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Abstract 26 

This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus 27 

mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and 28 

tambacu (female Colossoma macropomum x male Piaractus mesopotamics) during ice and 29 

frozen storage. Changes in microbiota during the storage of 22 samples of three fish species 30 

were studied through 16S rRNA amplicon-based sequencing and correlated with volatile 31 

organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). 32 

Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., 33 

Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance 34 

of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated 35 

with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi 36 

were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the 37 

most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. 38 

thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples 39 

was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-40 

ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, 41 

acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered 42 

chemical spoilage index of fish fillets. 43 

 44 

Keywords: Microbial ecology; fish spoilage; 16S rRNA sequencing; volatile organic 45 

compounds (VOCs). 46 

 47 

1. Introduction 48 

Among the Brazilian native fish species, the “round” (due the rhomboidal body shape) 49 

fishes pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male 50 
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Piaractus brachypomus), and tambacu (female Colossoma macropomum x male Piaractus 51 

mesopotamics) have been considered amongst the most expressive in terms of economic 52 

importance in Brazilian fish farming (Borges et al., 2013; Dairiki et al., 2010). These species 53 

present fast growth, easy adaptation to artificial feed, are well accepted by consumers, and are, 54 

therefore, of great interest to farmers (Borges et al., 2013). 55 

However, to date, very few studies focused on fish quality for human consumption, and 56 

on the shelf life of pacu and tambacu (Borges et al., 2013, 2014a, 2014b; Bottino et al., 2017; 57 

Cossa et al., 2022; Silva et al., 2022). The majority of studies performed with Brazilian round 58 

fish aimed at optimizing feeding, treatment, and resistance to diseases, evaluating the factors 59 

that can affect the growth and genetic identification of the species' life (Coelho et al., 2022; 60 

Girao et al., 2021; Hashimoto et al., 2011; Kumar et al., 2018; Santos et al., 2017; Volkoff et 61 

al., 2017).  62 

Fish is a highly perishable food; spoilage involves changes in physicochemical and 63 

microbiological parameters (El-Hanafi et al., 2011). Microbial activity is mainly involved in 64 

the fish loss of quality and associated with psychrotrophic bacteria which become dominant 65 

during fish chilled storage (0 to 7 ºC). Pseudomonas, Shewanella, Photobacterium, 66 

Carnobacterium, Lactococcus, and Brochothrix are commonly reported as Specific Spoilage 67 

Organisms (SSOs) in fish products (Dalgaard et al., 1993; Gram and Huss, 1996). They are 68 

known to produce typical off-odor and off-flavor metabolites associated with food 69 

deterioration, such as amines, sulfides, alcohols, aldehydes, ketones, and organic acids (Doyle 70 

et al., 2003; Gram et al., 1987; Gram and Huss, 1996).  71 

Microbial spoilage is directly influenced by storage conditions, seafood species, and 72 

fish farming climatic conditions. Thus, knowing the composition of the initial fish microbiota 73 

can strongly contribute to mitigating the losses associated with the contamination of this food 74 

matrix. The characterization of SSOs is often performed via classical microbial plating 75 

techniques. However, this method is known to not support the cultivation of most 76 
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microorganisms.  Therefore, molecular methods, such as high throughput amplicon-based 77 

sequencing, are primarily employed for such characterization (Cocolin et al., 2013). 78 

To the authors’ best knowledge, there are no studies on the microbial ecology of 79 

Brazilian native fish species, and only a few evaluate the impact of storage conditions on their 80 

quality (Borges et al., 2013, 2014a, 2014b; Bottino et al., 2017; Castro et al., 2007). For 81 

instance, a shelf life of 11 days for tambacu and pacu has been suggested during ice storage 82 

(Borges et al., 2013, 2014a, 2014b), while an increase of 50% in the shelf life of tambacu has 83 

been described when UV radiation was employed (Bottino et al., 2017). 84 

This study aimed (i) to characterize the microbiota responsible for the spoilage of three 85 

Brazilian native fish stored on ice or frozen for up to one year by 16S amplicon-based 86 

sequencing (ii) to analyze volatile and nonvolatile metabolites through GC-MS and H-NMR 87 

and (iii) to investigate potential correlation of volatile organic compounds (VOCs) and spoilage 88 

microbiota in fish. This study contributes to a better understanding of microbial population 89 

dynamics during the shelf life and determines the microbial species' role in spoilage. This 90 

valuable information also contributes to improving preservation measures and maintaining fish 91 

quality and safety. 92 

 93 

2. Materials and methods 94 

2.1. Fish sample preparation and storage conditions 95 

Individuals (N=22, weighing ~ 1.5 kg/each) of the three Brazilian native fish species 96 

(pacu, tambacu, and patinga) were collected from a fish farm in São Paulo, Brazil. Sample 97 

variability was encompassed by collecting two lots: “batches A," referring to the samples 98 

collected in February, and “batches B," for the samples collected in June. The slaughter, 99 

washing, gutting, filleting, and transportation to the lab were done as previously described 100 

(Baptista et al., 2024). 101 
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The fresh fish fillets were stored in two conditions: ice and freezing. For the samples 102 

stored on ice, three fish fillets of the same species were aseptically cut into small pieces of about 103 

23 g for a total of 70 g for each sample. Then, fish fillets were packed in PVC films and stored 104 

inside a hermetic cooler with ice. The ratio of fish fillets to ice was 1:1 (one layer of ice and 105 

one layer of fish samples). The hermetic cooler was placed inside a refrigerator and kept at 2 ± 106 

