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Fungal signals and
calcium-mediated transduction
pathways along the plant
defence–symbiosis continuum

Plant roots reside in a complex subterranean world in contact with
diverse soil microorganisms that trigger intricate transcriptional
and developmental responses. Focusing on fungal interactions,
plants use the perception of specific chitin-based molecules to
discriminate between symbiotic partners, such as arbuscular
mycorrhizal (AM) fungi, which plants host in their root tissues,
and fungal pathogens, which they actively oppose. Calcium is
central to the transduction, acting as a common mediator of
downstream signalling (Zipfel & Oldroyd, 2017).

Over 20 years of research has led to a model in which
chitin-derived signals and their respective induced Ca2+ signatures
are part of either symbiotic- or immunity-related intracellular
signalling cascades. Short chitin oligomers (COs) based on a
tetrameric/pentameric backbone (CO4/CO5) as well as their
derivatives harbouring a lipid tail (mycLCOs) have been character-
ized as powerful symbiotic signals and have been shown to trigger
repeated transient elevations in nuclear and perinuclear Ca2+ levels.
This Ca2+ spiking is a commonly accepted hallmark of plant
symbiotic signalling, shared by other beneficial interactions, such as
symbiotic nitrogen fixation in legumes and actinorhizal plants
(Maillet et al., 2011; Genre et al., 2013; Sun et al., 2015; Barker
et al., 2017). Instead, longer COs such as octamers (CO8) are
acknowledged elicitors of plant immunity (Bjornson et al., 2021)
and are known to trigger a transduction pathway based on a rapid
Ca2+ influx in the plant cell (Ranf et al., 2011). However, emerging
evidence suggests that this view may be overly simplistic. Indeed,
CO8 was shown to activate nuclear Ca2+ spiking in Medicago
truncatula roots (Feng et al., 2019; Zhang et al., 2021), and CO4 is
known to trigger mild plant immunity-related responses, such as
reactive oxygen species burst and activation of the MAPK cascade
(Bozsoki et al., 2017).

Similarly, a recent study investigating compartment-specific
Ca2+ signatures activated by different fungal signals demonstrated
that CO8, CO4, and mycLCOs induce a rapid cytosolic Ca2+

influx, followed by a longer-lasting nuclear Ca2+ spiking in Lotus
japonicus roots (Fig. 1). Combining pharmacological and genetic
approaches, the first Ca2+ influx was shown to be related to plant
immunity and functionally uncoupled from symbiotic Ca2+

spiking. Moreover, the amplitude of the Ca2+ influx, as well as
the level of induction of immunity marker genes, was critically
dependent on elicitor concentration (Binci et al., 2024). These data

corroborate previous findings (Feng et al., 2019;Zhang et al., 2021)
and outline a complex picture in which both immunity- and
symbiosis-related responses are elicited by different fungal
molecules through distinct intracellular Ca2+ changes.

In our recent Viewpoint (Giovannetti et al., 2024), which was
intended to be included in the present special issue, but
was published in an earlier issue of the journal in error, such
intertwined fungus–plant communication circuits are discussed to
spotlight the continuum of both fungal elicitors and
Ca2+-mediated signals in the transduction pathways that mediate
plant defence and symbiosis. Based on the cumulative knowledge
gathered over the last twodecades of research and recent advances in
the field, we outline three main challenges for future studies.

First, the classical binary separation of chitin-derived fungal
molecules into symbiotic and pathogenic signals according to their
length and decorations does not reflect the complexity of plant–
fungus chemical communication in light of recent findings. It is
noteworthy that short-chain COs promote AM formation (Volpe
et al., 2020, 2023), whereas long-chain oligomers decrease it
(Zhang et al., 2021) when administered exogenously. However,
when applied as purified molecules to axenic seedlings, COs of
either size can trigger both symbiosis- and immunity-related
responses (Genre et al., 2013; Sun et al., 2015; Bozsoki et al., 2017;
Feng et al., 2019; Zhang et al., 2021; Binci et al., 2024), suggesting
that chitin-based signals are only one part of a broader
communication system (Fig. 2), where the concentration, relative
abundance, and solubility of each class of COs within fungal
exudates, along with more subtle chemical features (such as lateral
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Fig. 1 Biphasic nature of plant Ca2+ signalling in response to fungal
signals. The nonbinary nature of chitin-based fungal elicitors is mirrored by
the partial overlap in plant defence- and symbiosis-related signalling
(magenta and green triangles). In both cases, this is mediated by Ca2+, but
distinct kinetics of evoked Ca2+ changes are emerging. Upon fungal signal
perception (black arrow), a rapid and steep Ca2+ influx from the apoplast
(magenta) is associated with the activation of defence responses. By
contrast, the triggering of symbiotic signalling is delayed in time (green)
and involves the activation of repetitive nuclear-centred Ca2+ oscillations
(Ca2+ spiking) generated from the nuclear envelope.
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substitutions or acetylation degree), or the simultaneous perception
of additional fungal signals, corroborate the activation of one
pathway or the other.

