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Improved assessment of donor liver steatosis using Banff
consensus recommendations and deep learning algorithms
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Background & Aims: The Banff Liver Working Group recently published consensus recommendations for steatosis assessment
in donor liver biopsy, but few studies reported their use and no automated deep-learning algorithms based on the proposed
criteria have been developed so far. We evaluated Banff recommendations on a large monocentric series of donor liver needle
biopsies by comparing pathologists’ scores with those generated by convolutional neural networks (CNNs) we specifically
developed for automated steatosis assessment.
Methods: We retrospectively retrieved 292 allograft liver needle biopsies collected between January 2016 and January 2020 and
performed steatosis assessment using a former intra-institution method (pre-Banff method) and the newly introduced Banff
recommendations. Scores provided by pathologists and CNN models were then compared, and the degree of agreement was
measured with the intraclass correlation coefficient (ICC).
Results: Regarding the pre-Banff method, poor agreement was observed between the pathologist and CNN models for small
droplet macrovesicular steatosis (ICC: 0.38), large droplet macrovesicular steatosis (ICC: 0.08), and the final combined score (ICC:
0.16) evaluation, but none of these reached statistically significance. Interestingly, significantly improved agreement was observed
using the Banff approach: ICC was 0.93 for the low-power score (p <0.001), 0.89 for the high-power score (p <0.001), and 0.93 for
the final score (p <0.001). Comparing the pre-Banff method with the Banff approach on the same biopsy, pathologist and CNN
model assessment showed a mean (±SD) percentage of discrepancy of 26.89 (±22.16) and 1.20 (±5.58), respectively.
Conclusions: Our findings support the use of Banff recommendations in daily practice and highlight the need for a granular
analysis of their effect on liver transplantation outcomes.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
The introduction of extended donor selection criteria led to the
cautious but increasing use of donor livers with moderate
steatosis (i.e., steatosis affecting 30%-60% of the hepatic
parenchyma).1 However, livers with steatosis are more vulner-
able to ischemia-reperfusion injury and are at a higher risk of
early graft dysfunction and primary non-function,2–5 thus
making the pathologist assessment of donor tissue biopsy
critical to evaluate organ eligibility and ensure optimal trans-
plant success rates.5–13 Remarkably, the lack of international
guidelines for steatosis evaluation and reporting has resulted in
the use of several different institution-tailored methods, thus
leading to a heterogenous panorama and a non-negligible poor
inter-observer reproducibility among pathologists.14,15 To
address this issue, the Banff Liver Working Group recently
published consensus recommendations, now introducing
standardized terminology and a specific diagnostic algorithm
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for steatosis assessment.16 Their use in daily clinical practice is
expected to improve pathologist reproducibility and provide
standardized data for organ management and multicentric
studies analyzing graft functionality, ultimately aiming to
improve the allocation of steatotic livers.15–17 Since their pub-
lication in December 2021, few studies have reported using
Banff recommendations,18,19 and none have tested their
implication in the daily diagnostic practice or provided an
automated digital algorithm for steatosis assessment based on
their standardized criteria.

In the past decade, there has been a growing adoption of
digital image analysis methods, particularly those using artificial
intelligence algorithms. These methods have enabled patholo-
gists to perform consistent and replicable histopathologic eval-
uations, reducing the burden of time-consuming and repetitive
tasks. Due to their robust learning capabilities and ability to
handle complex patterns, deep learning frameworks have rapidly
emerged as the leading methodology for medical image
onsensus recommendations.
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Banff steatosis under digital investigation
analysis, particularly in digital pathology. Current research is
focused on developing fully automated methods based on arti-
ficial intelligence for quantitative histological analysis to create
tools and instruments with high reproducibility.20,21 These ap-
proaches can reduce inter- and intra-observer variability in the
assessment of cellular structures, ultimately increasing the
reproducibility of results. Given these advantages, digital image
analysis methods are ideal for unbiased and reproducible as-
sessments of steatosis on liver slides. In this regard, multiple
deep learning-based approaches have been proposed to auto-
matically detect steatosis.14,22–24 However, these algorithms
often fail to recognize single fat droplet steatosis24 and perform
poorly in the presence of highly overlapping steatosis droplets.22

In addition, as mentioned above, no automated strategy has
been presented so far for the assessment of steatosis according
to the new Banff consensus recommendations.

In this study, we propose a novel deep-learning framework
for the automated assessment of steatosis in allograft liver bi-
opsy images. The main contributions of this paper can be
summarized as follows:
− We propose a segmentation strategy capable of accurately
segmenting single liver fat droplets, regardless of their size. To
enhance the deep learning framework, we have integrated a stain
normalization tool that can standardize the color appearance of
the entire biopsy as a pre-processing step.

− We have developed two different strategies for evaluating he-
patic steatosis using the same deep neural network. The first
follows a traditional segmentation scheme based on an intra-
institution method (pre-Banff method), while the second ad-
heres to the recently published Banff consensus recommenda-
tions (Banff approach).