1 ºC until analyses. Fish samples were kept on ice for 18 days and re-iced when necessary. The 107 

microbiological analyses were performed in duplicate at 0, 3, 6, 9, 12, 15, and 18 days of 108 

storage. For the samples stored in a freezer, 70 g of fillet were packed in PVC films and placed 109 

in absorbent trays. The trays were placed in cardboard boxes and stored at -18 ºC. Samples were 110 

stored at -18 ºC for one year, and the analyses were carried out every 15 days in duplicate. At 111 

each time interval planned for analyses, a portion of samples was separated in triplicate and 112 

stored at -18°C for the following analyses: 10 g for DNA, 30 g for NMR, and 10 g for CG 113 

analyses. These analyses were performed within 2 months. 114 

The RMN and DNA samples were placed in Petri dishes and covered with PVC film, 115 

which had been previously drilled to allow air circulation. The samples were placed at -18 ºC 116 

overnight before transference to the freeze-dryer (Terroni, LS3000, São Paulo, Brazil) until 117 

complete dehydration. 118 

 119 

2.2. Microbiological analysis 120 

At every sampling point, 10 g of fresh sample were aseptically cut into small pieces and 121 

transferred to a stomacher bag containing 90 mL of sterile buffered peptone water (BPW) 122 

(Himedia, Mumbai, India) for obtaining a 1:10 ratio, which was homogenized in a Stomacher 123 

400 circulator (Model BA7021, Seward, London, England) for 1 min. Serial ten-fold dilutions 124 

were prepared and 0.1 mL were spread in duplicate in the following culture plates: (i) Agar 125 

tributyrin for Lipolytic bacteria, incubated for 48 h at 30 °C, which consisted of 1.3% nutrient 126 

broth (Kasvi, Roseto degli Abruzzi, Italy), 1% tributyrin (Sigma-Aldrich, St Louis, 127 
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Missouri,USA), and 2% agar (Inlab, São Paulo, Brazil) (Ben-Gigireya et al., 2000); (ii) Plate 128 

Count Agar (PCA, Kasci, Roseto degli Abruzzi, Italy) supplemented with 0.5% NaCl 129 

(Dinâmica, São Paulo, Brazil) for Aerobic mesophilic, incubated at 35 ± 1°C for 48 ± 2 h; (iii) 130 

PCA with 0.5% NaCl for Psychrotrophic bacteria, incubated at 7 ± 1 °C for 48 ± 2 h; (iv) Casein 131 

Agar for Proteolytic bacteria, incubated at 30 °C for 48 h, prepared with 1.5 g of Beef extract 132 

(Acumedia, Neogen, Lansing, Michigan, US), 2.5 g of Bacto Tryptone (Kasvi, Roseto degli 133 

Abruzzi, Italy), 0.5 g of  Glucose (Sigma Aldrich, Rio de Janeiro, Brazil), 8.5 g of Agar, and 134 

12 g of skim milk powder (Nestlé Brazil LTDA, São Paulo, Brazil) (Ben-Gigireya et al., 2000); 135 

and, (v) Pseudomonas Agar Cetrimide Fucidina Cephaloridine (Oxoid LTD, Basingstone, 136 

Hampshire, England) for Pseudomonas spp., incubated at 25 ± 1 ºC for 48 ± 2 h. To confirm 137 

Pseudomonas spp., 5 colonies per plate were randomly chosen and purified in Nutrient Agar 138 

(Kasvi, Roseto degli Abruzzi, Italy), incubated at 25 ± 1 °C for 24 h. After incubation, pure 139 

colonies were selected for confirmation by the Oxidase test (Laborclin, Rio Grande do Sul, 140 

Brazil) and the Kligler Iron Agar test (Oxoid LTDA, Basingstoke, Hampshire, England). The 141 

results were expressed as log10 CFU/g. 142 

 143 

2.3. Microbiota diversity assessment by 16S rRNA amplicon target sequencing  144 

2.3.1. DNA extraction from fish  145 

Lyophilized fish samples (1 g) were homogenized with 5 mL of STE Buffer (100 mM 146 

NaCl, 10 mM Tris-Cl pH 8.0, 1 mM EDTA) for 1 min in a stomacher (LAB blender 400; PBI, 147 

Italy; stomacher bags, Sto-circul-bag; PBI, Italy). One milliliter of the supernatant was mixed 148 

with 50 µL lysozyme (50 mg/mL) and incubated at 37 ºC for 30 min. After incubation, DNA 149 

was extracted according to the MasterPure DNA purification kit (Epicentre, Madison, 150 

Wisconsin), following the manufacturing instructions. DNA concentration was measured by 151 

NanoDrop 1000 spectrophotometer (Thermo Scientific, Milan, Italy) and standardized at five 152 

ng/µL. 153 
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 154 

2.3.2. 16S rRNA amplicon target sequencing 155 

DNA directly extracted from fish samples was used to assess the microbiota by 156 

amplifying the V3-V4 region of the 16S rRNA gene using the primers and protocols described 157 

by Klindworth et al. (2013). PCR amplicons were then subject to cleanup steps using an 158 

Agencourt AMPure kit (Beckman Coulter, Milan, Italy). The Nextera XT Index Kit (Illumina 159 

Inc. San Diego. CA) was used to tag the clean PCR products following the manufacturer's 160 

instructions. After the second purification step, amplicon products were quantified by using a 161 

QUBIT dsDNA Assay kit (Life Technologies, Milan, Italy). An equimolar amount of amplicons 162 

was pooled (4 nM). The pooled library was run on an Experion workstation (Biorad, Milan, 163 

