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Abstract

LOBSTER (LOss-Based SensiTivity rEgulaRization) is a method for training

neural networks having a sparse topology. Let the sensitivity of a network

parameter be the variation of the loss function with respect to the variation

of the parameter. Parameters with low sensitivity, i.e. having little impact on

the loss when perturbed, are shrunk and then pruned to sparsify the network.

Our method allows to train a network from scratch, i.e. without preliminary

learning or rewinding. Experiments on multiple architectures and datasets show

competitive compression ratios with minimal computational overhead.
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1. Introduction

Artificial Neural Networks (ANNs) achieve state-of-the-art performance in

several tasks at the price of complex topologies with millions of learnable pa-

rameters. As an example, ResNet [1] includes tens of millions of parameters,

soaring to hundreds of millions for VGG-Net [2]. A large parameter count jeop-5

ardizes however the possibility to deploy a network over a memory-constrained

(e.g., embedded, mobile) device, calling for leaner architectures with fewer pa-

rameters.

The complexity of ANNs can be reduced enforcing a sparse network topology.

Namely, some connections between neurons can be pruned by wiring the corre-10
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sponding parameters to zero. Besides parameters count reduction, some works

also suggested other benefits including improved performance in transfer learn-

ing scenarios [3]. Popular methods such as [4], for example, add a regularization

term to the cost function with the goal to shrink to zero some parameters.

Next, a threshold operator pinpoints the shrunk parameters to zero, eventu-15

ally enforcing the sought sparse topology. However, such methods require that

the topology to be pruned has been preliminarily trained via standard gradient

descent, which sums up to the total learning time.

This work contributes LOBSTER (LOss-Based SensiTivity rEgulaRization), a

method for learning sparse neural topologies. In this context, let us define the20

sensitivity of the parameter of an ANN as the derivative of the loss function with

respect to some target parameter. Intuitively, low-sensitivity parameters have

a negligible impact on the loss function when perturbed, and so are fit to be

shrunk without compromising the network performance. Practically, LOBSTER

shrinks to zero parameters with low sensitivity with a regularize-and-prune ap-25

proach, achieving a sparse network topology. With respect to similar literature

[5, 6, 7], LOBSTER does not require a preliminary training stage to learn the

dense reference topology to prune. Moreover, differently to other sensitivity-

based approaches, LOBSTER computes the sensitivity exploiting the already

available gradient of the loss function, avoiding additional derivative computa-30

tions [8, 9], or second-order derivatives [10]. Our experiments performed over

different network topologies and datasets show that LOBSTER outperforms

several competitors in multiple tasks.

The rest of this paper is organized as follows. In Sec. 2 we review the relevant

literature concerning sparse neural architectures. Next, in Sec. 3 we describe35

our method for training a neural network such that its topology is sparse. We

provide a general overview on the technique in Sec. 4. Then, in Sec. 5 we exper-

iment with our proposed training scheme over some deep ANNs on a number of

different datasets. Finally, Sec. 6 draws the conclusions while providing further

directions for future research.40
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2. Related Works

It is well known that many ANNs, trained on some tasks, are typically

over-parametrized [11, 12]. Attempts to reduce the number of parameters from

learned models deepen their roots in the past. In 1989, Mozer and Smolen-

sky proposed skeletonization, a technique to identify less relevant neurons in45

a trained model and to remove them [8]. This is accomplished evaluating the

global effect of removing a given neuron, evaluated as error function penalty

from a pre-trained model. In the same years, LeCun et al. [10] proposed a work

where the information from the second order derivative of the error function is

leveraged to rank the parameters of the trained model on a saliency basis. This50

allows to select a trade-off between size of the network (in terms of number of

parameters) and performance.

2.1. Non-pruning strategies

Reducing the number of parameters in a deep model does not necessarily in-

volve pruning the network topology. Soft Weight Sharing (SWS) [13], for exam-55

ple, shares redundant parameters among layers, resulting in fewer parameters to

be stored. Other recent approaches towards reducing a neural network’s size rely

on knowledge distillation, like Few Samples Knowledge Distillation (FSKD) [14].

In FSKD, for example, it is possible to successfully train a small student network

from a larger teacher, which has been directly trained on the task. Quantization60

can also be considered for reducing the model’s size: Yang et al., for example,

considered the problem of ternarizing a pre-trained deep model [15]. These ap-

proaches are different roads towards model’s size reduction; however, pruning

has a major advantage of being applicable alongside any of the above strategies,

as it detects parameters not useful to determine the target task, and remove65

them.

