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Introduction

This thesis summarizes the results obtained as a part of the candidate’s PhD research
work described in the papers [1–6], and deals with the dynamical study of models of
interest for Celestial Mechanics, using both analytical and numerical investigations.
Given the heterogeneity of the subjects treated in this work, the detailed description of
the specific analytical settings, as well as of the final outcomes, is left to the initial
section of every chapter. We rather devote the current Introduction to a general
illustration of the models and the approaches adopted, focusing our attention only on
the main results. The variety of the themes treated, as well as of the methodologies
used, is one of the peculiarities of Celestial Mechanics, and in general of Dynamical
Systems, which make these fields such an attractive choice for those who decide to
delve into them. Indeed, a wide range of techniques and approaches has been developed
for this purpose.

The overall work is divided into two parts, each one based on a different type of
dynamical system. In the first part, a particular class of billiards, designated as galactic,
is taken into consideration (see Figure 1). Special emphasys is given to the case of the
galactic refraction billiard, although the case of the Kepler reflective billiard (see for
example [7, 8]) is treated as well in Chapter 3. In few words (see also Figure 1), the
Kepler billiard can be described as a bounded domain inside which a massive body
sits. If the energy of an inner particle is positive, it moves along Keplerian hyperbolæ,
which, hitting the boundary, are reflected back. The major difference with refraction
case is that, in this second model, the particle is no longer constrained in the interior
of the boundary, and can exit following a specific refraction rule. The word galactic
for such models emphasizes, of course, their relation with Celestial Mechanics: in the
case of the reflective billiard, this link is correlated with the presence of a gravitational
center. On the other hand, the refractive case has been inspired by the physical
model of an elliptic galaxy having a central core, such as a black hole, in its center.
This model has already been introduced, although with a different formalism, in [9],
where, through both an analytical and a numerical approach, its chaoticity has been
inferred from estimates of the mean Lyapunov exponent (for which it is worthwhile
to mention [10] and the references within). While the reflective case has already been
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Fig. 1 Left: example of galactic refraction billiard. Right: galactic reflection billiard.

introduced and studied (for example, in [7, 8], where the problem of integrability is
addressed), the refractive one presents some substantial novelties. In particular, in
this case the particle is subject to the action of a discontinuous potential: indeed,
taken a closed and regular domain D ∈ R2, we suppose that a harmonic oscillator-type
potential acts in R2 \D, while a central mass µ dominates the dynamics in D. As a
consequence, the resulting trajectories are concatenations of elliptic arcs outside D
and, as long as the inner energy of the particle is positive, hyperbolic ones in D. On
the boundary ∂D, a refraction Snell’s law holds, deflecting the velocity vector while
preserving the inner or outer energy. The reasons for requiring this type of junction
rule can be retrieved by studying the problem from different perspectives: from a
physical point of view, it represents a generalization of the classical Snell’s law for
light rays and can be obtained as a limit behavior when, taken two constant potentials
and an interface of size ϵ which continuously connects them, we send ϵ → 0. On the
other hand, from a variational point of view it is the result of a critical point argument,
which translates, choosing suitable coordinates, in the conservativity of the first return
map associated to the complete outer-inner dynamics. We stress that this kind of
model belongs to the general family of refractive billiards, which can be constructed
whenever a particle moves under the influence of a discontinuous potential and the
transition is governed by some generalization of Snell’s law (see also [11] and (∗∗)
below), and that most of the techniques that we will describe can be generalized by
modifying the potential. Similar models which take advantage of the relation between
the rules of the motion of the light and the behavior of particles under a gravitational
influence (the so-called optical-mechanical analogy) appear in more applied contexts, as
in [12, 13]. Here, the metamaterials, that is, materials whose refraction index can be
opportunely engineered, are used in order to have the light rays mimic the trajectories
of a particle moving according to a gravitational force field. Other models where the
two different potentials are coupled and the corresponding trajectories are patched are
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the Sun-shadow dynamics (see [14]), where the pure Kepler’s and the Stark’s problem
are paired, and the inverse magnetic billiard (cfr. [15]), which presents very strong
analogies with our model from the point of view of the analytical setting. Here, straight
lines in the interior of a closed billiard are concatenated with circular trajectories with
proper Larmor radii, depending on a constant outer magnetic field. However, in both
these models the transition between the two regimes does not deflect the velocity vector,
as it happens in ours. The formalism used, as well as, where possible, the adopted
techniques (for example, the construction of a first return map), are mainly inspired by
the ample literature on classical Birkhoff billiards, where the particle is free to move
along straight lines in the inner region and, hitting the boundary, is reflected back.
Although this subject has been widely studied since the beginning of the XXth century
(cfr. [16], and, for an accurate survey, the book [17]), at present there is a number
of open problems (just to cite some examples, see [18]) and recent relevant advances
(such as [19–21]). As for the study of the refractive case, to the best of our knowledge
this has never been carried on. It is a worthwhile effort to begin its analysis with some
basic results, such as the search for equilibrium trajectories and the derivation of their
stability (which, as we will see, will require an accurate analysis). We will then pass on
to the application of powerful analytical tools, deriving for example from KAM and
Aubry-Mather theories (see [22], [23, 24] and [25]), and conclude with the study of the
(possible) chaoticity of both the refraction and the Keplerian billiard.

This first part is organized into three main chapters:

• Chapter 1 starts by introducing the analytical model for the refractive galactic
billiard. In particular, given a closed and regular domain D ∈ R2, we will study
the motion of a particle subject to a discontinuous potential of the type

V (z) =


VE(z) = E + ω2

2 ∥z∥2 z /∈ D

VI(z) = E + h+ µ

∥z∥
z ∈ D

, (∗)

where E , h, ω and µ are positive constants. We study the zero-energy trajectories
associated to this potential, supposing that, whenever an inner or outer orbit
reaches the boundary, its velocity is refracted by following Snell’s law

√
VI(z̃) sinαI =

√
VE(z̃) sinαE, (∗∗)

where z̃ is the transition point and αI , αE are respectively the angles that the
inner and outer trajectories form with the normal unit vector to ∂D in z̃ (see
Figure 2). It is clear that the shape of the boundary ∂D influences heavily the
overall dynamics, even determining whether it is globally well defined or not. Of
course, this influence extends on the form and properties of the associated first
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Fig. 2 Snell’s law between inner and outer arcs. Here, t and n are respectively the tangent
and the outward-pointing normal unit vectors to ∂D in z̃.

return map. The main purpose of this chapter is to study the local complete
outer-inner dynamics around the so-called homothetic periodic solutions, obtained
in the direction of a point z̄ ∈ ∂D whenever z̄ ⊥ ∂D and the half-line starting
from the origin in the direction of z̄ intersects ∂D only once (in the following
sections of this work, and in particular in Chapter 3, these points will be denoted
as central configurations). Indeed, in such cases the radial arcs in the direction of
z̄ are invariant for both the outer and inner 1 dynamics, and are not deflected
by Snell’s law as αI = αE = 0. We will show that, although, in general, the
complete dynamics may not be well defined for every initial condition on ∂D,
locally around the homothetic orbits it is possible to construct a well-defined and
differentiable first return map (we stress that the construction of a first return
map to study the continuous dynamics of the billiard is a quite classical technique
deriving from the theory of Birkhoff billiards, see for example [17]). We can then
study the linear stability of the equilibrium homothetic trajectories, defining a
stability criterion based on the sign of the discriminant ∆ of the characteristic
polynomial associated to the Jacobian matrix of the first return map centered
in the equilibrium itself. The quantity ∆ depends on the physical parameters
E , h, ω, µ and on the geometric features of the boundary ∂D up to the second
order (in particular, on its curvature in the central configuration): it is then
possible to study the stability of every homothetic trajectory under changes of the
physical parameters, as well as of the boundary’s geometry, searching for some
kind of bifurcation phenomena. This is done explicitly in the case of a centered
elliptic domain (namely, ∂D is an ellipse with center in the origin), for which
asymptotic estimates are provided as well. In this case, the analytical results

1To treat the singularity at the origin, a regularization technique, such as the Levi-Civita one (see
[26]) is in order.
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are also substantiated with numerical computations, with the construction of a
suitable Poincaré map. The study of the elliptic case is finally concluded with the
analysis of non-homothetic two-periodic brake orbits, where two homothetic outer
arcs are connected with an inner Keplerian hyperbola: under some conditions
involving the ellipse’s eccentricity and the inner parameters h and µ, we will be
able to prove the existence of such kind of orbits by means of a shooting method.

• Chapter 2 is devoted to the analysis of the refractive dynamics for close-to-circle
domains, whose boundaries can be parametrized in complex notation with smooth
curves of the type

γϵ : R/2πZ → R2, γϵ(ξ) = (1 + ϵf(ξ; ϵ)) eiξ,

where f(ξ; ϵ) is a suitable smooth function on R/2πZ × [−C,C] and ξ is the polar
angle. When ϵ = 0, the domain ∂D is a circle, and the corresponding first return
map is globally well defined and completely integrable: in particular, choosing
suitable action angle variables (ξ, I), it can be expressed as a shift in ξ, while I is
preserved under iterates, and the rotation number (see [25]) associated to every
orbit is represented by the shift itself. On the other hand, when ϵ ≠ 0 and f is a
generic smooth function, it is not possible anymore to give an explicit expression
for the first return map associated to the perturbed domain, and neither establish
any general facts upon its good definition. Nevertheless, is ϵ is small and f is
regular enough, it is possible to construct invariant sets of initial conditions for
which the perturbed dynamics, though not explicitly determined, is well defined
and conservative. To do this, a sharper analysis of the variational properties of
our map is in order, and the critical point argument that leads to the Snell’s law
assumes a crucial role. Whenever the perturbed dynamics is well defined and
area-preserving, abstract theorems coming from the Aubry-Mather theory can be
used to prove the existence of orbits with prescribed rotation numbers, including
periodic ones. As a by-product of the invariance of perturbed orbit obtained
from KAM theorem, a result concerning the existence of caustics (see for example
[27, 28, 17] for the classical billiard case, and again [15] for the inverse magnetic
billiard) is obtained.

• Chapter 3 will consider a wider class of domain shapes, focusing on the con-
struction of a symbolic dynamics (see [29, 30] for a systematic dissertation on
the subject) locally around the homothetic equilibrium trajectories. The overall
reasoning follows the trails of [31, 32], where the existence of a symbolic dynamics
is shown respectively for the classical N-centre and the anisotropic N-centre
problem by discerning again between an outer and an inner dynamics. In our
case, the inner dynamics is simpler, since the presence of a single Keplerian
centre instead of a cluster of N massive bodies allows us to obtain more explicit
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results; on the other hand, the presence of a completely different outer dynamics,
and especially the replacement of a C1 junction law with the Snell’s refraction
law, requires the application of new techniques, as for example the use of the
Poincaré-Miranda fixed point theorem (see [33]). In our case, the existence of a
symbolic dynamics for the refractive model is proved provided the energy jump
h between the inner and outer potential is large enough and under very general
hypotheses on D. In particular, it will be required that the function ∥·∥ restricted
to ∂D admits at least two central configurations P̄ , P̂ such that

– they are strict maxima or minima for the function;

– they are not antipodal, in the sense that the origin does not belong to the
straight segment between P̄ and P̂ .

An example of such kind of domain is represented by the centered non-circular
ellipse already presented and analyzed in Chapter 1. We will denote as admissible
the domains that satisfy such assumption. As we will see in the chapter, the
non-antipodality property for the central configuration is a necessary condition
for ensure that the inner dynamics is well defined, that is, that there exists a
unique inner Keplerian hyperbola, satisfying suitable topological constraints (the
so-called (TnT) property), connecting every pair of points of ∂D sufficiently close
to the homothetics; indeed, to connect two point with a unique arc of this type
it is necessary that they belong to neighborhoods of non-antipodal homothetics.
The alphabet of our symbolic dynamics will then be given by the non-degenerate
central configurations of ∂D which admit at least another non-antipodal and non-
degenerate central configuration. Analogous results can be obtained, applying
a somehow simplified reasoning, to the case of the Keplerian reflective billiard,
under the same admissibility hypotheses.
The chapter continues going through the consequences of the existence of a
symbolic dynamics for admissible domains, combining it with the stability analysis
performed in Chapter 1, to investigate the possible presence of a chaotic regime
in both our billiard models. In particular, under stricter assumptions on the
nondegeneration of our central configurations, by the joint application of the
results obtained in these Chapters 1 and 3, one can infer that, for large enough
energies, every homothetic trajectory used as a letter for our symbolic dynamics
is a saddle equilibrium point; as a consequence, one can construct infinitely-many
heteroclinic connections between every pair of them. The presence of multiple
heteroclinics, along with the existence of a symbolic dynamics, is a strong indicator
of complex behavior. That goes in the direction of proving that our systems
are chaotic, although not being enough. The final step can be performed by
adapting a classical argument by Kozlov (see [34]), in order to show that, if h is
large enough, then there are no analytic first integrals associated to our system.
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Again, the reflective and refractive case go side by side in this analysis, suggesting
that, under the admissibility conditions described in Chapter 3 along with the
nondegeneration of at least one central configuration and provided that h is
large enough, both the billiards are analytically non-integrable. This conclusion,
when applied to the case of a centered elliptic domain, can lead to different
consequences depending on the case: for the refractive billiard, this represent
an analytical justification for what has already been observed, numerically, in
the simulations presented in Chapter 1. As for the reflective billiard, this result
represents an interesting complement to [7], where the integrability of the focused
elliptic billiard (namely, with an elliptic boundary with one of the two foci in
the origin) is proved; note that a focused elliptic billiard does not satisfy the
admissibility property, having only two central configurations which are antipodal.

The second part of this work is focused on providing stability estimates for geocentric
satellites and orbiting bodies, taking into consideration reliable models, within a
Hamiltonian setting. Knowing the long-term behavior of the bodies orbiting around
Earth is a crucial goal in Celestial Mechanics, from both a theoretical and a practical
point of view, especially in view of estimating the orbital survival times of operating
satellites or space debris (see for example [35–37]). In particular, this last theme
has been an important subject of recent studies and source of concern for scientists
and space agencies: at present, more than 30000 bodies have been recorded and are
constantly monitored, and, based on the European Space Agency simulations, the
actual number of orbiting objects larger than 1 cm in size is likely over one million
[38]. As the altitude strongly influences the behavior of a satellite, it is convenient to
distinguish the geocentric orbits into three main subgroups: LEO (Low Earth Orbit),
up to 2000 km from the surface of Earth, MEO (Medium Earth Orbit), between 2000
and 30000 km, and GEO (Geosynchronous Earth Orbit), about 42164 km from Earth’s
center, where the geostationary orbits lie (see [39–43] for a thorough study of the
dynamics of satellites in different regimes). While in LEO the dynamics is highly
influenced by the atmospheric drag (cfr. [44]), in MEO and beyond the dissipation
due to the atmosphere is negligible, and one can consider a model that takes into
consideration only the gravitational effects of Earth, Sun and Moon, leading to a
conservative system. In this region, the shape of the Earth must be considered to find
its actual gravitational potential (the so-called geopotential, see [45] where it is derived
and expressed in terms of spherical harmonics), and the lunar and solar gravitational
attractions act as a third-body perturbations. The study presented in this work is
mainly focused on object in MEO, and takes into consideration, sometimes underlining
analogies and differences, two models:
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• the so-called J2-model, where only the effects of the geopotential, truncated up
to order (2, 0), are taken into account. Physically, this means that the oblateness
of Earth is considered;

• the secular geolunisolar model, which includes, in addition to the J2 effects, the
gravitational attractions of the Sun and the Moon. We mention [46–49] and
the references therein to show the relevance of such model to describe all the
important dynamical behaviors occurring in the MEO region. Here, secular
stands for averaged over short-period terms.

The mathematical tools employed to perform our stability analysis are based on
perturbative methods (see for example [50]), and, more precisely, on normal form
theory (see [51] for a detailed description) and the celebrated Nekhoroshev theorem (see
[52, 53]), here presented in its nonresonant version, as stated by Pöschel in [54]. In
practice, we will describe and apply two methods, based on the above theoretical tools,
ensuring that, as long as the considered time period is within suitable computed bounds,
the orbital elements of the body do not undergo large variations that could produce a
drastic change in the overall orbit. We refer to these procedures as semi-analytical, in
the sense that, while rigorous analytical methods are followed, the coefficients of the
Hamiltonian functions that we will use are computed numerically.
In general, starting from a generic Hamiltonian H(I,u), expressed in action-angle
coordinates (I,u) ∈ Rn ×Tn (n being the number of degrees of freedom of the system),
we refer to normal form as a new Hamiltonian function, obtained through a series of
canonical transformations, of the form

H̃(I,u) = h0 (I,u) + h1 (I,u) ,

where h0 enjoys suitable properties, depending on the model, and h1, the remainder, is
small with respect to h0. As an example, if h0 depends only on the actions, then by
means of Hamilton’s equation one can observe that I1, . . . , In are quasi-integrals of the
motions, in the sense that their variation depends only on the small remainder.
This is for example the starting point of Nekhoroshev theorem, which, under suitable
non-degeneracy hypotheses on h0, ensures the stability of the action variables, in
the sense specified before, for times which are exponentially long in the inverse of
the remainder’s size. In the original paper, the non-degeneracy hypothesis required
by Nekhoroshev is the so-called steepness condition, a geometric assumption rather
complex to verify in practice. Nevertheless, there are sufficient conditions implying
steepness, such as convexity, quasi-convexity and three-jet non-degeneracy (see [55]),
which are simpler to check; recent studies [56, 57] extend the class of sufficient conditions
to more general properties. Applications of Nekhoroshev theorem to systems of interest
for Celestial Mechanics can be found in [58] in the case of the three body problem and
in [59] for the Trojan asteroids.
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Fig. 3 Stability time in the J2 model for the semimajor axis a for different initial values. Here
the allowed excursion is ∆a = 0.1RE , where RE is the Earth’s radius. Figure taken from [4].

This second part is again organized into two chapters, which describe the reasonings
and the results obtained by applying two different methods to study the stability of
our satellites:

• Chapter 4 takes into considerations both the J2 and the geolunisolar models,
following the trails of [60]. In general, the reasoning adopted to obtain stability
estimates will be as follows: given the Hamiltonian H(I,u), in our case, either
the J2 or the geolunisolar one, we will search for a normal form such that the
term h0 admits an integral of motion (which will depend on the model; in general,
let us call it A). At this point, given a suitable functional norm ∥ · ∥D over a
bounded domain D in the variables, by the mean value theorem one has that

t ≤ Tstab = ∆A
∥h1∥D

=⇒ |A(t)| ≤ ∆A.

We obtain then a lower bound for the stability time, up to which the variation of
the quasi-integral A is controlled.
The above reasoning is employed for the J2 model to estimate the stability of the
satellite’s semimajor axis, while, in the secular geolunisolar system, it is applied
to the Lidov-Kozai quasi integral A =

√
1 − e2 (1 − cos i) (see [61]). Figure 3

and Table 1 show the stability time, in years, obtained by means of the above
analysis.
As a final result presented in the chapter, the three conditions of convexity, quasi-

convexity and three-jet non-degeneracy, sufficient to guarantee the steepness of
h0, are checked on our two models. From the numerical investigation, it emerges
that, while the J2 normalized Hamiltonian is only three-jet non-degenerate, the
geolunisolar one is quasi-convex: this is a nontrivial fact, translating in the
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Altitude Stability time
3000 km 4.61551 · 1013

20000 km 2.20144 · 1012

35790 km 3.51266 · 1010

50000 km 1.07263 · 108

100000 km 3.36609 · 104

Table 1 Stability time for different altitudes in the domain (e, i) ∈ D = [0, 0.1] × [0, 0.1] for
the secular geolunisolar model.

evidence that the addition of the Moon and the Sun to our model removes the
degeneracy from the J2 model.

• Chapter 5 resumes the algorithm and the results of the application of Nekhoroshev
theorem in its nonresonant formulation to the secular geolunisolar model. This
version of the theorem, which can be applied to domains in the variables which
are far from the resonances, does not require any particular assumption on
the nondegeneracy of h0, and is again based on the smallness of the remainder
term. In particular, whenever the size of h1 is less than a certain threshold value
(depending on h0 and the size of the action’s domain), we are again able to bound
the variation of the actions for a certain interval of time, which turns out to be
exponentially long with respect to the inverse of the remainder’s size itself; it is
therefore crucial to control the growth of the term h1 during the normalization
process. While the study in Chapter 4 was focused on small inclinations and
eccentricities, in this case a wider domain, including the orbital parameters of
most of the operating satellites, is considered; as for the semimajor axis, relevant
results have been obtained for MEO distances between 10000 and 20000 km.
Figure 4 presents the stability time obtained in such cases, and requires some
words to be correctly interpreted. The white regions in every graphic represent
the values of eccentricity and inclination for which the nonresonant Nekhoroshev
theorem (at least, following the presented algorithm) does not apply because
the remainder is too large; the color scale in the remaining region denotes the
obtained stability time. As one can see, the domain of applicability of the theorem
tends to shrink when a grows, while the stability times diminish: a heuristic
explanation for this phenomenon will be provided at the end of the chapter.
Moreover, as we will see, the inclination-dependent resonances of the system (see
for example [62]) play a crucial role, leading to the presence of domains in the
orbital parameters for which the nonresonant hypothesis is not satisfied. In such
regimes, it is worth to use Nekhoroshev theorem in its complete formulation,
performing a systematic and accurate study of the geometry of the resonances
that characterize of the system.
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Fig. 4 Stability times (in years) computed by applying a semi-analytical algorithm based on
the nonresonant Nekhoroshev theorem. On the top side of every graphic the corresponding
value of the semimajor axis is specified. Figure taken from [5]



xii

Now that the models, as well as the problems related, have been described, it is
clear that, although both of them come from Celestial Mechanics, they present
fundamental differences in the construction and in the methods of investigation.
Nevertheless, there is a fil rouge that connects the research presented in this whole
work. First of all, we are dealing with models that can be considered as particular
examples of n−body problem, where the gravitational interaction of the particle
with many different massive objects has been considered. In particular, in the
refractive galactic billiard the influence of the central mass is counterbalanced by
the gravitational interaction of our test particle with the elliptic galaxy’s mass
distribution, which translates in a harmonic oscillator-type potential. As for
the geocentric motion described in the second part, we have again to take into
account the gravitational field generated by a body with a proper volume, namely,
the oblate Earth, as well as the Sun’s and Moon’s point-mass attractions.
Furthermore, in both models the dynamics of the particle is highly influenced by
its distance from the center of the corresponding reference frame, and different
regimes can be detected: in the refractive billiard the separation between them
(harmonic and hyperbolic motion) is of course neat; in the satellite’s case, it is
less evident and definitely smooth, but it is clear from the results obtained that,
increasing the altitude, we pass from a regime in which the Earth’s attraction
dominates to a condition where the effects of Sun and Moon are more and more
relevant.
As for the problems addressed, the issue of stability plays a central role in both
parts, representing the main argument of study in the second one. On the other
hand, the motion around particular equilibrium trajectories, for which an accurate
stability analysis has been provided, is crucial in Part I, and in particular in
Chapters 1 and 3.
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Part I

Dynamical results on galactic
billiards





Chapter 1

Stability and bifurcations in galactic
refraction billiards

1.1 Introduction and description of the model

According with Bertrand’s theorem, among all central forces with bounded trajectories,
there are only two cases with the property that all orbits are also periodic: the attractive
inverse-square gravitational force and the linear elastic restoring one governed by
Hooke’s law.
In this first part we consider a dynamical system of physical interest, where such two
forces act in two complementary regions of the space; a Keplerian attractive center
sits in the inner region, while a harmonic oscillator is acting in the outer one. In
addition, the two regions are separated by an interface Σ, where a Snell’s law of ray
refraction holds. Hence trajectories concatenate arcs of Keplerian hyperbolæ with
harmonic ellipses, with a refraction at the boundary. When the interface also has a
radial symmetry, then the system is integrable; in this chapter we will study the effect
of symmetry-breaking on the stability and bifurcation of periodic orbits. Chapter 2
will be devoted to the analysis, in terms of KAM and Mather theories, of systems with
close to circular interfaces.
Our first motivation comes from an elliptical galaxy model with a central core, of
interest in Celestial Mechanics [9], which deals with the dynamics of a point-mass
particle P moving in a galaxy with a harmonic biaxial core, in whose center there is
a Black Hole. As known, Black Holes appear when, caused by gravitation collapse,
the mass densities of celestial bodies exceeds some critical value, and act as attractors
of both matter and light. Following the relativistic equivalence between energy and
matter, the critical behaviour in the presence of Black Holes has been the recent object
of investigation related with optical properties of metamaterials [12]. In this framework,
light behaves in space as in an optical medium having an effective refraction index
which incorporates the gravitational field and may have a discontinuity accounting for
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the inhomogeneity of the material itself. Therefore, our type of systems are of interests
in view of possible applications in engineering artificial optical devices that control,
slow and trap light in a controlled manner [63].

Going back to our model in Celestial Mechanics, supposing the axes of the galaxy’s
mass distribution being orthogonal, we can then use a planar reference frame whose
x and y axes are the galaxy’s ones, while the BH is at its origin. In the described
reference frame, we denote with z ∈ R2 the particle’s coordinates. Here, the plane
R2 is divided into two regions, according to whether the gravitational effects of the
galaxy’s mass distribution or of the BH dominate. The BH’s domain of influence is set
to be a generic regular domain 0 ∈ D ⊂ R2, and the particle moves on the plane under
the influence of inner and external potentials

V (z) =


VI(z) = E + h+ µ

∥z∥
if z ∈ D

VE(z) = E − ω2

2 ∥z∥2 if z /∈ D,
(1.1.1)

with E , µ, ω > 0 and E + h > 0, while the behaviour of the particle’s trajectory while
it reaches the boundary ∂D = Σ is ruled by a generalization of Snell’s law (i.e. the
conservation of the tangential component of the velocity through the interface, see
Section 1.2). The motion of P will take place inside the Hill’s region

H = {z ∈ R2 | VE(z) ≥ 0};

for computational reasons, we impose 2E > ω2 to ensure that the circle of radius 1 is
contained in H.

Fig. 1.1 Left: trajectory for the general case. The inner and outer arcs are connected by a
refraction Snell’s law. Right: a period three orbit for an elliptic domain with eccentricity
e = 0.3 and physical parameters E = 2.5, ω =

√
2, h = 0.1 and µ = 1.

Our aim is to study the trajectories of zero energy of the system whose potential is
defined as in (1.1.1), in relation with the geometry of the boundary ∂D, taking E , h, µ
and ω as parameters. The study of this kind of orbits is performed by means of the
broken geodesics method (see [64]), where the inner and outer dynamics are considered
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separately and then the corresponding arcs are connected on ∂D. Though usually
∂D will be elliptical shaped, most of our results just involve its geometrical features,
namely its tangent and curvature. If for example ∂D intersects orthogonally both
coordinate axes, as we will explain in a moment there will be two collision homothetic
periodic solutions in the horizontal and vertical directions. Taking advantage of Levi-
Civita regularisation ([26]), we may indeed assume motions to be extended after a
collision with the gravity center by complete reflection. We are concerned with the
stability (dynamical and structural) of such periodic trajectories and their bifurcations
in dependence of the system parameters. We shall focus in particular on bifurcations of
period-two brake trajectories, where the term brake refers to orbits admitting a point
with vanishing velocity. In the case of an elliptic domain we will be able to describe
the full picture, in dependence of the physical parameters.
Although the presence of periodic orbits depends in general on the global geometry of D,
as well as on the physical parameters E , h, µ, ω, there is a class of them whose existence
is guaranteed by particular local conditions on ∂D: this is the case with the homothetic
orbits, namely, of the form z(t) = φ(t)v, where v ∈ R is a given configuration vector
and φ(t) : [0,∞) → R is a scalar function. Let us suppose that ∂D is a curve of class
C2, and, with an abuse of notation, identify any point q ∈ ∂D with its position vector
q − 0. Now take p ∈ ∂D, and suppose that it satisfies the two conditions1

(i) p ⊥ ∂D,

(ii) the ray starting from 0 in the direction of p does not intersect
∂D more than once.

(1.1.2)

In this case, the system admits a collision homothetic orbit in the direction of p,
which we denote by z̄p(t). Condition (i) is necessary to assure that the orbit is not
deflected by Snell’s law when crossing the interface ∂D. As a consequence, conditions
(1.1.2) not only imply the existence of the homothetic orbits, but also the existence
and uniqueness of inner and outer arcs in some neighbourhoods, as well as the good
definition of the refraction law in its vicinity (see Section 1.2). Under the hypotheses
(1.1.2), it makes then sense to study the linear stability of z̄p under the regularised flow
by considering its Jacobian matrix M centerd in z̄p. Taking ∆(ξ̄) as the discriminant
of its characteristic polynomial, the following Theorem provides a full characterisation
of stability in terms of the physical parameters and the local properties of ∂D in p.
Theorem 1.1.1. Let us suppose ∂D = γ(I), with γ ∈ C2(I),
γ : ξ ∈ I ⊂ R 7→ γ(ξ) ∈ R2. Take ξ̄ ∈ I such that, setting p = γ(ξ̄) and identifying
it with its position vector, it satisfies (1.1.2). Denote k(ξ̄) the curvature of γ at γ(ξ̄),
and denote with z̄p the homothetic orbit in the direction of p. Let the inner and outer
potentials be defined as in (1.1.1). Therefore

• if ∆(ξ̄) > 0, then z̄p is linearly unstable;
1In the following chapters, we will refer to such points as central configurations of our problem.
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• if ∆(ξ̄) < 0, then z̄p is linearly stable,

where we have denoted:

∆(ξ̄)(E , h, µ, ω; γ) = ABCD

A = 16
E2µ2

(√
VI(γ(ξ̄) −

√
VE(γ(ξ̄))

) (
∥γ(ξ̄)∥k(ξ̄) − 1

)
,

B = E −
(
∥γ(ξ̄)∥k(ξ̄) − 1

)(√
VI(γ(ξ̄)) −

√
VE(γ(ξ̄))

)√
VE(γ(ξ̄)),

C = −µ
√
VE(γ(ξ̄)) + 2∥γ(ξ̄)∥B

√
VI(γ(ξ̄)),

D = µ+ 2∥γ(ξ̄)∥
(
∥γ(ξ̄)∥k(ξ̄) − 1

)√
VI(γ(ξ̄))

(√
VI(γ(ξ̄)) −

√
VE(γ(ξ̄))

)
.

When ∂D is an ellipse, the stability of the four homothetic orbits, which are parallel
to the coordinate axes, can be studied explicitly in terms of the physical parameters
of the problem and the eccentricity 0 ≤ e < 1 of the ellipse. By symmetry, only the
homothetic orbits intersecting the positive directions of the axes, which we denote with
z̄0 and z̄π/2, are considered.

Corollary 1.1.2. If ∂D is an ellipse, explicit expressions for ∆(0) and ∆(π/2) are pro-
vided in (1.6.3), leading to the complete description, in terms of the physical parameters
and of the eccentricity, of all stability regimes.

As the expressions of the ∆(0) and ∆(π/2), though explicit, include the many
different parameters in a rather intricated formula, the general study of their sign can
be arduous and we shall perform it numerically in general and analytically in some
specific regimes; indeed, an asymptotic analysis for e → 0 can be done, leading to
a rather simple stability criterion for small eccentricities. In particular, we have the
following result for small eccentricities.

Corollary 1.1.3. If
√

E + h+ µ

µ
<

√
2E − ω2

2
√

2E
, then, for small eccentricities, z̄0 is

stable and z̄π/2 is unstable. Symmetrically, if
√

E + h+ µ

µ
>

√
2E − ω2

2
√

2E
, then, for small

eccentricities, z̄0 is unstable and z̄π/2 is stable.

A similar asymptotic analysis, which holds for arbitrary eccentricities, can be per-
formed for high values of h or µ and E (see Proposition 1.6.1): fixing all the parameters
but h (resp. µ), if h (resp. µ) is large enough, both z̄0 and z̄π/2 are unstable homothetic
orbits. In such cases, with the additional hypothesis of a good definition of the dynamics
on the whole ellipse, we can infer the existence of an intermediate non-homothetic
stable periodic orbit with exactly two distinct crossings of ∂D. Furthermore, if E is
large enough, one has that z̄π/2 is unstable, while the stability of z̄0 is determined by
the value of µ, in the sense that there is a threshold value µ̄(ω, h, e) such that if µ < µ̄

z̄0 is unstable, while if µ > µ̄ its stability is reversed.



1.1 Introduction and description of the model 7

As the eigenvalues of the Jacobian matrix M depend smoothly on the physical param-
eters of the problem, bifurcation phenomena (see for example [65]) occur whenever
a variation of any of E , h, µ or ω determines a change in the sign of ∆: Section 1.7
provides concrete examples of such transitions.
The second class of periodic orbits on which this chapter is focused is represented by
the two-periodic brake orbits, where two homothetic outer arcs are connected by an
inner Keplerian hyperbola.
Theorem 1.1.4. Suppose that ∂D is an ellipse with eccentricity e ∈ (0, 1/

√
2), and

consider E > 0, ω > 0 such that 2E > ω2. Then there are µ̄ = µ̄(E , ω, e) and
h̄ = h̄(E , ω, e, µ) such that, if µ > µ̄ and h > h̄, then the dynamics admits at least two
nontrivial brake orbits of period two.

Nontrivial here stands for non homothetic. The existence of this type of periodic
orbits on the ellipse is a significant fact, which distinguishes the strictly elliptic case,
namely, with e ̸= 0 from the circular case: we have indeed that, while in the latter
there are infinitely many homothetic orbits, there is no possibility to have a nontrivial
two periodic brake trajectory.
As in the case of Theorem 1.1.1, also Theorem 1.1.4 admits an extension for general
curves which share with the ellipse a common behaviour near to the homothetic orbits
up to the second order and a particular type of global convexity property with respect
to the hyperbolæ. In particular, we shall define a class of boundaries γ for which the
inner arcs are globally well defined.
Definition 1.1.5. We say that the domain D is convex for hyperbolæfor fixed
h,E and µ if every Keplerian hyperbola with energy E +h and central mass µ intersects
∂D at most in two points. 2

The domain D is convex for hyperbolæ if the previous condition holds for every
positive E , h and µ.

As we will see in Remark 1.6.5, Theorem 1.1.4 remains true whenever a domain D:

• is convex for hyperbolæ;

• is everywhere transverse to the radial direction, in the sense that there are not
rays starting form the origin and tangent to ∂D;

• ∂D = γ(I), γ ∈ C2(I) and γ(ξ) = γ0(ξ) +γ1(ξ), where γ0 parametrises the ellipse
and γ1 has the same symmetry of the ellipse and is such that

γ1(kπ/2) = γ̇1(kπ/2) = γ̈1(kπ/2) = (0, 0) for k = 0, 1, 2, 3.
2We recall that a Keplerian hyperbola is the solution of the Cauchy problem{

z′′(s) = −µz(s)/∥z(s)∥3, ∥z′(s)∥2/2 = E + h + µ/∥z(s)∥
z(0) = p0, z′(0) = v0

for some initial conditions p0, v0 ∈ R2.
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In the case of the ellipse, our analytical study is enriched by a numerical investigation,
presented in Section 1.7, where the behaviour of the dynamics in different cases of
interest is described. Of special interest is the evidence, under particular circumstances,
of diffusive orbits, even for very small eccentricities (i.e., near to the circular case,
which is integrable), which is a strong sign of chaotic behaviour.
The figures of the current chapter are taken from [1].

1.1.1 Analogies and differences with Birkhoff billiards

The model investigated in this work falls into the category of billiards and it is worth to
focus our attention on the possible analogies and the fundamental differences with the
classical Birkhoff case (see [16]). First of all, the rays are curved by the gravitational
force inside D; moreover, reflection at the boundary is replaced by an excursion in
the outer region in between two refractions. Similarly to billiards, our model can be
described by an area preserving map of the cylinder, but, as we shall show in Chapter
2, the twist condition (see [25]) may be violated even in the simplest case of a circular
domain. It should be noted that refraction imposes a new constraint, because the
interface can only be crossed outwards when the inner arc is transverse enough to the
boundary (cfr Section 1.2).
There is a wide literature on Birkhoff billiards, with recent relevant advances (see
the book [17] and papers [19–21, 66]), including some cases of composite billiard with
reflections and refractions [11], also in the case of a periodic inhomogenous lattice [67].
Special mention should be paid to the work on inverse magnetic billiards, where the
trajectories of a charged particle in this setting are straight lines concatenated with
circular arcs of a given Larmor radius [15, 15]. Let us add that, compared with the
cases quoted above, additional difficulties arise because the corresponding return map
is not globally well defined and from the singularity of the Kepler potential.
As a concrete example on how the considered model presents intrinsic analogies with
classical billiards, as well as important differences, let us consider the case of an elliptic
domain and take again Corollary 1.1.3. In classical elliptic billiards of every eccentricity
(see for example Section 4 in [17]), the straight orbit segment corresponding to the
major axis determines always a saddle point for the associated billiard map, while the
one coinciding with the minor axis is a center. A similar behaviour can be observed in
our refractive model when the domain is an ellipse with small eccentricity, but with a
fundamental difference: while this model admits the same equilibrium orbits of the
classical billiard, their stability depend on the value of the physical parameter E , h, ω, µ.
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1.2 Preliminaries: Jacobi distance and Snell’s law

As already pointed out in the Introduction, the Snell’s law used to rule the junction
between outer and inner arcs relies on a variational (critical point) argument. To state
it properly, it is necessary to give some basic definitions and results, which are treated
in more details in [31]. As we will see in Chapter 2, the below discussion is intimately
related to the good definition of our first return map as well, which can be retrieved,
as in the classical Birkhoff case, by taking into account a suitable generating function.