Italy) for quality analysis before sequencing. The library was denatured with 0.2 N NaOH, 164 

diluted to 12 pM, and combined with 20% (v/v) denatured 12 pM PhiX, prepared according to 165 

Illumina guidelines. The sequencing was performed with a MiSeq Illumina instrument 166 

(Illumina) with V3 chemistry and generated 250 bp paired-end reads according to the 167 

manufacturer’s instructions.  168 

 169 

2.3.3. Bioinformatic and statistical analysis  170 

FLASH software (Magoc and Salzberg, 2011) with default parameters merged the 171 

paired-end reads. Sequences were quality filtered (at Phred < Q20) using QIIME 1.9.0 software 172 

(Caporaso et al., 2010), and short reads (< 250 bp) were discarded through Prinseq (Schmieder 173 

and Edwards, 2011). Chimeras were filtered out by USEARCH software version 8.1 (Edgar et 174 

al., 2011). Operational Taxonomic Units (OTUs) were picked at 99% similarity by UCLUST 175 

algorithms (Edgar, 2010), and representative sequences for each cluster were mapped to the 176 

manually updated Greengenes 16S rRNA gene database (v. 2013). Greengenes database was 177 

edited to update taxonomic classifications of lactic acid bacteria based on the latest research. 178 
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OTU tables were rarefied to the lowest number of sequences per sample. The OTU table 179 

displays the higher taxonomy resolution reached; when the taxonomy assignment could not 180 

reach the genus, the family name was displayed. Phylogenetic Investigation of Communities 181 

by Reconstruction of Unobserved States (PICRUSt, v1.1.1) was used to predict the abundances 182 

of KEGG orthologs (KO) (Langille et al., 2013). α-diversity was assessed by Chao1 and 183 

Shannon index, using the diversity function of the vegan package v. 2.6-4 (Dixon, 2003) in R 184 

environment (http://www.r-project.org) (R Core Team, 2023). OTU table was used to build a 185 

principal-component analysis (PCA) as a function of the sample type (frozen or ice) by the 186 

made4 v. 3.18 package (Culhane et al., 2005) of R. ADONIS, and the ANOSIM statistical test 187 

was used to detect significant differences in the overall microbial community by using the 188 

Weighted UniFrac distance matrices and the OTU table. Wilcoxon matched pairs test or Mann-189 

Whitney test was used as appropriate to find a specific association between α-diversity index 190 

or microbiota and sample type. The KO abundance table at level 3 of the KEGG annotations 191 

was imported in the gage Bioconductor package (Luo et al., 2009) to carry out pathway 192 

enrichment analysis to identify biological pathways overrepresented or underrepresented 193 

between sample types. Pairwise, Spearman's non-parametric correlations were used to study the 194 

relationships between the relative abundance of microbiota and inferred metabolic pathways or 195 

volatile and nonvolatile metabolites. Log2 transform data was used to normalize datasets. The 196 

correlation plots were visualized in R using the corrplot v. 0.92 package (Friendly, 2002) of R. 197 

P-values were adjusted for multiple testing using the Benjamini–Hochberg procedure, which 198 

assesses the false discovery rate (FDR). 199 

All the sequencing data were deposited at the Sequence Read Archive of the National 200 

Center for Biotechnology Information (Bioproject accession number: PRJNA1035758). 201 

 202 

2.4. Gas chromatography-mass spectrometry analysis - CG-MS 203 

2.4.1. VOCs determination by headspace HS-SPME/CG-MS  204 
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The Headspace Solid Phase Micro-extraction (HS-SPME) technique was performed to 205 

extract the volatile compounds by using a Divinybenzene Carboxen/Polydimethylsiloxane 206 

(DVB/CAR/PDMS) 100 µm SPME fiber and manual holder (Supelco, USA). After storage at 207 

-80 °Cs, samples were kept at room temperature (~22 ºC) for 30 min, and 3 g of each sample 208 

were transferred into headspace vials (40 mL). Six milliliters of sodium chloride (0.36 mg/L) 209 

were added, and vials were sealed with polyethylene and silicone septum cap. The vials were 210 

placed at 50 ºC for 15 min before SPME analysis to let the sample and headspace equilibrate. 211 

Vials headspace were exposed to the SPME fiber for 15 min at 50 ºC and immediately desorbed 212 

in a gas chromatographer injector at 250 ºC. 213 

2.4.2. GC-MS procedures 214 

The chromatographic analysis was performed using an Agilent 7890A linked to an Agilent 7000 215 

Triple Quad triple quadrupole mass spectrometer (Agilent Technologies, Palo Alto, CA) and 216 

helium at a 1 mL/min flow rate. The Agilent MassHunter Workstation Software Qualitative and 217 

Quantitative Analysis for QQQ (Agilent Technologies Inc.) and National Institute of Standards 218 

and Technology (NIST, 2011) MS database were used for data acquisition and ion 219 

fragmentation consultation, respectively. The splitless mode was used for all analyses with a 220 

liner suitable for SPME analysis. HP-5ms capillary column 30 m × 0.25 mm ID × 1.0 µm df 221 