− We tested and validated the proposed strategy on a cohort of 292
allograft liver biopsies. We performed an extended validation of
the deep learning framework by comparing our approach with the
pathologist’s score. Our method obtained highly satisfactory re-
sults, exhibiting a strong correlation with the pathologist’s evalu-
ation when adopting the Banff consensus recommendations.

Materials and methods

Liver biopsy

This monocentric study analyzed consecutive allograft liver
needle biopsies performed between January 2016 and January
2020 at the AOU Città Della Salute e Della Scienza di Torino
Hospital (Turin, Italy). Liver biopsies were obtained during organ
retrieval or at the end of the transplant and then processed
according to the routine laboratory procedures of the Pathol-
ogy Unit as previously described25,26 and detailed in the Sup-
plementary Methods. Original H&E-stained glass slides were
retrospectively retrieved from the Pathology Unit archives,
along with the related diagnostic reports. Following tissue ad-
equacy assessment (at least 2 cm-long tissue biopsy), 292
biopsies were included in the study. Before any analysis was
performed, patient data were anonymized by a staff member
not involved in the study.

Pathologist assessment of donor steatosis

This study used and compared two different procedures to
assess steatosis. In particular:
1) Pre-Banff method: This is an intra-institutional method that

considers the quantity of small droplet macrovesicular
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steatosis (SDMS), large droplet macrovesicular steatosis
(LDMS), and combined SDMS-LDMS (CSL). According to this
method, steatosis droplets larger than 200 lm2 or that dis-
placed the hepatocyte nuclei to the periphery of the cells are
defined as LDMS. If these criteria are not met, the droplets are
considered SDMS. Notably, the dimension of the droplets and
the percentage of SDMS and LDMS are estimated directly by
pathologists without using any specific approach or mathe-
matical formula (i.e., "eyeball" assessment). In the final diag-
nostic report, the pathologist decides whether to report the
specific percentages of SDMS, LDMS, or CSL. The original
scores provided at the time of diagnosis were collected and
reviewed. This approach was used by the Transplant Pathol-
ogy Unit of the AOU Città Della Salute e Della Scienza di
Torino Hospital before the Banff consensus recommendations
were published.

2) Banff approach: these recommendations provide accurate defi-
nitions and a three-step diagnostic approach to report the per-
centage of steatosis affecting the hepatic parenchyma.16 Briefly,
LDMS is defined as a fat droplet larger than a non-steatotic
nearby hepatocyte, and that displaces the nucleus to the pe-
riphery of the hepatocyte that contains it. Fat droplets that do not
satisfy these criteria are defined as SDMS but are not considered
relevant in the overall assessment of organ steatosis due to
biological and pathophysiological considerations.16 Regarding
the three-step diagnostic approach, first, the overall percentage
of steatosis affecting the whole biopsy is assessed at low power
(LP), generating the LP score. Then, a high-power (HP) assess-
ment of the areas of steatosis is performed to determine the exact
percentage of LDMS only (HP score). Finally, a final score (LS) is
calculated by combining the LP and HP scores (HP of the LP). All
the donor needle biopsies were revised and scored according to
the Banff approach. The Transplant Pathology Unit of the AOU
Città Della Salute e Della Scienza di Torino Hospital now uses this
approach in the daily diagnostic routine.

Steatosis assessment was performed by two transplant
pathologists (A.G. and L.M.) for both the Pre-Banff Method
and the Banff Approach by visual assessment only with no
support from any specific software. In case of disagreement,
a consensus was reached by joint review and discussion.
Definitions used by the two methods are summarized
in Table 1.

Image normalization and automatic steatosis segmentation

All the original H&E slides were reviewed to confirm specimen
adequacy and then scanned to obtain digital whole slide im-
ages (WSIs) as previously described27,28 and detailed in the
Supplementary Methods. Then, WSIs were adjusted for stain
normalization. Stain normalization is a common pre-processing
step in almost all the deep learning frameworks in digital pa-
thology.14,29–31 Briefly, a stain normalizing procedure allows for
standardization of the color appearance of a source image for
the color profile of a template image. This operation reduces
the stain variability and improves the robustness of computer-
aided diagnostic and image quantification algorithms.29,30 To
obtain precise quantification of steatosis within the WSI, a
convolutional neural network (CNN) is employed. In particular,
the segmentation is performed with the same CNN architecture
we developed in our previous work.14 To improve the seg-
mentation of fused or touching droplets, we modified our CNN
h 2024. vol. 80 j 495–504



Table 1. Details of definitions and scores of the two approaches used for steatosis assessment.

Pre-Banff method Banff approach

Definitions
Macrovesicular steatosis
Large droplet (LDMS) Fat droplet larger than 200 lm2 or that displaced the

hepatocyte nuclei to the periphery of the cell
Fat droplet larger than a non-steatotic nearby hepatocyte or that
displaced the hepatocyte nuclei to the periphery of the cell

Small droplet (SDMS) Any fat droplets that do not satisfy the criteria for
LDMS and are not microvesicular steatosis

Any fat droplets that do not satisfy the criteria for LDMS and are not
microvesicular steatosis

Microvesicular steatosis* Diffuse, faint small lipid droplets (typically <2 lm2) that do not displace the hepatocyte nuclei and determine an overall "foamy"
appearance of the hepatocyte cytoplasm

Scores
LDMS score Average percentage of LDMS affecting the liver

parenchyma
n.a.