1.2.1 Jacobi length and distance

Let us start by taking a generic fixed-ends problem of the type
z′′(s) = ∇V (z(s)) s ∈ [0, T ]
1
2∥z′(s)∥2 − V (z(s)) = 0 s ∈ [0, T ]

z(0) = z0, z(T ) = z1

(1.2.1)

with z0, z1 in a suitable subset of Ω ⊂ R2, and V (z) a generic potential of class C1(Ω)
such that V (z) > 0 almost everywhere, The reasoning described in the current section,
although treated in general, will be then applied to the potentials VE and VI : as for
the inner case, the Levi-Civita regularisation technique (described in details in Section
1.3) makes us retrieve the regularity of the solutions of the corresponding fixed-ends
problem, allowing to proceed with the subsequent demonstrations also for VI , at least
in a regularised sense.
Let us take z0, z1 ∈ Ω such that the following assumption holds.

Assumption 1.2.1. Let us assume that, given the problem

z′′(s) = ∇V (z(s)) s ∈ [0, T ]
1
2∥z′(s)∥2 − V (z(s)) = 0 s ∈ [0, T ]
z(s) ∈ Ω s ∈ [0, T ]
z(0) = z0, z(T ) = z1

(1.2.2)

for some T > 0, there exists a solution z̄(·) .= z (·; z0, z1) ∈ C2 ([0, T ]) (possibly in a
regularized sense). This solution is supposed to be unique in a suitable homotopy class.

With reference to the outer and inner potential, suitable conditions on the endpoints
for which the existence and uniqueness hold are guaranteed, case by case, in Sections
1.3, 2.3.1, 2.4.1 and 3.2. The definition of a suitable homotopy class will be used, in
Chapters 2 and 3, to ensure the uniqueness of the inner arc with fixed endpoints.
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Definition 1.2.2. Given z0, z1 satisfying Assumption 1.2.1, define the Jacobi length
of the path z̄ as the quantity

L (z̄) .=
∫ T

0
∥z̄′(s)∥

√
V (z̄(s))ds

and the Jacobi distance between z0 and z1 as

d (z0, z1) .= L (z̄ (·; z0, z1)) .

Remark 1.2.3. In view of Definition 1.2.2, we observe that:

• whenever the arc connecting z0 and z1 is unique, the Jacobi distance d (z0, z1) is
well defined and differentiable;

• the functions d is not a proper distance: as a matter of fact, when for example
V = VE and z0 = z1, d (z0, z1) represents the non-zero Jacobi length of the
homothetic outer arc. An analogous observation can be carried out when V = VI

and again the endpoints coincide (see Section 1.3 for more details);

• the Jacobi length is invariant under reparametrizations of the path z̄.

The Jacobi distance, and in particular its partial derivatives with respect to the
endpoints, represents the starting point to give a variational characterization of the
Snell’s law.
Although in the previous discussion the Jacobi length has been defined only for the
solution of Problem (1.2.2), the corresponding quantity can be computed for any path
contained in the set

Hz0z1
.=
z ∈ H1

(
[0, T ],R2

)
for some T > 0

∣∣∣∣∣∣
z(0) = z0, z(T ) = z1,

V (z(s)) ≥ 0 for all s ∈ [0, T ]

 ,
namely, for every curve in H1 that connects z0 to z1 lying in the Hill’s region associated
to the potential V .
There is a strong relation between solutions of Problem (1.2.2) and critical points of L
in Hz0z1 , which passes, naturally, by the resolution of the Euler-Lagrange equations.

Lemma 1.2.4. A path z ∈ HP1P2 is a critical point of L(·) if and only if it is a solution
of the Euler-Lagrange equations

d

ds

(√
V (z(s)) z′(s)

∥z′(s)∥

)
− ∥z′(s)∥

2
√
V (z(s))

∇V (z(s)) = 0 a.e. in [0, T ]. (1.2.3)

Proof. One has that z is a critical point for the Jacobi length if and only if for every
v ∈ H1

0 ([0, T ]) it results dL(z)[v] = 0. This is equivalent to require that the following
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chain of equalities holds:

0 = d

dϵ
L(z + ϵv)|ϵ=0 =

(
d

dϵ

∫ T

0
∥z′(s) + ϵv′(s)∥

√
V (z(s) + ϵv(s)) ds

)
|ϵ=0

=
∫ T

0

√
V (z(s))
∥z′(s)∥ z′(s) · v′(s) + ∥z′(s)∥

2
√
V (z(s))

∇V (z(s)) · v(s) ds

=
∫ T

0

− d

ds

(√
V (z(s)) z′(s)

∥z′(s)∥

)
+ ∥z′(s)∥

2
√
V (z(s))

∇V (z(s))
 · v(s) ds,

where in the last equation an integration by parts has been employed. As the identity
must be true for every v ∈ H1

0 ([0, T ]), one has that the Euler-Lagrange equations
(1.2.3) must hold for almost every s ∈ [0, T ].

We stress that if u ∈ C1([0, T ]) ∩HP1P2 is such that V (z(s)) > 0 and ∥z′(s)∥ > 0
for every s ∈ [0, T ], by continuity one can infer that Eq. (1.2.3) holds everywhere in
[0, T ]. Making use of the previous result, it is possible to find a connection between
solutions of problem (1.2.2) and critical points of L(·).

Lemma 1.2.5. Let z̄ ∈ HP1P2 be a solution of Problem (1.2.2) such that V (z̄(s)) > 0
for every s ∈ [0, T ]. Then z̄ is also a critical point of the Jacobi length L.

Proof. Let us start by observing that, if z̄ is a solution of problem (1.2.2) such that
V (z̄(s)) > 0 in [0, T ], then z̄ ∈ C2([0, T ]) ∩ HP1P2([0, T ]) and ∥z̄′(s)∥ > 0 for every
s ∈ [0, T ]. We will then prove that z̄ is a critical point for L(·) by verifying that it
solves the Euler-Lagrange equations (1.2.3) for every s ∈ [0, T ]. As a matter of fact,
one has, for every s ∈ [0, T ],

d

ds

(√
V (z̄(s)) z̄′(s)

∥z̄′(s)∥

)

= ∇V (z̄(s)) · z̄′(s)
2
√
V (z̄(s))

z̄′(s)
∥z̄′(s)∥ +

√
V (z̄(s))
∥z̄′(s)∥ z̄′′(s) −

√
V (z̄(s)) z̄

′(s) · z̄′′(s)
∥z̄′(s)∥3 z̄′(s),

and the Euler-Lagrange equations follow from the first two lines in Eq. (1.2.2). The
conclusion follows from Lemma 1.2.4.

Lemmas 1.2.4 and 1.2.5 are fundamental to compute the derivatives of the Jacobi
distance with respect to variations of the endpoints z0 and z1: this represents the first
step to give a variational justification to our Snell’s law.

1.2.2 Snell’s law.

Let us now pass from the case of a general potential V to our model, considering the
outer and inner potential VE and VI , respectively in R2 \ D and D. With reference
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to Definition 1.2.2, we will denote with LE, dE (resp. LI , dI) the Jacobi length and
distance corresponding to the outer (resp. inner) potential. As our arcs start and end
always on the boundary of our billiard, from this moment on our endpoints will belong
to ∂D, and will be such that Assumption 1.2.1 is verified.
Recalling that ∂D is parametrised by a regular curve γ (see Theorem 1.1.1), it is
convenient to express the distances as a function of the curve’s parameter rather
than of the endpoints in the plane. Take then ξE

1 , ξ
E
2 , ξ

I
1 , ξ

I
2 ∈ [0, L] such that the

corresponding pair of points γ
(
ξE

1

)
, γ
(
ξE

2

)
and γ

(
ξI

1

)
, γ
(
ξI

2

)
satisfy Assumption 1.2.1

respectively for the outer and inner problem (with an abuse of notation, in this case we
will say that ξE

1 , ξ
E
2 , ξ

I
1 and ξI

2 satisfy Assumption 1.2.1 as well). We can then define
the functions

SE(ξE
1 , ξ

E
2 ) .= dE(γ(ξE

1 ), γ(ξE
2 )), SI(ξI

1 , ξ
I
2) .= dI(γ(ξI

1), γ(ξI
2)). (1.2.4)

Let us recall that the distances dE and dI are infinitely-many differentiable as functions
of the endpoints in every set in which they are well defined; by the chain rule, this
implies that the lengths SE and SI inherit the regularity of the curve γ. In our case,
since this curve is supposed to be at least of class C2([0, L]), the two Jacobi lengths
have the same regularity in every subset of [0, L] × [0, L] in which the inner or outer
dynamics are well defined.
Denoting with ∂a and ∂b the partial derivatives respectively with respect to the first
and second variable, one has

∂aSE

(
ξE

1 , ξ
E
2

)
= ∇P1dE

(
γ
(
ξE

1

)
, γ
(
ξE

2

))
· γ̇
(
ξE

1

)
∂bSE

(
ξE

1 , ξ
E
2

)
= ∇P2dE

(
γ
(
ξE

1

)
, γ
(
ξE

2

))
· γ̇
(
ξE

2

) (1.2.5)

(and similarly for SI), where ∇P1 and ∇P2 are the gradients with respect to the first
and the second point.

Lemma 1.2.6. Let ξE
1 , ξ

E
2 , ξ

I
1 , ξ

I
2 ∈ [0, L] and h > 0 such that Assumption 1.2.1 is

verified. Then

∂aSE(ξE
1 , ξ

E
2 ) = −

√
VE(γ(ξE

1 )) z′
E(0; γ(ξE

1 ), γ(ξE
2 ))

∥z′
E(0; γ(ξE

1 ), γ(ξE
2 ))∥ · γ̇(ξE

1 )

∂bSE(ξE
1 , ξ

E
2 ) =

√
VE(γ(ξE

2 )) z′
E(TE; γ(ξE

1 ), γ(ξE
2 ))

∥z′
E(TE; γ(ξE

1 ), γ(ξE
2 ))∥ · γ̇(ξE

2 )

∂aSI(ξI
1 , ξ

I
2) = −

√
VI(γ(ξI

1)) z′
I(0; γ(ξI

1), γ(ξI
2))

∥z′
I(0; γ(ξI

1), γ(ξI
2))∥ · γ̇(ξI

1)

∂bSI(ξI
1 , ξ

I
2) =

√
VI(γ(ξI

2)) z′
I(TI ; γ(ξI

1), γ(ξI
2))

∥z′
I(TI ; γ(ξI

1), γ(ξI
2))∥ · γ̇(ξI

2).

(1.2.6)

Proof. Let us observe that the partial derivatives in Eq. (1.2.5) can be expressed as
directional derivatives of the (inner or outer) Jacobi length in the direction of γ̇(ξ) for
suitable ξ ∈ [0, L]. Taking for example ∂aSE(ξE

1 , ξ
E
2 ) (analogous expressions hold for
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the other derivatives enlisted in Eq. (1.2.6)), one has

∂aSE(ξE
1 , ξ

E
2 ) = ∂1,γ̇(ξE

1 )dE

(
γ
(
ξE

1

)
, γ
(
ξE

2

))
= ∂1,γ̇(ξE

1 )LE

(
zE

(
·; γ
(
ξE

1

)
, γ
(
ξE

2

)))
,

where, in general, ∂1,σ denotes the directional derivative with respect to variations of
the first endpoint in the direction of the unit vector σ.
To find the explicit expression of ∂aSE, let us start by assuming that ξE

1 ̸= ξE
2 . It is

straightforward to verify that zE(·) .= zE

(
·; γ
(
ξE

1

)
, γ
(
ξE

2

))
is a classical solution of the

associated Bolza problem such that VE (zE(s)) > 0 for every s ∈ [0, TE]: by Lemma
1.2.4, the outer arc is a solution of the associated Euler-Lagrange equations for every
s ∈ [0, TE]. Let us now consider the new parametrization s 7→ t(s) given by

dt

ds
=

√
2VE(zE(s))

LE

t(0) = 0
(1.2.7)

where LE
.= LE(zE) ∈ R as in Definition 1.2.2 with V = VE, and define z̃(t) .= zE (s(t)).

Defining the new time derivative as · .= d

dt
, it holds that t ∈ [0, 1] and that

∀t ∈ [0, 1] ∥ ˙̃z(t)∥
√
VE (z̃(t)) = LE.

Moreover, by the invariance of the Jacobi length under reparametrizations, one has
that

SE

(
ξE

1 , ξ
E
2

)
= LE(zE) = LE (z̃) ,

and then, by (1.2.5), ∂aSE(ξE
1 , ξ

E
2 ) = ∂1,γ̇(ξE

1 )LE (z̃). Starting by (1.2.3), one can prove
that the reparametrised curve z̃ satisfies the Euler-Lagrange equations

d

dt

(
∂L
∂ż

)
= ∂L
∂z
,

where L .= ∥ż(t)∥2VE(z(t)) = L2
E, namely,

d

dt

(
2VE (z̃(t)) ˙̃z(t)

)
= ∥ ˙̃z(t)∥2∇VE (z̃(t)) . (1.2.8)

Let us now compute ∂1,γ̇(ξE
1 )LE (z̃): differentiating L with respect to the first endpoint,

one gets

2LE∂1,γ̇(ξE
1 )LE = ∂1,γ̇(ξE

1 )L

= ∂1,γ̇(ξE
1 )

∫ 1

0
∥ ˙̃z(t)∥2

√
VE (z̃(t))dt

=
∫ 1

0
∂1,γ̇(ξE

1 )

(
∥ ˙̃z(t)∥2

√
VE (z̃(t))

)
dt

=
∫ 1

0

(
2VE (z̃(t)) ˙̃z(t) · ∂1,γ̇(ξE

1 ) ˙̃z(t) + ∥ ˙̃z(t)∥2∇VE (z̃(t)) · ∂1,γ̇(ξE
1 )z̃(t)

)
dt.

(1.2.9)
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Moreover, multiplying (1.2.8) by ∂1,γ̇(ξE
1 )z̃(t) and integrating the result in [0, 1], one

obtains∫ 1

0

d

dt

(
2VE (z̃(t)) ˙̃z(t)

)
· ∂1,γ̇(ξE

1 )z̃(t) =
∫ 1

0
∥ ˙̃z(t)∥2∇VE (z̃(t)) ∂1,γ̇(ξE

1 )z̃(t)

=⇒
∫ 1

0
2VE (z̃(t)) ˙̃z(t) · ∂1,γ̇(ξE

1 ) ˙̃z(t) + ∥ ˙̃z(t)∥2∇VE (z̃(t)) · ∂1,γ̇(ξE
1 )z̃(t)

= −2VE (z̃(0)) ˙̃z(0) · γ̇
(
ξE

1

)
,

(1.2.10)

where the second equation is obtained by integrating by part and observing that
∂1,γ̇(ξE

1 )z̃(0) = γ̇(ξE
1 ) and ∂1,γ̇(ξE

1 )z̃(1) = 0. Comparing now (1.2.10) and (1.2.9) and
recalling the expression of LE, one gets the final expression

∂1,γ̇(ξE
1 )LE (z̃) = −VE (z̃(0)) ˙̃z(0)

LE

· γ̇
(
ξE

1

)
= −

√
VE (z̃(0))

˙̃z(0)
∥ ˙̃z(0)∥ · γ̇

(
ξE

1

)
.

Returning now to the time parameter s, one obtains

∂aSE(ξE
1 , ξ

E
2 ) = −

√
VE(γ(ξE

1 )) z′
E(0; γ(ξE

1 ), γ(ξE
2 ))

∥z′
E(0; γ(ξE

1 ), γ(ξE
2 ))∥ · γ̇(ξE

1 ).

The same identity can be extended to the case ξE
1 = ξE

2 by observing that
VE

(
zE(s; γ(ξE

1 ), γ(ξE
1 ))

)
> 0 almost everywhere in [0, TE] and by taking into account

the differentiable dependence of zE

(
·; γ(ξE

1 ), γ(ξE
2 )
)

with respect to variations of the
endpoints.
In the inner case one can use the same reasonings, keeping in mind that, whenever a
collision occurs, one can consider the corresponding regularized system.

For the sake of completeness, let us focus on the time parameter t used in the
proof of Lemma 1.2.6, and defined in Eq. (1.2.7). In general, it is called geodesic
time, and corresponds to the unique time parametrization such that the quantity
L = ∥ d

dt
z(t)∥

√
V (z(t)) is constant along z. We will refer as kinetic time as the usual

time parameter s for which Problem (1.2.2) is solved.
We are now ready to validate the refraction Snell’s law√

VE(γ(ξ)) sinαE =
√
VI(γ(ξ)) sinαI , (1.2.11)

where:

• γ(ξ) is the transition point between the outer and inner region (or viceversa);

• αE, αI are the angles of the two arcs with respect to the outward-pointing normal
unit vector to γ in ξ.

The variational argument justifying (1.2.11) can be explicited by means of the partial
derivatives of SE and SI .
Let us take ξE, ξI ∈ [0, L] such that there exists a concatenation outer-inner arc starting
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from γ(ξE) and arriving in γ(ξI). More precisely, this means that there exists ξ ∈ [0, L]
such that the pair ξE, ξ and ξ, ξI verify Assumption 1.2.1.
We can then consider the total Jacobi length of the concatenation composed by these
arcs, denoted, following the notation introduced in Eq. (1.2.4), by SE(ξE, ξ) +SI(ξ, ξI).

Definition 1.2.7. We say that the concatenation between γ(ξE) and γ(ξI) of transition
point γ(ξ̄), with ξ̄ ∈ [0, L], satisfies the Snell’s law if ξ̄ is a critical point3 for the total
Jacobi length, namely, if

d

dξ
(SE(ξE, ξ) + SI(ξ, ξI))|ξ=ξ̄

= 0. (1.2.12)

An analogous condition can be established for a concatenation starting with an
inner arc.

Note that condition (1.2.12) is equivalent to require that

∂bSE(ξE, ξ̄) + ∂aSI(ξ̄, ξI) = 0, (1.2.13)

which, in view of Lemma 1.2.6, can be rephrased as
√
VE(γ(ξ̄)) z′

E(TE; γ(ξE), γ(ξ̄))
∥z′

E(TE; γ(ξE), γ(ξ̄))∥
· γ̇(ξ̄) =

√
VI(γ(ξ̄)) z′

I(0; γ(ξ̄), γ(ξI))
∥z′

I(0; γ(ξ̄), γ(ξI))∥
· γ̇(ξ̄). (1.2.14)

Eq. (1.2.14) can be easily translated into Eq. (1.2.11), and can be interpreted as a
conservation law for the tangential component of the trajectory’s velocity vector across
the interface. Let us observe that Eq. (1.2.11) has an evident correlation with the
classical Snell’s law for straight light rays, which can be derived again from a variational
minimization problem (known as Fermat’s principle). In this sense, our refraction
law can be seen as a generalization for generic potentials and curved geodesics of this
classical Snell’s law. In particular, while in the classical case the geodesic arcs are
always minimizers for the Jacobi length, in our case the solutions of the Bolza problems
are only critical points of the corresponding lengths LE(·) and LI(·): this justifies the
use of a criticality condition rather than a minimality one (which, in any case, can be
retrieved working locally around the transition point).
Let us now return to Eq. (1.2.12), observing that, if ξE, ξ̄ and ξI are such that

d

dξ̄

(
∂bSE(ξE, ξ̄) + ∂aSI(ξ̄, ξI)

)
̸= 0, (1.2.15)

3This criticality argument can be replaced in a minimality argument if we consider a more general
definition for the inner and outer Jacobi distances, whose variables can be points not necessarily
lying on ∂D, and restrict our analysis to a strongly convex neighbourhood for both the inner and
outer Jacobi metric (see [68]). In such case, indeed, the geodesic arcs connecting any two points are
minimizers for the Jacobi length.
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then by the implicit function theorem it is possible to express locally the transition
point as a function of the endpoints, that is, ξ̄ = ξ̄ (ξE, ξI)4. In such case, we can then
express the total Jacobi length of the complete concatenation from γ (ξE) to γ (ξE)
only as a function of the endpoints as

S (ξE, ξI) .= SE

(
ξE, ξ̄ (ξE, ξI)

)
+ SI

(
ξ̄ (ξE, ξI) , ξI

)
.

The function S (ξE, ξI), in accordance with the case of classical Birkhoff billiards (see
[17, 25]), can be defined as the generating function of our model, and will be used in
Chapter 2 to derive, at least implicitly, the associated first return map in the case of
the close-to-circle refractive billiards.
Let us conclude this section by analysing the good definition of our refraction rule: as
already mentioned, for the Jacobi distances (outer or inner) to be well defined it is
necessary to take endpoints for which the existence and uniqueness of the (outer or
inner) arc are satisfied, and this problem will be addressed case by case in the next
chapters. On the other hand, this is not enough to guarantee that Snell’s law can be
always verified: as ∀z̄ ∈ R2\{0} one has that VE(z̄) < VI(z̄), the equation

αI = arcsin

√√√√VE(z̄)
VI(z̄) sinαE


is always solvable in the domain [−π

2 ,
π

2 ]. Viceversa, the crossing from the interior to
the exterior of the domain may encounter an obstruction: indeed, the equation

αE = arcsin

√√√√ VI(z̄)
VE(z̄) sinαI



admits a solution if and only if
∣∣∣∣
√√√√ VI(z̄)
VE(z̄) sinαI

∣∣∣∣ ≤ 1: in order to guarantee the solvability,

we define a critical angle, depending on z̄ and, as parameters, on the proper quantities
of the problem E , h, µ, ω, that is

αI,crit = arcsin

√√√√VE(z̄)
VI(z̄)

.
In this way, the passage from the inside to the outside of the domain D takes place as
long as αI ∈ [−αI,crit, αI,crit] (we stress that, for |αI | = αI,crit, the refracted outer arc
turns out to be tangent to ∂D). From a dynamical point of view, this means that the,
for Snell’s law to happen, every incoming inner arc must be transverse enough to the
boundary ∂D.

4The nondegeneracy condition (1.2.15), as well as the domain of good definition of ξ̄ (ξE , ξI), will
be the subject of a thorough analysis, in the context of the close-to-circle billiards, in Chapter 2.



1.3 Local existence of inner and outer arcs: a transversality approach 17

1.3 Local existence of inner and outer arcs: a transver-
sality approach

This section is devoted to state existence of outer and inner arcs, close to the homothetic
ones, which will be next used to apply a broken geodesics technique. We shall use a
classical transversality approach, reminiscent to the one in [69], to which we refer for a
more detailed exposition. It is worthwhile stressing that, when dealing with the inner
dynamics, we shall take advantage of Levi-Civita regularising transformation.
From now on, we will always suppose that D is contained in the outer potential’s Hill’s
region

H =
p ∈ R2

∣∣∣∣∣∣ E − ω2

2 ∥p∥2 > 0
 ,

and assume that its boundary ∂D is parametrised by γ : I 7→ R2, with γ ∈ C2.
Moreover, as already said in Section 1.1 and as we intend to assume from this moment
on, we identify any point in R2, and in particular of the curve, with its corresponding
position vector with respect to 0. We focus on the points of γ which satisfy a local
transversality property, as well as a local star-convexity, namely:

ξ̄ ∈ I such that : (i) γ(ξ̄) ∦ γ̇(ξ̄)
(ii) the ray starting from 0 in the direction of γ(ξ̄) intersects

∂D only once.
(1.3.1)

As in this chapter our main interest lies in the local study of the trajectories around the
homothetic solutions, defined as in Section 1.1, characterised as in (1.1.2) and whose
directions are in a subset of the ones identified by (1.3.1), for the moment we restrict
our analysis to a neighbourhood of ξ̄: condition (1.3.1), along with the regularity of γ,
assures indeed the existence of an open interval I ′ ⊂ I such that ξ̄ ∈ I ′ and

∀ξ ∈ I ′ γ(ξ) ∦ γ̇(ξ). (1.3.2)

Furthermore, possibly taking a smaller I ′, we can suppose that condition (1.3.1(ii))
holds for every ξ ∈ I ′. The local transversality property of γ(I ′) with respect to the
radial directions and its star-convexity with reference to the origin will be the main
ingredients to guarantee the existence of the inner and outer arcs in a neighbourhood
of a homothetic solution.

Theorem 1.3.1. Suppose that the domain’s boundary ∂D is a regular curve parametrised
by γ : I → R2 and suppose that ξ̄ ∈ I satisfies (1.3.1). Then there are ϵα(ξ̄) > 0
and ϵξ0(ξ̄) > 0 such that for every ξ0 ∈ I, α ∈ [−π/2, π/2] with |ξ̄ − ξ0| < ϵξ0(ξ̄) and
|α| < ϵα(ξ̄), there exist T > 0, ξ1 ∈ I such that the problem (in complex notation
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γ(ξ̄) = ∥γ(ξ̄)∥eiθ̄) 
z′′(s) = −ω2z(s)
1
2∥z′(s)∥2 − E + ω2

2 ∥z(s)∥2 = 0
z(0) = γ(ξ0), z′(0) = v0e

i(θ̄+α),

with v0 =
√

2E − ω2∥γ(ξ0)∥2, admits the unique solution z(s; ξ0, α) and
z(T ; ξ0, α) = γ(ξ1) ∈ ∂D.
Moreover, for every s ∈ (0, T ) one has y(s; ξ0, α) /∈ D̄.

The proof of the above result is based on the following Lemma, and the subsequent
Remark. We will postpone to Chapter 2 the explicit proof of an analogous result,
obtained taking into consideration the Bolza fixed-ends problem instead of the Cauchy
one.

Lemma 1.3.2. Suppose that ξ̄ ∈ I satisfies condition (1.3.1). Then there exist δ0(ξ̄),
δ1(ξ̄), ρ(ξ̄) > 0 such that for every ξ0 ∈ I, θ̇0 ∈ R with |ξ̄ − ξ0| < δ0(ξ̄) and |θ̇0| < ρ(ξ̄),
defined the unit vectors (in exponential notation) x̂1 = γ(ξ̄)/∥γ(ξ̄)∥ and x̂2 = ix̂1, there
exist T > 0 and ξ1 ∈ I such that the problem

z′′(s) = −ω2y(s)
1
2∥z′(s)∥2 − E + ω2

2 ∥z(s)∥2 = 0
z(0) = γ(ξ0), z′(0) = ṙ0x̂1 + θ̇0x̂2,

with ṙ0 = ṙ0(θ̇0) =
√

2E − ω2∥γ(ξ0)∥ − θ̇2
0, admits the unique solution z(s; ξ0, θ̇0) such

that z(T ; ξ0, θ̇0) = γ(ξ1) ∈ ∂D. Moreover, |ξ̄ − ξ1| < δ1(ξ̄).

The proof relies on a transversality argument, standard in detecting one side
Poincaré sections, based upon regularity of solutions of Cauchy’s problems and the
implicit function theorem (see, e.g. the similar construction in [69]).

Remark 1.3.3. The validity of condition (1.3.1(ii)) in a neighbourhood of ξ̄ entails
that the point γ(ξ1) defined as in Lemma 1.3.2 is such that, for every
s ∈ (0, T (ξ0, θ̇0)), z(s; ξ0, θ̇0) /∈ D̄, that is, there are no other intersections of ∂D and
the arc z([0, T (ξ0, θ̇0)], ξ0, θ̇0) other than γ(ξ0) ad γ(ξ1). This is in fact a consequence
the continuous dependence on the initial conditions, for which, if (ξ0, θ̇0) are sufficiently
close to (ξ̄, 0), then z(·; ξ0, θ̇0) is arbitrarily close to z(·; ξ̄, 0) in the C0 topology.

The above Lemma states the existence of a local Poincaré section in the energy
manifold of ∂D×R2 for the outer dynamics in a neighbourhood of the initial condition
of a radial brake orbit (namely, the direction of the velocity vector coincides with the
radial one) and under some local conditions on ∂D. The condition |θ̇0| < ρ(ξ̄) ≡ ρ

can be rephrased by considering the angle α ∈ [−π/2, π/2] between the initial velocity
y′(0) = ṙ0x̂1 + θ̇0x̂2 and the radial unit vector x̂1 of γ(ξ̄) (notice that α and θ̇0 have



1.3 Local existence of inner and outer arcs: a transversality approach 19

always the same sign). In particular, one has that

tanα = θ̇0

ṙ0
= θ̇0√

2E − ω2∥γ(ξ0)∥2 − θ̇2
0

⇔ θ̇0 = tanα
√

2E − ω2∥γ(ξ0)∥2

1 + tanα2 = f(α, ξ0).

As f(α, ξ0) is continuous and f(0, ξ̄) = 0, there exist ϵα, ϵξ0 > 0 such that ϵξ0 < δ0(ξ̄)
and, if |α| < ϵ and |ξ̄ − ξ0| < ϵξ0 , then |θ̇0| < ρ. Taking together Lemma 1.3.2 and
Remark 1.3.3, one can eventually state Theorem 1.3.1.

In the case of the inner arcs, we turn to the problem

z′′(s) = − µ

∥z(s)∥3 z(s), s ∈ [0, S],
1
2∥z′(s)∥2 − E − h− µ

∥z(s)∥ = 0, s ∈ [0, S],

z(0) = z0, z
′(0) = v0;

(1.3.3)

for some S > 0 and some initial conditions z0 ∈ ∂D and v0 pointing inward the domain
D, and denote with z(s; z0,v0) its solution (with an abuse of notation, in the following
the initial velocity will be defined either by its angle with the radial direction or its
orthogonal component to the latter). As the Keplerian orbits with positive energy
are unbounded (see for example [70]) and D is bounded, for every initial condition
for which the arc enters in D there is S̃ > 0 such that the it encounters ∂D again in
a point which we call z1. We search for constraints for z0,v0 such that the velocity
vector at this point, denoted with z′(S̃; z0,v0), is transverse to ∂D in the sense that
z′(S̃; z0,v0) and the tangent vector to ∂D in z1 are not parallel.
The singularity at the origin of the inner potential can be treated by means of the
Levi-Civita regularisation technique (see [26]), which consists in a change both in the
temporal parameter and the spatial coordinates, in order to remove the singularity of
Kepler-type potentials. In particular, the following Proposition holds.

Proposition 1.3.4. Problem (1.3.3) is conjugated, via a suitable set of transformations
called Levi-Civita transformations, to the problem

w′′(τ) = Ω2w(τ), τ ∈ [0, T ],
1
2∥w′(τ)∥2 − E − Ω2

2 ∥w(τ)∥2 = 0, τ ∈ [0, T ],
w(0) = w0, w

′(0) = ẇ0

(1.3.4)

for suitable w0, ẇ0, T , Ω =
√

2E + 2h, E = µ.

Proof of Proposition 1.3.4. Setting r(s) = ∥z(s)∥, consider the reparametrisation
s = s(τ̃) such that

d

ds
= 1
r(s(τ̃))

d

dτ̃
⇒ d2

ds2 = − 1
r(s(τ̃))3

d

dτ̃
+ 1
r(s(τ̃))2

d2

dτ̃ 2 .
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Denoting, with an abuse of notation, ′ = d/dτ̃ , the first and second equations in (1.3.3)
become

r(τ̃)z′′(τ̃) − r′(τ̃)z′(τ̃) + µz(τ̃) = 0, 1
2r(τ̃)2 ∥z′(τ̃)∥2 − E − h− µ

r(τ̃) = 0.

Identifying now R2 and C, let us consider a new spatial coordinate w ∈ C such that
z(τ̃) = w2(τ̃): we have then

2r(τ̃)w(τ̃)w′′(τ̃) − w(τ̃)2(∥w′(τ̃)∥2 − µ) = 0, 2∥w′(τ̃)∥2 − µ = r(τ̃)(E + h)
⇒ 2w′′(τ̃) = w(τ̃)(E + h).

Finally, considering the new time variable τ = τ̃ /2 (again, with an abuse of notation,
′ = d/dτ), one obtains the final Cauchy problem

w′′(τ) = 2(E + h)w(τ), τ ∈ [−T, T ]
1
2∥w′(τ)∥2 − (E + h)∥w(τ)∥2 = µ τ ∈ [−T, T ]
w(−T ) = w0, w

′(−T ) = ẇ0

=


w′′(τ) = Ω2w(τ), τ ∈ [−T, T ]
1
2∥w′(τ)∥2 − Ω2

2 ∥w(τ)∥2 = E τ ∈ [−T, T ],
w(−T ) = w0, w

′(−T ) = ẇ0

for some T > 0 and suitable initial conditions w0, ẇ0 (we will return to the determination
of w0 and ẇ0 in Proposition 1.3.10). The solutions of (1.3.3) can be then seen, in a
suitable parametrisation, as complex squares of solutions of a harmonic repulsor with
fixed ends boundary conditions, energy equal to E = µ and frequency
Ω =

√
2(E + h).

We will refer to the time variable τ as the Levi-Civita time, and to the new reference
system as the Levi-Civita plane.
By means of this regularisation, which is of independent interest and will be used
again in Section 1.5, one can infer the local existence and transversality of solutions
of Problem (1.3.3) in the vicinity of the homothetic orbits, in terms of both initial
positions and velocities.

Theorem 1.3.5. Let us suppose that ∂D is a closed curve of class C2, 0 ∈ D,
parametrised by γ(ξ) : I → R2, and suppose that there is ξ̄ ∈ I such that condition
1.3.1 is satisfied. Then there exist λξ0(ξ̄) > 0 and 0 < λα(ξ̄) < π/2 such that for every
ξ0 ∈ [ξ̄ − λξ0 , ξ̄ + λξ0 ] and α ∈ [−λα, λα] there are T > 0 and ξ1 ∈ I such that the
problem in complex notation

z′′(s) = − µ

∥z(s)∥3 z(s),
1
2∥z′(s)∥2 = E + h+ µ

∥z(s)∥ , s ∈ [0, S]

z(0) = γ(ξ0): = ρ(ξ0)eiθ(ξ0), z′(0) = −
√

2
√

E + h+ µ

ρ(ξ0)
ei(θ(ξ̄)+α)

(1.3.5)
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admits the unique solution z(s; ξ0, α). Moreover, z(T ; ξ0, α) = γ(ξ1) ∈ ∂D, and
z′(T ; ξ0, α) ≡ z′(T ) is not tangent to ∂D. More precisely, there exists 0 < σ < π/2,
depending on ξ̄, such that, if β ∈ [−π/2, π/2] is such that

z′(T ) =
√

2
√

E + h+ µ

ρ(ξ1)
ei(θ(ξ1)+β), we have β ∈ [−σ, σ].

Remark 1.3.6. As in the case of the outer dynamics, taking possibly a smaller λα

one can assure that z((0, T ); ξ0, α) ∈ D, namely, that z(s; ξ0, α) does not intersect ∂D
for s ∈ (0, T ). This is in fact guaranteed by the validity of condition (1.3.1(ii)), the
continuous dependence of problem (1.3.5) on the initial conditions and the fact that
0 ∈ D.

To prove Theorem 1.3.5 we rely again on some preliminary results, taking into
account the transformation of the billiard’s boundary passing from the physical to
the Levi-Civita plane. Like in the outer problem, suppose that ∂D is a closed curve
of class C2 parametrised by γ(ξ) : I → R2: passing to the Levi-Civita plane, γ is
transformed according to the same rule w2 = z. As the complex square determines a
double covering of C, it is clear that every arc z(τ) in the physical plane corresponds
to two arcs w(τ) in the Levi-Civita plane, depending on the choice of w0, which is such
that w2

0 = z0, and a suitable transformed velocity ẇ0. In the following, we will work
with the Levi-Civita variables, taking respectively for w0 the negative determination of
the square root of z0 and for w1 the positive determination of the square root of z1,
namely, in polar coordinates,

z0 = ∥z0∥eiθ0 ⇒ w0 = −
√

∥z0∥ei
θ0
2 , z1 = ∥z1∥eiθ1 ⇒ w1 =

√
∥z1∥ei

θ1
2 . (1.3.6)

The transformed boundary follows the same rules, and is defined in two neighbourhoods
of w0 and w1. More precisely, let us suppose that ξ̄ satisfies condition (1.3.1) and,
additionally, γ(ξ̄) points in the direction of e1 = (1, 0): for the sake of simplicity, we
will focus on this particular value of ξ̄, as for every ξ̄′ ∈ I satisfying (1.3.1) we can
consider the rotated basis (e′

1, e
′
2) such that ξ̄′ has the properties of ξ̄.

Definition 1.3.7. Letting ξ̄ be defined above, there exists ϵ̄ > 0 such that, if γ(ξ) is
expressed in polar coordinates, namely, γ(ξ) = ρ(ξ)eiθ(ξ), the curves

ϕ+(ξ) : (ξ̄ − ϵ̄, ξ̄ + ϵ̄) → C, ϕ+(ξ) =
√
ρ(ξ)eiθ(ξ)/2,

ϕ−(ξ) : (ξ̄ − ϵ̄, ξ̄ + ϵ̄) → C, ϕ−(ξ) = −
√
ρ(ξ)eiθ(ξ)/2 =

√
ρ(ξ)ei(θ(ξ)/2+π)

are well defined in the Levi-Civita plane and represent the local transform of γ.

As an immediate consequence of the conformality of the map w 7→ w2 we have the
following

Lemma 1.3.8. The transformed curves ϕ±(ξ) preserve the angle between the radial
and the tangent direction of γ(ξ). In particular, if condition 1.3.1 holds for γ(ξ), then
it holds for ϕ±(ξ) with ξ ∈ (ξ̄ − ϵ̄, ξ̄ + ϵ̄), possibly reducing ϵ̄.
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Let us focus on the transformed inner arc in the Levi-Civita plane: the next
Proposition states the existence, under suitable hypotheses on the initial conditions, of
a solution of Problem (1.3.4) which has the desired transversality properties.

Proposition 1.3.9. If condition 1.3.1 holds for γ(ξ̄), then there are λ̃ > 0, 0 < ϵ̃ < ϵ̄
such that, for every ξ0 ∈ [ξ̄ − ϵ̃, ξ̄ + ϵ̃], θ̇0 ∈ [−λ̃, λ̃] there are T > 0, ξ1 ∈ I such that
the Cauchy problem

w′′(τ) = Ω2w(τ), τ ∈ [−T, T ]
1
2∥w′(τ)∥2 − Ω2

2 ∥w(τ)∥2 = E τ ∈ [−T, T ],
w(0) = ϕ−(ξ0), w′(0) = ṙ0e1 + θ̇0e2

with ṙ0 =
√

2E + Ω2∥ϕ−(ξ0)∥2 − θ̇2
0 admits the unique solution w(τ ; ξ0, θ̇0). Moreover,

w(T ; ξ0, θ̇0) = ϕ+(ξ1). In addition, w′(T (ξ0, θ̇0); ξ0, θ̇0) ∦ ϕ̇+(ξ1(ξ0, θ̇0)), namely, the
regularised arc is not tangent to ∂D in ϕ+(ξ̄).