(Agilent Technologies, Palo Alto, CA) were employed. The injector and oven temperature 222 

parameters employed were optimized by Xu et al. (2015). Electron ionization (70 eV) ion 223 

fragmentation was used to acquire mass spectra, employing nitrogen and helium as collision 224 

gas. Data acquisition was performed at Multiple Reaction Monitoring (MRM). The ANOVA 225 

single factor (P < 0.05 significance level) was performed on semi-quantitative results (peaks 226 

area) using the software Origin™ 9.4 to certify statistical differences among the conditions. In 227 

the case of significant differences shown by ANOVA means, a comparison was performed 228 

using Tukey’s and Levene’s tests to assess the homogeneity of variance. The combined 229 
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uncertainties were based on the standard deviation of the sampling and the analytical errors of 230 

the replicate of the chromatograms acquisition (Alves Filho et al., 2017). 231 

2.4.3. Biomarkers determination 232 

The investigation of product ions and all relevant mass transitions (Table 1) was done 233 

by acquiring a full scan before MRM analysis using the following conditions: 10 000 amu/s 234 

scan speed and 30 – 400 m/z mass range. The identified biomarkers were performed during the 235 

fish storage time for those samples stored on ice and frozen at three distinct points (initial, 236 

intermediate, and final). Biomarker semi-quantification was performed using respective 237 

chromatographic peak area counts. 238 

 239 

2.5. 1H NMR analysis 240 

2.5.1. Molecular identification and monitoring of metabolites by 1H NMR spectroscopy 241 

Before the 1H NMR analysis, an adapted experimental method was applied to prepare 242 

the fish samples, according to Baptista et al. (2024).  243 

The NMR experiments, the equipment employed (Agilent 600 MHz spectrometer 244 

equipped with a 5 mm (H-F/15N-31P) inverse detection One Probe™ with actively shielded Z-245 

gradient), acquisition of spectra, processing of spectra, phase correction of the entire spectral 246 

range, and the identification of the constituents were detailed in a previous work (Baptista et 247 

al., 2024).  248 

 249 

2.5.2. Chemometric analysis 250 

Chemometric analysis investigated the variability of the composition of the fish samples stored 251 

on ice and frozen during two different seasons (Batches A – February and December and B – 252 

June). These analyses were performed as previously described (Baptista et al., 2024). In brief, 253 

The 1H NMR (totaling 24 1H NMR spectra) were converted to American Standard Code for 254 

Information Interchange (ASCII) format to matrix construction, which was exported for 255 
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chemometric analysis using The Unscrambler X™ program 10.4 (CAMO software, 256 

Woodbridge, NJ, USA). Singular Value Decomposition (SVD) algorithm was used to 257 

decompose the matrix (24 samples × 6,947 variables = 166,728 NMR data) in order to reduce 258 

data dimension and to observe trends of the samples variability with a confidence level of 95 259 

%. 260 

 3. Results 261 

3.1. Microbiological analysis  262 

The results of microbial counts on selective culture media of patinga, pacu, and tambacu 263 

during ice and frozen storage are presented in Figures 1 and 2, respectively. During the storage 264 

on ice, all the species showed an initial count of about 4.11 ± 0.32 log CFU/g, increasing during 265 

storage. At the end of the storage period (24 days), counts of approximately 9.06 ± 0.45 log 266 

CFU/g were obtained for psychotrophic, mesophilic, and Pseudomonas and about 8.12 ± 0.28 267 

log CFU/g for proteolytic and lipolytic bacteria (Figure 1). Samples stored under frozen 268 

conditions showed an initial count of about 4 log CFU/g, and the bacterial load was kept 269 

throughout the year (Figure 2). No significant differences in counts were observed among the 270 

three fishes (patinga, pacu, and tambacu) when each group of microorganisms was compared 271 

amongst samples stored for the same period of time at same storage conditions (ice or frozen). 272 

 273 

3.2. Microbiota diversity assessment by 16S rRNA amplicon target sequencing 274 

The bacterial sequencing accounted for 7.333.944 reads. After quality filtering, 275 

3.752.991 reads passed the filters, averaging 57.738 reads/sample and 460 bp of sequence 276 

length. The analyses were satisfactory for all samples, with an average recovery value of 86%. 277 

Adonis and analysis of similarity (ANOSIM) statistical tests showed no significant differences 278 

among fish species (patinga, pacu, and tambacu samples) and neither between the lots (February 279 

and June). 280 
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However, significant differences between the storage types (Frozen vs Ice, P < 0.001) 281 

were observed. Principal Component Analysis (PCA) was performed on the OTUs table, and 282 

the results (Figure 3) further confirmed the separation of the samples according to the storage 283 

type, ice or frozen. Considering the single sampling point, observing few differences among 284 

OTUs was possible.  285 

As shown in Figure 4, Pseudomonas fragi, Brochothrix thermosphacta, Acinetobacter, 286 

Acinetobacter johnsonii, Bacillus, Lactiplantibacillus plantarum, Kocuria, and Enterococcus 287 

were the main OTUs shared among the entire datasets. No differences were observed according 288 

to the fish species. Variance in the microbiota was observed to be affected by the sampling time 289 

in ice samples. In particular, samples on day 3 showed a higher presence (P < 0.05) of several 290 

minor OTUs (Acinetobacter, Bacillus, Bacteroides, Enterococcus, Kurthia, and Macrococcus). 291 

Meanwhile, P. fragi was characteristic at the end of the trial. On the other hand, no significant 292 

differences across the samples were observed. 293 

Regarding samples stored in frozen condition, no difference in the function of the fish 294 

species was observed. Considering the sampling time in frozen samples, it was possible to 295 

observe a reduction (P < 0.05) in the relative abundance from time 0 till the end of several 296 

OTUs such as Kurthia, Enterococcus, Ralstonia, Staphylococcus, and Streptococcus while P. 297 

fragi increased as affected by the storage time (P < 0.05). 298 

The comparison of the relative abundance of the main OTUs between ice and frozen 299 

samples suggested that A. johnsonii, Acinetobacter, Enterococcus, Kocuria, L. plantarum, and 300 

