Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by Phytophthora capsici, on zucchini in a closed soilless system

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1891853 since 2023-02-10T18:32:45Z

Published version:
DOI:10.1016/j.scienta.2020.109207

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by *Phytophthora capsici*, on zucchini in a closed soilless system

G. Gilardia, M. Pugliesea,b,c, M.L. Gullino a,b, A. Garibaldia

a Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy

b Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095, Grugliasco (TO), Italy

c AgriNewTech srl, Torino, Italy.

Corresponding author:
Tel: +39 0116708540
Fax: +39 0116708703
E-mail address: giovanna.gilardi@unito.it

Abstract

Five biocontrol agents and potassium phosphite, used at various concentrations and at a different number of applications, have been tested to establish their ability to control *Phytophthora capsici* on hydroponically grown zucchini plants. In a first set of trials, various experimental biocontrol agents (Trichoderma sp. TW2, a mixture of Pseudomonas FC7B, FC8B, FC9B, Fusarium solani FUS25 and Pseudomonas sp. PB26) and a commercial formulation of Trichoderma gamsii + T. asperellum (Remedier) were applied at the artificial infestation with the pathogen of a peat substrate, 5-7 days before planting the zucchini seedlings, and later at 5-day-intervals. BCAs were compared with a potassium phosphite-based fertiliser. In a second set of trials, the potassium phosphite fertiliser was applied directly to the growing media or via a nutrient solution every 6 days, starting at the infestation with the pathogen and 5-7 days before planting, in order to select the optimal rate, type and number.
of applications. Potassium phosphite reduced by 62 to 94% Phytophthora crown rot of zucchini, providing more consistent disease severity reduction than those achieved using the experimental BCAs, alone or in mixture, and the Trichoderma gamsii + T. apserellum formulated mixture (29 to 47% reduction in disease severity). One application of potassium phosphite, at the highest tested concentration, was less effective than three applications. Potassium phosphite consistently reduced the severity of Phytophthora crown rot under different disease pressure (by 48 to 79%) when applied via a treated peat growing media or via a nutrient solution with 3 to 6 applications, thereby offering growers an important opportunity to control P. capsici on soilless grown zucchini.

Keywords: Hydroponic; Phytophthora control, Cucurbita pepo, nutrient solution, microorganisms, phosphites.

1. Introduction

Zucchini (Cucurbita pepo L.) is an important crop throughout the world that is affected by several air- and soil-borne pathogens which cause severe losses (Gubler and Davis, 1996). Currently, soil-borne pathogens are a cause of particular concern in many geographical areas, including the Mediterranean, because of the difficulties encountered in their management, due to the increasing lack of effective, available control measures (Colla et al., 2014; Garibaldi et al., 2014; Katan, 2017). Phytophthora capsici, which causes the root and crown rot of zucchini (Lamour et al., 2012), has long been known in Italy (Cristinzio and Noviello, 1980) and remains one of the most critical pathogens of this crop (Gullino et al., 2018). This pathogen can also be spread through infected transplants, seeds and water resources (Granke et al., 2012; Lamour et al., 2012; Reistano and Stephens, 1999), and is thus also of concern for soilless systems, where oomycetes find an environment that is favourable for their survival and spread (Jenkins and Averre, 1983). In fact, despite having been developed and promoted to reduce the problems caused by soil-borne pathogens,
to reduce the release of nutrients into the environment and to improve water efficiency (Van Os, 1999). However, closed soilless systems, which are increasingly adopted in southern countries, are often characterised by the presence of root diseases (Postma et al., 2008; Stanghellini and Rasmussen, 1994).

Owing to the limited availability of synthetic fungicides registered for soilless systems, it is necessary to evaluate the efficacy of alternative disease control measures. Thus, disease management, based on biocontrol agents, suppressive soils and inorganic salts, is increasingly being exploited in such growing systems (Gullino et al., 2015; Paulitz, 1997; Van Os, 1999; Postma, 2004; 2010; Vallance et al., 2001). Phosphite has been shown to be effective in the control of oomycete related diseases in horticulture. Deliopoulos et al., (2010), for instance, showed that phosphite salts are effective against several soil-borne pathogens in different pathosystems, such as *Pythium ultimum*-cucumber, *Phytophthora cinnamomi*-lupin and *Phytophthora nicotianae*-tobacco. The protective effect induced by phosphite, and its persistence *in planta*, may vary among species (Barrett et al. 2003; Shearer and Crane, 2012), type of application (Guest and Grant 1991; Smillie et al., 1989), Phytophthora species and strains (Coffey and Bower, 1984), and could be affected by concentration (Jackson et al., 2000; Daniel and Guest, 2006). Although the extensive research carried out to better understand the mode of action of phosphite in plant protection (Hardy et al., 2001; Thao et al., 2009; Alexanderson et al., 2016), there is still a need to better understand their potential when applied in hydroponics. In the case of biocontrol agents, different microorganisms have been tested in the past in soilless systems, such as *Muscodor albus* against Rhizoctonia damping-off of broccoli, *Gliocladium virens* against *Rhizoctonia solani* and *Pythium ultimum* of zinnia, cotton and cabbage (Lumsden and Locke, 1989), and non-pathogenic *Fusarium oxysporum* against *Fusarium oxysporum* f.sp. *basilici* on basil (Fravel and Larkin 1999). Other studies have shown a positive effect of applying biocontrol agents to hydroponic systems via recirculating nutrient solutions or in the growing-medium on different hosts affected by oomycete pathogens; this is the case of bacterial isolates of fluorescent *Pseudomonades* in the *Pseudomonas fluorescens, P. putida* and *P. aeruginosa* group against *Pythium ultimum* on
tomato (Alsanius et al., 1999), of a mixture of *Fusarium* spp. and *Trichoderma* spp. against *Phytophthora cryptogea* on gerbera (Garibaldi et al., 2003), of indigenous *Pseudomonas* spp. and *Trichoderma* sp. against *Pythium aphanidermatum* on cucumber (Postma et al., 2000, 2005), of *Muscodor albus* against *Phytophthora capsici* on bell pepper (Mercier and Manker, 2005) and of *Bacillus subtilis* against *Pythium aphanidermatum* on lettuce (Utkhede et al., 2000). However, despite many studies, their practical application is still limited.