The proof is again rather standard and relies on a transversality argument for
the regularised flow. Moreover, continuity of the regularised flow with respect to the
initial conditions and angle preserving of the complex square map entail the desired
transversality property.

Let us notice that the smallness condition on the velocity’s orthogonal component
θ̇0 can be given also in terms of the angle between the radial direction and the initial
velocity vector. As in the outer case, we can consider the angle α ∈ [−π/2, π/2] between
w′(0) = ṙ0e1 + θ̇0e2 and ϕ−(ξ̄) and have

tanα = θ̇0

ṙ0
= θ̇0√

2E + Ω2∥ϕ−(ξ0)∥2 − θ̇2
0

⇔ θ̇0 = tanα
√

2E + Ω2∥ϕ−(ξ0)∥2

1 + tanα2 = g(α, ξ0).

As g(α, ξ0) is continuous and g(0, ξ̄) = 0, there exist λα > 0 and λξ0 > 0 such that
λξ0 < ϵ and, if |α| < λα and |ξ̄ − ξ0| < λξ0 , then |θ̇0| < λ̃.

Proposition 1.3.10. Let us consider ξ̄ ∈ I such that γ(ξ̄) = ρe1, ρ > 0, and suppose
that condition 1.3.1 holds. Let ϵ̄ > 0 such that the curves ϕ± : [−ϵ̄+ ξ̄, ϵ̄+ ξ̄] are well
defined, and choose ξ0 ∈ [−ϵ̄ + ξ̄, ϵ̄ + ξ̄] and β ∈ [−π

2 ,
π

2 ]. Then the system (in polar
coordinates)

z′′(s) = − µ

∥z(s)∥3 z(s), s ∈ [0, S],
1
2∥z′(s)∥2 − E − h− µ

∥z(s)∥ = 0, s ∈ [0, S],

z(0) = γ(ξ0) = ρ(ξ0)eiθ(ξ0), z′(0) =
√

2
√

E + h+ µ

ρ(ξ0)
ei(θ(ξ0)+β)
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is conjugated, in the Levi-Civita plane, and considering τ = τ(s) the Levi-Civita time,
to the problem

w′′(τ) = Ω2w(τ), τ ∈ [−T, T ]
1
2∥w′(τ)∥2 − Ω2

2 ∥w(τ)∥2 = E τ ∈ [−T, T ],

w(0) = −
√
ρ(ξ0)eiθ(ξ0)/2, w′(0) = −

√
2E + Ω2ρ(ξ0)ei(θ(ξ0)/2+β)

for a suitable T > 0. In other words, the angles between the original initial conditions
and the transformed ones, namely, ̂z(0), ż(0) and ̂w(0), w′(0), are equal.

Proof. From the definition of ϕ−, we have that

w(0) = ϕ−(ξ0) = −
√
ρ(ξ0)ei(θ(ξ0)) =

√
ρ(ξ0)ei(θ(ξ0)+π).

To compute w′(0) = dw(0)/dτ , we go through the following Levi-Civita transformations:

• d

ds
= 1

∥z(τ̃(s))∥
d

dτ̃
, then, for s = 0,

√
2
√

E + h+ µ

ρ(ξ0)
eiθ(ξ0) = d

ds
z(0) = 1

ρ(ξ0)
d

dτ̃
z(0);

• z = w2, then

√
2ρ(ξ0)

√
E + h+ µ

ρ(ξ0)
eiθ(ξ0) = d

dτ̃
z(0) = 2w(0) d

dτ̃
w(0);

• τ = τ̃ /2, then
√

2
√

E + h+ µ

ρ(ξ0)
ei(θ(ξ0)+β) = w(0) d

dτ
w(0)

=⇒ w′(0) = −
√

2E + Ω2ρ(ξ0)ei(θ(ξ0)/2+β)

The angle between the initial conditions in the physical plane is then preserved
after the passage in the Levi-Civita reference frame: this assures that, if we fix some
"smallness" condition on the angle α between the initial velocity and the direction of
γ(ξ̄) in the original reference frame, they will hold also in the Levi-Civita plane. This
allows, along with the previous results, to state Theorem 1.3.5.

Notation 1.3.11. In the following, we will refer to the outer differential equation
along with the energy conservation law with (HSE), while (HSI) and (HSLC) will
denote the inner differential problem respectively in the physical and in the Levi-Civita
variables, with their own energy conservation conditions. More precisely, we will write
(HSE)[z] if z satisfies the outer differential equation with zero energy, and use the
analogous notation for (HSI) and (HSLC).
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1.4 First return map

As in the previous Sections, let us suppose that the boundary of the regular domain D
defined in Section 1.1 can be parametrised by a regular closed curve γ : I → R2. Given
some initial conditions z(I)

0 , v
(I)
0 , z

(E)
0 and v

(E)
0 , let us consider the solutions zI(s) and

zE(s) of the two systems(HSI)[z(s)] s ∈ [0, TI ]
zI(0) = z

(I)
0 , z′

I(0) = v
(I)
0

(HSE)[z(s)] s ∈ [0, TE]
zE(0) = z

(E)
0 , z′

E(0) = v
(E)
0

(1.4.1)
for some TI , TE > 0. Fixed z0 ∈ ∂D, v0 ∈ R2 such that it points towards the exterior
of D, we want to describe (supposing that it exists) the trajectory obtained by the
juxtaposition of an outer arc zE and the subsequent inner arc zI , namely zEI(s) defined
by

zEI(s) =


zE(s) s ∈ [0, TE)
zI(s) s ∈ [TE, TE + TI)
z

(1)
E (s) s = TE + TI ,

(1.4.2)

where the branches zE, zI and z
(1)
E are solution either of the outer or the inner

problem and are connected by following the Snell’s rule. In particular, we require
zE(TE) = zI(TE) and zI(TE + TI) = z

(1)
E (TE + TI), and, using the notation

zE(TE) = zI(TE) = z1, zI(TE + TI) = z
(1)
E (TE + TI) = z2

v1 = z′
E(TE)

∥z′
E(TE)∥ , v′

1 = z′
I(TE)

∥z′
I(TE)∥ , v2 = z′

I(TE + TI)
∥z′

I(TE + TI)∥ v′
2 = z′

E
(1)(TE + TI)

∥z′
E

(1)(TE + TI)∥

we demand 
(HSE)[zE(s)] s ∈ [0, TE]
zE(s) /∈ D, zE(TE) ∈ ∂D s ∈ (0, TE)
zE(0) = z0, z

′
E(0) = v0

(1.4.3)


(HSI)[zI(s)] s ∈ [TE, TE + TI ]
zI(s) ∈ D, zI(TE + TI) ∈ ∂D s ∈ (TE, TE + TI)√
VE(z1)v1 · e1 =

√
VI(z1)v′

1 · e1

(1.4.4)


(HSE)[z(1)

E (s)] s ∈ [TE + TI , TE + TI + T̃ ]
z′

E
(1)(s) /∈ D, s ∈ (TE + TI , TE + TI + T̃ ]√
VI(z2)v2 · e2 =

√
VE(z2)v′

2 · e2,
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for some TE, TI , T̃ > 0 and where e1 and e2 are the unit vectors tangent to ∂D respec-
tively in z1 and z2.

1.4.1 Local first return map

We wish to construct the iteration map which expresses
(z1, v1) .= (zEI(TE + TI), z′

EI(TE + TI)) as a function of (z0, v0) in a suitable set of
coordinates.
Let us suppose that the point zEI(0) = γ(ξ) ∈ ∂D is the starting point of the outer
branch of zEI(t): then, denoting with t(ξ) and n(ξ) respectively the tangent and the
outward-pointing normal unit vectors of γ in ξ, the initial velocity v can be expressed
as v =

√
2VE(γ(ξ))(cosα n(ξ)+sinα t(ξ)), where α ∈ [−π/2, π/2] is the angle between

v and n(ξ), positive if v · t(ξ) ≥ 0 and negative otherwise. Then, once ξ is fixed, the
vector v is completely determined by α. We can then consider the map

F : B ⊂ (I × [−π/2, π/2]) → I × [−π/2, π/2],
(ξ0, α0) 7→ (ξ1, α1) = (ξ1(ξ0, α0), α1(ξ0, α0)),

where the pair (ξ1, α1) completely determines (z1, v1. The determination of the domain
of F , denoted with B, is a nontrivial problem, whose main issues are discussed in
Remark 1.4.2.

Although F is not explicitly defined, taking together the properties of the solutions
of Problem (1.4.1) and Snell’s law (1.2.11), under some suitable hypotheses on ∂D, one
can characterize one particular class of fixed points of F , deriving from one-periodic
homothetic solutions of (1.4.1):

Remark 1.4.1. Initial conditions zEI(0) = γ(ξ̄), z′
EI(0) =

√
2VE(ξ̄)γ(ξ̄)/∥γ(ξ̄)∥ corre-

spond to a homothetic solution of Problem (1.4.1) if and only if

γ(ξ̄) ⊥ γ̇(ξ̄)
and the segment tγ(ξ̄), t ∈ [0,∞), does not intersect ∂D for t ̸= 1.

(1.4.5)

Therefore, if condition (1.4.5) holds, the pair (ξ̄, 0) is a fixed point for F , which we
call homothetic.

Remark 1.4.2. The conditions for F to be globally defined on I × [−π/2, π/2] are
essentially two:

(i) the existence and uniqueness of the outer and inner arcs for any initial conditions;

(ii) the good definition of the refraction rule for every incoming arc: according to the
reasonings in Section 1.2, it is equivalent to require that for every inner arc, if
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we denote with β1 the angle between z′
I(TI + TE) and the inward-pointing normal

vector to ∂D in γ(ξ1), we shall have |β1| < βcrit = arcsin(
√
VE(γ(ξ1))/VI(γ(ξ1))).

In other words, condition (ii) is verified if the inner Keplerian arcs zI are transverse
enough to the domain’s boundary ∂D. This obstruction to the good definition of F
may be circumvented by considering a suitable prolonging according to which, whenever
|β1| > βcrit, the test particle returns back in the interior of the domain with an angle
β = β1. This extension, corresponding to the so-called total reflection, is somehow
suggested by physical intuition and by analogy with the classical Birkhoff billiards, as
well as the traditional Snell’s law for light rays. However, as this approach leads to
technical difficulties due to the passage to the tangent case for |β1| = βcrit and the
consequent loss in regularity, in this work such extension is not considered, and, by
definition, the map F will be well defined only when |β1| < βcrit for every inner arc 5.
Theorems 1.3.1 and 1.3.5 provide sufficient conditions for (i) to be satisfied, as well
as proving the existence of a small neighbourhood of the homothetic initial conditions
for which the inner arc is arbitrarily transverse to ∂D. As a consequence, even though
the global definition of the first return map F can not be assured without additional
requirement on γ, the hypotheses of the existence theorems guarantee that the map is
locally well defined near to the homothetic solutions.

As we will see in some specific cases, there are particular conditions on which the
homothetic solutions are not the only one-periodic solutions of Problem (1.4.1). On
the other hand, the study of the stability of this particular class of points allows us to
derive important informations on the behaviour of F .

1.5 Stability analysis of the homothetic fixed points
of F

1.5.1 The Jacobian matrix of F

Without loss of generality, let us assume that, in complex notation, ξ̄ ∈ I is such that
γ(ξ̄) = ∥γ(ξ̄)∥eiξ̄ and γ̇(ξ̄) = ∥γ̇(ξ̄)∥ieiξ̄. Then the point p̄ = (ξ̄, 0) is a fixed point
for F , whose stability properties can be deduced from the spectral properties of the
Jacobian matrix

DF ((ξ̄, 0)) =


∂ξ1

∂ξ0 |p̄

∂ξ1

∂α0 |p̄
∂α1

∂ξ0 |p̄

∂α1

∂α0 |p̄
,

 (1.5.1)

which can be derived through the implicit function theorem, even though F is not
explicitly determined.
Let us consider a generic potential V (z) and, once fixed z0, z1 ∈ R2, consider the

5As we will see in Sections 2.3.1 and 2.4.1, this is true if D is a disk or a perturbation of the latter,
provided α0 ̸= ±π/2.
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function z(s) = z(s; z0, z1) which solves the fixed end problem (1.2.2). As already seen
in Section 1.2, z(t; z0, z1) = z(s(t); z0, z1) is a critical point for the Jacobi length L(y(t))
with endpoints y(0) = z0 y(1) = z1. We denote L(z(t; z0, z1)) the value of this length.
Note that neither the outer nor the inner arcs are global minimizers of the Jacobi
length with fixed ends. Indeed, it can be proved (though is not relevant in this context)
that the inner arc is a local minimizer while the outer one has Morse index one (cfr
[71, 72]). We recall from Section 1.2 that:

• t is the geodesic time, whose relation with the kinetic time s is discussed in
Section 1.2;

• L(y(t)) =
∫ 1

0
∥ẏ(t)∥

√
V (y(t))dt;

• L = L(z(t; z0, z1)) = ∥ż(t)∥
√
V (z(t)) = const.

If we consider a generic unit vector e, recalling and generalizing (1.2.5) the directional
derivatives of d(z0, z1) with respect to the first or second variable, denoted respectively
with v and w, can be written as

∂e,vd(z0, z1) = ∇z0d(z0, z1) · e, ∂e,wd(z0, z1) = ∇z1d(z0, z1) · e

∇z0d(z0, z1) = −
√
V (z(0)) ż(0)

∥ż(0)∥ , ∇z1d(z0, z1) =
√
V (z(1)) ż(1)

∥ż(1)∥ .
(1.5.2)

Note that the derivatives are expressed in terms of geodesic time. Let us now define
the generating function

S(ξ0, ξ1) = d(γ(ξ0), γ(ξ1)),

and define the tangent unit vectors e0 = γ̇(ξ0)/∥γ̇(ξ0)∥ and e1 = γ̇(ξ1)/∥γ̇(ξ1)∥. From
(1.2.5),

∂ξ0S(ξ0, ξ1) = ∇z0d(γ(ξ0), γ(ξ1)) · e0,

∂ξ1S(ξ0, ξ1) = ∇z1d(γ(ξ0), γ(ξ1)) · e1.
(1.5.3)

Turning to the trajectory zEI(s) which describes a complete cycle exterior-interior,
we can use the previous formulas to describe some geometric properties of the latter.
Referring to (1.4.1) and further equations, define:

• ξ0, ξ̃, ξ1 ∈ I such that γ(ξ0) = z0, γ(ξ̃) = z1, γ(ξ1) = z2;

• α0 the angle between v0 with n(ξ0);

• β0, β1 respectively the angles of z′
E(TE) and z′

I(TE) with n(ξ̃);

• α′
1, α1 respectively the angles of z′

I(TE + TI) and z′(1)
E (TE + TI) with n(ξ1).
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Then, from (1.5.2), (1.5.3) and Snell’s law, one finds the relations

−
√
VE(γ(ξ0)) sinα0 = ∂ξ0SE(ξ0, ξ̃),√

VE(γ(ξ̃)) sin β0 = ∂ξ1SE(ξ0, ξ̃),

−
√
VI(γ(ξ̃)) sin β1 = ∂ξ0SI(ξ̃, ξ1),√

VI(γ(ξ1)) sinα′
1 = ∂ξ1S(ξ̃, ξ1),√

VE(γ(ξ̃)) sinα0 =
√
VI(γ(ξ̃)) sin β0√

VI(γ(ξ1)) sinα′
1 =

√
VE(γ(ξ1)) sinα1,

(1.5.4)

where SE and SI refer respectively to dE and dI . Removing β0, β1 and α′
1 from (1.5.4),

one obtains

∂ξ0SE(ξ0, ξ̃) +
√
VE(γ(ξ0)) sinα0 = 0,

∂ξ1SE(ξ0, ξ̃) + ∂ξ0SI(ξ̃, ξ1) = 0,

∂ξ1SI(ξ̃, ξ1) −
√
VE(γ(ξ1)) sinα1 = 0.

(1.5.5)

We can then define the function

Φ = [η−
ξ , η

+
ξ ] × [η−

α , η
+
α ] × [η−

ξ , η
+
ξ ] × [η−

ξ , η
+
ξ ] × [η−

α , η
+
α ] → R3,

(ξ0, α0, ξ̃, ξ1, α1) 7→


Φ1(ξ0, α0, ξ̃, ξ1, α1)
Φ2(ξ0, α0, ξ̃, ξ1, α1)
Φ3(ξ0, α0, ξ̃, ξ1, α1)

 =



∂ξ0SE(ξ0, ξ̃)√
VE(γ(ξ0))

+ sinα0

∂ξ1SE(ξ0, ξ̃) + ∂ξ0SI(ξ̃, ξ1)

sinα1 − ∂ξ1SI(ξ̃, ξ1)√
VE(γ(ξ1))


,

where [η−
ξ , η

+
ξ ] and [η−

α , η
+
α ] are neighbourhoods respectively of ξ̄ and 0 such that the

inner and outer dynamics are well defined (we remark that the existence of such
neighbourhoods is assured by Theorems 1.3.1 and 1.3.5).
If ξ0, ξ̃ and ξ1 define respectively the initial, junction and final point of zEI(s), and
α0, α1 are the angles of the initial and final velocity vectors of zEI(s) with the direction
normal to ∂D in the initial and final points, then, from (1.5.5), Φ((ξ0, α0, ξ̃, ξ1, α1)) = 0.
The point q̄ which describes the homothetic solution defined in Remark 1.4.1, which
we call ẑ0(s), is given by q̄ = (ξ̄, 0, ξ̄, ξ̄, 0): clearly, Φ(q̄) = 0.
Under the hypothesis of nonsingularity of the matrix

D(ξ̃,ξ1,α1)Φ(q̄) =



∂Φ1

∂ξ̃ |q̄

∂Φ1

∂ξ1 |q̄

∂Φ1

∂α1 |q̄
∂Φ2

∂ξ̃ |q̄

∂Φ2

∂ξ1 |q̄

∂Φ2

∂α1 |q̄
∂Φ3

∂ξ̃ |q̄

∂Φ3

∂ξ1 |q̄

∂Φ3

∂α1 |q̄


, (1.5.6)
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which we will prove in Section 1.5.4, the implicit function theorem guarantees the exis-
tence of a function Ψ : I1 ×J1 → I2 ×I3 ×J2, (ξ0, α0) 7→ (ξ̃(ξ0, α0), ξ1(ξ0, α0), α1(ξ0, α0)),
where I1, I2, I3 and J1, J2 are suitable neighbourhoods respectively of ξ̄ and 0, such
that

∀(ξ0, α0) ∈ I1 × J1 Φ((ξ0, α0,Ψ((ξ0, α0)))) = 0.

Moreover, defined

D(ξ0,α0)Φ(q̄) =



∂Φ1

∂ξ0 |q̄

∂Φ1

∂α0 |q̄
∂Φ2

∂ξ0 |q̄

∂Φ2

∂α0 |q̄
∂Φ3

∂ξ0 |q̄

∂Φ3

∂α0 |q̄


, D(ξ0,α0)Ψ(p̄) =



∂ξ̃

∂ξ0 |(ξ̄,0)

∂ξ̃

∂α0 |(ξ̄,0)

∂ξ1

∂ξ0 |(ξ̄,0)

∂ξ1

∂α0 |(ξ̄,0)

∂α1

∂ξ0 |(ξ̄,0)

∂α1

∂α0 |(ξ̄,0)


,

one has that
D(ξ0,α0)Ψ(p̄) = −(D(ξ̃,ξ1,α1)Φ(q̄))−1D(ξ0,α0)Φ(q̄).

Recalling (1.5.1), we see that DF (p̄) is composed by the last two rows of D(ξ0,α0)Ψ(p̄).
To compute (1.5.6), the second derivatives of SE(ξ0, ξ̃) and SI(ξ̃, ξ1) computed in p̄ are
needed.

1.5.2 Outer dynamics: computation of the derivatives of
SE(ξ0, ξ̃)

Let us define ẑE(s) = zE(s; γ(ξ̄), γ(ξ̄)) the homothetic solution of problem (1.4.3)
(without loss of generality, suppose that it is defined in [−T, T ] for some T > 0 to
be determined). Recalling that, from the initial assumptions on ξ̄, γ(ξ̄) = ∥γ(ξ̄)∥eiξ̄

and γ̇(ξ̄) = ∥γ̇(ξ̄)∥ieiξ̄, we have that ẑE(s) = xE
0 (s)eiξ̄, where xE

0 (s) : [−T, T ] → R is a
solution of the one-dimensional fixed-end problem

xE′′

0 (s) = −ω2xE
0 (s), s ∈ [−T, T ]

1
2 |xE′

0 (s)|2 + ω2

2 |xE
0 (s)|2 − E = 0, s ∈ [−T, T ]

xE
0 (−T ) = xE

0 (T ) = ∥γ(ξ̄)∥.

Then we have

ẑE(s) =
√

2E
ω

cos (ωs)eiξ̄, T = 1
ω

arccos
(
ω∥γ(ξ̄)∥√

2E

)
,

ẑ′
E(−T ) = −ẑ′

E(T ) =
√

2E − ω2∥γ(ξ̄)∥2eiξ̄;
(1.5.7)
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taking into account (1.5.2) and the relations

d

dt
= L√

2V (z(t(s)))
d

ds
⇒


√
VE(zE

0 (0)) ż(0)
∥ż(0)∥ = 1√

2
z′(−T )√

VE(zE
0 (1)) ż(1)

∥ż(1)∥ = 1√
2
z′(T )

one has

∂ξ0SE(ξ̄, ξ̄) = ∇z0dE(γ(ξ̄), γ(ξ̄)) · γ̇(ξ̄) = −

√
2E − ω2∥γ(ξ̄)∥2

√
2

eiξ̄ · γ̇(ξ̄) = 0,

∂ξ1SE(ξ̄, ξ̄) = 0.
(1.5.8)

As for the second derivatives, we have

∂2
ξ0SE(ξ̄, ξ̄) = ∇2

z0dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) · γ̇(ξ̄) + ∇z0dE(γ(ξ̄), γ(ξ̄)) · γ̈(ξ̄)
∂2

ξ1SE(ξ̄, ξ̄) = ∇2
z1dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) · γ̇(ξ̄) + ∇z1dE(γ(ξ̄), γ(ξ̄)) · γ̈(ξ̄)

∂2
ξ0,ξ1SE(ξ̄, ξ̄) = ∇2

z0,z1dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) · γ̇(ξ̄)
∂2

ξ1,ξ0SE(ξ̄, ξ̄) = ∇2
z1,z0dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) · γ̇(ξ̄),

(1.5.9)

where, defining ē = ieiξ̄,

∇2
z0dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) = ∥γ̇(ξ̄)∥∂ē,v (∂ē,vdE) (γ(ξ̄), γ(ξ̄)) = ∥γ̇(ξ̄)∥∂ē,v

(
− 1√

2
ẑ′

E(−T )
)

= −∥γ̇(ξ̄)∥√
2

d

ds
(∂ē,vẑE) (−T ),

(1.5.10)

and, similarly,

∇2
z1dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) = ∥γ̇(ξ̄)∥√

2
d

ds
(∂ē,wẑE) (T ),

∇2
z0,z1dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) = −∥γ̇(ξ̄)∥√

2
d

ds
(∂ē,wẑE) (−T ),

∇2
z1,z0dE(γ(ξ̄), γ(ξ̄))γ̇(ξ̄) = ∥γ̇(ξ̄)∥√

2
d

ds
(∂ē,vẑE) (T ).

(1.5.11)

The functions ∂ē,vẑE(s) and ∂ē,wẑE(s) are the first-order variations of ẑE(s) with respect
to the variation respectively of its first and second endpoint along the unit vector ē,
which is orthogonal to ẑE(s). If we define f̃0(s) = ∂ē,vẑE(s) and f̃1(s) = ∂ē,wẑE(s), we
have that f̃0(s) = f0(s)ē and f̃1(s) = f1(s)ē, with f0, f1 : [−T, T ] → R to be determined.
Consider z(t) = ẑE(t) + f̃0(t) the geodesics obtained by varying the first endpoint of
ẑE(t) in the direction of γ̇(ξ̄) expressed with respect to the geodesic time t: it solves
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the Euler-Lagrange equation with L = ∥ż(t)∥2VE(z(t)), namely,

0 = − d

dt
(2ż(t)V (z(t))) + ∥ż(t)∥2∇VE(z(t)) =

= − d

dt

(
2( ˙̂zE(t) + ˙̃f0(t))V (ẑE(t) + f̃0(t))

)
+ ∥ ˙̂zE(t) + ˙̃f0(t)∥2∇VE(ẑE(t) + f̃0(t)) =

= −2 d
dt

(
˙̃f0(t)V (ẑE(t))

)
+ ∥ż0(t)∥2∇2VE(ẑE(t))f̃0(t) =

= −2 ∥ ˙̂zE(t(s))∥√
2VE(ẑE(t(s)))

d

ds

V (ẑE(t(s)) ∥ ˙̂zE(t(s))∥√
2VE(ẑE(t(s)))

d

ds
f̃0(t(s))

+

+ ∥ż0(t(s))∥2∇2VE(ẑE(t(s)))f̃0(t(s))
⇒ f̃ ′′

0 (s) − ∇2VE(ẑE(s))f̃0(s) = 0,

where we took only the first-order terms and used the transformation rules between d/dt
and d/ds, the conservation of L = ∥ ˙̂zE(t(s))∥

√
VE(ẑE(t(s))) and the Euler-Lagrange

equation for ẑE(t).
Since f̃0(−T ) = ē and f̃0(T ) = 0, f0(s) solves the one-dimensional systemf

′′
0 (s) = −ω2f0(s), s ∈ [−T, T ]
f0(−T ) = 1, f0(T ) = 0,

namely, recalling the definition of T in (1.5.7),

f̃0(s) = 1
2

 √
2E

ω∥γ(ξ̄)∥
cos (ωs) −

√
2E√

2E − ω2∥γ(ξ̄)∥2
sin (ωs)

 ē.
With the same reasoning and taking into account that f̃1(−T ) = 0 and f̃1(T ) = ē, we
have that f̃1(s) = f̃0(−s), and then we can finally find

d

ds
∂ē,vz

E
0 (−T ) = E − ω2∥γ(ξ̄)∥2

∥γ(ξ̄)∥
√

2E − ω2∥γ(ξ̄)∥2
ē,

d

ds
∂ē,vz

E
0 (T ) = − E

∥γ(ξ̄)∥
√

2E − ω2∥γ(ξ̄)∥2
ē,

d

ds
∂ē,wz

E
0 (−T ) = E

∥γ(ξ̄)∥
√

2E − ω2∥γ(ξ̄)∥2
ē,

d

ds
∂ē,wz

E
0 (T ) = − E − ω2∥γ(ξ̄)∥2

∥γ(ξ̄)∥
√

2E − ω2∥γ(ξ̄)∥2
ē.

(1.5.12)
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Taking together (1.5.9), (1.5.10), (1.5.11) and (1.5.12), one can find the analytical
expressions of the second derivatives of SE(ξ0, ξ1), computed for ξ0 = ξ1 = ξ̄:

∂2
ξ0SE(ξ̄, ξ̄) = ∂2

ξ1S(ξ̄, ξ̄) = − ∥γ̇(ξ̄)∥2

2∥γ(ξ̄)∥
E − ω2∥γ(ξ̄)∥2√

VE(γ(ξ̄))
−
√
VE(γ(ξ̄))eiξ̄ · γ̈(ξ̄),

∂2
ξ0,ξ1SE(ξ̄, ξ̄) = ∂2

ξ1,ξ0S(ξ̄, ξ̄) = − ∥γ̇∥2

2∥γ(ξ̄)∥
E√

VE(γ(ξ̄))
.

(1.5.13)

If γ is parametrised by arc length, ∥γ̇(ξ̄)∥ = 1 and γ̈(ξ̄) = −k(ξ̄)n(ξ̄) = −k(ξ̄)eiξ̄, where
k(ξ̄) is the curvature of γ in ξ̄: Eqs.(1.5.13) simplify then in

∂2
ξ0SE(γ(ξ̄), γ(ξ̄)) = ∂2

ξ1SE(γ(ξ̄), γ(ξ̄))

= E
2∥γ(ξ̄)∥

√
VE(γ(ξ̄))

+

√
VE(γ(ξ̄))
∥γ(ξ̄)∥

(
∥γ(ξ̄)∥k(ξ̄) − 1

)
,

∂2
ξ0,ξ1SE(γ(ξ̄), γ(ξ̄)) = ∂2

ξ1,ξ0SE(γ(ξ̄), γ(ξ̄)) = − E
2∥γ(ξ̄)∥

√
VE(γ(ξ̄))

.

(1.5.14)

Eq. (1.5.14) highlights that the second term in ∂2
ξ0S(γ(ξ̄), γ(ξ̄)) represents a perturba-

tion of the homogeneous second derivative with respect to the circular case, where(
∥γ(ξ̄)∥k(ξ̄) − 1

)
= 0 for every ξ̄ ∈ I.

1.5.3 Inner dynamics: computation of the derivatives of SI(ξ̃, ξ1)

With reference to the Notation 1.3.11, from Proposition 1.3.4 we know that the fixed
ends inner problem

(HSI)[z(s)] s ∈ [0, TI ],
zI(0) = zI

0 , zI(TI) = zI
1 .

(1.5.15)

is conjugated, by means of the Levi-Civita transformations, to the regularised problem(HSLC)[w(τ)] τ ∈ [−T, T ],
w(−T ) = w0, w(T ) = w1

where Ω2 = 2(E + h), E = µ, w2
0 = zI

0 , w2
1 = zI

1 and τ = τ(s) such that dτ
ds

= 1
2∥z(s)∥ .

In the following, we will work with the Levi-Civita variables, taking respectively for w0

the negative determination of the square root of zI
0 and for w1 the positive determination

of the square root of zI
1 , namely, in polar coordinates,

zI
0 = ∥zI

0∥eiθ0 ⇒ w0 = −
√

∥zI
0∥ei

θ0
2 , zI

1 = ∥zI
1∥eiθ1 ⇒ w1 =

√
∥zI

1∥ei
θ1
2 . (1.5.16)
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To compute the derivatives of SI(γ(ξ0), γ(ξ1)), define then

LI(z(t)) =
∫ 1

0
∥ż(t)∥

√
VI(z(t))dt =

∫ 1

0
∥ż(t)∥

√
E + h+ µ

∥z(t)∥dt,

where t ∈ [0, 1] is the usual geodesic time. Passing to the Levi-Civita plane:

LI(z) = 2
∫ 1

0
∥ẇ(t)∥

√
2(E + h)∥w(t)∥2

2 + µ dt

= 2
∫ 1

0
∥ẇ(t)∥

√
Ω2

2 ∥w(t)∥2 + E dt = 2L̃I(w)

According to the choice for the initial and final point of ω(τ) defined in (1.5.16), in the
Levi-Civita plane the function S(ξ0, ξ1) can be written as

SI(ξ0, ξ1) = dI(γ(ξ0), γ(ξ1)) = 2d̃I(ϕ−(ξ0), ϕ+(ξ1)) = 2S̃I(ξ0, ξ1),

where d̃I is the distance associated to L̃I and ϕ−(ξ), ϕ+(ξ) are as in Definition 1.3.7. We
can then compute the transformed of γ(ξ̄), γ̇(ξ̄), γ̈(ξ̄), seen both as initial and ending
point of our arc. Without loss of generalization, let us suppose that γ(ξ̄) = ∥γ(ξ̄)∥(1, 0)
and γ̇(ξ̄) = ∥γ̇(ξ̄)∥(0, 1): using the relation ϕ±(ξ)2 = γ(ξ), one has

ϕ−(ξ̄) =
√

∥γ(ξ̄)∥(−1, 0), ϕ+(ξ̄) =
√

∥γ(ξ̄)∥(1, 0)

ϕ̇−(ξ̄) = ∥γ̇(ξ̄)∥
2
√

∥γ(ξ̄)∥
(0,−1) = ∥γ̇(ξ̄)∥

2
√

∥γ(ξ̄)∥
t−(ξ̄),

ϕ̇+(ξ̄) = ∥γ̇(ξ̄)∥
2
√

∥γ(ξ̄)∥
(0, 1) = ∥γ̇(ξ̄)∥

2
√

∥γ(ξ̄)∥
t+(ξ̄)

where t−(ξ̄) = (0,−1) and t+(ξ̄) = (0, 1), and ϕ̈±(ξ̄) satisfy the equations
γ̈(ξ̄) = 2(ϕ̇2

±(ξ̄) + ϕ±(ξ̄)ϕ̈±(ξ̄)).
In order to compute the derivatives of SI(ξ̄, ξ̄), we can use the same techniques used
in Section 1.5.2 for the outer dynamics, taking into account that, in the Levi-Civita
plane, the starting and final point are different.
Let us start with the derivation of the homothetic equilibrium orbit: in the physical
plane, it corresponds to the ejection-collision solution ẑI(s) of the fixed-end problem(HSI)[z(s)], s ∈ [0, TI ],

z(0) = z(TI) = γ(ξ̄),

which corresponds, in the Levi-Civita variables, to the solution w0(τ) of the problem(HSLC)[w(τ)], τ ∈ [−T, T ],
w(−T ) = ϕ−(ξ̄), w(T ) = ϕ+(ξ̄),
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from which one obtains

w0(τ) =
√

2E
Ω sinh (Ωτ)(1, 0), T = 1

Ω arcsinh
Ω

√
∥γ(ξ̄)∥

√
2E


⇒ w′

0(−T ) = w′
0(T ) =

√
2E + Ω2∥γ(ξ̄)∥(1, 0).

Proceeding as in (1.5.8), one has then

∂ξ0SI(ξ̄, ξ̄) = − 2√
2
w′

0(−T ) · ϕ̇−(ξ̄) = 0, ∂ξ1SI(ξ̄, ξ̄) = 2√
2
w′

0(T ) · ϕ̇+(ξ̄) = 0.

As for the second derivatives, taking into account that ϕ± are not parametrised by arc
length:

∂2
ξ0SI(ξ̄, ξ̄) = 2∂2

ξ0S̃I(ξ̄, ξ̄)
= 2∇2

w0 d̃I(ϕ−(ξ̄), ϕ+(ξ̄))ϕ̇−(ξ̄) · ϕ̇−(ξ̄) + 2∇w0 d̃I(ϕ−(ξ̄), ϕ+(ξ̄)) · ϕ̈−(ξ̄)

= ∥γ̇(ξ̄)∥2

2∥γ(ξ̄)∥
∇2

w0 d̃I(ϕ−(ξ̄), ϕ+(ξ̄))t−(ξ̄) · t−(ξ̄)

+ 2∇w0 d̃I(ϕ−(ξ̄), ϕ+(ξ̄)) · ϕ̈−(ξ̄) =

= − ∥γ̇(ξ̄)∥2

2
√

2∥γ(ξ̄)∥
d

dτ

(
∂t−(ξ̄),vw0

)
(−T ) · t−(ξ̄) −

√
2w′

0(−T ) · ϕ̈−(ξ̄),

∂2
ξ1SI(ξ̄, ξ̄) = ∥γ̇(ξ̄)∥2

2
√

2∥γ(ξ̄)∥
d

dτ

(
∂t+(ξ̄),ww0

)
(T ) · t+(ξ̄) +

√
2w′

0(T ) · ϕ̈+(ξ̄)

∂2
ξ0,ξ1SI(ξ̄, ξ̄) = − ∥γ̇(ξ̄)∥2

2
√

2∥γ(ξ̄)∥
d

dτ

(
∂t+(ξ̄),ww0

)
(−T ) · t−(ξ̄),

∂2
ξ1,ξ0SI(ξ̄, ξ̄) = |γ̇(ξ̄)|2

2
√

2|γ(ξ̄)|
d

dτ

(
∂t−(ξ̄),vw0

)
(T ) · t+(ξ̄).

(1.5.17)
We can compute the variations ∂t−(ξ̄),vw0(τ), ∂t+(ξ̄),ww0(τ) as in Section 1.5.2: by
imposing ∂t−(ξ̄),vw0(τ) = g̃0(τ) = g0(τ)t−(ξ̄) and ∂t+(ξ̄),ww0(τ) = g̃1(τ) = g1(τ)t+(ξ̄) we
have that g0(τ) and g1(τ) are solutions of the two one-dimensional systemsg

′′
0(τ) = Ω2g0(τ), τ ∈ [−T, T ]
g0(−T ) = 1, g0(T ) = 0,

g
′′
1(τ) = Ω2g1(τ), τ ∈ [−T, T ]
g1(−T ) = 0, g1(T ) = 1,
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and then we obtain

d

dτ
(∂t−(ξ̄),vw0)(−T ) = − E + Ω2∥γ(ξ̄)∥√

∥γ(ξ̄)∥
√

2E + Ω2∥γ(ξ̄)∥
t−(ξ̄),

d

dτ
(∂t−(ξ̄),vw0)(T ) = − E√

∥γ(ξ̄)∥
√

2E + Ω2∥γ(ξ̄)∥
t−(ξ̄),

d

dτ
(∂t+(ξ̄),ww0)(−T ) = E√

∥γ(ξ̄)∥
√

2E + Ω2∥γ(ξ̄)∥
t+(ξ̄),

d

dτ
(∂t+(ξ̄),ww0)(T ) = E + Ω2∥γ(ξ̄)∥√

∥γ(ξ̄)∥
√

2E + Ω2∥γ(ξ̄)∥
t+(ξ̄).

