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A language is not just words. It’s a culture, a tradition, a unification of

a community, a whole history that creates what a community is. It’s all

embodied in a language.

— Noam Chomsky

In all affairs it’s a healthy thing now and then to hang a question mark

on the things you have long taken for granted.

— Bertrand Russell





ABSTRACT

Lexical resources are fundamental to tackle many tasks that are central

to present and prospective research in Text Mining, Information Re-

trieval and, of course, to Natural Language Processing at large. In this

scope, semantic lexical resources have been proven to be particularly

useful to develop successful applications in various areas. In this work

two lexical resources are presented: COVER and LessLex. COVER

proposes a compact vectorial representation that combines the lexico-

graphic precision characterizing BabelNet and the rich common-sense

knowledge featuring ConceptNet, while LessLex is a set of embed-

dings that extends the terminological embeddings of ConceptNet

Numberbatch by building semantic representations that co-exist in

the same semantic space with those acquired at the term level: for

each term we have thus the ‘blended’ terminological vector along with

those describing all senses associated to that term. Such conceptual

representations are language independent; as illustrated in the exper-

imentation, this enables to deal with multilingual and cross-lingual

settings. These resources have been extensively tested on a wide variety

of tasks, such as word similarity, conceptual similarity, semantic simi-

larity with explanation, keyword extraction, abstractness computation,

metaphor detection, contextual similarity and semantic text similarity.

The obtained results seem to corroborate the main hypothesis under-

lying this work: sense-level representations —as opposed to term-level

representations— typically require additional processing efforts (such

vii



as, e.g., for some sort of disambiguation), but favorably compare to

term-based representations, that have been providing state-of-the-art

results in the last few years, at the same time allowing to produce more

cognitively plausible and explainable results.
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1

INTRODUCTION

Lexical resources are fundamental to tackle many tasks that are central

to present and prospective research in Natural Language Processing:

in the last decades, the success in several tasks such as word sense

disambiguation has been strongly related to the development of lexical

resources (Miller, 1995; Miller and Fellbaum, 2007; Navigli, 2009). The

same holds for specialized forms of semantic analysis and interpretation,

such as sentiment analysis, where systems’ efficacy (Cambria, Schuller,

et al., 2013) has been accompanied by the release of specialized lexical

resources and corpora (e.g., (Bosco, Patti, and Bolioli, 2013; Devitt and

Ahmad, 2013; McCrae et al., 2012)). In the last few years the creation of

multilingual and parallel resources (Francopoulo et al., 2009; Navigli and

Ponzetto, 2010) further strengthened the link between lexical resources

and successful NLP applications (Denecke, 2008; Gı̂nscă et al., 2011;

Moro, Cecconi, and Navigli, 2014), while the impact of deep architectures

and word embeddings has been compared to a tsunami hitting the NLP

Community and its major conferences (Manning, 2015).

Word embeddings have been successfully applied to a broad —and

still growing— set of diverse application fields, such as computing the

similarity between short texts (Kenter and De Rijke, 2015), full docu-

ments (Kusner et al., 2015) or both (Le and Mikolov, 2014). Also by look-

ing at traditional NLP tasks such as parsing, embeddings proved to be an

effective instrument for syntactical parsing —both dependency (Bansal,



4 introduction

Gimpel, and Livescu, 2014; Hisamoto, Duh, and Matsumoto, 2013) and

constituency parsing (Andreas and Klein, 2014)— and semantic parsing

as well (Berant and P. Liang, 2014). Within this phenomenon, multilin-

gual and cross-lingual word embeddings have gained a special status,

thanks to the strong and partly unanswered pressure for devising tools

and systems to deal with more than one language at a time. Amongst

the main areas where multilingual and cross-lingual resources and ap-

proaches are solicited there are of course machine translation (Cho

et al., 2014; Luong, Pham, and Manning, 2015), cross-lingual docu-

ment categorization (Gouws, Bengio, and Corrado, 2015) and sentiment

analysis (Tang et al., 2014).

The focus of this work is the development of two lexical resources

which constitute the main contributions of my PhD course. The first

resource, COVER (so named after ‘COmmon-sense VEctorial Rep-

resentation’), is a set of conceptual common-sense vectors that were

proposed as a helpful resource to semantically elaborate text docu-

ments. COVER is built by merging BabelNet (Navigli and Ponzetto,

2012), NASARI (Camacho-Collados, Pilehvar, and Navigli, 2015b) and

ConceptNet (Havasi, Robyn Speer, and Alonso, 2007) with the aim at

combining, in a synthetic and cognitively grounded way, lexicographic

precision and common-sense aspects. Different from most popular vec-

torial resources that rely on Distributional Semantics, representing

hundreds of opaque distributional features, COVER provides the repre-

sented elements with a reduced number of cognitively salient dimensions

and, as illustrated in the following, it allows building applications that

obtain interesting results in a number of tasks.
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The second proposed resource is LessLex, a novel set of embed-

dings containing descriptions for senses rather than for terms. Word

embeddings typically describe terms (with few notable exceptions such

as NASARI (Camacho-Collados, Pilehvar, and Navigli, 2015b) and

SenseEmbed (Iacobacci, Pilehvar, and Navigli, 2015)). This means that

different (though close) vectorial descriptions are collected for terms

such as table, board, desk for each considered language; whilst in a

resource based on senses just one description for the sense of table (e.g.,

intended as “a piece of furniture having a smooth flat top that is usually

supported by one or more vertical legs”) would suffice. Of course this

fact has consequences on the number of vectors involved in multilingual

and cross-language applications: one vector per term per language in

the case of terminological vectors, one per sense —regardless of the

language— otherwise.

However, since one major challenge in the lexical semantics field is,

to date, that of dealing with as many as possible languages at the

same time (e.g., BabelNet covers 284 different languages to date),1 we

decided to explore the hypothesis that to deal with multilingual appli-

cations, and even more in cross-lingual ones, systems can benefit from

compact, concept-based representations. The final result is a semantic

resource that enriches the terminological space offered by Concept-

Net Numberbatch (Robyn Speer, Chin, and Havasi, 2017) by also

generating distributional vectors for each term meaning, borrowed from

the BabelNet sense inventory. The evaluation of our vectors seems to

support our hypotheses: LessLex vectors have been tested in a widely

varied experimental setting, providing performances at least on par with

1 https://babelnet.org/stats.

https://babelnet.org/stats
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state-of-the-art embeddings, and sometimes substantially improving on

these.

LessLex and COVER grasp different and complementary types of

knowledge: the former supplies distributional and opaque knowledge

which can be exploited to establish distances both on a terminologi-

cal and conceptual level. The latter encodes conceptual and human

readable knowledge which could be used to further refine semantic

distance computation, while also providing explainable insights on the

adopted computational processes. This complementarity is enabled by

a shared semantic layer between the two resources: concepts’ indexing

is performed in both cases based on the BabelNet semantic inventory,

thus making the two resources tightly connected and the knowledge

therein truly interoperable.



2

STATE OF THE ART

In the last few years different methodologies and systems for the con-

struction of unified lexical and semantic resources have been proposed,

as illustrated in Figure 2.1. The timeline shows a clear shift: until a

decade ago, most of the resources could be arranged into hand-crafted re-

sources — created either by expert annotators, such as WordNet (Miller,

1995), FrameNet (Baker, Fillmore, and Lowe, 1998) and VerbNet (Levin,

1993), or through collaborative initiatives, such as ConceptNet (Havasi,

Robyn Speer, and Alonso, 2007) —; and resources that have been

built by automatically combining the above ones, like in the case of

BabelNet (Navigli and Ponzetto, 2012). These resources feature the

advantage of being human readable and therefore the behavior of the

applications that are built on top of them is often more interpretable.

However, in the last decade these explanatory traits have been disre-

garded in favor of the high performance and usability ensured by the

usage of word embeddings. Since the foundational work that gave birth

to word2vec (Mikolov, Sutskever, et al., 2013), this new line of research

has brought huge improvements in almost every NLP task. Further

works allowed the development of other types of embeddings, such as

multilingual embeddings (e.g., ConceptNet Numberbatch (Robyn

Speer, Chin, and Havasi, 2017)), sense embeddings (e.g., SenseEm-

bed (Iacobacci, Pilehvar, and Navigli, 2015)) and finally contextual

embeddings (e.g., ELMo (Peters et al., 2018)).
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Figure 2.1: Mapping on the timeline of some of the most relevant linguistic
resources proposed in the last decades.

Our two contributions constitute a complementing effort to enrich this

scene: from one side COVER preserves the explainable capabilities of the

earlier resources while focusing on the common-sense knowledge which

has been rarely considered in literature. On the other side, LessLex

joins the embeddings front by providing multilingual conceptual vectors.

Both resources share the trait of being conceptually grounded to the

BabelNet inventory and thus allow for the resolution of high level NLP

tasks.

In the following sections we will provide a description of some of the

most relevant resources in this line of research, focusing especially on

those that we relied upon in order to build COVER and LessLex.

2.1 semantic networks

Semantic networks are knowledge bases in which nodes (synsets) rep-

resent uniquely identified concepts. These nodes are linked via various
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semantic relationships and additionally enriched with information about

the represented concept such as its lexicalizations, a gloss, etc.. Semantic

networks constitute the backbone of any semantic-aware application

since they provide the sense inventory (i.e., the “sense vocabulary”)

around which applications are developed. WordNet and BabelNet con-

stitute two of the most adopted and relevant networks developed in the

field.

wordnet. WordNet (Miller, 1995) constitutes the first attempt

at building a lexical database for English. It is manually curated and

its version 3.0 contains around 120.000 synsets and more than 150.000

unique terms. Each node (synset) represents a set of synonyms, express-

ing a distinct sense. These nodes are also endowed with a gloss and

various examples of use of the described concept, provided for differ-

ential purposes, that is for distinguishing senses. WordNet is actually

partitioned in four categories, modeled upon the four open-class parts of

speech: nouns, verbs, adjectives and adverbs. Each portion of WordNet

has its own relations connecting entities herein. Nouns are organized

in a lexical memory as hierarchies, verbs are organized by a variety

of entailment relations, while adjectives and adverbs are organized as

N-dimensional hyperspaces: each of these lexical structures reflects a

different way of categorizing experience. Relations linking nouns senses

are not only hyponymy and hypernymy (which are at the base of the

hierarchy), but also include antonymy, meronymy/wholonymy. Verbal

relations include troponymy and entailment. As an example, Figure 2.2

shows the list of synsets associated with the term fork in WordNet

3.1. Since its publication in 1995 it has been considered as the most



10 state of the art

���������� :RUG1HW�6HDUFK������

ZRUGQHWZHE�SULQFHWRQ�HGX�SHUO�ZHEZQ"F �	VXE &KDQJH	R� �	R� �	R� �	R� �	R� �	R� 	R� 	R� �	R� �	R� �	L �	K �������������	V IRUN ���

:RUG1HW�6HDUFK������
��:RUG1HW�KRPH�SDJH���*ORVVDU\���+HOS

IRUN 6HDUFK�:RUG1HW

�6HOHFW�RSWLRQ�WR�FKDQJH� &KDQJH

1RXQ

���^��������`��QRXQ�DUWLIDFW!>��@�6���Q��IRUN����IRUN�������������FXWOHU\
XVHG�IRU�VHUYLQJ�DQG�HDWLQJ�IRRG�

IRUN����IRUN�����������

IRUN����IRUN�����������

IRUN����IRUN�����������

IRUN��
�IRUN�����������

9HUE

IRUN����IRUN�����������
IRUN����IRUN�����������

IRUN����IRUN�����������

IRUN����IRUN�����������

Figure 2.2: All the synsets associated with the term fork in WordNet. The
relationships stemming from the first sense are also shown.
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reliable sense inventory in literature; it has then been translated in other

languages (Pianta, Bentivogli, and Girardi, 2002) and versions suited

to the resolution of different tasks such as sentiment analysis have been

proposed, as well (Baccianella, Esuli, and Sebastiani, 2010).

babelnet. BabelNet (Navigli and Ponzetto, 2012) is a multi-

lingual lexicalized semantic network and ontology, containing almost

16 million synsets and about 800 million word senses (distributed over

more than 284 languages). Its basic structure is borrowed from WordNet

since BabelNet is built by automatically linking Wikipedia pages to

WordNet synsets. BabelNet also distinguishes from WordNet in virtue

of its multilingual traits: in fact, each node contains multilingual lexi-

calizations that are collected by exploiting the inter-language links of

Wikipedia together with a machine translation system. Specifically, the

generation of BabelNet can be divided in three steps:

1. WordNet and Wikipedia are combined by automatically acquiring

a mapping between WordNet senses and Wikipages. This mapping

algorithm relies on the conditional probability of a WordNet

sense given a Wikipedia page and is based on the disambiguation

contexts generated from the two resources. A proper mapping

is required in order to avoid sense duplication and to obtain a

sense inventory containing complement of the sense inventories of

WordNet and Wikipedia.

2. Multilingual lexicalizations are obtained by using i) human-generated

translations (established via inter-language links in Wikipedia)

and ii) a machine translation system.
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board, plank, wood 
plank, …

bn:00011639n

board, management 
group, …

bn:00011638n

board, gameboard,  …

bn:00011645n

company, …

bn:00011452n

meronimy

commitee, …

bn:00014421n

hyponimy

holonomy lumber, timber, …

bn:00042451n

hypernymy

table, desk, …

bn:00082151n

Figure 2.3: An excerpt of the BabelNet network (only English lexicalizations
are shown).

3. Relationships between synsets are inherited from WordNet and

further expanded by considering the degree of correlation between

the two Wikipedia pages associated to the nodes.

The final resource consists in a semantic network in which nodes (called

Babel synsets) offer multilingual lexicalizations and are linked by all

the WordNet relationships plus an underspecified relatedness relation

inherited by the Wikipedia page links.

Further works have been focused on injecting in BabelNet other

information extracted from other resources such as Wikidata (Vrandečić

and Krötzsch, 2014), ImageNet (Deng et al., 2009), Open Multilingual

Wordnet,1 OmegaWiki2 and Wikitionary.3 Figure 2.3 shows an excerpt

of the network.

conceptnet. ConceptNet (H. Liu and Singh, 2004) is a semantic

network where nodes represent words and compound concepts (e.g.,

buy food, drive car) connected through a rich set of pragmatic relation-

1 http://compling.hss.ntu.edu.sg/omw/.
2 http://www.omegawiki.org.
3 https://www.wiktionary.org/.

http://compling.hss.ntu.edu.sg/omw/
http://www.omegawiki.org
https://www.wiktionary.org/


2.1 semantic networks 13

ships (e.g., EffectOf, AtLocation). It is focused on the representation of

common-sense knowledge, which is very hard to be scraped or elicited.

Authors motivate the need of a resource such as ConceptNet with the

fact that “common-sense knowledge spans a huge portion of human

experience, but is typically omitted from social communications”. Dif-

ferently from WordNet and Cyc4 –the two most relevant attempts at

knowledge representation available when ConceptNet was conceived–

ConceptNet is not handcrafted by knowledge engineers but instead it is

automatically generated from the English sentences of the Open Mind

Common Sense (OMCS) corpus. The OMCS project, launched in 2000

at the MIT Media Lab, is a crowdsourcing project that allowed more

than 14.000 Web contributors to enter sentences in a fill-in-the-blank

fashion (e.g., ‘A fork is used for ...’, ‘A table is usually located at ...’).

By applying natural language processing and extraction rules to the

700.000 semistructured OMCS sentences, the authors were able to build

a network containing more then 300.000 nodes connected via 1.6 million

binary-relation assertions. Another peculiar trait of ConceptNet consists

in the variety of encoded relationships since they are not only limited to

the WordNet-like classical semantic relationships, but also extended to

other pragmatic relationships such as EffectOf (causality), SubeventOf

(event hierarchy), CapableOf (agent’s ability), PropertyOf, LocationOf,

and MotivationOf (affect).

Finally, the knowledge in ConceptNet is more practical, defeasible and

informal compared to that available in WordNet. For instance, thanks

to WordNet we can retrieve the fact that dog is-a canine which is in

turn a carnivore, but we cannot retrieve the more practical member-to-

4 Cyc is a handcrafted ontology containing over 1.6 million facts interrelating more
than 118.000 concepts (http://sw.opencyc.org/).

http://sw.opencyc.org/
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Figure 2.4: Some of the relationships associated to the node board in Concept-
Net.

set-association dog is-a pet. Moreover, in ConceptNet we can find that

EffectOf (‘fall off bicycle’, ‘get hurt’) which is not necessarily always

true and therefore cannot be found in WordNet. Subsequent releases

of the resource allowed for the integration of information taken from

DBPedia (Auer et al., 2007), Wikitionary, and OpenCyc.

It is however relevant to point out that ConceptNet does not provide

a semantic layer to its nodes. By looking at some of the relationships

attached to the node board (Figure 2.4), we can in fact notice that

all of its meanings (board as a plank of wood, as a game board, as

a management board, as a surfing board and as and ironing board)

are conflated into a single node, thus mixing alla such senses. The

injection of such semantic layer to govern nodes and their associated

concepts could however solve this issue and improve the accessibility of

the information in ConceptNet.

2.2 word and sense embeddings

Word and Sense embeddings are collections of vectors that represent

words or senses via a list of N real numbers. Such vectors co-exist in a

N-dimension hyperspace in which the geometrical distance among them
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can be computed, allowing for the calculation of the similarity between

words or senses. In this setting, one major assumption is that words

that occur in similar contexts tend to purport similar meanings (Harris,

1954); this principle seems to be compatible with some mechanisms of

language acquisition that are based on similarity judgments (Yarlett

and Ramscar, 2008). Word embeddings have gained enormous success

in the community due to their simplicity of use, versatility and great

performances in a plethora of NLP tasks. Furthermore, they can also

be trained for specific domains.

2.2.1 Monolingual Word Embeddings

The development of word2vec (Mikolov, Sutskever, et al., 2013) can

be seen as the first successful attempt at building effective word em-

beddings. The word2vec models and the associated off the shelf word

embeddings result from a training over 100 billion words from the

Google News through continuous skip-grams. The authors of this work

exploit simple — compared to either feedforward or recurrent network

models — model architectures and illustrate how to train high quality

word vectors from huge data sets. Another resource worth mentioning

is GloVe: while word2vec is commonly acknowledged to be a predictive

model, GloVe (Pennington, Socher, and Manning, 2014) is instead a

count based model (more on this distinction can be found in the work

by Baroni, Dinu, and Kruszewski (2014)). In count based models, model

vectors are learned by applying dimensionality reduction techniques

to the co-occurrence counts matrix; in particular, GloVe embeddings

have been acquired through a training on 840 billion words from the
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Common Crawl dataset.5 The work by Faruqui, Dodge, et al. (2014)

has also shown how retrofitting can be used to improve vectors quality.

Retrofitting is a post-processing step that updates vectors by running

a belief-propagation algorithm on a graph constructed from lexicon-

derived relational information. This technique is also at the core of

ConceptNet Numberbatch (more on this resource in Section 2.1).

Finally, one of the latest contribution in this field is fastText (Bo-

janowski et al., 2016), which exploits a skipgram model where each word

is represented as a bag of character n-grams. Compared to other stan-

dard models that assign distinct vectors to each word, fastText focuses

on morphology, that allows the resource to deal with out-of-vocabulary

(OOV) words by also making the training process much faster. More-

over, fastText vectors are also able to capture hidden information about

a language, like word analogies or semantics. It is also been used to

improve the accuracy of text classifiers (Joulin et al., 2016).

2.2.2 Multilingual Word Embeddings

Recently, many efforts have been invested in multilingual embeddings;

a complete compendium is provided by Ruder, Vulić, and Søgaard

(2019). In general, acquiring word embeddings amounts to learning

some mapping between bilingual resources, so to induce a shared space

where words from both languages are represented in a uniform language-

independent manner, “such that similar words (regardless of the actual

language) have similar representations” (Vulić and Korhonen, 2016).

A partially different and possibly complementary approach that may

5 http://commoncrawl.org.

http://commoncrawl.org
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be undertaken is sense-oriented; it is best described as a graph-based

approach, and proceeds by exploiting the information available in se-

mantic networks such as WordNet and BabelNet. In the following we

describe these two approaches in detail.

2.2.2.1 Multilingual Embeddings Induction

As regards as this first line of research, in most cases the alignment

between two languages is obtained through parallel data, from which as

close as possible vectorial descriptions are induced for similar words (see,

e.g., the work by Luong, Pham, and Manning (2015)). A related approach

consists in trying to obtain translations at the sentence level rather than

at the word level, without employing word alignments (Chandar et al.,

2014); the drawback is, of course, that large parallel corpora are required,

which may be a too restrictive constraint on languages for which only

scarce resources are available. In some cases (pseudo-bilingual training),

Wikipedia has thus been used as a repository of text documents that

are circa aligned (Vulić and Moens, 2015). Alternatively, dictionaries

have been used to overcome the mentioned limitations, by translating

the corpus into another language (Duong et al., 2016). Dictionaries have

been used as seed lexicons of frequent terms to combine language models

acquired separately over different languages (Faruqui and Dyer, 2014;

Mikolov, Le, and Sutskever, 2013). Artetxe, Labaka, and Agirre (2018)

propose a method using a dictionary to learn an embedding mapping,

which in turn is used to iteratively induce a new dictionary in a self-

learning framework by starting from surprisingly small seed dictionaries

(a parallel vocabulary of aligned digits), that is used to iteratively align

embedding spaces with performances comparable to those of systems
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based on much richer resources. A different approach consists in the joint

training of multilingual models from parallel corpora (Coulmance et al.,

2015; Gouws, Bengio, and Corrado, 2015). Also sequence-to-sequence

encoder-decoder architectures have been devised, to train systems on

parallel corpora with the specific aim of news translation (Hassan et al.,

2018). Multilingual embeddings have been devised to learn joint fixed-

size sentence representations, possibly scaling up to many languages

and large corpora (Schwenk and Douze, 2017). Furthermore, pairwise

joint embeddings (whose pairs usually involve the English language)

have been explored, also for machine translation, based on dual-encoder

architectures (Guo et al., 2018).

Conneau et al. (2018) propose a strategy to build bilingual dictio-

naries with no need for parallel data (MUSE), by aligning monolingual

embedding spaces: this method uses monolingual corpora (for source

and target language involved in the translation), and trains a discrimi-

nator to discriminate between target and aligned source embeddings;

the mapping is trained through the adversarial learning framework,

which is aimed at acquiring a mapping between the two sets such that

translations are close in a shared semantic space. In the second step a

synthetic dictionary is extracted from the resulting shared embedding

space. The notion of shared semantic space is relevant to LessLex,

which is however concerned with conceptual representations. Specifically,

in our setting the sense inventory is available in advance, and senses

(accessed through identifiers that can be retrieved by simply querying

BabelNet) are part of a semantic network, and independent from any

specific training corpus.
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conceptnet numberbatch. One multilingual resource that

requires some additional focus is ConceptNet Numberbatch, which

is heavily employed in the development of LessLex. ConceptNet

Numberbatch (Robyn Speer, Chin, and Havasi, 2017) (CNN from

now on) is a set of word embeddings that stems from the ConceptNet

open data project. CNN is built by using an ensemble that combines

ConceptNet, word2vec (Mikolov, Sutskever, et al., 2013), GloVe (Pen-

nington, Socher, and Manning, 2014) by building on the retrofitting

technique proposed by Faruqui, Dodge, et al. (2014). Retrofitting is a

process that alters an existing set of word embeddings using a knowledge

graph and, specifically, infers new vectors that are close to the original

vectors but also close to their neighbors in the graph. In this application,

the authors adopted the so called expanded retrofitting (Robert Speer

and Chin, 2016). This can optimize the retrofitting objective function

over a vocabulary that contains terms from the knowledge graph that

do not appear in the embeddings vocabulary. This extension allows to

fully exploit the multilingual connections in ConceptNet and also allows

obtaining embeddings for non-English language terms that share the

same semantic space as their English counterparts. In summary, after

retrofitting to ConceptNet the pre-trained vector matrices of Glove and

word2vec, the authors merged the two sets of embeddings by concate-

nating them and then reducing them to 300 dimensions via Singular

Value Decomposition.

The final result is a set of multilingual embeddings indexed on words,

meaning that words in different languages share a common semantic

space which is informed by all of the languages. Such peculiarity, joint

with the fact that CNN shows very good performances on most of the
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datasets for multilingual and cross-lingual word similarity, makes this

resource a perfect candidate for further semantic extensions.

2.2.3 Multi-Prototype, Sense-Oriented Embeddings

Some works on word embeddings have dealt with the issue of providing

different vectorial descriptions for as many senses associated to a given

term. Such approaches stem from the fact that typical word embeddings

mostly suffer from the so-called ‘meaning conflation deficiency’, which

arises from representing all possible meanings of a word as a single

vector of word embeddings. The deficiency consists of the “inability to

discriminate among different meanings of a word” (Camacho-Collados

and Pilehvar, 2018).

In order to account for lexical ambiguity, Reisinger and Mooney

(2010) propose to represent terms as collections of prototype vectors;

the contexts of a term are then partitioned to construct a prototype for

the sense in each cluster. In particular, for each word different prototypes

are induced, by clustering feature vectors acquired for each sense of the

considered word. This approach is definitely relevant to LessLex for the

attempt at building vectors to describe word senses rather than terms.

However, one main difference is that the number of sense clusters K in

our case is not a parameter (admittedly risking to inject noisy clusters

as K grows), but it relies on the sense inventory of BabelNet, which

is periodically updated and improved. The language model proposed

by E. H. Huang et al. (2012) exploits both local and global context,

that are acquired through a joint training objective. In particular, word

representations are computed while learning to discriminate the next
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word, given a local context composed of a short sequence of words,

and a global context composed by the whole document where the

word sequence occurs. Then, the collected context representations are

clustered, and each occurrence of the word is labelled with its cluster,

and used to train the representation for that cluster. The different

meaning groups are thus used to learn multi-prototype vectors, in the

same spirit as in the work by Reisinger and Mooney (2010). Also relevant,

the work by Neelakantan et al. (2014) proposes an extension to the

Skip-gram model to efficiently learn multiple embeddings per word type:

interestingly enough, this approach obtained state-of-the-art results in

the word similarity task. The work carried out by T. Chen et al. (2015)

directly builds on a variant of the Multi-Sense Skip-Gram (MSSG) model

by Neelakantan et al. (2014) for context clustering purposes. Namely,

the authors propose an approach for learning word embeddings that

relies on WordNet glosses composition and context clustering; this model

achieved state-of-the-art results in the word similarity task, improving

on previous results obtained by E. H. Huang et al. (2012) and by X.

Chen, Z. Liu, and Sun (2014).

Another resource that is worth mentioning is SenseEmbed (Iacobacci,

Pilehvar, and Navigli, 2015); the authors propose here an approach

for obtaining continuous representations of individual senses. In order

to build sense representations, the authors, exploited Babelfy (Moro,

Raganato, and Navigli, 2014) as word sense disambiguation system on

the September-2014 dump of the English Wikipedia.6 Subsequently the

word2vec toolkit has been employed to build vectors for 2.5 millions of

unique word senses.

6 http://dumps.wikimedia.org/enwiki/.

http://dumps.wikimedia.org/enwiki/


22 state of the art

nasari. Another project we need to describe in some detail is

NASARI (Camacho-Collados, Pilehvar, and Navigli, 2016). NASARI

builds on BabelNet and Wikipedia; it is indexed on Babel synset IDs

and specifically describes nouns and named entities, but not other

grammatical categories. NASARI has been released in three different

versions: lexical, embedded and unified. The basic notion on which the

resource is built is the one of lexical specificity, which is a statistical

measure that computes the most significant words for a given text based

on the hypergeometric distribution. More precisely, given a reference

corpus RC and a sub-corpus SC (with SC ⊂ RC) the lexical specificity

computes the weights for each word by contrasting the frequencies of

that word across SC and RC.