2.2. Pruning methods

The goal of pruning techniques is to achieve the highest sparsity (i.e. the

maximum percentage of removed parameters) with minimal performance loss
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(accuracy loss versus the “un-pruned” model). Towards this end, a number of70

different approaches have been proposed. Dropout-based approaches constitute

an intuitive possibility to achieve sparsity. For example, Sparse VD relies on

variational dropout to promote sparsity [16], providing also a Bayesian inter-

pretation for Gaussian dropout. Another dropout-based approach is Targeted

Dropout [7], where fine-tuning the ANN model is self-reinforcing its sparsity by75

stochastically dropping connections (or entire units). Broadening this category

are worth of mention all the ensembling-like techniques aiming at find redun-

dancy in the layers and remove it by knocking it off, like SCOP [17].

Recently, it has been observed that only some parameters are actually up-80

dated during training [18], suggesting that other parameters can be removed

from the learning process without affecting the network performance. These lat-

ter parameters can however be only determined a-posteriori, while other pruning

strategies can achieve higher sparsity in general [19]. Lots of efforts have re-

cently been devoted towards making pruning mechanisms more efficient: for85

example, Wang et al. show that some sparsity is achievable pruning weights at

the very beginning of the training process [20], Liebenwein et al. build saliency

scores to rank filters to be pruned [21], or Lee et al., with their “SNIP”, are able

to prune weights in a one-shot fashion [22]. However, these approaches achieve

limited sparsity only, while strategies based on iterative pruning usually enable90

higher sparsity [19] when compared to the above mentioned one-shot or few-shot

approaches.

A popular pruning strategy involves the introduction of a regularization func-

tion which promotes sparsity iteratively, at fine-tuning time. Some attempts to95

regularize ANN parameters based on the `0 norm have been reported; however,

such norm is a non-differentiable measure and cannot be simply plugged into

the optimizer. A recent work [23] proposes a differentiable proxy measure to

overcome this problem introducing, though, some relevant computational over-

head. In [24] a regularizer based on group lasso, whose goal is to cluster filters100
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in convolutional layers, is proposed. However, such a technique cannot be gen-

eralized to bulky fully-connected layers, where most of the complexity (in terms

of number of parameters) lies. A sound approach towards pruning parame-

ters consists in exploiting a `2 regularizer in a shrink-and-prune framework.

In particular, a standard `2 regularization term is included in the minimized105

cost function (to penalize the magnitude of the parameters): all the parameters

dropping below some threshold are pinpointed to zero, thus learning a sparser

topology [4]. Such approach is effective since regularization replaces unstable

(ill-posed) problems with nearby and stable (well-posed) ones by introducing a

prior on the parameters [25]. However, as a drawback, this method requires a110

preliminary training to learn the threshold value; furthermore, all the param-

eters are blindly, equally-penalized by their `2 norm: some parameters, which

can introduce large error (if removed), might drop below the threshold because

of the regularization term: this introduces sub-optimalities as well as instabil-

ities in the pruning process. Guo et al. attempted to address this issue with115

their DNS [6], where they propose an algorithmic procedure to corrects even-

tual over-pruning by enabling the recovery of severed connections, or another

possible approach has been proposed by He et al. with a “soft pruning” strat-

egy [26, 27]. In other recent works [9, 28], it was proposed to measure how

much the network output changes for small perturbations of some parameters,120

and to iteratively penalize just those which generate little or no performance

loss. However, such method requires the network to be already trained so to

measure the variation of the network output when a parameter is perturbed,

increasing the overall learning time.