SDMS score Average percentage of LDMS affecting the liver
parenchyma

n.a.

Combined SDMS-LDMS (CSL) Combination of LDMS and SDMS scores n.a.
Low power score n.a. Overall percentage of steatosis affecting the hepatic parenchyma at

low power
High power score n.a. High power assessment of steatosis areas to determine the exact

percentage of LDMS
Final score (LS) n.a Adjustment of the LP score with the HP score (i.e., the percentage of

LDMS determined with the HP score is applied to the LP score)

HP, high power; LDMS, large droplet macrovesicular steatosis; LP, low power; SDMS, small droplet macrovesicular steatosis.
*This type of steatosis is secondary to specific diseases (e.g., acute fatty liver of pregnancy, valproic acid toxicity) that are unlikely to affect a donor liver evaluated for or-
gan transplantation.
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task by adopting a three-class segmentation approach: (i)
steatosis, (ii) steatosis boundary, and (iii) background. The
reason for choosing both object and edge detection is to define
the spatial limit of each area of steatosis based on the infor-
mation on the location and contour of each object (Fig. S2).
Further technical details on stain normalization and steatosis
segmentation are reported in the Supplementary Methods.
Data, intermediate steps, and final results of the algorithm for
quantification of hepatic steatosis are available online at the
following link: 10.17632/cjgd4wr2tz.1.

WSI analysis before and after the Banff consensus
recommendations

This section explains how the segmentation algorithm was
employed to replicate the former steatosis assessment method
(Pre-Banffmethod) and the newly introducedapproachaccording
to the Banff consensus recommendations (Banff approach).

WSI analysis before the Banff consensus recommendations
(Pre-Banff method)

The first step involved separating the histological tissue
from the background using a thresholding operation. Next,
the segmentation network described in the previous section
was applied to detect steatosis in the WSI. The segmentation
map for the entire slide is created patch-wise using a
sliding window approach. Using criteria similar to those
available in the literature32 and following the pre-Banff
method used by pathologists, SDMS and LDMS were sepa-
rated based on an area criterion. Structures with an area
smaller than 200 lm2 were labeled as SDMS, while the others
were labeled as LDMS as previously reported.4,32 Finally, the
percentages of SDMS and LDMS were calculated as the ratio
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of the area occupied by fat droplets to histologic tissue. We
also calculated the percentage occupied by SDMS and LDMS
combined (overall steatosis), regardless of their classification.
The pipeline followed for the Pre-Banff method is shown
in Fig. 1.

WSI analysis after the Banff consensus recommendations
(Banff approach)

The first step consists of histological tissue and steatosis
segmentation on WSI. For the quantification of the LP score,
the algorithm works at a magnification of 25x, thus simulating
the low-magnification evaluation as described by the Banff
consensus recommendations. Steatosis regions close to each
other were joined using morphological operators, while isolated
steatosis was removed, and the remaining regions’ perimeter
was interpolated to obtain the raw surface area occupied by fat.
The LP score was then calculated by dividing the raw surface
area by the tissue area.

To identify the area for high-magnification assessment, an
iterative approach was used. A sliding window over the entire
WSI was used, and the tile of size 190x190 at 25x (equivalent to
1520x1520 at 200x) with the maximum area occupied by
steatosis according to the LP score was selected. Cell nuclei
were then identified on this tile using a previously published
algorithm.28,33 Identified structures were subjected to
morphological cleaning, where all nuclei with an area less than
22 lm2 and an axis ratio greater than 0.75 were deleted. This
was done to keep only the nuclei of hepatocytes and remove
other cells not of interest, such as immune cells, Kupffer cells,
endothelial cells, cholangiocytes, and hepatic stellate cells. The
area of a hepatocyte (nucleus and cytoplasm) is approximately
five times larger than the area of its nucleus,34,35 and this was
used as a cut-off to recognize LDMS, following the Banff
h 2024. vol. 80 j 495–504 497
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Steatosis segmentation

Analysis on WSI

LDMS: 5.41%
SDMS: 6.06%
CSL: 11.47%

Tissue segmentationWhole slide image (WSI)

Fig. 1. Steps followed by the algorithm during steatosis assessment (Pre-Banff method). The automatic method provides three outputs: percentage of area
occupied by LDMS, percentage of area occupied by SDMS, and percentage area occupied by SDMS and LDMS combined (overall steatosis). LDMS is displayed in
orange, while SDMS is shown in cyan. CSL, combined small droplet macrovesicular steatosis-large droplet macrovesicular steatosis; LDMS, large droplet macro-
vesicular steatosis; SDMS, small droplet macrovesicular steatosis; WSI, whole slide image. (This figure appears in color on the web.)