Then, taking into account (1.5.17) and recalling that E = µ, Ω2 = E + h, we finally
obtain (recall that we are assuming that γ(ξ̄) ∥ (1, 0))

∂2
ξ0SI(ξ̄, ξ̄) = ∥γ̇(ξ̄)∥2

4∥γ(ξ̄)∥2
µ+ 2(E + h)∥γ(ξ̄)∥√

VI(γ(ξ̄))
− 2

√
∥γ(ξ̄)∥

√
VI(γ(ξ̄))(1, 0) · ϕ̈−(ξ̄),

∂2
ξ1SI(ξ̄, ξ̄) = ∥γ̇(ξ̄)∥2

4∥γ(ξ̄)∥2
µ+ 2(E + h)∥γ(ξ̄)∥√

VI(γ(ξ̄))
+ 2

√
∥γ(ξ̄)∥

√
VI(γ(ξ̄))(1, 0) · ϕ̈+(ξ̄),

∂2
ξ0,ξ1SI(ξ̄, ξ̄) = ∂2

ξ1,ξ0SI(ξ̄, ξ̄) = ∥γ̇(ξ̄)∥2

4∥γ(ξ̄)∥2
µ√

VI(γ(ξ̄))
.

(1.5.18)
If γ(ξ) is parametrised by arc length, ∥γ̇(ξ̄)∥ = 1 and γ̈(ξ̄)k(ξ̄) = (−1, 0), then

ϕ̈−(ξ̄) = 1
2
√

∥γ(ξ̄)∥

(
k(ξ̄) − 1

2∥γ(ξ̄)∥

)
(1, 0) = −ϕ̈+,

and Eqs.(1.5.18) simplify as

∂2
ξ0SI(ξ̄, ξ̄) = ∂2

ξ1SI(ξ̄, ξ̄) = − µ

4∥γ(ξ̄)∥2
√
VI(γ(ξ̄))

−
√
VI(γ(ξ̄))

(
k(ξ̄) − 1

∥γ(ξ̄)∥

)
,

∂2
ξ0,ξ1SI(ξ̄, ξ̄) = ∂2

ξ1,ξ0SI(ξ̄, ξ̄) = µ

4∥γ(ξ̄)∥2
√
VI(γ(ξ̄))

(1.5.19)

1.5.4 Stability properties of (ξ̄, 0)

Let us now suppose that γ(ξ̄) is parametrised by arc length (the general case can be
treated in the same way, taking into account the explicit expression of γ̈(ξ̄)): taking
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together (1.5.14) and (1.5.19), one can see that they can be written in the form

∂2
ξ0SE(ξ̄, ξ̄) = ∂2

ξ1SE(ξ̄, ξ̄) = E0 + εE,

∂2
ξ0,ξ1SE(ξ̄, ξ̄) = ∂2

ξ1,ξ0SE(ξ̄, ξ̄) = −E0,

E0 = E
2∥γ(ξ̄)∥

√
VE(γ(ξ̄))

, εE = (∥γ(ξ̄)∥k(ξ̄) − 1)

√
VE(γ(ξ̄))
∥γ(ξ̄)∥

,

∂2
ξ0SI(ξ̄, ξ̄) = ∂2

ξ1SI(ξ̄, ξ̄) = I0 + εI ,

∂2
ξ0,ξ1SI(ξ̄, ξ̄) = ∂2

ξ1,ξ0SI(ξ̄, ξ̄) = −I0,

I0 = − µ

4∥γ(ξ̄)∥2
√
VI(γ(ξ̄))

, εI = −
(
k(ξ̄) − 1

∥γ(ξ̄)∥

)√
VI(γ(ξ̄)),

(1.5.20)

The terms εE\I can be seen as the perturbations induced to the second derivatives
when the domain’s boundary ∂D is not a circle. Turning to the matrices defined in
Section 1.5.1, we have that

D(ξ̃,ξ1,α1)Φ(q̄) =



∂2
ξ0,ξ1SE(ξ̄, ξ̄)√
VE(γ(ξ̄))

0 0

∂2
ξ1SE(ξ̄, ξ̄) + ∂2

ξ0SI(ξ̄, ξ̄) ∂2
ξ0,ξ1SI(ξ̄, ξ̄) 0

−∂ξ0,ξ1SI(ξ̄, ξ̄)√
VE(γ(ξ̄))

−
∂2

ξ1SI(ξ̄, ξ̄)√
VE(γ(ξ̄))

1


,

whose determinant is given by

det
(
D(ξ̃,ξ1,α1)Φ(q̄)

)
= − Eµ

8∥γ(ξ̄)∥3
√
VI(γ(ξ̄))VE(γ(ξ̄))

< 0

in the Hill’s region H. The implicit function theorem can be then applied and we have
that there exist I1, I2, I2, J1, J2 neighbourhoods respectively of ξ̄ and 0 and there is
a function Ψ : I1 × J1 → I2 × I3 × J2 such that for every (ξ0, α0) ∈ I1 × J1 one has
Φ(ξ0, α0,Ψ(ξ0, α0)) = 0. Moreover

D(ξ0,α0)Ψ(p̄) = −
(
D(ξ̃,ξ1,α1)Φ(q̄)

)−1
D(ξ0,α0)Φ(q̄).

The function F : (ξ0, α0) 7→ (ξ1(ξ0, α0), α1(ξ0, α0)) is given by the last two components
of Ψ, then DF (p̄) is composed by the last two rows of D(ξ0,α0)Ψ(p̄). Direct computations
show that

DF (p̄) =
A11 A12

A21 A22

 , (1.5.21)
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where

A11 = 1 + 2εE + εI

I0
+ εE(εE + εI + I0)

E0I0
,

A12 =
√
VE(γ(ξ̄))

( 1
I0

+ 1
E0

)
+
√
VE(γ(ξ̄))εE + εI

E0I0
,

A21 = 2εE(εI + I0) + εI(εI + 2I0)
I0

√
VE(γ(ξ̄))

+ εE[εE(εI + I0) + εI(εI + 2I0)]
E0I0

√
VE(γ(ξ̄))

A22 = 1 + εE

E0
+ εI(2I0 + εI + E0 + εE)

E0I0

The stability properties of the equilibrium in (ξ̄, 0) can be studied looking at the
eigenvalues of DF (p̄), see [65]: let us denote them with λ1 and λ2. Direct computations
show that det (DF (p̄)) = 1: this is a completely general fact, as the map F describes
an area-preserving system, and, from an algebraic point of view, implies that λ1λ2 = 1.
Therefore we can have two cases:

• λ1, λ2 ∈ R ⇒ λ1 = 1/λ2: if λ1 ̸= ±1, then (ξ̄, 0) is an unstable saddle;

• λ1, λ2 ∈ C/R ⇒ λ1 = λ2 and λ1, λ2 ∈ S1: then (ξ̄, 0) is a stable center.

We can distinguish between the two cases by considering the characteristic polynomial
of DF ((p̄).

Remark 1.5.1. Denoted by p(λ) = λ2+bλ+1 the characteristic polynomial of DF (ξ̄, 0),
let ∆ = b2 − 4 its discriminant. Then

• if ∆ > 0 ⇒ (ξ̄, 0) is a saddle for F ;

• if ∆ < 0 ⇒ (ξ̄, 0) is a center for F ;

The value of ∆ with respect to the physical quantities of the problem can be directly
computed: it results that

∆ = ABCD,

where

A = 16
E2µ2

(√
VI(γ(ξ̄) −

√
VE(γ(ξ̄))

) (
∥γ(ξ̄)∥k(ξ̄) − 1

)
,

B = E −
(
∥γ(ξ̄)∥k(ξ̄) − 1

)(√
VI(γ(ξ̄)) −

√
VE(γ(ξ̄))

)√
VE(γ(ξ̄)),

C = −µ
√
VE(γ(ξ̄)) + 2∥γ(ξ̄)∥B

√
VI(γ(ξ̄)),

D = µ+ 2∥γ(ξ̄)∥
(
∥γ(ξ̄)∥k(ξ̄) − 1

)√
VI(γ(ξ̄))

(√
VI(γ(ξ̄)) −

√
VE(γ(ξ̄))

)
.
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1.6 A direct investigation: elliptic domains

When the expression of γ(ξ) is given, the general theory developed in Section 1.5 can be
used to study the effective stability of the fixed points of the map F . In this Section we
investigate the existence and stability of equilibrium orbits for our dynamical system
when D is an elliptic domain. Let us suppose that ∂D is an ellipse with semimajor axis
a = 1 and eccentricity 0 ≤ e < 1. Denoted by b = a

√
1 − e2 =

√
1 − e2 the semiminor

axis, one can parametrise ∂D as

γ(ξ) = (cos ξ, b sin ξ), ξ ∈ [0, 2π],

which can be written as

γ(θ) = (1 + f(e, θ))eiθ,

f(e, θ) =
√

1 − e2

(1 − e2 cos2 θ) − 1, θ ∈ [0, 2π], e ∈ [0, 1).

From direct computations and from Remark 1.4.1, one has that the orbit with initial
conditions z(0) = γ(ξ̄), z′(0) =

√
VE(z(0))z(0)/∥z(0)∥ is a homothetic equilibrium

orbit if and only if ξ̄ = kπ/2, k ∈ {0, 1, 2, 3, 4}: due to the symmetry of the problem,
we can restrict our study to the two cases ξ̄0 = 0 and ξ̄1 = π/2. We have that

γ(0) = (1, 0), γ̇(0) = (0, b), γ̈(0) = (−1, 0)
γ(π/2) = (0, b), γ̇(π/2) = (−1, 0), γ̈(π/2) = (0,−b) :

The stability properties of the F -fixed points (ξ̄0, 0) and (ξ̄1, 0) can be deduced as in
Section 1.5: in particular, from Eqs.(1.5.13) and (1.5.17), one obtains

∂2
ξ0SI(ξ̄0, 0) = ∂2

ξ1SI(ξ̄0, 0) = I
(0)
0 + ε

(0)
I , ∂2

ξ0,ξ1SI(ξ̄0, 0) = ∂2
ξ1,ξ0SI(ξ̄0, 0) = −I(0)

0 ,

I
(0)
0 = − (1 − e2)µ

4
√
VI(γ(ξ̄0))

, ε
(0)
I = −e2

√
VI(γ(ξ̄0)),

∂2
ξ0SE(ξ̄0, 0) = ∂2

ξ1SE(ξ̄0, 0) = E0
0 + ε

(0)
E , ∂2

ξ0,ξ1SE(ξ̄0, 0) = ∂2
ξ1SE(ξ̄0, 0) = −E(0)

0 ,

E
(0)
0 = (1 − e2)E

2
√
VE(γ(ξ̄0))

, ε
(0)
E = e2

√
VE(γ(ξ̄0)),

(1.6.1)
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∂2
ξ0SI(ξ̄1, 0) = ∂2

ξ1SI(ξ̄1, 0) = I
(1)
0 + ε

(1)
I , ∂2

ξ0,ξ1SI(ξ̄1, 0) = ∂2
ξ1SI(ξ̄1, 0) = −I(1)

0 ,

I
(1)
0 = − µ

4(1 − e2)
√
VI(γ(ξ̄1))

, ε
(1)
I = e2

√
1 − e2

√
VI(γ(ξ̄1)),

∂2
ξ0SE(ξ̄1, 0) = ∂2

ξ1SE(ξ̄1, 0) = E
(1)
0 + ε

(1)
E , ∂2

ξ0,ξ1SE(ξ̄1, 0) = ∂2
ξ1SE(ξ̄1, 0) = −E(1)

0 ,

E
(1)
0 = E

2
√

1 − e2
√
VE(γ(ξ̄1))

, ε
(1)
E = − e2

√
1 − e2

√
VE(γ(ξ̄1)),

(1.6.2)
and then we have

∆(0) = A(0)B(0)C(0)D(0), ∆(1) = A(1)B(1)C(1)D(1),

A(0) = − 16
E2µ2

e2

1 − e2

(√
VE(γ(ξ̄0)) −

√
VI(γ(ξ̄0))

)

A(1) = 16e2

E2µ2

(√
VE(γ(ξ̄1)) −

√
VI(γ(ξ̄1))

)

B(0) = µ+ 2 e2

1 − e2

√
VI(γ(ξ̄0))

(√
VI(γ(ξ̄0)) −

√
VE(γ(ξ̄0))

)
B(1) = µ− 2e2√1 − e2

√
VI(γ(ξ̄1))

(√
VI(γ(ξ̄1)) −

√
VE(γ(ξ̄1))

)
C(0) = E + e2

1 − e2

√
VE(γ(ξ̄0))

(√
VE(γ(ξ̄0)) −

√
VI(γ(ξ̄0))

)
C(1) = E − e2

√
VE(γ(ξ̄1))

(√
VE(γ(ξ̄1)) −

√
VI(γ(ξ̄1))

)
D(0) = −µ

√
VE(γ(ξ̄0)) + 2

√
VI(γ(ξ̄0))C(0)

D(1) = −µ
√
VE(γ(ξ̄1)) + 2

√
1 − e2

√
VI(γ(ξ̄1))C(1)

(1.6.3)

1.6.1 Asymptotic behaviours

It is convenient to start the study of the elliptic case by investigating some of the
properties of the first return map on a circular domain. When e = 0, for every ξ̄ ∈ [0, 2π]
the pair (ξ̄, 0) is a homothetic fixed point for F , with

DF (ξ̄, 0) =

1
√

E − ω2

2

 2
E

√
E − ω2

2 − 4
µ

√
E + h+ µ


0 1

 .
This is consistent with the expression of F for a circular domain: when D is a disk
of radius 1, from the central symmetry of both the domain and the inner and outer
potentials one has that F is a rigid translation of the form

Fcirc(ξ0, α0) = (ξ0 + θ(α0), α0),
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where the explicit expression of θ(α) will be provided in Chapter 2. As a consequence,
∆circ = 0 for every homothetic point (ξ̄, 0). The circular case represents then a
degenerate case for the study of the linear stability of the homothetic points; nevertheless,
the possibility to compute the explicit expression of Fcirc allows to study directly the
map: considering the phase space (ξ, α), one has that the set [0, 2π] × {0} is the
invariant set containing all the homothetic points, and that all the orbits of Fcirc lie on
the invariant lines [0, 2π] × {ᾱ}, where the value of θ(ᾱ) determines their nature. The
systematical study of the circular case, in a more convenient variational setting, is one
of the subject of Chapter 2.
Let us suppose that e > 0 and small. Recalling that b =

√
1 − e2, the expression of

∆(0) and ∆(1) in Eqs.(1.6.3) can be expanded in Taylor series around e = 0, obtaining,
from direct computations,

∆(0) = f2e
2 + f4e

4 + O(e6), ∆(1) = g2e
2 + g4e

4 + O(e6), (1.6.4)

f2 = −g2 = −
4
(√

E − ω2/2 −
√

E + h+ µ
) (

2E
√

E + h+ µ− µ
√

E − ω2/2
)

µE
. (1.6.5)

Hence, when e is sufficiently small, the sign of ∆(0) and ∆(1) is determined by the
quantity

(
2E
√

E + h+ µ− µ
√

E − ω2/2
)

.
Let us now suppose to fix the parameters related to the external dynamics, namely, E
and ω, and to let vary µ and h. If e is small enough, ∆(0) and ∆(1) have opposite sign;
in particular:

• if
√

E + h+ µ

µ
<

√
2E − ω2

2
√

2E
, ∆(0) < 0 and ∆(1) > 0. Then, from Remark 1.5.1,

one has that (0, 0) is a stable center and (π/2, 0) is an unstable saddle for F ;

• if
√

E + h+ µ

µ
>

√
2E − ω2

2
√

2E
, for the same reasoning (0, 0) is a saddle and (π/2, 0)

is a center.

Fixing E and ω, one has also:

lim
h→∞

∆(0) = lim
µ→∞

∆(0) = lim
h→∞

∆(1) = lim
µ→∞

∆(1) = ∞.

As a final investigation on the asymptotical behaviour of ∆(0) and ∆(1), let us suppose
to fix the physical parameters related to the inner dynamics and analyse the sign of
the discriminants for E → ∞. From direct computations, one has

ℓ0 = lim
E→∞

∆(0) = (b2 − 1)(2h+ 2µ+ ω2)(2(b2 − 1)h− 2µ+ (b2 − 1)ω2)
b4µ2

ℓ1 = lim
E→∞

∆(1) = b(b2 − 1)(2bh+ 2µ+ b3ω2)(2(b2 − 1)h+ b(2µ+ b(b2 − 1)ω2))
µ2 .
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In particular, it results ℓ0 > 0 for every fixed 0 < b < 1 and h, µ, ω > 0 and

ℓ1 > 0 ⇐⇒ 0 < b < 1 and 0 < µ < ¯̄µ = (b2 − 1)(2h+ b2ω2)
2b .

Taking together the above considerations, one can give some general results, which
hold for small eccentricity or for high values of h, µ or E .

Proposition 1.6.1. For every E , ω > 0 with ω2 > 2E we have:

I) for every fixed h, µ > 0:

Ia) if
√

E + h+ µ

µ
<

√
2E − ω2

2
√

2E
, then there is ē ∈ (0, 1) such that, for every

e ∈ (o, ē): z̄0 is stable and z̄π/2 is unstable;

Ib) if
√

E + h+ µ

µ
>

√
2E − ω2

2
√

2E
, then there is ē ∈ (0, 1) such that, for every

e ∈ (o, ē): z̄0 is unstable and z̄π/2 is stable.;

II) for all fixed e ∈ (0, 1), h > 0, there is µ̄ > 0 such that for every µ > µ̄ the
homothetic fixed points (0, 0) and (π/2, 0) are saddles;

III) for all fixed e ∈ (0, 1), µ > 0, there is h̄ > 0 such that for every h > h̄ the
homothetic fixed points (0, 0) and (π/2, 0) are saddles.

For all fixed e ∈ (0, 1), h, ω > 0 there are Ē > 0 and ¯̄µ > 0 such that, if E > Ē:

IVa) if µ > ¯̄µ, (0, 0) is a saddle and (π/2, 0) is a center;

IVb) if 0 < µ < ¯̄µ, (0, 0) and (π/2, 0) are both saddles.

With the additional hypothesis that the F is well defined on the whole ellipse, in
cases (II) and (III), as well as (IVb), there must be at least a stable fixed point with
ξ0 ∈ (0, π/2); hence, by symmetry, F admits at least 4 stable period one non-homothetic
fixed points.

Proposition 1.6.1 (I) provides an approximated relation between h and µ through
which one can find two regimes in the parameters such that, for e sufficiently small,
the stability of the homothetic fixed points can be easily deduced. In particular, there
is a curve which, for e sufficiently small, divides the two cases (Ia) and (Ib). As all the
involved quantities are positive, one has

√
E + h+ µ

µ
>

√
2E − ω2

2
√

2E
⇐⇒ h >

2E − ω2

8E2 µ2 − µ− E = p(µ).

When E and ω are fixed, as well as e small enough, the 2-degree polynomial p(µ)
describes then a parabola on the plane (h, µ) such that, for fixed µ, if h >> p(µ), then
we are in case (Ib); on the contrary, if h << p(µ), the case (Ia) is verified.
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Fig. 1.2 Sign of ∆(0) and ∆(1) in the (µ, h)−plane for E = 10 and ω = 2. The red dotted
curve represents the parabola h = p(µ).

We stress that this behaviour holds only for e small enough for f2 and g2 to be the
dominant terms in the expansions of ∆(0) and ∆(1). Moreover, one can verify that
f4, g4 = O(h2√µ), and that all the further terms of the Taylor expansion are of the
order of positive powers of µ and h: as a consequence, for every e > 0, eventually the
two parameters would be too large to use the above approximation.

Figure 1.2 gives a comparison between the parabola p(µ) (red dots) and the effective
curves of change of sign for ∆(0) and ∆(1) in the (µ, h) plane for E = 10, ω = 2 and
increasing eccentricities. As one can see, for very small eccentricities the approximation
given by p(µ) is very good even for extremely high values of µ and h; on the other
hand, the increase of the eccentricity and of the two inner parameters made this
approximation worse.
Moving to moderate and high eccentricities, the behaviour of the signs of ∆(0) and ∆(1)

becomes more complex: to give an example of this, Figure 1.3 shows the sign of both
the discriminants as functions of h and µ and for fixed E , ω and eccentricity of the
ellipse. It is present a reminiscence of the original parabola p(µ), which tends to widen
for increasing eccentricity, while other sign-changing curves, deriving by the influence
of the higher order terms in (1.6.4), are present.

1.6.2 Arising of 2-periodic brake orbits

As already seen in Section 1.6.1, the existence of non homothetic 1− periodic points of
F can be deduced by the signs of ∆(0) and ∆(1), namely, by the stability properties
of the homothetic points. On the other hand, other analytical techniques can be
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Fig. 1.3 Sign of ∆(0) and ∆(1) in the (µ, h)−plane for E = 2.5, ω =
√

2 and e = 0.3 (left) or
e = 0.5 (right).

used to assure the existence of particular periodic orbits with period greater than
1. It is the case of the so-called non homothetic brake orbits, namely, 2-periodic
orbits with homothetic outer arcs (see Figure 1.4), whose existence can be proved for
suitable regimes of the parameters through an application of the shooting method. The

Fig. 1.4 Example of 2-periodic brake orbit: the homothetic outer arcs are connected by an
inner hyperbola.

existence of brake orbits is equivalent to the existence of non-homothetic zeros for the
Free Fall map, which quantifies the scattering with respect to the radial direction of
the trajectory after entering the domain. Given θ ∈ [0, 2π], consider the homothetic
outer arc with initial points (p0, v0), where p0 is the intersection between the ellipse
and the radial straight line of inclination θ, while v0 is the outward-pointing radial
vector in the direction of θ and such that ∥v0∥2/2 − VE(p0) = 0: if we denote, as in the
previous Sections, with (p1, v1) the position and velocity vectors after two consecutive
outer and inner crossings (with the respective refractions), the free fall map θ 7→ δ(θ)
returns the angle δ between v1 and p1 (see Figure 1.5).
If we consider general domains whose boundary intersects orthogonally the axes, as in

the case of the ellipse, Theorems 1.3.1 and 1.3.5 guarantee that the Free Fall map is
well defined in suitable neighbourhoods of the homothetic orbits in the horizontal and
vertical directions. Nevertheless, as the construction of δ(θ) only involves the refraction
rule and the inner dynamics, under suitable hypotheses on ∂D one can assure that it
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Fig. 1.5 Free fall map on the ellipse.

is well defined globally on [0, 2π]; in particular, it is sufficient to require

(I) the good definition of the inner dynamics globally on ∂D;
(II) a global transversality property of ∂D with respect to the radial directions holds:

∀ξ ∈ I γ(ξ) ∦ ˙γ(ξ).
(1.6.6)

When ∂D satisfies the above properties, one can continuously extend δ(θ) even in
the case that the first return map F is not well defined (see Section 1.2): it suffices
to impose δ(θ) = π/2 whenever the inner angle β1 is greater or equal to βcrit =
arcsin(

√
VE(p1)/VI(p1)) and δ(θ) = −π/2 when β1 ≤ −βcrit. As a consequence, the

function δ results to be a continuous function of θ ∈ [0, 2π], differentiable whenever
|β1| < βcrit, as in neighbourhoods of homothetic solutions. Moreover, condition (II)
assures that whenever δ(θ) = 0 the Free Fall map is well-defined, since the refracted
outer arc is not tangent to ∂D.
While the geometrical implications of condition (II) are rather immediate, condition (I)
is implied by taking a particular class of domains characterized by a convexity property
with respect to the hyperbolæ. In particular, we shall give the following definition.
Definition 1.6.2. We say that the domain D is convex for hyperbolæ for fixed
h,E and µ if every Keplerian hyperbola with energy E +h and central mass µ intersects
∂D at most in two points.
The domain D is convex for hyperbolæ if the previous condition holds for every
positive E , h and µ.

The connection between the Free Fall map and the brake orbits is straightforward:
(cos θ̄, sin θ̄) is the direction of a 2-periodic brake orbit if and only if δ(θ̄) = 0 and,
denoting with ξθ̄ the parameter in I such that γ(ξθ̄) has polar angle θ̄, γ(ξθ̄) ̸⊥ γ̇(ξθ̄).
Let us remark that, by the properties of the ellipse, one has that δ(kπ/2) = 0 for
k = 0, 1, 2, 3, and that condition (II) is trivially true. The following Proposition shows
that, when the eccentricity is small enough the elliptical domains are also convex by
hyperbolæ, leading to the conclusion that, in these cases, the Free Fall map is globally
well defined.
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pA

pB

pC

pD

Fig. 1.6 Nested family of Keplerian hyperbolæ F ′ for fixed E , h, µ and fixed transverse axis.
As ℓ increases, the hyperbolæ move from the inner ones (orange) to the outer ones (blue).

Proposition 1.6.3. If D is an ellipse parametrised by (cos (ξ), b sin(ξ)) with eccentricity
e ∈ [0, 1/

√
2), then it is convex by hyperbolæ.

Proof. Let us start by fixing the ellipse’s eccentricity e and the parameters E , h and µ
and by taking the associated family F of hyperbolæ, which is continuous with respect
to variations of the angular momentum and rotations of the axes. Denoting with ℓ the
absolute value of the angular momentum of a Keplerian hyperbola K in such a family
and with rp its minimal distance from the origin, one has that (see e.g. [70])

rp = ℓ2

µ
(

1 +
√

1 + 2(E+h)ℓ2

µ2

) ,
which is continuous and strictly increasing for ℓ ≥ 0. The distance at the pericenter
is then 0 when ℓ = 0 (homothetic orbit) and varies continuously with ℓ. Moreover,
since for the ellipse Theorem 1.3.5 is true for every ξ ∈ [0, 2π], for ℓ small enough the
hyperbolæ of F intersect ∂D exactly twice. Let us now fix a direction in R2, and
consider only the hyperbolæ in F whose transverse axis is in the chosen direction,
denoting them with F ′. As the eccentricity of a Keplerian hyperbolæ, whose expression
is

ehyp =
√

1 + 2(E + h)ℓ2

µ2 ,

is strictly increasing in ℓ, such hyperbolæ are nested as in Figure 1.6. Let us suppose
that there exists a Keplerian hyperbola in F ′ which intersects ∂D in four points
pA, pB, pC and pD. For the previous considerations on the continuous dependence and
monotonicity of rp and ehyp on ℓ, there exists ℓ̄ such that the corresponding hyperbola
K̄ in F ′ is tangent from inside to ∂D in a point pT ; define rT = ∥pT ∥. This implies
that, denoted with khyp(p) and kell(p) respectively the curvatures with respect to the
inward-pointing normal vector of K̄ and of ∂D in a point p, we obtain

khyp(pT ) ≥ kell(pT ),

which is a necessary condition for the family F ′ to admit a hyperbola which intersects
∂D four times. The ellipse’s curvature is always bounded from below by b, while one
can compute khyp(pT ) by parametrising K̄(s) by the kinetic time and recalling that, for
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a generic curve r(t), the curvature is given by

kr(t) = ∥r′(t) ∧ r′′(t)∥
∥r′(t)∥3 .

Observing that pT ∈ ∂D, which implies rT ≥ b, one obtains that, if s̄ is such that
K̄(s̄) = pT ,

khyp(pT ) = ∥K̄′(s̄) ∧ K̄′′(s̄)∥
∥K̄′(s̄)∥3 ≤ ∥K̄′′(s̄)∥

∥K̄′(s̄)∥2 = µ

2rT (rT (E + h) + µ) ≤ µ

2b(b(E + h) + µ)

Taking together the bounds obtained for kell(pT ) and khyp(pT ), one can find a necessary
condition for the family F ′ to admit hyperbolæ with four intersection points with ∂D,
given by

µ

2b(b(E + h) + µ) ≥ b.

It is then sufficient to require

µ

2b(b(E + h) + µ) < b ⇐⇒ 2b2
(

E + h

µ
b+ 1

)
> 1 (1.6.7)

to ensure that F ′ does not admit hyperbolæ of such kind. It is straightforward to
observe that (1.6.7) is trivially satisfied for every E + h > 0 ad µ > 0 whenever 2b2 > 1,
namely e ∈ [0, 1/

√
2). This reasoning can be repeated for every fixed direction for the

axis and for every E , h, µ > 0; in particular, it holds also when two of the four points
of the original hyperbola (the blue one in Figure 1.6) coincide: it is in fact trivially
true when pC = pD, and, if pA = pD or pB = pC , one can take a lower ℓ to retrieve the
original case. Then the convexity for hyperbolæ is proved whenever e ∈ [0, 1/

√
2).

Although deriving the explicit expression of δ(θ) goes beyond the extent of this
study, the values of its derivatives computed at the homothetic points, which can be
found by making use of Eqs.(1.6.1, 1.6.2), along with the global good definition of the
Free Fall map, provide a sufficient condition for the existence of the brake orbits in the
elliptic case.

Theorem 1.6.4. For every E > 0, ω > 0 such that ω2 > 2E, e ∈ (0, 1/
√

2) there are
h̄ > 0, µ̄ > 0 such that, if h > h̄ and µ > µ̄, the first return map F admits at least four
2−periodic brake orbits.

Proof. By symmetry, it is sufficient to prove that, for E , ω, b satisfying the hypotheses
of the Theorem, there are h̄ > 0 and µ̄ > 0 such that, if h > h̄ and µ > µ̄, then
∃θ̄ ∈ (0, π/2) such that δ(θ̄) = 0. To this end, we want to find a regime for the
parameters such that δ′(0) > 0 and δ′(π/2) > 0.
Recall the definitions of (ξ0, α0), (ξ1, α1) used in Section 1.4, suppose to work in a
neighbourhood of θ = π/2, and consider the 6−dimensional variable

q = (θ, ξ0, α0, ξ1, α1, δ) ∈ (0, π) × (0, π) ×
[
−π

2 ,
π

2

]
× (0, π) ×

[
−π

2 ,
π

2

]
× [0, 2π]
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From elementary geometric considerations and recalling the refraction relations, one
has that, defined q̄ = (π/2, π/2, 0, π/2, 0, 0), Φ(q̄) = 0, where

Φ(q) =



1
b

cot ξ0 − cot θ
α0 + θ − arccot(b cot ξ0)

∂aSI(ξ0, ξ1) +
√
VE(γ(ξ0)) sinα0

∂bSI(ξ0, ξ1) −
√
VE(γ(ξ1)) sinα1

δ + α1 + arccot(b cot ξ1) − arccot
(

cot ξ1

b

)
,


is defined in a suitable neighbourhood of q̄. As a consequence,

M = D(ξ0,α0,ξ1,α1,δ)Φ(q̄)

=



−1
b

0 0 0 0
−b 1 0 0 0

∂2
aSI(ξ̄1, ξ̄1)

√
VE(γ(ξ̄1)) ∂abSI(ξ̄1, ξ̄1) 0 0

∂abSI(ξ̄1, ξ̄1) 0 ∂2
bSI(ξ̄1, ξ̄1) −

√
VE(γ(ξ̄1)) 0

0 0 b− 1
b

1 1


⇒ det(M) = µ

4b3
√

E + h+ µ/b

√
E − ω2

2 b2 > 0.

Applying then the implicit function theorem, δ′(π/2) can be computed as the last
component of the vector

−M−1DθΦ(q̄) = −M−1


1
1
0
0
0

 ,

obtaining

δ′(π/2) = −

√
VE(γ(ξ̄1))b2 + ϵ

(1)
I b−

√
VE(γ(ξ̄1))

bI
(1)
0

√
VE(γ(ξ̄1))

×
(√

VE(γ(ξ̄1))b2 + (2I(1)
0 + ϵ

(1)
I )b−

√
VE(γ(ξ̄1))

) (1.6.8)

With the same reasoning and taking θ ∈ (−π/2, π/2), one gets

δ′(0) =

√
VE(γ(ξ̄0)) + ϵ

(0)
I b−

√
VE(γ(ξ̄0))b2

bI
(0)
0

√
VE(γ(ξ̄0))

×
(√

VE(γ(ξ̄0))b2 − (2I(0)
0 + ϵ

(0)
I )b−

√
VE(γ(ξ̄0))

)
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Taking b =
√

1 − e2, direct computations show that, if

µ > µ̄ = e2(1 − e2)3/2(2E − e2ω2)
(2e2 − 1)2

and
h > h̄ =1

4

(
−2E − (4e2 − 2)µ

e2
√

1 − e2
− (1 − e2)ω2

)

+

√√√√(2E − (1 − e2)ω2)(4µ− e2
√

1 − e2((1 − e2)ω2 − 2E))
e2

√
1 − e2

then δ′(0) > 0 and δ′(π/2) > 0, and the statement is proved.

Remark 1.6.5. Notice that Theorem 1.6.4 can be extended to general domains D with
boundary ∂D parametrized by a curve γ̃, provided that:

• conditions (1.6.6) hold;

• γ shares the symmetry properties of the ellipse;

• in the vicinity of the intersections between the coordinate axes and ∂D, γ̃ and
γ(ξ) = (cos ξ, b sin ξ) are equal up to the second order, namely:

γ̃(ξ) = (cos ξ + f(ξ), b sin ξ + g(ξ)),
f(ξ̄0\1) = g(ξ̄0\1) = f ′(ξ̄0\1) = g′(ξ̄0\1) = f ′′(ξ̄0\1) = g′′(ξ̄0\1) = 0.

As a matter of fact, one has that, locally around π/2 (the reasoning for 0 is the same),
the vector q defined as in the Theorem satisfies the relation Φ̃(q), with

Φ̃(q) =



cos ξ0 + f(ξ0)
b sin ξ0 + g(ξ0)

− cot θ

α0 + θ − arccot
(
b cos ξ0 + g′(ξ0)
sin ξ0 − f ′(ξ0)

)
∂aSI(ξ0, ξ1) +

√
VE(γ(ξ0)) sinα0

∂bSI(ξ0, ξ1) −
√
VE(γ(ξ1)) sinα1

δ + α1 + arccot
(
b cos ξ1 + g′(ξ1)
sin ξ1 − f ′(ξ1)

)
− arccot

(
cos ξ1 + f(ξ1)
b sin ξ1 + g(ξ1)

)
,


(1.6.9)

whose derivatives with respect to all the variables, computed in q̄, are the same as in
the Theorem.

Example 1.6.6. To make the reasoning quantitative, let us now consider the case
E = 2.5, ω =

√
2, µ = 2 and e = 0.1. Figure 1.7 shows the signs of ∆(0) and ∆(1) as a

function of h. One can see that, while (0, 0) is always an unstable saddle, there is a
bifurcation value of h for which (π/2, 0) changes its stability, whose value is precisely
hbif = 109.091. Figure 1.8 shows the transition of (π/2, 0) from center to saddle, with
the concurrent arising of a two periodic orbit. With reference to Theorem 1.6.4, we
have in this case µ̄ ≃ 0.0511, while h̄ = hbif : the threshold value for the existence of
the 2-periodic brake orbits is then equal to the one for the change of stability of the
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Fig. 1.7 Values of ∆(0) and ∆(1) as a function of h, with E = 2.5, ω =
√

2, µ = 2, e = 0.1.

Fig. 1.8 Orbits of F in a neighbourhood of the homothetic fixed point (π/2, 0) for E = 2.5, ω =√
2, µ = 2, e = 0.1 and different values of h. The transition of the fixed point from center to

saddle is evident. Bottom-Right: the 2-periodic fixed point is detected as the 2-points blue
orbit.
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Fig. 1.9 Plot of the free fall map (top) and its derivative in π/2 (bottom) as a function of h.
The other parameters are E = 2.5, ω =

√
2, µ = 2, e = 0.1.

homothetic equilibrium point, underlying the concurrence of the two phenomena.
The direct study of the Free Fall map corroborates these findings. As a matter of fact,

Figure 1.9 shows the plots of δ(θ) in a neighbourhood of θ = π/2 for different values of
h (before hbif , at hbif and after it), along with the value of δ′(π/2) as a function of h:
as one can see, before the bifurcation value the free fall map is strictly decreasing, while
for h = hbif it has an inflection point with zero derivative at π/2. After the bifurcation
value, two zeros, corresponding precisely to the brake orbits values of θ, appear.

1.7 Numerical simulations

As already pointed out in Section 1.6.2, the validity of the analytical investigations can
be corroborated by a direct comparison with the plots of the map F in specific cases,
which highlights the variety of the behaviours of the dynamics for different values of
the involved parameters.
This Section aims to gather cases of interest for the dynamics, underlying the effective
role of the bifurcations in the change of stability and the subsequent arising or disap-
pearance of new periodic points for F , as well as the potential presence of diffusive
orbits, that represents a strong signal of chaoticity.
All the below simulations are performed by considering D as an ellipse centerd in the
origin, with semiaxes a = 1 and b =

√
1 − e2, for different values of e. The routine

is implemented in Mathematica, and involves the numerical integration for the outer
problem in its original form and, in order to avoid the numerical instability due to the
presence of the possible singularity, of the inner problem in its regularised formulation.

Figure 1.10 shows the transition of the map through different stability regimes as
the parameters modify the sign of ∆(0) and ∆(1). The changes of stability of (0, 0)
between (b) and (c) and of (π/2, 0) between (c) and (d) are consistent with the plot
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a

b

c d

Fig. 1.10 Bifurcations and plot of F for a small eccentricity in a neighbourhood of the axis
α = 0. (a) Sign of ∆(0) and ∆(1) for E = 9, ω = 1, e = 0.03 as a function of h and µ. The
red dots correspond to h = 3, µ = 46 (b), h = 3, µ = 47.7 (c) and h = 3, µ = 48.5 (d).
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of the discriminants sketched in (a). In this case, where the eccentricity is small and
the parameters are not much different from each other, the maps results to be regular
also in the vicinity of the fixed points. We observe that in all the considered cases,
for high values of α the map results essentially in a rotation on the ellipse, with small
oscillations in α. A noticeable fact is represented by the overall number of respectively
stable and unstable equilibria in each regime, which is the same even in the case of
generation of non-trivial fixed points for α ̸= 0:

• in the case (b) the saddle nature of (0, 0) and (0, π) give rise to four non-
homothetic stable fixed points, whose presence are balanced by four non-homothetic
saddles in the vicinity of (π/2, 0) and (3π/2, 0);

• in the case (c), all the homothetic fixed points result to be stable; although the
stable equilibrium points generated by the saddles in (0, 0) and (π, 0) disappear
with their change of stability, the saddles near to (π, 0) and (3π/2, 0) still remain,
leading to four stable and four unstable points;

• in the case (d), the stability of the homothetic points is balanced, and no other
equilibrium points are detected.