P. fragi were characteristic of frozen samples (FDR < 0.05). On the other hand, only Bacillus 301 

were associated with ice samples (FDR < 0.05). Regarding the inferred metagenome, the 302 

nearest sequenced taxon index (NSTI) score was 0.048 ± 0.011, indicating an accuracy of 303 

95.2%. The pathway enrichment analysis performed by GAGE showed an enrichment of the 304 

following inferred metabolism: methane (ko00680), propanoate (ko00640), butanoate 305 

(ko00650), sulfur (ko00920), arginine and proline (ko00330) in frozen samples compared to 306 
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ice samples (data not shown). When plotting the correlation between OTUs and KO, it was 307 

observed that Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter were positively 308 

correlated with the metabolic pathways (Figure 5) (FDR < 0.05) of ether lipid metabolism. B. 309 

thermosphacta and Pseudomonas sp. were related to inferred metabolic pathways involved in 310 

amino acid metabolism (arginine, alanine, and proline metabolism) (FDR < 0.05). 311 

 312 

3.3. Volatile organic compounds (VOCs) analysis  313 

In the present study, a screening was performed to determine the most frequent markers 314 

(VOCs) and those familiar to different fish species, making the comparison between the species 315 

and the storage time possible. The following VOCs identified exhibited an appropriate 316 

analytical signal present in our library: 1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol 317 

(Tables 2 and 3). Therefore, a semi-quantitative evaluation of these compounds was developed 318 

considering the integration value of the respective peaks area (no calibration curves using 319 

analytical standards).  320 

Fluctuation in 1-hexanol concentration was observed on frozen and ice storage without 321 

observing a standard behavior. By evaluating the concentration of nonanal, an increase during 322 

the frozen and ice storage was observed, followed by the reduction in levels of the volatile in 323 

all species studied. However, this reduction was insignificant for tambacu samples stored on 324 

ice and freezing. Likewise, 2-ethyl-1-hexanol concentration also tended to increase, followed 325 

by ice and frozen storage reduction. The reduction was not significant for the pacu sample under 326 

freezing. Additionally, only increasing values of 2-ethyl-1-hexanol (P < 0.05) were observed 327 

for the pacu sample stored on ice. 328 

The octenol showed the lowest concentrations compared with the other VOCs analyzed 329 

among the studied species and the storage forms. On ice storage, pacu samples showed a 330 

tendency to increase the octanol concentration, followed by a reduction in concentration levels 331 

(P < 0.05); in tambacu samples, a reduction in the concentration was the trend observed (P < 332 
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0.05); in patinga samples was, observed an increase in concentration over the storage (P < 0.05). 333 

No change in octenol concentration was observed for the frozen samples, except for pacu 334 

samples, which tended to reduce the concentration of this volatile (P < 0.05). 335 

 336 

3.4. NMR analysis 337 

The major compounds identified in frozen and ice fillets of pacu, tambacu, and patinga 338 

were lactic acid (doublet at δ 1.34 and quadruplet at δ 4.13), creatine (singlet at δ 3.05 and δ 339 

3.95), and taurine (doublet of doublets at δ 3.30 and δ 3.44). In the aromatic region (δ 6.5 – 340 

9.0), the main compounds detected were ATP/ADP (singlet at δ 8.57) and the decomposition 341 

product inosine (singlet at δ 8.48). Due to the complexity of the 1H NMR dataset and the 342 

similarity among the fish composition, the PCA method was applied to investigate the 343 

variability of the organic compounds in three species of fish (pacu, tambacu, and patinga).  344 

Figure 6 presents the scores graph (a) and loadings plotted in lines form (b) from fish 345 

species pacu (6-a), tambacu (6-b), and patinga (6-c), respectively, during three storage periods: 346 

in the beginning (0 days) after 12 days; and after 21 days of storing in ice. Figures with main 347 

variations according to the first two principal components (PC1 and PC2) with 79.9%, 95.3%, 348 

and 85.7% of the total variance, respectively.  349 

All the loadings graphs in ice storage showed a positive correlation among 350 

phosphocreatine creatine and taurine and their opposite behavior with fatty acids, acetic acid, 351 

leucine, isoleucine, and valine. For pacu species (Figure 6-a), the loadings graph (b) illustrates 352 

mainly the decreased tendency in the amount of creatine and phosphocreatine in fish fillets and 353 

presented increased tendencies in amounts of acetic and fatty acids, leucine, isoleucine, and 354 

valine, and PC2 loadings revealed decrease in the amount of lactic acid after both storages (12 355 

and 21 days). After 12 days of storage, tambacu species samples presented higher decrease 356 

tendencies in amounts of creatine phosphocreatine and lactic acid (Figure 6-b). Furthermore, 357 

after 12 days of storage, amounts of acetic and fatty acids, leucine, isoleucine, and valine 358 
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increased in fish fillets. Samples before storage presented higher amounts of creatine and 359 

phosphocreatine, taurine, and lactic acid based on PC1 and PC2 loadings. In patinga samples, 360 

negative loadings of PC1 presented decreased tendencies in amounts of creatine, 361 

phosphocreatine, and lactic acid, mainly for fish meats after storage in February (12 or 21 days), 362 

and an increase in the amount of acetic and fatty acids (Figure 6-c).    363 

 364 

3.5. Correlation between microbiota and volatile and nonvolatile compounds 365 

When plotting the Spearman correlation between microbiota and metabolites, it was 366 

possible to observe that phosphocreatine/creatine showed the highest number of positive 367 

correlations (FDR < 0.05) with the microbiota (Figure 7). Conversely, all the volatile 368 

metabolites were negatively correlated with the microbiota. Only Bacillus showed a positive 369 

correlation with the volatile metabolites. In addition, a positive correlation was observed 370 

between P. fragi and taurine, while Flavobacteriacea was correlated with the production of 371 

lactic acid (Figure 7).  372 

 373 

4. Discussion 374 

4.1. Microbiological and 16S rRNA analysis  375 

The present study aimed to monitor the microbiological microbiota community of three 376 

native Brazilian fishes (pacu, tambacu, and patinga) during ice and frozen storage. Fish stored 377 

on ice had a shelf life of approximately 15 days, when microbial counts reached 7 logs CFU/g 378 

as established as a microbiological standard count in refrigerated fish (ICMSF, 1986).  379 