In order to build the lexical NASARI vector for a Babel synset s, the

authors consider the whole Wikipedia as reference corpus RC, while

the sub-corpus SC is built by considering i) the page representing s

in Wikipedia; ii) all the pages with outgoing links to the page of s

in Wikipedia; and iii) all the pages representing the hypernyms and

hyponyms of s in Wikipedia. Lexical specificity is then computed to

obtain the weights of the words in SC that will finally constitute the

vector of s. For instance the final lexical vector of the concept Admiration

(bn:00001454n) looks as follows:

bn:00001454n Admiration awe_173.29 admiration_83.41

emotion_81.1 descartes_75.99 elevation_68.7

passion_64.63 wonder_40.44 ...

These lexical vectors have then been leveraged to build the embedded

version of NASARI (NASARIE for brevity). Given any set of pre-

existing word embeddings and a NASARI lexical vector for a sense s,
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it is possible to build its corresponding NASARIE vector by simply

averaging the word embeddings associated to the terms appearing in its

lexical vector. To fully take advantage of the NASARI lexical structure,

the average computed is actually weighted by taking into consideration

the rank (i.e., the weight) of the word as it appears in the lexical vector s.

The released NASARIE is built by using the word2vec vectors trained

over the Google News dataset: the final result is a set of 2.9M vectors

that also share the same semantic space of word2vec, so that their

representations can be used to compute semantic distances between any

two such vectors.

The last version of NASARI is called NASARI unified and it is

basically a disambiguated version of NASARI lexical: in this version

each vector contains Babel synsets instead of words. Starting from the

sub-corpus SC, the lexical specificity is computed among clusters of

hyponyms (i.e., senses sharing the same hypernym) instead of single

words: this clustering of sibling words into a single cluster represented

by their common hypernym transforms a lexical space into a unified

semantic which has multilingual synsets as dimensions. As example

we can look at the resulting unified vector for the concept Admiration

(bn:00001454n):

bn:00001454n Admiration bn:00033963n_91.2 bn:00030581n_71.59

bn:00001455n_69.27 bn:00016845n_26.16

bn:00061984n_21.12 ...

In this work we will make use of the NASARI unified (simply referred

to as NASARI) and embedded (referred to as NASARIE).
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2.3 word and sense similarity

In this section we introduce the two main tasks that were employed

to evaluate our resources COVER and LessLex. Further details on

the considered datasets and the adopted approaches for the resolution

of the tasks will be provided in the respective evaluation sections of

Chapter 3 and Chapter 4.

2.3.1 Concept Similarity

The concept similarity task has a rather simple definition: given a pair

of concepts in input, the system has to estimate a similarity score (in

some defined range) between the two. Concepts are usually provided

as unique sense identifiers in a given sense inventory such as the one

of WordNet or BabelNet. The conceptual similarity task is a long-

standing task adopted for the evaluation of lexical resources (Miller and

Charles, 1991; Resnik, 1995; Richardson, Smeaton, and Murphy, 1994;

Wu and Palmer, 1994). Depending on the type of lexical resource at

hand, the access to its knowledge can vary. For vectorial resources that

are indexed on senses (e.g., NASARI, COVER, LessLex) the task

is usually straightforwardly solved by computing the cosine similarity

between the two vectors matching the input concepts.7 On the contrary,

for lexical resources such as word embeddings (e.g., GloVe, CNN)

some additional steps are required in order to link the input concepts to

the internal terminological representation of the resource at hand. Other

types of knowledge representation such as taxonomies can however rely

7 The senses inventories between the resource and the dataset must match or be linked.
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on their inner structure to compute the similarity (Leacock, Miller, and

Chodorow, 1998; Hansen A Schwartz and Gomez, 2008; Wu and Palmer,

1994), possibly also relying on information content (Jiang and Conrath,

1997; Resnik, 1998).

2.3.2 Word Similarity

The word similarity is a more general variant of the concept similarity

task in which two words are provided as input instead of concepts.

In this settings, word-indexed resources (e.g., word embeddings) are

facilitated in the resolution of the task, while conceptual resources need

to perform some kind of disambiguation of the words to access their

inner representations for the input. The rationale is that each term works

as the context for the other one (e.g., in the pairs 〈‘fork’,‘system call’〉,

and 〈‘fork’,‘river’〉). In particular, to compute the semantic similarity

between a term pair, a variant of a general disambiguation approach

formerly proposed in Pedersen, Banerjee, and Patwardhan (2005) can

be adopted. Such disambiguation approach is defined as follows:

given: a pair 〈wt, C〉, where wt is the term being disambiguated,

and C is the context where wt occurs, C = {w1, w2, . . . , wn}, with

1 ≤ t ≤ n; also, each term wi has mi possible senses, si
1, si

2, . . . , si
mi

.

find: one of the senses from the set {st
1, st

2, . . . , st
mt
} as the most ap-

propriate sense for the target word wt.

The basic idea is to compute the semantic similarity as a function

maximizing the similarity between each two senses (corresponding to
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the target term and to all terms in the context C) by finding the best

sense st
h disambiguating wt where h is computed as:

h =
mt

argmax
mi=1

 ∑
wj∈C,j 6=t

mj
max
k=1
⊗
(

st
i , sj

k

) (2.1)

where ⊗ is implemented by some similarity metrics, such as the cosine

similarity. When dealing with the word similarity task, the context of

each word is shrunk to the other word in the pair, so, the most adopted

approach (Budanitsky and Hirst, 2006; Pilehvar and Navigli, 2015)

(often refereed to as max-similarity), can be formulated as follows: given

two terms w1 and w2, each with an associated list of senses s(w1) and

s(w2), their semantic similarity can be computed as:

sim(w1, w2) = max
c1∈s(w1),c2∈s(w2)

[sim(c1, c2)] (2.2)

where sim(c1, c2) refers to the similarity computed among conceptual

representations inside the semantic knowledge base.

similarity vs relatedness A clarification must be made

between the two notions of semantic similarity and semantic related-

ness. The former is a subset of the latter, but in some contexts the

two terms can be used interchangeably. Two senses can be assessed

based on their similarity axis if there is a synonymy (e.g., bank–trust

company), hyponymy/hypernymy, antonymy, or troponymy relation

between them (e.g., veichle–car), while the semantic relatedness is

based on shallower lexical relationships such as, for instance, meronymy

(e.g., handle–door) (Budanitsky and Hirst, 2006; Mohammad and Hirst,

2012). Interestingly, some of the benchmark datasets on the similar-
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ity task disregard this key difference, an issue that has been pointed

out in e.g. Agirre et al. (2009). In this work we will also provide a

detailed analysis of the SemEval-2017 dataset concerning this aspects

in Section 3.2.3.
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COVER

In this chapter the COVER (‘COmmon-sense VEctorial Representa-

tion’) resource will be introduced, along with COVERAGE (‘COVER

Automatic GEnerator’), the algorithm devised to built it (Lieto, Mensa,

and Radicioni, 2016a; Mensa, Radicioni, and Lieto, 2017b, 2018).

3.1 building cover

3.1.1 Enriching Common-Sense Knowledge

In the recent years a lot of effort has been put into the development of

resources aimed at providing systems with human-level competence in

understanding text documents. However, one main type of information

that has been rarely taken in consideration is common-sense knowledge.

Common-sense can be defined as a widely accessible and elementary

form of knowledge (Minsky, 2000), that can also be seen as prototypical

knowledge (Rosch, 1975). For instance, in considering the concept of dish

its common-sense traits could be that it usually made of ceramic and it

is used to contain and serve foods.1 This kind of information can become

1 “When people communicate with each other, they rely on shared background knowl-
edge to understand each other: knowledge about the way objects relate to each
other in the world, people’s goals in their daily lives, the emotional content of events
or situations. This ‘taken for granted’ information is what we call common sense –
obvious things people normally know and usually leave unstated” (Cambria, Robyn
Speer, et al., 2010, p.15).
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very relevant in settings where artificial agents need to complement more

structured information (such as, e.g., about the chemical composition

or taxonomic information) with common-sense aspects.

The richest resource providing common-sense knowledge is Concept-

Net (Section 2.1) whose knowledge is, however, concerned with terms

rather then senses. In particular, due to the heterogeneous represen-

tation provided by its nodes it can be very difficult to extract all the

relevant information pertaining to specific concept.

Under this premise, the COVER resource has been developed in order

to enrich the common-sense provided by ConceptNet and make it more

precise by linking it to the BabelNet sense inventory. The final result

is a collection of vectors indexed by sense that provide common-sense

knowledge. Such vectors have been employed to tackle a vast variety of

tasks.

3.1.2 Concepts Representation in COVER

The structure of the vectors in COVER is based on 45 relationships

available in ConceptNet2. In order to build this subset we started from

the complete list of ConceptNet relationships and we pruned those

that were either not suitable for our task (e.g., ExternalURL, db-

pedia/language) or extremely specific (e.g., dbpedia/occupation,

dbpedia/genus). The final set includes relationships that describe

2 InstanceOf, RelatedTo, IsA, AtLocation, dbpedia/genre, Synonym, De-
rivedFrom, Causes, UsedFor, MotivatedByGoal, HasSubevent, Antonym,
CapableOf, Desires, CausesDesire, PartOf, HasProperty, HasPrerequisite,
MadeOf, CompoundDerivedFrom, HasFirstSubevent, dbpedia/field, dbpedi-
a/knownFor, dbpedia/influencedBy, dbpedia/influenced, DefinedAs, HasA,
MemberOf, ReceivesAction, SimilarTo, dbpedia/influenced, SymbolOf,
HasContext, NotDesires, ObstructedBy, HasLastSubevent, NotUsedFor,
NotCapableOf, DesireOf, NotHasProperty, CreatedBy, Attribute, En-
tails, LocationOfAction, LocatedNear.
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Exemplar bn :00069619n (school , university , academy)

hasA [period, classroom]

partOf [school system, academia]

isA [establishment, building, educational institution, . . .]
usedFor [pedagogy, degree, learning, education, . . .]
· · ·

Figure 3.1: A portion of the COVER vector for the school concept. For sake
of the readability the sense identifiers filling the dimensions have
been replaced with their corresponding lexicalization.

both relatedness and similarity traits, allowing COVER to be a com-

plete resource that can be tailored to specifically compute semantic

relatedness or similarity. In our evaluation of the resource we did not

however focus on this aspect, but rather tried to establish the quality

of the resource in its entirety.

Each ConceptNet relationship has been mapped to a correspondent

vector dimension in COVER. Each dimension is filled by a set of values

that are concepts themselves, each identified through its BabelSynset

ID, taken from BabelNet. So a concept ci has a vector representation ~ci

that is formally defined as

~ci = [si
1, .., si

N ], (3.1)

where each si
h is the set of concepts filling the dimension dh ∈ D. Each s

can contain an arbitrary number of values, or be empty. As an example,

Figure 3.1 shows the vector representing the concept bn:00069619n

(school).
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3.1.3 Feeding the System: the ClOSeSt Algorithm

One of the key aspects of a resource such as COVER is the amount

of knowledge (concepts) that the resource is able to represent. Since

COVERAGE–the algorithm that generates COVER– takes in input a

sense represented as Babel synset ID and produces a COVER vector

for it, we had to collect a set of terms and associated senses to fed

to the system. Ideally such set could be equivalent to the whole sense

inventory represented in BabelNet, however, it is acknowledged that

too fine-grained semantic distinctions may be unnecessary and even

detrimental in many tasks (Palmer, Babko-Malaya, and Dang, 2004):

for this reason we developed the ClOSeSt algorithm (Lieto, Mensa,

and Radicioni, 2016b), which is employed to obtain the set of senses

that will constitute the input of COVERAGE. Specifically, ClOSeSt

accesses BabelNet and produces more coarse-grained sense inventories,

based on a simple heuristics that builds on the notions of availability

and salience of words and phrases (Vossen and Fellbaum, 2009). In

summary, thanks to ClOSeSt we can detect, given a set of terms, their

most relevant senses and then feed them to COVERAGE.

We start from all of the English nouns from the Corpus of Contem-

porary American English (COCA) (Davies, 2009), which is a corpus

covering different genres, such as spoken, fiction, magazines, newspaper

and academic.3 This set of terms is the input to ClOSeSt: the selection

of the most relevant senses is performed upon the hypothesis that more

central senses are more richly represented in encyclopedic resources. We

3 http://corpus.byu.edu/full-text/.

http://corpus.byu.edu/full-text/
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estimate the centrality of a concept by looking at its generality and

connectivity w.r.t. the others.

The ClOSeSt algorithm works as follows: given an input term t, the

set of senses S = {s1, s2, . . . , sn} that could be possibly associated to t

is retrieved: such set is obtained by directly querying BabelNet. The

final set of relevant senses is then obtained by incrementally filtering S,

via two main strategies:

1. LS-Pruning. Pruning of less salient senses: senses with associ-

ated poor information are eliminated. The salience of a given

sense is determined by inspecting its NASARI unified vector

(Section 2.2.3);

2. OL-Pruning. Pruning of overlapping senses: for each two senses

with significant overlap (a function of the number of features

shared in the corresponding NASARI unified vectors), the less

salient sense is pruned.

In summary, ClOSeSt inspects the NASARI unified vectors of each

candidate sense of a term to determine if it is relevant or not. The

following sections illustrate in detail how the LS-Pruning and OL-

Pruning phases take place.

3.1.3.1 LS-Pruning

The analysis of the set S of candidate senses of t starts by collecting

each NASARI vector ~vts that represents the specific sense s for the

term t. The first pruning strategy is merely based on the size of this

vector: since shorter vectors often refer to peripheral senses, if the vector

size is less then a fixed α quantity, it is pruned. The subsequent pruning

strategy requires the computation of:
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• W(~vts) which indicates the weight of the candidate sense vector

~vts, and is computed as the average of all the weights associated

to its features (i.e., synsets).

• L(~vt) which represents the longest vector among all the candidate

senses for t;

• H(~vt) which represents the heaviest vector in S among all the

candidate senses for t.

The definitions for these measures are illustrated in Equations 3.2–3.4.

L(~vt) = arg max
s∈S

(len(~vts)) (3.2)

W(~vts) =
1

len(~vts)
·∑

j
wsj (3.3)

H(~vt) = arg max
s∈S

(
W(~vts)

)
. (3.4)

The decision on whether to prune or not a vector is based on a simple

criterion: ~vts ∈ S is pruned if both its length is below a given fraction of

the length of the longest one L(~vt), and its weight is lower than a given

fraction of the heaviest one, H(~vt). The parameter settings adopted by

our pruning rules are illustrated in Table 3.1.

Table 3.1: The senses pruning conditions in ClOSeSt.

condition values pruning phase

prune ~vts IF

len(~vts) ≤ α α = 5 LS-Pruning( len(~vts)

L(~vt)
< β

)
AND

( W(~vts)

W(H(~vt))
< γ

)
β, γ = .40 LS-Pruning

Ovl(~vts,~vtu) ≥ δ δ = .20 OL-Pruning

3.1.3.2 OL-Pruning

The second phase of the algorithm aims at the detection of overlapping

senses. We rely once again on NASARI to further prune S. The overlap
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between two vectors Ovl(~vti,~vtj) is computed as a fraction of the length

of the shortest vector between the two considered, as indicated in

Equation 3.5.

Ovl(~vti,~vtj) =
~vti ∩~vtj

len(shortest(~vti,~vtj))
(3.5)

The overlapping is checked for every pair 〈~vi,~vj〉 (with i 6= j), and when

an overlap is detected higher than a fixed threshold (see Table 3.1),

the shortest vector between the two is pruned. The rationale is that

this possibly less relevant sense is already included in (and therefore

represented by) a more relevant sense.

The tuning of the parameters has been performed by manually ex-

amining a substantial amount of cases, however, depending on the

application for which ClOSeSt is used they could be set differently.

Very specific senses could be retained by increasing β and γ, while

the ability to preserve different meaning nuances can be obtained by

augmenting δ. For instance the term time presents 48 senses mostly

representing magazines, movies, songs, and music albums: all of these

senses are presently pruned by ClOSeSt but they could be preserved

for instance in the development of a NER algorithm.

Once the whole ClOSeSt algorithm is applied to each COCA term we

have a set of senses that can be finally used as input to the COVERAGE

algorithm.



38 cover

3.1.4 The COVERAGE Algorithm

Once the ClOSeSt algorithm has determined which senses must be

present in the COVER resource, the corresponding vectors are generated

via the COVER algorithm. The purpose of the COVERAGE algorithm

is to build a COVER vector given as input a certain concept c, provided

as Babel synset ID. The algorithm consists of two main steps:

1. Semantic Extraction:

- Extraction: all nodes representing any lexicalization of c in

ConceptNet are retrieved and all the relevant terms connected

to such nodes are triggered and placed in the set of extracted

relevant terms T (more about relevance criteria later on).

- Concept Identification: all terms t ∈ T are disambiguated

into their corresponding Babel synset ID; this step amounts

to translating T into the set of relevant extracted concepts

C.

2. Vector Injection: each concept ci ∈ C is injected into its vector

representation~c by exploiting the relationship formerly connecting

ci to c in ConceptNet.

Figure 3.2 illustrates the general outline of COVERAGE. In the fol-

lowing section we will explore the algorithm in depth by following its

execution upon the concept c = bn:00035902n, that is Fork intended

as “the utensil used for eating or serving food”.



3.1 building cover 39

c1
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c3
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c6
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relevant concepts

Concept c

Input
- Extraction: retrieve relevant terms 
from ConceptNet.

- Concept Identification: raise the ex‐
tracted terms to a semantic level 
and thus obtaining relevant con‐
cepts.

Semantic Extraction

Each extracted concept is injected 
inside the vector for the concept c.

Vector Injection

Vector of c

usedFor

atLocation

relatedTo

isA c6, c2, …

c1, c3, …

…

c5

c4, c7, …

c7

…

Figure 3.2: The outline of the COVERAGE algorithm.

3.1.4.1 Semantic Extraction

Purpose of this first portion of the algorithm is to collect the set C of

relevant concepts associated to the input concept c, which will constitute

the content of the final vector ~c.

We start by straightforwardly retrieving the NASARI (unified) vector

associated to c, which is naturally indexed as bn:00035902n. This vector

will serve as the semantic root upon which the entire process revolves.

We then access all ConceptNet nodes that could potentially represent

the concept, and specifically we retrieve those that represent one of c

lexicalizations (which are obtainable via BabelNet). In our Fork case, we

look for the nodes Fork, King of utensils, Pickle fork, Fish fork, Dinner

fork, Chip fork and Beef fork in ConceptNet. All of the connections

starting from these nodes are then put together and examined: as

explained in Section 2.1, the lack of a semantic level in ConceptNet

requires to filter out the inappropriate connections. In other words, since
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Fork

software

table
metal

eat

chess

tool

waterway

Figure 3.3: Each term connected to the ConceptNet node Fork is inspected to
determine whether it is relevant (dotted contour) or not (dashed
contour) for the sense conveyed by the input concept c. While the
dotted nodes are relevant because they are referring to Fork as
the “kitchen utensil” —that is, the sense of c—, the dashed ones
refer to Fork as the system call for creating processes (software
node), as the chess move (chess node), or as the bifurcation of a
watercourse (waterway node).

we have retrieved nodes based on c lexicalizations, we have extracted

connections (or equivalently terms) that refer to those lexicalizations

in any of their meanings and not only the meaning conveyed by c. To

determine if an extracted term t is relevant for c or not, we developed

the following criteria:

Definition 3.1.1 (Relevance Criteria). An extracted term t is consid-

ered relevant for the concept c if either: i) t is included in at least one

of the synsets listed in the NASARI vector representation for c; or ii)

at least β nodes directly connected to t in ConceptNet can be found in

the synsets that are part of the NASARI vector representation for c.

Figure 3.3 illustrates the Fork node in ConceptNet and its relevant/non

relevant connected nodes. The rationale underlying the relevance criteria

is explained by the fact that since the NASARI unified vector of c

contains concepts (along with their lexicalizations) semantically close

to c, the presence of t (first condition) or β terms from its ConceptNet
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neighborhood (second condition) in such vector guarantees that t is

somehow related to c, and it can be thus considered as relevant.

Once the relevance detection is performed, all the relevant terms

extracted from all the ConceptNet nodes that we previously collected

are put together in the set T. In the Fork example, the resulting set is:

T = {plate, tool, food, utensil, silverware, table, metal knife, spoon, eat}

(3.6)

Once the set T of relevant terms is built, each of the terms has to be

disambiguated by assigning a Babel synset ID to it. Such process is

performed during the Concept Identification step. The behavior of the

Concept Identification step depends on how a term t ∈ T has been

detected as relevant. More precisely, if t was detected relevant via the

first condition, it must appear inside the NASARI unified vector of

c, and so we can directly retrieve its Babel synset ID. On the other

hand, if t was recognized as relevant via the second condition its Babel

synset ID cannot be directly obtained. In such case, all of the possible

candidate senses of t are collected via BabelNet; for each candidate we

then access its NASARIE vector and we compute its cosine similarity

w.r.t. the NASARIE vector of c: the sense with the smaller distance is

selected. A threshold system is also put in place, so, the similarity of

the close candidate must surpass a fixed quantity. Figure 3.4 illustrates

this process for the Fork example.

Once the Concept Identification is completed, the term t is enriched

with its Babel synset ID and included in the set of the relevant extracted

concepts C.
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Figure 3.4: The similarity between NASARIE candidate vectors and the vector
of Fork (bn:00035902n) is computed. The highlighted vector is
selected since its similarity with the Fork vector obtained the
highest score (and it surpasses the required threshold).

For the experimentation illustrated in Section 3.2, the β parameter

and the similarity threshold are set to 2 and 0.6 respectively. The

tuning of these parameters has been performed by examining both the

ConceptNet neighborhood and the disambiguated senses returned by

the system on a set of randomly chosen samples. We prioritized the

correctness over the completeness of the extracted concepts, so we set

rather restrictive parameters.

3.1.4.2 Vector Injection

The second and last phase of the COVERAGE system consists in

injecting the values of C inside the empty structure of a COVER vector,

thus obtaining ~c, the populated vector for c. Since each concept ci ∈ C

has been extracted from ConceptNet, we still have access to the relation-

ship that was connecting it to one of the lexicalizations of c (extraction

step). Thanks to the fact that the COVER vectors dimensions are

basically a selection of ConceptNet relationships (Section 3.1.2), the

Vector Injection amounts to coherently place inside ~c each ci ∈ C into

the dimension corresponding to the relationship that was linking ci to c

in ConceptNet. Figure 3.4 illustrates the Vector Injection for the Fork

example.
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atLocation

isA

usedFor

madeOf

relatedTotool, food, utensil, cutlery, eating

tool, cutlery, utensil

table, desk, plate

eating

metal

bn:00075814n

bn:00079388n

bn:00024649n

bn:00049322n

bn:00077585n 

bn:00054550n
bn:00073547n

bn:00029546n

bn:00035650n
bn:00062878n 

Figure 3.5: All the concepts in C are injected into the vector for Fork. The
concepts identifiers in the vector have been replaced with their
lexicalization in order to make the image human readable.

The next section will present some general figures regarding the data

fed to COVERAGE and the resulting set of vectors which is COVER.

3.1.5 COVER Statistics

We now present some figures and statistics regarding the computation of

COVERAGE, including the size of the lexical base taken as input, some

numbers on retrieved (and discarded) concepts, and a final quantitative

description of the amount of information finally encoded in COVER.

input. The concepts fed to COVER were obtained by executing

the ClOSeSt algorithm upon the nouns of Corpus of Contemporary

American English. In detail, ClOSeSt took 27, 006 terms in input,

and returned 40, 816 concepts in output, meaning that we obtained

on average 1.5 senses for each term. These concepts were then fed to

the COVERAGE system. It is important to note that this selection

of senses does not affect the content of the single vectors but rather

the final amount of representations contained in the resource. For this

reason we selected COCA, which is a large and general corpus of terms.
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Before executing the system, we furtherly pruned the set of concepts by

removing duplicated concepts (8, 867) or concepts for which we could not

find a NASARI vector (112). The remaining 31, 837 concepts constitute

the input of COVERAGE. The size of the resources employed all

throughout this process is reported in Table 3.2.

Table 3.2: Information contained in NASARI and ConceptNet, and used as
the starting point to build COVER.

Resource Size

NASARI/NASARIE vectors 2,868,176

ConceptNet assertions 4,227,874

ConceptNet nodes 859,932

semantic extraction. During the Semantic Extraction phase,

a total of 4, 324, 971 terms were extracted from ConceptNet (on average,

135.85 per input concept), but only 42.9% of them (overall 1, 856, 888)

were found relevant, resulting in an average cardinality of T for each

input of 58.32. The disambiguation performed during the Concept

Identification was successful for the 32.61% of the relevant terms, thereby

resulting in a total of 605, 450 extracted relevant concepts (the average

cardinality of the bag of concepts C was then 19.02). We note that

roughly two thirds of the concept identification failures were due to the

violation of the concept similarity threshold. This threshold is indeed

a very sensitive parameter that allows for the tuning of the amount

of noise (vs. completeness) featuring the resource: e.g., by setting the

similarity threshold to 0.5 instead of 0.6, the average cardinality of C

raises to 25.86 (which directly compares with the actual value, 19.02).
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vector injection. All of the concepts in C were used dur-

ing the Vector Injection phase, since COVERAGE only loads the

ConceptNet relationships that are already included in the COVER

schema. Therefore, the resulting average number of values per concept

corresponds to the average cardinality of C (19.02). This figure was

then increased by adding the first 5 elements contained in the NASARI

vector for the input concept in its RelatedTo dimension, bringing the

average population of the vectors to 23.97. More precisely, half vectors

contain 5 to 20 values, while only 0.5% vectors are filled by less than

five values.

dimensions. The most populated dimensions are RelatedTo,

Synonym, IsA, HasContext, Antonym, FormOf and Derived-

From: this distribution closely approaches the distribution of informa-

tion contained in ConceptNet (Table 3.3).

failure cases. The COVERAGE system obtained an empty

set C for 4, 786 concepts out of the 31, 837 provided as input. In such

cases, the resulting vectors for such concepts contain exclusively values

that were automatically taken from NASARI and injected into the

RelatedTo dimension. More in detail, in most failure cases (namely,

4, 570) the system either could not detect any extracted relevant term,

or it could not disambiguate any of the extracted terms. For instance,

the input recantation produced only recall as extracted term. However,

the similarity between these two concepts was under the threshold β,

therefore, recall couldn’t be accepted and the C set for recantation

resulted empty. In the remaining 216 cases, it was not possible to find
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Table 3.3: The 15 most populated dimensions in ConceptNet 5.5.0.

Relationship Number of associations % of associations

RelatedTo 1,449,431 51.25%

FormOf 273,560 09.67%

IsA 247,387 08.75%

Synonym 237,772 08.41%

HasContext 177,677 06.28%

DerivedFrom 116,243 04.11%

UsedFor 42,443 01.50%

SimilarTo 29,480 01.04%

AtLocation 28,960 01.02%

CapableOf 26,354 00.93%

HasSubevent 25,896 00.92%

HasPrerequisite 23,493 00.83%

EtymologicallyRelatedTo 20,723 00.73%

Antonym 19,967 00.71%

Causes 17,088 00.60%

a ConceptNet node for the input concept. We observed that the vast

majority of this concepts contained a dash (e.g., tete-a-tete, god-man,

choo-choo). A further improvement would consist in the removal of such

dashes in order to detect a suitable ConceptNet node for this kind of

inputs.

The download link for COVER can be found in Appendix B.