The type, rate and timing of the application of biocontrol agents and salts, which often act as resistance inducers, affect both the level of disease control and the yield (Paulitz, 1997; Walter et al., 2013; Bonanomi et al., 2018). Thus, finding the right application method for biocontrol agents and salts in soilless systems against zoospore producing pathogens merits further attention. Although other studies have been carried out on the effect of biocontrol agents and salts against pathogens that are well adapted to soilless systems, such as *Pythium* spp. and *Phytophthora* sp. (Armitage, 1993; Förster et al., 1998; Garibaldi et al., 2003; Garibaldi and Gullino, 2010; Gullino et al., 2015; Stanghellini et al., 1994), there is still a lack of knowledge on their efficacy against *Phytophthora capsici* on zucchini grown in soilless systems, and the possible effect of combined BCAs on disease severity.

This work has been carried out in a closed soilless system, under controlled conditions, in order to evaluate the efficacy of experimental biocontrol agents used alone or in mixture, compared with a commercial formulation of *Trichoderma gamsii* + *T. asperellum*, and potassium phosphite salts, considering the long-term efficacy of different types and different numbers of applications to control *P. capsici* on zucchini, with the aim of developing practical solutions to manage the disease.

2. Material and methods

2.1. Experimental layout, soilless system and plant material
Thirteen trials were carried out in a glasshouse at the Agroinnova Centre of Competence of the University of Turin, in Grugliasco (Torino, Italy), at temperatures ranging from 20 to 28°C, in a fully automated closed soilless system. A small-scale hydroponic experimental system, with a recirculating nutrient solution, was used throughout the trials. Each hydroponic unit consisted of one channel (6 m long and 25 cm wide) connected to a storage tank (300 L) filled with a nutrient solution, which was automatically delivered to the plants, thanks to the use of an electronic control unit (Idromat2, Calpeda S.p.a., Vicenza, Italy). The nutrient solution was pumped at 1.5-1.6 mS cm\(^{-1}\) from the water storage tank, fed to the plants through drip emitters and left to drain back into the storage tank by means of gravity Nutrient solutions with the following compositions were used: 11.24 mM NO\(_3\), 4.8 mM NH\(_4\), 0.75 mM KH\(_2\)PO\(_4\), 0.75 mM K\(_2\)SO\(_4\), 0.012 mM Iron chelate EDTA, 2 mM MgO, 2 mM SO\(_3\), 0.2 mM B, 0.001 mM Mo, 0.15 mM Zn, 3.1 mM CaO, 0.05 mM Cu\(^{++}\), 0.25 mM Mn, 12.2 mM K. The pH and E.C. values were checked regularly by means of portable instruments, that is, a pH meter and a SevenGo DUO TM SG23 conductivity meter (Tettler, Toledo, Spain). The plants were irrigated with the solution as described above and treated.

The experimental unit consisted of six pots replicated five times (n= 30 pots each channel). Two plants were planted in each pot, and six pots corresponded to one sub-replicate of 12 plants each. Five replicates were used per treatment (60 plants/treatment).

Each trial included one untreated and inoculated control and different treatments with products tested alone or in mixture, according to the protocol tested in the first and second set of trials (Tables 1 and 2).

The susceptible Genovese zucchini cv. (Furia Sementi, Monticelli Terme (PR), Italy) was transplanted at 15 days of age into 3 L plastic pots filled with a growing medium based on blonde peat (Tecno 2, Turco S.r.l., Albenga, Italy) in all the trials.

2.2. Biological control agents (BCAs) and phosphite treatments
The following BCAs, isolated from suppressive composts and provided by AgriNewTech srl (Italy), were tested alone and in mixture (1:1:1 v/v) in the first set of trials (trials 1-4): *Pseudomonas* sp. PB26 (Pugliese et al., 2008), *Fusarium solani* FUS25 (Gullino and Pugliese, 2011), *Trichoderma* sp. TW2 (Cucu et al., 2019). A mixture of three *Pseudomonas* spp. strains, *Pseudomonas* sp. FC7B (EU836174) - *Pseudomonas putida* FC 8B (EU836171) and *Pseudomonas* sp. FC 9B (EU836172), isolated from a suppressive rockwool substrate in a soilless system (Clematis et al., 2009; Srinivasan et al., 2009), was also used (Table 1).