Amplicon sequencing of the samples demonstrated the dominant OTUs, P. fragi, B. 380 

thermosphacta, Acinetobacter, Acinetobacter johnsonii, Bacillus, Lactiplantibacillus 381 

plantarum, Kocuria, and Enterococcus.  382 

Pseudomonas spp. are commonly reported in the literature as a dominant 383 

microorganism in chilled fish under aerobic growth (Ben Mhenni et al., 2023; Mikš-Krajnik et 384 
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al., 2016; Parlapani et al., 2014). In this study, P. fragi was the most prevalent spoiler in all fish 385 

samples analyzed in ice and frozen storage. This species is commonly found in aquatic 386 

environments, in different climates, e.g., tropical and subtropical areas, and in different salinity 387 

of marine and freshwater (Gram, 1993; Liston, 1992).  P. fragi is often associated as a spoilage 388 

microorganism in fish at refrigerated conditions, due to its proteolytic and lipolytic activity with 389 

considerable heterogeneity (Ercolini et al., 2010). Moreover P. fragi produces odors 390 

reminiscent of spoiling tropical fruit (a mix of ethyl esters of acetate, butyrate, and hexanoate) 391 

and sulphydryl compounds (Cann, 1974; Gillespie, 1981).  392 

Several authors have positively correlated the presence of P. fragi, in meat samples, 393 

with the production of the VOCs studied in the present study: nonanal, 1-octen-3-ol, 2-ethyl-1-394 

hexanol and 1-hexanol (Casaburi et al., 2011; Edwards et al., 1987; Ercolini et al., 2011; 395 

Ferrocino et al., 2013). These VOCs have been associated with both triglyceride and amino acid 396 

catabolism. However, in the present study, the activity of Pseudomonas spp. was only 397 

associated to the inferred metabolic pathway of amino acids, and no significant correlation was 398 

observed between P. fragi and VOCs. On the other hand, a clear correlation was observed 399 

between P. fragi and taurine. According to Shimamoto and Berk (1979), Pseudomonas spp. can 400 

use taurine as a source of carbon and nitrogen for energy metabolism. Several strains of 401 

Pseudomonas present the enzyme taurine pyruvate aminotransferase, capable of catabolizing 402 

taurine and pyruvate in forming sulfoacetaldehyde and alanine.  403 

B. thermosphacta has been reported in fish stored in aerobic conditions (Mikš-Krajnik 404 

et al., 2016; Nowak et al., 2012), characterized by producing a mild and sour odor.  405 

In this study, B. thermosphacta was positively correlated with metabolic pathways 406 

involved in amino acid metabolism (FDR < 0.05). Likewise, Dainty and Mackey (1992) 407 

showed that B. thermosphacta was responsible for degrading some amino acids in meat, such 408 

as valine, leucine, and isoleucine, resulting in the production of isobutyric, isovaleric, and 2-409 

methylbutyric acids, respectively. And also capable of producing acetamin and acetic acid.  410 
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Acinetobacter spp. is a spoilage bacteria on freshwater fish (González et al., 2001; Gram 411 

and Huss, 1996). It is a nutritionally versatile bacterium, capable of use some amino acids and 412 

fatty acids as carbon sources. Within the genus Acinetobacter, A. johnsonii was the most 413 

abundant OTU found on fish samples, as reported by other authors (Dabadé et al., 2015; 414 

Kozińska et al., 2014). However, the low abundance of Acinetobacter and A. johnsonii in our 415 

study suggests that they contribute on a smaller scale to the spoilage of the analyzed fishes. 416 

Enterococci are ubiquitous and can occur in a wide variety of environmental niches, 417 

such as soil, aquatic environments or infected humans (Kusuda and Salati, 1999; Michel et al., 418 

2007; Taučer-Kapteijn et al., 2013). Enterococcus species may also be present in the 419 

gastrointestinal tract, gills, and on the surface of freshwater fish (Austin, 2002; Hatha, 2002; 420 

Radu et al., 2003; Vivekanandhan et al., 2005). Their contamination is often associated with 421 

contaminated water or unhygienic handling and poor personal hygiene, originate from 422 

materials, food operators, or the environment throughout the processing chain (Lampel et al., 423 

1999; Lopez-Sabater et al., 1994). E. faecalis, E. faecium and E. casseliflavus are associated 424 

with fish spoilage and with the catabolism of carbohydrates to lactic acid (Dalgaard et al., 2003; 425 

Tomé et al., 2008). These species were recently isolated on a fish farm in Brazil (Araújo et al., 426 

2021). When present in protein matrices, Enterococcus spp. can degrade amino acids to 427 

biogenic amines, with highlights for tyramine production (Chong et al., 2011). As for 428 