Second, other factors, such as the nutritional status of the plant
(Li et al., 2022) and the complexity of the root microbiota, have
been suggested to play a relevant role in directing plant decisions

towards welcoming or opposing an approaching fungus. Such
physiology-based processes may overlap and dominate direct signal
exchanges between fungi and plants.

Finally, Ca2+ dynamics in beneficial and detrimental plant–
microbe interactionshaveoftenbeen investigatedusingdistinct tools,
largely because of historical circumstances. Indeed, the field of plant
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Fig. 2 Chitin-based fungal signals and Ca2+-mediated plant signalling in defence and symbiosis. Plant-interacting fungi release a mix of short- and
long-chain chitin oligomers (COs) that elicit symbiosis or defence in their host plants. Although a clear distinction between defence-associated long-chain
COs and symbiosis-related short-chain molecules has been proposed, recent research has indicated that this distinction may not be as obvious as previously
thought. Additional factors such as CO concentration, relative abundance, solubility, and degree of acetylation may be major determinants of downstream
responses. An increasing number of studies on plant CO receptors is revealing a second level of complexity: distinct plant species use distinct receptors, and
the same receptors may participate in different complexes based on the availability of individual COs, functional redundancy, and competition between
receptors for complex formation. Finally, both pathogenic and symbiotic fungi cause changes in intracellular Ca2+ concentration, which is a key node in
several plant signal transduction pathways. A transient cytosolic Ca2+ elevation is associated with the perception of both fungal elicitors. By contrast,
nuclear-centred Ca2+ spiking is an acknowledged feature of symbiotic signalling. Nevertheless, when applied as purified molecules, long-chain COs have
also been shown to induce nuclear Ca2+ spiking (dashed magenta arrow). Disentangling this complicated signalling scenario, which underpins the effective
and clear regulation of gene expression for defence or symbiotic responses, is now a major challenge in the biology of plant–microbe interactions. In this
context, the simultaneous perception of additional (nonchitinous) signals that are more specific to symbionts or pathogens and the physiological conditions
of the plant, such as its nutritional status, are starting to emerge as important contributing factors (dashed grey arrows). Modified from Giovannetti
et al. (2024).
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immunity has mainly relied on aequorin-based Ca2+ assays in entire
seedlings, plant organs, and suspension-cultured cells, providing
accurate and sensitive Ca2+ measurements (Knight et al., 1991;
Chandra et al., 1997; Mith€ofer et al., 1999; Lecourieux et al., 2002;
Zuppini et al., 2004; Ranf et al., 2011). In addition to an
aequorin-based approach in plant cell populations that first
demonstrated the involvement of Ca2+ in AM signalling (Navazio
et al., 2007), the endosymbiotic field has primarily adopted
fluorescent Ca2+-dependent dyes and genetically encoded Ca2+

indicators (GECIs) for imagingCa2+ dynamics at the single-cell level
(Ehrhardt et al., 1996; Shaw & Long, 2003; Kosuta et al., 2008;
Chabaud et al., 2011; Sieberer et al., 2012; Genre et al., 2013; Sun
et al., 2015). More recently, the use of fluorescent GECIs to
investigate immunity Ca2+ signalling (Thor&Peiter, 2014; Keinath
et al., 2015; Kelner et al., 2018) and bioluminescent GECIs in
symbiotic interactions (Binci et al., 2024; Teyssier et al., 2024)
clarifiedthat theuseofcomplementary toolsmayprovidemorerobust
findings. Furthermore, extending investigations into plant organellar
Ca2+ signalling (Stael et al., 2012; Costa et al., 2018; Resentini
et al., 2021)maybeessential to fullyunderstand the complexity of the
whole cellular Ca2+ network in beneficial plant–fungus interactions.
Indeed, Ca2+ released from intracellular stores seems to play a crucial
role not only in symbiosis (Charpentier et al., 2016; Del Cerro
et al., 2022) but also in immunity signalling (Wang et al., 2024). In
short, an integrative approach combining different GECIs, merging
distinct advantages, that is, qualitative and quantitative analyses of
Ca2+ signals, appears to be critical for fully dissecting and
reconstructing Ca2+ signalling in plant–microbe interactions.

Notably, most of our understanding of plant–fungus beneficial
interactions has relied on a small number of plant species, mainly
belonging to angiosperms.Nevertheless, recent advancements have
been facilitated by comparative phylogenomics and the use of
diverse model plant species that represent different evolutionary
trajectories. These approaches have elucidated the conservation of a
set of plant genes implicated in symbiosis across a spectrum of
terrestrial plants (Verni�e et al., 2024). For example, studies on the
AM host liverwort Marchantia paleacea, whose compact genome
provides a simpler system for investigating membrane receptors,
have shown that short and long COs induce fast and intense
cytosolic Ca2+ elevations under the control of LysM receptor-like
kinases (Teyssier et al., 2024), tracing the nonbinary nature of
symbiosis- and immunity-related signalling back to the most
ancient common ancestors of land plants.
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