Banff steatosis under digital investigation
consensus recommendations. All steatosis with smaller areas
was eliminated, and the HP score was calculated as follows:

HPSCORE ¼ Nmacro

Nmacro+Nnuclei
(1)

where Nmacro and Nnuclei indicate the number of areas of macro-
steatosis and nuclei, respectively. The final score (LS) was obtained
as the product of the LP and HP scores. A visual representation of
the entire method is illustrated in Fig. 2. The codes developed and
performed are detailed in the Supplementary Methods.

Performance metrics

Automatic and manual masks are compared to evaluate the
performance of our method in the segmentation of liver stea-
tosis. To assess the segmentation performance, various pixel-
based metrics were calculated, including accuracy, sensitivity,
specificity, positive predictive value, negative predictive value,
and Dice score (Table 2).

Ethics approval

All procedures were in accordance with the ethical standards of
the responsible committee on human experimentation (national
and institutional) and with the World Medical Association
Declaration of Helsinki of 1964 and later versions. Written
informed consent for participation was waived for this study
due to the retrospective nature of the research protocol and
considering that it had no impact on patients’ care.

Statistical analysis

Statistical analysis was performed using R Software (version
4.2.2; The R Foundation for Statistical Computing, Vienna,
Austria) and RStudio (version 2022.12.0+353; RStudio, Boston
(MA), USA). Results of the Pre-Banff method (SDMS, LDMS, and
CSL) and the Banff approach (LP, HP, and LS) were reported as
mean ± SD. The difference in assessment between the pathol-
ogist and the CNN model was considered as follows: minimal
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(<1%), mild (1-10%), moderate (10-30%), and severe (>30%).
The degree of agreement between pathologists and the CNN
model in assessing donor steatosis was measured with the
intraclass correlation coefficient ("irr" package) using the two-
way random effects model with single measures [ICC(2,1)]. The
ICC(2,1) was calculated using a two-way ANOVA model,
providing a numerical value between 0 and 1, where higher
values indicate higher agreement between the raters. Specif-
ically, the following thresholds for ICC value were used for
agreement interpretation: <0.50: poor; 0.50-0.75: moderate;
0.75-0.90: good; >0.90: excellent.36 The ICC(2,1) of the agree-
mentwas calculated for both thePre-Banffmethod and theBanff
approach. Based on the literature, we assumed an agreement of
0.5 between evaluators and set the null hypothesis accordingly
(H0: r0 = 0.5; H1: r0 >0.5). All tests were two-sided, and a p value
<0.05 was considered statistically significant.

Results

Steatosis droplet segmentation using deep learning

Overall, 292 consecutive allograft liver biopsies were retro-
spectively collected and included in this study. The fully auto-
mated results provided by the deep learning method are
compared with manual masks drawn by an expert operator. A
quantitative comparison is carried out by evaluating the accu-
racy, sensitivity, and specificity of the segmentation of liver
steatosis. Table 2 shows the segmentation algorithm’s perfor-
mance on the train set (504 image tiles) and test set (56 im-
age tiles).

Correlation with pathologist assessment using the Pre-
Banff method

This first analysis aimed to evaluate the agreement between the
pathologist and the CNN model using the pre-Banff method for
steatosis evaluation (Table 3). We first compared the data
regarding the SDMS assessment, which was available for 221
biopsies. The mean (±SD) difference in percentage values ob-
tained between the pathologist and the CNN model was 6.20
h 2024. vol. 80 j 495–504



A

B

Whole slide image (WSI) Steatosis detected LP score: 8.3% 

LP assessment

Steatosis segmentation Nuclei segmentation HP score: 16.52%

Fig. 2. Steps followed by the algorithm during steatosis assessment (Banff approach). (A) LP score assessment: the algorithm groups areas of steatosis close to
each other and computes the LP score. (B) HP score assessment: steatosis and nuclei are automatically segmented through deep learning. After morphological
cleaning, the HP score is computed. (This figure appears in color on the web.)

Table 2. Segmentation performance of the deep learning method for steatosis segmentation on both training and testing sets.

Subset Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Dice score (%)

Training set 99.04 ± 1.42 73.06 ± 22.76 99.28 ± 1.20 70.61 ± 14.73 98.03 ± 1.12 84.38 ± 11.08
Testing set 99.18 ± 1.39 73.36 ± 28.17 99.37 ± 1.18 72.95 ± 13.84 98.05 ± 1.08 85.28 ± 10.62

Values are reported as mean ± SD.
PPV, positive predictive value; NPV, negative predictive value.
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(±8.17). Minimal, mild, moderate, and severe differences in
SDMS assessment were observed in 88 (39.82%), 83 (37.56%),
46 (20.81%), and 4 (1.81%) cases, respectively (Fig. 3A).
Notably, the pathologist recorded a higher percentage of
SDMS than the algorithm in all the mild, moderate, and severe
cases. The highest difference was observed in one case where
the pathologist identified 60% of SDMS while the CNN model
scored 11.70% (Fig. 3B). The pathologist and the CNN model
reported the same SDMS value in two biopsies.
Table 3. Comparison between pathologist and CNN model assessment using

Pathologist assessment
(mean ± SD)

CNN model
(mean ± SD)