3.2 evaluating cover

The main evaluation of COVER has been carried out on the word and

concept similarity task, introduced in Section 2.3. To these ends we

designed the MeRaLi system, which computes semantic similarity at

both sense and word level by specifically relying on COVER. MeRaLi

was originally presented in the frame of the Sem-Eval 2017 campaign
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on Multilingual and Cross-lingual Semantic Word Similarity (Mensa,

Radicioni, and Lieto, 2017a); the experimentation was then extended

by employing an updated version of COVER.

In this section we first illustrate the similarity metrics implemented

by the MeRaLi system; we then introduce the data sets used for testing,

and provide the results along with their discussion.

3.2.1 The Similarity Measure

As previously mentioned, the concept similarity task consists in the

estimation of a similarity score between two given concepts.

When using COVER, the task can be actually cast to a vector-

comparison problem under the rationale that the two vectors represent-

ing the input concepts (as depicted in Equation 3.1) are similar pro-

portionally to the amount of information that they share. For instance,

two objects that share the same material (MadeOf), use (UsedFor)

and location (LocatedAt) are probably very similar.

In detail, given two input concepts ci and cj, after the retrieval of the

corresponding COVER vectors ~ci and ~cj, we compute their similarity

by computing, dimension by dimension, the set of shared values between

~ci and ~cj. Then, the similarity score obtained over each dimension is

combined by obtaining an overall similarity score, that is our final

output. So, given N dimensions in each vector, the similarity value,

sim(~ci,~cj), should be ideally computed as:

sim(~ci,~cj) =
1
N

N

∑
k=1
|si

k ∩ sj
k|, (3.7)
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where si
k represents the set of values assigned to the dimension k for

the i vector. However, this formulation resulted to be too näıve. In fact,

the information available in COVER is not evenly distributed, that

is, it may happen that a given dimension is filled with many values

(concepts) in the description of a given concept, but the same dimension

may be empty in the description of another one. It was hence necessary

to refine the above formula to tune the balance between the amount

of information available for the concepts at stake: i) at the individual

dimension level, to balance the number of concepts that characterize

the different dimensions; and ii) across dimensions, to prevent the

computation from being biased by more richly defined concepts (i.e.,

those with more dimensions filled). Both desiderata are satisfied by the

Symmetrical Tversky’s Ratio Model (Jimenez et al., 2013) (which is

a symmetrical reformulation for the Tversky’s ratio model (Tversky,

1977)),

sim(~ci,~cj) =
1

N∗
·

N∗

∑
k=1

|si
k ∩ sj

k|
β (αa + (1− α) b) + |si

k ∩ sj
k|

(3.8)

where |si
k ∩ sj

k| counts the number of shared concepts that are used as

fillers for the dimension dk in the concept ~ci and ~cj, respectively; a and

b are defined as

a = min(|si
k − sj

k|, |s
j
k − si

k|),

b = max(|si
k − sj

k|, |s
j
k − si

k|);

while N∗ counts the dimensions actually filled with at least two con-

cepts in both vectors. This formula allows tuning the balance between
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cardinality differences (through the parameter α), and between |si
k ∩ sj

k|

and |si
k − sj

k|, |s
j
k − si

k| (through the parameter β).4

Finally, when dealing with the word similarity task rather then the

conceptual similarity, the disambiguation can be performed by exploiting

the max-similarity approach (Equation 2.2), implemented by using the

Symmetrical Tversky’s Ratio Model as the sim function.

3.2.2 Experimental Setting and Procedure

data sets. The performance of the MeRaLi system has been

assessed over four standard data sets. We considered three data sets for

conceptual similarity at the sense level,5 namely the RG (Rubenstein and

Goodenough, 1965), MC (Miller and Charles, 1991) and WS-Sim data

set, which was first designed for conceptual relatedness in (Finkelstein et

al., 2001) and then partially annotated with similarity judgments (Agirre

et al., 2009). Additionally, we considered a fourth dataset released in the

frame of the SemEval-2017 campaign on Multilingual and Cross-lingual

Semantic Word Similarity, and concerned with the computation of the

conceptual similarity at the word level (Camacho-Collados, Pilehvar,

Collier, et al., 2017a).

More in detail, the MC data set actually contains 28 pairs, that are

a subset of the RG data set, containing 65 sense pairs. The WS-Sim

data set is composed of 97 sense pairs, and the Sem-Eval 2017 data set

consists of 500 word pairs. The last data set is the most challenging, since

4 The parameters α and β were set to 0.8 and 0.2 for the experimentation. The tuning
has been performed by looking at the result obtained with different combinations of
α and β on the SemEval dataset.

5 Publicly available at the URL http://www.seas.upenn.edu/~hansens/

conceptSim/.

http://www.seas.upenn.edu/~hansens/conceptSim/
http://www.seas.upenn.edu/~hansens/conceptSim/
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it hosts word pairs involving entities. It is challenging also for human

common sense in many ways, since it includes pairs such as 〈Si-o-seh

pol, Mathematical Bridge〉 and 〈Mount Everest, Chomolungma〉.

evaluation metrics. The quality of the scores provided in

output by the MeRaLi system have been assessed through Pearson’s

r and Spearman’s ρ correlations, that are usually adopted for the

conceptual similarity task. The Pearson r value captures the linear

correlation of two variables as their covariance divided by the product

of their standard deviations, thus basically allowing to grasp differences

in their values, whilst the Spearman ρ correlation is computed as

the Pearson correlation between the rank values of the considered

variables, so it is reputed to be best suited to assess results in a similarity

ranking setting where relative scores are relevant (Pilehvar and Navigli,

2015; Hansen Andrew Schwartz and Gomez, 2011). Furthermore, we

recorded the output of two runs of the MeRaLi system: in the first

we only considered pairs where the system had enough information on

both concepts involved in the comparison (named selected data in the

following), whilst in the second one we also considered cases where no

sufficient information was available in COVER for at least one of the

concepts at hand (full data in the following). In the selected data run

we only retain those pairs for which a vector description was found in

COVER, and at least two shared dimensions were found to be filled.

Satisfying all these constraints is, in our opinion, necessary in order to

be able to justify on which bases two concepts are deemed similar or

not. Table 3.4 shows the percentage of dropped pairs in each data set

in the selected data condition. Conversely, in the full data condition we
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Table 3.4: Percentage of dropped pairs for the selected data run of the MeRaLi
system.

Dataset Dropped pairs

MC 17%

RG 15%

WS-Sim 12%

SemEval2017 9%

Table 3.5: Spearman (ρ) and Pearson (r) correlations obtained over the four
datasets.

System
RG MC WS-Sim SemEval 2017

ρ r ρ r ρ r ρ r

COVER (selected data) 0.82 0.88 0.89 0.91 0.69 0.70 0.68 0.67
COVER (full data) 0.76 0.81 0.74 0.79 0.61 0.60 0.65 0.63
NASARIembed

1 0.88 0.91 0.83 0.91 0.68 0.68 0.68 0.68
ADW 2 0.92 0.91 - - 0.75 0.72 - -

PPR 3 0.83 - 0.92 - - - - -

ConceptNet Numberbatch 4 - - - - 0.83 - - -

Luminoso 5 - - - - - - 0.72 0.74

word2vec 6 0.84 0.83 - - 0.78 0.76 - -

1 (Camacho-Collados, Pilehvar, Collier, et al., 2017a; Camacho-Collados, Pilehvar, and Navigli, 2015b, 2016)
2 (Pilehvar and Navigli, 2015)
3 (Agirre et al., 2009)
4 (Robyn Speer, Chin, and Havasi, 2017)
5 (Robyn and Lowry-Duda, 2017)
6 (Mikolov, K. Chen, et al., 2013)

considered all pairs. In particular, for pairs lacking at least one vector

representation, or where less than two shared dimensions were filled, we

assign a default similarity score of half the maximum of the similarity

range. The rationale underlying these two runs is to try to fully assess

the COVER resource, by also investigating to what extent the available

information is helpful to conceptual similarity, irrespective of its current

coverage.
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3.2.3 Results and Discussion

Table 3.5 illustrates the results obtained by the MeRaLi system in

the experimentation. Compared to the selected data run, the strongest

competitors in literature obtained 10% higher ρ correlation on the RG

data set (Pilehvar and Navigli, 2015) (3% on the MC data set (Agirre

et al., 2009)); 14% on the WS-Sim data set (Robyn Speer, Chin, and

Havasi, 2017). The distance from state of the art figures is reduced when

testing on the SemEval 2017 data set, where we obtained a ρ correlation

4% lower than the Luminoso system (Robyn and Lowry-Duda, 2017).

If we consider the full data run, our results are some points lower, with

minimum (3%) loss w.r.t. the selected data run on the SemEval data

set.

In order to discuss our results, we focus on the SemEval dataset, that

is by far more complete (with 500 word pairs) and varied with respect

to the other ones. In fact, it contains named entities and multiword

expressions, and covers a wide range of domains.6

One major concern is the amount of missing information: as reported

in Table 3.4, almost 10% of word pairs were dropped, as either lacking

from COVER or due to the lack of shared information, which prevented

us from computing the similarity. Missing concepts may be lacking in (at

least one of) the resources upon which the COVER is built: including

further resources may thus be helpful to overcome this limitation. Also,

integrating further resources in COVER would be beneficial to add

further concepts per dimension, and to fill more dimensions, so to

expand the set of comparisons allowed by the resource.

6 Namely, the 34 domains available in BabelDomains, http://lcl.uniroma1.it/

babeldomains/.

http://lcl.uniroma1.it/babeldomains/
http://lcl.uniroma1.it/babeldomains/
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Table 3.6: Spearman (ρ) and Pearson (r) correlations (and their harmonic
mean) obtained by the MeRaLi system over the three subsets in
the full data and selected data variants.

full data # pairs ρ r harm.mean

entire data 500 0.65 0.63 0.64

entity-concept 50 0.51 0.45 0.48
entity-entity 50 0.54 0.60 0.57
concept-concept 400 0.67 0.66 0.67

selected data # pairs ρ r harm.mean

entire data 452 0.68 0.67 0.67

entity-concept 36 0.61 0.60 0.60
entity-entity 31 0.70 0.75 0.72
concept-concept 385 0.68 0.67 0.67

A discussion of our results on this data set also involves a thorough

analysis of the data set itself. The terms in the data set can be naturally

arranged into three main classes, involving respectively concept-concept

comparisons (400 word pairs), entity-entity comparisons (50 word pairs),

and entity-concept pairs (50 word pairs).

So we have re-run the statistical tests to dissect our results according

to the three individuated partitions of the data set; the partial results

are reported in Table 3.6.

entity-concept pairs. Comparisons involving a concept and

an entity are somehow different from those involving only concepts.

We individuated two further sub-classes: the pairs where the entity is

instance of (that is, in relation InstanceOf with) the class indicated

by the concept (e.g., ‘Gauss-scientist’, ‘Harry Potter-wizard’, ‘NATO-

alliance’, etc.), and cases where the relations intervening between the

two words at stake are not more specific than a general relatedness
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(e.g., ‘Joule-spacecraft’, ‘Woody Allen-lens’, ‘islamophobia-ISIS’, etc.).

We then reran the MeRaLi system on the 50 entity-concept pairs

(36 pairs in the selected data variant), and obtained overall 0.51 ρ

correlation (thus significantly lower, than the general figures reported

in Table 3.5). This datum can be complemented by comparing it with

the corresponding result in the selected data variant: in this case, we

obtained 0.61 ρ correlation. Interestingly enough, by focusing on the

subset of elements linked by the InstanceOf relationship, we achieved

a 0.79 ρ correlation.

These results raise a question. Provided that the InstanceOf rela-

tionship is at the base of semantic similarity, COVER is appropriate

to unveil semantic similarity for such pairs. However, in the remainder

of the entity-concept pairs, the correlation with human judgments is

still low. Even more, when the word pairs are not featured by the

InstanceOf relationship, it is not simple to understand which sort of

comparison is actually being carried out. From a cognitive perspective,

it is difficult to follow the strategy adopted by human annotators in pro-

viding a similarity score for pairs such as ‘Zara-leggings’ (gold standard

similarity judgment: 1.67 in a 0-4 scale, where 0 is dissimilar and 4 is the

identity). In our approach, to assess the similarity between two elements

entails individuating under which aspects they can be compared; it

means to individuate a set of common properties and relations whose

values can be directly compared. This explains that directly comparing

a manufacturer and a product is nearly unfeasible, since their features

can be hardly compared. In this case it is easy to grasp that the lack of

shared (filled) dimensions between the entities may have determined

many dropped pairs. Justifying the answer is perhaps helpful to give
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some information on the argumentative paths that can be possibly

followed to assess semantic similarity. One major risk, in these respects,

is that instead of similarity, the scores provided by human annotators

rather refer to generic relatedness, which is generally acknowledged as a

relation broader than similarity as illustrated in Section 2.3.2. Similar

arguments also apply to meronyms. Let us consider, e.g., the pair ‘tail-

Boeing 747’ (gold standard similarity judgment: 1.92): although each

Boeing 747 has a tail, the whole plane (holonym) cannot be conceptually

similar to its tail (meronym), in the same way a car is not similar to

one of its wheels.

entity-entity pairs. As regards as the entity pairs, in the

selected data experiment we obtained figures about 15% higher than

in the full data condition: this is mainly due to the fact that some

of the entities were not present in COVER (namely 31 pairs were

used in the selected data condition vs. the 50 pairs in the full data

condition). Conversely, the 70% agreement with human annotation is

overall a reasonable performance, supporting the appropriateness of

COVER. The absence of entities from COVER is easily explained:

if either ConceptNet or BabelNet does not contain an element, then

this is not present in COVER, that only hosts items that are present

in both resources. In order to escape such limitation, next versions of

COVER will contain information harvested also from further resources.

The rate of agreement obtained experimenting with this subset of

data closely approaches — limited to the selected data setting — the

outstanding results obtained by the Luminoso team at the SemEval

2017 contest (Robyn and Lowry-Duda, 2017), and additionally benefits
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from the explanatory power allowed by the knowledge representation

adopted in COVER.

concept-concept pairs. This is the principal class in the

data set, counting 80% of word pairs in the full data, and 96% in the

selected data. Although also items in this class pose some questions

about the concepts at stake (such as comparisons between abstract

and concrete entities like the pairs ‘coin-payment’, ‘pencil-story’ and

‘glacier-global warming’), our results over this subclass of data are by far

less sensitive to the filtering performed in the selected data experiment

(as it is illustrated in Table 3.6, the results of the MeRaLi system differ

about 1% between the two settings). We interpret this result as one

corroborating the claim that COVER is mature enough to ensure a

reasonable coverage to compute conceptual similarity.

3.2.4 Explaining Similarity: a COVER Speciality

One of the most interesting perks of COVER consists in its ability to

not only compute the similarity scores, but also to natively provide an

explanation for them. Such feature is particularly interesting since often

the score of similarity provided by a system can seem like an obscure

number. It is difficult to demonstrate on which accounts two concepts are

similar, especially if the score computation relies on complex networks or

synthesised representations. However, thanks to the fact that COVER

vectors contain explicit and human-readable knowledge, the explanation

of the score is in this case allowed. Specifically, the COVER vectors

adopted by the MeRaLi system provide human-readable features that
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Figure 3.6: Log of the comparison between the concepts atmosphere and ozone
in MeRaLi. The ‘V1-V2 count’ column reports the number of
concepts for a certain dimension in the first and second vector,
respectively; the column ‘Shared’ indicates how many concepts
are shared in the two conceptual descriptions along the same
dimension; and the column ‘Values’ illustrates (the nominalization
of) the concepts actually shared along that dimension.

are compared in order to obtain a similarity score. The explanation

for this score can thus be obtained by simply reporting which values

were a match in the two compared vectors. Ultimately, a simple Natural

Language Generation approach has been devised on top of the score

computation: a linguistic template is filled with the features in common

between the two vectors, dimension by dimension. For instance, given

the comparison between atmosphere and ozone in Figure 3.6 we can

directly obtain the explanation:

The similarity between atmosphere and ozone is 2.52 because they

are gas; they share the same context chemistry; they are re-
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The similarity between lizard and crocodile is 1.99 because

- they Are reptile;

- they are RelatedTo reptile, Caiman, fauna, diapsid.

The similarity between Harry Potter and wizard is 2.50 because

- they are RelatedTo spell, magic, magician, wand.

The similarity between beach and coast is 2.79 because

- they Are shore;

- they are semantically SimilarTo shore, formation;

- they are RelatedTo shore, coast, weather, seaboard, island, shell,

wave.

The similarity between sodium chloride and salt is 3.56 because

- they are MadeOf sodium_chloride, ion, crystal;

- they can be found AtLocation Shaker_(laboratory), seawater, water,

nutrient, mine, salt_mine;

- they Are binary_compound, taste, chemical_compound, Ionic_compound,

spice, crystal, sodium_chloride, seasoning, inorganic_compound;

- they are UsedFor seasoning, nutrient;

- they share the same Context chemistry, inorganic_compound;

- they are SemanticallyOpposite of carbohydrate,

Swedish_ethyl_acetate_method, vinegar;

- they are partOf seawater, sea;

- they are SimilarTo Sharp_(flour);

- they are SemanticallySimilarTo saltiness, sodium_chloride, salinity,

salt;

- they are RelatedTo magnesium_lactate, Mevalonic_acid, cholic_acid,

sulfate, halobacterium, benzoate, sulfonate, monosodium_glutamate,

Glutaric_acid;

- they are DerivedFrom salinity, sodium, chloride, sodium_carbonate.

Figure 3.7: Some examples of the explanations that can be generated with the
COVER resource.

lated to stratosphere, air, atmosphere, layer, ozone, atmosphere,

oxygen, gas.

by simply extracting the shared values among the two considered vectors.

Other examples of explanations built following this approach can be

found in Figure 3.7.

3.2.4.1 Experimentation

We also performed a pilot experimentation in order to evaluate the

produced explanations (Colla, Mensa, Radicioni, and Lieto, 2018). In
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Table 3.7: The pairs of terms employed in each questionnaire, referred to as
Q1-Q4.

Q1 Q2

desert, dune
palace, skyscraper
mojito, mohito
city center, bus
beach, coast
videogame, pc game
medal, trainers
butterfly, rose
Wall Street, financial market
Apple, iPhone

lizard, crocodile
sculpture, statue
window, roof
agriculture, plant
flute, music
demon, angel
income, quality of life
underwear, body
Boeing, plane

Caesar, Julius Caesar

Q3 Q4

basilica, mosaic
snowboard, skiing
pesticide, pest
level, score
snow, ice
myth, satire
sodium chloride, salt
coach, player
Zara, leggings
Cold War, Soviet Union

car, bicycle
democracy, monarchy
pointer, slide
flag, pole
lamp, genie
digit, number
coin, payment
surfing, water sport
Harry Potter, wizard
Mercury, Jupiter

particular, we were interested in looking at the content provided as

explanation rather than their linguistic realisation, which we kept very

basic at this stage.

experimental setting. The experiment was built by selecting

40 random pairs from the ‘SemEval-2017 Task 2’ dataset, the same

adopted in the previous evaluation7 (Table 3.7). Such pairs have been

arranged into 4 questionnaires, that were administered to 33 volunteers,

aged from 20 to 23. All recruited subjects were students from the

Computer Science Department of the University of Turin (Italy); none

of them was an English native speaker.

Questionnaires were split into 3 main sections:

7 Actually the pair 〈mojito,mohito〉 was dropped in that ‘mojito’ was not recognised
as a morphological variant of ‘mohito’ by most participants.
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• in the task 1 we asked the participants to assign a similarity score

to 10 term pairs (in this setting, scores are continuous in the

range [0, 4], as it is customary in the international shared tasks on

conceptual similarity Camacho-Collados, Pilehvar, Collier, et al.,

2017a);

• in the task 2 we asked them to explain in how far the two terms

at stake were similar, and then to indicate a new similarity score

(either the same or different) to the same 10 pairs as above;

• in the task 3 the subjects were given the automatically computed

score along with the explanation built by our system. They were

requested to evaluate the explanation by expressing a score in

a [0, 10] Likert scale, and also to provide some comments on

missing/wrong arguments, collected as open text comments.

Each volunteer compiled one questionnaire (containing 10 term pairs),

which on average took 20 minutes.

results and discussion. The focus of the experimentation

was the assessment of the quality of the automatically computed ex-

planations (task 3): MeRaLi’s explanations obtained, on average, the

score of 6.62 (standard deviation: 1.92). Our explanations and the scores

computed automatically have been overall judged to be reasonable.

By examining the 18 pairs that obtained an averaged poor score

(≤ 6), we observe that either few information was available, or it was

basically wrong. In the first case, we counted 12 pairs with only one or

two shared concepts: almost always these explanations were evaluated

with low scores (on average, 4.48). We found only one notable exception

about the pair 〈Boeing, plane〉 whose explanation was
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The similarity between Boeing and plane is 2.53 because they

are related to airplane, aircraft.

This explanation obtained an average score of 8.63. We hypothesise

that this greater appreciation is due to the fact that even if only two

justifications are provided, they match the most salient (based on

common-sense accounts) traits between the two considered concepts.

It would seem thus that the quality of a brief explanation heavily

depends on the presence of those particular and meaningful traits.

In the remaining 6 pairs, vice versa, there is enough though wrong

information, possibly due to the selection of the wrong meaning for

input terms. In either cases, we observe that the resource still needs

being improved for what pertains its coverage and the quality of the

hosted information (since it is automatically built by starting from

BabelNet, it contains all noise therein).

The first and second task in the questionnaire can be thought of as

providing evidence to support the result in the third one. In particular,

the judgements provided by the volunteers closely approach the scores

in the gold standard, as it is shown by the high (over 80%) Spearman’s

(ρ) and Person’s (r) correlations (Table 3.8). The first two rows show the

average agreement between the scores before producing an explanation

for the score itself (Gold - avg scores (task 1)), and after providing

an explanation (Gold - avg scores (task 2)). These figures show that

even human judgement can benefit from producing explanations, as the

scores in task 2 showcase a higher correlation with the gold standard

scores. Additionally, the output of the system exhibits a limited though

significantly higher correlation with the similarity scores provided after
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Table 3.8: Correlation between the similarity scores provided by the subjects
interviewed and the scores in the Gold standard. The bottom row
shows the correlations between the scores gold standard and the
scores computed by our system

Spearman’s ρ Person’s r

Gold - avg scores (task 1) 0.83 0.82

Gold - avg scores (task 2) 0.85 0.83

COVER - avg scores (task 1) 0.71 0.72

COVER - avg scores (task 2) 0.72 0.73

Gold - COVER 0.79 0.78

trying to explain the scores themselves (COVER - avg scores (task 1)

condition vs. COVER - avg scores (task 2)).

In order to further assess our results we also performed a qualita-

tive analysis on some spot cases. For the pair 〈Mercury, Jupiter〉 the

MeRaLi system computed a semantic similarity score of 2.29 (the

gold standard score was 3.17), while the average score indicated by the

participants was 3.43 (task 1) and 3.29 (task 2). First of all, this datum

corroborates our approach that computes the similarity between the

closest possible senses (please refer to Equation 2.2): it never happened

that any participant raised doubts on the meaning of Mercury (always

intended as the planet), whilst Mercury can be also a metallic chemical

element, a Roman god, the Marvel character who can turn herself into

mercury, and several further entities.

The open text comments report explanations such as that Mercury and

Jupiter are ‘both planets, though different’. In this case, the participants

acknowledge that the two entities at stake are planets but rather different

(e.g., the first one is the smallest planet in the Solar System, whilst the

second one is the largest). The explanation provided by our system is:

The similarity between Mercury and Jupiter is 2.29 because they

are planet; they share the same context deity; they are seman-
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tically similar to planet; they are related to planet, Roman_deity,

Jupiter, deity, solar_System.

In this case, our explanation received an average score of 9.57 out of 10.

Interestingly enough, even though the participants indicated different

similarity scores, they assigned a high quality score to our explanation,

thus showing that it is basically reasonable.

As a second example we look at the pair 〈myth, satire〉. The similarity

score and the related explanation of such terms are:

The similarity between myth and satire is 0.46 because they are

aggregation, cosmos, cognitive_content; they are semantical-

ly similar to message; they form aggregation, division, mes-

sage, cosmos, cognitive_content.

In this case, the gold standard similarity value was 1.92, the average

scores provided by the participants 1.57 (task 1) and 1.71 (task 2).

Clearly, the explanation was not satisfactory, and it was rated 4.49 out

of 10. The participants gave no clear explanation about their judgement

(in task 2) nor informative comments/criticisms on the explanation

above (in task 3). One possible reason behind the poor assessment might

be found in the interpretation of the satire term. If we consider satire as

the ancient literary genre where characters are ridiculed, the explanation

becomes more coherent: they are forms of aggregation as it was for

any sort of narrative in the ancient (mostly Latin) culture; they also

both deliver some message, either explaining some natural or social

phenomenon and typically involving supernatural beings (like myth),

or criticising people’s vices, particularly in the context of contemporary

politics (like satire). This possible meaning has been considered only by

2 out of 8 participants, that mostly intended satire as a generic ironic

sort of text. Even in this case, whilst the output of MeRaLi was rather
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unclear and questionable, the explanation shows some sort of coherence,

although not immediately sensible for human judgement. In such cases,

by resorting to an inverse engineering approach, the explanation can

be used to figure out which senses (underlying the terms at hand) are

actually intended.

3.3 using cover

Besides the word and concept similarity, COVER has been successfully

employed in different tasks such as conceptual categorisation, keyword

extraction and abstractness extraction. In the following section we will

illustrate how COVER has been used as a key component to deal with

this tasks.

3.3.1 COVER and Conceptual Categorization

A smaller and more specific version of COVER has been plugged into

the Dual-PECCS system, a system devised to perform the conceptual

categorization task by adopting an hybrid reasoning approach (Lieto,

Minieri, et al., 2015; Lieto, Radicioni, and Rho, 2015, 2017; Lieto, Radi-

cioni, Rho, and Mensa, 2017). The Dual-PECCS knowledge base puts

together both vector representations and formal ontologies for the same

conceptual entities (Figure 3.8): such information is then exploited by an

hybrid reasoning algorithm that allows the resolution of simple riddles

such as ‘The animal that eats bananas’ and ‘The big mammal that eats

plankton‘. This system implements the dual process theory of reasoning

and rationality which states that two different types of cognitive sys-
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— Hybrid Knowledge Base — 

Typicality-based 
knowledge

Classical 
knowledge

family: mammal
color: brown
hasPart: tail
hasPart: four legs
atLocation: home 
…

Prototypical dog

Prototype
(region centroid in CS)

family: mammal
color: white & brown
hasPart: tail
hasPart: four legs
atLocation: lawn 
…

Lessie

family: mammal
color: brown & black
hasPart: tail
hasPart: four legs
atLocation: home 
…

Scooby-Doo

…

Exemplars
(region points in CS)

kingdom: animalia
phylum: chordata
class: mammalia
order: carnivora
genus: canis 
…

dog

Ontological 
information

Concept dog

Figure 3.8: Heterogeneous representation of the dog concept in the hybrid
knowledge base of Dual-PECCS.

tems can coexist (Evans and Frankish, 2009; Kahneman, 2011). In this

view, the systems of the first type (type 1 ) are phylogenetically older,

unconscious, automatic, associative, parallel and fast. The systems of

the second type (type 2 ) are more recent, conscious, sequential and

slow, and featured by explicit rule following. Type 1 processes have been

designed to deal with prototypes- and exemplar-based retrieval, while

Type 2 processes have been designed to deal with deductive inference.

