behavior of
(
Dodd Modd Dodd)

q,r

Here we show that
(
Dodd Modd Dodd)

q,r
behaves as λ− 3

2 at strong coupling. Using the
asymptotic expansion (3.18) for the matrix elements of M we have

(
Dodd Modd Dodd)

q,r
=

∞∑
ℓ,p=1

(Dodd)q,ℓ M2ℓ+1,2p+1 (Dodd)p,r (D.13)

∼
λ→∞

−1
2

∞∑
ℓ=1

(Dodd)q,ℓ (Dodd)ℓ,r +
1√
λ

∞∑
ℓ,p=1

√
ℓ p (Dodd)q,ℓ (Dodd)p,r +O(λ− 3

2 ) .

Introducing the quantities dq defined in (5.24), we can rewrite the previous expression as

(
Dodd Modd Dodd)

q,r
∼

λ→∞
−1
2

∞∑
ℓ=1

Dodd
q,ℓ Dodd

ℓ,r + 1√
λ

dq dr + O(λ− 3
2 ) . (D.14)

Since at strong coupling dq is O(λ− 1
2 ) as we have shown in [43] and recalled in (5.29), we see

that the second term in (D.14) is O(λ− 3
2 ) when λ → ∞. Thus, we are left with investigating

the strong-coupling behavior of the first term, namely of

Φq,r =
∞∑

ℓ=1
Dodd

q,ℓ Dodd
ℓ,r . (D.15)
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Asymptotic value
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Figure 1. The red curve represents a diagonal conformal Padé approximant of order 50 of the
perturbative expansion of λ

3
2 Φ1,1. The dashed black line represents its asymptotic constant value.

Given that the entries of Dodd scale as λ−1, one might be tempted to conclude that Φq,r

behaves like λ−2 at strong coupling. However, this conclusion has to be refined, since the sum
over ℓ in (D.15) produces a divergence. A very similar phenomenon occurs in the quantities dq.
Being linear in Dodd, one might think that they should scale as λ−1, but again a divergence
is produced and their correct strong-coupling behavior is actually λ− 1

2 (see (5.29)).
Using this analogy, on a very heuristic level we are led to expect that Φq,r is O(λ− 3

2 )
when λ → ∞. In absence of an analytic proof, we have tested this expectation numerically,
proceeding as follows. First, after expressing Dodd in terms of the matrix Xodd as in (3.2)
and using the integral representation (2.28) in terms of Bessel functions, we have generated
very long expansions for Φq,r up to order λ100, which represents a good compromise between
the need to obtain sufficiently precise numerical results and the related computational cost.
Then, we have resummed these expansions using a diagonal conformal Padé approximant of
order 50 which can be safely evaluated for values of λ up to ∼ 107 (see for example [38, 49]
and references therein for details on this numerical method). In this way we managed to
numerically check that the combinations

λ
3
2 Φq,r (D.16)

tend to constants for large values of λ. We have done this check for q, r = 1, . . . , 4, but our
results suggest that this is a general behavior. As an illustrative example of our findings,
we show in figure 1 the plot of λ

3
2 Φ1,1.

Since all terms in (D.14) are O(λ− 3
2 ), we can conclude that(

DoddModdDodd)
q,r

∼
λ→∞

O(λ− 3
2 ) , (D.17)

as reported in (5.31).
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