This non-trivial fact is coherent with the results one can obtain by applying the theory
of the topological degree to the study of the stability of the fixed points in a discrete
dynamical system (cfr. [73]), although the rigorous application of such theory would
require the good definition and non-degeneration of F on the whole ellipse.
In view of the approximation given in Section 1.6.1, it is reasonable to think that for
small eccentricities and small values of the physical parameters the dynamics induced
by F does not differ much to the one sketched in Figure 1.10. Nevertheless, when
de ellipse becomes more eccentric or the parameters differ much from each others, a
variety of behaviours can manifest, including the presence of diffusive orbits, that are
strong indicators of chaos.

Figure 1.11 shows the transition of F for e = 0.05, E = 20, ω = 1, µ = 0.13 and
h = 1 (a), h = 10 (b), h = 40 (c), namely, for e very small but with a high difference
in magnitude between h and µ. In the considered regime, direct computations assure
that ∆(0) > 0 and ∆(1) < 0, leading to the conclusion (π/2, 0) is a center and (0, 0) is
an unstable saddle. For increasing values of h, the saddle orbits around (0, 0) tend to
diffuse, leading finally a chaotic cloud which surrounds the two stability islands. As in
the case of Figure 1.10, the chaotic region is bounded by invariant curves which induce
oscillating rotations on the ellipse. Furthermore, periodic orbits of period 4 (b) and 3
(c) are detectable.
The other factor which can induce chaotic behaviour is the increasing eccentricity of
the domain.
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Fig. 1.11 Plots of F for e = 0.05, E = 20, ω = 1, µ = 0.13 and h = 1 (a), h = 10 (b),
h = 40 (c). The chaotic behaviour around (0, 0) and (π, 0) is evident even for very small
eccentricities.

Fig. 1.12 Plots of F for e = 0.3, E = 2.5, ω =
√

2, µ = 1 and h = 0.1 (a), h = 1 (b), h = 7
(c). (d): refining of (c) in a neighbourhood of (π/2, 0).
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Figure 1.12 illustrates how for moderate values of the eccentricity the system could
have diffusive orbits around the unstable fixed points, even for small values of the
physical parameters. This case is analogous to Figure 1.8, where the transition of
(π/2, 0) from center to saddle produce two 2-periodic brake orbits.



Chapter 2

KAM and Aubry-Mather theories
for the close-to-circle refractive case

2.1 Introduction and statement of the results

In this chapter we will continue the analysis started in Chapter 1, addressing the general
issue of periodic and quasi-periodic orbits (see Figure 2.1) and associated caustics
when the domain is a perturbation of the circle, taking advantage of both KAM and
Aubry-Mather theories (see for example [22–24]).
In order to tackle the problem, we shall recall the definition of the first1 return map at
the interface ∂D, after two consecutive (outer and inner) excursions, working at the
zero energy level for the potential V as in (1.1.1). Here, we shall exploit the Lagrangian
structure of the problem, building (locally) a generating function as the sum of an
inner and outer contribution. Here comes a first problem, as these can not be globally
defined. In addition, major difficulties arise from the return map not being globally
defined, from the singularity of the attraction center and from a lack of twist condition

1The phrase first return may be confusing, since it is in fact a second crossing of the boundary;
however, such apparent ambiguity will be clarified in Section 2.2.

VE

VI

D∂

VE

D∂

VI

Fig. 2.1 Examples of trajectories for E = 2.5, ω = 1, h = 2 and µ = 2. Left: general trajectory
for an elliptic domain with eccentricity e = 0.6. Right: quasi-periodic trajectory for a circular
domain.
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(cfr. [25]), as it can be in shown that, in certain regimes of the parameters, even the
completely integrable circular case admits at least a twist change (see Remark 2.3.8).
Here are our main results.

Theorem 2.1.1 (Circular domains). When D is the unit circle, there are action-angle
coordinates (ξ, I) ∈ R/2πZ × (−Ic, Ic), where ξ is the polar angle, such that we can
express the first return map as a shift

F : R/2πZ × (−Ic, Ic) → R/2πZ × (−Ic, Ic),
(ξ0, I0) 7→ (ξ1, I1) = (ξ0 + θ̄(I0), I0),

(2.1.1)

where θ̄(I) = f(I) + g(I) and

f(I) =



arccot
 E − 2I2

I
√

4E − 2(2I2 + ω2)

 if I ∈ (0, Ic)

0 if I = 0

arccot
 E − 2I2

I
√

4E − 2(2I2 + ω2)

− π if I ∈ (−Ic, 0)

and

g(I) =



2 arccos
 2I2 − µ√

4(E + h)I2 + µ2

− 2π if I ∈ (0, Ic)

0 if I = 0

−2 arccos
 2I2 − µ√

4(E + h)I2 + µ2

+ 2π if I ∈ (−Ic, 0)

are real analytic functions in (−Ic, Ic). For every I ∈ (−Ic, Ic), except for a finite
number (at most ten) of points, there holds θ̄′(I) ̸= 0.

The action I can be expressed as a function of the variables (ξ, α) already introduced
in Chapter 1. The critical value Ic corresponds to the action associated with the total
reflection of the trajectory at the boundary, i.e. when the outgoing refracted trajectory
becomes tangent to the boundary (see Section 1.2) and is given in (2.2.10). In the
circular case, the rotation number (see [25]) of the orbit is ρI = θ̄(I) = f(I) + g(I).
Depending whether this value is rational with 2π or not, the corresponding orbits are
periodic or quasi-periodic. In both cases they determine an invariant curve and a
pair of caustics, that is, smooth closed curves such that every trajectory which starts
tangent to remains tangent after every passage in and out the domain D. Let us point
out that caustics come in pair, respectively in D and in its complement. The proof of
this Theorem is performed in Section 2.3.
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Next we consider a perturbationDε of the domain whose boundary ∂Dε = γϵ

(
R/2πZ

)
is given by a radial deformation of the circle of the form

γϵ : R/2πZ → R2 γϵ(ξ) = (1 + εf(ξ; ε)) eiξ, (2.1.2)

where f(ξ; ε) is a suitably smooth function of R/2πZ × [−C,C] and ξ is the polar
angle. Then, the first return map on the perturbed boundary can be extended as
F(ξ,I; ε) (see definition 2.4.18), where (ξ, I) are canonical variables defined in suitable
neighbourhoods of such invariant curves. The following theorem resumes the results
stated in Theorems 2.4.12, here considering a single invariant curve, and 2.4.21.
Theorem 2.1.2 (Persistence of invariant curves (KAM)). Let f ∈ Ck, with k > 5. Let
us suppose that θ̄′(I0) ̸= 0, and assume ρ0 = θ̄(I0) has a Diophantine ratio with 2π (see
Definition 2.4.8). Then there exists ε̄ρ0 such that for every ε ∈ R, |ε| < ε̄ρ0 the map
F(ξ,I; ε) admits a closed invariant curve of class C1 with rotation numbers ρ0. Each
of these invariant curves generates a pair of regular caustics.

Two invariant curves with Diophantine rotation numbers border an invariant region
for the map F(ξ,I; ε), subject to the application of Poincaré-Birkhoff theorem and
Aubry-Mather theory (see [23, 24, 22]). As the map is area-preserving, we only need to
verify the twist condition. This is a nontrivial issue, as the function θ̄(I) may indeed
change its monotonicity. This fact poses some technical difficulties but also gives rise
to a richer phenomenology. We have the following result.
Theorem 2.1.3 (Existence of Aubry-Mather invariant sets). Let ρ̄− < ρ̄+ be Diophan-
tine rotation numbers, such that there are no critical values of the function θ̄ in the
range [ρ̄−, ρ̄+]. Then there exists ε̄ > 0 such that for every ε ∈ R with |ε| < ε̄ and for
every ρ ∈ [ρ̄−, ρ̄+] the map F(ξ,I;ε) admits at least one orbit with rotation number ρ.
When ρ = 2πm

n
then for ε sufficiently small there are at least 2 (m,n)-orbits, namely,

such that, denoted with {(ξk, Ik)}k∈N =
{
Fk(ξ0, I0)

}
k∈N

the orbit generated by the initial
point (ξ0, I0), one has

∀k ∈ N (ξk+n, Ik+n) = (ξk + 2πm, Ik) ≡2π (ξk, Ik).

This statement can be easily deduced from Theorem 2.4.20; as we shall see there,
however, the actual number of solutions can be larger, depending on the number of
monotonicity changes of the twist θ̄(I).

To conclude this preamble, let us remark that, although the computations are not
explicitly performed here, with means of the same analytical tools and techniques other
variations of the considered model, more similar to the one described in [9], can be
investigated.
As an example, let us consider ϵ ∈ R and a non-isotropic perturbation of the outer
potential given by

ṼE(z) = E − ω2

2 x2 − (ω + ϵ)2

2 y2,
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where z = (x, y) ∈ R2. Taking, if necessary, h ∈ R instead of h > 0, one can consider
the dynamics induced by the potential

Ṽ (z) =

VI(z) if z ∈ D

ṼE(z) if z /∈ D
(2.1.3)

when
∂D = {z ∈ R2 | VI(z) = ṼE(z)};

In this case, the potential is continuous and the refraction reduces to a conservation
of both the position and velocity on ∂D, leading to a C1 junction between inner and
outer arcs. For ε ∈ R small, this system be considered again as a small perturbation of
the circular case.

Let us conclude this section by underlining, as already done in Chapter 1, the
connections between our refractive case and the classical Birkhoff case related to
the methods used to study the respective dynamics: in this chapter, the fundamental
argument to prove Theorem 2.1.3 is the extension to small perturbations of the existence
results obtained for a circular domain, which is completely integrable. Analogous
reasonings are used for example in [74] and [20] to prove a local version of Birkhoff
conjecture starting from small deformations respectively of a circular and an elliptic
domain, both sharing the complete integrability property in the classic case.
The figures of the current chapter are taken from [2].

2.2 First return map

As in Chapter 1, we will use the first return map to describe the dynamics in the
close-to-circle case as well. On the other hand, in the framework presented in this
chapter we will use a variational approach, starting from the definition of a suitable
generating function, as it is usually done in the case of classical Birkhoff billiards (see
[17]). In this framework, the variational formulation of Snell’s law (1.2.12) turns out
to be crucial for the generating function to be well defined.

2.2.1 Variational approach

Choosing the right set of canonical variables, the first return map already defined in
Section 1.4 can be expressed in a variational form, which allows to take advantage
of a wide range of powerful theoretical tools, coming from KAM and Aubry-Mather
theories, which allow to tackle the case of small perturbations of a circular domain D0

(the latter is discussed in Section 2.3, while the perturbative approach is the subject of



2.2 First return map 59

Section 2.4). Following e.g. [25], we can consider the generating function

S : R/2πZ × R/2πZ → R,

S(ξ0, ξ1) = SE(ξ0, ξ̃) + SI(ξ̃, ξ1) = dE(γ(ξ0), γ(ξ̃)) + dI(γ(ξ̃), γ(ξ1)),
(2.2.1)

where dE and dI are defined as in Section 1.2 and, according to Snell’s law, the
intermediate point p̃ = γ(ξ̃) is such that ξ̃ is a critical point for the function
f(ξ0, ξ, ξ1) = dE(γ(ξ0), γ(ξ)) + dI(γ(ξ), γ(ξ1)) with ξ0 and ξ1 fixed. In other words, ξ̃ is
a solution of

∂bSE(ξ0, ξ̃) + ∂aSI(ξ̃, ξ1) = 0, (2.2.2)

where ∂a and ∂b denote respectively the partial derivatives with respect to the first and
second variable. In general, one can not guarantee the global good definition of the
generating function S(ξ0, ξ1), which depends strongly on the specific geometry of the
domain and on the values of the physical parameters E , h, µ, ω. On the other hand, the
local definition of S(ξ0, ξ1) needs a nondegeneracy condition: under the assumption of
existence and uniqueness of the inner and outer arcs, which ensures the differentiability
of dE(p0, p1) and dI(p0, p1) separately, let us consider (ξ0, ξ̃, ξ1) ∈

(
R/2πZ

)3
such that

(2.2.2) is satisfied. If

∂ξ̃(∂bSE(ξ0, ξ̃) + ∂aSI(ξ̃, ξ1)) = ∂2
bSE(ξ0, ξ̃) + ∂2

aSI(ξ̃, ξ1) ̸= 0, (2.2.3)

then locally around ξ0, ξ1 one can express ξ̃ = ξ̃(ξ0, ξ1) as a function of the endpoints.
Moreover, one has

∂ξ0 ξ̃(ξ0, ξ1) = − ∂abSE(ξ0, ξ̃(ξ0, ξ1))
∂2

bSE(ξ0, ξ̃(ξ0, ξ1)) + ∂2
aSI(ξ̃(ξ0, ξ1), ξ1)

,

∂ξ1 ξ̃(ξ0, ξ1) = − ∂abSI(ξ̃(ξ0, ξ1), ξ1)
∂2

bSE(ξ0, ξ̃(ξ0, ξ1)) + ∂2
aSI(ξ̃(ξ0, ξ1), ξ1)

.

(2.2.4)

If (2.2.3) holds, the generating function is well defined locally around ξ0 and ξ1, and one
can define the canonical actions associated to the system and to the above coordinates
by the relations

I0 = −∂ξ0S(ξ0, ξ1), I1 = ∂ξ1S(ξ0, ξ1); (2.2.5)

note that, when S(ξ0, ξ1) is well defined, the same is true also for the actions as functions
of the angles ξ0 and ξ1.
In order to define a first return map in the new canonical action-angle variables,
one needs to express ξ1 and I1 as functions of ξ0 and I0: this is possible if a second
nondegeneracy condition holds. Let us consider ξ0, ξ1, ξ̃(ξ0, ξ1) such that (2.2.3) holds,
and define I0 as in (2.2.5): if

∂ξ1(I0 + ∂ξ0S(ξ0, ξ1)) ̸= 0, (2.2.6)
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one can find ξ1 = ξ1(ξ0, I0) as a function of the initial action-angle variables. In
particular, making use of (2.2.2) and (2.2.4), condition (2.2.6) translates in

∂abSE(ξ0, ξ̃(ξ0, ξ1))∂abSI(ξ̃(ξ0, ξ1), ξ1)
∂2

bSE(ξ0, ξ̃(ξ0, ξ1)) + ∂2
aSI(ξ̃(ξ0, ξ1), ξ1)

̸= 0, (2.2.7)

which is well defined in view of (2.2.3). If (2.2.7) holds, one can then find two
neighbourhoods [ξ0 − λξ0 , ξ0 + λξ0 ] and [I0 − λI0 , I0 + λI0 ] such that the new local first
return map

F : [ξ0 − λξ0 , ξ0+λξ0 ] × [I0 − λI0 , I0 + λI0 ] → R/2πZ → R,

(ξ0, I0) 7→ (ξ1(ξ0, I0), I1(ξ0, I0)),
(2.2.8)

where I1(ξ0, I0) = ∂ξ1S(ξ0, ξ1(ξ0, I0)), is well defined.
The switch from a Lagrangian approach adopted by using the original first return
map F and an Hamiltonian one involving the generating function and the canonical
action-angle variables is crucial as it will allow, in Section 2.4, to take advantage of
the results coming from KAM and Aubry-Mather theories to derive the existence of
orbits with prescribed rotation numbers in the case of small perturbations of a circular
domain (see Section 2.4).
In the circular case, which will be analyzed in details in Section 2.3, both the potentials
and the domain are centrally symmetric: a consequence of the subsequent invariance
under rotations is that the nondegeneracy conditions (2.2.3) and (2.2.7) will result
in fact equivalent, and S, denoted in this case with S0, will be well defined almost
everywhere.
As a final remark, one can observe that Snell’s law, along with (2.2.5) and (2.2.2),
provides a general relation between the actions I0, I1 and the angles α0, α1 defined in
Section 1.4: in particular,

I0(ξ0, ξ1) = −∂ξ0(SE(ξ0, ξ̃) + SI(ξ̃, ξ1))) = −∂aSE(ξ0, ξ̃) =

= 1√
2
z′

E(0) · γ̇(ξ0)
∥γ̇(ξ0)∥

=
√
VE(γ(ξ0)) sinα0

I1(ξ0, ξ1) = ∂ξ1(SE(ξ0, ξ̃) + SI(ξ̃, ξ1))) = ∂bSI(ξ̃, ξ1) =

= 1√
2
z′

I(TE + TI) · γ̇(ξ1)
∥γ̇(ξ1)∥

=
√
VI(γ(ξ0)) sinα′

1 =
√
VE(γ(ξ1)) sinα1.

(2.2.9)
Eqs.(2.2.9) provides a natural boundary for the values that the actions can assume,
which, in a inhomogenous case, depend on ξ0 and ξ1: in particular

|I0| ≤
√
VE(γ(ξ0)) and |I1| ≤

√
VE(γ(ξ1)),
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where the equalities correspond to the tangent case α0\1 = ±π/2.
In the case of a circular domain, the bound on the actions is uniform and given by

I0, I1 ∈

−
√

E − ω2

2 ,

√
E − ω2

2

 = [−Ic, Ic] . (2.2.10)

For reasons which will be clear in Section 2.4, related to the good definition of the
map F , we will not consider the tangent case, restricting ourselves to the open interval
(−Ic, Ic).

2.2.2 Good definition of dE and dI: preliminary results

In this section we deal with the good definition of the Jacobi distances dE and dI , which,
as already pointed out in Section 1.2, Chapter 1, is heavily based on the existence and
uniqueness of the solutions of the problems (recall the notation introduced in 1.3.11)

(HSE)[zE(s)] s ∈ [0, TE]
zE(s) /∈ D s ∈ (0, TE)
zE(0) = pE

0 , zE (TE) = pE
1


(HSI)[zI(s)] s ∈ [0, TI ]
zI(s) ∈ D s ∈ (0, TI)
zI(0) = pI

0, zI (TI) = pI
1

(2.2.11)
for some TE, TI > 0 and fixed pE

0 , p
E
1 , p

I
0, p

I
1 ∈ ∂D. Unlike Chapter 1, where the Cauchy

problems with prescribed initial conditions are considered, here the inner and outer
fixed-ends problems are taken into account: our aim is to find conditions for which
problems (2.2.11) admit unique solutions. Depending on the specific nature of the
considered problem (if for example we are dealing with close-to-circle domains, as in the
case of the current chapter, or with general domains, as in Chapter 3), these conditions
could be related to the billiard shape, the endpoints, the physical parameters, as well
as the geometric properties of the solutions themselves. Here we will present some
auxiliary results, which will be used both in Chapters 2 and 3 to prove the final results
in the respective frameworks.
The outer and inner cases will be treated in different ways, in particular:

• outer arcs will connect points near to the same central configuration (as defined
in 1.1.2) and will be obtained via perturbative methods;

• inner ones connect not antipodal points near possibly different central configu-
rations and will act as transfer orbits between possibly disjoint regions of ∂D;
these arcs are obtained by purely geometric arguments.

We can say that ξ̄ ∈ I is a [ central configuration] if the corresponding point γ
(
ξ̄
)

satisfies the conditions in 1.1.2.
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Let us start with the outer dynamics, observing that the following general result holds
for both Chapter 2 and 3.

Theorem 2.2.1 (Local existence of the outer arcs). Let ξ̄ ∈ I be a central configuration.
Then there exists δE,ξ̄ > 0 such that for every ξ1, ξ2 ∈ (ξ̄ − δE,ξ̄, ξ̄ + δE,ξ̄) there is a
unique solution zE(·; γ(ξ1), γ(ξ2)) : [0, T ] → R2 of the fixed-ends problem

(HSE) [z(s)] s ∈ [0, T ]
z(s) /∈ D s ∈ (0, T )
z(0) = γ(ξ1), z(T ) = γ(ξ2)

(2.2.12)

for some T .= T (ξ1, ξ2) > 0. Moreover the solution zE(·; γ(ξ1), γ(ξ2)) is transversal to
the boundary ∂D at the endpoints, namely,

zE(0; γ(ξ1), γ(ξ2)) ∦ γ̇(ξ1) and zE (T ; γ(ξ1), γ(ξ2)) ∦ γ̇(ξ2).

Proof. The proof of the theoem relies again on a perturbative strategy starting from
the homothetic solution. Let us then start with the case ξ1 = ξ2 = ξ̄: consider the
Cauchy problem

z′′(s) = −ω2z(s)

z(0) = γ(ξ̄), z′(0) = v0
.=
√

2
(
E − ω2∥γ(ξ̄)∥2

) γ(ξ̄)
∥γ(ξ̄)∥

.

Its solution is the outer homothetic arc in the direction of γ(ξ̄)

zE(s; γ(ξ̄), γ(ξ̄)) = cos(ωs)γ(ξ̄) + sin(ωs)
ω

v0.

Setting T = 2π/ω, one has that zE(T ; γ(ξ̄), γ(ξ̄)) = γ(ξ̄), and, by the choice of v0,

∥z′
E(s; γ(ξ̄), γ(ξ̄))∥2 + ω2∥zE(s, γ(ξ̄), γ(ξ̄))∥2 = 2E for every s ∈ [0, T ],

so that the energy conservation law is satisfied. Moreover, from the second condition
in (1.1.2), it results that zE(s; γ(ξ̄), γ(ξ̄)) /∈ D̄ for every s ∈ (0, T ); summing up the
previous considerations, one can conclude that zE(·; γ(ξ̄), γ(ξ̄)) is a solution of (2.2.12)
when ξ1 = ξ2 = ξ̄.
Let us now pass to the general case; by the regularity of γ and the hypotheses on ξ̄,
there exists δ > 0 such that for every ξ ∈ (ξ̄ − δ, ξ̄ + δ):

• γ(ξ) ∦ γ̇(ξ);

• the half-line starting from 0 in the direction of γ(ξ) intersects ∂D only once.

This means that, denoting with S the sector between the half-lines in the direction of
γ(ξ̄ − δ) and γ(ξ̄ + δ), one has that it intersects ∂D exactly in γ((ξ̄ − δ, ξ̄ + δ)).
By the differentiable dependence of the Bolza problem with respect to variations of the
endpoints, along with the regularity of γ, there exists δE,ξ̄ ∈ (0, δ) such that for every
ξ1, ξ2 ∈ (ξ̄ − δE,ξ̄, ξ̄ + δE,ξ̄) there is T = T (ξ1, ξ2) > 0 and a unique zE(·; γ(ξ1), γ(ξ2))
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solution of (HSE)[z(s)]
z(0) = γ(ξ1), z (T ) = γ(ξ2).

Moreover, zE(·; γ(ξ1), γ(ξ2)) converges in C1−norm to the homothetic solution
zE(·; γ(ξ̄), γ(ξ̄)) when (ξ1, ξ2) → (ξ̄, ξ̄): possibly taking a smaller δE,ξ̄, one has then
that for every ξ1, ξ2 ∈ (ξ̄ − δE,ξ̄, ξ̄ + δE,ξ̄) the corresponding solution zE(·; γ(ξ1), γ(ξ2))
is completely contained in the sector S, and then zE(s; γ(ξ1), γ(ξ2)) /∈ D̄ for every
s ∈ (0, T ). The same convergence property also ensures that, for δE,ξ̄ small enough,
zE(·; γ(ξ1), γ(ξ2)) is transversal to the boundary ∂D at the endpoints.

As for the inner dynamics, the perturbative approach around the homothetic arcs
is not sufficient, as our aim is to connect points close to possibly different central
configurations (we stress that this was not necessary in Chapter 1, where only the local
dynamics in the vicinity of the homothetic trajectories has been considered). We will
rather use a geometric approach, based on classical results in Celestial Mechanics (see
[70, 75]) and somehow similar to the ones obtained, for different cases, in [71, 72]. A
further difficulty is related to the uniqueness of the inner arc, which is obtained by
requiring an additional topological condition on the solution zI of (2.2.11).

Definition 2.2.2. Let P1, P2 ∈ R2 \ {0} be not antipodal points and
α : [0, A] → R2 \ {0} be a continuous curve such that α(0) = P1 and α(A) = P2.
We say that α is topologically non-trivial (TnT) if α([0, A]) is not homotopic to the
line segment connecting P1 and P2 in the punctured plane R2 \ {0}.

We stress thatm in Chapter 1, such condition was not necessary, since the Cauchy
problem, instead of the fixed-ends one, has been considered. On the other hand, in
that case the inner arcs obtained by perturbing the collision-ejection homothetic arc
enjoy the (TnT) property by contruction.
Let us start recalling some basic facts on Keplerian hyperbolæ. In general, the solutions
for the Kepler problem with central mass µ at the origin and fixed energy H > 0

z′′(s) = −µ z(s)
∥z(s)∥3 s ∈ R

1
2∥z′(s)∥2 − µ

∥z(s)∥ = H s ∈ R
(2.2.13)

are branches of hyperbola with a focus at the origin. In particular (see [70]):

• the hyperbola’s semimajor axis a is given by a = µ

2H ;

• the eccentricity e is

e =
√

1 + 2Hk2

µ2 ,

where k is the norm of the angular momentum, which is constant along the
solutions;
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C
a

a F ∗

0

Fig. 2.2 Keplerian hyperbola with a focus in the origin, center C and second focus F ∗. The
semimajor axis a is the distance between C and the pericenter of the arc.

• the selected branch is always the closest to the origin.

If we call F ∗ the second focus of the hyperbola (see Figure 2.2), one has that
∥F ∗∥ = 2ae, and, by the analytic definition of the conic, any point P of the hyperbolic
Keplerian arc satisfies

∥PF ∗∥ − ∥P0∥ = 2a. (2.2.14)

These geometric considerations allow us to state an existence theorem for Keplerian
arcs connecting two distinct points of R2 \ {0}.

Theorem 2.2.3 (Global existence of inner arcs). Let P1, P2 ∈ R2 \ {0}, P1 ̸= P2, be
two distinct points such that either:

(NC) they are not collinear with the origin, or

(C) the origin is contained in the segment P1P2.

Then for every H,µ > 0 there are exactly two Keplerian arcs with energy H and central
mass µ connecting P1 to P2. In particular, the two arcs are contained in the opposite
half-planes generated by the line connecting the two points. Moreover, if condition (NC)
is verified, then exactly one of the two arcs is (TnT).

Proof. We prove the theorem by showing that for every P1, P2 satisfying the hypotheses,
there are exactly two possible positions for the second focus F ∗. Let us call ri = ∥Pi∥,
i = 1, 2, and assume, without loss of generality, that r1 ≥ r2; then from (Eq. 2.2.14) we
have that ∥PiF

∗∥ = ri + 2a, i = 1, 2, which means that F ∗ belongs to both the circles
centered in Pi with radius Ri = ri + 2a for i = 1, 2. By a simple result from elementary
geometry, one has that the two circumferences have two distinct intersection points if
and only if

R1 −R2 < P1P2 < R1 +R2,
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Fig. 2.3 Possible positions of the virtual focus F ∗ in the non collinear (left) and collinear
(right) case.

which, recalling the definition of the radii, is equivalent to

r1 − r2 < P1P2 < r1 + r2 + 4a.

As for any H > 0 the semimajor axis a is positive, the above condition is satisfied if and
only if condition (NC) or (C) hold (see Figure 2.3): in this case, the two circumferences
have exactly two intersection points, corresponding to the only two possible positions
for the second focus F ∗. This proves the existence of the two hyperbolæ.
As for the topological (TnT) characterization, let us observe that if the points P1 and P2
are distinct and not collinear with the origin, it is possible to divide the plane R2 into
two half-planes, separated by the line connecting the two points (see Figure 2.3), and
such that only one of them contains the origin. We will call H0(P1, P2;H) the Keplerian
branch of hyperbola lying in the same half-plane with the origin and H1(P1, P2;H)
the other one. It is then straightforward to observe that the branch H1(P1, P2;H)
is homotopic to the line segment connecting P1 and P2, while H0(P1, P2;H) has the
(TnT) property.

Theorem 2.2.3 will be the starting point for proving the existence and uniqueness
of a (TnT) inner arc in both Chapter 2 and 3. Nevertheless, let us observe that, unlike
Theorem 2.2.1, it does not give any information on whether our arc lies inside of D or
not. This additional condition, necessary for the inner dynamics to be well defined,
will be proved separately in the two chapters; in particular:

• in Chapter 2, constraints on the boundary ∂D are required, as it must be
sufficiently close to a circle;

• in Chapter 3, where a very general class of domains is considered, the result will
be achieved by requiring that the energy jump h from the outer to the inner
region is large enough.

For this reason, we will leave to Sections 2.3.1, 2.4.1 and 3.2 the analogous of Theorem
2.2.1 for the inner dynamics.
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σ̇H (TH)

P2
α2(H)

P1 α1(H)

σ̇H(0)

−σ̇H(0)

Fig. 2.4 Representation of the angles α1(H) and α2(H) between the radial directions defined
by the points P1 and P2 and the tangent vectors −σ̇H(0) and σ̇H(TH) to the Keplerian
hyperbolic arc H0(P1, P2; H) (see Eq. (2.2.15) and the definitions above.)

Let us now focus our attention on the transversality properties of our hyperbola, which,
as already pointed out in Section 1.2, are fundamental to guarantee the good definition
of Snell’s law. Fix then P1, P2 and µ, and define the families

Fi ≡ Fi(P1, P2) .= {Hi(P1, P2;H), H > 0} i = 0, 1.

Focusing on F0, we parametrize its elements. For any H > 0, let σH be a smooth
parametrization of the branch H0(P1, P2;H) such that σH(0) = P1 and σH(TH) = P2

for some TH > 0. Moreover, let us introduce the following angles (see Figure 2.4):

α1(H) ≡ α1(P1, P2;H) .= ∠ (P1,−σ̇H(0)) , α2(H) ≡ α2(P1, P2;H) .= ∠ (P2, σ̇H(TH)) .
(2.2.15)

Proposition 2.2.4 provides an asymptotic estimate for the angles α1(H) and α2(H) as
H → ∞.

Proposition 2.2.4. Let µ > 0 and P1, P2 ∈ R2 \ {0}, P1 ̸= P2, such that (NC) is
satisfied, and for every H > 0 consider α1(H) and α2(H) as defined in (2.2.15). Then

lim
H→∞

αi(H) = 0, i = 1, 2.

Proof. Le us start recalling that the semimajor axis a of the hyperbola which generates
the branch H0(P1, P2;H) is given by a(H) = µ/2H; hence, a(H) → 0 when H → ∞.
Referring to the left side of Figure 2.3, one has that the intersection point between
the two circumferences centered at P1 and P2 and with radii R1 and R2 lying in the
same side of the origin tends to 0. Then, denoting with F ∗(H) the second focus of the
considered hyperbola, we have

lim
H→∞

R∗(H) = 0, R∗(H) .= ∥F ∗(H)∥. (2.2.16)

Define now k(H) as the norm of the angular momentum for the corresponding Keplerian
orbit along H0(P1, P2;H). From the beginning of this Section, we have that

R∗(H) = 2ae = µ

H

√
1 + 2Hk2(H)

µ2 ,
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hence

k(H) =
√

(HR∗(H))2 − µ2

2H .

We choose now as a parametrization of H0(P1, P2;H) the corresponding solution of the
Kepler problem (2.2.13); we still call σH(t), t ∈ R, such a parametrization assuming
that σH(0) = P1 and σH(TH) = P2. By the conservation of the angular momentum we
have

k(H) = ∥σH(0)∥ ∥σ̇H(0)∥ | sinα1(H)|
= ∥σH(TH)∥ ∥σ̇H(TH)∥ | sinα2(H)|,

while, by the energy conservation law in Eq. (2.2.13) and recalling that ri = ∥Pi∥,
i = 1, 2, it results

∥σ̇H(0)∥ =
√

2
√
µ

r1
+H, ∥σ̇H(TH)∥ =

√
2
√
µ

r2
+H;

from which one obtains that, for i = 1, 2,

| sinαi(H)| = 1
2√

ri

√√√√(HR∗(H))2 − µ2

riH2 + µH
,

which, in view of (2.2.16), tends to zero when H → ∞.

More precise estimates on the convergence rate of the angles α1 to 0 will be given,
in the specific case of the circular domain, in Section 2.3. Moreover, this result will be
of crucial importance in Chapter 3, where more general domains are considered.
Remark 2.2.5. As pointed out in [75, pp. 273-274], the branch H0(P1, P2;H) as
H → ∞ converges to the two straight-line segments from P1 to 0 and from 0 to P2.
With analogous computations coming from elementary geometry one can prove that the
branch H1(P1, P2;H) converges to the line connecting P1 to P2.
In this setting, the meaning of convergence is purely geometric and it is due to the
convergence of the second foci to some fixed positions (since a tends to 0). We will
translate this concept of convergence within a dynamical setting in Section 3.2 and
further.

We stress that more precise results on the rate of convergence of the fixed-end
hyperbolæ for H → ∞ are provided in [76].
Remark 2.2.6. When P1 and P2 satisfy condition (C), the two branches of hyperbolæ
found in Theorem 2.2.3 lose the topological classification into H0 and H1, because
the origin belongs to the segment connecting P1 and P2. Nevertheless, the geometric
asymptotic behaviour described in Proposition 2.2.4 and Remark 2.2.5 continues to
hold: in particular, both branches converge to the line connecting P1 and P2; hence, the
tangent directions in P1 and P2 tend in both cases to the directions of P1 and P2.
Remark 2.2.7. When P1 = P2, trough the Levi-Civita regularization one can prove
that the inner problem (HSI)[z(s)]

z(0) = z(T ) = P1
(2.2.17)
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P1

u

−u 0
P2

∂+
1,udI (P1, P2)

∂−
1,udI (P1, P2)

Fig. 2.5 Antipodal case: the derivative of dI(P1, P2) is not well defined in P1.

admits a unique collision-ejection solution z (·;P1, P1;H) (which coincides to the seg-
ment connecting the origin to P1) for some T > 0, in the sense that it solves problem
(2.2.17) in [0, T ] \ {T/2}. Although this collision-ejection solution can not be considered
as a classical solution of the Kepler problem (one can refer to it as a regularised solution
of the latter), one can prove that it is the limit of the arc H0 (P1, P2;H), whenever
P2 → P1 (see Section 1.3 for the derivation and the detailed study of the regularised
problem). Moreover, as z(·;P1, P1;H) is parallel to the straight half-line starting from 0
and containing P1, the angles α1(H) and α2(H) defined in Eq. (2.2.15) are identically
zero, and then Proposition 2.2.4 trivially holds also in the collisional case.

Let us conclude this section with few words about the antipodal case. As already
pointed out in Remark 2.2.6, when the origin is contained in the segment connecting P1

to P2 the (TnT) topological characterization does not make sense anymore. This is not
only a technical difficulty, but has fundamental consequences on the differentiability of
the inner distance dI . As a matter of fact, let us suppose to start with two antipodal
points P1 and P2; by Theorem 2.2.3, we know that there are exactly two Keplerian
arcs connecting them, and it is easy to prove that they are symmetric with respect to
the segment P1P2 and have the same Jacobi length: the distance dI (P1, P2) is then
still well defined. As for its derivatives, from Section 1.2, and in particular Eq. (1.5.2)
we know that they are related to the tangent vector to the chosen arc in the endpoints.
Let us now apply a variation to one of the two points, say P1, in the direction of a
unit vector u transverse to P1. Depending on the sign of our variation (either it points
towards u or −u), the corresponding (TnT) arcs will not belong to the same homotopy
class in the punctured plane R2 \ {0}, as they are deformations of one of the two
distinct inner antipodal arcs (see Figure 2.5). As a consequence, directional derivative
of dI with respect to variations of the first endpoints in the direction of u is not well
defined in P1.

2.3 The unperturbed case: circular domain

Let us suppose now that D is a disk of radius 1, and denote it with D0: in this
particular case, both the potentials and the domain are centrally symmetric, and, as a
consequence, the system is integrable. In particular, it is possible to find the explicit
expression of the first return map in action-angle variables, which in this case is denoted
with F0, as it will be done in Section 2.3.3. From now and until the end of the chap-
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ter, we will assume that E > ω2 to ensure that D0 is contained in the outer Hill’s region.

2.3.1 Good definition of dE and dI in the circular case

Let us now adapt the results already obtained in general in Section 2.2.2 when the
domain D is a circle. As we will see, the explicit expression of ∂D0, as well as its central
symmetry, allows to obtain precise estimates on the quantities involved in Theorem
2.2.1 and its analogous for the inner case. Let us start with the outer case..

Theorem 2.3.1. For every p0, p1 ∈ ∂D0 such that ∥p0 − p1∥ < 2, there exists T > 0
and a unique z(s; p0, p1) : [0, T ] → R2 solution of the fixed ends problem

(HSE)[z(s)] s ∈ [0, T ]
∥z(s)∥ > 1 s ∈ (0, T )
z(0) = p0, z(T ) = p1.

(2.3.1)

Moreover, z(s; p0, p1) is of class C1 with respect to variations of the endpoints.

This result can be verified using the same reasoning of Theorem 2.2.1 and observing
some straightforward geometric features of the elliptic arcs connecting every pair of
points on ∂D0. Nevertheless, it is worth to propose another proof, with more details,
whose by-products will be useful in Section 2.3.2.