125

In this work, we overcome the basic limitation of pre-training the network,

introducing the concept of loss-based sensitivity : it only penalizes the parame-

ters whose small perturbation introduces little or no performance loss at training

time.
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3. Proposed Regularization130

In this section we first express the sensitivity of a network parameter as

the variation in the loss function as a function of a perturbation applied to

the parameter. Then, we propose a parameter update rule that includes a

regularization term accounting for each parameter sensitivity to drive towards

zero parameters with small sensitivity.135

3.1. Loss-based Sensitivity

ANNs are typically trained via gradient descent based optimization, i.e. min-

imizing the loss function. Methods based on mini-batches of samples have gained

popularity as they allow better generalization than stochastic learning while also

being memory and time efficient. In such a framework, a network parameter140

wi is updated towards the averaged direction which minimizes the averaged loss

for the minibatch, i.e. using the well known stochastic gradient descent or its

variations. Our ultimate goal is to assess to which extent a variation of the

value of wi would affect the error on the network output y: the parameters not

affecting the network output can be hardwired to zero, i.e. pruned away.145

We make a first attempt towards this end introducing a small perturbation ∆wi

over wi and measuring the variation of y as

∆y =
∑
k

|∆yk| ≈ ∆wi
∑
k

∣∣∣∣∂yk∂wi

∣∣∣∣ . (1)

Unfortunately, evaluating (1) is computationally expensive, because it would

require a complexity growing linearly with the number of the output classes [9].

We can, however, estimate directly the variations of the error function instead,

using some differentiable proxy function, i.e. the loss function L:

∆L ≈ ∆wi

∣∣∣∣∂L∂y · ∂y∂wi
∣∣∣∣ = ∆wi

∣∣∣∣ ∂L∂wi
∣∣∣∣ . (2)
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P
(
∂L
∂wi

)
sign

(
∂L
∂wi

)
sign (w) η̃

η

0 any any 1

1 0 any 1

1 + + ≤ 1

1 + - ≥ 1

1 - + ≥ 1

1 - - ≤ 1

Table 1: Behavior of η̃ compared to η (η > 0).

The use of (2) in place of (1) shifts the focus from the output to the error of

the network. Let us define the sensitivity S for a given parameter wi as

S(L,wi) =

∣∣∣∣ ∂L∂wi
∣∣∣∣ . (3)

Large S values indicate large variations of the loss function for small perturba-150

tions of wi.

3.2. Update Rule

Given the sensitivity definition in (3), we can promote sparse topologies

by pruning parameters with both low sensitivity S (i.e., in a flat region of

the loss function gradient, where a small perturbation of the parameter has a155

negligible effect on the loss) and low magnitude. Towards this end, we propose

the following parameter update rule to promote sparsity:

wt+1
i := wti − η

∂L

∂wti
− λwti

[
1− S(L,wti)

]
P
[
S(L,wti)

]
, (4)

where

P (x) = Θ [1− |x|] , (5)
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(a) (b) (c) (d)

Figure 1: Update rule effect on the parameters. The red dashed line is the tangent to the loss

function in the black dot, in blue the standard SGD contribution, in purple the weight decay

while in orange the LOBSTER contribution. Here we assume P (L,wi) = 1.

Θ(·) is the one-step function and η, λ two positive hyper-parameters. Plugging

(3) in (4) we can rewrite the update rule as:

wt+1
i = wti − η

∂L

∂wti
− λΓ

(
L,wti

) [
1−

∣∣∣∣ ∂L∂wti
∣∣∣∣] , (6)

where

Γ (y, x) = x · P
(
∂y

∂x

)
. (7)

After some algebraic manipulations, we can rewrite (6) as

wt+1
i = wti − λΓ

(
L,wti

)
− ∂L

∂wti

[
η − sign

(
∂L

∂wti

)
λΓ
(
L,wti

)]
. (8)

In (8), we observe two different components of the proposed regularization term:160

• a weight decay-like term Γ (L,wi) which is enabled/disabled by the mag-

nitude of the gradient on the parameter;

• a correction term for the learning rate. In particular, the full learning

process follows an equivalent learning rate

η̃ = η − sign

(
∂L

∂wi

)
λΓ (L,wi) . (9)

Let us analyze the corrections in the learning rate. If
∣∣∣ ∂L∂wi

∣∣∣ ≥ 1 (wi has large

sensitivity), it follows that P
(
∂L
∂wi

)
= 0 and Γ (L,wi) = 0 and the dominant
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contribution comes from the gradient. In this case our update rule reduces to

the classical GD:

wt+1
i = wti − η

∂L

∂wti
. (10)

When we consider less sensitive wi with
∣∣∣ ∂L∂wi

∣∣∣ < 1, we get Γ (L,wi) = wi (weight

decay term) and we can distinguish two sub-cases for the learning rate:

• if sign
(
∂L
∂wi

)
= sign (wi), then η̃ ≤ η (Fig. 1a and Fig. 1d),165

• if sign
(
∂L
∂wi

)
6= sign (wi), then η̃ ≥ η (Fig. 1b and Fig. 1c).