COVER has been adopted to serve the type 1 reasoning process, and

to this end it has been rebuilt to represent only animals (as required

by the dataset theme) and extended with animal-specific dimensions

such as family and color. The categorization pipeline works as follows:

a simple linguistic description such as ‘the big striped feline that lives

in the savanna’ is provided to the system, which is expected to return

the tiger category as answer. To do so, the system builds a vector filled

with the details provided in the description (feline, stripes, big, and

savanna) and computes the similarity between the query vector and all

of the vectors inside the tipicality-based knowledge base (COVER). The
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result is a ranking of candidate entities that are then checked against

the ontological KB: the best category is returned as result. Interestingly

enough, we showed that common-sense descriptions such as that in the

example cannot be easily dealt with with ontological inference alone, nor

through other standard approaches (Lieto, Radicioni, and Rho, 2017;

Lieto, Radicioni, Rho, and Mensa, 2017).

3.3.2 COVER and Keyword Extraction

COVER has also been employed for the resolution of the keywords

extraction task (Colla, Mensa, and Radicioni, 2017). Our approach

builds on the idea that in order to extract high quality keywords the

semantic content of documents must be taken into consideration. We

define the relevance of a keyword (a word in the document body) by

means of its centrality w.r.t. the entities in the document title. In detail,

the system starts from the lists T = {y1, y2, . . . , yL} such that y ∈

document title and B = {x1, x2, . . . , xM} such that x ∈ document body,

that contain the BabelNet synset IDs in the title and in the body of

the document, respectively. We then compute the centrality c of the

concepts corresponding to the terms x in the body as a function of their

semantic relatedness to those in the title:

c(x) =
1
|T| ∑

yi∈T
semrel(x, yi). (3.9)

We devised five metrics that implement the semrel function by ex-

ploiting different resources and techniques. Namely, we propose the

following metrics: NASARI, NASARIE, UCI, UMASS and MeR-
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aLi, that can be arranged into two classes of metrics: those based on

NASARI conceptual representations, and those based on coherence

measures.

Regardless of the employed metrics, for each document we select as

the best keywords those with maximum centrality, that is:

Keywords = argmax
x∈B

c(x).

using nasari vectors to compute semantic related-

ness. As our first measure, we exploit the semantic vectors of

NASARI. In the following we will denote the concept identifier by y or

x, and the corresponding vector by ~y or ~x.

The semantic relatedness between a concept x ∈ B and the concept

y ∈ T is computed by considering ρ
~y
x, that is the rank of x in the vector

representation for y. More specifically, given two arbitrary elements x

and yi, we compute their relatedness as

semrel(x, yi) =

(
1− ρ

~yi
x

length(~yi)

)
.

The rationale underlying this formula is that x is more relevant to

the concept yi if x has smaller rank (and heavier weight), i.e., x is

found among the first concepts associated to yi in ~yi. For example, if

we inspect8 the NASARI vector for the concept door, we find — in

decreasing relevance order — that the third term associated to door is

window, the tenth wall, the twelfth is lock, and around the hundredth

8 For the sake of clarity in this example we consider the lexical rather than the unified
vector, i.e. having terms in place of conceptual IDs that are actually used by the
system.
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position interior door : the above formula emphasizes the contribution

of heavier features, having lower rank.

The centrality of the concept x with respect to each concept yi ∈ T

can be determined as

semrel(x, yi) =



1 if ρ
~yi
x = 1;

0 if x /∈ ~yi;(
1− ρ

~yi
x

length(~yi)

)
otherwise.

Specifically, in case the concept x is found to have rank 1 for the concept

yi its relevance is supposed to be maximal to the meaning of yi (it is

likely the same term or a close term which is part of the same synset);

conversely, in case it is not found in the vector associated to y (thus

obtaining ρ
~yi
x = 0), the relatedness (x, yi) will not contribute anything

to the overall centrality of x to the concepts in T.

using nasarie vectors to compute semantic relat-

edness. We also explored the NASARIE version, that contains

embedded vector representations of 300 dimensions; the computation

of the centrality can be computed in this case by resorting to standard

cosine similarity, thus

semrel(x, yi) = cosSim(~x,~yi).

using uci coherence measure to compute semantic

relatedness. Moreover, we propose two metrics, the UCI mea-

sure (Newman et al., 2010) and the UMass measure (Mimno et al., 2011)

that — originally conceived for evaluating Latent Dirichlet Allocation
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—, have been used in the automated semantic evaluation of different

latent topic models (Stevens et al., 2012).9

Because both the UCI and the UMASS measures natively handle

terms rather than concepts, after the semantic preprocessing phase,

we need to translate back concepts into terms. However, by exploiting

BabelNet, we map all synonyms for a given concept onto a single

shared lexicalization, that is chosen as the most common term according

to BabelNet counts. This strategy allows reconciling different terms

underlying the same sense, thus preserving some semantic trait.

The UCI metrics (Newman et al., 2010) computes the cohesion be-

tween two terms w1 and w2 through their pointwise mutual information,

that is

score(w1, w2, ε) = log
p(w1, w2, ε)

p(w1)p(w2)
,

where the probabilities are estimated by counting word co-occurrence fre-

quencies in a sliding window over an external corpus, such as Wikipedia,

Google or MEDLINE,10 and the ε correction is used to ensure that the

function always returns real numbers (presently ε is set to 1). In our

setting, we are interested in computing the cohesion score between the

terms in the body and the terms in the title, so that for each concept

x ∈ B lexicalized as wx and yi ∈ T lexicalized as wyi we compute

semrel(x, yi) = score(wx, wyi , 1).

9 In order to compute such measures we used the Palmetto library (Röder, Both, and
Hinneburg, 2015).

10 Specifically, in the Palmetto implementation, the pointwise mutual information
(PMI) and word co-occurrence counts were computed by using Wikipedia as reference
corpus (Röder, Both, and Hinneburg, 2015).
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using umass coherence measure to compute semantic

relatedness This metrics define a coherence score based on the

co-occurrence of the terms w1 and w2 as (adapted from (Stevens et al.,

2012))

score(w1, w2, ε) = log
D(w1, w2) + ε

D(w2)
,

where D(w1, w2) and D(w2) count the number of documents containing

both w1 and w2, and only w2, respectively. The adopted formula follows

the rationale illustrated for the UCI metrics:

semrel(x, yi) = score(wx, wyi , 1),

where the concept x ∈ B is lexicalized as wx, and yi ∈ T is lexicalized

as wyi .

using cover to compute semantic similarity. The

last measure that we employed to compute the semantic relatedness

is based on COVER. We rely on the MeRaLi system introduced in

Section 3.2 to compute the semantic similarity between concepts in the

title and those in the documents body according to the formula

semrel(x, yi) = STRM (~x,~yi),

where ~x and ~yi represent the COVER vectors for the concepts x ∈ B

and yi ∈ T, respectively and STRM is the Symmetrical Tversky’s Ratio

Model (Equation 3.8).
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3.3.2.1 Evaluation

In the last few years several sets of keywords-annotated documents

have been collected, annotated and made available, that allow assessing

algorithms and their underlying assumptions on scientific articles, news

documents, Broadcast News and Tweets (see, for example, (Marujo

et al., 2012)).

dataset. We experimented on the Crowd500 dataset (Marujo

et al., 2012), which has been extensively used for testing. The dataset

contains overall 500 documents (450 for training and 50 for testing

purposes), arranged into 10 classes: Art and Culture, Business, Crime,

Fashion, Health, US politics, World politics, Science, Sport, Technology.

Documents herein have been annotated by several annotators recruited

through the Amazon’s Mechanical Turk service. Each keyphrase is

provided with a score equal to the number of annotators who selected

it as a keyphrase.

participants. In the following, for the sake of self-containedness,

we report the experimental results obtained by (Jean-Louis et al., 2014),

where the authors performed a systematic assessment of an array of

keyword extractors and online semantic annotators. In particular, we

report the results obtained by 2 keyword extractors that participated

in the ‘SemEval-2010 Task 5: Automatic Keyphrase Extraction from

Scientific Articles’ (namely, KP-Miner (El-Beltagy and Rafea, 2009)

and Maui (Witten et al., 1999)), and 5 semantic annotators (Alche-
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myAPI, Zemanta, OpenCalais, TagMe, and TextRazor.11) With regards

to Alchemy, both the keyword extraction (Alch Key) and concept tag-

ging (Alch Con) services were considered. More details can be found

in (Jean-Louis et al., 2014).

experimental setting. We adopted the same setting as

in (Jean-Louis et al., 2014), where two experiments have been carried

out: in the first one the authors restricted to considering the top 15

keywords for each document in the dataset, while in the second one they

considered all annotated keywords. Given the diversity of the metrics

employed, some of them typically return a centrality score for each

concept in the document (NASARIE, UCI, UMASS), while the other

ones (NASARI and MeRaLi) are only able to express a centrality

score for some of the concepts in the document. For this reason, we

defined the number of keywords returned by each metrics by considering

as minimum the number of keywords having positive centrality score,

and as maximum the average of keywords provided for each document

in the training set (this figure amounts to 48 keywords per document).

Also, since all metrics assessed were used at a conceptual level, our

output is mostly composed by individual keywords rather than by

keyphrases: accordingly, in the evaluation of the results, we disregarded

all keyphrases and focused on the keywords in the gold standard.

results. The Precision, Recall and F1 score obtained obtained

by testing on the Crowd500 dataset are illustrated in Table 3.9. The

Precision indicates the percentage of correct keywords among those

11 Available at the URLs http://www.alchemyapi.com/api/keyword-extraction/,
http://developer.zemanta.com/, http://www.opencalais.com/, http://TagMe.

di.unipi.it/ and http://www.textrazor.com/, respectively.

http://www.alchemyapi.com/api/keyword-extraction/
http://developer.zemanta.com/
http://www.opencalais.com/
http://TagMe.di.unipi.it/
http://TagMe.di.unipi.it/
http://www.textrazor.com/
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Table 3.9: Results obtained on the test set of the Crowd500 dataset: for each
system Precision (P), Recall (R) and F1 Score (F) are reported.

(a) Results on the top 15 keywords in
the gold standard.

participant k P(%) R(%) F(%)

Alch Con 15 16.71 2.81 4.82
Alch Key 15 21.63 6.32 9.78
Calais Soc 15 6.67 0.09 0.17
KP-Miner 15 41.33 8.05 13.48
Maui 15 35.87 9.78 15.37
TagMe 15 34.53 11.21 16.93
TxtRaz Top 15 15.78 5.02 7.62
Zem Key 15 29.75 5.15 8.78

NASARI 15 24.89 10.40 14.67
NASARIE 15 15.62 35.47 21.69
UCI 15 16.06 44.40 23.59
UMASS 15 15.49 42.53 22.71
MeRaLi 15 29.08 8.13 12.71

(b) Results on all keywords of the gold
standard.

participant k P(%) R(%) F(%)

Alch Con all 16.71 2.81 4.82
Alch Key all 12.40 16.71 18.24
Calais Soc all 13.69 2.60 4.29
KP-Miner all 40.19 14.46 21.27
Maui all 27.46 20.30 23.34
TagMe all 21.02 35.89 26.51
TxtRaz Top all 6.28 11.52 8.13
Zem Key all 29.75 5.15 8.78

NASARI all 39.83 10.86 17.06
NASARIE all 27.72 36.16 31.38
UCI all 29.68 46.28 36.17
UMASS all 26.76 43.08 33.02
MeRaLi all 50.36 8.49 14.54

returned by the system, while the Recall is the percentage of correct

keywords returned among all of the possible correct keywords, finally,

F1 is the harmonic mean between the two. Specifically, in Table 3.9(a)

we present the results obtained by comparing the keywords extracted

to the top 15 keywords in the Crowd500 dataset, while the results

obtained by considering all of the gold standard keywords are provided

in Table 3.9(b). Regarding the first experiment, over the top 15 keywords,

we note that in 3 out of 5 of the considered metrics (namely, NASARIE,

UCI and UMASS), the F1 score is higher than those reported in the

paper by (Jean-Louis et al., 2014). Also in the second experiment

NASARIE, UCI and UMASS obtained highest F1 score, whilst the

results of NASARI and MeRaLi are featured by the highest precision.

discussion. Given the simplicity of the hypothesis being tested

(that is: the title-body conceptual coherence is sufficient to individu-

ate the keywords), the adopted metrics performed surprisingly well,
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and seem to confirm that our hypothesis is sound. We notice that in

computing the results over the 15 top ranked keywords (Table 3.9(a)),

the precision of all our measures is quite low, on average half of that

obtained by KP-Miner, Maui and TagMe. In any case, this datum would

make our metrics inapplicable in a real setting. Although the precision

over all keywords (Table 3.9(b)) is in line with the other systems (except

for KP-Miner, that has an advantage of around 10% on our score), the

low precision over the first 15 keywords (that are the more relevant

ones) shows that the ranking component in the extraction phase must

be improved.

On the other side, one weakness of our experimentation (which is,

admittedly, a preliminary one) is due to the fact that our results do not

actually include keyphrases but only keywords, and thus they cannot be

directly compared to those of the other systems. We started devising a

module for the recognition of Named Entities (which is to date an open

problem) to be integrated into the described system. However, even

though we were forced to disregard keyphrases, at a closer inspection

of the data, in some cases the annotated keyphrases seem to be rather

inaccurate: for example, it is frequent to find locutions such as ‘video

below’, ‘although people’, ‘SeaWorld and’, ‘size allows’ and many others.

Finally, by referring to Table 3.9(b) we note that the traditional

trade-off between precision and recall seems to be intertwined with the

degree of semantics adopted. In fact, the metrics based on MeRaLi—

which is semantically more sophisticated than the other metrics and

represents concepts as entities related to other concepts — obtained over

50% precision, whilst the UMASS metrics, which basically counts terms

occurrence in documents, obtained 26.76% precision. A full account of
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Table 3.11: Analysis of the Precision scores by domain (All-keywords experi-
mentation).

Domain NASARI NASARIE UCI UMASS MeRaLi

Tech 33.92 35.56 31.25 25.00 60.00
Sports 34.05 18.10 24.99 23.70 28.33
Business 40.29 30.76 27.08 27.50 50.00
US Politics 38.71 30.63 34.17 32.92 66.67
Art and Culture 32.50 21.95 23.75 22.08 20.00
Science 41.90 26.21 24.58 23.75 59.58
Health 33.81 20.39 27.08 22.92 46.67
World politics 68.00 41.95 46.44 46.44 34.00
Crime 45.12 27.92 27.08 21.25 60.00
Fashion 30.04 23.75 30.44 22.08 78.33

Median 39.83 27.72 29.68 26.76 50.36
Average 36.38 27.07 27.08 23.73 54.79

STDEV 10.96 7.30 6.73 7.72 18.28

the precision over the 10 domains is provided in Table 3.11: consistently

with previous observations and findings, metrics with highest results

have higher standard deviation: this fact is trivially explained by the

fact that metrics that perform poorly get low scores on most of the

domains, which tend to increase their stability (Jean-Louis et al., 2014).

Moreover, in Table 3.12 we present the number of keywords available

on average over the 10 domains, and the actual number of keywords

extracted through the considered metrics. These figures have been

obtained in the experiment considering all keywords. By comparing the

number of keywords returned by MeRaLi and NASARI, we observe

that even in cases when MeRaLi returns ‘many’ keywords, its precision

still scores high: this is the case, for example, of the domains Sports,

Science, Crime and Fashion.
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Table 3.12: Comparison between the average number of keywords actually
returned by each metrics, and (first column) the average number
of keywords available in the test set.

Domain DS NASARI NASARIE UCI UMASS MeRaLi

Tech 45 14 43 48 48 2

Sports 26 12 43 45 45 11

Business 37 10 45 48 48 2

US Politics 19 5 27 38 38 1

Art and Culture 21 5 39 48 48 1

Science 40 20 47 48 48 12

Health 33 14 44 48 48 3

World politics 18 3 20 34 34 9

Crime 37 5 48 48 48 11

Fashion 55 12 48 48 48 11

3.3.3 COVER and Abstractness

The common-sense provided by COVER has proven to be beneficial

for the computation of the abstractness of concepts. Specifically, we

extended COVER with abstractness scores by producing the Abs-

COVER resource (Mensa, Porporato, and Radicioni, 2018a), then we

exploited this annotations on nouns to produce abstractness scores on

verbs (Colla, Mensa, Porporato, et al., 2018) and in parallel we exploited

this extended version to tackle the metaphor detection task (Mensa,

Porporato, and Radicioni, 2018b).

3.3.3.1 Why Abstractness?

We decided to focus on the aspect of concepts abstractness since ordi-

nary experience shows that semantic representation, lexical access and

processing of concepts can be affected by concepts’ concrete/abstract

status. Concrete meanings, closely related to the perceptual experience,

are acknowledged to be more quickly and easily delivered in human

communication than abstract meanings (Bambini, Resta, and Grimaldi,
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2014). Such kind of information grasps a complex combination of ex-

periential (e.g., sensory, motor) and strictly linguistic features, such as

verbal associations arising through co-occurrence patterns and syntactic

information (Vigliocco et al., 2009). Our intuition is that common-sense

like information can be beneficial for the computation of concepts ab-

stractness, thus COVER could constitute a potential starting point to

successfully encode this type of knowledge. Information on conceptual

abstractness impacts on many diverse NLP tasks, such as the word

sense disambiguation task (O. Y. Kwong, 2008), the semantic processing

of figurative language (Birke and Sarkar, 2006; Neuman et al., 2013),

the automatic translation and simplification (Z. Zhu, Bernhard, and

Gurevych, 2010), the characterisation of web queries with difficulty

scores (Xing, Zhang, and Han, 2010), the processing of social tagging

information (Benz et al., 2011), and many others, as well.

what is abstractness? The first issue consists in selecting

a definition of abstractness (Iliev and Axelrod, 2017), since the term

‘abstract’ has two main interpretations: i) what is far from perception

(as opposed to perceptible directly through the senses), and ii) what is

more general (as opposed to low-level, specific). To implement the second

view, the concreteness or specificity —the opposite of abstractness—

can be defined as a function of the distance intervening between a

concept and a parent of that concept in the top-level of a taxonomy or

ontology (Changizi, 2008). This definition could then be used to easily

compute abstractness on any given ontology-like resource (like WordNet

or BabelNet) without any additional information from human beings.
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On the other side, the first definition appears to better correlate with

the human notion of ‘abstract’ (Theijssen et al., 2011).

In the process of extending COVER we refer to the first definition

of abstractness, since the resource appears to be able to grasp the key

aspects beneficial to the computation of how much a concept is perceiv-

able or rather abstract. Furthermore, a novel aspect of the work consist

in considering abstractness as a feature of word meanings (concepts)

rather than as a feature of word forms (terms).

As a result, we propose Abs-COVER,12 which enriches all concepts

in COVER by providing an abstractness score ranging in the [0, 1]

interval, where 0.0 indicates fully concrete concepts, and 1.0 stands for

maximally abstract concept.

3.3.3.2 Building Abs-COVER

The annotation of COVER follows the simple principle that any entity

which is a child of the concept physical entity in the hierarchy of

WordNet,13 can be considered concrete, while if it does not it can be

considered abstract. The algorithm consists of two steps: the first aims

at providing every concept with a base abstractness score, which is then

refined in the latter step.

step 1: the base score. We take in consideration every entity

e (i.e., concept defined via its BabelNet synset ID) in COVER which

could be either a value assigned to a certain dimension or have a vector

representation itself. We then execute Algorithm 1 in order to assign a

base score to it:

12 The download link for Abs-COVER can be found in Appendix B.
13 The synset for physical entity has ID wn:00001930n.
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Algorithm 1: Step 1 function.

Input: a BabelNet synset e
Output: the base abstractness score of the COVER element

corresponding to e
Function BaseScore(e) :

1 S←−WordNetHypernyms(e)
2 if S 6= ∅ then
3 if physical entity ∈ S then

return 0
else

return 1
else

H ←− BabelNetHypernyms(e)
4 W ←−

⋃
h∈H

WordNetHypernyms(h)

5 if W 6= ∅ then
6 if physical entity ∈W then

return 0
else

return 1
else

7 g←− GetMainBabelNetGloss(e)
8 N ←− Babelfy(g)

G ←− []
for each n noun concept ∈ N do

9 q←− GetGlossConceptAbstractness(n)
10 if q ≥ 0 then

append q to G
11 if G is not empty then

return average of scores in G
else

12 return −1

(a) We access BabelNet to obtain the list of WordNet synset IDs

associated to e. We then collect the hypernyms set of this concepts

in WordNet: if this set contains physical entity then we assign a

base score of 0; otherwise it is set to 1 (Algorithm 1, lines 3);

(b) if (a) fails (i.e., no WordNet synset ID can be found for e), we

collect instead its BabelNet hypernyms and once again search

for them in WordNet: if at least one of e hypernyms has physical

entity among its hypernyms, the base abstractness score of e is

set to 0, and to 1 otherwise (6);
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(c) if (b) fails (i.e., e has no hypernyms in BabelNet or none of them

has an associated WordNet synset ID), we retrieve from BabelNet

the main gloss for e (Algorithm 1, lines 7), disambiguate it,14 thus

obtaining a new set of concepts describing the entity. The steps

(a) and (b) are then performed on each of gloss concepts, and all

the valid scores are finally averaged to compute the base score of

e (Algorithm 1, lines 9–11).

(d) If all of the above steps fail we assign the value −1, indicating

that no suitable score could be computed (Algorithm 1, lines 12).

step 2: tuning the scores. Once we have associated a base

score to every entity e with a base score, we can smooth it by employing

the common-sense knowledge encoded in COVER itself (Algorithm 2).

Given a vector~c in the resource, we take into consideration a subset of its

dimensions:15 all the base abstractness scores assigned to the concepts

filling these dimensions are retrieved and averaged as the svalues-avg score.

Concepts having an invalid score are discarded (Algorithm 2, lines 1

and 2). The score svalues-avg is then in turn averaged with svec-base, that

is the base score of ~c (Algorithm 2, line 3), thus obtaining the final score

for the COVER vector. If either svec-base or svalues-avg are invalid scores,

the final score of ~c is set to the only valid score available.

To ensure that the order in which the COVER vectors are considered

during this step does not impact on the results of the computation, we do

not dynamically update the abstractness scores but we rather considered

the base scores as ‘frozen’ for the whole process. Moreover, the tuning

14 The disambiguation is performed by using Babelfy APIs (http://babelfy.org/).
15 We presently consider the following dimensions: RelatedTo, FormOf, IsA, Syn-

onym, DerivedFrom, SimilarTo and AtLocation.

http://babelfy.org/
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Algorithm 2: Step 2 function.

Input: a COVER element elem, a set of COVER dimensions D, a set
A of pairs (c, a), with c COVER element and a base
abstractness score of c

Output: the refined abstractness score for elem
Function TuneScores(elem, D, A) :

svec-base ←− A(elem) // find the score of v in A

if elem is a COVER vector then
L←− []
for each dimension dim ∈ D do

for each value v ∈ elem.dim do
abstrv ←− A(v)

1 if abstrv ≥ 0 then
append abstrv to L

2 if L is not empty then
svalues-avg ←− average of scores in L

else
svalues-avg ←− −1

3 case svec-base ≥ 0 AND svalues-avg ≥ 0 do return
svec-base + svalues-avg

2
4 case svalues-avg ≥ 0 do return svalues-avg
5 otherwise do return svec-base

else
6 return svec-base

algorithm was applied only once to avoid a potential drift from the

precise base scores obtained via WordNet. In the end, any concept that

is a child of the physical entity in WordNet retains an abstractness score

lesser than or equal to 0.5. The final distribution of abstract and concrete

vectors can be found in Figure 3.9: each line illustrates the amount of

Abs-COVER vectors that fall in a specific abstractness score range. We

can observe that concrete and abstract vectors are well separated, and

in particular, the average score of concrete vectors (i.e., having score

lower than or equal to 0.5) is 0.153 and the average score of abstract

vectors (i.e, with score greater than 0.5) is 0.837. Table 3.13 reports

instead the average abstractness of the 15 most populate dimensions of

Abs-COVER for concrete and abstract concepts. For instance, we can

observe that the IsA dimension averages at 0.215 for concrete vectors,

and 0.787 for abstract vectors.
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Figure 3.9: Distribution of COVER vectors by abstractness score.

These figures show that the annotation was coherent and thus quali-

tatively corroborate the proposed approach, however, to better estimate

the quality of Abs-COVER we also designed an experimentation to

study the correlation between its scores and human judgements. To this

end we relied upon two datasets: the Medical Research Council Psycholin-

guistic Dataset (Coltheart, 1981) and the Brysbaert Dataset (Brysbaert,

Warriner, and Kuperman, 2014). Since these datasets provide word

abstractness rather then sense abstractness we implemented five disam-

biguation strategies to select the Abs-COVER vectors to be considered,

and we additionally performed a pilot experimentation in which we

manually disambiguated 150 pairs of words. The obtained figures are

either in line or directly improve on state of the art approaches, such

as the ones by Xing, Zhang, and Han (2010) and by Theijssen et al.

(2011), showing that the annotation of COVER produced a reliable

and competitive resource (Mensa, Porporato, and Radicioni, 2018a). A
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Table 3.13: Average abstractness score in COVER vectors’ dimensions. Starred
dimensions indicate those actually used in the second step.

Dimension
Average Abstractness

Concrete Concepts Abstract Concepts

RelatedTo* 0.293 0.694
IsA* 0.215 0.787
Synonym* 0.254 0.772
HasContext 0.632 0.805
FormOf* 0.127 0.777
DerivedFrom* 0.227 0.736
Antonym 0.312 0.750
AtLocation* 0.261 0.537
HasA 0.150 0.682
PartOf 0.181 0.681
SimilarTo* 0.241 0.751
UsedFor 0.464 0.719
HasProperty 0.385 0.727
Cause 0.450 0.811
CapableOf 0.473 0.687
HasPrerequisite 0.339 0.723

future development of the annotation algorithm could consist in the

introduction of a hyper parameter to account for the weighting of the

average between svec-base and svalues-avg in the tuning step. Being able

to fine tune the impact of the base value of abstractness against the

average abstractness of the vector could in fact possibly improve the

final abstractness scores.

3.3.3.3 Annotating Verbs Abstractness

Since Abs-COVER provides conceptual representations and abstract-

ness scores for nouns, we also explored the hypothesis that noun ab-

stractness could be exploited to obtain verb abstractness (Colla, Mensa,

Porporato, et al., 2018). We represent the meaning of verbs in terms
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of their argument distribution, by following the intuitive notion that

abstract verbs are expected to have more abstract dependents than

concrete ones. For example, let us consider the verb drop. To drop may

be —concretely— intended as “to fall vertically”. In this case, it takes

concrete nouns as dependents, such as, e.g., in “the bombs are dropping

on enemy targets”. In a more abstract meaning to drop is “to stop

pursuing or acting”: in this case its dependents are more abstract nouns,

such as, e.g., in “to drop a lawsuit”. Although some counterexamples

may also be provided, we found that this assumption holds in most

cases.

Once again, we made use of the COCA dataset16 to retrieve the

1, 000 most common verbs and then we collected their dependents by

sampling 3, 000 occurrences of such verbs in the WaCkypedia EN corpus,

a 2009 dump of the English Wikipedia, containing about 800 million

tokens, tagged with POS, lemma and full dependency parsing (Baroni,

Bernardini, et al., 2009).17 All trees containing the verbs along with

their dependencies were collected and disambiguated via Babelfy. We

retained all verb senses with at least 5 dependents that are present in

Abs-COVER. The abstractness score of each sense has been computed

by averaging the abstractness scores of all its dependents.

evaluation. The evaluation on the verb scores was performed

on the 5, 369 verbs of the Brysbaert Dataset (Brysbaert, Warriner,

and Kuperman, 2014). A key issue consisted in finding the correct

disambiguation for each verb in the dataset. To this aim we developed

four different disambiguation strategies:

16 http://corpus.byu.edu/full-text/.
17 http://wacky.sslmit.unibo.it/doku.php?id=corpora.

http://corpus.byu.edu/full-text/
http://wacky.sslmit.unibo.it/doku.php?id=corpora
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MaxAbs MinAbs MaxDep BestSns

Pearson r 0.4163 0.4581 0.5103 0.4729
Spearman ρ 0.4037 0.4690 0.5117 0.4792

Table 3.14: Correlation results obtained by comparing our system’s abstract-
ness scores against the human ratings in the Brysbaert Dataset.