The bacterial strains were maintained at 4°C in Luria Bertani (LB) slants throughout the study. The fresh bacterial suspensions were prepared by inoculating a loopful of bacterial cells into 30 ml of an LB medium in 100 ml Erlenmeyer flasks, and then incubating the suspension on a rotary shaker at 600 rpm for 48 h at 23°C. The cell suspension was centrifuged, and the pellets were re-suspended in sterile deionised water. The bacterial concentrations were checked by means of optical density (OD₆₀₀) before application. The density (OD₆₀₀) was adjusted with sterile deionised water, by means of serial dilution, to 1x10⁸ cell ml⁻¹ before application. *Trichoderma* sp. TW2 was grown in a 1000-ml-flask containing 250 ml of potato dextrose broth (SIGMA, Germany) and maintained under static conditions at 25°C. After 15 days, the produced mycelium was transferred to 200 ml sterile distilled water and homogenised using a hand-held rotary mixer. The conidia suspension obtained for the *Trichoderma* sp. TW2 isolate was standardised to 1x10⁷CFU ml⁻¹.

The antagonistic *Fusarium solani* FUS25 was propagated into 1000-ml-flasks containing 250 ml of potato dextrose broth (Sigma, Germany) and maintained on a rotary shaker for ten days at 200 rpm. The cultures were centrifuged at 8,000 g for 20 min at 4°C. The conidia and mycelium pellet were transferred into 200 ml of sterile distilled water and homogenised using a rotary mixer. The conidial suspension was adjusted with sterile deionized water, by means of serial dilution, to 1x10⁷ conidia ml⁻¹ before application.

In the first set of trials, each BCA suspension was applied to each pot and after planting around the base of 15 day-old seedlings at a final concentration of 1x10⁷CFU ml⁻¹. The BCAs were applied six
times to the growing medium at 5 day-intervals using 100 ml/pot of the suspension, according to the
experimental protocol (Table 1).

The experimental BCAs were compared with a commercial formulation of *Trichoderma asperellum* + *T. gamsii* (Remedier, Isagro, Milan, Italy), which had been applied at the label rate of
0.25 g l\(^{-1}\) of peat substrate and compared with the potassium phosphite fertilizer (Alexine 95PS P2O5
52% + K2O,42%, Alexine, Massò, Spain), which was labelled as a phosphorus supplement for soilless application using 2.5 g/l (Table 1).

The second set of trials (trials 5 to 13) was conducted to select the optimal type, frequency and
number of potassium phosphite applications (Table 2). The fertilizer-based phosphite was added
directly to the nutrient solution (NS) or applied to each pot around the base of the seedlings using 100
ml/pot of the suspension prepared at 1.125 and 2.5 g/l, according to the experimental protocol. K-
phosphite was applied at 5-6 day intervals with 1, 3 and 6 applications (Table 2).

In both protocols, the first treatment was carried out the same day of the artificial infestation of the
peat substrate.

2.3. Artificial inoculation with the pathogen

A highly virulent strain of *Phytophthora capsici* (coded PHC 1/16), isolated from zucchini and
taken from the AGROINNOVA collection, was cultured on a selective oomycete medium (Masago
et al., 1977) at 20°C for one week. One mycelium-agar plug (5 mm diameter), taken from an actively
growing colony, was transferred to a 1000-ml-flask containing the wheat-hempseed medium (200g
wheat kernels, 100g hempseeds and 320 ml water, sterilized at 121°C for 30 min) and incubated at
20°C in a growth chamber under a 12-h fluorescent photoperiod. The *P. capsici* produced after 10
days of incubation at 22°C was mixed into the soil substrate at a concentration of 1 g of fresh biomass
per litre of growing medium immediately before the first treatments was made.

Fifteen-day-old zucchini seedlings were transplanted into the treated and untreated pots 5-7 days after
the artificial infestation of the substrate with the pathogen.
2.4. Disease assessment and statistical analysis

The zucchini plants were assessed at 7-day-intervals, starting from when the first symptoms caused by Phytophthora crown rot, corresponding to yellowing of the leaves, were observed. Disease severity was evaluated at the end of the trials 7 to 14 days after the final treatment, according to Padley et al., (2008). Disease severity was expressed using the \(\sum (n^o \text{ plants} \times x_{0.5}) / (\text{total n^o of plants recorded}) \) formula, with \(x_{0.5} \) corresponding to the reported value: 0=no symptoms, healthy plants; 1=1 corresponding to 30% of the leaves being slightly wilted (midpoint 15%); 2=31 corresponding to 50% of foliar wilting and crown lesions (midpoint 40%); 3=51 corresponding to 70% of the plants being partially collapsed (midpoint 60%); 4=71 corresponding to 90% of the plants being collapsed (midpoint 80%); 5=over 90% of dead plants (midpoint 95%).