Finally, let us consider the corner case where the network has “fully-converged”

over the training set, i.e.
∣∣∣ ∂L∂wi

∣∣∣ = 0∀wi. In this case, the update rule in (4)

reduces to

wt+1
i := (1− λ)wti (11)

as P [S(L,wti)] = 1. The only term remaining here is a weight decay-like term,

which greedily tends to push the parameters towards zero. A schematics of

all these cases can be found in Table 1 and the representation of the possible

effects are shown in Fig. 1. The contribution coming from Γ (L,wi) aims at170

minimizing the parameter magnitude, disregarding the loss minimization. If the

loss minimization tends to minimize the magnitude as well, then the equivalent

learning rate is reduced. On the contrary, when the gradient descent tends

to increase the magnitude, the learning rate is increased, to compensate the

contribution coming from Γ (L,wi). This mechanism allows us to succeed in the175

learning task while introducing sparsity.

3.3. Regularization function minimized

Let us now investigate more precisely the objective function we are minimiz-

ing by imposing the update rule (6). To this end we can follow the approach

as in [9], and we can compute the regularization function Ri (computed for the

single parameter wi) by solving

Ri =

∫ (
wi − wi

∣∣∣∣ ∂L∂wi
∣∣∣∣)Θ

(
1−

∣∣∣∣ ∂L∂wi
∣∣∣∣) dwi. (12)
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We rewrite Ri as the `2 regularization followed by a correction term as

Ri = Θ

(
1−

∣∣∣∣ ∂L∂wi
∣∣∣∣)(w2

i

2
+ R̃i

)
, (13)

where

R̃i = −
∫
wi

∂L

∂wi
sign

(
∂L

∂wi

)
dwi. (14)

Let us integrate (14) by parts:

R̃i = −w
2
i

2

∂L

∂wi
sign

(
∂L

∂wi

)
+

∫
w2
i

2

∂2L

∂w2
i

sign

(
∂L

∂wi

)
dwi. (15)

If we integrate a further step, we obtain:

R̃i = −w
2
i

2

∂L

∂wi
sign

(
∂L

∂wi

)
+
w3
i

6

∂2L

∂w2
i

sign

(
∂L

∂wi

)
−
∫
w3
i

6

∂3L

∂w3
i

sign

(
∂L

∂wi

)
dwi.

(16)

Applying infinite steps of integration by parts we have

R̃i = sign

(
∂L

∂wi

) ∞∑
k=1

(−1)
k ∂

kL

∂wki

wk+1
i

(k + 1)!
. (17)

Overall, the regularization function to minimize at training time, over all the

wi, is

R =
∑
i

Θ

(
1−

∣∣∣∣ ∂L∂wi
∣∣∣∣)
[
w2
i

2
+ sign

(
∂L

∂wi

) ∞∑
k=1

(−1)
k ∂

kL

∂wki

wk+1
i

(k + 1)!

]
. (18)

According to (13) and, for instance, (18), we observe that overall the regular-

ization function we are minimizing is the standard `2 regularization, corrected

by a loss-dependent term, defined within our proposed LOBSTER framework.180

In the next section we provide a practical procedure to learn a sparse neural

network topology exploiting the above regularization function at training time,

followed by a pruing stage.

4. Training Procedure

This section describes a procedure to train a sparse neural network N lever-185

aging the sensitivity-based rule above to update the network parameters. We

assume that the parameters have been randomly initialized, albeit the proce-

dure holds also if the network has been pre-trained. The procedure is illustrated

in Fig. 2 and iterates over two stages as follows.
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Figure 2: The complete training procedure of LOBSTER.

4.1. Learning Stage190

During the learning stage, the ANN is iteratively trained according to the

update rule (4) on some training set. Let j indicate the current learning stage

iteration (i.e., epoch) and N j represent the network (i.e., the set of learnable

parameters) at the end of the j-th iteration. Also let Lj be the loss measured on

some validation set at the end of the j-th iteration and L̂ be the best (lowest)195

loss measured so far on N̂ (network with lowest validation loss so far). As initial

condition, we assume, N̂ = N 0. If Lj < L̂, the reference to the best network is

updated as N̂ = N j , L̂ = Lj . We iterate again the learning stage N until the

best validation loss Lj has not decreased for PWE iterations of the learning

stage in a row (we say the regularizer has reached a performance plateau). At200

such point, we move to the pruning stage.