Mean difference
(±SD)

SDMS (n = 221) 7.61 (±10.38) 1.13 (±2.49) 6.20 (±8.17)
LDMS (n = 225) 20.90 (±21.07) 1.31 (±1.30) 19.41 (±20.07)
CSL (n = 211) 27.77 (±22.55) 2.44 (±3.34) 25.00 (±21.47)

In addition to the mean percentage (±SD) of steatosis assessment reported by the patho
presenting a minimal (<1%), mild (1-10%), moderate (10-30%), and severe (>30%) differen
statistically significant (ICC score).
CNN, convolutional neural network; CSL, combined small droplet macrovesicular steatos
large droplet macrovesicular steatosis; SDMS, small droplet macrovesicular steatosis.
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A more relevant difference was observed in the evaluation of
LDMS, which was available for 225 biopsies. The mean
discordant percentage was 19.41 (±20.07). Minimal, mild,
moderate, and severe differences were observed in 33 cases
(14.67%), 74 cases (32.89%), 75 cases (33.33%), and 43 cases
(19.11%), respectively (Fig. 3C). In two cases with mild differ-
ences, the CNN model reported a higher LDMS than the
pathologist (difference of 1.00% and 1.26%, respectively),
whereas, in all moderate and severe cases, the pathologist
the pre-Banff method.

Minimal
(%)

Mild
(%)

Moderate
(%)

Severe
(%)

ICC
score

p
value

88 (39.82%) 83 (37.56%) 46 (20.81%) 4 (1.81%) 0.38 0.938
33 (14.67%) 74 (32.89%) 75 (33.33%) 43 (19.11%) 0.08 1
13 (6.16%) 58 (27.49%) 68 (32.23%) 72 (34.12%) 0.16 1

logist and the CNN model, the table shows the mean difference, the number of cases
ce of steatosis, and the ICC score and related p value. P values <0.05 were considered

is-large droplet macrovesicular steatosis; ICC, intraclass correlation coefficient; LDMS,

h 2024. vol. 80 j 495–504 499
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recorded a higher percentage of LDMS than the CNN model.
The most notable variation was observed in one case where the
pathologist assigned a value of 90%, while the algorithm re-
ported 3.86%. The pathologist and the CNN model scored no
biopsies with the same LDMS value.

Finally, we assessed the CSL, which considered both SDMS
and LDMS and was available for 211 biopsies. The mean per-
centage of discrepancy was 25.00 (±21.47), with a minimal
difference observed in 13 cases (6.16%), a mild difference in 58
cases (27.49%), a moderate difference in 68 cases (32.23%),
and a severe difference in 72 cases (34.12%) (Fig. 3D). In 9 of
the 13 mild cases and all moderate and severe cases, the
pathologist reported a higher percentage than the CNN model.
The highest difference was observed in a biopsy where the
pathologist reported a CSL of 90% and the CNN model of
3.95%. The pathologist and the CNN model reported the same
CSL value in six biopsies.

As expected, the coefficient of agreement between the
pathologist assessment and the CNN model using the Pre-
Banff method was poor when considering either the SDMS
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(0.38; p >0.05), the LDMS (0.08; p >0.05), or the CSL score
(0.16; p >0.05). These findings highlighted the poor concor-
dance between the pathologist and the deep learning algorithm
when adopting the Pre-Banff method.

Correlation with pathologist assessment using the
Banff approach

We assessed whether the newly introduced consensus rec-
ommendations (Banff approach) presented similar or different
concordance rates compared to the Pre-Banff method. All 292
biopsies were evaluated with the Banff approach, specifically
reporting the LP, HP, and LS scores (Table 4).

First, we addressed the difference between the pathologist
and CNN model in assessing the LP score, registering a mean
(±SD) difference of 1.10 (±0.22). Minimal, mild, and moderate
differences in LP scores were observed in 172 (58.90%), 111
(38.01%), and 9 (3.08%) cases, respectively (Fig. 4A). No severe
differences were registered. In 38 of the 172 minimal cases
(22.09%), 70 of the 111 mild cases (63.06%), and all nine mod-
erate cases (100%), the pathologist recorded a higher
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Table 4. Comparison between pathologist and CNN model assessment using the Banff approach.

Pathologist assessment
(mean ± SD)

CNN model
(mean ± SD)

Mean
(±SD)

Minimal
(%)

Mild
(%)

Moderate
(%)

Severe
(%)

ICC
score

p
value

LP score (n = 292) 5.74 (±10.98) 4.64 (±8.77) 1.10 (±0.22) 172 (58.90%) 111 (38.01%) 9 (3.08%) 0 (0%) 0.93 <0.001
HP score (n = 292) 6.4 (±13.06) 6.10 (±11.74) 0.30 (±0.34) 115 (39.38%) 158 (54.11%) 16 (5.48%) 3 (1.03%) 0.89 <0.001
LS (n = 292) 1.62 (±5.39) 1.23 (±4.24) 0.39 (±0.11) 257 (88.01%) 32 (10.96%) 3 (1.03%) 0 (0%) 0.93 <0.001

In addition to the mean percentage (±SD) of steatosis assessment reported by the pathologist and the CNN model, the table shows the mean difference, the number of cases
presenting a minimal (<1%), mild (1-10%), moderate (10-30%), and severe (>30%) difference of steatosis, and the ICC score and related p value. P values <0.05 were considered
statistically significant (ICC score).
CNN, convolutional neural network; HP, high power; ICC, intraclass correlation coefficient; LP, low power; LS, final score.
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percentage of LP than the CNN model. The highest difference
was observed in a biopsy where the pathologist identified 60%
steatosis on LP while the CNNmodel scored 38% (Fig. 4B). The
pathologist and the CNN model reported the same LP value in
three biopsies.