1. the sense with highest abstractness (MaxAbs);

2. the sense with lowest abstractness (MinAbs);

3. the sense with the highest number of dependents (MaxDep);

4. the sense returned as the best sense through the BabelNet API

(BestSns).

The obtained correlations between the Brysbaert annotations and our

annotations are reported in Table 3.14.

The differences shown in table provide tangible evidence that the

problem of selecting the correct sense for a verb is a crucial one. E.g., if

we consider the verb ‘eat’, the sense described as “Cause to deteriorate

due to the action of water, air, or an acid (example: The acid corroded the

metal)”and the sense described as“Worry or cause anxiety in a persistent

way (What’s eating you?)” exhibit very different abstractness scores. In

order to decouple the assessment of the abstractness scores from that of

the sense selection, we also randomly selected 400 verbs, and manually

annotated them with an a priori reasonable sense.18 This annotation

process is definitely an arbitrary one (only one annotator, thus no inter

annotator agreement was recorded, etc.), and it should be considered as

an approximation to the senses underlying the human ratings available

in the Brysbaert Dataset. The correlation scores significantly raise,

as illustrated in the first column of Table 3.15, thus confirming the

centrality of the sense selection step.

18 Disambiguation proper would require to select a sense in accordance with a given
context.
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FULL-400 Pruning ϑ1

Pearson r 0.6419 0.6848
Spearman ρ 0.6634 0.6854

Table 3.15: Correlation scores obtained by manually choosing the main sense
for 400 verbs (column FULL-400), and correlation scores obtained
by removing from the FULL-400 verbs those with abstractness
≤ .1 (column ϑ1 pruning).

Furthermore, we observed that most mismatches in the computation

of the abstractness scores occur when the verb is featured by very low

(lower than 0.1) abstractness score. To corroborate such intuition, we

have then pruned from our data set the verbs whose annotated score

is lower than a threshold ϑ1 = 0.1, finally yielding 383 verbs. In this

experimental setting we obtained higher correlation scores, thereby

confirming that the computation of more concrete entities needs to be

improved, as illustrated in the second column of Table 3.15.

The obtained results point out an increased difficulty in determining

the scores of concrete verbs and the relevance of the disambiguation

step, which was expected since verbs are known to be more polysemous

then nouns.

3.3.3.4 Abstractness and Metaphor Detection

As a final application for Abs-COVER we developed a preliminary

experimentation on the metaphor detection task (Mensa, Porporato, and

Radicioni, 2018b), which represents to date an extraordinary challenge

for computational linguistics. Dealing with metaphors has relevant im-

pact on our ability to build agents and systems that understand Natural

Language and text documents: annotating metaphoric constructions by

linking the metaphor elements to existing resources is a crucial step to

make text documents more easily accessible by machines.
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metaphor categorization. Provided that different catego-

rizations of metaphors can be drawn, we refer to the threefold (not

exhaustive) categorization of metaphors proposed in (Krishnakumaran

and X. Zhu, 2007). In this view, Type I metaphors are in the form

“smb/sth is sth” (e.g., “He is a monster”), in which something or some-

body is said to be of a kind that is not correct in a literal sense; Type

II metaphors are in the form “smb/sth verb sth” (e.g., “I shot down all

his arguments”), where an action is performed by or on something that

cannot properly perform an action of that sort; Type III metaphors

are in the form “adj noun” (e.g., “A brilliant idea”), where an adjective

is associated to a concept that cannot have the quality expressed in

a literal sense. In our introductory work we focused on metaphors of

Types I and II, and disregarded those of any different type.

metaphor detection. The system works as follows: given a

sentence S along with its parse tree 4(S), we individuate the depen-

dency patterns corresponding to Type I and II metaphors, which we

denote as Z(S) ⊂ 4(S).

In order to do so, we preprocess the sentence by parsing and disam-

biguating it. Namely, given in input the sentence S = {t1, t2, . . . , tn}

composed of n input terms, we parse it and obtain the parse tree 4(S);

we then perform the word sense disambiguation of the terms in S ,19

thus obtaining the set of concepts C(S) =
n⋃

i=1

WSD(ti).

The metaphor detection algorithm consists then of the following steps:

1. Given the dependency patterns Z(S) ⊂ 4(S) on the parse tree,

we retain the corresponding concepts, C ′ =
⋃
C

Z(S); among

19 We presently used Babelfy for the WSD and the Stanford CoreNLP, https://goo.
gl/yxcRPF as our parser.

https://goo.gl/yxcRPF
https://goo.gl/yxcRPF
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concepts c′ ∈ C ′, we select target (that is, subj in Type I metaphors

and a verb dependant in Type II metaphors) and source (dir-obj

in Type I metaphors, and verb in Type II metaphors) of the

metaphorical expression;

2. We label the sense as a metaphor if the target concept is more

abstract than the source concept.

As an example, let us consider the sentence “the past is a captor”.

Given its parse tree, it can be recognized as a Type I metaphor in which

the target is “past” and the source is “captor”. After the WSD step, we

access the vectors in Abs-COVER corresponding to the two concepts

and discover that past has an abstractness score of 0.96 while the score

for captor is 0.40: since the target concept is more abstract than the

source concept, we can label the sentence as metaphorical.

evaluation. The pilot experimentation was performed on a

portion of the Master Metaphors List (MML), a set of metaphors

compiled by Lakoff and others in the ’80s (Lakoff, Espenson, and A.

Schwartz, 1991) and containing 1, 728 sentences, each featured by at

least one metaphor. From this set we extracted 75 sentences, 40 of which

containing a metaphor of Type I, and 35 containing a metaphor of Type

II. We then collected 75 additional non metaphoric sentences; syntactic

constructions similar to those characterizing sentences with Type I and

Type II metaphors were preserved.20

The system obtained a Recall of 0.70 and 0.74 on Type I and Type

II, respectively, and a Precision of 0.56 (Type I) and 0.77 (Type II).

The higher accuracy on Type II metaphors corroborates our hypothesis,

20 The data set download link can be found in Appendix B.
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thereby showing that for such (simpler) cases the comparison between

target and source abstractness works fine. An explanation for the lower

figures on Type I may stem from the fact that some of those metaphors

require projecting features from the source onto the target (e.g., lawyers

are sharks). In such cases, we conjecture that just considering the

abstractness of the involved terms does not suffice since the metaphor is

best recognized by projecting the features of ferocity and dangerousness —

which is proper to sharks— onto lawyers. Remarkably, these are typically

common-sense traits and so a future development could revolve around

the exploitation of the structure of Abs-COVER (and not only its

scores) to aid the algorithm.





4

LESSLEX

LessLex (Linking multilingual Embeddings to SenSe representations

of Lexical items) is the second resource that we developed, consisting

of a set of distributional vectors built by merging BabelNet and Con-

ceptNet Numberbatch (Colla, Mensa, and Radicioni, 2020). Once

again we show that the adoption of a sense layer can be beneficial to the

resolution of the conceptual/word similarity task as well as two other

downstream tasks: the contextual similarity and text similarity tasks.

4.1 building lesslex

The algorithm for the generation of LessLex is based on an intuitive

idea: to exploit multilingual terminological representations in order to

build precise and punctual conceptual representations. In doing so we

started from CNN word embeddings and we build new sense embeddings

by relying on the BabelNet sense inventory. We chose ConceptNet

Numberbatch word embeddings (CNN from now on) as our starting

point for a number of reasons: its vectors are to date highly accurate; all

such vectors are mapped onto a single shared multilingual semantic space

spanning over 78 different languages; it ensures reasonable coverage for

general purposes use (Robyn Speer and Lowry-Duda, 2017); also, it

allows dealing in a uniform way with multi-word expressions, compound
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words (Havasi, Robyn Speer, and Alonso, 2007), and even flexed forms;

finally it is released under the permissive MIT License. Without loss of

generality, we introduce our methodology by referring to nominal senses,

while the whole procedure also applies to verb and adjectival senses,

so that in the following we will switch between sense and concept as

appropriated.

Each concept in LessLex is represented by a vector generated by

averaging a set of CNN vectors. Given the concept c, we retrieve it in

BabelNet to obtain the sets {T l1(c), . . . , T ln (c)} where each T l(c) is the

set of lexicalizations in the language l for c.1 We then furtherly enrich

this sets by extracting other terms from the concepts’ English gloss and

English Wikipedia Page Title (WT from now on) where available. The

final result is the set T +(c) that merges all the multilingual terms in

each T l(c) plus the terms extracted from the English gloss and WT.

Only those terms that can be actually found in CNN are retained

in T +(c), so that the LessLex vector ~c can be finally computed by

averaging all the CNN vectors associated to the terms in T +(c).

4.1.1 Selecting the Sense Inventory: Seed Terms

The algorithm that generates LessLex takes in input a set of terms

and generates a vector for each of their meaning. These seed terms are

taken from different languages and different POS (nouns, verbs and

adjectives are presently considered), and their meanings (retrieved via

BabelNet) constitute the set of senses described by LessLex vectors.

1 We presently consider the following languages: English (eng), French (fra), German
(deu), Italian (ita), Farsi (fas), Spanish (spa), Portuguese (por), Basque (eus) and
Russian (rus).
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apple, macintosh, apple.com, apple_computer, …
apple, logo_apple, apple_computer, apple_inc., …
apple, logotipo_de_apple, apple_computer, …
apple, logo_du’apple, apple_inc., …
apple, logotipo_de_apple, apple_inc., …

تکرش , لپا _apple, هنايار_لپا_تكرش , ... 
apple, apple-logo, appl, …
apple, apple_inc.
apple, фирма_apple, логотип_apple, …
Apple (Inc.) 
Apple Inc. is a multinational company that […]

Wikititle
Gloss

T eng
<latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit><latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit><latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit><latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit>

T ita
<latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit><latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit><latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit><latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit>

T deu
<latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit><latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit><latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit><latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit>

T spa
<latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit><latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit><latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit><latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit>

T por
<latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit><latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit><latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit><latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit>

T eus
<latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit><latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit><latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit><latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit>

T fas
<latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit><latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit><latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit><latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit>

T fra
<latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit><latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit><latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit><latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit>

T rus
<latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit><latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit><latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit><latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit>

bn:03739345n

apple[ita]apple[spa] apple[eng]

mela[ita] manzana[spa]

apple, apple_trees, pomiculture, apple_core, … 
mela, pomo, fiore_di_melo, buccia_di_mela, …
manzana, pero, flor_del_manzano, …
pomme, pomiculture, peau_de_pomme, …
maçã, macieira, flor_da_macieira, …

زبس_بیس, لپا_زبس, بیس ،, …
apfel, apfelblüte, apfelschale
sagar
яблоко
Apple 
Fruit with red or yellow or green skin and […]

Wikititle
Gloss

bn:00005054n
T eng

<latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit><latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit><latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit><latexit sha1_base64="ExsSJWa9iko93xd2le5dQwEMNO8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lMQ42xo15y6MwdeJW5BaqhAc2h/DUYRTUIQmnKiVN91Yu2lRGpGOWSVQaIgJnRKxtA3VJAQlJfOo2f41CgjHETSPKHxXP29kZJQqVnom8k8qFr2cvE/r5/o4MpLmYgTDYIuDgUJxzrCeQ94xCRQzWeGECqZyYrphEhCtWmrYkpwl7+8Sjrnddepu3cXtcZ1UUcZHaMTdIZcdIka6BY1URtR9Iie0St6s56sF+vd+liMlqxi5wj9gfX5A+bZlGc=</latexit>

T ita
<latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit><latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit><latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit><latexit sha1_base64="JOMSqdbWOqmY5G9gYIzoI+fn86s=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TpnE2tGtO3ZkDrRK3IDUo0BzaX4NRRJKQCk04VqrvOrH2Uiw1I5xmlUGiaIzJFI9p31CBQ6q8dB49Q6dGGaEgkuYJjebq740Uh0rNQt9M5kHVspeL/3n9RAdXXspEnGgqyOJQkHCkI5T3gEZMUqL5zBBMJDNZEZlgiYk2bVVMCe7yl1dJ57zuOnX37qLWuC7qKMMxnMAZuHAJDbiFJrSBwCM8wyu8WU/Wi/VufSxGS1axcwR/YH3+AOz7lGs=</latexit>

T deu
<latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit><latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit><latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit><latexit sha1_base64="Fn9OhrvD6F+GuIHq+1VQvHCzz8w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCtZTK5aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxYs6Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeRxRwJqCtmebQiyWQ0OPQ9aY3ud99AKlYJFp6FsMwJGPBAkaJNtLIrg5CoieU8LSV3ac+JNnIrjl1Zw68StyC1FCB5sj+GvgRTUIQmnKiVN91Yj1MidSMcsgqg0RBTOiUjKFvqCAhqGE6j57hU6P4OIikeULjufp7IyWhUrPQM5N5ULXs5eJ/Xj/RwdUwZSJONAi6OBQkHOsI5z1gn0mgms8MIVQykxXTCZGEatNWxZTgLn95lXTO665Td+8uao3roo4yOkYn6Ay56BI10C1qojai6BE9o1f0Zj1ZL9a79bEYLVnFzhH6A+vzB+zilGs=</latexit>

T spa
<latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit><latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit><latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit><latexit sha1_base64="dS75qMR7jfzw0ywNS0aUHC/Sc9A=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCN5WY6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HxTlTNC2ZprTXiwphD6nXX96k/vdByoVi0RLz2LqhTAWLGAEtJGGdnUQgp4Q4Gkru09VDNnQrjl1Zw68StyC1FCB5tD+GowikoRUaMJBqb7rxNpLQWpGOM0qg0TRGMgUxrRvqICQKi+dR8/wqVFGOIikeULjufp7I4VQqVnom8k8qFr2cvE/r5/o4MpLmYgTTQVZHAoSjnWE8x7wiElKNJ8ZAkQykxWTCUgg2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0IekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AfYplHE=</latexit>

T por
<latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit><latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit><latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit><latexit sha1_base64="IyuH1eL3V3gLY8zouXxxfaCth/g=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TOJLZ0K45dWcOtErcgtSgQHNofw1GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nn0DJ0aZYSCSJonNJqrvzdSHCo1C30zmQdVy14u/uf1Ex1ceSkTcaKpIItDQcKRjlDeAxoxSYnmM0MwkcxkRWSCJSbatFUxJbjLX14lnfO669Tdu4ta47qoowzHcAJn4MIlNOAWmtAGAo/wDK/wZj1ZL9a79bEYLVnFzhH8gfX5AwnylH4=</latexit>

T eus
<latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit><latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit><latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit><latexit sha1_base64="FuvbrfESSYUKWeTBu/q6biTO1PQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6LLoxmWFvqCNZTK9aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ac3ud99AKlYJFp6FoMXkrFgAaNEG2loVwch0RNKeNrK7lNIVDa0a07dmQOvErcgNVSgObS/BqOIJiEITTlRqu86sfZSIjWjHLLKIFEQEzolY+gbKkgIykvn0TN8apQRDiJpntB4rv7eSEmo1Cz0zWQeVC17ufif1090cOWlTMSJBkEXh4KEYx3hvAc8YhKo5jNDCJXMZMV0QiSh2rRVMSW4y19eJZ3zuuvU3buLWuO6qKOMjtEJOkMuukQNdIuaqI0oekTP6BW9WU/Wi/VufSxGS1axc4T+wPr8AQPOlHo=</latexit>

T fas
<latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit><latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit><latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit><latexit sha1_base64="SO8RgMpxABFQTfgBFY9/jlRZyfE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TAKtsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AebOlGc=</latexit>

T fra
<latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit><latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit><latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit><latexit sha1_base64="PM3uM+xXowrwsad/y59IHuWn6ng=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu7TQOJsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AeValGY=</latexit>

T rus
<latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit><latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit><latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit><latexit sha1_base64="vvwkXJ0TPWAIO9TnUhP0xMUjTHo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXRjcsKfUEby2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udpxvq7S2vrG5Vd6u7Ozu7R/Y1cOOihJJaJtEPJI9HyvKmaBtzTSnvVhSHPqcdv3pTe53H6hULBItPYupF+KxYAEjWBtpaFcHIdYTgnnayu5TmahsaNecujMHWiVuQWpQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx6hk6NMkJBJM0TGs3V3xspDpWahb6ZzIOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyjvAY2YpETzmSGYSGayIjLBEhNt2qqYEtzlL6+Sznndderu3UWtcV3UUYZjOIEzcOESGnALTWgDgUd4hld4s56sF+vd+liMlqxi5wj+wPr8AReplIc=</latexit>

Figure 4.1: Retrieval of two senses for five seed terms in three different lan-
guages.

Naturally, due to the polysemy of language and to the fact that the

seed terms are multilingual, different seed terms can retrieve the same

meaning. It is important to note that seed terms do not affect the

generation of a vector per se, but they rather determine the coverage of

LessLex, since they are used to acquire the set of concepts that will

be part of the final resource. Figure 4.1 illustrates this process for a few

seed terms in English, Spanish and Italian. These terms provide two

senses in total: bn:03739345n – Apple (Inc.) and bn:00005054n – Apple

(fruit). The first one is the meaning for applespa, appleita and appleeng,

while the second one is a meaning for manzanaspa, melaita and, again,

appleeng. Each synset contains all the lexicalizations in all languages,

together with the English gloss and the WT. This information will be

exploited for building T +(cbn:03739345n) and T +(cbn:00005054n) during

the generation process.



94 lesslex

4.1.2 Extending the Set of Terms

One of the issues that may be encountered while generating a LessLex

vector consists in finding just one lexicalization for a given concept (T +

contains only one element). In such case, the vector for the considered

sense would coincide with that of the term in T +, thus conflating the

sense vector and its terminological version from CNN. In order to tackle

this issue we try to extend the set of extracted terms by parsing further

words from the concept English gloss and WT. In other words, enriching

T + with further terms is necessary to reshape vectors that have only one

associated term as lexicalization. For instance, starting from the term

sunseteng we encounter the sense bn:08410678n (representing the city of

Sunset, Texas). This sense is provided with the following lexicalizations:

T eng = {sunseteng}; T spa = {sunsetspa}; T f ra = {sunsetfra}.

However, out of these three terms only sunseteng actually appears in

CNN, giving us a final singleton T + = {sunseteng}. At this point no

average can be performed, and the final vector in LessLex for this

concept would be identical to the vector of sunseteng in CNN. Instead,

if we take into consideration the gloss ‘’Township in Starr County,

Texas‘’, we can extract townshipeng and append it in T +, thus obtaining

a richer vector for this specific sense of sunset. In the following sections

we describe the two strategies that we developed in order to extract

terms from WTs and glosses. The extension strategies are applied for

every concept, but in any case, if the final T + contains a single term
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(|T +| = 1), then we discard the sense and we do not include its vector

in LessLex.

4.1.2.1 Extension via Wikipedia Page Title

The extension via WT only applies to nouns, since senses for other POS

are not present in Wikipedia. In detail, if the concept has a Wikipedia

Page attached and if the WT provides a disambiguation or specification

(e.g., Chips (company) or Magma, Arizona) we extract the relevant

component (by exploiting commas and parentheses of the Wikipedia

naming convention) and search for it in CNN. If the whole string cannot

be found, we repeat this process by removing the leftmost word of the

string until we find a match. In so doing, we search for the maximal

sub-string of the WT that has a description in CNN. This allows us to

obtain the most specific and yet defined term in CNN. For instance,

for the WT Bat (guided bomb) we may not have a match in CNN for

guided bomb, but we can at least add bomb to the set of terms in T +.

4.1.2.2 Extension via Gloss

Glosses often contain precious pieces of information that can be helpful

in the augmentation of the terms associated to a concept. We parse

the gloss and extract its components. By construction, descriptions

provided in BabelNet glosses can originate from either WordNet or

Wikipedia (Navigli and Ponzetto, 2012). In the first case we have

(often elliptical) sentences, such as (bn:00028247n – door) “a swinging

or sliding barrier that will close the entrance to a room or building

or vehicle”. On the other side, Wikipedia typically provides a plain

description like “A door is a panel that makes an opening in a building,
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Table 4.1: List of the extraction rules in regex style, describing some POS
patterns. If a gloss or a portion of a gloss matches the left part of
the rule, then the elements in the right part are extracted. Extracted
elements are underlined.

Nouns

1. to be NN+ −→ NN+

2. NN1 CC NN2 −→ NN1,NN2

3. DT ∗ NN+ −→ NN+

Verbs

1. to be VB −→ VB

2. Sentence starts with a VB −→ VB

3. VB1 ((CC
∣∣ ,) VB2)+ −→ VB1, VB2+

Adjectives

1. Sentence is exactly JJ −→ JJ

2. not JJ −→ (JJ is dropped)

3. (relate
∣∣relating

∣∣related) to ∗ NN −→ NN

4. JJ1 CC JJ2 −→ JJ1,JJ2

5. JJ1, JJ2 or JJ3 −→ JJ1, JJ2, JJ3

room or vehicle”. Thanks to the regularity of these languages, with few

regular expressions on POS patterns2 we are able to collect enough

information to enrich T +. We devised several rules according to each

sense POS; the complete list is reported in Table 4.1 and some applied

examples can be found in Table 4.2. In Figure 4.2 we provide an example

of the generation process for three concepts, provided by the seed terms

gateeng and gateita. For the sake of simplicity, we only show the details

regarding two languages (English and Italian). Step (1) shows the input

terms. In step (2) we retrieve three meanings for gateeng and one for

gateita, which has already been fetched since it is also a meaning for

gateeng. For each concept we collect the set of lexicalizations in all

considered languages, plus the extensions extracted from WT and gloss.

2 We adopted the Penn Treebank POS set: https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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Table 4.2: Extraction rules applied to different glosses. For each example the
sense involved (on the left) and the applied rule (on the right) are
reported.

bn:00012741n - Branch Noun #2

A stream or river connected to a larger one.

bn:00079944n - Winner Noun #3

The contestant who wins the contest.

bn:01276497n - Plane (river) Noun #1

The Plane is a river in Brandenburg, . . .

bn:00094850v - Tee Verb #2

Connect with a tee.

bn:00084198v - Build Verb #3

Make by combining materials and parts.

bn:00106822a - Modern Adjective #3

Relating to a recently developed fashion or style.

bn:00103672a - Good Adjective #4

Having desirable or positive qualities especially . . .
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bn:00037486n

main gate, gate, gateway
cancello, inferriata
Gate
A movable barrier in a fence or 
Wall which is a point of  entry to 
a space […]

Wikititle
Gloss

gate[eng], gate[ita], 
terminal[eng] , airport[eng] 
gate_aereoportuale[ita] 

terminal[eng]

airport[eng] gateway[eng] logic_gate[eng]

departure gate, gate
gate, gate areoportuale
Gate (airport)
Passageway (as in an air 
terminal) where passengers can 
embark […]

Wikititle
Gloss

bn:00037489n bn:00037487n

NOT circuit, AND circuit, gate, 
logic_gate, logic circuit
porte_logiche
Logic Gate
A computer circuit with several 
inputs but only one output […]

Wikititle
Gloss

gate[eng], logic_gate[eng],  
circuit[eng], 

porte_logiche[ita]

gate[eng] gate[eng] gate[eng]

(1)

bn:00037489n bn:00037486n bn:00037487n

gate[eng], gateway[eng] , 
barrier[eng], inferriata[ita], 

cancello[ita] 

circuit[eng]

porte_lo…[ita]

barrier[eng]

gate[eng]gate[ita]

gate[ita]

gate_aer…[ita]

inferriata[ita]

cancello[ita]

(2)

(3)

(4)

T eng
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Figure 4.2: Generation of three LessLex vectors, starting from the seed terms
gateeng and gateita.

We then merge all such terms in T +, by retaining only those that can

be actually found in CNN. Once the T + sets are computed, we access

CNN to retrieve the required vectors for each set (3) and then we

average them, finally obtaining the vectors for the concepts at hand (4).

We now describe the main features of LessLex, together with the

algorithm to compute conceptual similarity on this resource.
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4.1.3 LessLex Features

The final space in which LessLex vectors reside is an extension of the

CNN multilingual semantic space, thus every CNN vector co-exists

with the all of the vectors representing its underlying meanings. This

peculiar feature allows us to compute the distance between a term and

each of its corresponding senses, and such distance can be exploited to

determine, given a pair of terms, in which sense they are intended. In

Section 4.1.3.2 we will make use of this capability to tackle the word

similarity task.

4.1.3.1 LessLex Statistics

The LessLex resource3 has been generated from a group of seed terms

collected by starting from 56, 322 words taken from the Corpus of

Contemporary American English (COCA) (Davies, 2009) 19, 789 terms

fetched from the relevant dictionaries of the Internet Dictionary Project4

and the 12, 544 terms that appear in the datasets that we used during

the evaluation. All terms were POS tagged and duplicates removed

beforehand. The final figures of the resource and details concerning its

generation are reported in Table 4.3.

We started from a total of 84, 620 terms, and for 65, 629 of them we

were able to retrieve at least one sense in BabelNet. The T + cardinality

shows that our vectors were built by averaging about 6 CNN vectors for

each concept. Interestingly, verbs seem to have much richer lexical sets.

The final number of senses in LessLex amounts to 174, 300, with a vast

majority of nouns. We can also see an interesting overlap between the

3 The download link for LessLex can be found in Appendix B.
4 http://www.june29.com/idp/IDPfiles.html.

http://www.june29.com/idp/IDPfiles.html
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Table 4.3: Figures on the generation process of LessLex, divided by Part of
Speech

LessLex Statistics All Nouns Verbs Adjectives

Seed terms 84, 620 45, 297 11, 943 27, 380

Terms in BabelNet 65, 629 41, 817 8, 457 15, 355

T + avg. cardinality 6.40 6.16 9.67 6.37

Discarded Senses 16, 666 14, 737 368 1, 561

Unique Senses 174, 300 148, 380 11, 038 14, 882

Avg. senses per term 4.80 6.12 3.77 1.77

Total extracted terms 227, 850 206, 603 8, 671 12, 576

Avg. extracted terms 1.40 1.46 1.06 1.05

group of senses associated to each term. If we take nouns as example,

we have around 42K terms providing 148K unique senses (3.5 per term),

while the average polysemy per term counting repetitions amounts to

6.12. So, we can observe that approximately three senses per term are

shared with some other term. A huge amount of concepts are discarded

since they only have one term inside T +: these are named entities or

concepts with poor lexicalization sets. The extraction process provided

a gran total of about 228K terms, and on average each T + contains

1.40 additional terms extracted from Wikipedia Page Titles and glosses.