The data obtained from the experiments were subjected to analysis of variance (ANOVA) appropriate to the experimental design using SPSS, Version 25. The experimental unit consisted of a 3-L pot with two plants and sub-replicates with 12 plants each. Each set of treatments was repeated at least three times in the first and second sets of trials according to protocols 1 and 2 (Tables 1 and 2). The trials were combined when the ‘trial’ factor was not significant (P>0.05). The data were compared using Tukey’s test at a significance level of 5%. The considered factors were: five experimental biocontrol agents and K-phosphite, and the type of application that is in pots to the peat medium or via nutrient solution (NS), rate (1.125 and 2.5 g/l) and number of applications (1, 3 or 6).

The efficacy of the different treatments in controlling \(P. \) capsici was calculated as: % Disease reduction (E%) = \(\frac{LS_i - LS_t}{LS_i} \times 100 \)

where \(LS = \) percentage of plants affected by DS; \(i = \) inoculated and untreated control; \(t = \) treatments.

3. Results

3.1. Effect of the biocontrol agents
The data from the first set of trials (1-4) were analysed separately for each experimental run because there was evidence of heterogeneity (P < 0.05) between the trial runs. *Phytophthora* crown root severity ranged from 30 to 47.9% (Table 1); the experimental biocontrol agents applied to the growing media every 4-5 days only partially reduced disease severity, with inconsistent results throughout the trials. For instance, the disease reduction of *Pseudomonas* Ant P28, compared to the untreated control, was from 17 to 47%, while it was from 8 to 54% for *Fusarium solani* FUS25, from 12 to 54% for *Trichoderma* sp. TW2 and from 4 to 46% for *Pseudomonas* (FC7, FC 8, FC 9). The tested biocontrol generally provided results that were statistically comparable with the results for the formulated mixture of *Trichoderma asperellum* + *T. gamsii* (29 to 43% efficacy) used as reference. The co-application of the mixture of *Pseudomonas* PB26+ *F. solani* A25F+*Trichoderma* sp. TW2 tested in this study did not enhance the disease control efficacy, compared to the efficacy achieved when BCAs were used on their own. The highest and most consistent *P. capsici* control was provided by K-phosphate (62 to 94% efficacy).

3.2. Effect of the dosage, type and number of applications of potassium phosphite

The data from trials 5-13 were combined when no significant differences in disease severity were found among the trials (Table 4). *Phytophthora* crown rot severity differed throughout the trials and resulted in an average disease severity in the untreated control of 20.3, 40.1 and 59.1, respectively (Table 5). The application of potassium phosphite significantly reduced disease severity in all the experiments. One-way analysis of variance showed that the tested dosages and the type of application (to the peat growing medium or to the nutrient solution) were not significant factors in the trials (Table 4), while the number of applications (1, 3 and 6) and the interaction of all the considered factors significantly influenced disease severity under different disease pressures (P < 0.001). The efficacy of potassium phosphite at the lowest tested rate increased by 30% and almost doubled when the number of treatments was increased from one to six (Table 5). Moreover, one application of potassium phosphite at the highest tested concentration resulted in a much lower effect than the three...
applications in trials 5-7 and 8-10, while no significant effect ($P = 0.259$) was found in trials 11-13 (Tables 4 and 5). Three more applications (for a total of six) generally had little or no further effect on the efficacy of the treatment in two out of the three sets of trials that were carried out, and an efficacy of 43.2% to 78.8% was reached (Table 5). No effect of phosphite on plant growth was found at both tested rates and frequency of applications throughout the trials (data not shown).

The effect of the interaction of all the factors (concentration, number of application and application method) was significant in all the experiments.

4. Discussion

Hydroponic systems have become a standard cultivation method in Southern Europe for several intensively grown vegetables, in part because, despite the high initial investments, they can provide growers with higher incomes (Savvas et al., 2013; Sambo et al., 2019). In fact, soilless cultivation, apart from being a solution from a technical and agronomical point of view, in many cases represents the grower’s choice when crop rotation is not feasible and resistant cultivars are not available, and when chemical control becomes complicated due to increasing limitations in the availability of fumigants and registered fungicides (Garibaldi et al., 2014; Vallance et al., 2011).

Unfortunately, soilless grown plants may be attacked by the same pests and diseases as plants cultivated traditionally in soil, even though the occurrence and degree of severity may be different (Schnitzler 2004), and one of the main concerns of closed systems is the potential spread of root pathogens with the recirculation of the nutrient solution (Postma et al., 2008). The very limited availability of traditional fungicides for soilless systems has stimulated the adoption of other options. For instance, some biocontrol agents have been labelled for applications in irrigation systems and phosphite fertilizers, when labelled as phosphorus supplements, are admitted for application in soilless systems (Gómez-Merino and Trejo-Télle, 2015). Hydroponic is a complex environment and
multiple chemical and biological equilibria must be taken into account for developing practical
solutions to manage diseases of plants grown soilless.