Proof. Fix p0 = eiθ0 ∈ ∂D0, and, given α ∈ (−π/2, π/2), consider the Cauchy problem

z
′′(s) = −ω2z(s),
z(0) = p0, z

′(0) = v0 =
√

2E − ω2eiθ0+α,
(2.3.2)

whose solution z(s; p0, v0) is an ellipse whose parameters depend on the initial conditions
and can be decoupled as

z(s) = (x(s), y(s)) =
(
p0,x cosωs+ v0,x

ω
sinωs, p0,y cosωs+ v0,y

ω
sinωs

)
(2.3.3)

Since α ∈ (−π/2, π/2), the orbit is exterior to D in a neigborhood of s = 0. Let s1 > 0
the first positive instant for which z(s1; p0, v0) ∈ ∂D0 again, and define
p1 = eiθ1 = p1(p0, α) = z(s1; p0, v0). As the system is invariant under rotations, the
shift θE from θ0 to θ1 and s1 depend only on the direction of v0 with respect to the
radial direction, i.e. on α. We can then fix p0 = p̄0 = (1, 0), and we have θE(α) .= θ1.
The solution z(s; p̄0, v0) simplifies as

z(t) = (x(s), y(s)) =
(

cosωs+ vx

ω
sinωs, vy

ω
sinωs

)
, (2.3.4)
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from which one has

r2(s) = x2(s) + y2(s) = ω2 − E
ω2 cos (2ωs) + vx

ω
sin (2ωs) + E

ω2 = A cos (2ωs+ ᾱ) + E
ω2 ,

(2.3.5)
with A ∈ R and ᾱ ∈ [0, 2π) such that{

A cos ᾱ = ω2 − E
ω2 , A sin ᾱ = −vx

ω
, (2.3.6)

and, since vx > 0,

cot ᾱ = E − ω2

ωvx

⇒ ᾱ = arccot
(

E − ω2

ωvx

)
∈
(

0, π2

)
,

cos ᾱ = E − ω2√
ω2v2

x + (E − ω2)2
, sin ᾱ = ωvx√

ω2v2
x + (E − ω2)2

A = − vx

ω sin ᾱ = −

√
ω2v2

x + (E − ω2)2

ω2 < 0.

(2.3.7)

The time s1 > 0 is such that ρ(s1) = 1 and is given by s1 = (π − ᾱ)/ω: if y(s1) ̸= 0
(namely, α ̸= 0), the polar angle θ1 of the point p1 is given by

θ1 =



arccot
(
x(s1)
y(s1)

)
if α > 0,

arccot
(
x(s1)
y(s1)

)
− π if α < 0,

(2.3.8)

where we took into account that, for α < 0, θ̄E ∈ [π, 2π], then one has to take the
second determination of arccot.
Direct computations of the homothetic solution (corresponding to α = 0) and equation
(2.3.7), along with the definition of θE, lead finally to

θE(α) =



θ+
E(α) = arccot

(
ω2

(2E − ω2) sin (2α) + cot (2α)
)

if α > 0,

0 if α = 0,

θ−
E(α) = arccot

(
ω2

(2E − ω2) sin (2α) + cot (2α)
)

− π if α < 0.

(2.3.9)

If E > ω2, the function θE(α) is of class C1 in (−π/2, π/2) and assumes all the values
in (−π, π). Moreover,

dθE

dα
(α) = (2E − ω2)(2E − ω2 + ω2 cos (2α))

2E(E − 2ω2) − (2E − ω2)ω2 cos (2α) > 0 for all α ∈
(

−π

2 ,
π

2

)
. (2.3.10)

From the inverse function theorem, there exist a unique function
α : (−π, π) → (−π/2, π/2), θ1 7→ α(θ1) such that for every θ1 we have

p1 = eiθ1 = z
(
s1(α(θ1)); p̄0,

√
2E − ω2eiα(θ1)

)
. (2.3.11)
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Moreover, α(θ1) ∈ C1(−π, π).
Fixing now p0, p1 ∈ D0 such that |p0 −p1| < 2, we have that |θ0 −θ1| < π, then problem

z′′(s) = −ω2z(s),

z(0) = p0, z
′(0) = v0 =

√
2E − ω2

2 ei(θ0+α(θ1−θ0)),
(2.3.12)

admits the unique solution z(s; p0, p1). If we define T = s1 as above, we have that
z(T ; p0, p1) = p1 and ∥z(s)∥ > 1 for every s ∈ (0, T ), while the energy conservation
law is ensured by the choice of v0. Moreover, by the differentiable dependence on the
initial conditions of the Cauchy problem and the fact that α(θ1) is of class C1, one can
conclude that z(s; p0, p1) is differentiable as a function of its endpoints.

As for the inner dynamics, we can state the below theorem, which refers to the
(TnT) topological characterization introduced in Definition 2.2.2.

Theorem 2.3.2. For every p0, p1 ∈ ∂D0, ∥p0 − p1∥ < 2, there is a unique T > 0 and
a unique solution z(s; p0, p1) of

(HSI)[z(s)] s ∈ [0, T ]
∥z(s)∥ < 1 s ∈ (0, T )
z(0) = p0, z(T ) = p1

(2.3.13)

such that z(s; p0, p1) is of class C1 with respect to p0 and p1 and:

• if p0 = p1, z(s; p0, p0) is an ejection-collision solution;

• if p0 ̸= p1, z(s; p0, p1) is a classical solution of (2.3.13) which satisfies the (TnT)
characterization. If p1 → p0, z(s; p0, p1) tends to the ejection-collision solution
z(s; p0, p0).

Moreover, there is 0 < C < 1 such that, for every p0, p1 as above,

− p0 · z′
1(0; p0, p1)

∥z′
1(0; p0, p1)∥

> C and p1 · z′
1(T ; p0, p1)

∥z′
1(T ; p0, p1)∥

> C. (2.3.14)

The quantity C depends on the physical parameters E + h, µ and on ∥p0 − p1∥. In
particular, it tends to 1 when E → ∞ or ∥p0 − p1∥ → 0

Proof. If p1 ̸= p2, the first part of the proof is a straightforward consequence of Theorem
2.2.3: as a matter of fact, ∥p0 − p1∥ < 2 is equivalent to require that condition (NC) is
satisfied. Moreover, by the monotonicity properties of the function ∥z(s)∥ when z is a
Keplerian hyperbola, one can infer also that ∥z(s)∥ < 1 for every s ∈ (0, T ). When
instead p1 = p2, one can refer to Remark 2.2.7 to gain the proof.
As for the inequalities in (2.3.14), for E +h large enough they are a natural consequence
of the asymptotic result in Theorem 2.2.3. On the other hand, using again the peculiar
properties of a circular domain, we can extend this result to any positive value of the
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energy, providing more precise estimates. First of all, let us observe that, whenever
p1 = p2, the claims are trivially true, as the ejection-collision solution is always parallel
to the radial direction. Let us then assume that p1 ̸= p2, and, as the system is
invariant under rotation, suppose p0 = e−iβ and p1 = eiβ, β ∈ (0, π/2) (note that, if
β = π/2, then p1 and p2 are antipodal). Let us call x0 ∈ (0, 1) the x−coordinate of
both the points, to have p1 =

(
x0,−

√
1 − x2

0

)
and p2 =

(
x0,

√
1 − x2

0

)
. From direct

computations, it results that the unique (TnT) arc which solves the inner fixed-ends
problem with endpoints p1 and p2 is parametrized by the equation

(x− ae)2(e2 − 1) − y2 = a2(e2 − 1), x ≤ a(e− 1)

a = µ

2(E + h) , e =
x0 +

√
4a2 + 4a+ x2

0

2a ,

whose positive branch can be parametrized as y(x) =
√
e2 − 1

√
(x+ a)2 − a2. Writing

p1 = p1(x0) = (x0, y(x0)) and v1 = (1, ∂xy(x0)), we can express the cosine of the angle
between p1 and v1 as a function

c(x0) ≡ p1 · v1

|v1|
= e

√√√√2a+ x0(x0 +
√

4a2 + 4a+ x2
0)

2 + 4a , (2.3.15)

which is strictly increasing for x0 ∈ [0, 1] and such that c(0) =
√

1 + a

1 + 2a
.= C < 1 and

c(1) = 1: this prove the claim for p1 and s = T . The same estimate holds for −p0
and s = 0, taking into account that for s = 0 the hyperbola points inward the domain
D0.

Remark 2.3.3. The value of C depends on the physical parameters of the problem: in
particular, with reference to the proof of Theorem 2.3.2, one has

c(0) =
√

1 + a

1 + 2a =
√

E + h+ µ/2
E + h+ µ

,

which tends to 1 when E +h → ∞. As a consequence, one can control the transversality
of z1(s; p0, p1) by acting on the value of the total inner energy. This fact is of particular
importance in view of Remark 1.4.2, since for the first return F0 to be well defined one
needs that the angle β1 = ∠(p1, v1) is such that

| sin β1| ≤

√√√√VE(p1)
VI(p1)

=
√

E − ω2/2
E + h+ µ

. (2.3.16)

If E + h is such that
√

1 − C2 <
√

(E − ω2/2)/(E + h+ µ), and this is true if√
µ/2 <

√
E − ω2/2, Eq.(2.3.16) is satisfied.

Moreover, since for p0 → p1 the inner arc tends to the ejection-collision solution, the
lower bound C can be controlled also by choosing the endpoint to be close enough.

The estimates given by (2.3.14) are crucial to ensure that the inner arcs are
transversal to ∂D0 as much as needed: this is necessary for the first return map to be
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well defined, since, according to Remark 1.4.2, it is clear that these arcs can not be
tangent to the interface.

2.3.2 Study of the map F0

Once the good definition and differentiability of the distances dI(p0, p1) and dE(p0, p1)
is ensured, one can eventually consider the generating function introduced in Section
2.2.1 and given by

S0(ξ0, ξ1) = SE,0(ξ0, ξ̃) + SI,0(ξ̃, ξ1) = dE(γ0(ξ0), γ0(ξ̃)) + dI(γ0(ξ̃), γ0(ξ1)),

where γ0 : R/2πZ → R2 denotes the circle of radius 1, and investigate the associated
nondegeneracy conditions (2.2.3) and (2.2.7). Although the complete analysis on its
good definition will be done after the derivation of the explicit formulation of the
associated first return map F0 in Section 2.3.3, the central symmetry of the circular
case allows to give some preliminary informations. As both the outer and inner systems
are invariant under rotations, the associated generating functions can be expressed as
univariate functions depending on the angle spanned by the arc; more precisely,

S0(ξ0, ξ1) = S̃0(ξ1 − ξ0) = S̃E,0(ξ̃ − ξ0) + S̃I,0(ξ1 − ξ̃).

Going through the same analysis described in general in Section 2.2.1, the intermediate
coordinate ξ̃ is implicitly determined as a function of ξ0 and ξ1 by the relation

∂ξ̃(S̃E,0(ξ̃ − ξ0) + S̃I,0(ξ − ξ̃)) = 0

if (2.2.3) is verified. In the circular case, the latter translates in

S̃ ′′
E,0(ξ̃ − ξ0) + S̃ ′′

I,0(ξ1 − ξ̃) ̸= 0. (2.3.17)

If (2.3.17) holds, one has

∂ξ0 ξ̃ =
S̃ ′′

E,0(ξ̃ − ξ0)
S̃ ′′

E,0(ξ̃ − ξ0) + S̃ ′′
I,0(ξ1 − ξ̃)

, ∂ξ1 ξ̃ =
S̃ ′′

I,0(ξ1 − ξ̃)
S̃ ′′

E,0(ξ̃ − ξ0) + S̃ ′′
I,0(ξ1 − ξ̃)

,

and the canonical actions are defined by

I0 = −∂ξ0S̃0(ξ1 − ξ0) = S̃ ′
E,0(ξ̃(ξ0, ξ1) − ξ0),

I1 = ∂ξ1S̃0(ξ1 − ξ0) = S̃ ′
I,0(ξ1 − ξ̃(ξ0, ξ1)).

(2.3.18)

The first equation in (2.3.18) defines implicitly ξ1 = ξ1(ξ0, I0), and, as a consequence,
the map F0, if (2.2.7) holds, that is, if

∂ξ1(I0 −S̃ ′
E,0(ξ̃(ξ0, ξ1)−ξ0)) = −

S̃ ′′
E,0(ξ̃(ξ0, ξ1) − ξ0)S̃ ′′

I,0(ξ1 − ξ̃(ξ0, ξ1))
S̃ ′′

E,0(ξ̃(ξ0, ξ1) − ξ0) + S̃ ′′
I,0(ξ1 − ξ̃(ξ0, ξ1))

̸= 0. (2.3.19)
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As a final remark, note that the validity of conditions (2.3.17) and (2.3.19) are strongly
related to the twist condition (see [77, 25, 23]) associated to the map F0, defined as
∂I0ξ1 ̸= 0. As a matter of fact, one has

∂I0ξ1 =
S̃ ′′

E,0(ξ̃(ξ1 − ξ0) − ξ0) + S̃ ′′
I,0(ξ1 − ξ̃(ξ1 − ξ0))

S̃ ′′
E,0(ξ̃(ξ0, ξ1) − ξ0)S̃ ′′

I,0(ξ1 − ξ̃(ξ1 − ξ0))

and one can then say that, if F0 is given, the twist condition is equivalent to require
the nondegenerations (2.3.17) and (2.3.19) to be true.

2.3.3 Explicit formulation of F0

When the domain D is circular, the first return map F0 : (ξ0, α0) 7→ (ξ1, α1) can be
explicitly determined: in this case, the nondegeneracy given through (2.3.17) and
(2.3.19) can be investigated in the equivalent form given by the twist condition. The
boundary ∂D0 can be parametrized as γ(ξ) = (cos ξ, sin ξ), with ξ ∈ R/2πZ, and the
symmetry properties of the potentials VE and VI and the isotropy of the Snell’s law on
a circular domain imply that F0 is of the form

F0(ξ0, α0) = (ξ1(ξ0, α0), α1(ξ0, α0)) = (ξ0 + θ̄(α0), α0); (2.3.20)

in other words, the first return map on the circle reduces to a conservation of the
velocity variable α and a shift in the angle ξ of a suitable quantity θ̄ which depends
only on the physical parameters of the problem and on α0. The Jacobian matrix
DF0((ξ0, α0)) can be then expressed for every pair (ξ0, α0) ∈ R/2πZ × (−π/2, π/2) as

DF0(ξ0, α0) =

1 ∂θ̄

∂α0
(α0)

0 1

 .
From the above considerations, we have that θ̄(α0) = θ̄E(α0) + θ̄I(α0), where θ̄E(α0)
and θ̄I(α0) represent the excursions in the angles due respectively to the outer and the
inner arcs of the orbit zEI(s).

Outer shift The outer shift has been already computed as an additional result in
the proof of Theorem 2.3.1, and is equal to

θE(α) =



θ+
E(α) = arccot

(
ω2

(2E − ω2) sin (2α) + cot (2α)
)

if α > 0,

0 if α = 0,

θ−
E(α) = arccot

(
ω2

(2E − ω2) sin (2α) + cot (2α)
)

− π if α < 0.

(2.3.21)
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Inner shift As the system is invariant under rotations, without loss of generality let
p0 = (1, 0) be the initial point of the inner orbit and, denoted by v0 its initial velocity,
let β0 ∈ (−π/2, π/2) the angle between v0 and the inward-pointing radial unit vector,
namely, −p0; then v0 =

√
2(E + h) + 2µ(− cos β0, sin β0) = (vx, vy). The inner Cauchy

problem is then given by
z′′(s) = − µ

∥z(s)∥3 z(s), s ∈ [0, T ]

z(0) = p0, z
′(0) = v0.

(2.3.22)

Unlike the outer case, for the inner Keplerian orbit it is not possible to decouple
the 2−dimensional system into two one-dimensional systems in the variables (x, y);
we shall rely on other classical techniques (see [70]) which require the passage in
polar coordinates. Consider the functions r(s) ∈ R+ and θ(s) ∈ R/2πZ such that
z(s) = r(s)eiθ(s). From the conservation of the angular momentum, we have that

r(s)2θ′(s) = const = k = ∥p0∥∥v0∥ sin β0 =
√

2E + 2h+ 2µ sin β0, (2.3.23)

while the energy conservation law implies

E + h = 1
2
(
r′(s)2 + r(s)2θ′(s)2

)
− µ

r(s) ⇒ r′(s) = −

√√√√2(E + h) − k2

r2(s) + 2µ
r(s) ,

(2.3.24)
where the sign depend by the fact that, according to the chosen initial conditions, r(s)
is decreasing. Taking together (2.3.23) and (2.3.24), one has then

dθ = − k

r2
√

2(E + h) − k2

r2 + 2µ
r

dr. (2.3.25)

The classical results for the two-body problem ensure that, for positive energies, the
Kepler problem is unbounded, and r(t) reaches its unique minimum rp at a time sp > 0.
The value of rp is given by (see [70])

rp = k2

µ

1 +
√

1 + 2(E + h)k2

µ2

−1

. (2.3.26)

If we denote with θp the polar angle of the pericenter and consider the initial conditions
given by (2.3.22), taking into account the symmetry of r(s) with respect to sp, we have
that the inner shift angle is given by

θ̄I = 2θp, (2.3.27)
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where θp can be obtained by integration from (2.3.25):

θp =
∫ θp

0
dθ = −k

∫ rp

1

dr

r2
√

2(E + h) − k2

r2 + 2µ
r

= k

|k|

∫ 1
rp

1

du√
2(E+h)

k2 − u2 + 2µ
k2u

setting x = u− µ/k2, x0 = 1 − µ/k2 and x1 = µ

k2

√
1 + 2 (E + h) k2

µ2 :

θp = k

|k|

∫ x1

x0

dx√
2(E+h)

k2 + µ2

k4 − x2
.

Finally, defining y = x

(
2(E + h)

k2 + µ2

k4

)−1/2

, y0 = (k2 − µ)
(
2(E + h)k2 + µ2

)−1/2
and

y1 = 1:

θp = k

|k|

∫ y1

y0

dy√
1 − y2 = k

|k|
arccos y0 = k

|k|
arccos

 k2 − µ√
2(E + h)k2 + µ2

 . (2.3.28)

Casting together (2.3.23), (2.3.27) and (2.3.28), one obtains

θ̄I(β0) =



θ̄+
I (β0) = 2 arccos

 (2E + 2h+ 2µ) sin β0
2 − µ√

4(E + h)(E + h+ µ) sin β0
2 + µ2

− 2π if β0 ≥ 0

θ̄−
I (β0) = −2 arccos

 (2E + 2h+ 2µ) sin β0
2 − µ√

4(E + h)(E + h+ µ) sin β0
2 + µ2

+ 2π if β0 < 0,

(2.3.29)
where the shift is such that θ̄I(β0) ∈ (−π, π) for every β0 ∈ (−π/2, π/2). Note that

lim
β0→0+

θ̄+
I (β0) = 0 = lim

β0→0−
θ̄−

I (β0),

lim
β0→0+

d

dβ0
θ̄+

I (β0) = −4(E + h+ µ)
µ

= lim
β0→0−

d

dβ0
θ̄−

I (β0)

and then θ̄I ∈ C1(−π/2, π/2).

Total shift and properties of the overall trajectories The total shift angle
θ̄(α0) is computed by taking the sum of the outer and the inner shifts and taking into
account the transition laws for the velocities across the interface ∂D0. In particular, if
α̃ and β̃ denote respectively the angles wit the normal unit vector of the outer and the
inner velocities of an orbit crossing the interface in a point p̃ ∈ ∂D0, from Snell’s law
one has √

E − ω2

2 ∥p̃∥2 sin α̃ =
√

E + h+ µ

∥p̃∥
sin β̃;
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in the particular case of a circular domain, the Snell’s law is uniform over all the
points of ∂D0, and the initial and final angles with the radial direction are equal
for every branch of the orbit. Performing in (2.3.29) the substitution
sin β0 =

√
(2E − ω2)/(2(E + h+ µ)) sinα0, one obtains the total shift

θ̄(α0) =


θ̄+

E(α0) + θ̄+
I (α0) if α0 > 0

0 if α0 = 0
θ̄−

E(α0) + θ̄−
I (α0) if α0 < 0,

where θ̄+
E(α0) and θ̄−

E(α0) are given by (2.3.21) and

θ̄+
I (α0) = 2 arccos

 (2E − ω2) sinα0
2 − µ√

2(E + h)(2E − ω2) sinα02 + µ2

 = −θ̄−
I (α0).

The map is continuous and differentiable with respect to α0, and

d

dα0
θ̄(0) = lim

α0→0+

d

dα0
θ̄(α0) = lim

α0→0−

d

dα0
θ̄(α0) =

= 2E − ω2

E
− 2

√
2
√

E + h+ µ
√

2E − ω2

µ
.

Passing to the canonical coordinates (ξ, I), the axisymmetry of the potentials and the
isotropy of Snell’s law on the circle translates in the conservation of the quantity I

both in the endpoints and the transition point ξ̃. The first claim is a straightforward
consequence of Eq.(2.3.20), while to prove the conservation of the action across the
intermediate point one needs to consider the actions IE and II associated to SE,0 and
SI,0 separately:

IE
1 (ξ0, ξ1) = ∂bSE,0(ξ0, ξ̃) =

√
VE(γ(ξ̃)) sin β0 =

√
VI(γ(ξ̃)) sin β1

II
0 (ξ0, ξ1) = −∂aSI,0(ξ̃, ξ1) =

√
VI(γ(ξ̃)) sin β1.

(2.3.30)

Since on the circle α0 = β0 and β1 = α′
1, we have that for every ξ0, ξ1 ∈ R/2πZ

I0(ξ0, ξ1) = IE
1 (ξ0, ξ1) = II

0 (ξ0, ξ1) = I1(ξ0, ξ1) ≡ I(ξ0, ξ1). (2.3.31)

Moreover, from (2.2.9) one has that in the circular case the global domain of definition
of the actions does not depend on the points ξ0, ξ1, that is

I0, I1 ∈

−
√

E − ω2

2 ,

√
E − ω2

2

 = (−Ic, Ic) = I.

Taking into account Eq.(2.3.20), the definitions of θ̄E and θ̄I and the relations (2.2.9),
(2.3.31), in the new set of canonical coordinates (ξ, I) ∈ R/2πZ × I we can express the
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first return map as

F0 : R/2πZ × I → R/2πZ × I,
(ξ0, I0) 7→(ξ1, I1) = (ξ0 + θ̄(I0), I0) = (ξ0 + f(I0) + g(I0), I0),

(2.3.32)

where

f(I) =



arccot
 E − 2I2

I
√

4E − 2(2I2 + ω2)

 if I ∈ (0, Ic)

0 if I = 0

arccot
 E − 2I2

I
√

4E − 2(2I2 + ω2)

− π if I ∈ (−Ic, 0)

and

g(I) =



2 arccos
 2I2 − µ√

4(E + h)I2 + µ2

− 2π if I ∈ (0, Ic)

0 if I = 0

−2 arccos
 2I2 − µ√

4(E + h)I2 + µ2

+ 2π if I ∈ (−Ic, 0)

are C1 functions in I.

Remark 2.3.4. Direct computations show that for every E > ω2, h > 0, µ > 0 and
for every I ∈ I one has f ′(I) > 0 and g′(I) < 0: the outer and inner shifts are
then invertible in I, and one can define the inverse functions f̃(θ) = f−1(I)|I=I(θ) and
g̃(θ) = g−1(I)|I=I(θ). From the regularity of both f and g, we have that f̃ and g̃ are of
class C1 in the respective domains. In particular,

f (I) = (−π, π), g (I) = (−θ̄, θ̄),

θ̄ = 2π − 2 arccos
 2E − ω2 − µ√

2(E + h)(2E − ω2) + µ2

 . (2.3.33)

Moreover,
ξ̃ = ξ0 + f(I) ⇔ I = f̃(ξ̃ − ξ0) ≡ IE

1 (ξ0, ξ̃),
ξ1 = ξ̃ + g(I) ⇔ I = g̃(ξ1 − ξ̃) ≡ II

0 (ξ̃, ξ1).
(2.3.34)

Lemma 2.3.5. For every I ∈ I, except for a finite number if points, f ′(I) + g′(I) ̸= 0.

Proof. Direct computations lead to

f ′(I) + g′(I) =
√

2(2E2 − (E + 2I2)ω2)√
2E − ω2 − 2I2(E2 − 2ω2I2)

− 8(E + h)I2 + 4(E + h)µ+ 4µ2
√

E + h+ µ− I2(4(E + h)I2 + µ2)

= A(I2)
B(I2) − C(I2)

D(I2) .

(2.3.35)
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Since for every I ∈ I we have that A(I2), B(I2), C(I2), D(I2) > 0,

f ′(I) + g′(I) = 0 ⇔ X = I2 ∈
[
0, I2

c

)
is a solution of p(x) = 0,

where p(x) = A2(x)D2(x) − B2(x)C2(x). As p(x) is a real polynomial of degree 5 in
X, one can have at most ten values of I ∈ I such that f ′(I) + g′(I) = 0.

We define Ī = {I ∈ I | f ′(I) + g′(I) = 0} as the set of the critical points of the
function f + g.
Proposition 2.3.6. The generating function S0(ξ0, ξ1) is well defined in R/2πZ ×R/2πZ
except for a finite number of pairs (ξ0, ξ1) in the quotient space (R/2πZ × R/2πZ)/ ∼,
where (ξ0, ξ1) ∼ (ξ′

0, ξ
′
1) ⇔ ξ1 − ξ0 = ξ′

1 − ξ′
0.

Proof. For S0(ξ0, ξ1) = SE,0(ξ0, ξ̃) + SI,0(ξ̃, ξ1) to be well defined, one needs to verify
condition (2.2.3). From the definition of the actions

∂ξ̃(∂bSE,0(ξ0, ξ̃) + ∂aSI,0(ξ̃, ξ1)) = ∂ξ̃(IE
1 (ξ0, ξ̃) − II

0 (ξ̃, ξ1)) = ∂ξ̃I
E
1 (ξ0, ξ̃) − ∂ξ̃I

I
0 (ξ̃, ξ1)

= ∂ξ̃f̃(ξ̃ − ξ0) − ∂ξ̃g̃(ξ1 − ξ̃) =
(

1
f ′(I) + 1

g′(I)

)
I=I(ξ0,ξ1)

=
(
f ′(I) + g′(I)
f ′(I)g′(I)

)
I=I(ξ0,ξ1)

which is zero if and only if ξ1 − ξ0 ∈ (f + g)(Ī).

Proposition 2.3.7. For every (ξ0, I0) ∈ R/2πZ ×
(
I\Ī

)
the first return map F0

1. is area-preserving;

2. satisfies the twist condition
∂ξ1

∂I0
(ξ0, I0) ̸= 0.

Proof. The area-preserving property of F0 is a direct consequence of the variational
formulation of the problem: when ξ̃ is well defined, we have (expressing ξ1 = ξ1(ξ0, I0))

∂ξ0ξ1 = − ∂2
aS0(ξ0, ξ1)

∂abS0(ξ0, ξ1)
, ∂I0ξ1 = − 1

∂abS0(ξ0, ξ1)

∂ξ0I1 = ∂abS0(ξ0, ξ1) − ∂2
bS0(ξ0, ξ1)∂2

aS0(ξ0, ξ1)
∂abS0(ξ0, ξ1)

, ∂I0I1 = − ∂2
bS0(ξ0, ξ1)

∂abS0(ξ0, ξ1)
,

where, from (2.3.34),

∂abS(ξ0, ξ1) = ∂ξ0ξ1S(ξ0, ξ1) = ∂abSI(ξ̃, ξ1)∂ξ0 ξ̃ = − g̃′(ξ1 − ξ̃)f̃ ′(ξ̃ − ξ0)
f̃ ′(ξ̃ − ξ0) + g̃′(ξ1 − ξ̃)

is well defined and different from zero for every (ξ0, I0) ∈ R/2πZ × I\Ī. Whenever F0
is well defined, the determinant of its Jacobian matrix is

det
(
D(ξ0,I0)F0

)
= ∂ξ0ξ1∂I0I1 − ∂I0ξ1∂ξ0I1 = 1,
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thus F0 is area-preserving.
As for the twist condition, we have ∂I0ξ1 = f ′(I0) + g′(I0), which is nonzero whenever
I0 /∈ Ī.

Summarizing the previous results, we can then conclude that the set I\Ī is the finite
union of open intervals (at most eleven, but possibly the whole (−Ic, Ic) if Ī = ∅2), in
which F0 is well defined, area-preserving and satisfies the twist condition with constant
sign.

Remark 2.3.8. Locally around ±Ic and 0 the sign of ∂I0ξ1 can be easily determined
as a function of the physical parameters E , ω, h, µ: as a matter of fact, one has

lim
I→I−

c

∂I0ξ1 = lim
I→−I+

c

∂I0ξ1 = +∞

and

∂I0ξ1(ξ0, 0) =
2
√

E − ω2

2
E

− 4
√

E + h+ µ

µ
,

then, for every E > ω2, h > 0, µ > 0

• ∃Ī ∈ (0, Ic) such that for every I ∈ I with |I| > Ī it results ∂I0ξ1 > 0;

• if
2
√

E − ω2

2
E

>
4
√

E + h+ µ

µ
(resp.

2
√

E − ω2

2
E

<
4
√

E + h+ µ

µ
), ∃ ¯̄I ∈ (0, Ic)

such that for every I ∈ (−Ic, Ic) with |I| < ¯̄I one has ∂I0ξ1 > 0 (resp. ∂I0ξ1 > 0);

• additionally, if
2
√

E − ω2/2
E

<
4
√

E + h+ µ

µ
, the derivative ∂I0ξ1 admits at least

a change of sign, which corresponds to a change of twist for the map F0.

2.3.4 Periodic solutions on the circle

Once the general properties of F0 on the circle are defined, we can pass to the study of
its orbits. To this end, given (ξ0, I0) ∈ R/2πZ × I\Ĩ, let us define the orbit of (ξ0, I0)
as the sequence of the iterates {(ξk, Ik)}k∈Z = {Fk

0 (ξ0, I0)}|k∈Z .

Definition 2.3.9. The rotation number3 associated to (ξ0, I0) through F0 is given by

ρ(ξ0, I0) = lim
k→∞

ξk − ξ0

k
. (2.3.36)

In the circular case, one can easily see that for every (ξ0, I0) for which F0 is well
defined one has ρ(ξ0, I0) = θ̄(I0).

2Numerical investigations shows that this case is consistent, in the sense that there are values of the
parameters E , h, µ and ω such that the sign of f ′ + g′ is constant (for example E = 2.5, ω = 2, µ = 2
and h = 2).

3With an abuse of notation, in Section 2.4.2 we will use the same definition to identify the rotation
number of the lift of a map of the annulus R/2πZ × [a, b], that is, its periodic extension to R × [a, b].
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As the action I0 is preserved on the circle, we have that, taking into account the phase
space (ξ, I) ∈ R/2πZ × I, the straight lines R/2πZ × {I0} are invariant for the dynamics
induced by F0. We can then distinguish between two types of orbits:

• if θ̄(I0)/2π = p/q ∈ Q, then

(ξq, Iq) = (ξ0 + 2πp, I0) ≡2π (ξ0, I0);

in this case, we say that the point (ξ0, I0) and the associated orbit are
(p,q)-periodic;

• if θ̄(I0)/2π /∈ Q, then for all ξ0 ∈ R/2πZ the orbit with initial point (ξ0, I0) is
dense in R/2πZ × {I0}.

A particular class of fixed points for F0 is given by the ejection-collision solutions, which
form an invariant line of periodic points of period one defined on R/2πZ × {0}. Taking
advantage of the continuity of the function f + g on I, one can state the following
existence result.

Proposition 2.3.10. Given C = θ̄ − π, where θ̄, as in (2.3.33), depends only on the
physical parameters E , h, µ, ω, for every ρ ∈ (−C,C) there are two values I± ∈ (−Ic, Ic)
of the actions such that, for every ξ0 ∈ R/2πZ, ρ(ξ0, I

±
0 ) = ρ.

In particular, for every p, q ∈ Z such that −C < 2πp/q < C, there are I(p,q)
± ∈ (−Ic, Ic)

such that for every ξ0 ∈ R/2πZ the points (ξ0, I
(p,q)
+ ) and (ξ0, I

(p,q)
− ) are (p, q)-periodic.

In the circular case, the existence of two orbits of all the rotation numbers is a
simple consequence of the continuity of the total shift function. As it will be analysed
in Section 2.4, a deformation of the boundary ∂D0 breaks the symmetry of the system:
in general, the first return map will be not integrable anymore and more sophisticated
tools should be used to retrieve, at least partially, analogous existence results. In this
framework, the persistence of the twist condition under small perturbations of the
boundary will play a crucial role, and this is the reason why, although not immediately
used, this nondegeneracy condition has been investigated in the circular case.

Under particular assumptions on the physical parameters, one can prove the exis-
tence of a second type of fixed points different from the ones which correspond to the
ejection-collision solutions:

Proposition 2.3.11. Fixed E > ω2 > 0, let us define

µ̄ =
4E +

√
8E3(4E − ω2)

2E − ω2 > 2E − ω2, h̄ = 2E − ω2

8E2 µ2 − (E + µ).

If (µ > µ̄ ∧ h > h̄) or (2E − ω2 < µ ≤ µ̄ ∧ h > 0) there is Ī(1) ∈ (0, Ic) such that for
every ξ0 ∈ R/2πZ the points (ξ0, Ī

(1)) and (ξ0,−Ī(1)) are non-homothetic fixed points of
F .
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2

Fig. 2.6 Examples of periodic and non-periodic orbits on the circle in the phase space
(ξ, I) ∈ R/2πZ × I.

Proof. Recalling that f(0) + g(0) = 0, lim
I→I−

c

f(I) + g(I) = θ̄ + π and Eq.(2.3.35), from
direct computations one has that

• fixed E > ω2 > 0 and µ > 0,

f ′(0) + g′(0) < 0 ⇐⇒ h > h̄;

• fixed E > ω2 > 0,

h̄ > 0 ⇔ µ > µ̄ and θ̄ + π > 0 ⇔ µ > 2E − ω2.

If (µ > µ̄ ∧ h > h̄) or (2E −ω2 < µ ≤ µ̄ ∧ h > 0), we have then that f ′(0) + g′(0) < 0
and lim

I→I−
c

f(I) + g(I) > 0: as a consequence, there exists Ī(1) > 0 such that

f(Ī(1)) + g(Ī(1)) = 0 = f(−Ī(1)) + g(−Ī(1)), and then for every ξ0 ∈ R/2πZ, (ξ0,±Ī(1))
are fixed points of F . Given that Ī(1) ̸= 0, these points are not homothetic (see Figure
2.7).

2.3.5 Caustics for the unperturbed case

A question of great interest in the study of billiards is the one of caustics, which plays
a key role in the determining the regions of the plane where the orbits can access. A
caustic is a smooth closed curve Γ such that every trajectory which is tangent to Γ in a
point remains tangent to the latter after every passage in and out the domain D. The
issue of the existence of caustics in standard billiards ([27, 17]) and its variants ([15])
has been widely studied; in particular, in the framework of a standard convex billiard
D, Lazutkin used the KAM approach to prove that, if ∂D is sufficiently smooth (of
class C553 in the original paper [27], later improved to C6 by Douady in [28]), then
there exists a discontinuous family of caustics in a small neighbourhood of ∂D.
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Fig. 2.7 Example of a non-homothetic fixed point for F , with E = 7, ω2 = 3, h = 2, µ = 15.
In this case, with reference to Proposition 2.3.11, µ̄ = 41.6287.

The aim of this Section is to extend the concept of caustic to our refractive model in
the circular case: in view of the presence of two distinct dynamics inside and outside
the domain D, one shall search for two of such curves, which can be studied separately.
Moreover, by the central symmetry typical of the circular case, it is reasonable to
foresee that the inner and outer caustics are circles of suitable radii depending on the
action I0.

Theorem 2.3.12. For every E , h, ω, µ > 0, E > ω2, given I0 ∈ (−Ic, Ic):

• the exterior caustic ΓE(ζ; I0) is given by the locus of the apocenters of the outer
ellipses, namely,

ΓE : [0, 2π] → R2, ΓE(ζ; I0) = RE(cos ζ, sin ζ),

RE =

√
E +

√
E2 − 2I2

0ω
2

ω
;

• the interior caustic ΓI(ζ; I0) is the locus of the pericenters of the inner Keplerian
hyperbolæ. In particular,

ΓI : [0, 2π] → R2 ΓI(ζ; I0) = RI(cos ζ, sin ζ),

RI = p

1 + e
,

where

p = 2I2
0
µ
, e =

√√√√1 + 4I2
0 (E + h)
µ2 .

In general, following [17] and [78], one shall give the following characterization
for the caustics: take an orbit for our dynamical system and suppose that one of its
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(interior or exterior) branches is implicitly defined through the relation

G(x, y; ξ) = 0, (2.3.37)

where G : R2 → R is of class C2 in all the variables and ξ acts as a parameter (for
example, it could denote the polar angle of the initial point of the branch, its pericenter
or apocenter). The caustic Γ can be then seen as th envelope of the family of curves
defined by (2.3.37) varying ξ ∈ [0, 2π], that is, the set of points (x0(ξ), y0(ξ)) satisfyingG(x, y; ξ) = 0

∂ξG(x, y; ξ) = 0
. (2.3.38)

By means of the implicit function theorem, it is straightforward that if

∇(x,y)G(x, y; ξ) ∦ ∇(x,y)∂ξG(x, y; ξ) on the solutions of (2.3.38), (2.3.39)

then (2.3.38) defines a regular curve Γ(ξ) = (x0(ξ), y0(ξ)).
The proof of Theorem 2.3.12 relies on the evaluation of (2.3.38) in the particular cases
of the inner and outer dynamics: in the case of circular domains, the solutions of such
system can be computed explicitly.

Outer caustic Given p0 = (px, py) = eiξ0 , v0 = (vx, vy) ∈ R2, ∥v0∥ =
√

2E − ω2, from
the proof of Theorem 2.3.1, one has that the solution of(HSE)[z(s)] s ∈ [0, TE]

z(0) = p0, z
′(0) = v0

(2.3.40)

can be parametrized as

(x(s), y(s)) =
(
px cos(ωs) + vx

ω
sin(ωs), py cos(ωs) + vy

ω
sin(ωs)

)
.