Regarding the HP score, the mean (±SD) difference was 0.30
(±0.34). In 115 cases (39.38%), the difference between the HP
score provided by the pathologist and the CNN model was
minimal. A mild difference was observed in 158 cases (54.11%),
a moderate difference in 16 cases (5.48%), and a severe differ-
ence in 3 cases (1.03%; Fig. 4C). The pathologist provided a
higher HP score than the CNN model in 47 of the 158 mild cases
(29.75%), 11 of the 16 moderate cases (68.75%), and all the
severe cases (100%). The highest difference was observed in a
biopsy where the pathologist identified 60% steatosis on HP
while the CNN model scored 17% (Fig. 4D). In 115 biopsies, the
pathologist and the CNN model reported the same HP score.

Finally, we assessed the LS, which considered both LP and
HP scores (HP of LP). The mean (±SD) difference of percentage
reported by the pathologist and theCNNmodelwas 0.39 (±0.11),
with aminimal difference observed in 257 cases (88.01%), amild
difference in 32 cases (10.96%), and a moderate difference in 3
cases (1.03%). No biopsies with a severe difference were
observed (Fig. 4E). The pathologist reported a higher percentage
than theCNNmodel in 106of the 257minimal cases (41.24%), 25
of the 32 mild cases (78.12%), and all moderate cases (100%).
The highest difference was observed in a biopsy where the
pathologist reported an HP score of 32%, while the CNN model
scored 16%. The pathologist and the CNN model reported the
same LS score in 121 biopsies (Fig. 4F).

The coefficient of agreement between the pathologist
assessment and the CNN model using the Banff approach was
good for the HP score (0.89; p <0.001) and excellent when
considering both the LP score (0.93; p <0.001) and the LS (0.93;
p <0.001).

Same biopsy, different fates: Comparison of the Pre-Banff
method and the Banff approach

We aimed to evaluate the difference in steatosis percentage on
the same biopsy when using the Pre-Banff method and the
Banff approach. Due to the structural differences between
these two scores, we decided to consider and compare only
the final combined scores, namely the CSL (Pre-Banff method)
and the LS (Banff approach).

Starting with the pathologist assessment, the mean per-
centage of discrepancy was 26.89 (±22.16), with a minimal
difference observed in 11 cases (5.21%), a mild difference in 57
cases (27.01%), a moderate difference in 68 cases (32.23%),
and a severe difference in 75 cases (35.54%; supplementary
information). In 8 of the 11 minimal cases (72.73%), 54 of the 57
mild cases (94.74%), 67 of the 68 moderate cases (98.53%),
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and all severe cases (100%), the CSL (Pre-Banff method) was
higher than the LS (Banff approach). The highest difference was
observed in a biopsy where the CSL was 95% and the LS was
3%. Six cases presented the same CSL and LS values.

We performed a similar analysis considering the data pro-
vided by the CNN models. We considered only the CSL and the
LS scores as we did with the pathologist’s evaluations. The
mean percentage of discrepancy was 1.20 (±5.58), with a mini-
mal difference observed in 124 cases (42.47%), a mild difference
in 142 cases (48.63%), and a moderate difference in 26 cases
(8.90%; supplementary information). No cases presented a se-
vere difference between the CSL and LS values provided by the
CNN models. In 12 of the 124 minimal cases (9.68%), 20 of the
142 mild cases (14.10%), and 11 of the 26 moderate cases
(42.31%), the CSL (Pre-Banff method) was higher than the LS
(Banff approach). The highest difference was observed in a bi-
opsy where the CSL was 0.72% and the LS was 27.01%. No
cases presented the same CSL and LS values.

Discussion
This study produced innovative evidence and considerations,
including (1) the first application of the Banff consensus rec-
ommendations in a large series of allograft liver biopsies and (2)
the first published deep-learning algorithms for automated
steatosis assessment based on Banff recommendations.
Furthermore, by comparing this innovative algorithm with a
model based on a non-standardized method lacking an analyt-
ical approach, we demonstrated the importance of using the
Banff recommendations in daily clinical practice, particularly if
supported by an automated deep-learning algorithm. Using a
standardized approach for steatosis definition and quantification
following the Banff recommendations led to excellent concor-
dance rates between the pathologist assessment and the CNN
model. This finding is particularly relevant for the LS score (ICC:
0.93; p <0.001), which represents the final assessment of overall
donor organ steatosis and ultimately provides the most relevant
data for subsequent organ allocation.