We provide N̂ as input for the pruning stage, where a number of parameters

have been shrunk towards zero by our sensitivity-based regularizer.

4.2. Pruning Stage

In a nutshell, during the pruning stage parameters with magnitude below

a threshold value T are pinpointed to zero, eventually sparsifying the network
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Figure 3: The pruning stage.

topology as shown in Fig. 3. Namely, we look for the largest T that worsens the

classification loss L̂ at most by a relative quantity TWT :

Lb = (1 + TWT ) L̂, (19)

where Lb is called loss boundary. T is found using the bisection method, initial-205

izing T with the average magnitude of the non-null parameters in the network.

Then, we apply the threshold T to N̂ obtaining the pruned network N T with its

loss LT on the validation set. Before the pruning procedure begins, we initialize

the threshold T to half of the maximum magnitude for the parameters in N̂ .

We also initialize ∆T to T
2 . Then, we proceed in the research of T as follows:210

1. We prune N̂ with threshold T , obtaining N T ;

2. We compute the loss LT on the validation set:

• if Lb ≥LT the network tolerates that more parameters be pruned, so

T is increased by ∆T ;

• if Lb < LT then too many parameters have been pruned. This means215

that we have to restore the parameters pruned at the previous step.

Then, we decrease T by ∆T .

3. We update ∆T , dividing its value by half;
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4. We test over ∆T value:

• if ∆T ≤ ε, where ε is some small value for which LT = LT+ε (typi-220

cally 10−10), we end our pruning stage;

• otherwise, we go back to point 1.

Once T is found, all the parameters whose magnitude is below T are pinpointed

to zero, i.e. they are pruned for good. If at least one parameter has been

pruned during the last iteration of the pruning stage, a new iteration of the225

regularization stage follows; otherwise, the procedure ends returning the trained,

sparse network.

5. Results

In this section we experimentally evaluate LOBSTER over multiple archi-

tectures and datasets commonly used as benchmark in the literature:230

• LeNet-300 on MNIST (Fig. 4a),

• LeNet-5 on MNIST (Fig. 4b),

• LeNet-5 on Fashion-MNIST (Fig. 4c),

• ResNet-32 on CIFAR-10 (Fig. 4d),

• ResNet-18 on ImageNet (Fig. 4e),235

• ResNet-101 on ImageNet (Fig. 4f),

• U-Net on ISIC skin lesion segmentation (Table 2).

We compare with other state-of-the-art approaches introduced in Sec. 2 wher-

ever numbers are publicly available. Besides these, we also perform an ablation

study with a `2-based regularizer and our proposed pruning strategy (as dis-240

cussed in Sec. 4.2). Performance is measured as the achieved model sparsity

versus classification error (Top-1 or Top-5 error). The network sparsity is de-

fined here ad the percentage of pruned parameters in the ANN model. Our
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algorithms are implemented in Python1, using PyTorch 1.2 and simulations are

run over an RTX2080 Ti NVIDIA GPU. All the hyper-parameters have been245

tuned via grid-search. The validation set size for all the experiments is 5k large.

For all datasets, the learning and pruning stages take place on a random split

of the training set, whereas the numbers reported below are related to the test

set.

5.1. LeNet-300 on MNIST250

As a first experiment, we train a sparse LeNet-300 [29] architecture, which

consists of three fully-connected layers with 300, 100 and 10 neurons respectively.

We trained the network on the MNIST dataset, made of 60k training images

and 10k test gray-scale 28×28 pixels large images, depicting handwritten digits.

Starting from a randomly initialized network, we trained LeNet-300 via SGD255

with learning rate η = 0.1, λ = 10−4, PWE = 20 epochs and TWT = 0.05.

The related literature reports several compression results that can be clustered

in two groups corresponding to classification error rates of about 1.65% and

1.95%, respectively. Fig. 4a provides results for the proposed procedure. Our

method reaches higher sparsity than the the approaches found in literature.260

This is particularly noticeable around 1.65% classification error (low left in

Fig. 4a), where we achieve almost twice the sparsity of the second best method.

LOBSTER also achieves the highest sparsity for the higher error range (right

side of the graph), gaining especially in regards to the number of parameters

removed from the first fully-connected layer (the largest, consisting of 235k265

parameters), in which we observe just the 0.59% of the parameters survives.