Out of the 117K senses in WordNet (version 3.0), roughly 61K of them

are covered in LessLex. It is however important to note that additional

LessLex vectors can be built upon any set of concepts, provided that

they are represented in BabelNet (which contains around 15M senses)

and that some of their lexicalizations are covered in CNN (1.5M terms

for the considered languages).
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4.1.3.2 Computing word similarity via ranked-similarity

As introduced in Section 2.3, the word/concept similarity task consists in

determining a score of similarity between two words/concepts provided

as input. It was also stated that depending on the type of input (be

it conceptual or terminological) the correspondent types of resources

are advantaged in the resolution of the task. Finally, when there is

no match between the resource and the dataset, the max-similarity

approach can be exploited. However, since LessLex puts together both

terminological and conceptual vectors in one shared space, we decided

to develop a novel similarity measure called ranked-similarity in order

to compute word similarity. Specifically, since we are able to determine

not only the distance between each two senses of the input terms, but

also the distance between each input term and all of its senses, we

use this information to fine tune the computed similarity scores and

use ranking as a criterion to grade senses relevance. In particular, we

hypothesise that the relevance of senses for a given term can be helpful

for the computation of similarity scores, so the ranked-similarity also

accounts for the ranking of distances between senses and seed term. It

implements a heuristics aimed at considering two main elements: the

relevance of senses (senses closer to the seed term are preferred), and

similarity between sense pairs. Namely, the similarity between two terms

t1, t2 can be computed as:

rnk-sim(t1, t2) =

max
~ci∈s(t1)
~cj∈s(t2)

[(
(1− α) · (rank(~ci) + rank(~cj))

−1
)

+
(

α · cos-sim(~ci,~cj)
)]

,

(4.1)
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Compute the similarity 
between student and teacher

Max similarity

Ranked similarity

sim(student1, teacher1) = 0.81

sim(student2, teacher2) = 0.61

sim(student1, teacher2) = 0.46

sim(student2, teacher1) = 0.38

gold(student, teacher) = 0.50

t1s1

s2

s1

t2

s2 t1

t2

Ranking of teacher senses

 teacher21

……

 teacher18

Ranking of student senses

 student21

……

 student15

rnk-sim(rank(student1), rank(teacher1), cos-sim(student1, teacher1) = 0.44

gold(student, teacher) = 0.50

rnk-sim(rank(student1), rank(teacher2), cos-sim(student1, teacher2) = 0.29

rnk-sim(rank(student2), rank(teacher1), cos-sim(student2, teacher1) = 0.27

rnk-sim(rank(student2), rank(teacher2), cos-sim(student2, teacher2) = 0.55s2 t2

t1s1

s1 t2

s2 t1

bn:00008977n

The Teacher (film)

a 1977 Cuban 
drama film 

teacher1

bn:00046958n

Teacher

 a person whose 
occupation is teaching

teacher2

bn:02935389n

Student (film)

a 2012 Kazakhstani 
drama film

student1

bn:00029806n

Student

 a learner enrolled in 
an educational institution

student2

Senses for student Senses for teacher

……

Figure 4.3: A comparison between the max-similarity (Equation 2.2) and the
ranked-similarity (Equation 4.1) approaches for the computation
of the conceptual similarity.

where α is used to tune the balance between ranking factor and raw

cosine similarity.5 We illustrate the advantages of the ranked similarity

with the following example (Figure 4.3). Let us consider the two terms

teacher and student, whose gold-standard similarity score is 0.50.6 One of

the senses of teacher is bn:02193088n (The Teacher (1977 film) - a 1977

Cuban drama film) while one of the senses of student is bn:02935389n

(Student (film) - a 2012 Kazakhstani drama film). These two senses have

a cosine similarity in LessLex of 0.81: such a high score is reasonable,

since they are both drama movies. However, it is clear that an annotator

would not refer to these two senses for the input terms, but rather to

bn:00046958n (teacher - a person whose occupation is teaching) and

bn:00029806n (student - a learner who is enrolled in an educational

institution). These two senses obtain a similarity score of 0.61, which

5 Presently α = 0.5.
6 We borrow this word pair from the SemEval 17 Task 2 dataset (Camacho-Collados,

Pilehvar, Collier, et al., 2017b).
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will not be selected since it is lower than 0.81 (as computed through

the formula in Equation 2.2). However, if we take into consideration the

similarities between the terms teacher and student and their associated

senses, we see that the senses that one would select —while requested

to provide a similarity score for the pair— are much closer to the seed

terms. The proposed measure involves re-ranking the senses based on

their proximity to the term representation, thereby emphasising more

relevant terms. We finally obtain similarity of 0.44 for the movie-related

senses, while the school-related senses pair obtains a similarity of 0.55,

which will be selected and better correlates with human rating.

4.2 evaluating lesslex

LessLex has been mainly evaluated on the word/concept similarity

tasks and then furtherly tested on the contextual similarity task and

the semantic text similarity task. We now focus on the first portion of

the evaluation by describing the experimental setup and then providing

our results and their discussion.

4.2.1 Experimental Setup

In this section we introduce the adopted datasets, strategies and other

systems employed for the word/concept similarity task.

4.2.1.1 Adopted Datasets

In order to properly test the quality of LessLex vectors we considered

both conceptual and terminological datasets, ranging on various parts
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Table 4.4: List of the dataset employed in the experimentation, showing the
POS involved and the languages available in both monolingual and
cross-lingual versions.

Dataset Part of Speech Monolingual Cross-lingual

RG-651 nouns eng, fas, spa
eng, spa, fas,

por, fra, deu

WS-Sim-3532 nouns
eng, ita,

-
deu, rus

SimLex-9993
nouns, verbs eng, ita,

-
adjectives deu, rus

SimVerbs-35004 verbs eng -

SemEval 175 nouns
eng, deu, ita, eng, deu, ita,

spa, fas spa, fas

Goikoetxea 6 nouns, verbs
eus

eng, eus

adjectives spa, ita

1 http://lcl.uniroma1.it/similarity-datasets/,
https://www.seas.upenn.edu/~hansens/conceptSim/.

2 http://www.leviants.com/ira.leviant/MultilingualVSMdata.html.
3 https://fh295.github.io/simlex.html,
http://www.leviants.com/ira.leviant/MultilingualVSMdata.html.

4 http://people.ds.cam.ac.uk/dsg40/simverb.html.
5 http://alt.qcri.org/semeval2017/task2/index.php?id=data-and-tools.
6 http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html.

of speech and languages. All benchmarks employed in the experiments

are illustrated in Table 4.4.

A pioneering dataset is WordSim-353 (Finkelstein et al., 2002); it

has been built by starting from two older sets of word pairs, the RG-

65 and MC-30 datasets (Miller and Charles, 1991; Rubenstein and

Goodenough, 1965). These dataset were originally conceived for the

English language and compiled by human experts. They have then

been translated to multilingual and to cross-lingual datasets: the RG-65

has been translated into Farsi and Spanish by Camacho-Collados, Pile-

hvar, and Navigli (2015a), while the WordSim-353 has been translated

by Leviant and Reichart (2015b) into Italian, German and Russian

through crowdworkers fluent in such languages. The RG-65 dataset has

also been sense-annotated by two humans (Hansen Andrew Schwartz

http://lcl.uniroma1.it/similarity-datasets/
https://www.seas.upenn.edu/~hansens/conceptSim/
http://www.leviants.com/ira.leviant/MultilingualVSMdata.html
https://fh295.github.io/simlex.html
http://www.leviants.com/ira.leviant/MultilingualVSMdata.html
http://people.ds.cam.ac.uk/dsg40/simverb.html
http://alt.qcri.org/semeval2017/task2/index.php?id=data-and-tools
http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html
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and Gomez, 2011). Additionally, WordSim-353 has been partitioned by

individuating the subset of word pairs appropriate for experimenting

on similarity judgements rather than on relatedness judgements (Agirre

et al., 2009). The SimLex-999 dataset has been compiled through crowd-

sourcing, and includes English word pairs covering different parts of

speech, namely nouns (666 pairs), verbs (222 pairs) and adjectives (111

pairs) (Hill, Reichart, and Korhonen, 2015). It has been then translated

into German, Italian and Russian by Leviant and Reichart (2015a). A

dataset has been proposed entirely concerned with English verbs, the

SimVerbs-3500 dataset (Gerz et al., 2016); similar to SimLex-999, items

herein have been obtained from the USF free-association database (Nel-

son, McEvoy, and Schreiber, 2004). The SemEval-17 dataset has been

developed by Camacho-Collados, Pilehvar, Collier, et al. (2017b); it

contains many uncommon entities, like Si-o-seh pol or Mathematical

Bridge encompassing both multilingual and cross-lingual data. Finally,

another dataset has been recently released by Goikoetxea, Soroa, and

Agirre (2018), in the following referred to as Goikoetxea dataset, built by

adding further cross-lingual versions for the RG-65, WS-WordSim-353

and SimLex-999 datasets.

In our evaluation both multilingual and cross-lingual translations have

been used. A multilingual dataset is one (like RG) where term pairs 〈x , y〉

from language i have been translated as 〈x ′, y ′〉 into a different language,

such that both x ′ and y ′ belong to the same language. An example

is 〈casa , chiesa〉, 〈house, church〉, or 〈maison , église〉. Conversely, in a

cross-lingual setting (like SemEval 2017, Task 2 - cross-lingual subtask),

x ′ is a term from a language different from that of y ′, like in the pair

〈casa , church〉.
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datasets issues. Many issues can afflict any dataset, as it is

largely acknowledged in literature (Camacho-Collados, Pilehvar, Collier,

et al., 2017b; Camacho-Collados, Pilehvar, and Navigli, 2015a; Hill,

Reichart, and Korhonen, 2015; E. H. Huang et al., 2012). The oldest

datasets are too small (in the order of few tens of word pairs) to

attain full statistic significance; until recent years, typically similarity

and relatedness (association) judgements have been conflated, thereby

penalising models concerned with similarity. Additionally, for such

datasets the correlation between systems’ results and human rating

is higher than human inter-rater agreement. Since human ratings are

largely acknowledged as the upper bound to artificial performance in this

kind of task, it has been raised that such datasets are not fully reliable

benchmarks to investigate the correlation between human judgement

and systems’ output. Furthermore, a tradeoff exists between the size

of the dataset and the quality of the annotation: resources acquired

through human experts annotation typically are more limited in size,

but featured by higher inter-rater agreement (in the order of .80), while

larger datasets suffer from a lower (often with < .7) agreement among

annotators, thus implying overall reduced reliability. We thus decided

to test on all main datasets adopted in literature, to provide the most

comprehensive evaluation, widening the experimental base as much

as possible. The most recent datasets are in principle more controlled

and reliable —SimLex-999, SimVerbs, SemEval-2017, Goikoetxea—, but

still we decided to experiment on all of them, since even RG-65 and

WS-Sim 353 have been widely used until recently.
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4.2.1.2 Competitors and Resolution Strategies

As previously stated, different typologies of resources require different

strategies in order to compute similarity scores. When dealing with

conceptual datasets only the systems that provide conceptual repre-

sentations are taken in consideration, while the word similarity task is

solved by adopting one of four different strategies:

• Max similarity (Equation 2.2): adopted for resources indexed on

concepts.

• Cosine similarity: adopted for resources indexed on words.

• Ranked-similarity (Equation 4.1): adopted for resources that share

both terminological and conceptual representations in the distri-

butional same space.

• Mf-sense similarity (Most Frequent Sense): adopted as baseline

for LessLex in order to better evaluate the effectiveness of the

ranked-similarity approach. We select the most frequent sense of

the input terms based on the connectivity of the considered sense

in BabelNet.The underlying rationale is, in this case, to study how

this strategy to pick up senses compares with LessLex vectors,

that are built from word embeddings that usually tend to encode

the most frequent sense of each word.

Moreover, since the ranked-similarity can be applied only if both input

terms are available in CNN (so that we can compute the ranks among

their senses), we propose another setup for the usage of LessLex. In the

first setup we only make use of the ranked-similarity, so in this setting

if at least one given term is not present in CNN we discard the pair
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Table 4.5: List of the resources considered in the experimentation and the algorithm we
employed for the resolution of the word similarity task.

Description Algorithm

LL-M LessLex mf-sense similarity

LL-O LessLex (strategy for handling OOV terms) ranked-similarity

LLX LessLex ranked-similarity

CNN 1 ConceptNet Numberbatch word embeddings cosine similarity

NAS 2 NASARI sense embeddings max similarity

JCH 3 JOINTChyb bilingual word embeddings cosine similarity

SSE 4 SenseEmbed sense embeddings max similarity

N2V 5 NASARI sense embeddings + Word2Vec word embeddings ranked-similarity

1 Robyn Speer, Chin, and Havasi (2017) (http://github.com/commonsense/conceptnet-numberbatch v.
16.09)

2 Camacho-Collados, Pilehvar, and Navigli (2016) (http://lcl.uniroma1.it/nasari/ v. 3.0)
3 Goikoetxea, Soroa, and Agirre (2018) (http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html)
4 Iacobacci, Pilehvar, and Navigli (2015) (http://lcl.uniroma1.it/sensembed/)
5 Word2Vec embeddings trained on UMBC (http://lcl.uniroma1.it/nasari/)

as not covered by the resource. In the second setup (LessLex-OOV,

designed to deal with Out Of Vocabulary terms) we implemented a

fallback strategy to ensure higher coverage: in this case, in order to cope

with missing vectors in CNN, we adopt the max-similarity as similarity

measure in place of the ranked-similarity.

A summary of the selected competitors and their strategies is reported

in Table 4.5. The results obtained by employing LessLex and LessLex-

OOV are compared to those obtained by employing NASARI and

CNN, to elaborate on similarities and differences with such resources.

Additionally, we report the correlation indices obtained by experiment-

ing with other word and sense embeddings that either are trained to

perform on specific datasets (JOINTChyb by Goikoetxea, Soroa, and

Agirre (2018)), or that directly compare to our resource, as containing

both term-level and sense-level vector descriptions (SenseEmbed and

NASARI2Vec). A clarification must be done about SenseEmbed.

Since in this resource both terminological and sense vectors co-exist

in the same space, the application of the ranked-similarity would be

fitting. However, in SenseEmbed every sense representation is actually

http://github.com/commonsense/conceptnet-numberbatch
http://lcl.uniroma1.it/nasari/
http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html
http://lcl.uniroma1.it/sensembed/
http://lcl.uniroma1.it/nasari/
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indexed on a pair 〈term, sense〉, so that different vectors may correspond

to a given sense. In the ranked-similarity, when computing the distance

between a term t and its senses, we retrieve the sense identifiers from

BabelNet, so to obtain from SenseEmbed the corresponding vector

representations. Unfortunately, however, most senses si returned by

BabelNet have no corresponding vector in SenseEmbed associated to

the term t (i.e., indexed as 〈t, si〉). This fact directly implies a reduced

coverage, undermining the performances of SenseEmbed. We then

realized that the ranked-similarity is an unfair and not convenient strat-

egy to test on SenseEmbed (in that it forces to use it to some extent

improperly), so we resorted to using the max similarity instead.

4.2.2 Results

All tables report Pearson and Spearman correlations (denoted by r and

ρ, respectively); dashes indicate that a given resource does not deal with

the considered input, either because lacking of sense representation, or

because lacking of cross-lingual vectors. Similarity values for uncovered

pairs were set to the middle point of the similarity scale. Additionally,

in Appendix A we report the results obtained by considering only the

word pairs covered by all the resources: such figures are of interest, since

they allow examining the results obtained from each resource ‘in purity’,

by focusing only on their representational precision.

All top scores are marked with bold fonts.

multilingual/cross-lingual rg-65 dataset. The re-

sults obtained over the multilingual and cross-lingual RG-65 dataset
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Table 4.6: Results on the multilingual and cross-lingual RG-65 dataset, consist-
ing of 65 word pairs. As regards as monolingual correlation scores
for the English language, we report results for similarity computed
by starting from terms (at words level), as well as results with sense
identifiers (marked as senses). The rest of the results were obtained
by using word pairs as input. Reported figures express Pearson (r)
and Spearman (ρ) correlations.

RG-65
LL-M LLX LL-O CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

[Word] eng .64 .59 .91 .86 .91 .86 .91 .90 .67 .67 .84 .86 .75 .81 .80 .75

[Sense] eng - - .94 .91 .94 .91 - - .81 .76 - - .72 .76 .78 .73

fas (N) .75 .72 .75 .75 .73 .70 .76 .76 .58 .50 - - .66 .66 - -

spa (N) .82 .82 .93 .93 .93 .93 .92 .93 .88 .87 .80 .84 .82 .85 - -

por-fas (N) .71 .69 .85 .85 .81 .79 .87 .86 .52 .62 - - .70 .66 - -

fra-por (N) .82 .83 .92 .89 .92 .89 .93 .88 .69 .67 - - .81 .74 - -

fra-fas (N) .73 .72 .84 .84 .86 .84 .86 .85 .47 .58 - - .72 .71 - -

fra-spa (N) .81 .80 .93 .91 .93 .91 .93 .89 .79 .82 - - .88 .86 - -

fra-deu (N) .81 .84 .90 .89 .90 .89 .88 .87 .77 .77 - - .77 .75 - -

spa-por (N) .83 .83 .93 .91 .93 .91 .93 .91 .75 .79 - - .79 .79 - -

spa-fas (N) .71 .70 .86 .87 .82 .80 .86 .86 .50 .64 - - .72 .79 - -

eng-por (N) .74 .71 .94 .90 .94 .90 .92 .90 .78 .77 - - .80 .76 - -

eng-fas (N) .67 .62 .86 .85 .84 .81 .86 .87 .47 .56 - - .73 .71 - -

eng-fra (N) .71 .70 .94 .92 .94 .92 .92 .91 .76 .73 - - .81 .75 - -

eng-spa (N) .72 .71 .93 .93 .93 .93 .93 .92 .85 .85 .83 .86 .80 .85 - -

eng-deu (N) .74 .72 .91 .89 .91 .89 .89 .89 .70 .74 - - .76 .80 - -

deu-por (N) .87 .84 .91 .87 .91 .87 .91 .87 .73 .76 - - .76 .72 - -

deu-fas (N) .77 .74 .85 .85 .87 .84 .85 .84 .58 .65 - - .78 .80 - -

deu-spa (N) .84 .85 .91 .90 .91 .90 .90 .89 .71 .79 - - .79 .80 - -

are illustrated in Table 4.6. RG-65 includes a multilingual dataset and

a cross-lingual one. As regards as the former one, both LessLex and

LessLex-OOV obtain analogous correlation with respect to CNN

when considering term pairs; LessLex and LessLex-OOV substan-

tially outperform NASARI, SenseEmbed and NASARI2Vec while

considering sense pairs (Hansen Andrew Schwartz and Gomez, 2011).

Of course CNN is not evaluated in this setting, since it only includes

representations for terms. As regards as the latter subset, containing

cross-lingual files, figures show that both CNN and LessLex obtained

high correlations, higher than the competing resources providing mean-

ing representations for the considered language pairs.
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Table 4.7: Results on the WS-Sim-353 dataset, where we experimented on the
201 word pairs (out of the overall 353 elements) that are acknowl-
edged as appropriated for computing similarity. Reported figures
express Pearson (r) and Spearman (ρ) correlations.

WS-Sim-353
LL-M LLX LL-O CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (N) .67 .65 .78 .78 .78 .78 .78 .79 .60 .61 .72 .72 .69 .73 .71 .70

ita (N) .67 .68 .70 .73 .74 .78 .69 .73 .66 .65 .60 .62 .66 .73 - -

deu (N) .73 .71 .63 .68 .76 .77 .82 .81 .64 .63 - - .62 .60 - -

rus (N) .72 .70 .64 .62 .73 .75 .65 .63 .63 .61 - - .60 .60 - -

multilingual ws-sim-353 dataset. The results on the

multilingual WS-Sim-353 dataset are presented in Table 4.7. Results

on this data differ according to the considered language: interestingly

enough, for the English language, the results computed via LessLex are

substantially on par with those obtained by employing CNN vectors. As

regards as the remaining translations of the dataset, CNN and LessLex

achieve the highest correlations also on the Italian, German and Russian

languages. Different from other experimental settings (see, e.g., the

RG-65 dataset), the differences in correlation are more consistent, with

LessLex obtaining top correlation scores for Italian and Russian, and

CNN for German.

multilingual simlex-999 dataset. The results obtained

on the SimLex-999 dataset are reported in Table 4.8. We face here

twofold results: as regards as the English and the Italian translation, we

recorded better results when using the LessLex vectors, with consistent

advantage over competitors on English verbs. As regards as English

adjectives, the highest correlation was recorded when employing the

LessLex Most Frequent Sense vectors (LL-M column). As regards as

Italian, as in the WordSim-353 dataset, the LessLex-OOV strategy

obtains correlations with human ratings that are higher or on par with



112 lesslex

Table 4.8: Results on the multilingual SimLex-999, including overall 999 word
pairs, with 666 nouns, 222 verbs and 111 adjectives for the English,
Italian, German and Russian languages. Reported figures express
Pearson (r) and Spearman (ρ) correlations.

SimLex-999
LL-M LLX LL-O CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (N) .51 .50 .69 .67 .69 .67 .66 .63 .40 .38 .55 .53 .52 .49 .46 .43

eng (V) .62 .56 .67 .65 .67 .65 .61 .58 - - .51 .50 .54 .49 - -

eng (A) .84 .83 .82 .79 .82 .79 .80 .78 - - .63 .62 .55 .51 - -

eng (*) .57 .55 .70 .69 .70 .69 .67 .65 - - .55 .54 .53 .49 - -

ita (N) .50 .49 .66 .63 .64 .63 .64 .61 .45 .46 .47 .47 .56 .49 - -

ita (V) .58 .52 .69 .63 .69 .63 .67 .58 - - .54 .47 .54 .44 - -

ita (A) .65 .58 .74 .69 .74 .69 .74 .66 - - .39 .30 .57 .47 - -

ita (*) .51 .47 .66 .62 .65 .62 .65 .61 - - .46 .44 .54 .47 - -

deu (N) .58 .56 .65 .63 .65 .64 .66 .65 .41 .42 - - .47 .43 - -

deu (V) .48 .42 .54 .45 .54 .46 .63 .57 - - - - .43 .37 - -

deu (A) .66 .63 .66 .65 .69 .68 .77 .75 - - - - .43 .26 - -

deu (*) .55 .52 .62 .59 .63 .61 .67 .65 - - - - .45 .38 - -

rus (N) .43 .42 .52 .48 .51 .50 .53 .48 .20 .22 - - .26 .21 - -

rus (V) .31 .19 .25 .18 .27 .20 .60 .55 - - - - .23 .20 - -

rus (A) .25 .26 .25 .25 .27 .28 .69 .69 - - - - .04 .04 - -

rus (*) .36 .32 .43 .37 .42 .39 .56 .51 - - - - .23 .13 - -

Table 4.9: Results on the SimVerbs-3500 dataset, containing 3, 500 verb pairs.
Reported figures express Pearson (r) and Spearman (ρ) correlations.

SimVerbs
LL-M LLX LL-O CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (V) .58 .56 .67 .66 .67 .66 .62 .60 - - .56 .56 .45 .42 .31 .30

respect to those obtained by using LessLex vectors. In the second half

of the dataset CNN performed better on German and Russian.

simverbs-3500 dataset. Results obtained while testing on

the SimVerbs-3500 dataset are reported in Table 4.9. In this case it

is straightforward to notice that the results obtained by LessLex

outperform those by all competitors, with a gain of .05 in Pearson r, and

.06 in Spearman correlation over CNN, on this large set of 3500 verb

pairs. It was not possible to use NASARI vectors, that only exist for
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Table 4.10: Results on the SemEval 17 Task 2 dataset, containing 500 noun
pairs. Reported figures express Pearson (r) and Spearman (ρ)
correlations.

SemEval 17
LL-M LLX LL-O CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (N) .71 .72 .79 .80 .77 .81 .79 .79 .64 .65 .50 .45 .69 .73 .64 .64

deu (N) .73 .72 .69 .68 .71 .75 .70 .68 .62 .62 - - .60 .61 - -

ita (N) .74 .75 .66 .65 .76 .79 .63 .61 .72 .73 .54 .50 .70 .73 - -

spa (N) .77 .79 .67 .66 .74 .80 .63 .62 .72 .73 .50 .48 .68 .71 - -

fas (N) .67 .67 .43 .47 .72 .75 .39 .35 .54 .53 - - .60 .63 - -

deu-spa (N) .76 .77 .69 .68 .74 .79 .66 .64 .54 .55 - - .65 .68 - -

deu-ita (N) .75 .76 .68 .67 .75 .79 .65 .63 .53 .65 - - .62 .62 - -

eng-deu (N) .75 .75 .75 .75 .75 .79 .74 .73 .51 .62 - - .63 .63 - -

eng-spa (N) .75 .76 .73 .73 .76 .82 .70 .70 .66 .70 .46 .44 .59 .61 - -

eng-ita (N) .74 .76 .72 .72 .76 .82 .69 .69 .63 .71 .38 .36 .69 .73 - -

spa-ita (N) .76 .77 .67 .66 .76 .81 .63 .61 .65 .72 .41 .39 .59 .61 - -

deu-fas (N) .72 .73 .55 .52 .73 .76 .51 .47 .39 .52 - - .63 .65 - -

spa-fas (N) .72 .73 .55 .52 .75 .79 .50 .47 .47 .61 - - .66 .70 - -

fas-ita (N) .72 .73 .53 .50 .75 .78 .49 .45 .43 .58 - - .66 .69 - -

eng-fas (N) .71 .72 .58 .55 .74 .79 .54 .51 .42 .59 - - .67 .70 - -

noun senses; also notably, the results obtained by employing the baseline

(LL-M) strategy outperformed those obtained through SenseEmbed

and NASARI2Vec.

sem eval 17 task 2 dataset. The figures obtained by ex-

perimenting on the “SemEval 17 Task 2: Multilingual and Cross-lingual

Semantic Word Similarity” dataset are provided in Table 4.10. This

benchmark is a multilingual dataset including 500 word pairs (nouns

only) for monolingual versions, and 888 to 978 word pairs for the cross-

lingual ones.

These results are overall favorable to LessLex in the comparison with

CNN and with all other competing resources. Interestingly enough, while

running the experiments with CNN vectors we observed even higher

correlation scores than those obtained in the SemEval 2017 evaluation

campaign (Camacho-Collados, Pilehvar, Collier, et al., 2017b; Robyn
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Speer, Chin, and Havasi, 2017). At that time, such figures scored highest

on all multilingual tasks (with the exception of the Farsi language) and

on all cross-lingual settings (with no exception). To date, as regards as

the cross-lingual setting, LessLex correlations indices are constantly

higher than those by competitors, including CNN. We observe that the

scores obtained by employing the baseline with most frequent senses

(LL-M) are always ameliorative with respects to all results obtained

by experimenting with NASARI, JOINTChyb, SenseEmbed and

NASARI2Vec (with the only exception of the ρ score obtained by

SSE on the English monolingual dataset).

multilingual/crosslingual goikoetxea dataset. The

results obtained by testing on the Goikoetxea dataset are reported in

Table 4.11. The dataset includes new variants for three popular dataset:

three cross-lingual versions for the RG-65 dataset (including the Basque

language, marked as ‘eus’ in the Table); the six cross-lingual combina-

tions of the Basque, Italian and Spanish translations of the WS-Sim-353

dataset; and three cross-lingual translations of the SimLex-999 dataset,

including its English, Italian and Spanish translations.

Results are thus threefold. As regards as the first block on the RG-65

dataset, LessLex results outperform all competitors (to a smaller extent

on versions involving the Basque language), including JOINTChyb, the

best model by Goikoetxea, Soroa, and Agirre (2018). In the comparison

with CNN, LessLex vectors achieve better results, with higher correla-

tion for cases involving Basque, on par on the English-Spanish dataset.

As regards as the second block (composed of cross-lingual translations of

the WS-Sim-353 dataset), we record that the LessLex-OOV strategy
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Table 4.11: Results on the Goikoetxea dataset. The dataset includes vari-
ants of the RG-65 (first block), WS-Sim-353 (second block) and
SimLex-999 (third block) datasets. The ’eus’ abbreviation indicates
the Basque language. Reported figures express Pearson (r) and
Spearman (ρ) correlations.