When biopsies were re-evaluated by the pathologist for
steatosis assessment with the Banff recommendations, the
percentage of steatosis generally decreased compared to the
pre-Banff method, with some cases presenting dramatic
changes (95% with the pre-Banff method, 3% with the Banff
approach). This difference may be due to the different defini-
tions used by the two systems and, in particular, the absence of
the SDMS from the Banff approach, which was still considered
in the pre-Banff method. Compared to the CNN model,
pathologist assessment seems to overestimate steatosis
regardless of the approach used, as reported in the literature.32

The lower sensitivity of our CNN model compared to its high
specificity, as highlighted in Table 2, may have contributed to
an underestimation of steatosis percentages. Conversely,
h 2024. vol. 80 j 495–504 501
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Fig. 4. Comparison between pathologists and CNN model using the Banff approach. (A, C, E) Waterfall plot showing the difference of LP score (A), HP score (C),
and LS (E) between the pathologist and CNN models for each biopsy. Y axis represents the difference of LP score, where positive values indicate that the percentage of
LP score reported by the pathologist was greater than the CNN model and negative values indicate that the percentage of LP score reported by the pathologist was
lower than the CNN model. (B, D, F) Representative image at low power (left part) and high power (right part) of the biopsy with (B) the highest value of discordant LP
score, (D) the highest value of discordant HP score, and (F) the highest value of discordant LS. CNN, convolutional neural network; HP, high power; LP, low power; LS,
final score. (This figure appears in color on the web.)

Banff steatosis under digital investigation
pathologist’s visual assessment potentially provides over-
estimated evaluations when performing repetitive tasks, espe-
cially those requiring specific quantification of numerous
502 Journal of Hepatology, Marc
objects. This limitation can be mitigated using a standardized
algorithmic approach as introduced by the Banff recommen-
dations, partially explaining why, in our study, the pathologist’s
h 2024. vol. 80 j 495–504
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overestimation was notably more pronounced with the pre-
Banff method. These findings highlight the possibility that we
may be discarding more steatotic livers than necessary. To
confirm this hypothesis, we are currently analyzing the clinical
outcomes of our liver transplant series using the Banff
approach, aiming to identify more reliable and clinically signif-
icant steatosis cut-offs.

Compared to previously published algorithms for steatosis
assessment,14,22–24 our CNN model introduced significant
improvement. The segmentation framework was designed to
identify individual liver droplets regardless of their size, which is
a crucial feature for accurately differentiating SDMS and LDMS
following the new Banff recommendations. This approach also
enables the segmentation of nearby droplets, preventing them
from merging into a single, larger droplet. Additionally, imple-
menting the stain normalization add-on in the CNN model
further enhances the standardization of analysis, in line with the
recommendation of the Banff consensus meeting.16

Although our study biopsies were obtained from one of the
leading liver transplantation programs in Italy, with the highest
Journal of Hepatology, Marc
number of transplants performed,37 our study is limited by its
monocentric and retrospective nature. To further strengthen
the evidence and validate our findings, it is essential that future
studies are conducted using external datasets. Furthermore,
our pathology laboratory routinely performs rapid microwave-
assisted tissue processing on transplant biopsies, which
generate formalin-fixed paraffin-embedded tissue even in ur-
gent settings. Although this procedure enables us to evaluate
tissue samples without frozen artifacts and maintain a rapid
turnaround time, it is not widely available in all centers.
Therefore, further confirmation of our findings on a series of
frozen sections is required.

In conclusion, our study demonstrates that introducing the
standardized definition and analytical approach provided by the
Banff consensus recommendations improves steatosis assess-
ment in donor liver biopsies, especially when utilizing an auto-
mated digital pathology algorithm. The use and implementation
of these guidelines in the daily diagnostic routine will lead to a
new interpretation and clinical management of hepatic steatosis
in liver transplantation.
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Supplementary Methods 

Liver biopsy – tissue processing, slide preparation and digitalization. 

Tissue samples were formalin-fixed and paraffin-embedded (FFPE). Two four-μm 

sections were then cut, mounted onto adhesive slides, and stained with HE using an 

automated autostainer (Dako-Agilent, Santa Clara, United States). Standard reagents 

were provided by the manufacturer and used according to manufacturer’s protocols 

and instructions. HE stained slides were scanned with a magnification of x100 

(conversion factor: 0.934 μm/pixel) using a Hamamatsu NanoZoomer S210 Digital 

slide scanner (Hamamatsu City, Japan). 

 

Development and analysis of whole slide images 

The first step of our automatic algorithm is stain normalization, which standardize the 

color appearance of a digital image (also known as the source image) against a target 

image. This procedure modifies the color information of the source image to match the 

color appearance of the target image, reducing the variability in staining of histological 

images. To perform color normalization of liver biopsies, we developed the same 

strategy as Zhou et al. [1], which employs a GAN (Generative Adversarial Network) 

[2]. The GAN formulate the task of stain normalization as the translation of the color 

pattern of images from one domain (domain A) to the color pattern in another domain 

(domain B), where domain A has a wide range of color patterns and domain B has a 

relatively uniform color pattern. The GAN was implemented using the PyTorch 

framework (v. 1.13.1). Fig. S1 shows the stain normalization process for some sample 

images. 