5.2. LeNet-5 on MNIST and Fashion-MNIST

Next, we experiment on the caffe version of the LeNet-5 architecture, con-

sisting in two convolutional and two fully-connected layers. Again, we use a

randomly-initialized network, trained via SGD with learning rate η = 0.1,270

1The source code is available at https://github.com/EIDOSlab/LOBSTER.git
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Figure 4: Performance (Top-1 error) vs ratio of pruned parameters for LOBSTER and other

state of the art methods over different architectures and datasets.
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λ = 10−4, PWE = 20 epochs and TWT = 0.05. The results are shown in

Fig. 4b. Even with a convolutional architecture, we obtain a competitively small

network with a sparsity of 99.57%. At higher compression rates, Sparse VD

slightly outperforms all other methods in the LeNet5-MNIST experiment. We

observe that LOBSTER, in this experiment, sparsifies the first convolutional275

layer (22% sparsity) more than Sparse VD solution (33%). In particular, LOB-

STER prunes 14 filters out of the 20 original in the first layer (or in other words,

just 6 filters survive, and contain all the un-pruned parameters). We hypothe-

size that, in the case of Sparse VD and for this particular dataset, extracting a

larger variety of features at the first convolutional layer, both eases the classifi-280

cation task (hence the lower Top-1 error) and allows to drop more parameters

in the next layers (a slightly improved sparsity). However, since we are above

99% of sparsity, the difference between the two techniques is minimal.

To scale-up the difficulty of the training task, we experimented on the classifica-

tion of the Fashion-MNIST dataset [30], using again LeNet5. This dataset has285

the same size and image format of the MNIST dataset, yet it contains images

of clothing items, resulting in a non-sparse distribution of the pixel intensity

value. Since the images are not as sparse, such dataset is notoriously harder to

classify than MNIST. For this experiment, we trained the network from scratch

using SGD with η = 0.1, λ = 10−4, PWE = 20 epochs and TWT = 0.1. The290

results are shown in Fig. 4c.

F-MNIST is an inherently more challenging dataset than MNIST, so the achiev-

able sparsity is lower. Nevertheless, the proposed method still reaches higher

sparsity than other approaches, removing an higher percentage of parameters,

especially in the fully connected layers, while maintaining good generalization.295

In this case, we observe that the first layer is the least sparsified: this is an effect

of the higher complexity of the classification task, which requires more features

to be extracted.

16



5.3. ResNet-32 on CIFAR-10

To evaluate how our method scales to deeper, modern architectures, we ap-300

plied it on a PyTorch implementation of the ResNet-32 network [31] that clas-

sifies the CIFAR-10 dataset.2 This dataset consists of 60k 32×32 RGB images

divided in 10 classes (50k training images and 10k test images). We trained

the network using SGD with momentum β = 0.9, λ = 10−6, PWE = 10

and TWT = 0. The full training is performed for 11k epochs.Our method305

performs well on this task and outperforms other state-of-the-art techniques.

Furthermore, LOBSTER improves the network generalization ability reducing

the baseline Top-1 error from 7.37% to 7.33% of the sparsified network while

removing 80.11% of the parameters. This effect is most likely due to the LOB-

STER technique itself, which self-tunes the regularization on the parameters as310

explained in Sec. 3.2.

5.4. ResNet on ImageNet

Finally, we further scale-up both the output and the complexity of the clas-

sification problem testing the proposed method on network over the well-known

ImageNet dataset (ILSVRC-2012), composed of more than 1.2 million train im-315

ages, for a total of 1k classes. For this test we used SGD with momentum

β = 0.9, λ = 10−6 and TWT = 0. The full training lasts 95 epochs. Due

to time constraints, we decided to use the pre-trained network offered by the

torchvision library.3 Fig. 4e shows the results for ResNet-18 while Fig.4f shows

the results for ResNet-101. Even in this scenario, LOBSTER proves to be par-320

ticularly efficient: we are able to remove, with no performance loss, 37.04% of

the parameters from ResNet-18 and 81.58% from ResNet-101.

5.5. U-Net on ISIC skin lesion segmentation

Besides classification tasks, we want to show how LOBSTER behaves for

different tasks. Towards this end, we have trained the U-Net architecture [32] to325

2https://github.com/akamaster/pytorch_resnet_cifar10
3https://pytorch.org/docs/stable/torchvision/models.html
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Table 2: esults on the ISIC 2018 Skin Lesion Segmentation using U-Net architecture.