Goikoetxea
LL-M LLX LL-O CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

spa-eus (N) .74 .72 .42 .67 .76 .77 .66 .61 .71 .74 .73 .72 .61 .71 - -

eng-eus (N) .74 .74 .41 .77 .89 .91 .77 .73 .89 .88 .88 .87 .81 .83 - -

eng-spa (N) .72 .71 .93 .93 .93 .93 .93 .93 .77 .82 .83 .86 .64 .85 - -

eus-ita (N) .27 .68 .42 .74 .24 .71 .51 .53 .49 .56 .52 .58 .20 .58 - -

spa-ita (N) .29 .66 .29 .76 .29 .74 .63 .70 .53 .57 .54 .60 .21 .59 - -

spa-eus (N) .31 .74 .40 .78 .29 .78 .55 .56 .59 .66 .69 .73 .23 .64 - -

eng-ita (N) .30 .64 .27 .77 .32 .76 .67 .74 .47 .52 .59 .64 .21 .59 - -

eng-eus (N) .30 .70 .39 .79 .29 .78 .56 .57 .52 .60 .71 .75 .23 .64 - -

eng-spa (N) .34 .66 .27 .79 .40 .77 .70 .76 .52 .56 .68 .73 .29 .64 - -

eng-spa (N) .49 .48 .66 .64 .65 .64 .64 .62 .36 .46 .54 .51 .53 .50 - -

eng-spa (V) .54 .50 .61 .59 .62 .60 .58 .56 - - .43 .43 .52 .49 - -

eng-spa (A) .72 .73 .73 .74 .72 .75 .74 .74 - - .56 .55 .53 .47 - -

eng-spa (*) .53 .51 .66 .64 .65 .65 .64 .63 - - .50 .52 .53 .49 - -

eng-ita (N) .52 .52 .70 .68 .70 .68 .68 .66 .36 .45 .51 .50 .54 .51 - -

eng-ita (V) .49 .40 .57 .51 .57 .51 .67 .62 - - .47 .51 .44 .33 - -

eng-ita (A) .75 .74 .79 .78 .79 .78 .77 .72 - - .42 .43 .57 .45 - -

eng-ita (*) .50 .46 .65 .62 .65 .63 .68 .66 - - .48 .50 .51 .43 - -

spa-ita (N) .53 .53 .67 .65 .67 .66 .66 .64 .34 .45 .45 .45 .54 .52 - -

spa-ita (V) .44 .39 .51 .46 .51 .46 .63 .60 - - .42 .44 .43 .34 - -

spa-ita (A) .68 .66 .73 .71 .72 .73 .73 .69 - - .41 .45 .57 .48 - -

spa-ita (*) .49 .46 .61 .58 .61 .59 .66 .64 - - .44 .45 .50 .45 - -

obtained the top Spearman correlation scores, coupled to poor Pearson

correlation scores; while CNN and JCH obtain the best results as re-

gards as the latter coefficients. As regards as the last block of results in

Table 4.11 (containing translations for the SimLex-999 dataset), we first

observe that comparing the obtained figures is not simple: we report

the figures obtained by Goikoetxea, Soroa, and Agirre (2018) with no

distinction in POS. However, if we focus on results on nouns (two thirds

of the SimLex-999 dataset), LessLex vectors obtain the best results,

while it is not easy to determine whether LessLex or CNN vectors

provided the overall best results on the other parts of speech.
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4.2.2.1 Discussion

We overall experimented on nine different languages (deu, eng, eus, fas,

fra, ita, por, rus, spa) and various cross-lingual combinations. Collec-

tively, such tests constitute a widely varied experimental setting, to

the best of our knowledge the largest on the semantic similarity task.

The obtained results authorise to state that LessLex is at least on par

with competing state-of-the-art resources, although we also noticed that

some room still exists for further improvements, such as the coverage

on individual languages (e.g., Russian and German).

Let us start by considering the results on the multilingual WS-Sim-

353 and on the SimLex datasets (Tables 4.7 and 4.8, respectively). The

results obtained through LessLex always improve on those obtained by

employing the sense embeddings by SenseEmbed and NASARI2Vec,

that provide term and sense descriptions embedded in the same semantic

space, and are thus closer to our resource. Also the comparison with

NASARI is favorable to LessLex. In the comparison with CNN, we

note that while in the English language LessLex and LessLex-OOV

scores either outperform or closely approach those obtained through

CNN, in other languages our vectors suffer from the reduced and less

rich sense inventory of BabelNet, that in turn determines a lower quality

for our vectors. This can be easily figured if one considers that a less

rich synset contains less terms to be plugged into our vectors, thereby

determining an overall poorer semantic coverage. The poor results

obtained by employing LessLex on the German and Russian subsets

of the WS-Sim-353 and SimLex-999 datasets probably stem from this

sort of limitation.
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A consistent difference between LessLex ranked-similarity and the

LessLex-OOV strategy can be observed when a sense is available in

BabelNet, but not the corresponding vector in CNN: the LessLex-OOV

strategy basically consists in resorting to the maximization approach

when —due to the lack of a terminological description associated to

the sense at hand— it is not possible to compute the ranked-similarity.

This strategy was executed in around 9% of cases (σ = 12%) over all

datasets, ranging from 0% on verbs in the SimVerbs-3500 dataset, up

to around 50% for the Farsi nouns in the SemEval-2017 monolingual

dataset. Although not employed often, this strategy contributed in many

cases to obtain top scoring results, improving on those computed with

plain ranked-similarity with LessLex, and also in some cases on CNN

and NASARI, as illustrated in both the monolingual and cross-lingual

portions of the SemEval-2017 dataset (Table 4.10).

Cases where results obtained through LessLex improve over those

obtained with CNN are important to assess LessLex, in that they

confirm that the control strategy for building our vectors is effective,

and that our vectors contain precise and high quality semantic descrip-

tions. In this sense, obtaining higher or comparable results by using

sense embeddings with respect to using word embeddings (with sense

embeddings featuring an increased problem space with respect to the

latter ones) is per se an achievement. Additionally, our vectors are

grounded on BabelNet synset identifiers, which allows to address each

sense as part of a large semantic network, providing further information

on senses with respect to the meaning descriptions conveyed through

the 300-dimensional vectors. While the LessLex-OOV is a run-time

strategy concerned with the usage of LessLex to compare sense pairs,
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the quality of our vectors is determined by the enrichment step. More

specifically, the coverage of our vectors depends on the strategy devised

to build T + because the coverage is determined both by the number

of term-level vectors, and by the number of sense vectors associated to

each term, so that in a sense the coverage of LessLex is determined by

the size of T +. Additionally, we register that the elements added to the

extended set T + are often of high quality, as proven, for example, by

the sense-oriented task of the RG-65 dataset, where senses were assessed

(Table 4.6, line 2): in this setting, the correlation indices for LessLex

and LessLex-OOV vectors score highest over all semantic resources,

including NASARI, SenseEmbed and NASARI2Vec.

Also results achieved while testing on the Goikoetxea dataset seem

to confirm that our LL-O strategy allows to deal with languages with

reduced (with respect to English) coverage and/or sense inventory in

either BabelNet or ConceptNet: in 12 out of the overall 18 tests on this

dataset, the LessLex-OOV strategy earned at least one top scoring

correlation index (either r or ρ, as shown in Table 4.11). The comparison

with the recent JOINTChyb embeddings shows that the adoption

of a shared conceptual —multilingual— level can be beneficial and

advantageous with respect to building specialised pairs of embeddings.

Less relevant under a cross-lingual perspective, but perhaps relevant

in order to fully assess the strengths of our resource, LessLex vectors

achieved by far highest correlation scores on English verbs (please refer

to Table 4.8, line 2 and Table 4.9). The comparison with previous

literature seems to corroborate this fact (Gerz et al., 2016): in fact, to

the best of our knowledge previous state-of-the-art systems achieved
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around .624 Spearman correlation (Faruqui and Dyer, 2015; Mrkšić

et al., 2016).

In order to further deepen the analysis of results, it is instructive to

compare the results reported in Tables 4.6-4.11 with those obtained

on the fraction of dataset covered by all considered resources, and

provided in Appendix A (Tables A.1-A.6). That is, for each dataset

we re-run the experiments for all considered resources by restricting

to compare only term pairs actually covered by all resources. We will

call this evaluation metrics CbA condition hereafter (from ‘Covered

by All’); as opposed to the case in which a mid-scale similarity value

was assigned to uncovered terms, referred to as MSV condition in the

following (from ‘Mid Scale Value’). As mentioned, the CbA condition

allows evaluating the representational precision of the resources at

stake independent of their coverage, whilst a mixture of both aspects

is grasped in the the MSV condition. In the leftmost column of Tables

in Appendix A we report the coverage for each test. As we can see,

coverage is diverse across datasets, ranging from .61 (averaged on all

variants, with a minimum on the Farsi language, in the order of .34

and all translations involving the Farsi) in the SemEval-2017 dataset

(Table A.5) to 1.0 in the SimVerbs-3500 dataset (Table A.3). Other

notable cases in which relevant variations in coverage were observed

are Russian verbs and adjectives in the SimLex-999 dataset, with .20

and .06 coverage, respectively (Table A.4). In general, as expected, the

recorded correlations are improved with respect to results registered for

the corresponding (same dataset and resource) test in the MSV setup,

although spot pejorative cases were observed, as well (see, e.g., CNN

results for Italian adjectives, in the SimLex-999 dataset, reported in
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Table 4.12: The top half Table shows a synthesis of the results obtained in the
Mid-Scale similarity Value (MSV) experimental condition, whose
details have been illustrated in Tables 4.6-4.11; at the bottom we
provide a synthesis of the results obtained in the Covered by All
(CbA) experimental condition, illustrated in detail in Tables A.1-
A.6.

Mid-Scale similarity Value (MSV) Experimental Condition

LL-M LLX LL-O CNN NAS JCH SSE N2V

Spearman ρ 7 32 41 33 1 3 0 0

Pearson r 1 32 50 24 0 0 0 0

Total 8 64 91 57 1 3 0 0

Covered by All (CbA) Experimental Condition

LL-M LLX LL-O CNN NAS JCH SSE N2V

Spearman ρ 1 61 - 30 0 0 0 0

Pearson r 2 63 - 22 0 0 0 0

Total 3 124 - 52 0 0 0 0

Table A.4). For example, if we consider the poorly covered SemEval-2017

dataset, we observe the following rough improvements (average over all

translations, and both r and ρ metrics) in the correlation indices: .20 for

LessLex, .22 for CNN, .09 for NASARI, .30 for JOINTChyb (that

does not cover all translations, anyway), .07 for SenseEmbed, and .09

for NASARI2Vec (only dealing with nouns).

In order to synthetically examine how the CbA experimental condition

affected results with respect to the MSV condition, we adopt a rough

index, simply counting the number of test results (we consider as a

separate test result each Pearson and each Spearman score in Tables A.1-

A.6) where each resource obtained highest scores.7 We thus count overall

152 tests (15 in the SemEval-2017 dataset, 4 in the WS-Sim-353, 1 in

the SimVerbs-3500, 16 in the SimLex-999, 19 in the RG-65, and 21 in

the Goikoetxea; for each one we consider as separated r and ρ scores).

Provided that in several cases we recorded more than one single resource

attaining top scores, the impact of the reduced coverage (CbA condition)

7 Of course we are aware that this is only a rough index, that e.g., does not account
for the datasets size (varying from 65 to 3, 500 word pairs) or the involved POS, and
mixing Pearson and Spearman correlation scores.
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vs. MSV condition is presented in Table 4.12. In the MSV condition

we have LessLex-OOV achieving 91 top scoring results, followed by

LessLex with 64 and CNN with 57. In the CbA experimental condition,

the LessLex-OOV strategy was never executed (since only the actual

coverage of all resources was considered, and no strategy for handling

out-of-vocabulary terms was thus necessary), and LessLex obtained

124 top scoring results, against 52 for CNN. In the latter condition

there were less cases with a tie. All in all, we interpret the different

correlation scores obtained in the two experimental conditions as an

evidence that LessLex embeddings are featured by good coverage (as

suggested by the results obtained in the MSV condition) and lexical

precision (as suggested by the results obtained in the CbA condition),

improving on those provided by all other resources at stake.

Our approach showed to scale well to all considered languages, under

the mild assumption that these are covered by BabelNet, and available in

the adopted vectorial resource; when such conditions are met, LessLex

vectors can be in principle built on a streamlined, on-demand, basis, for

any language and any POS.

4.3 using lesslex

It is acknowledged that the intrinsic evaluation via word similarity can

be sometimes not sufficient to assess the quality of embeddings (Chiu,

Korhonen, and Pyysalo, 2016). For this reason we decided to implement

a deeper evaluation and to study how LessLex performs when employed

to tackle two extrinsic tasks, namely the Contextual Similarity and the

Semantic Text Similarity.
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4.3.1 LessLex and Contextual Similarity

The contextual similarity task is a variant of the word similarity task in

which the two words in input are given in context, meaning that they

are presented together with the piece of text in which they occur. We

tested on two different datasets, namely the Stanford’s Contextual Word

Similarities Datastet (SCWS) (E. H. Huang et al., 2012), and on the

more recent Word-in-Context Dataset (WiC) (Pilehvar and Camacho-

Collados, 2019). In the following we report the results obtained on

the two datasets by experimenting with LessLex and NASARI2Vec,

which is the only competing resource suitable to implement the ranked

similarity along with its contextual variant.

4.3.1.1 Contextual Similarity on SCWS

The SCWS dataset defines the problem as a similarity task, where each

input record contains two sentences in which two distinct target words

t1 and t2 are used. The task requires to provide the pair 〈t1, t2〉 with

a similarity score by taking into account the context where the given

terms occur. The dataset consists of 2, 003 instances, divided into 1, 328

instances whose targets are a noun pair, 399 a verb pair, 97 adjectival

pair, 140 contain a verb-noun pair, 30 contain a noun-adjective pair, and

9 a verb-adjective pair. To test on the SCWS dataset we employed both

the ranked-similarity (rnk-sim) and the contextual ranked-similarity

(c-rnk-sim), a variant specifically devised to account for contextual

information. As regards as the latter one, given two sentences 〈S1, S2〉,

we first computed the context vectors 〈−→ctx1,
−→
ctx2〉 with a bag-of-words
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Table 4.13: Results obtained by experimenting on the SCWS dataset. Figures
report the Spearman correlations with the gold standard divided by
part of speech. In the top of table we report our own experimental
results, while in the bottom results from literature are provided.

System ALL N-N N-V N-A V-V V-A A-A

LessLex (rnk-sim) 0.695 0.692 0.696 0.820 0.641 0.736 0.638

LessLex (c-rnk-sim) 0.667 0.665 0.684 0.744 0.643 0.725 0.524

NASARI2Vec (rnk-sim) - 0.384 - - - - -

NASARI2Vec (c-rnk-sim) - 0.471 - - - - -

SenseEmbed1 0.624 - - - - - -

Huang et al. 50d2 0.657 - - - - - -

Arora at al.3 0.652 - - - - - -

MSSG.300D.6K4 0.679 - - - - - -

MSSG.300D.30K4 0.678 - - - - - -

1 Iacobacci, Pilehvar, and Navigli (2015)
2 E. H. Huang et al. (2012)
3 Arora et al. (2018)
4 Neelakantan et al. (2014), figures reported from Mu, Bhat, and Viswanath (2017)

approach, that is by averaging all the terminological vectors of the

lexical items contained therein:

−→
ctxi =

∑t∈Si
~t

N
(4.2)

where N is the number of words in the sentence Si. The two context

vectors are then used to perform the sense rankings for the target words,

in the same fashion as in the original ranked-similarity:

c-rnk-sim(t1, t2,
−→
ctx1,

−→
ctx2) =

max
~ci∈s(t1)
~cj∈s(t2)


(1− α) · ( rank(~ci)︸ ︷︷ ︸

w.r.t.
−→
ctx1

+ rank(~cj)︸ ︷︷ ︸
w.r.t.

−→
ctx2

)−1

+
(

α · cos-sim(~ci,~cj)
) .

(4.3)

results The results obtained are reported in Table 4.13.8 In

spite of the simplicity of the system employing LessLex embeddings,

8 Parameters setting: in rnk-sim and in the c-rnk-sim α was set to 0.5 for both LessLex
and NASARI2Vec.
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Table 4.14: Correlation scores obtained with LessLex on different subsets of
data obtained by varying standard deviation in human ratings.
The reported figures show higher correlation when testing on the
most reliable (with smaller standard deviation) portions of the
dataset. To interpret the standard deviation values, we recall that
the original ratings collected in the SCWS dataset were expressed
in the range [0.0, 10.0].

σ c-rank-sim
(r)

rank-sim
(r)

nof-items

≤ 0.5 0.83 0.82 39

≤ 1.0 0.85 0.86 82

≤ 1.5 0.85 0.85 165

≤ 2.0 0.82 0.84 285

≤ 2.5 0.68 0.83 518

≤ 3.0 0.68 0.79 903

≤ 3.5 0.67 0.75 1, 429

≤ 4.0 0.64 0.71 1, 822

< 5.0 0.63 0.69 2, 003

our results overcome those reported in literature, where by far more

complex architectures were used. However, such scores are higher than

the agreement among human raters, which can be thought of as an

upper bound to systems’ performance. The Spearman correlation among

human ratings (computed on leave-one-out basis, that is by averaging

the correlations between each rater and the average of all other ones) is

reportedly of 0.52 for the SCWS dataset (Chi and Y.-N. Chen, 2018;

Chi, Shih, and Y.-N. Chen, 2018), which can be considered as a poor

inter-rater agreement. Despite this fact, SCWS is considered one of

the standard benchmarks for the task and some interesting insights

can be still be drawn from this experimentation. Also to some extent

surprising is the fact that the simple ranked-similarity (rnk-sim), which
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was intended as a plain baseline, surpassed the contextual ranked-

similarity (c-rnk-sim), more suited for this task.

To further elaborate on our results we then re-run the experiment

by investigating how the obtained correlations are affected by different

degrees of consistency in the annotation. We partitioned the dataset

items based on the standard deviation recorded in human ratings,

obtaining 9 bins, and re-run our system on these, utilizing both metrics,

with same parameter settings as in the previous run. In this case the

Pearson correlation indices were recorded, in order to investigate the

linear relationship between our output and human ratings. As expected,

we obtained higher correlations on the most reliable portions of the

dataset, those with smallest standard deviation (Table 4.14).

However, we still found surprising the obtained results, since the rnk-

sim metrics seems to be more robust than its contextual counterpart.

This is in contrast with literature, where the top scoring metrics, origi-

nally defined by Reisinger and Mooney (2010), also leverage contextual

information (T. Chen et al., 2015; X. Chen, Z. Liu, and Sun, 2014;

E. H. Huang et al., 2012). In particular, the AvgSim metrics (which is

computed as a function of the average similarity of all prototype pairs,

without taking into account the context) is reportedly outperformed by

the AvgSimC metrics, in which terms are weighted by the likelihood of

the word contexts appearing in the respective clusters). The AvgSim and

the AvgSimC directly compare to our rnk-sim and c-rnk-sim metrics,

respectively. In our results, for the lowest levels of standard deviation

(that is, for σ ≤ 2), the two metrics perform in similar way; for growing

values of σ we observe a substantial drop of the c-rank-sim, while the

correlation of the rnk-sim decreases more smoothly. In these cases (for
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Table 4.15: Some descriptive statistics of the WiC dataset. In particular, the
distribution of nouns and verbs, number of instances and unique
words across training, development and test-set of the WiC dataset
are reported.

Split Instances Nouns Verbs Unique Words

Training 5,428 49% 51% 1,256

Dev 638 62% 38% 599

Test 1,400 59% 41% 1,184

σ ≥ 2.5) contextual information seems to be less relevant than pair-wise

similarity of term pairs taken in isolation.

4.3.1.2 Contextual Similarity on WiC

In the WiC dataset the contextual word similarity problem is cast to a

binary classification task: each instance is composed of two sentences

in which a specific target word t is used. The employed algorithm has

to make a decision on whether t assumes the same meaning or not in

the two given sentences. The distribution of nouns and verbs across

training, development and test-set is reported in Table 4.15, together

with figures on number of instances and unique words.

Different from the SCWS dataset, in experimenting on WiC we are

required to decide whether a given term conveys same or different

meaning in their context, as in a binary classification task. Context-

insensitive word embedding models are expected here to approach a

random baseline, while the upper bound, provided by human-level

performance, is 80% accuracy.

We run two experiments, one where the contextual ranked-similarity

was employed, the other with the Rank-Biased Overlap (Webber, Moffat,

and Zobel, 2010). In the former case, we used the contextual ranked-

similarity (Equation 4.3) as the metrics to compute the similarity score,
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and we added a similarity threshold to provide a binary answer. In the

latter case, we designed another simple schema to assess the semantic

similarity between term senses and context. At first we built a context

vector (Equation 4.2) to acquire a compact vectorial description of both

texts at hand, obtaining two context vectors
−→
ctx1 and

−→
ctx2. We then

ranked all senses of the term of interest (based on the cosine similarity

metrics) with respect to both context vectors, obtaining st
1 and st

2, as

the similarity ranking of t senses from
−−→
ctx1 and

−−→
ctx2, respectively. The

Rank-Biased Overlap (RBO) metrics was then used to compare the

similarity between such rankings. Given two rankings st
1 and st

2, RBO

is defined as follows:

RBO(st
1, st

2) = (1− p)
|O|
∑
d=1

pd−1 |Od|
d

, (4.4)

where O is the set of overlapping elements, |Od| counts the number of

overlaps out of the first d elements, and p is a parameter governing how

steep the decline in weights is: setting p to 0 would imply considering

only the top element of the rank. In this setting, a low RBO score can

be interpreted as indicating that senses that are closest to the contexts

are different (thus suggesting that the sense intended by the polysemous

term is different across texts), whilst the opposite case indicates that

the senses more fitting to both contexts are same or similar, thereby

authorizing to judge them as similar. For the task at hand, we simply

assigned same sense when the RBO score exceeded a threshold set to

0.8.9

9 The RBO parameter p has been optimized and set to .9, which is a setting also in
accord with literature (Webber, Moffat, and Zobel, 2010).
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Table 4.16: Results obtained by experimenting on the WiC dataset. Figures
report the accuracy obtained for the three portions of the dataset
and divided by POS.

System Test
Training Development

All Nouns Verbs All Nouns Verbs

Contextualised word embeddings

BERT-large1 68.4 - - - - - -

WSD2 67.7 - - - - - -

Ensemble3 66.7 - - - - -

BERT-large4 65.5 - - - - - -

ELMo-weighted5 61.2 - - - - - -

Context2vec4 59.3 - - - - - -

Elmo4 57.7 - - - - - -

Sense representations

DeConf4 58.7 - - - - - -

SW2V4 58.1 - - - - - -

JBT4 53.6 - - - - -

LessLex (c-rnk-sim) 58.9 59.4 58.8 60.1 60.5 58.0 64.6

LessLex (RBO) 59.2 61.1 59.4 62.9 63.0 62.0 64.6

N2V (c-rnk-sim) - - 54.1 - - 53.2 -

N2V (RBO) - - 60.7 - - 63.4 -

1 Wang et al. (2019)
2 Loureiro and Jorge (2019)
3 Soler, Apidianaki, and Allauzen (2019)
4 Mancini et al. (2017)
5 Ansell, Bravo-Marquez, and Pfahringer (2019)

results The results obtained experimenting on the WiC dataset

are reported in Table 4.16.

Previous results show that this dataset is very challenging for embed-

dings that do not directly grasp contextual information. The results of

systems participating to this task can then been arranged into three main

classes: those adopting embeddings featured by contextualised word

embeddings, those experimenting with embeddings endowed with sense

representations, and those implementing sentence level baselines (Pile-

hvar and Camacho-Collados, 2019). Given that the dataset is balanced

(that is, it comprises an equal number of cases where the meaning of the

polysemous term is preserved/different across sentences), and the fact
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that the task is a binary classification one, the random baseline is 50%

accuracy. Systems employing sense representations (directly comparing

to ours) obtained up to 58.7% accuracy score (Pilehvar and Collier,

2016). On the other side, those employing contextualized word embed-

dings achieved accuracy ranging from 57.7% accuracy (ELMo 1024-d,

from the first LSTM hidden state) to 68.4% accuracy (BERT 1024-d,

24 layers, 340M parameters) (Pilehvar and Camacho-Collados, 2019).

Our resource directly compares with multi-prototype, sense-oriented,

embeddings, namely JBT (Pelevina et al., 2016), DeConf (Pilehvar

and Collier, 2016), and SW2V (Mancini et al., 2017). In spite of the

simplicity of both adopted approaches (c-rnk-sim and RBO), by em-

ploying LessLex vectors we obtained higher accuracy values than those

reported for such comparable resources (listed as ‘Sense representations’

in Figure 4.16).

We also experimented with N2V (with both c-rank-sim and RBO

metrics), whose results are reported for nouns on the training and de-

velopment subsets.10 For such partial results we found slightly higher

accuracy than obtained with LessLex with the RBO metrics. Unfor-

tunately, however, N2V results can be hardly compared to ours, since

the experiments on the test-set were executed through the CodaLab

Competitions framework.11 In fact the design of the competition does

not permit to separate the results for nouns and verbs, as the gold

standard for the test set is not publicly available,12 so that we were not

able to directly experiment on the test-set to deepen comparisons.

10 Parameters setting for NASARI2Vec: in the c-rnk-sim, α was set to 0.7, and the
threshold to 0.8; in the RBO run, p was set to 0.9 and the threshold to 0.9.

11 https://competitions.codalab.org/competitions/20010.
12 As of mid August 2019.

https://competitions.codalab.org/competitions/20010
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4.3.2 LessLex and Semantic Text Similarity

The last downstream task that we selected for the evaluation of LessLex

is the Semantic Text Similarity (STS). Here the goal is to compute

a similarity score between two given portions of text. STS plays an

important role in a plethora of applications such as information retrieval,

text classification, question answering, topic detection, and as such it

is helpful to evaluate to what extent LessLex vectors are suited to a

downstream application.

4.3.2.1 Experimental setup

We provide our results on two datasets popular for this task: the STS

benchmark, and the SemEval-2017 Task 1 dataset, both by Cer et

al. (2017). The former dataset has been built by starting from the

corpus of English SemEval STS shared task data (2012-2017). Sentence

pairs in the SemEval-2017 dataset feature a varied cross-lingual and

multilingual setting, deriving from the Stanford Natural Language for

Inference (SNLI) (Bowman et al., 2015) except for one track (one of two

Spanish-English cross-lingual tasks, referred to as Track 4b. spa-spa),

whose linguistic material has been taken from the WMT 2014 quality

estimation task by Bojar et al. (2014). The translations in this dataset

are the following: Arabic (ara-ara), Arabic-English (ara-eng), Spanish

(spa-spa), Spanish-English (spa-eng), Spanish-English (spa-eng), English

(eng-eng), Turkish-English (tur-eng).

To assess our embeddings in this task, we used the implementation

of the HCTI system, participating in the SemEval-2017 Task 1 (Shao,
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2017), kindly made available by the author.13 HCTI obtained the

overall third place in that SemEval competition. The HCTI system —

implemented by using Keras (Chollet et al., 2015) and Tensorflow (Abadi

et al., 2016)—generates sentence embeddings with twin convolutional

neural networks; these are then compared through the cosine similarity

metrics, and element-wise difference with the resulting values is fed to

additional layers to predict similarity labels. Namely, a Fully Connected

Neural Network is used to transfer the semantic difference vector to a

probability distribution over similarity scores. Two layers are employed

herein, the first one using 300 units with tanh activation function; the

second layer is charged to compute the (similarity label) probability dis-

tribution with 6 units combined with softmax activation function. While

the original HCTI system employs GloVe vectors (Pennington, Socher,

and Manning, 2014), we used LessLex vectors in our experimentation.