To train the segmentation network, we employ the dataset from our previous work [3]. 

In total, we have 385 images available, which are divided into a training set (n=350) 



 
 

and a test set (n=35). Liver steatoses are segmented using a U-Net [4]. The entire 

network is trained on a three-class problem, using the 416 × 416 RGB images as input 

and the corresponding manual masks as the target. To train the deep neural network, 

the outline of each steatosis is extracted from the manual mask and pixels are labeled 

in three classes: (i) steatosis, (ii) steatosis boundaries, and (iii) background. Previous 

studies have shown that this joint effort performs better than the single approach 

(object vs. background) [5, 6]. Then, two consecutive learning strategies are adopted 

to improve the performance of the network in recognizing individual steatoses: 

1. Preliminary training: categorical cross-entropy is used as the loss function. To 

address the challenge of class imbalance, our network employs a class-

weighted loss function that consider the frequency of each class in the training 

set. This means that the least represented class (steatosis boundaries) will 

contribute more than the more represented classes (steatosis and background) 

during weight update [7]. Our network is pre-trained on the ImageNet Dataset 

[8] to leverage transfer learning. During the training process, only the decoder 

weights are updated, while the encoder weights are set to non-trainable. This 

first pre-training process allow the network to capture low-level image features 

that are transferable to the specific task of liver steatosis segmentation. 

2. Fine tuning: the best model from the previous stage is selected according to the 

loss values. Then, a second training is performed by unlocking all the CNN's 

layers (i.e., making all weights trainable) and using the dice similarity as loss 

function. The dice overlap is a widely used loss function for highly unbalanced 

segmentations [9]. To increase the network’s robustness and avoid overfitting, 

on-the-fly data augmentation (scaling, rotating flipping) is applied since 

histopathological images do not have a canonical orientation [10, 11]. 



 
 

During testing, a simple yet effective post-processing technique is applied to the 

network’s prediction to segment each individual steatosis. First, the probability maps 

of the regions inside and on the border of the steatosis are thresholded with a fixed 

value of 0.25. We choose a lower threshold value than 0.5 to increase the sensitivity 

of the proposed approach. Next, the border region mask is subtracted to the inner 

region mask to obtain a first separation of steatosis. Finally, a disk element with a 

radius equal to the thickness of the border mask is used to dilate the steatosis mask 

and retrieve the boundary information. The network was trained and tested using 

Keras framework (v. 2.2.1) and TensorFlow (v. 2.2.0) as backend. This region-

boundary approach leads to a precise steatosis quantification within the WSI (Fig. S2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Supplementary Figures  

 

 

Fig. S1. Stain normalization provided by our GAN for three sample images.  

The original tiles are shown on the left, while the normalization result is displayed on 

the right. 

 



 
 

 

Fig. S2. Overview of the approach used to perform stain normalization on WSIs, 

and the steps taken by our network to perform individual steatosis 

segmentation.  

 



 
 

 

Fig. S3. Workflow and pseudocode for the algorithm based on pre-Banff method.  

 

 

 

 

 

 

 

 

 



 
 

 

Fig. S4. Workflow and pseudocode for the algorithm based on the Banff 

approach.  

 

 



 
 

 

 

Fig. S5. Discrepant steatosis scores on the same biopsy.  

A-D)  Representative images at low power (left part) and high power (right part) of biopsies 

that presented the most severe discrepancies between the scores obtained with the pre-Banff 

method and the Banff approach. Different methodological approaches and histological 

definitions used by the two methods were the most relevant reasons that lead to the 

discrepancies observed. In particular, the complete absence of the small droplet 

macrovesicular steatosis (SDMS) from the Banff approach, which was still considered in the 

pre-Banff method, played a major role, as observed in cases A and C, where both the 

pathologist (A) and the CNN model (C) provide a higher score with the pre-Banff method than 

the Banff approach. Additionally, the lack of a methodological approach that characterize the 

pre-Banff method also impacted the results of this analysis, especially for the pathologist's 

assessment. The use of a standardized algorithmic approach for steatosis assessment, as 

introduced by the Banff recommendations, is expected to reduce operator-related variability 

and improve steatosis assessment reliability.  



 
 

A-B) Biopsies that presented severe discrepant scores as per pathologist assessment if 

comparing pre-Banff method and Banff approach; in particular, (A) is a case were the pre-

Banff method provided a higher steatosis score than the Banff approach whereas (B) is a case 

were the pre-Banff method provided a lower steatosis score than the Banff approach.  

C-D) Biopsies that presented severe discrepant scores as per the CNN model assessment if 

comparing pre-Banff method and Banff approach; in particular, (C) is a case were the pre-

Banff method provided a higher steatosis score than the Banff approach, whereas (D) is a 

case were the pre-Banff method provided a lower steatosis score than the Banff approach. 
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