In the present study, the experimental biocontrol agents obtained from suppressive compost
(Pseudomonas sp. PB26, F. solani A25F and Trichoderma sp. TW2) and from a soilless rockwool
medium (Pseudomonas FC7B, FC8B, FC9B mixture) have provided a certain degree of control and
have led to results that are comparable with those obtained for the formulated mixture of Trichoderma
gamsii + T. apserellum. Among the huge diversity of microorganisms that have shown to suppress
the growth of P. capsici, the most explored belong to rizhobacteria (Thomashow et al., 1995; Sheoran
et al., 2015; Agisha et al., 2019) and Trichoderma (Harman, 2006; Kaewchai et al., 2009; Segarra et
al., 2016; Bae et al., 2011). Trichoderma spp. have shown high biocontrol potential through one or
more mechanisms such as mycoparasitism, competition for key nutrients and colonization of sites,
production of antibiotics, or by stimulating plant defense mechanisms (Benítez et al., 2004; Elad et
al., …). The disease suppression and plant-growth promotion activities of various strains might be
related to the production of different antibiotics, secondary metabolites, lytic enzymes,
phytohormones, siderophores, and volatiles (Bae et al., 2011; Li et al., 2019). Trichoderma species
are well known for their capacity to produce secondary metabolites, including peptaibols, terpenes,
diketopiperazines, steroids, amides, lactones, polyketides, tetronic acid derivatives, peptides,
pyranone derivatives, pyridines, and cyclopentenones, which may have numerous biological
activities, including antifungal, antibacterial, plant-growth-enhancing/inhibitoring, bioinducer,
antagonism and plant resistance effects (Li et al., 2019), suggesting a potential role also in the control
of P. capsici, as demonstrated by Bae et al., 2011 Pseudomonas strains are known for producing
metabolites active against P. capsici, like pyrazines, dimethyl trisulphide and dimethyl disulfide
(Sheoran et al., 2015; Agisha et al., 2019). Among different mechanisms, the ability in inducing a
motility inhibitory effect of zoospore of P. capsici provided by Pseudomonas has been demostred
(Zohara et al., 2016). Non-pathogenic Fusarium oxysporum and F. solani collected from wilt-
suppressive soil have been reported as biocontrol agents against Fusarium wilt diseases of tomato, watermelon and muskmelon (Larkin and Fravel 1998; Malandrakisa et al., 2018).

Most biological control studies in hydroponics deal with one antagonist, although attempts to apply more than one antagonist helped in disease control efficiency. Indeed, the efficiency of biological control agents in mixtures may be related to complementary modes of action of combined organisms (Xu et al., 2011). For instance, a mixture of fluorescent pseudomonads and nonpathogenic isolates of *F. oxysporum* were effective in reducing the density of pathogenic *F. oxysporum* f.sp. *gladioli* populations in soils (Lemanceau and Alabouvette, 1993). Other studies have demonstrated that the combination of fungi and bacterial species, respectively, *Trichoderma hamatum* and *Pseudomonas aeruginosa*, is able to significantly reduce the incidence of *P. capsici* disease in chili pepper (Chemeltorit et al. 2017). In the present study the co-application of the mixture of *Pseudomonas* sp. PB26 + *F. solani* A25F + *Trichoderma* sp. TW2 did not generally enhance the efficacy of the BCA used alone. However, in agreement with another study (Xu et al., 2011), combinations may be valuable for other reasons, including control of various pathogens, more consistent efficacy, or control over different environments and stress conditions, which were not evaluated in this study. Since inconsistent results were observed for the tested biocontrol agents, further investigations are needed under various environmental conditions. Indeed, introduction of single or mixtures of biocontrol agents that are not native to that microenvironment fail to sustain its population high enough for being effective. The presented results provided evidence of a new application potential of *Pseudomonas* sp. PB26, *F. solani* A25F and *Trichoderma* sp. TW2 for controlling *Phytophthora capsici* in soilless. Hence, future research on the dosage/frequency and on possible combinations with other control measures is suggested.