In order to actually compare only the employed vectors by leaving

unaltered the rest of the HCTI system, we adopted the same parameter

setting as available in the software bundle implementing the approach

proposed in (Shao, 2017). We were basically able to reproduce the

results of the paper, except for the hand-crafted features; however, based

on experimental evidence, these did not seem to produce significant

improvements in the system’s accuracy.

We devised two simple strategies to choose the word-senses to be

actually fed to the HCTI system. In the first case we built the context

vector (as illustrated in Equation 4.2), and selected for each input term

the sense closest to such vector. The same procedure has been run on

both texts being compared for similarity. In the following we refer to

13 http://tiny.cc/dstsaz.

http://tiny.cc/dstsaz
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this strategy as to c-rank. In the second case we selected for each input

term the sense closest to the terminological vector, in the same spirit as

in the first component of the ranked similarity (rnk-sim, Equation 4.1).

In the following this strategy is referred to as t-rank. As mentioned,

in the original experimentation two runs of the HCTI system were

performed: one exploiting MT to translate all sentences into English,

and another one with no MT, but performing a specific training on each

track, depending on the involved languages Shao, 2017, p.132. Since

we are primarily interested in comparing LessLex and GloVe vectors,

rather than the quality of services for MT, we experimented in the

condition with no MT. However, in this setting the GloVe vectors could

not be directly used to deal with the cross-lingual tracks of the SemEval-

2017 dataset. Specific retraining (although with no handcrafted features)

was performed by the HCTI system using the GloVe vectors on the

multilingual tracks. In experimenting with LessLex vectors, the HCTI

system was trained only on the English STS benchmark dataset also to

deal with the SemEval-2017 dataset: that is, no Machine Translation

step nor any specific re-training was performed in experiments with

LessLex vectors to deal with cross-lingual tracks.

4.3.2.2 Results

Results are reported in Table 4.17, where the correlation scores obtained

by experimenting with LessLex and GloVe vectors are compared.

Let us start by considering the results obtained by experimenting

on the STS benchmark. Here, when using LessLex embeddings we

obtained figures similar to those obtained by the HCTI system using

GLoVe vectors; namely, we observe that the choice of senses based on
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Table 4.17: Results on the STS task. Top: results on the STS benchmark.
Bottom: results on the SemEval-2017 dataset. Reported results are
Pearson correlation indices, measuring the agreement with human
annotated data. In particular, we compare the Pearson scores
obtained by the HCTI system using LessLex and GloVe vectors.
As regards as the runs with GloVe vectors, we report results with
no hand-crafted features (no HF), and without machine translation
(no MT)

STS Benchmark (English)

Track
HCTI + LessLex HCTI + GloVe

(t-rank) (c-rank) (no HF)

dev .819 .823 .824

test .772 .786 .783

SemEval 2017

Track
HCTI + LessLex HCTI + GloVe

(t-rank) (c-rank) (no MT)

1. ara-ara .534 .618 .437

2. ara-eng .310 .476 -

3. spa-spa .800 .730 .671

4a. spa-eng .576 .558 -

4b. spa-eng .143 .009 -

5. eng-eng .811 .708 .816

6. tur-eng .400 .433 -

the overall context (c-rank) provides little improvements with respect

to both GloVe vectors and to the t-rank strategy.

As regards as the seven tracks in the SemEval-2017 dataset, we can

distinguish between results on multilingual and cross-lingual subsets of

data. As regards as the former ones (that is, the ara-ara, spa-spa and eng-

eng tracks), HCTI with LessLex obtained higher correlation scores than

when using GloVe embeddings in two cases: +0.181 on the Arabic task,

+0.129 on the Spanish task, and comparable results (−0.005) on the

English track. We stress that no re-training was performed on LessLex

vectors on languages different from English, so that the improvement

obtained in the tracks 1 and 3 (ara-ara and spa-spa, respectively) is

even more relevant. We interpret this achievement as stemming from the
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fact that LessLex vectors contain both conceptual and terminological

descriptions: this seems also to explain the fact that the advantage

obtained by employing LessLex vectors w.r.t. GloVe is more sensible

for languages where the translation and/or re-training are less effective,

such as pairs involving either the Arabic or Turkish language. Also, we

note that using contextual information (c-rank strategy) to govern the

selection of senses ensures comparable results to the t-rank strategy

across settings (with the exception of track 4b, where the drop in the

correlation is very prominent, in one order of magnitude). Finally, it

is interesting to observe that in dealing with cross-lingual texts that

involve arguably less-covered languages (i.e., in the tracks 2 and 6,

ara-eng and tur-eng), the c-rank strategy produced better results than

the t-rank strategy.

To summarize the results on the STS task, by plugging LessLex

embeddings into a state-of-the-art system such as HCTI we obtained

results that either improve or are comparable to more computationally

intensive approaches involving either MT or re-training, necessary to

use GLoVe vectors in a multilingual and cross-lingual setting. One

distinguishing feature of our approach is that of hosting terminological

and conceptual information in the same semantic space: experimental

evidence seems to confirm it as helpful in reducing the need for further

processing, and beneficial to map different languages onto such unified

semantic space.
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4.3.3 Final discussion

The experimentation on LessLex has taken into account overall eleven

languages, from different linguistic lineages, such as Arabic, coming

from the Semitic phylum; Basque, a language isolate (reminiscent of

the languages spoken in southwestern Europe before Latin); English

and German, two West Germanic languages; Farsi, that as an Indo-

Iranian language can be ascribed to the set of Indo-European languages;

Spanish and Portuguese, that are Western Romance languages in the

Iberian-Romance branch; French, from the Gallo-Romance branch of

Western Romance languages; Italian, also from the Romance lineage;

Russian, from the eastern branch of the Slavic family of languages;

Turkish, in the group of Altaic languages, featured by phenomena such

as vowel harmony and agglutination.

We employed LessLex embeddings in order to cope with three tasks:

i) the traditional semantic similarity task, where we experimented on

six different datasets (RG-65, WS-Sim-353, SimLex-999, SimVerbs-

3500, SemEval-2017 (Task 2) and Goikoetxea-2018); ii) the contextual

semantic similarity task, where we experimented on two datasets, SCWS

and WiC; iii) the STS task, where the STS Benchmark and the SemEval-

2017 (Task 1) dataset were used for the experimentation.

In the first mentioned task (Section 4.2.2) our experiments show that

in most cases LessLex results improve on those by all other competitors.

As competitors all the principal embeddings were selected that allow

to cope with multilingual tasks: ConceptNet Numberbatch, NASARI,

JOINTChyb, SenseEmbed, and Nasari2Vec. Two different experimental

conditions were considered (MSV and CbA, Table 4.12). Both views on
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results indicate that our approach outperforms the existing ones. To

the best of our knowledge this is the most extensive experimentation

ever performed on as many benchmarks, and including results for as

many resources.

In dealing with the Contextual Similarity task (Section 4.3.1) we

compared our results with those obtained by using NASARI2Vec,

which also contains descriptions for both terms and nominal concepts

in the same semantic space, and with results available in literature. The

obtained figures show that despite not being tuned for this task, our

approach improves on previous results on the SCWS dataset. On the

WiC dataset, results obtained by experimenting with LessLex vectors

overcome all those provided by directly comparable resources. Results

obtained by state-of-the-art approaches (employing contextualized sense

embeddings) in this task are about 9% above those currently achieved

through sense embeddings.

As regards as the third task on Semantic Text Similarity (Sec-

tion 4.3.2), we used our embeddings by feeding them to a Convolutional

Neural Network in place of GloVe embeddings. The main outcome of

this experiment is that while our results are comparable to those ob-

tained by using GloVe for English tracks, they improve on the results

obtained with GloVe in the cross-lingual setting, even though these are

specifically retrained on the considered tracks.

In general, handling sense-embeddings involves some further process-

ing to select senses for input terms, while with word-embeddings one

can typically benefit from the direct mapping term-vector. Hence, the

strategy employed to select senses is relevant when using LessLex

embeddings. Also — though indirectly — subject to evaluation was the
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proposed similarity metrics of ranked-similarity; it basically relies on

ranking sense vectors based on their distance from the terminological

one. Ranked-similarity clearly outperforms the maximization of cosine

similarity on LessLex embeddings. Besides, the contextual ranked-

similarity (which was devised to deal with the contextual similarity

task) showed to perform well, by taking into account information from

the context vector rather than from the terminological one.





5

CONCLUS IONS

In this work we discussed the relevance that lexical resources assumed

in the last decades in the Natural Language Processing research; we

then illustrated the motivations that have brought to the development

of two novel resources: COVER and LessLex.

In Chapter 3 we introduced COVER along with COVERAGE,

the algorithm designed to built it. COVER puts together the lexico-

graphic precision which is proper to WordNet and BabelNet with the

rich common-sense knowledge that features ConceptNet. The obtained

vectors capture conceptual information in a compact and cognitively

sound fashion. We have also shown that COVER is suitable for building

NLP applications, in the fields of conceptual categorization, abstract-

ness computation, keywords extraction and conceptual similarity. We

have reported the results of a thorough experimentation, which was

carried out on the conceptual similarity task. Although other approaches

presently achieve higher accuracy, the system employing COVER ob-

tains competitive results, and additionally is able to build explanations

of the traits determining the conceptual similarity.

In Chapter 4 we presented the LessLex vectors. Such vectors are

built by re-arranging distributional descriptions around senses rather

than terms. These have been tested on the word similarity task, on

the contextual similarity task, and on the semantic text similarity task,

providing good to outstanding results, on all datasets employed. Also
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importantly, we have outlined the relevance of LessLex vectors in the

broader context of research in natural language with focus on senses

and conceptual representation, mentioning that having co-located sense

and term representations may be helpful to investigate some issues in

an area at the intersection of general AI, Cognitive Science, Cognitive

Psychology, Knowledge Representation and, of course, Computational

Linguistics. In these settings distributed representation of senses may

be employed, either to enable further research or to solve specific tasks.

Differently from most embedding approaches, LessLex enjoys the

feature of adopting a unique semantic space for concepts and terms

from different languages. Far from being an implementation feature,

the adopted semantic space describes a cognitively plausible space,

compatible with the cognitive mechanisms governing lexical access,

which is in general featured by conceptual mediation (Marconi, 1997).

Thanks to this peculiar attribute we are allowed to compare and unveil

meaning connections between terms across different languages. Such

capabilities can be useful in characterising subtle and elusive meaning

shift phenomena, such as diachronic sense modeling (Hu, S. Li, and

S. Liang, 2019) and conceptual misalignment, which is a well-known

issue, e.g., in the context of automatic translation. This issue has been

approached, for the translation of European laws, through the design of

formal ontologies (Ajani et al., 2010).

We also proposed a novel similarity measure, the ranked-similarity.

Such measure originates from a simple intuition: in computing concep-

tual similarity, scanning and comparing each and every sense available

in some fine-grained sense inventory may be unnecessary and confus-

ing. Instead, we rank senses using their distance from the term; top
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ranked senses are more relevant, so that the formula to compute ranked-

similarity refines cosine similarity by adding a mechanism for filtering

and clustering senses based on their salience.

The topic of conceptual abstractness requires a special mention, since

the investigation on abstract concepts has recently emerged as central

in the multidisciplinary debate between grounded views of cognition

versus modal (or symbolic) views of cognition (Bolognesi and Steen,

2018). We have shown that acquiring vector descriptions for concepts (as

opposed to terms) appears to be beneficial to investigate the conceptual

abstractness/concreteness issue (Colla, Mensa, Porporato, et al., 2018;

Hill, Korhonen, and Bentz, 2014; Mensa, Porporato, and Radicioni,

2018a), and its contribution to lexical competence (Marconi, 1997;

Paivio, 1969). Also accounting for conceptual abstractness may be

beneficial in diverse NLP tasks, like WSD (O. O. Kwong, 2008), the

semantic processing of figurative uses of language (Neuman et al.,

2013; Turney et al., 2011), automatic translation and simplification (Z.

Zhu, Bernhard, and Gurevych, 2010), the processing of social tagging

information (Benz et al., 2011), and many others, as well.

It is important to remark how LessLex and COVER constitute an

effort to build complementary and yet interoperable knowledge that can

be used hand-to-hand to tackle high level tasks. The explainability of

COVER and the high coverage and usability of LessLex together with

the fact that they share a common conceptual layer provided by the

BabelNet sense inventory constitute the founding stone for the develop-

ment of future applications focused not only on the mere performance

but also giving priority to the transparency and intelligibility of the

systems them self.
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In the last few years many different novelties have been proposed:

the rise of distributed representations, in combination with neural

architectures (think, e.g, to convolutional and recurrent networks), have

modified the NLP landscape, as well as some application areas. These,

such as Question Answering and Automatic Translation, also have

witnessed a sudden tremendous rebirth.

In this frame it is not simple to provide a clear and definitive outlook

on the directions that our discipline will follow in the next future. We

can envisage, however, some chief traits. First, the shift from static to

contextual representations, to represent sentence and even paragraph

embeddings. These models are aimed at grasping complex (such as

syntactic and semantic) features associated to word usage, and also to

learn how these features vary across linguistic contexts, like in modeling

polysemy. One challenge will be extending these representations, e.g.,

to deal with multi and cross-linguistic extensions of such resources. A

second main focus will be aimed, in our view, at exploring and devising

models to deal with figurative language: this line of investigation may

be intended as part of the former one. In a sense, figurative language

can be intended as a set of tools that are used for delivering semantic

content in a concise way, more concise than allowed by literal and plain

language. Although this sort of language is very common (and deeply

rooted in our way to conceptualize some types of meanings, such as

those associated to some abstract domains such as time, ideas, and so

forth), how meaning is actually conveyed in figurative expressions is

partly unknown. Explaining such semantic phenomena will enable to

deal with language in richer and more expressive fashion, closer to real

language. Finally, next steps will involve combining and composing sense
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representations: different sorts of composition will be deepened, such as

based on syntactic information (e.g., subcategorization frames) or based

on different representation principles: in this view, one challenge will

be in representing and recognizing events in their mutual relationships,

and in being able to categorize events at different levels of granularity.

The work done all throughout my PhD course, summarized in this

thesis, is to some extent connected to all these directions. The resources

developed are committed to using sense-oriented representations, that

allow to cope with all mentioned challenges by contributing to inter-

pretative frameworks along with experimental tasks. The effort to link

different knowledge sources (including lexicographic, common-sense,

encyclopedic information and distributed representations) produced

COVER and LessLex. These are interoperable resources that employ

a unified naming convention to refer sense representations, and to deal

with different semantic phenomena in a unified way.
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cover on word similarity: cba condition. In this sec-

tion we report the results obtained by testing COVER on the semantic

similarity task. Different from the results reported in Section 4.2.2.1,

in this case only the fraction of each dataset covered by all considered

resources was used for testing.

Table A.1: Results on the subset of the multilingual and cross-lingual RG-
65 dataset containing only word pairs covered by all considered
resources. Reported figures express Pearson (r) and Spearman (ρ)
correlations. In the first column we report the coverage for each
translation of the dataset actually used in the experimentation.

RG-65
LL-M LLX CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ

[Word] eng [1.0] .64 .59 .91 .86 .91 .90 .67 .67 .84 .86 .75 .81 .80 .75

[Sense] eng [1.0] - - .94 .91 - - .81 .76 - - .72 .76 .78 .73

fas (N) [.69] .78 .73 .86 .87 .88 .89 .71 .69 - - .72 .60 - -

spa (N) [.98] .82 .82 .92 .93 .92 .93 .91 .91 .80 .83 .82 .84 - -

por-fas (N) [.81] .73 .72 .91 .90 .93 .89 .79 .76 - - .76 .70 - -

fra-por (N) [.97] .83 .84 .93 .89 .93 .89 .76 .69 - - .81 .73 - -

fra-fas (N) [.87] .72 .72 .90 .88 .93 .89 .73 .69 - - .74 .68 - -

fra-spa (N) [.99] .81 .80 .93 .91 .93 .89 .85 .83 - - .88 .86 - -

fra-deu (N) [.99] .82 .86 .91 .90 .89 .88 .81 .78 - - .78 .76 - -

spa-por (N) [.98] .83 .83 .93 .92 .93 .92 .83 .81 - - .80 .79 - -

spa-fas (N) [.82] .71 .69 .92 .92 .93 .91 .83 .82 - - .78 .83 - -

eng-por (N) [.99] .74 .72 .94 .90 .92 .90 .79 .76 - - .80 .77 - -

eng-fas (N) [.83] .68 .61 .92 .89 .93 .92 .79 .74 - - .78 .74 - -

eng-fra (N) [1.0] .71 .70 .94 .92 .92 .91 .76 .73 - - .81 .75 - -

eng-spa (N) [.99] .73 .71 .93 .93 .93 .92 .85 .85 .84 .85 .80 .85 - -

eng-deu (N) [.98] .74 .72 .92 .90 .90 .90 .83 .81 - - .77 .80 - -

deu-por (N) [.96] .89 .86 .93 .89 .92 .88 .82 .78 - - .77 .74 - -

deu-fas (N) [.81] .76 .74 .92 .91 .92 .90 .88 .81 - - .82 .82 - -

deu-spa (N) [.97] .85 .86 .92 .91 .91 .90 .89 .86 - - .80 .81 - -
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Table A.2: Results on the subset of the WS-Sim-353 dataset containing only
word pairs covered by all considered resources. Reported figures
express Pearson (r) and Spearman (ρ) correlations. In the first
column we report the coverage for each translation of the dataset
actually used in the experimentation.

WS-Sim-353
LL-M LLX CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (N) [.97] .67 .65 .78 .79 .78 .79 .60 .61 .75 .76 .69 .73 .71 .70

ita (N) [.92] .68 .69 .74 .77 .75 .77 .66 .65 .69 .70 .65 .71 - -

deu (N) [.88] .77 .74 .83 .81 .84 .83 .70 .69 - - .65 .64 - -

rus (N) [.83] .75 .76 .77 .78 .79 .79 .66 .66 - - .63 .64 - -

Table A.3: Results on the subset of the SimVerbs-3500 dataset containing only
word pairs covered by all considered resources. Reported figures
express Pearson (r) and Spearman (ρ) correlations. In the first
column we report the coverage for each translation of the dataset
actually used in the experimentation.

SimVerbs-3500
LL-M LLX CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (V) [1.0] .58 .56 .67 .66 .62 .60 - - .56 .56 .45 .42 .31 .30

Table A.4: Results on the subset of the multilingual SimLex-999 containing
only word pairs covered by all considered resources. Reported figures
express Pearson (r) and Spearman (ρ) correlations. In the first
column we report the coverage for each translation of the dataset
actually used in the experimentation.

SimLex-999
LL-M LLX CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (N) [1.0] .51 .52 .69 .67 .66 .63 .41 .39 .55 .53 .52 .49 .46 .44

eng (V) [1.0] .62 .56 .67 .65 .61 .58 - - .51 .50 .54 .49 - -

eng (A) [1.0] .84 .83 .82 .79 .80 .78 - - .63 .62 .55 .51 - -

eng (*) [1.0] .57 .53 .70 .69 .67 .65 - - .55 .54 .53 .49 - -

ita (N) [.96] .50 .49 .66 .64 .64 .62 .48 .49 .48 .49 .56 .50 - -

ita (V) [.96] .58 .53 .70 .63 .69 .59 - - .57 .50 .56 .45 - -

ita (A) [.95] .68 .57 .77 .70 .73 .64 - - .40 .30 .61 .49 - -

ita (*) [.96] .49 .43 .67 .63 .65 .62 - - .48 .46 .55 .48 - -

deu (N) [.94] .58 .57 .66 .65 .68 .66 .46 .47 - - .48 .44 - -

deu (V) [.73] .56 .53 .63 .60 .64 .58 - - - - .51 .46 - -

deu (A) [.67] .74 .70 .76 .73 .80 .75 - - - - .50 .39 - -

deu (*) [.86] .59 .57 .66 .65 .69 .67 - - - - .47 .42 - -

rus (N) [.86] .45 .43 .54 .51 .54 .49 .23 .23 - - .26 .21 - -

rus (V) [.20] .60 .54 .58 .59 .66 .60 - - - - .42 .28 - -

rus (A) [.06] .92 .87 .94 .91 .94 .87 - - - - .62 .24 - -

rus (*) [.63] .46 .44 .55 .51 .55 .50 - - - - .27 .21 - -
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Table A.5: Results on the subset of the SemEval 17 Task 2 dataset containing
only word pairs covered by all considered resources. Reported figures
express Pearson (r) and Spearman (ρ) correlations. In the first
column we report the coverage for each translation of the dataset
actually used in the experimentation.

SemEval-2017
LL-M LLX CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ

eng (N) [.66] .70 .70 .84 .86 .83 .85 .57 .59 .75 .77 .71 .75 .73 .73

deu (N) [.73] .78 .79 .84 .85 .84 .86 .68 .68 - - .67 .69 - -

ita (N) [.61] .73 .73 .82 .84 .80 .82 .75 .76 .76 .78 .71 .77 - -

spa (N) [.62] .77 .79 .84 .86 .81 .84 .70 .71 .78 .80 .73 .78 - -

fas (N) [.34] .69 .72 .79 .82 .75 .80 .58 .59 - - .65 .70 - -

deu-spa (N) [.73] .78 .80 .84 .86 .82 .84 .71 .72 - - .70 .74 - -

deu-ita (N) [.74] .77 .78 .83 .85 .82 .84 .72 .73 - - .69 .73 - -

eng-deu (N) [.82] .78 .79 .85 .86 .83 .85 .67 .68 - - .70 .72 - -

eng-spa (N) [.63] .74 .75 .85 .87 .83 .85 .65 .66 .75 .78 .72 .77 - -

eng-ita (N) [.62] .73 .74 .85 .87 .83 .85 .69 .70 .73 .75 .72 .77 - -

spa-ita (N) [.61] .75 .76 .84 .86 .81 .84 .74 .74 .70 .71 .72 .78 - -

deu-fas (N) [.49] .75 .78 .84 .86 .81 .85 .71 .72 - - .69 .74 - -

spa-fas (N) [.49] .72 .74 .84 .86 .80 .84 .70 .72 - - .70 .77 - -

fas-ita (N) [.49] .71 .72 .81 .84 .72 .82 .70 .72 - - .69 .75 - -

eng-fas (N) [.54] .70 .71 .82 .85 .79 .82 .65 .68 - - .70 .75 - -
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Table A.6: Results on the subset of the Goikoetxea dataset containing only
word pairs covered by all considered resources. Reported figures
express Pearson (r) and Spearman (ρ) correlations. In the first
column we report the coverage for each translation of the dataset
actually used in the experimentation.

Goikoetxea
LL-M LLX CNN NAS JCH SSE N2V

r ρ r ρ r ρ r ρ r ρ r ρ r ρ

spa-eus (N) [.75] .75 .71 .80 .74 .81 .73 .74 .73 .69 .66 .74 .70 - -

eng-eus (N) [.77] .75 .72 .93 .91 .93 .90 .91 .90 .87 .84 .84 .86 - -

eng-spa (N) [.99] .73 .71 .93 .93 .93 .92 .85 .85 .84 .85 .80 .85 - -

eus-ita (N) [.72] .62 .66 .69 .73 .67 .63 .57 .59 .58 .63 .53 .56 - -

spa-ita (N) [.93] .60 .65 .67 .75 .66 .74 .58 .59 .56 .61 .53 .59 - -

spa-eus (N) [.73] .67 .70 .74 .79 .71 .78 .66 .67 .70 .74 .60 .64 - -

eng-ita (N) [.96] .59 .64 .70 .76 .70 .77 .51 .52 .61 .66 .51 .58 - -

eng-eus (N) [.75] .64 .67 .75 .80 .74 .80 .58 .60 .72 .76 .58 .63 - -

eng-spa (N) [.97] .62 .66 .72 .78 .71 .78 .55 .56 .68 .74 .57 .64 - -

eng-spa (N) [.97] .50 .49 .67 .65 .64 .62 .52 .51 .56 .52 .55 .52 - -

eng-spa (V) [.96] .53 .49 .62 .60 .59 .57 - - .48 .46 .53 .49 - -

eng-spa (A) [.80] .76 .77 .77 .77 .77 .77 - - .59 .60 .56 .50 - -

eng-spa (*) [.95] .54 .52 .67 .66 .65 .64 - - .54 .52 .55 .51 - -

eng-ita (N) [.97] .53 .53 .71 .69 .68 .66 .46 .47 .53 .51 .55 .52 - -

eng-ita (V) [.58] .62 .55 .71 .67 .67 .60 - - .51 .45 .56 .46 - -

eng-ita (A) [.80] .79 .73 .84 .78 .78 .70 - - .41 .36 .61 .48 - -

eng-ita (*) [.82] .56 .53 .72 .70 .69 .67 - - .50 .48 .56 .50 - -

spa-ita (N) [.96] .53 .53 .68 .67 .66 .65 .47 .49 .48 .47 .56 .54 - -

spa-ita (V) [.56] .56 .52 .65 .60 .64 .58 - - .47 .42 .56 .49 - -

spa-ita (A) [.78] .73 .66 .79 .73 .76 .69 - - .43 .38 .63 .51 - -

spa-ita (*) [.80] .55 .53 .68 .66 .67 .65 - - .47 .45 .56 .51 - -
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resources downloads. The resources presented in this work

can be found on the https://ls.di.unito.it website, and specifically:

• COCA senses (via ClOSeSt) : https://ls.di.unito.it/resources/

closest

• COVER and Abs-COVER: https://ls.di.unito.it/resources/cover

• LessLex: https://ls.di.unito.it/resources/lesslex

• Metaphor detection dataset: https://ls.di.unito.it/other-resources/

metaphordetection
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Vrandečić, Denny and Markus Krötzsch (2014). “Wikidata: a free col-

laborative knowledge base.” In: (cit. on p. 12).
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Vulić, Ivan and Marie-Francine Moens (2015). “Monolingual and cross-

lingual information retrieval models based on (bilingual) word em-

beddings.” In: Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval.

ACM, pp. 363–372 (cit. on p. 17).

Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh,

Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman (2019).

“Superglue: A stickier benchmark for general-purpose language un-

derstanding systems.” In: Advances in Neural Information Processing

Systems, pp. 3261–3275 (cit. on p. 128).

Webber, William, Alistair Moffat, and Justin Zobel (2010). “A sim-

ilarity measure for indefinite rankings.” In: ACM Transactions on

Information Systems (TOIS) 28.4, p. 20 (cit. on pp. 126, 127).

Witten, Ian H, Gordon W Paynter, Eibe Frank, Carl Gutwin, and

Craig G Nevill-Manning (1999). “KEA: practical automatic keyphrase

extraction.” In: Proceedings of the fourth ACM conference on Digital

libraries, pp. 254–255 (cit. on p. 71).

Wu, Zhibiao and Martha Palmer (1994). “Verbs semantics and lexical

selection.” In: Proceedings of the 32nd Annual Meeting on Association

for Computational Linguistics. ACL, pp. 133–138 (cit. on pp. 24, 25).

Xing, Xing, Yi Zhang, and Mei Han (2010). “Query difficulty predic-

tion for contextual image retrieval.” In: European Conference on

Information Retrieval, pp. 581–585 (cit. on pp. 77, 82).

Yarlett, D and M Ramscar (2008).“Language learning through similarity-

based generalization.” In: Unpublished PhD Thesis, Stanford Univer-

sity (cit. on p. 15).



bibliography 183

Zhu, Zhemin, Delphine Bernhard, and Iryna Gurevych (2010). “A mono-

lingual tree-based translation model for sentence simplification.” In:

Proceedings of the 23rd International Conference on Computational

Linguistics. ACL, pp. 1353–1361 (cit. on pp. 77, 141).





colophon

This document was typeset using the typographical look-and-feel clas-
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