Acinetobacter spp., a low rate of Enterococcus spp. was observed in the fish matrix, indicating 429 

only an additional contribution of this genus to fish spoilage. 430 

L. plantarum, Kocuria spp., and Bacillus spp. are reported as relevant fish flora, being 431 

naturally present in the fish intestine (Austin, 2006; Grayfer et al., 2014). L. plantarum is a 432 

species with high proteolytic activity which can contribute to the degradation of short-chain 433 

fatty acids (Ztaliou et al., 1996). Kocuria species can be isolated from various environments, 434 

including marine ones (Jorgensen et al., 2001; Parlapani et al., 2017). Fish from tropical water 435 

usually have a slightly higher concentration of Gram-positive bacteria, such as Bacillus spp. 436 
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and lactic acid bacteria, when compared to fish from temperate water (Liston, 1980). Bacillus 437 

spp. has been identified in fish species and the aquatic environment (Popović et al., 2017; 438 

Rasheeda et al., 2017). They present high proteolytic and lipolytic activity, contributing to fish 439 

spoilage. Bacillus spp. are known for their proteolytic and amylolytic activity. In protein 440 

matrices, they can release proteases, degrading proteins into amino acids (Liu et al., 2018; 441 

Zheng et al., 2011). In the present study, the genus Bacillus was positively correlated with the 442 

production of all VOCs identified (octanol, nonanal, 1-hexanol, and 2-ethyl-1-hexanol) in fish 443 

samples.   444 

 445 

4.2. Volatile organic compounds analysis  446 

In general, the VOCs studied were negatively correlated with the microbiota (relative 447 

abundance of selected taxa), except the Bacillus genus. All the alcohols evaluated are reported 448 

as products of oxidation of unsaturated fatty acids. They are formed by a lipoxygenase-initiated 449 

peroxidation of the n−3 and n−6 polyunsaturated fatty acids (Selli and Cayhan, 2009); while 450 

saturated aldehydes, as nonanal, come from the oxidation of n-6 and n-9 polyunsaturated fatty 451 

acid (Duflos et al., 2006; Soncin et al., 2009), contributing to the production of off-flavors in 452 

the fish matrix.  453 

Among the VOCs studied, the smallest quantifications (peak areas) were observed as 454 

follows: 0.14 ± 0.29 for octenol in tambacu stored in ice for 21 days (Table 2) and 0.02 ± 0.13 455 

for nonanal in patinga stored frozen for 12 months (Table 3). Unsaturated alcohols and 456 

aldehydes are known to present a low active odor threshold, such as 0.0075 and 1 ppm, for 457 

octenol and nonanal, respectively, As a result, when present in trace amounts, they can affect 458 

the flavor. For 1-hexanol, the reported limit of active odors is 8,000 ppm (Guth, 1997; Marco 459 

et al., 2007). Moreover, nonanal contributes to the following fish odors: green, fruity, gas, 460 

chlorine, floral, waxy, sweet, melon, soapy, fatty, and citrus fruit (Ganeko et al., 2008). 461 
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The fluctuation in 1-hexanol concentration observed in this study is also reported by 462 

different authors, confirming the non-standard behavior during the ice and frozen storage 463 

(Odeyemi et al., 2018; Polo et al., 2014). The compounds 1-octen-2-ol and 2-ethil-1-hexanol 464 

showed an increase during chilled pacu storage, as reported by Iglesias et al. (2009) and Tuckey 465 

et al. (2013). However, in this study, it was observed a decrease in the compounds at the end of 466 

shelf life (between the 9º to 21º day of ice storage), which may be associated to the oxidation 467 

of secondary alcohols or the esterification of alcohols with carboxylic acids (Padda et al., 2001; 468 

Peterson and Chang, 1982). Alasalvar et al. (2005) report that C6-C10 saturated and unsaturated 469 

alcohols and carbonyl compounds are naturally found in several fish species, detected in 470 

controls and inoculated fish. Similar results were reported for nonanal.  471 

The significant differences observed in the VOCs peak area among the fish species (P 472 

< 0.05) must result from the lipid profile between the species. It is known that Brazilian 473 

‘’round’’ fish have high levels of n-3 and n-6 polyunsaturated fatty acids (Tanamati et al., 474 

2009). However, only one study has been published on the profile of fatty acids in pacu (Castro 475 

et al., 2007). 476 

 477 

4.3. NMR analysis 478 

Overall, the nonvolatile compounds showed reduced concentrations of creatine and 479 

phosphocreatine, taurine, and lactic acid. Additionally, an increase in concentrations of acetic 480 

acid, fatty acid, and amino acids leucine, isoleucine, and valine was observed during ice storage 481 

for all fish species. 482 

The reduction in taurine creatine and phosphocreatine concentration was already 483 

expected. As previously mentioned, taurine was positively correlated with the activity of P. 484 

fragis, which can catabolize taurine and pyruvate during the formation of sulfoacetaldehyde 485 

and alanine, contributing to the reduction of compound (Shimahara et al., 1989). 486 

Phosphocreatine is the primary energy reserve after fish slaughter. It is instantly cleaved by the 487 
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enzyme phosphocreatine kinase to reconstitute the ATP molecule from ADP, resulting in the 488 

formation of creatine. Therefore, the peaks observed in the present study are mainly due to the 489 

contribution of creatine due to the rapid degradation of phosphocreatine (Savorani et al., 2010; 490 