Among the options that were tested, the one with potassium phosphite provided a good control of the pathogen. Although studies have long been made on phosphite in order to understand its role in agriculture (McDonald et al., 2001; Ouimette and Coffey, 1989; 1990; Ristaino and Johnston, 1999; Thao and Yamakawa, 2009), its exploitation in soilless systems has been limited. Phosphite has, for
instance, been investigated under hydroponic conditions against the Phytophthora crown rot of tomato and pepper- *P. capsici* (Förster et al., 1998; Stanghellini et al., 1994) and lettuce- *Phytophthora drechsleri* (Lee et al., 2002). These compounds are systemic, can be transported upward in the xylem and downward in the phloem to the roots (Cohen and Coffey, 1986), and have both protective and curative properties (Barrett et al., 2003). Both direct and indirect modes of action may occur, depending on the time interval between the phosphite application and the inoculation, the applied phosphite concentration and the tolerance of the host and pathogen to phosphite (Jackson et al., 2000; Smillie et al., 1989). The high water solubility of phosphite allows different type of application, however, there is still a lack of information involving phosphite in soilless. Results from the present study help in elucidating the possible long-term effect of phosphite applied in soilless against *P. capsici*. Many phosphite application methods, including foliar, seed and root immersion, trunk injections and soil applications, have resulted to be efficient against several soilborne and foliar pathogens in horticultural crops (Alexandersson et al., 2016; Barrett et al., 2003; Carmona et al., 2018; Föster et al., 1998; Greenhalgh et al. 1994; Yandoc-Ables et al. 2007; Liljeroth et al., 2016; Lobato et al., 2010; Smillie et al., 1989). Under field conditions, phosphite-based fertilizers are normally applied as drenches or through an irrigation system. However, the application of phosphites should be timed carefully on the basis of the plant genotype, phenological stage and environmental conditions (Alexandersson et al., 2016). In fact, excessive phosphite concentrations have resulted in phytotoxicity in some horticultural crops (Barrett et al., 2003; Pilbeam et al., 2000; Walker, 1991). In the present study, potassium phosphite has been applied to zucchini plants by adding soluble forms of the element to the nutrient solution of a closed hydroponics system and the results have been compared with the results of its application to the growing media. The obtained results have pointed out that the type of application of potassium phosphite and the concentration of application did not affect the Phytophthora crown rot control in the trials carried out under different disease pressures. The results obtained in this study are in agreement with those of Pilbeam et al. (2000), who showed a slight improvement in the control of *Phytophthora cinnamomi* on *Eucalyptus marginata* above a
certain application rate. However, the efficacy of potassium phosphite was improved when the number of applications was increased from 1 to 3. When the number of application was increased, the protection provided by potassium phosphite was generally doubled, without any negative effect on plant growth. Increasing the number of applications from 3 to 6 did not provide any significant additional advantage. Because potassium phosphite acts systemically and is known for its direct effect on the pathogen (Guest and Bompeix, 1990; Smillie et al., 1989), its application in a closed soilless system under controlled conditions should be a topic of continuous research on different hosts and pathogens. Indeed, potassium phosphite acts primarily on the pathogen, inducing the release of stress metabolites to elicit the defence response (Guest and Grant, 1990) and some host plants are more responsive to phosphonate than others. In the present study, we did not evaluate the mechanism of action of phosphite. The results obtained consistently show that potassium phosphite, applied to the nutrient solution, represents an important option for growers to control *P. capsici* on soilless gown zucchini. Moreover, it is possible that the level of control provided by the here tested biocontrol agents may be improved in IPM programmes. The impact of combined application of BCA with reduced dosage of phosphite merits further evaluations.

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 633999 (EUCLID EU-CHINA Lever for IPM Demonstration). The authors would like to thank Andrea China Gallo for her technical assistance and Marguerite Jones for the language revision.

Conflict of Interest

Massimo Pugliese declares he has a financial interest (shareholder) in the company AgriNewTech that provided three microorganisms (*Trichoderma* sp. TW2, *Fusarium solani* FUS25 and *Pseudomonas* sp. PB26) tested in this study.
References

Hardy GESJ, Barrett SR, Shearer BL, 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen *Phytophthora cinnamomi* in natural ecosystems. Australasian Plant Pathology 30, 113 - 139.

Manasfi, Cannesan, M.A. Riah W., Bressan M., Laval K., Driouich A., Vicré M., Trinsoutrot-Gattin I. Potential of combined biological control agents to cope with Phytophthora parasitica, a major pathogen of Choisya ternata.

Ouimette, D.G., Coffey, M.D., 1989. Comparative antifungal activity of four phosphonate
compounds against isolates of nine Phytophthora species. Phytopathology 79,761–767.

Sci. 32, 193-196.

on phytotoxicity symptoms and colonisation by Phytophthora cinnamomi in three understorey

Postma, J., Geraats, B.P.J., Pastoor, R., van Elsas, J.D., 2005. Characterization of the microbial
community involved in the suppression of Pythium aphanidermatum in cucumber grown on
rockwool. Phytopathology 95, 808–818.

Postma, J., 2010. The Status of Biological Control of Plant Diseases in Soilless Cultivation. In Recent
Developments in Management of Plant Diseases. pp 133-146 (Gisi U., Chet I., Gullino M.L.Eds.).
Springer Netherlands.

Postma, J., Van Os, E.A., Bonants, P.J.M., 2008. Pathogen detection and management strategies in

microflora on the development of root and crown rot caused by Pythium aphanidermatum in
cucumber grown on rockwool. Phytopathology 90 (2), 125–133.