Method Dice score Intersection over Union Sparsity (%)

Baseline 0.8282 0.7073 0

Sparse VD [16] 0.8245 0.7030 32.14

`2+pruning 0.8273 0.7062 79.43

LOBSTER 0.8269 0.7057 82.13

segment skin lesions [33, 34]. The ISIC skin lesion segmentation dataset consists

of 2594 training images and 100 test images having resolution 1024×768 pixels,

in RGB format. Models are trained with weight decay = 10−4, momentum =

0.9 starting learning rate η = 0.1. LOBSTER and `2+pruning models were

obtained with PWE = 10 and TWT = 0. For LOBSTER we used λ = 10−4.330

All the models are trained minimizing a Jaccard loss function.

Results are shown in Table 2. Even in segmentation tasks LOBSTER is able

to remove a very large amount of parameters, namely the 82.13%. We observe,

however, that in this specific scenario the main contribution is given by the

pruning algorithm we propose in Sec. 4.2, as the sparsity achieved with plain335

`2 regularization is not distant though lower than LOBSTER (82.13%) when

other techniques which perform well for classification tasks, like Sparse VD, in

this case achieve just 32.14% performance. For these cases, a proper tuning of

the threshold T results determinant towards achieving high performance with

little performance drop.340

5.6. Ablation study

As a final ablation study, we replace our sensitivity-based regularizer with a

simpler `2 regularizer in our learning scheme in Fig. 2. Such scheme “`2+pruning”

uniformly applies an `2 penalty to all the parameters regardless their contribu-

tion to the loss. This scheme is comparable with [4], yet enhanced with the345

same pruning strategy with adaptive thresholding shown in Fig. 3. A compar-

ison between LOBSTER and `2+pruning is reported in Table 3. We report
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Dataset Architecture

`2+pruning LOBSTER

Top-1 Sparsity
FLOPs

Top-1 Sparsity
FLOPs(%) (%) (%) (%)

MNIST
LeNet-300 1.97 97.62 22.31k 1.95 99.13 10.63k

LeNet-5 0.80 98.62 589.75k 0.79 99.57 207.38k

F-MNIST LeNet-5 8.44 93.04 1628.39k 8.43 96.27 643.22k

CIFAR-10 ResNet-32 8.08 71.51 44.29M 7.33 80.11 32.90M

ImageNet
ResNet-18 31.08 25.40 2.85G 30.10 37.04 2.57G

ResNet-101 28.33 78.67 3.44G 26.44 81.58 3.00G

Table 3: Comparing LOBSTER against standard `2+pruning as in Fig. 4 (best sparsity results

are reported).The sensitivity-based regularization term allows higher sparsification rates for

improved accuracy.

in table some operation points, for which `2+pruning and LOBSTER have the

same Top-1 performance: for lower sparsity the performance typically increases.

In all the experiments we observe that dropping the sensitivity based regularizer350

impairs the performance. This experiment verifies the role of the sensitivity-

based regularization in the performance of our scheme. Finally, Table 3 also

reports the corresponding inference complexity in FLOPs. For the same or

lower Top-1 error LOBSTER yelds benefits as fewer operations at inference

time and suggesting the presence of some structure in the sparsity achieved by355

LOBSTER.

6. Conclusion

We presented LOBSTER, a regularization method suitable to train neural

networks with a sparse topology without a preliminary training. Differently

from `2 regularization, LOBSTER is aware of the global contribution of the360

parameter on the loss function and self-tunes the regularization effect on the

parameter depending on factors like the ANN architecture or the training prob-

lem itself (in other words, the dataset). Moreover, tuning its hyper-parameters
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is easy and the optimal threshold for parameter pruning is self-determined by

the proposed approach employing a validation set. LOBSTER achieves compet-365

itive results from shallow architectures like LeNet-300 and LeNet-5 to deeper

topologies like ResNet over ImageNet. In these scenarios we have observed the

boost provided by the proposed regularization approach towards less-unaware

approaches like `2 regularization, in terms of achieved sparsity.

Future research includes the extension of LOBSTER to achieve sparsity with370

a structure and a thorough evaluation of the savings in terms of memory foot-

print.
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