If, as in Section 2.2, α ∈ (−π/2, π/2) denotes the angle between p0 and v0, recalling
the definition of canonical action (2.2.9) one has

v0 =
√

2E − ω2(cosα p0 + sinα t0) =
√

2E − ω2 − 2I2
0 p0 +

√
2I0 t0,

were t0 = ieiξ is the tangent unit vector to ∂D0 in p0. Since in the circular case the
action I0 is constant along the orbits, it can be treated as a parameter in I. Additionally,
consider the non-homothetic case, that is, suppose I0 ̸= 0 (the case I0 = 0 can be easily
analysed separately, leading to the same result).
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Taking the function r2(s) = x2(s) + y2(s), by direct computations one has

a2 = max
s∈[0, 2π

ω ]
r2(s) =

E +
√

E2 − 2I2
0ω

2

ω2 > 0

b2 = min
s∈[0, 2π

ω ]
r2(s) =

E −
√

E2 − 2I2
0ω

2

ω2 > 0.

In the reference frame whose axes coincide with the ellipse’s ones, denoted with
R(O, x′′, y′′), the outer arc can be then implicitly defined as a segment of the conic

GE,0(x′′, y′′) = x′′2

a2 + y′′2

b2 − 1 = 0.

Denoting by ζ the polar angle of one of the apocenter points, all the solutions of (2.3.40)
with ∠(p0, v0) = α are then implicitly defined by

GE(x, y; ζ) = (x cos ζ + y sin ζ)2

a2 + (y cos ζ − x sin ζ)2

b2 − 1 = 0

where ζ ∈ [0, 2π] is treated as a parameter.
As

∂ζGE(x, y; ζ) =

√
E − 2I2

0ω
2

I2
0

(
(x2 − y2) sin(2ζ) − 2xy cos(2ζ)

)
,

the explicit formulation of (2.3.38) for the outer arcs is then, for ζ ̸= k
π

2 , k = 0, 1, 2, 3


(x cos ζ + y sin ζ)2

a2 + (y cos ζ − x sin ζ)2

b2 − 1 = 0√
E2 − 2I2

0ω
2

I2 sin(2ζ) (x+ y cot ζ) (x− y tan ζ) ;
(2.3.41)

note that, in the degenerate cases ζ = k
π

2 , from ∂ζGE(x, y; ζ) = 0 one obtains x = 0 or
y = 0.
The solutions of (2.3.41) are the ellipse’s apocenters and pericenters: since the outer
arc of the considered dynamical systems involves only the first apocenter, the only
admissible solution of (2.3.41) is given by

(x̄(ζ), ȳ(ζ)) =

√
E +

√
E2 − 2I2

0ω
2

ω
(cos ζ, sin ζ) ,

which describes, for ζ ∈ [0, 2π], the caustic ΓE(ζ; I0) as the circle of radius RE of
Theorem 2.3.12.
Although the caustics for the circular domain are completely determined, let us
investigate the nondegeneracy condition (2.3.39), which will be generalized for small
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perturbations of D0 in Section 2.4.3. By direct computations, one has

∇(x,y)GE(x, y; ζ)|(x̄,ȳ) = 2a

√
E2 − 2I2

0ω
2

I2
0

(− cos ζ,− sin ζ) ,

∇(x,y)∂ζGE(x, y; ζ)|(x̄,ȳ) = 2a

√
E2 − 2I2

0ω
2

I2
0

(sin ζ,− cos ζ) ,

leading to
∇(x,y)GE(x, y; ζ)|(x̄,ȳ) ⊥ ∇(x,y)∂ζGE(x, y; ζ)|(x̄,ȳ) . (2.3.42)

Inner caustic Let us now consider the inner problem(HSI)[z(s)] s ∈ [0, TI ]
z(0) = p0, z

′(0) = v0,
(2.3.43)

and denote with α = (π/2, 3π/2) the angle between p0 and v0. Given that

k = ∥p0 ∧ v0∥ = ∥p0∥∥v0∥ sinα =
√

2I0,

one has that the polar equation of the Keplerian inner arc is

r = p

1 + e cos f ,

with

p = 2I2
0
µ
, e =

√
µ2 + 4I2

0 (E + h)
µ

.

Choosing the reference frame R(O, x′′, y′′) where the pericenter is on the positive branch
of the x-axis, the inner Keplerian arc is expressed by

GI(x′′, y′′) = (e2 − 1)x′′2 − y′′2 − 2pex′′ + p2 = 0, x′′ ≤ p

e+ 1 , (2.3.44)

where the inequality condition expresses the choice of the branch of the hyperbola with
the concavity in the direction of the central mass.
As in the outer case, denoting with ζ the polar angle of the pericenter, one has that all
the Keplerian hyperbolæ with central mass µ, energy E + h and angular momentum
k =

√
2I0 are given by

GI(x, y; ζ) = (e2 − 1)(x cos ζ + y sin ζ)2 − (y cos ζ − x sin ζ)2 − 2pe(x cos ζ + y sin ζ) + p2

= 0

along with

x cos ζ + y sin ζ ≤ p

e+ 1 ,
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with ζ ∈ [0, 2π]. The system (2.3.38) in the inner case becomes then(e2 − 1)(x cos ζ + y sin ζ)2 − (y cos ζ − x sin ζ)2 − 2pe(x cos ζ + y sin ζ) + p2 = 0
2e (y cos ζ + x sin ζ) (p− e x cos ζ + e y sin ζ) = 0

(2.3.45)
with the additional condition (x cos ζ + y sin ζ) ≤ p/(1 + e). Problem (2.3.43) admits
the unique solution

(x̄(ζ), ȳ(ζ)) = p

1 + e
(cos ζ, sin ζ)

which corresponds to the position of the pericenter of the corresponding Keplerian arc,
taking ζ as a parameter. The inner caustic ΓI(ζ, I0) is then expressed by a circle with
radius RI as in Theorem 2.3.12.
It is straightforward to verify that the nondegeneracy condition (2.3.39) is verified:
from

∇(x,y)GI(x, y; ζ)|(x̄,ȳ) = −2p(cos ζ, sin ζ), ∇(x,y)∂ζGI(x, y; ζ)|(x̄,ȳ) = 2ep
1 + e

(sin ζ,− cos ζ),

one has
∇(x,y)GI(x, y; ζ)|(x̄,ȳ) ⊥ ∇(x,y)∂ζGI(x, y; ζ)|(x̄,ȳ).

2.4 Perturbations of the circle

Many of the results obtained in the circular case, although significant in themselves,
can be generalized to non-circular smooth domains, provided they are close enough to
D0 in a way which will be specified soon. This extension can be performed by means
of classical perturbation theory, as well as of more sophisticated results such as KAM
and Aubry-Mather theorems (see [25, 22, 77, 24, 23]).
To this end, let us consider a class of domains Dε whose boundary ∂Dε = γϵ

(
R/2πZ

)
is

given by a radial deformation of the circle of the form

γϵ : R/2πZ → R2 γϵ(ξ) = (1 + εf(ξ; ε)) eiξ, (2.4.1)

where f(ξ; ε) is a smooth function of R/2πZ × [−Cε, Cε], with Cε > 0 arbitrarily large;
note that, from the choice of the parametrization of γϵ, the variable ξ still represents
the polar angle of ξ.
This section aims to analyze the generating function Sε, with particular emphasis to
its good definition and nondegeneracy properties, and the associated first return map
Fε, whose orbits, when possible, will be studied in terms of their rotation numbers.
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2.4.1 Global existence of the outer and inner arcs for the
perturbed dynamics

As for the circular case (see Section 2.3.1), the generating function associated to the
so-called perturbed dynamics, that is, the dynamics induced by the potential (1.1.1)
inside and outside the perturbed domain Dε, is given by

S(ξ0, ξ1; ε) = dE(γϵ(ξ0), γϵ(ξ̃)) + dI(γϵ(ξ̃), γϵ(ξ1)),

where γϵ(ξ̃) is the passage point of zEI(s), as defined in Section 1.4, through ∂Dε.
A preliminary passage to discuss the good definition of Sε as a whole is to ensure that
the functions dE(p0, p1) and dI(p0, p1) are differentiable as functions of p0, p1 ∈ ∂Dε,
namely, that the inner and outer dynamics admit a unique geodesic arc joining p0 and
p1.
In view of the results of Section 2.3.1, this follows from the continuous dependence of
the solutions of the fixed ends problems (2.3.1) and (2.3.13) with respect to p0 and p1.
To fix the notation, let us denote with zE\I(s; p0, p1; 0) the respective solutions in the
unperturbed circular case, where the last variable refers to ε = 0.

Remark 2.4.1. Focusing on the outer problem, from the continuous dependence on
p0 and p1 of the solution zE(s; p0, p1; 0) defined in Theorem 2.3.1, along with the
invariance of the system under rotations, there exists ρE > 0 such that for every
p0, p1, p̃0, p̃1 satisfying ∥p0 − p1∥ < 2 and ∥p̃0 − p0∥, ∥p̃1 − p1∥ < ρE one finds T > 0
and a unique solution zE(s; p̃0, p̃1) of the problem(HSE)[z(s)] s ∈ [0, T ]

z(0) = p̃0, z(T ) = p̃1.
(2.4.2)

For computational reasons, we require ρE < 1, ad set

SρE
=

⋃
p0∈∂D0

BρE
(p0) = {p ∈ R2 | dist(p, ∂D0) < ρE}. (2.4.3)

Proposition 2.4.2. There exists δ > 0 such that for every
p̃0, p̃1 ∈ SρE

with ∥p̃0 − p̃1∥ < δ there is T > 0 and a unique zE(s; p̃0, p̃1) solution of
the fixed-end problem (HSE)[z(s)] s ∈ [0, T ]

z(0) = p̃0, z(T ) = p̃1.
(2.4.4)

Proof. It is sufficient to set δ < 2(1 − ρE). Denoting in polar coordinates p̃0 = r0e
iθ0

and p̃1 = r1e
iθ1 , consider p0 = eiθ0 and p1 = eiθ1 : we have then ∥p̃0 −p0∥, ∥p̃1 −p1∥ < ρE,

and
∥p0 − p1∥ ≤ ∥p̃0 − p0∥ + ∥p̃0 − p̃1∥ + ∥p̃1 − p1∥ < δ + 2ρE < 2, (2.4.5)

then, by Remark 2.4.1, the thesis is proved.
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Theorem 2.4.3. There are δ̄E > 0, ϵ̄E > 0 such that for every ε ∈ R and for every
ξ0, ξ1 ∈ R/2πZ with |ξ0 − ξ1| < δ̄E and |ε| < ε̄E there is T > 0 and a unique function
zE(s; γϵ(ξ0), γϵ(ξ1)) ≡ zE(s; ξ0, ξ1; ε) which is a classical solution of(HSE)[z(s)] s ∈ [0, T ]

z(0) = γϵ(ξ0), z(T ) = γϵ(ξ1).
(2.4.6)

Proof. The claim is true if δ̄E < δ/2 and ϵ̄E < min{1/ (∥f∥∞ + ∥∂ξf∥∞) , ρE/∥f∥∞}.
For, fixed ε ∈ R such that |ε| < ε̄E, one has that for every ξ ∈ R/2πZ

∥γ̇ε(ξ)∥ = |ε∂ξf(ξ, ε)eiξ + (1 + εf(ξ, ε)) ieiξ| ≤ 1 + |ε| (∥∂ξf∥∞ + ∥f∥∞) < 2.

If ξ0, ξ1 ∈ R/2πZ are such that |ξ0 − ξ1| < δ̄E < δ/2, defining p̃0 = γϵ(ξ0), p̃1 = γϵ(ξ1),
p0 = eiξ0 and p1 = eiξ1 :

∥p̃0 − p0∥ = |ϵ| |f(ξ0)| ≤ |ϵ| ∥f∥∞ < ρE,

∥p̃1 − p1∥ < ρE,

∥p̃0 − p̃1∥ < ∥γ̇ε∥∞|ξ0 − ξ1| < 2|ξ0 − ξ1| < δ,

(2.4.7)

then the hypotheses of Proposition 2.4.2 hold and the claim is true.

We stress that Theorem 2.4.3 can be proved exactly as in its general analogous in
Section 2.2.2 as well. Nevertheless, relying again on the properties of the map on the
circle, with the proof proposed we obtained more precise estimates on the quantities
δ̄E and ϵ̄E, including their relation with the perturbing function f .

Passing to the inner dynamics, let us recall that, by the choice of the parametrization
of γϵ, the parameter ξ still represents the polar angle of the corresponding point γϵ (ξ).
This means that if we want two endpoints γϵ (ξ1) and γϵ (ξ2) such that they are not
antipodal, it is sufficient to require that they are sufficiently close to each others.

Theorem 2.4.4. There exist ε̄I > 0, δ̄I > 0 and C > 0 such that for every ε ∈ R,
ξ0, ξ1 ∈ R/2πZ satisfying |ξ0 − ξ0| < δ̄I and |ε| < ε̄I there exists a unique
T (ξ0, ξ1) ≡ T > 0 and a unique solution zI(s; ξ0, ξ1; ε) of

(HSI)[z(s)] s ∈ [0, T ]
z(s) ∈ Dε s ∈ (0, T )
z(0) = γϵ(ξ0), z(T ) = γϵ(ξ1)

(2.4.8)

with the following properties:

• if ξ0 ̸= ξ1, then z(s; ξ0, ξ1; ε) is a classical solution of (2.4.8) which satisfies the
(TnT) topological condition;

• if ξ0 = ξ1, z(s; ξ0, ξ0; ε) is an ejection-collision solution.
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In any case, z(s; ξ0, ξ1; ε) is of class C1 with respect to variations of ξ0 and ξ1 and, if
we define

β0 = ∠(γ̇ϵ(ξ0), z′(0; ξ0, ξ1; ε)), β1 = ∠(γ̇ϵ(ξ1), z′(T ; ξ0, ξ1; ε)), (2.4.9)

one has that |β0| > C̄ and |β1| > C̄ for some C̄ > 0.

Proof. Given p̃0
.= γϵ(ξ0) and p̃1

.= γϵ(ξ1), the existence of a unique (TnT) solution of(HSI)[z(s)] s ∈ [0, T ]
z(0) = p̃0, z(T ) = p̃1

is guaranteed by Theorem 2.2.3 as long as |ξ0 − ξ1| < π. Moreover, from the regularity
of γϵ with respect to ξ and of z(s; p̃0, p̃1) with respect to the endpoints, we have that
z(s; ξ0, ξ1; ε) is of class C1 in the variables ξ0 and ξ1.
To prove the transversality properties of zI(s; ξ0, ξ1; ε), let us observe that by Theorem
2.3.2 and the differentiability of z(s) ≡ z(s; ξ0, ξ1; ε), as well as by the invariance under
rotations of the system, if ϵ is small enough (let us say, |ϵ| < ϵ1 for a certain ϵ1 > 0)
there is C1 > 0, possibly lower than C, such that for every ξ0, ξ1 satisfying the existence
hypotheses, defined p̃0 and p̃1 as above, one has

1 ≥ − p̃0

|p̃0|
· z′(0)

|z′(0)| > C1, 1 ≥ p̃1

|p̃1|
· z′(T )

|z′(T )| > C1. (2.4.10)

Let us now consider α1 = ∠(p̃1, z
′(T )) (if α0 = ∠(−p̃0, z

′(0)) we proceed anal-
ogously): setting C2 = arccos(C1) ∈ (0, π/2), we have |α1| < C2, and, taking
β1 = ∠(γ̇ϵ(ξ1), z′(T )), one has

β1 = ∠(γ̇ϵ(ξ1), p̃⊥
1 ) + ∠(p̃⊥

1 , z
′(T )), (2.4.11)

where p̃⊥
1 = ip̃1. Then we have that

|β1| ≥
∣∣∣∣∠(p̃⊥

1 , z
′(T ))

∣∣∣∣− ∣∣∣∣∠(γ̇ϵ(ξ1), p̃⊥
1 )
∣∣∣∣,∣∣∣∣∠(p̃⊥

1 , z
′(T ))

∣∣∣∣ > π

2 − C2 ≡ C3 ∈
(

0, π2

)
.

(2.4.12)

To estimate ∠(γ̇ϵ(ξ1), p̃⊥
1 ), let us observe that

∣∣∣ sin (∠(γ̇ϵ(ξ1), p̃⊥
1 )
) ∣∣∣ = ∥γ̇ϵ(ξ1) ∧ p̃⊥

1 ∥
∥γ̇ϵ(ξ1)∥∥p̃⊥

1 ∥
, (2.4.13)

where p̃⊥
1 /∥p̃⊥

1 ∥ = ieiξ1 and γ̇ϵ(ξ1) = ε∂ξf(ξ1, ε)eiξ1 + (1 + εf(ξ1, ε))ieiξ1 .

If |ε| < ε′
1
.=
{
ϵ1,

1
2∥f∥∞

}
:

∥γ̇ϵ(ξ1)∥ =
√

(ε∂ξf(ξ1, ε))2 + (1 + εf(ξ1, ε))2 ≥ 1 − |ε| ∥f∥∞ >
1
2

⇒
∣∣∣ sin (∠(γ̇ϵ(ξ1), p̃⊥

1 )
) ∣∣∣ = |ε| |∂ξf(ξ1, ε)|

∥γ̇ϵ(ξ1)∥
< 2|ε||∂ξf(ξ1, ε)|.

(2.4.14)
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If we consider C4 > 0 with 0 < arcsin(C4) < C3, setting ε < min
{
ε′

1,
C4

2∥∂ξf∥∞

}
= ε̄I :

∣∣∣ sin (∠(γ̇ϵ(ξ1), p̃⊥
1 )
) ∣∣∣ < C4 ⇒ |β1| > C3 − arcsin (C4) ≡ C̄ > 0. (2.4.15)

Recalling the definitions which lead to ε̄ and C̄, it is clear that they do not depend on
ξ0 nor ξ1.
Finally, the condition z(s) ∈ Dε for s ∈ (0, T ) follows from the smallness of ε (possibly
reducing ϵ̄I) and the transversality of z(s) with respect to the perturbed domain
∂Dε, which ensures that z(s) do not intersect twice the domain’s boundary in a
neighbourhood of z(T ).

Remark 2.4.5. Using the same transversality argument described in details for the
inner dynamics, one can prove that, if ε is small enough and ξ0, ξ1 sufficiently close,
the solution zE(s; ξ0, ξ1; ε) of (2.4.6), whose existence is ensured by Theorem 2.4.3, is
such that zE(s; ξ0, ξ1; ε) /∈ D̄ε for s ∈ (0, T ).

2.4.2 Invariant sets for Fε

The good definition of the distances dE(p0, p1) and dI(p0, p1) for p0, p1 ∈ ∂Dε allows to
consider the associated generating function

S(ξ0, ξ1; ε) = SE(ξ0, ξ̃; ε) + SI(ξ̃, ξ1; ε) = dE(γϵ(ξ0), γϵ(ξ̃)) + dI(γϵ(ξ̃), γϵ(ξ1)). (2.4.16)

When well defined, S(ξ0, ξ1; ε) has the same regularity of f(ξ, ε) as a function of both
the angle variables ξ0, ξ1 and the perturbative parameter ε.
This section aims to prove that, under suitable assumptions, the results proved for the
circle regarding the twist condition and the existence of invariant sets with prescribed
rotation numbers (see Section 2.3.4) can be extended to the perturbed dynamics as
described in (2.4.1).
Recalling the notation of Section 2.3, Ī is the finite set in I = (−Ic, Ic) for which F0 is
not well defined, with Ic =

√
E − ω2/2. To highlight the dependence on ε, from now

on we will use the notation F0(ξ0, I0) ≡ F(ξ0, I0; 0).

Proposition 2.4.6. Let [a, b] ⊂ I\Ī, and suppose that, in (2.4.1), f ∈ Ck
(
R/2πZ × I

)
with k ≥ 2. Then there exists ε̄ > 0 such that for every ε ∈ R, |ε| < ε̄, the perturbed
first return map

F(ξ0, I0; ε) = (ξ1 (ξ0, I0; ε) , I1 (ξ0, I0; ε))
is well defined and of class Ck−2(R/2πZ × [a, b]). Moreover, F(·, ·, ε) is area-preserving
and twist.

Proof. Let us consider [a, b] ⊂ I\Ī, and, with reference to (2.3.32), define

K =
{
(ξ0, ξ0 + θ̄(I0)) | ξ0 ∈ R/2πZ, I0 ∈ [a, b]

}
:
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in view of Propositions 2.3.6 and 2.3.7, the generating function S(ξ0, ξ1; 0) is well
defined and infinitely many differentiable in K, and the same holds for F(ξ0, I0; 0)
in R/2πZ × [a, b]. Moreover, K is a compact subset of the torus R/2πZ × R/2πZ. In
particular, one has that the quantity

∂2
bSE(ξ0, ξ̃(ξ0, ξ1; 0); 0) + ∂2

aSI(ξ̃(ξ0, ξ1; 0), ξ1; 0), (2.4.17)

with ξ̃(ξ0, ξ1; 0) such that ∂bSE(ξ0, ξ̃(ξ0, ξ1; 0); 0)+∂aSI(ξ̃(ξ0, ξ1; 0), ξ1; 0) = 0, is different
from 0 and has always the same sign for (ξ0, ξ1) ∈ K.
Let us now fix (ξ̄0, ξ̄1) ∈ K: by the implicit function theorem, there are two neighbour-
hoods Aξ̄0 , Aξ̄1 respectively of ξ̄0 and ξ̄1, a quantity ε̄(ξ̄0, ξ̄1) > 0 and a unique function
ξ̃(ξ0, ξ1; ε), defined in Aξ̄0 × Aξ̄1 × [−ε̄(ξ̄0, ξ̄1), ε̄(ξ̄0, ξ̄1)], such that the refraction law

∂bSE(ξ0, ξ̃(ξ0, ξ1; ε); ε) + ∂aSI(ξ̃(ξ0, ξ1; ε), ξ1; ε) = 0

holds also in the perturbed case. Moreover, the function ξ̃ is of class Ck−1 in all its
variables. As a consequence, the generating function S(ξ0, ξ1; ε) is well defined in
Aξ̄0 × Aξ̄1 × [−ε̄(ξ̄0, ξ̄1), ε̄(ξ̄0, ξ̄1)]. Varying (ξ̄0, ξ̄1) ∈ K, the family{

Aξ̄0 × Aξ̄1 | (ξ̄0, ξ̄1) ∈ K
}

is a covering of K such that, if (Aξ̄0 ×Aξ̄1) ∩ (Aξ̄′
0

×Aξ̄′
1
) ̸= ∅, then ξ̃(ξ0, ξ1; ε) coincide

in the intersection. Since K is compact, there exists a finite sequence (ξ̄(i)
0 , ξ̄

(i)
1 )N

i=1 such
that

K ⊂
N⋃

i=1
A

ξ̄
(i)
0

× A
ξ̄

(i)
1
.

Setting ε̄′ = min
i=1,...,N

ε̄(ξ̄(i)
0 , ξ̄

(i)
1 ), one has that for every (ξ0, ξ1) ∈ K and every ε ∈ R

such that |ε| < ε̄′, the perturbed generating function S(ξ0, ξ1; ε) is well defined and of
class Ck−1. In such set one can define the canonical actions

I0(ξ0, ξ1; ε) = −∂ξ0S(ξ0, ξ1; ε), I1(ξ0, ξ1; ε) = ∂ξ1S(ξ0, ξ1; ε),

and, by the definition of K, one has that for every (ξ0, ξ1) ∈ K, I0(ξ0, ξ1; 0) ∈ [a, b].
Fixing ξ̄0 ∈ R/2πZ and Ī0 ∈ [a, b], set ξ̄1 = ξ1(ξ̄0, Ī0; 0): from the proof of Proposition
2.3.7, one has that ∂ξ1

(
Ī0 + ∂ξ0S(ξ̄0, ξ̄1; 0)

)
≠ 0, and then, varying (ξ̄0, Ī0) in the

compact rectangle [0, 2π] × [a, b], one can apply the same reasoning used before to
find 0 < ε̄ < ε̄′ such that for every ξ0 ∈ [0, 2π], I0 ∈ [a, b] and |ε| < ε̄ the function
ξ1(ξ0, I0; ε) is well defined and of class Ck−2. Extending ξ1(ξ0, I0; ε) by periodicity for
ξ0 ∈ R/2πZ, one has then that, for every ε > 0, |ε| < ε̄, the perturbed first return map

F(ξ0, I0; ε) = (ξ1(ξ0, I0; ε), I1 (ξ0, I0; ε)) ,

where I1(ξ0, I0; ε) = I1(ξ0, ξ1(ξ0, I0; ε); ε), satisfies the claim in terms of good definition
and regularity. The area-preserving property is a straightforward consequence of the
existence of the perturbed generating function, while the twist property depends on
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the existence of ξ1(ξ0, ξ1; ε), since

∂ξ1

∂I0
=
(
∂I0

∂ξ1

)−1

= − 1
∂ξ0ξ1S(ξ0, ξ1; ε)

.

Remark 2.4.7. Proposition 2.4.6 remains valid if we ask weaker regularity hypotheses
on f(ξ, ε). In particular, if f is of class Ck in ξ and is continuous, along with all its k
ξ−derivatives, in ε, one can find ε̄ > 0 such that, for |ε| < ε̄, the map F(ξ0, I0; ε) is of
class Ck−2 in R/2πZ × [a, b] and continuous in ε, and the same holds for all its k − 2
derivatives.

The map F(ξ0, I0; ε), whose existence under suitable conditions and for subsets of
R/2πZ × I is ensured by Proposition 2.4.6, can be expressed in the form

F(ξ0, I0; ε) =

ξ1 = ξ0 + θ̄(I0) + F (ξ0, I0; ε)
I1 = I0 +G(ξ0, I0; ε)

(2.4.18)

where F and G are of class Ck−2 in all the variables and

∥F∥Ck−2
ε→0−−→ 0, ∥G∥Ck−2

ε→0−−→ 0.

We can now prove the existence of particular orbits with prescribed rotation number
for Fε. We will make use of KAM Theorem in the finitely differentiable version of Moser
(cfr [22]); before stating the Theorem, let us now give some preliminary definitions.

Definitions 2.4.8. Let s ≥ 1 and f(ξ, I) of class Cs in R/2πZ × [a, b]. The s-th
derivative norm of f is given by

|f |s = sup
∣∣∣∣∣∣
(
∂

∂I

)m1 ( ∂

∂ξ

)m2

f(ξ, I)
∣∣∣∣∣∣, m1 +m2 ≤ s.

Let us now consider F(ξ0, I0) = (ξ1(ξ0, I0), I1(ξ0, I0)) a given map on the annulus
R/2πZ × [a, b]. We say that F has the intersection property if for any closed curve α
near the circle, that is, of the form

α(ξ1) = (ξ1, f(ξ1))

where f is 2π−periodic and with f ′ small, one has

supp(α) ∩ supp (F(α)) ̸= ∅.

If F exact symplectic, the intersection property is straightforwardly verified (see [25,
Chapter 1]).
Finally, given σ > 0, define

D(σ) =
{
ω ∈ R | ∀n,m ∈ Z, n > 0, |nω −m2π| ≥ σn−3/2

}
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the set of Diophantine numbers with respect to the constant σ/2π and the exponent 5/2.
According to [25], given

D =
⋃

σ>0
D(σ),

one has that D is dense in [0, 1], and by extension in every closed interval of R. As a
consequence, for every [c, d] ⊂ R and every ρ ∈ (c, d) ∩ D there exists σρ > 0 such that

∀σ < σρ ρ ∈ (c+ σ, d− σ) ∩D(σ).

Theorem 2.4.9. (KAM Theorem, [22]) Let a, b ∈ R such that 0 < a < b and b−a ≥ 1,
and let

F0(ξ0, I0) =
ξ1 = ξ0 + θ̄(I0)
I1 = I0

be a map on the annulus R/2πZ × [a, b]; suppose that there is c0 ≥ 1 such that

c−1
0 ≤ ∂θ̄

∂I0
(I0) ≤ c0.

Moreover, let

F(ξ0, I0) =
ξ1 = ξ0 + θ̄(I0) + F (ξ0, I0)
I1 = I0 +G(ξ0, I0)

a perturbation of F0 that satisfies the intersection property.
Fixed σ > 0 and s ≥ 1, there are δ0 = δ0(c0, σ, s) > 0 and an integer l = l(s) > 0 such
that, if

1. |F |0 + |G|0 < δ0,

2. F and G are of class C l(R/2πZ × [a, b]) and |θ̄|l + |F |l + |G|l < c0,

then F admits a closed invariant curveξ = u+ p(u)
I = Ī + q(u),

(2.4.19)

with Ī ∈ [a, b], which induces a mapping

u1 = u0 + θ̄(Ī) (2.4.20)

and such that p and q are 2π−periodic functions in the parameter u with s continuous
derivatives and

|p|s + |q|s < σ. (2.4.21)

Moreover, for every ω ∈
(
θ̄(a) + σ, θ̄(b) − σ

)
∩ D(σ) there exists an invariant curve of

the form (2.4.19) with rotation number θ̄(Ī) = ω.

Remark 2.4.10. The rotation number of the invariant curve (2.4.19) can be derived
from the mapping (2.4.20) as follows: let us take u0 ∈ R and consider the sequence
{un}n∈N produced by (2.4.20), which is trivially given by un = u0 + nθ̄(Ī). The orbit of
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F generated by (2.4.20) and lying in the invariant curve (2.4.19) is then {(ξn, In)}n∈N,
with ξn = u0 + nθ̄(Ī) + p

(
u0 + nθ̄(Ī)

)
In = Ī + q

(
u0 + nθ̄(Ī)

)
.

(2.4.22)

From the definition (2.3.36) and given that p is bounded, one can easily compute the
rotation number associated to the initial condition (ξ0, I0) = (ξ(u0), I(u0)) through the
map F as

ρ(ξ0, I0) = lim
n→∞

ξn − ξ0

n
= lim

n→∞
θ̄(Ī) + p(u0 + nθ̄(Ī)) − p(u0)

n
= θ̄(Ī).

Remark 2.4.11. Although in the original paper [22] for s = 1 the minimal number
of continuous derivatives required for the application of Theorem (2.4.9) is l = 333,
Rüssman and Hermann reduced this number to l = 5 and then to l > 3 (see [79] and
[80]). Here, the authors require a more restrictive Diophantine hypothesis, requiring
that the rotation numbers belong to the set

D̃2 =
⋃

σ>0
D2(σ) =

⋃
σ>0

{
ω ∈ R | ∀n,m ∈ Z, n > 0,

∣∣∣∣ ω2π − m

n

∣∣∣∣∣ ≥ σ

n2

}
.

On the other hand, it is a known fact that D̃2 enjoys the same density properties already
claimed for D. For this reason, and in view of Proposition 2.4.6, we require the normal
perturbation f(ξ, ε) to be of class Ck

(
R/2πZ × [−ε̄, ε̄]

)
, with k > 5: as a consequence,

F(ξ0, I0; ε) ∈ Ck′ (R/2πZ × [a, b] × [−ε̄, ε̄]
)
, with k′ > 3, and the invariant curves, if

existing, are of class C1(R/2πZ).

Theorem 2.4.12. Let us suppose that θ̄′(I0) > 0 in [a, b], and take
ρ0, ρ1 ∈

(
θ̄(a), θ̄(b)

)
∩ D̃2. Then there exists ε̄ρ0ρ1 such that for every ε ∈ R, |ε| < ε̄ρ0ρ1

the map F(ξ0, I0; ε) defined in (2.4.18) admits two closed invariant curves of class C1

with rotation numbers ρ0 and ρ1.

Proof. To verify the hypotheses of Theorem 2.4.9, let us choose C > (b− a)−1 such
that ρ′

0 = ρ0/C, ρ
′
1 = ρ1/C ∈ D (such C exists for the density of D̃2 in R), and consider

the canonical change of coordinates{
ξ′ = ξ

C
, I ′ = C I.

Expressing F0 and Fε in the new variables, one obtains the rescaled problem

F̃0(ξ′
0, I

′
0) =

ξ
′
1 = ξ′

0 + Θ(I ′
0)

I ′
1 = I ′

0
F̃(ξ′

0, I
′
0; ε) =

ξ
′
1 = ξ′

0 + Θ(I ′
0) + F̃ (ξ′

0, I
′
0; ε)

I ′
1 = I ′

0 + G̃(ξ′
0, I

′
0; ε),
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where I ′ = CI ∈ [a′, b′] = C[a, b], b′ − a′ > 1, and

Θ(I ′
0) =

θ̄
(

I′
0

C

)
C

= θ̄(I0)
C

, F̃ (ξ′
0, I

′
0; ε) = 1

C
F

(
Cξ′

0,
I ′

0
C

; ε
)

= 1
C
F (ξ0, I0; ε),

G̃(ξ′
0, I

′
0; ε) = C G

(
Cξ′

0,
I ′

0
C

; ε
)

= C G(ξ0, I0; ε)

are defined for ξ′
0 ∈ R/2πZ, I ′

0 ∈ [a′, b′] and |ε| < ε̄ (see Proposition 2.4.6). Note that
the monotonicity and convergence properties

∂I′
0
Θ (I ′

0) > 0, ∥F̃∥Ck−2
ε→0−−→ 0, ∥G̃∥Ck−2

ε→0−−→ 0 (2.4.23)

hold also for the rescaled map, as well as the area-preserving property. Moreover,
as Θ(a′) = θ̄(a)/C and Θ(b′) = θ̄(b)/C, one finds σ > 0 such that
ρ′

0, ρ
′
1 ∈ (Θ(a′) + σ,Θ(b′) − σ) ∩ D̃2(σ).

Since F̃ is exact symplectic, it satisfies the intersection property, and, given that
Θ ∈ C1([a′, b′]), there is c0 > 1 such that

∀I ′
0 ∈ [a′, b′] c−1

0 ≤ Θ′(I ′
0) ≤ c0.

Fixed s = 1, let us consider l = l(s) as in Theorem 2.4.9, and, eventually taking a
higher c0, suppose c0 > |Θ|l. By Theorem 2.4.9, there exists δ0 = δ0(c0, σ, s) > 0 such
that, if (1) and (2) hold for F̃ , then the existence of the two invariant orbits for the
rescaled problem is ensured. From (2.4.23), one can choose 0 < ε̄ρ0ρ1 < ε̄, such that for
every ε ∈ [−ε̄ρ0ρ1 , ε̄ρ0ρ1 ]

|F̃ |0 + |G̃|0 < δ0 and |F̃ |l + |G̃|l < c0 − |Θ|l,

then the hypotheses of Theorem 2.4.9 hold and the invariant curves obtained for F̃
can be reparametrized to be invariant curves for F . In particular, such curves have
rotation number ρ0 and ρ1: for example, let us consider the invariant curve for the
rescaled problem with rotation number ρ′

0, which, in view of Theorem 2.4.9, can be
expressed asξ

′
0 = u′ + p̃(u′)
I ′

0 = Ī ′ + q̃(u′)
with mapping u′

1 = u′
0 + Θ(Ī ′) = u′

0 + ρ′
0.

Returning to the original coordinates and setting u = C u′, one gets the rescaled
invariant curveξ0 = u+ p(u)

I0 = Ī + q(u)
with mapping u1 = u0 + θ̄(Ī) = u0 + ρ0,

with p(u) = Cp̃ (u/C) and q(u) = C−1q̃ (u/C).

In the phase space (ξ, I), the curves obtained in Theorem 2.4.12 can be identified as
the graphs of functions of the form Iρ(ξ; ε) ∈ C1(R/2πZ): fixing ε ∈ (−ε̄ρ0ρ1 , ε̄ρ0ρ1), let
us consider for example the closed invariant curve of F of rotation number ρ0, which
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𝜌

0
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I 𝜌
0
(ξ; ε)

I 𝜌
1
(ξ; ε)

Fig. 2.8 Sketch of the perturbed dynamics in the region described by Proposition 2.4.6 and
Theorem 2.4.12 in the phase plane (ξ, I). Red: the invariant curves of Diophantine rotation
numbers ρ0 and ρ1, which are deformations of the unperturbed invariant straight lines I = Īρ0 ,
I = Īρ1 (green) such that θ̄

(
Īρ0

)
= ρ0 and θ̄

(
Īρ1

)
= ρ1. In the striped region the map

F(ξ0, I0; ε) is area-preserving and twist. The blue dashed lines denote two singular action
values for the unperturbed dynamics (i.e. I ∈ Ī).

can be expressed, according to (2.4.19) and (2.4.20), asξρ0(u; ε) = u+ p(u; ε)
Iρ0(u; ε) = Ī + q(u; ε)

with θ̄(Ī) = ρ0. (2.4.24)

From the boundedness of p asserted in (2.4.21), if σ is small enough (e.g. σ < 1) the
quantity

∂uξ(u; ε) = 1 + ∂up(u; ε) (2.4.25)

is always positive: one can then invert the first equation in (2.4.24) obtaining u(ξ),
which is differentiable. As a consequence, one can parametrize the curve (2.4.24) as
the graph of the C1 function

Iρ0 : R/2πZ → R, Iρ0(ξ; ε) = Iρ0(u(ξ); ε). (2.4.26)

Remark 2.4.13. Taking σ sufficiently small and a suitable ε̄ρ0ρ1, one can find invariant
curves of F which are arbitrarily close to the unperturbed orbits R/2πZ × {Ī} in the
plane (ξ, I). Then, as ε → 0, the functions Iρ(ξ; ε) which define the invariant curves
in the perturbed phase space tend in norm C1(R/2πZ) to the constant functions Īρ with
θ̄(Īρ) = ρ.
Moreover, Theorem 2.4.9 can be extended to negative twist maps, leading to the existence
result for invariant curves as stated in Theorem 2.1.2

As sketched in Figure 2.8, the presence of two invariant curves with irrational
rotation number leads to a confinement in the dynamics of F(ξ0, I0; ε), where, in view
of Proposition (2.4.6), the map is area-preserving and twist. More precisely, the set

A =
{
(ξ, I) ∈ R/2πZ × R | Iρ0(ξ; ε) ≤ I ≤ Iρ1(ξ; ε)

}
(2.4.27)
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is invariant under Fε, as well as its boundaries.
In the unperturbed dynamics, the existence of periodic orbits of any rotation number
in a suitable interval is the simple consequence of the continuity of the total shift θ̄(I);
when ε ≠ 0, one can not take advantage of the explicit formulation of the perturbed
map, then this strategy is no longer suitable. Nevertheless, the broad properties of the
map, such as its area-preserving one and the existence of the invariant curves ensured
by Theorem 2.4.12, enable the use of more sophisticated topological results, where
the existence of orbits with prescribed rotation number is proved under more general
assumptions: this is the case of the Poincaré-Birkhoff theorem, here presented in the
version of [25].