Pugliese, M., Liu, B.P., Gullino, M.L., Garibaldi A., 2008. Selection of antagonists from compost to

Table 1.
Main operations carried out during the first set of trials

<table>
<thead>
<tr>
<th>Operation</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowing in nursery</td>
<td>30.12.2016</td>
<td>30.01.2017</td>
<td>15.03.2017</td>
<td>27.09.2017</td>
</tr>
<tr>
<td>Artificial inoculation with Phytophthora capsici</td>
<td>12.01.2017</td>
<td>9.02.2017</td>
<td>28.03.2017</td>
<td>11.10.2017</td>
</tr>
<tr>
<td>Treatments with BCAs and K-phosphite</td>
<td>12.01.2017</td>
<td>09.02.2017</td>
<td>28.03.2017</td>
<td>11.10.2017</td>
</tr>
<tr>
<td></td>
<td>16.01.2017</td>
<td>15.02.2017</td>
<td>03.04.2017</td>
<td>17.10.2017</td>
</tr>
<tr>
<td></td>
<td>30.01.2017</td>
<td>01.03.2017</td>
<td>18.04.2017</td>
<td>02.11.2017</td>
</tr>
<tr>
<td>Transplanting</td>
<td>16.01.2017</td>
<td>15.02.2017</td>
<td>03.04.2017</td>
<td>17.10.2017</td>
</tr>
</tbody>
</table>
Table 2. Main operations carried out during the second set of trials

<table>
<thead>
<tr>
<th>Operation</th>
<th>Trials carried out under different disease pressures.</th>
<th>Low<sup>a</sup></th>
<th>Average</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Artificial inoculation with</td>
<td></td>
<td>16.06.17</td>
<td>08.09.17</td>
<td>08.06.17</td>
</tr>
<tr>
<td>Phytophthora capsici</td>
<td></td>
<td>16.06</td>
<td>08.09</td>
<td>08.06</td>
</tr>
<tr>
<td>Treatments with K-phosphite</td>
<td></td>
<td>22.06</td>
<td>15.09</td>
<td>13.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.06</td>
<td>20.09</td>
<td>16.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.06</td>
<td>25.09</td>
<td>21.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>05.07</td>
<td>29.09</td>
<td>26.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.07</td>
<td>04.10</td>
<td>30.06</td>
</tr>
<tr>
<td>Transplanting</td>
<td></td>
<td>22.06.17</td>
<td>15.09.17</td>
<td>13.06.17</td>
</tr>
<tr>
<td>End of the trial</td>
<td></td>
<td>24.07.17</td>
<td>18.10.17</td>
<td>14.07.17</td>
</tr>
</tbody>
</table>

^aDisease severity in the untreated control as average of three trials: low, DS 20.3; average: DS 40.1 and high DS 59.1.
Table 3.
Effect of the experimental BCA treatments on Phytophthora crown rot caused by *P. capsici* on soilless grown zucchini (cv. Genovese). The data shown are expressed as disease severity (DS0-100) at the end of trials 1-4. Standard errors and the efficacy, compared with the untreated control (E%), are reported.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Trial 1</th>
<th>DS 0-100</th>
<th>Trial 2</th>
<th>DS 0-100</th>
<th>Trial 3</th>
<th>DS 0-100</th>
<th>Trial 4</th>
<th>DS 0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated control</td>
<td>30.0 ±5.6 b</td>
<td>E%</td>
<td>46.7 ±5.0 b</td>
<td>E%</td>
<td>40.0 ±7.2 c</td>
<td>E%</td>
<td>47.9 ±2.2 c</td>
<td>E%</td>
</tr>
<tr>
<td>Pseudomonas sp. PB26</td>
<td>25.0 ±3.7 b</td>
<td>17</td>
<td>25.0 ±2.6 ab</td>
<td>47</td>
<td>25.5 ±3.6 ab</td>
<td>36</td>
<td>30.2 ±3.2 ab</td>
<td>37</td>
</tr>
<tr>
<td>Fusarium solani FUS25</td>
<td>23.3 ±5.5 b</td>
<td>22</td>
<td>26.7 ±3.1 ab</td>
<td>43</td>
<td>36.7 ±4.3 bc</td>
<td>8</td>
<td>29.2 ±3.9 ab</td>
<td>39</td>
</tr>
<tr>
<td>Trichoderma sp. TW2</td>
<td>20.0 ±2.0 ab</td>
<td>33</td>
<td>21.7 ±3.5 ab</td>
<td>54</td>
<td>35.0 ±4.1 b</td>
<td>12</td>
<td>35.4 ±4.4 bc</td>
<td>26</td>
</tr>
<tr>
<td>Pseudomonas sp. PB26 + F. solani FUS25+Trichoderma sp. TW2</td>
<td>30.0 ±7.3 b</td>
<td>0</td>
<td>25.0 ±3.7 ab</td>
<td>47</td>
<td>21.7 ±5.7 ab</td>
<td>46</td>
<td>31.8 ±4.4 ab</td>
<td>34</td>
</tr>
<tr>
<td>Pseudomonas (FC7,8,9)</td>
<td>18.4 ±1.7 ab</td>
<td>39</td>
<td>25.0 ±2.5 ab</td>
<td>46</td>
<td>38.3 ±7.3 c</td>
<td>4</td>
<td>30.4 ±2.5 ab</td>
<td>37</td>
</tr>
<tr>
<td>Trichoderma asperellum + T. gamsii</td>
<td>18.3 ±4.9 ab</td>
<td>39</td>
<td>26.7 ±3.2 ab</td>
<td>43</td>
<td>28.3 ±2.0 ab</td>
<td>29</td>
<td>25.5 ±4.1 ab</td>
<td>47</td>
</tr>
<tr>
<td>K-phoshite (Alexine at 2.5g/l)</td>
<td>1.7 ±1.7 a</td>
<td>94</td>
<td>8.3 ±1.6 a</td>
<td>82</td>
<td>13.8 ±1.8 a</td>
<td>65</td>
<td>18.3 ±2.3 a</td>
<td>62</td>
</tr>
</tbody>
</table>

\(^{a}\) Means in the same column, followed by the same letter, do not differ according to Tukey’s Test (P <0.05)

\(^{b}\)E%: percentage of disease reduction, compared to the untreated control, at the end of the trial.
Table 4.
Effect of the K-phospite, dosage, type of application, number of treatments and their interaction on the disease severity average (DS) for trails under low (trials 5-7), average (trials 8-10) and high (trials 11-13) disease pressure according to the analysis of variance.