Wyss and Kaddurah-Daouk, 2000). In particular, creatine and phosphocreatine contribute to 491 

the thickness and mouthfulness (Shah et al., 2010). 492 

Although an increase in the concentration of lactic acid is expected throughout storage 493 

due to the anaerobic catabolism of glucose, a reduction in the concentration of the compound 494 

was observed. Likewise, Shumilina et al. (2016) report a fluctuation in the lactic acid 495 

concentration in fish by-products (Backbones, Viscera, and heads), while Tan et al. (2018) 496 

observed a reduction in concentration in fish muscle. These findings may be an indicative of 497 

the microbiological activity. It is known that some microorganisms can consume or produce 498 

lactate.  499 

The increase in the concentration of the amino acids valine, isoleucine, and leucine is 500 

consistent among several authors (Savorani et al., 2010; Tan et al., 2018). Amino acid formation 501 

results from the hydrolysis of the protein. At the same time, the proteolytic activity may be 502 

associated with endogenous enzymes (such as cathepsin and calpain) and bacterial proteinases, 503 

such as lactic acid bacteria, Pseudomonas spp., Bacillus spp., and Aeromonas spp. (Rao et al., 504 

1998).  505 

The accumulation of free fatty acids in the fish matrix also contributes to the loss of 506 

quality, resulting in a rancid flavor. The lipolytic action results in the cleavage of the 507 

triglycerides and is associated with the activity of endogenous enzymes or lipolytic bacteria 508 

(i.e., P. fragi, L. plantarum) (Huss, 1995). 509 

Acetic acid has been reported as an indicator of quality, being absent or present in low 510 

quantity in fresh food, increasing proportionally the deterioration of the food quality (Mikš-511 

Krajnik et al., 2016), in agreement with the observation in the present study. Acetic acid is 512 

exclusively related to the growth (Parlapani et al., 2017) of B. thermosphacta and lactic acid 513 
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bacteria, but also S. putrefaciens and P. phosphoreum resulting in a sour odor (Macé et al., 514 

2013; Nychas et al., 2008).  515 

This study showed that the microbiota diversity of the three analyzed fishes was 516 

directly influenced by storage conditions (ice or frozen) rather than by fish species or different 517 

lot/sampling seasons. These results confirmed that microbiota analysis along with the storage 518 

condition can help in the early detection of the main actors involved in spoilage. Ultimately, 519 

these findings, together with the correlation of microbiota and metabolites, are crucial for 520 

mitigating the loss of quality in this food matrix. 521 

 522 

5. Conclusions 523 

In this study, 16S rRNA analysis significantly contributed to identifying the main OTU's 524 

potential impact on the microbiological microbiota community associated with the loss of 525 

quality of t Brazilian native fish. P. fragi was the most prevalent spoilage bacteria in the three 526 

fishes stored in ice and frozen conditions, followed by B. thermosphacta. Therefore, both 527 

species can contribute to determining the final characteristics of fish products. Moreover, all 528 

the volatile compounds studied were positively correlated with Bacillus spp. However, a wide 529 

further exploitation must be realized on VOCs diversity released during spoilage of native fish 530 

to make available their correlation with other microorganisms. The data may be useful for a 531 

more effective analysis of fish spoilage. An increase in some nonvolatile compounds (i.e., 532 

amino acids, acetic acid, ATP degradation products, etc.) has been observed during fish storage 533 

(metabolite analysis using 1H NMR), suggesting their potential as chemical spoilage index 534 

candidates of pacu fillets.  535 
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 893 

Figure captions 894 

 895 

Figure 1: Counts of different fish spoilage microbial groups for species of tambacu (a), pacu 896 

(b), and patinga (c) in ice storage for up to 24 days. 897 

 898 

Figure 2: Counts of different fish spoilage microbial groups for species of tambacu (a), pacu 899 

(b), and patinga (c) in frozen storage for up to 12 months. 900 

 901 
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Figure 3: Principal Component Analysis (PCA) for OTUs of greater relative abundance for 902 

frozen (red) and ice (blue) storages. The first component (horizontal) accounts for 21.09% of 903 

the variance, and the second (vertical) accounts for 20.15%. 904 

	905 

Figure 4: Incidence of the major taxonomic groups detected by sequencing. Only OTUs with 906 

an incidence above 5% in at least two samples are shown. The abundance of OTUs in the two 907 

biological replicates for each sampling time was averaged. Samples are labeled according to 908 

time on ice [I] (0, 1, 3, 5, 7, 14, and 21 days) and frozen [F] (0,4, 8, and 12 months), batch (A 909 

and B), and fish species (pacu [P], patinga [PC] and tambacu [T]). 910 

 911 

Figure 5:  Heat plot showing Spearman's correlations between OTUs occurring at 5% in at 912 

least two samples and predicted metabolic pathways, filtered for KO gene sample presence 1 913 

in at least five samples, related to amino acid (red squares), vitamin (green squares), lipid 914 

(brown squares), and carbohydrate (blue squares) metabolism. Rows and columns are clustered 915 

by Ward linkage hierarchical clustering. The intensity of the colors represents the degree of 916 

correlation between the OTUs and KO as measured by Spearman's correlations. 917 

 918 

Figure 6: PC1 × PC2 scores coordinate system and respective loadings plotted in lines for (a) 919 

pacu, (b) tambacu and (c) patinga fish fillets sampled during June (triangle) and February 920 

(circle) before the storage (0 days – black color), after 12 days (red), and after 21 days (green) 921 

in ice storage. 922 

 923 

 924 

Figure 7: Correlation between microbiota and volatile or nonvolatile compounds. The color of 925 

the scale bar denotes the nature of the correlation, with 1 indicating a positive correlation (blue) 926 
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and −1 indicating a negative correlation (red). Only significant correlations (FDR 0.05) are 927 

shown. 928 
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 930 