<table>
<thead>
<tr>
<th>Considered factors and their interaction</th>
<th>Trials 5-7</th>
<th>Trials 8-10</th>
<th>Trials 11-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage (1.25 and 2.5 g/l)</td>
<td>0.456</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Type of application (pot or NS)</td>
<td>0.353</td>
<td>0.227</td>
<td>0.181</td>
</tr>
<tr>
<td>Number of treatment (1, 3 and 6)</td>
<td>0.002</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Dosage × Number × type of application</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.
Effect of the dosage (1.125 and 2.5 g/l), type (pot and nutrient solution NS) and numbers of applications (1, 3 and 6) of K-phosphite against *Phytophthora capsici* on zucchini (cv. Genovese). Data shown are mean of three trials each carried out under different disease pressure.

<table>
<thead>
<tr>
<th>Treatments and dosage (g/l)</th>
<th>Type of Application</th>
<th>Number of applications and intervals between (days)</th>
<th>DS 0-100 Trials 5-7</th>
<th>E%</th>
<th>DS 0-100 Trials 8-10</th>
<th>E%</th>
<th>DS 0-100 Trials 11-13</th>
<th>E%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>-</td>
<td>-</td>
<td>20.3 ±2.4</td>
<td>b</td>
<td>40.1 ±3.6</td>
<td>c</td>
<td>59.1 ±5.3</td>
<td>b</td>
</tr>
<tr>
<td>K phosphite, 1.125</td>
<td>Pot</td>
<td>1</td>
<td>12.9 ±1.6</td>
<td>ab</td>
<td>32.2 ±3.7</td>
<td>bc</td>
<td>33.9 ±5.2</td>
<td>a</td>
</tr>
<tr>
<td>K phosphite, 1.125</td>
<td>Pot</td>
<td>6×5 d.</td>
<td>8.1 ±1.9</td>
<td>a</td>
<td>20.9 ±3.2</td>
<td>ab</td>
<td>29.5 ±4.7</td>
<td>a</td>
</tr>
<tr>
<td>K phosphite, 2.5</td>
<td>Nutrient solution</td>
<td>1</td>
<td>13.3 ±2.9</td>
<td>ab</td>
<td>22.9 ±5.0</td>
<td>ab</td>
<td>32.1 ±5.3</td>
<td>ab</td>
</tr>
<tr>
<td>K phosphite, 2.5</td>
<td>Pot</td>
<td>1</td>
<td>12.2 ±2.4</td>
<td>ab</td>
<td>20.3 ±0.5</td>
<td>ab</td>
<td>35.8 ±5.3</td>
<td>ab</td>
</tr>
<tr>
<td>K phosphite, 2.5</td>
<td>Nutrient solution</td>
<td>3×5 d.</td>
<td>10.0 ±2.0</td>
<td>a</td>
<td>10.4 ±3.1</td>
<td>a</td>
<td>24.0 ±5.1</td>
<td>a</td>
</tr>
<tr>
<td>K phosphite, 2.5</td>
<td>Pot</td>
<td>3×5 d.</td>
<td>5.8 ±1.5</td>
<td>a</td>
<td>8.2 ±2.0</td>
<td>a</td>
<td>28.0 ±6.1</td>
<td>a</td>
</tr>
<tr>
<td>K phosphite, 2.5</td>
<td>Nutrient solution</td>
<td>6×5 d.</td>
<td>6.0 ±2.5</td>
<td>a</td>
<td>22.7 ±4.7</td>
<td>a</td>
<td>21.0 ±6.3</td>
<td>a</td>
</tr>
<tr>
<td>K phosphite, 2.5</td>
<td>Pot</td>
<td>6×5 d.</td>
<td>5.0 ±1.4</td>
<td>a</td>
<td>8.5 ±1.6</td>
<td>a</td>
<td>28.1 ±6.5</td>
<td>a</td>
</tr>
</tbody>
</table>

a Means in the same column, followed by the same letter, do not differ according to Tukey’s Test (P <0.05)

b E%: percentage of disease reduction, compared to the untreated control, at the end of the trial.
Fig 1.

Effect of the numbers of applications (1, 3 or 6) of K-phosphite against Phytophthora capsici on zucchini (cv. Genovese) under different disease severity pressures in the three set of trials. The data are expressed as the mean values of disease severity in trials 5-7, 8-10 and 11-13.