Theorem 2.4.14 (Poincaré-Birkhoff). Let F an area preserving map on the annulus
R/2πZ × [c, d] which preserves the boundaries and FR its lift over R × [c, d]. Suppose
that FR satisfies the boundary twist condition, that is, the restrictions of FR to each
boundary component u− = R × {c} and u+ = R × {d} have rotation numbers ρ± with
ρ− < ρ+ (the case ρ+ < ρ− is analogous). If 2πm

n
∈ [ρ−, ρ+] and m,n are coprime,

then F has at least two (m,n)−orbits.

Remark 2.4.15. Theorem 2.4.14 can be extended to area-preserving maps which
preserve invariant strips in R/2πZ × R whose boundaries are fixed by F and are graphs
of C1 functions over the ξ−axis. Let us take the set A defined in 2.4.27 and consider
Φ0(ξ; ε),Φ1(ξ; ε), Ī0, Ī1 such that

∂ξΦ0(ξ; ε) = Iρ0(ξ; ε), ∂ξΦ1(ξ; ε) = Iρ1(ξ; ε), θ̄(Īρ0) = ρ0, θ̄(Īρ1) = ρ1,

choosing Φ1 and Φ0 such that Φ1(ξ; 0) = Ī1ξ and Φ0(ξ; 0) = Ī0ξ. For ε sufficiently
small, consider the quantity

A(ε) =
∫ 2π

0
Iρ1(ξ; ε) − Iρ0(ξ; ε)dξ = Φ1(2π; ε) − Φ0(2π; ε) − (Φ1(0; ε) − Φ0(0; ε)) > 0,

and, noted that A(0) =
(
Ī1 − Ī0

)
2π, define the change of coordinates

Ψ(ξ, I; ε) =


ξ′ = 2π

A(ε) (Φ1(ξ; ε) − Φ0(ξ; ε))

I ′ = A(ε)
2π

(
I − Iρ0(ξ; ε)

Iρ1(ξ; ε) − Iρ0(ξ; ε) + Ī0

Ī1 − Ī0

)
.

From direct computations, one has that:

(i) Ψ(ξ, I; ε) is C1 in all its variables and for every fixed ε ∈ R
det

(
D(ξ;I)Ψ(ξ, I; ε)

)
= 1: hence, Ψ defines a canonical change of variables;

(ii) for ε = 0, Ψ(ξ, I; 0) = Id;
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(iii) Ψ maps the horizontal boundaries of A, that is, {(ξ, Iρ0(ξ; ε)) | ξ ∈ R/2πZ} and
{(ξ, Iρ1(ξ; ε)) | ξ ∈ R/2πZ} respectively into the straight lines

I = I ′
0 = A(ε)

2π
Ī0

Ī1 − Ī0
> 0 and I = I ′

1 = A(ε)
2π

Ī1

Ī1 − Ī0
> I ′

0;

(iv) for every ξ ∈ R/2πZ and every fixed ε, one has

Φ1(ξ + 2π; ε) − Φ0(ξ + 2π; ε) = Φ1(ξ; ε) − Φ0(ξ; ε) + A(ε),

and then

ξ′(ξ + 2π) = 2π
A(ε) (Φ1(ξ + 2π; ε) − Φ0(ξ + 2π; ε)) =

= 2π
A(ε) (Φ1(ξ; ε) − Φ0(ξ; ε) + A(ε)) = ξ′(ξ) + 2π;

(v) ξ′ is strictly increasing in ξ, while I ′ is 2π−periodic in ξ.

Globally, Ψ maps the Fεinvariant set A into the straight line B = R/2πZ × [I ′
0, I

′
1]

preserving the orientation and the boundaries. One can then consider the map
F̄ε : B → B such that F̄ε ◦ Ψ = Ψ ◦ Fε, namely, such that F̄ε = Ψ ◦ Fε ◦ Ψ−1. It
can be proved that F̄ε preserves the rotation number of the corresponding orbits of F :
for a (m,n)−periodic orbit, it is a simple consequence of (iv), as, taken {(ξk, Ik)}k∈N
(m,n)−periodic for Fε and defined for every k ∈ N (ξ′

k, I
′
k) = Ψ(ξk, Ik), one has

(ξ′
k+n, I

′
k+n) = Ψ(ξk+n, Ik+n) = Ψ(ξk + 2πm, Ik) = (ξ′

k + 2πm, I ′
k).

Let us now take a Fε−orbit with rotation number ρ ∈ R parametrized, according to
Mather’s definition in [24], by (ξk, Ik) = (ψ1(tk), ψ2(tk)) such that

tk+1 = tk + ρ, Fε(ξk, Ik) = (ξk+1, Ik+1) = (ψ1(tk + ρ), ψ2(tk + ρ)) ,
(ψ1(t+ 2π), ψ2(t+ 2π)) = (ψ1(t) + 2π, ψ2(t)) ,

with ψ1 : R → R a weakly order preserving map (not necessarily continuous). Now,
setting (ξ′

k, I
′
k) = Ψ(ξk, Ik) = Ψ(ψ1(tk), ψ2(tk)), one has

F̄ε(ξ′
k, I

′
k) = Ψ ◦ F (ξk, Ik) = Ψ(ξk+1, Ik+1) = (ξ′

k+1, I
′
k+1),

and, defined (ψ̃1(t), ψ̃2(t)) = Ψ(ψ1(t), ψ2(t)),

(ψ̃1(t+ 2π), ψ̃2(t+ 2π)) = (ψ̃1(t) + 2π, ψ̃2(t)),

leading to the conclusion that the F̄ε−orbit {(ξ′
k, I

′
k)}k∈N has rotation number ρ. Note

that for ε sufficiently small F̄ε satisfied the hypotheses of Theorem 2.4.14, as for ε = 0
the identity map is trivially twist. As the preservation of the rotation number holds
also for Ψ−1, given a twist map on invariant sets of the type A which preserves the
horizontal boundaries one can pass to the strip B and use Theorem 2.4.14 to prove the
existence of (m,n)−periodic orbits for F̄ε; returning then to the map Fε, this translates
to the existence of (m,n)−periodic orbits for the original map.
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Making use of Theorem 2.4.14, one can prove, under suitable conditions on the
perturbation, the existence of periodic orbits for the dynamics induced by the map
F(ξ0, I0; ε) with ε ̸= 0. We recall that in Section 2.3 we denoted with I\Ī the set of
well definition of the unperturbed map F(ξ0, I0; 0) and we proved that it is the finite
union of open intervals in R. In particular, the set of the singular points Ī is composed
by the critical points of the C1 function θ̄(I) (see Proposition 2.3.7), and one can set

I\Ī =
N⋃

i=1
Ai

with N > 0 (possibly N = 1) and Ai open intervals in I. In the following, to ensure
the good definition of the perturbed map in a compact set, a finite union of closed
intervals in I\Ī will be fixed, : in particular, we fix ai, bi ∈ I such that ∀i ∈ {1, . . . , N}

[ai, bi] ⊂ Ai and, if θ̄− = min
i

{
θ̄(ai), θ̄(bi)

}
, θ̄+ = max

i

{
θ̄(ai), θ̄(bi)

}
,

θ̄
(i)
− = min{θ̄(ai), θ̄(bi)}, and θ̄

(i)
+ = max{θ̄(ai), θ̄(bi)}, one has

N⋃
i=1

[
θ̄

(i)
− , θ̄

(i)
+
]

= [θ̄−, θ̄+].

(2.4.28)

Note that, by the continuity of θ̄, such sets {ai}N
i=1, {bi}N

i=1 exist.

Proposition 2.4.16. Let ai, bi ∈ I as in (2.4.28), and fix ρ(i)
± ∈ D̃2 such that for every

i = 1, . . . , N one has θ̄(i)
− < ρ

(i)
− < ρ

(i)
+ < θ̄

(i)
+ . Then there exists ε̄ > 0 such that for

every ε ∈ R, |ε| < ε̄, and for every m,n ∈ Z coprime, n > 0, with 2πm
n

∈ (ρ(i)
− , ρ

(i)
+ )

for some i ∈ {1, . . . , N}, the map F(ξ0, I0; ε) admits at least 2k (m,n)-orbits, where k
is the number of the pairs (ρ(i)

− , ρ
(i)
+ ) such that ρ(i)

− < 2πm
n
< ρ

(i)
+ .

Proof. According to Theorem 2.4.12, for every pair ρ(i)
− , ρ

(i)
+ there is ε̄(i)

ρ± such that for
every |ε| < ε̄(i)

ρ± the map F(ξ0, I0; ε) admits two orbits of rotation numbers ρ(i)
− and

ρ
(i)
+ . Moreover, the perturbed map is area-preserving and twist between these two

orbits. Setting ε̄ = min
i∈{1,...,N}

, one has that if ε is such that |ε| < ε̄ all the orbits of

rotation numbers ρ(i)
± are preserved and the perturbed map in between is well defined

and area-preserving.
Fixing ε ∈ R, |ε| < ε̄, if m,n are such that 2πm

n
∈
(
ρ

(i)
− , ρ

(i)
+
)
, then by Theorem 2.4.14

the perturbed map F(ξ0, I0; ε) admits at least 2 (m,n)-orbits. As this reasoning can
be repeated whenever a pair (ρ(i)

− , ρ
(i)
+ ) is such that ρ(i)

− < 2πm
n
< ρ

(i)
+ , the claim is

true.

Proposition 2.4.16 claims the existence of a unique threshold value of ε under
which the presence of periodic orbits of prescribed rotation numbers in a certain set
is guaranteed. Another slightly different approach is proposed in Proposition 2.4.17,
where, fixed m,n such that 2πm

n
lies in a suitable interval which does not depend on
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prefixed boundary rotation numbers ρ(i)
± , one can find a threshold ε̄mn, depending on

m,n, such that for every |ε| < ε̄mn the presence of the corresponding (m,n)-orbit is
ensured.

Proposition 2.4.17. Given {ai}N
i=1, {bi}N

i=1, {θ̄(i)
+ }N

i=1, {θ̄
(i)
− }N

i=1 as in (2.4.28), let
m,n ∈ Z coprime, n > 0, such that 2πm

n
∈
(
θ̄

(i)
− , θ̄

(i)
+
)

for some i ∈ {1, . . . , N}. Then
∃ε̄mn > 0 such that for every ε ∈ R, |ε| < ε̄mn the map F(ξ0, I0; ε) admits at least 2k
(m,n)-orbits, where k is the number of intervals (ai, bi) such that 2πm

n
is between θ̄

(i)
−

and θ̄(i)
+ .

Proof. By the density of D̃2 in every bounded interval, one can find ρ± ∈ D̃2 with
θ̄

(i)
− < ρ− < 2πm

n
< ρ+ < θ̄

(i)
+ . From Theorem 2.4.12, one can find ε̄mn = ε̄ρ± such that,

if ε is such that |ε| < ε̄mn, the map F(ξ0, I0; ε) admits two orbit with rotation numbers
ρ±, and it is area-preserving between them. Applying again Theorem 2.4.14, the claim
follows.

Extending the discussion beyond periodic orbits, one may search for more general
class of invariant sets. KAM theory allowed us to claim the persistence of orbits with
Diophantine rotation numbers within certain ranges, while Poincaré-Birkhoff theorem
extended the existence result to periodic number with 2π-rational numbers between
them. The Aubry-Mather theory allows to move further, providing the existence of
orbits of the perturbed map of every prescribed rotation number in suitable subsets of
R.

Theorem 2.4.18 (Aubry-Mather on the compact annulus). Let F an area and
orientation- preserving twist homeomorphism of the annulus R/2πZ × [a, b] which pre-
serves R/2πZ × {a} and R/2πZ × {b}, and define ρa and ρb as the rotation numbers of
the two boundary components. Then for every ρ ∈ [ρa, ρb] there exists at least an orbit
for F with rotation number ρ. In particular:

• if ρ = m/n ∈ Q, such orbit is periodic of period n;

• if ρ /∈ Q, the orbit rotates either on a closed continuous curve or on a Cantor set.

In any case, the orbits with the same rotation number belong to a common invariant set
Γρ, called Mather set, which is a subset of the graph of a Lipschitz-continuous function
over the ξ−axis.

We refer to [23, 77, 24] for the definition of Mather set and for a thorough discussion
on the Aubry-Mather theory.

Remark 2.4.19. As in the case of Poincaré-Birkhoff Theorem 2.4.14, with the same
reasoning also Aubry-Mather Theorem can be extended to maps on invariant sets of the
type A defined in 2.4.27.
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Making use of the same arguments used in the proofs of Propositions 2.4.16 and
2.4.17, one can take advantage of Theorem 2.4.18 to state these existence results in a
more general way.

Theorem 2.4.20. Let {ai}N
i=1, {bi}N

i=1, {θ̄(i)
− }N

i=1, {θ̄+}N
i=1 as in (2.4.28). Then:

• letting ρ(i)
± ∈ D as in Proposition 2.4.16, there exists ε̄ > 0 such that for every

ε ∈ R with |ε| < ε̄ and for every ρ ∈ R such that ρ ∈ [ρ̄(i)
− , ρ̄

(i)
+ ] for some

i ∈ {1, . . . , N} the map F(ξ0, I0; ε) admits k orbits with rotation number ρ, with
k defined as in Proposition 2.4.16;

• for every ρ ∈ R such that ρ ∈ [θ̄(i)
− , θ̄

(i)
+ ] for some i ∈ {1, . . . , N} there is ε̄ρ > 0

such that for every ε with |ε| < ε̄ρ the map F(ξ0, I0; ε) admits k orbits with
rotation number ρ, where k is defined as in Proposition 2.4.17.

In both cases, if ρ = 2πm
n

then for ε sufficiently small there are at least 2k (m,n)-orbits,
where k is defined suitably according to the cases.

2.4.3 Caustics for the perturbed case

The persistence of invariant curves with Diophantine rotation numbers ensured by
the KAM theorem has important consequences for the existence of caustics in the
perturbed dynamics. As a matter of fact, for such invariant tori (which are dense in the
phase space) it is possible to find, although not explicitly, the inner and outer caustics
also for small perturbations of the circular domain D0.

Theorem 2.4.21. Let ξ0 ∈ [0, 2π], I0 ∈ I\Ī such that θ(I0) ∈ D̃2. Then there exists
ε̄ > 0 such that for every |ε| < ε̄ there are ΓE(ξ; ε, θ(I0)), ΓI(ξ; ε, θ(I0)) respectively
outer and inner caustics related to the perturbed orbit of rotation number θ(I0).

The proof of Theorem 2.4.21 relies on showing that, for ε small enough, system
(2.3.38) evaluated both for the outer and inner dynamics admits a unique solution
for each ξ ∈ [0, 2π], which defines a regular and closed curve. To prove that, it is
worthwhile to derive the form of GE\I(x, y; ξ) for a perturbed domain.

Outer dynamics Let us consider ξ ∈ [0, 2π], p0 = γε(ξ) and v0 ∈ R2 such that
∥v0∥ =

√
2VE(p0) and α = ∠(p0, v0) ∈ (−π/2, π/2).

To fix the notation, recall the definition 4 of γε(ξ) = (1 + εf(ξ, ε))eiξ = ρ(ξ; ε)eiξ : as
the perturbation of the circle is only in the normal direction, the curve’s parameter
ξ still represents the polar angle of the point γε(ξ). We want to find the Cartesian
equation of the outer elliptic arc of initial conditions p0 and v0.

4Note that, in this section, the quantity ρ represents the radial disttance of our points, and has
nothing to do with the rotation number of a trajectory.
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Following the same reasoning of Appendix 2.3.1 and denoting with (x(s), y(s)) the
parametrization of such ellipse, its maximal and minimal distances from the origin can
be then computed as

a2 = max
s∈[0,2π/ω]

r2(s) = A+ E
ω2 =

E +
√

(E − ω2∥p0∥2)2 + ω2(p0 · v0)2

ω2

b2 = min
s∈[0,2π/ω]

r2(s) = −A+ E
ω2 =

E −
√

(E − ω2∥p0∥2)2 + ω2(p0 · v0)2

ω2 :

(2.4.29)

in the reference frame R(O, x′′, y′′) whose axes coincide with the ellipse’s ones the latter
is then implicitly defined by the equation

x′′2

a2 + y′′2

b2 = 1.

Let us now search for the angle β̄ such that the rotated ellipse

(x′ cos β̄ + y′ sin β̄)2

a2 + (y′ cos β̄ − x′ sin β̄)2

b2 = 1

passes from p0 = ∥p0∥(1, 0) in R(O, x′, y′): one has to solve the equation

∥p0∥2 cos2 β̄

a2 + ∥p0∥2 sin2 β̄

b2 − 1 = 0 ⇒ sin2 β̄ = b2

a2 − b2

(
a2

∥p0∥2 − 1
)

≥ 0.

Denoting by (v′
x, v

′
y) the components of v0 in R(O, x′, y′), one has that

sin β̄ =


− b√

a2 − b2

√√√√ a2

|p0|2
− 1 if v′

y < 0

b√
a2 − b2

√√√√ a2

|p0|2
− 1 if v′

y > 0
⇒ cos β̄ = a√

a2 − b2

√√√√1 − b2

∥p0∥2 .

(2.4.30)
Returning to the original frame R(O, x, y), one can then retrieve the Cartesian equation
of the outer arc as

GE(x, y; ξ, ε) =

(
x cos(ξ + β̄) + y sin(ξ + β̄)

)2

a2 +

(
(y cos(ξ + β̄) − x sin(ξ + β̄)

)2

b2 −1 = 0.
(2.4.31)

Note that, although not explicitly indicated, the quantities a, b and β̄ depend on ϵ.
Once obtained the general expression for an ellipse of initial conditions p0 and v0, we
shall return to the framework of our perturbed problem. Let us then consider I0 ∈ I\Ī
such that θ(I0) is Diophantine: from Theorem 2.4.9 there exists ε̄(1) > 0 such that, if
|ε| < ε̄(1), we can define I(ξ; ε) invariant curve in the plane (ξ, I) for the perturbed
map Fε such that I(ξ; 0) ≡ I0 and with rotation number θ(I0). Moreover, I(ξ; ε) is
continuous in ε and differentiable in ξ, with ∂ξI(ξ; ε) continuous in ε: as a consequence,
since θ(I0) ∈ D̃2 implies I0 ̸= 0, possibly reducing ε̄(1) one can assume that I(ξ; ε) has
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always the same sign of I0.
For the caustic of the orbit associated to (ξ, I(ξ; ε)) to be well defined, it is necessary
that the system GE(x, y; ξ, ε) = 0

∂ξGE(x, y; ξ, ε) = 0
(2.4.32)

defines implicitly a unique curve ΓE(ξ; ε) for ξ ∈ [0, 2π], that is, that x and y can be
expressed as functions of (ξ, ε) globally defined for ξ ∈ [0, 2π]. As already pointed out
in Section 2.3.5, from the implicit function theorem the local existence of ΓE(ξ; ε) is
then ensured by requiring the nondegeneracy condition

∇(x,y)GE(x, y; ξ, ε) ∦ ∇(x,y)∂ξGE(x, y; ξ, ε) (2.4.33)

on the solutions of (2.4.32).

Lemma 2.4.22. If I0 ∈ I\Ī is such that θ(I0) is Diophantine, then there is ε̄(2) > 0
such that, if |ε| < ε̄(2), then GE(x, y; ξ, ε) is continuous in ε, differentiable in ξ and
such that ∂ξGE(x, y; ξ, ε) is continuous in ε.

Proof. Recalling (2.4.31), the proof of the Lemma relies on showing that all the
quantities involved in the definition of GE(x, y; ξ, ε), namely, a−2, b−2, cos β̄ and sin β̄
are continuous in ε, differentiable in ξ and with derivative continuous in ε, provided
the latter is small enough.
Starting from a−2 and b−2, from (2.4.29) it is clear that the expression of p0 · v0 as a
function of ξ and ε is needed. Recalling the definition (2.4.1), denoted with t(ξ; ε) and
ne(ξ; ε) the tangent and the outward-pointing normal unit vectors to γε in p0, one has
that

v0 =
√

2E − ω2ρ(ξ; ε)2 (cosα ne(ξ; ε) + sinα t(ξ; ε)) .
Expliciting cosα, sinα, t(ξ; ε), ne(ξ; ε) and setting for simplicity ρ ≡ ρ(ξ; ε),
ρ′ ≡ dρ(ξ; ε)/dξ and I(ξ; ε) ≡ I, one obtains

v0 =
(
vx

vy

)

= 1√
ρ2 + ρ′2

√
2I (ρ′ cos ξ − ρ sin ξ) +

√
2E − ω2ρ2 − 2I2 (ρ′ sin ξ + ρ cos ξ)√

2I (ρ′ sin ξ + ρ cos ξ) +
√

2E − ω2ρ2 − 2I2 (ρ sin ξ − ρ′ cos ξ)


⇒ p0 · v0 = ρ(ξ; ε)√

ρ2(ξ; ε) + ρ′2(ξ; ε)

×
(
ρ(ξ; ε)

√
2E − ω2ρ2(ξ; ε) − 2I2(ξ; ε) +

√
2I(ξ, ε)ρ′(ξ; ε)

)
,

(2.4.34)
which has the desired continuity and differentiability properties provided ε is small
enough. This implies that a2 and b2 have the same properties. Moreover, it is trivial
that a2 > 0 and, since for ε = 0

b2
|ε=0 =

E −
√

E2 − 2ω2I2
0

ω2 > 0,
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by the continuity of b with respect to ε we have also b2 > 0 for ε small enough. Applying
the same reasoning, we can infer

√
a2 − b2 > 0.

Going back to (2.4.30), cos β̄ is then continuous and differentiable, and the same
conclusion holds for sin β̄ if one can ensure that v′

y has the same sign for all the points
of the orbit (ξ, I(ξ; ε)). From (2.4.34), in the plane R(O, x′, y′) one has

v′
y = 1√

ρ2(ξ; ε) + ρ′2(ξ; ε)

(
ρ(ξ; ε)

√
2I(ξ; ε) − ρ′(ξ; ε)

√
2E − ω2ρ2(ξ; ε) − 2I2(ξ; ε)

)
,

which for ε = 0 translates in
v′

y |ε=0 =
√

2I0 ̸= 0.

Taking again advantage of the continuity of v′
y with respect ε, we can finally ensure

that for ε small enough the thesis is proved.

Proposition 2.4.23. If I0 ∈ I\Ī is such that θ(I0) ∈ D̃2, then there exists ε̄E such
that for |ε| < ε̄E the caustic ΓE(ξ; ε, θ(I0)) is globally well defined.

Proof. As the nondegeneracy condition (2.4.33) holds for ε = 0 (cfr. (2.3.42)), from
Lemma 2.4.22, for every ξ̄ ∈ [0, 2π] there exists ε̄(2)(ξ̄) such that for every
|ε| < ε̄(2)(ξ̄) condition (2.4.33) is satisfied. By the implicit function theorem, there are
λξ(ξ̄), λε(ξ̄) > 0 such that the curve (x(ξ; ε), y(ξ, ε)) solution of (2.4.32) is well defined
in R(ξ̄) =

(
ξ̄ − λξ(ξ̄), ξ̄ + λξ(ξ̄)

)
×
(
−λε(ξ̄), λε(ξ̄)

)
. For the uniqueness of the solution,

if ξ̄1 and ξ̄2 are such that R(ξ̄1) ∩R(ξ̄2) ̸= ∅, the curve coincides in such intersection.
As [0, 2π] is compact, it is possible to find N > 0, {ξ̄1, . . . ξ̄N} ⊂ [0, 2π] such that

[0, 2π] ⊂
N⋃

i=1

(
ξ̄i − λξ(ξ̄i), ξ̄i + λξ(ξ̄i)

)
,

then, setting
ε̄E = min

i∈{1,...,N}
λε(ξ̄i),

for every ε > 0 such that |ε| < ε̄E the curve ΓE(ξ; ε, I0) = (x(ξ; ε), y(ξ; ε)) is globally
well defined in [0, 2π].

Inner caustics Following the same reasoning applied for the outer caustic, let us
consider the inner problem

z′′(s) = − µ

∥z(s)∥3 z(s), s ∈ [0, TI ]
1
2∥z′(s)∥2 − E − h− µ

∥z(s)∥ = 0 s ∈ [0, TI ]

z(0) = p0, z′(0) = v0

by fixing p0 = ∥p0∥eiξ, v0 =
√

2(E + h+ µ/∥p0∥)eiθv such that θv − ξ ∈ (π/2, 3π/2).
This last assumption, which is done to guarantee that the hyperbola points inward a
circle of radius ∥p0∥, can be ensured for ε small enough and suitable bounds on I(ξ).
Rotating again the reference frame R(O, x, y) by an angle −ξ, we obtain R(O, x′, y′)
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such that p0 = ∥p0∥(1, 0).
Recalling (2.3.44), in the reference frame R(O, x′′, y′′) were the hyperbola’s pericenter
lies on the positive half of the x-axis, its Cartesian equation is given by:

(e2 − 1)x′′2 − y′′2 − 2pex′′ + p2 = 0 with x ≤ p

e+ 1 ,

where

p = k2

µ
, e =

√
µ2 + 2(E + h)k2

µ
, k = ∥p0 ∧ v0∥.

To find the corresponding equation in the reference frame R(O, x′, y′), one can search
again for the angle δ̄ such that the arc defined by

(e2 − 1)(x′ cos δ̄ + y′ sin δ̄)2 − (y′ cos δ̄ − x′ sin δ̄)2 − 2ep(x′ cos δ̄ + y′ sin δ̄) + p2 = 0,

x′ cos δ̄ + y′ sin δ̄ ≤ p

e+ 1
(2.4.35)

passes from p0 = ∥p0∥(1, 0). Solving (2.4.35) with x′ = ∥p0∥ and y′ = 0, one obtains

cos δ̄ = p− ∥p0∥
e∥p0∥

,

which is in [−1, 1] if we take non-degenerate hyperbolæ. Referring to v′
y as the vertical

component of v0 in R(O, x′, y′), one has then

sin δ̄ =


(e2 − 1)∥p0∥2 + 2p∥p0∥ − p2

e∥p0∥
if v′

y > 0

−(e2 − 1)∥p0∥2 + 2p∥p0∥ − p2

e∥p0∥
if v′

y < 0
.

Returning to the original reference frame R(O, x, y), one obtains then the Cartesian
equation for the inner Keplerian arc

GI(x, y; ξε) =(e2 − 1)(x cos(δ̄ + ξ) + y sin(δ̄ + ξ))2 − (y cos(δ̄ + ξ) − x sin(δ̄ + ξ))2

− 2pe(x cos(δ̄ + ξ) + y sin(δ̄ + ξ)) + p2 = 0

x cos(δ̄ + ξ) + y sin(δ̄ + ξ) ≤ p

e+ 1 .
(2.4.36)

Note that, with reference to the polar angles ξ and θv, the angle δ̄ can be also expressed
as

δ̄ = sin(θv − ξ)
| sin(θv − ξ)| arccos

(
p− ∥p0∥
e∥p0∥

)
. (2.4.37)

As in the case of the outer dynamics, the global good definition of the inner caustic
ΓI(ξ; ε, θ(I0)) depends on proving that GI(x, y; ξ, ε) differentiable in ξ and that both
GI and ∂ξGI are continuous in ε.
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Lemma 2.4.24. If I0 ∈ I\Ī is such that θ(I0) ∈ D̃2, then there is ε̄(3) > 0 such that,
if |ε| < ε̄(3), then GI(x, y; ξ, ε) is continuous in ε, differentiable in ξ and such that
∂ξG(x, y; ξ, ε) is continuous in ε.

Proof. As in the case of Lemma 2.4.22, one needs to prove the desired regularity
properties on the quantities p and e, as well as sin δ̄ and cos δ̄. As all these quantities
depend on k = ∥p0 ∧ v0∥, let us find the expression of the angular momentum as a
function of ξ and I. As already done in Section 2.2, let us now denote with α the angle
between v0 and the inward-pointing normal unit vector to γε in p0, which we indicate
with ni(ξ); then referring to (2.2.9) and using the same notation of Lemma 2.4.22, we
have

v0 =

√√√√2
(

E + h+ µ

ρ

)
(sinα t(ξ) + cosα ni(ξ)) =

= 1√
ρ2 + ρ′2

√
2I (ρ′ cos ξ − ρ sin ξ) −

√
2(E + h+ µ/ρ− I2) (ρ′ sin ξ + ρ cos ξ)√

2I (ρ′ sin ξ + ρ cos ξ) +
√

2(E + h+ µ/ρ− I2) (ρ′ cos ξ − ρ sin ξ) .


And, since p0 = ρeiξ,

k = ∥p0 ∧ v0∥ =
√

2ρ(ξ; ε)√
ρ2(ξ; ε) + ρ′2(ξ; ε)

×
(
I(ξ; ε)ρ(ξ; ε) + ρ′(ξ; ε)

√
E + h+ µ

ρ(ξ; ε) − I2(ξ; ε)
)

p = k2

µ
= 2ρ2(ξ; ε)
µ(ρ2(ξ; ε) + ρ′2(ξ; ε))

×
(
I(ξ; ε)ρ(ξ; ε) + ρ′(ξ; ε)

√
E + h+ µ

ρ(ξ; ε) − I2(ξ; ε)
)2

e =

√√√√1 + 4(E + h)ρ2(ξ; ε)
(ρ2(ξ; ε) + ρ′2(ξ; ε))µ2

×
(
I(ξ; ε)ρ(ξ; ε) + ρ′(ξ; ε)

√
E + h+ µ/ρ(ξ; ε) − I2(ξ; ε)

)

The regularity of p and e is then ensured whenever ρ2(ξ; ε) + ρ′2(ξ; ε) ̸= 0, which is
true for ε small enough. As for sin δ̄ and cos δ̄, from (2.4.37) one can infer that the
requested regularity is ensured if sin(θv − ξ) has always the same sign on the orbit
(ξ, I(ξ; ε)). As in the case of the outer orbit, this is a consequence of the continuity
of ρ(ξ; ε), ρ′(ξ; ε) and I(ξ; ε) with respect to ε. Denoting with θni

the polar angle of
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ni(ξ), from the definition of α one has θv − ξ = θni
− ξ − α, and then

sin(θv − ξ) = sin(θni
− ξ) cosα + cos(θni

− ξ) sinα

= 1
ρ(ξ; ε)

√
E + h+ µ

ρ(ξ;ε)

×
(√

E + h+ µ

ρ(ξ; ε) − I2(ξ; ε)∥nI(ξ) ∧ γε(ξ)∥ − I(ξ; ε)γε(ξ) · ni(ξ)
)

=
ρ′(ξ; ε)

√
E + h+ µ

ρ(ξ;ε) − I2(ξ; ε) + ρ(ξ; ε)I(ξ; ε)√
ρ2(ξ; ε) + ρ′2(ξ; ε)

√
E + h+ µ

ρ(ξ;ε)

.

For ε = 0, sin(θv − ξ)|ε=0 = I0/
√

E + h+ µ ̸= 0, then, if ε is small enough, sin(θv − ξ)
has always the same sign of I0, and sin δ̄, cos δ̄ are differentiable in ξ and continuous in
ε, with derivative continuous in ε.

Making use of Lemma 2.4.24 and following the same reasoning used in the proof of
Proposition 2.4.23, it is possible to prove the existence of a well-defined inner caustic
ΓI(ξ; ε, θ(I0)) related to the invariant curve for the map Fε with rotation number θ(I0).

Proposition 2.4.25. If I0 ∈ I\Ī is such that θ(I0) ∈ D̃2, then there exists ε̄I such
that for |ε| < ε̄I the caustic ΓI(ξ; ε, θ(I0)) is globally well defined.



Chapter 3

Symbolic dynamics and analytic
non-integrability for galactic
billiards

3.1 Introduction

In this chapter we prove the existence of a symbolic dynamics for a class of mechanical
refraction billiards (but our technique covers also also reflection ones), which symbols
encode the geometry of the associated motions (for an extensive discussion about
symbolic dynamics, we refer to [29, 30]). As for the reflection model (known as Kepler
billiard as well), it refers to the mechanical billiard in which a particle moves under
the influence of a fixed gravitational center and reflects elastically at the boundary
of the inner region; in this case, trajectories concatenate arcs of hyperbolæ joined by
boundary reflections.
Both the reflective and the refractive situations correspond to some (possibly ill-defined)
area-preserving map in the cylinder. It is worth to note that reflection billiards have
been extensively investigated with and without internal potentials (as general reference
we quote the monographs [81, 17]).
As in the previous chapters, the configurations associated to the homothetic equilibrium
trajectories play a prominent role in proving our results. For the readers’ convenience,
here we recall their definition, along with the one of the corresponding solutions.

Definition 3.1.1. A central configuration for our dynamics is a point P̄ ∈ ∂D such
that

• P̄ is a constrained critical point for the distance function ∥ · ∥∂D to 01, that is,
the position vector P̄ is orthogonal to the boundary ∂D at P̄ ;

• the half-line connecting the origin to P̄ intersects ∂D only at P̄ .
1We denote with ∥ · ∥∂D the distance function P 7→ ∥P∥ restricted to the domain’s boundary ∂D.
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Fig. 3.1 Left: homothetic trajectories for the complete dynamics; the dashed circle denotes
the boundary of the Hill’s region for the outer potential. Right: trajectories for the complete
dynamics in the vicinity of homothetic arcs.

A homothetic collision-ejection trajectory is a one dimensional solution for the complete
dynamics of the type z(t) = λ(t)w with λ : R → [0,+∞) and w ∈ R2 (see Figure 3.1,
left).

In order to construct our symbolic dynamics, more restrictive assumptions on our
central configurations need to be made:

Definition 3.1.2. Suppose that ∂D admits a C1 parametrization. A central configura-
tion P̄ is said to be admissible if

• there exists a second central configurations, P̂ , such that the origin does not
belong to the segment connecting P̄ and P̂ (we say then that P̄ and P̂ are not
antipodally directed, or shortly, antipodal), and

• both P̂ and P̄ are strict local maxima or minima for the function ∥ · ∥∂D.

The domain D is called admissible if its boundary contains at least two admissible
central configurations denoted by P̄i, i ∈ I, #I ≥ 2.

As we already observed in Section 2.2.2, the non antipodality property is crucial to
guarantee the uniqueness of a (TnT) inner arc (recall Definition 2.2.2) starting from
arbitrary endpoints. Note that admissible domains are generic in C1.
Now, assume that the domain D is admissible: we will use the indices i ∈ I as the
symbols of our alphabet. The corresponding words will be composed as bi-infinite
sequences of symbols in I, with the following further admissibility requirement.

Definition 3.1.3. We define the set of admissible words for our symbolic dynamics as

L .=
{
ℓ = (ℓi)i ∈ IZ

∣∣∣∣∣ for every i ∈ Z, the symbols ℓi and ℓi+1 do not
correspond to antipodally directed central configurations

}
.

Definition 3.1.4. Given mutually disjoint neighbourhoods Ni ⊆ ∂D of the central
configurations P̄i, we say that a trajectory realizes a word ℓ ∈ IZ if it visits the
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P̄
1

P̄
3

P̄2

Fig. 3.2 Example of orbit which realizes the periodic word ℓ = (. . . , 1, 2, 3, 1, 2, 3, . . .). The
orbit visits the neighbourhoods of the three central configurations P̄i, i = 1, 2, 3, in the order
prescribed by ℓ.

neighbourhoods Ni, i ∈ I, in the order imposed by ℓ (see Figure 3.2). For refraction
trajectories, this means that there are two consecutive crossings of ∂D in-out-in in each
Ni, while for the case of reflection trajectories there is a reflection point in Ni.

Given these premises, we are in a position to state our main result.

Theorem 3.1.5. Let D be an admissible domain. For any sufficiently large internal
energy h there exists a subset X of the initial conditions-set, a first return map F ad a
continuous surjective map π : X → L such that the diagram

X X

L L

F

π π

σr

commutes, where σr is the Bernoulli right-shift. In other words, for large enough h,
our refraction (resp. reflection) billiard model admits a symbolic dynamics.

A particular case included in Theorem 3.1.5, which is by the way the key of its
proof, regards the existence of periodic orbits, which is the content of the following
corollary.

Corollary 3.1.6. If h is large enough, for every periodic admissible word ℓ ∈ L there
exists a periodic trajectory zℓ which realizes ℓ, in the sense described by Definition 3.1.4.

Under some restriction on the words in L, the corresponding symbolic dynamics
is collision-free. In order to do that we define the set of bi-infinite symmetric words
Ls ⊂ L admitting a symmetry axis and state the following corollary.
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Corollary 3.1.7. Replacing L with L̃ .= L \ Ls in the diagram of Theorem 3.1.5, we
obtain that the symbolic dynamics is not collisional, in the sense that any trajectory
corresponding to a word ℓ ∈ L̃ does not have any collisional inner arc.

To prove Theorem 3.1.5 we shall use a broken geodesic method, reminiscent of the
one used in [69, 32], together with a shadowing lemma based on Poincaré-Miranda’s
fixed point theorem (see [33]). We will perform the proof for planar domains, but it
can be easily extended in any dimension. The technique of the proofs, in essence, is the
same for refraction and reflection billiards, the latter being somewhat simpler. This is
why, throughout this chapter, we shall enter here more in the details of the refraction
case.
We stress that, strictly speaking, the existence of a symbolic dynamics is not equivalent
to claim that our model is chaotic; as a matter of fact, according to Devaney [29],
to have a chaotic dynamical system also the injectivity of the map π is required. In
our case, the possible injectivity of π may be obstructed by the lack of uniqueness of
the critical point we given by our critical point argument (that is, Poincaré-Miranda
theorem does not guarantee the uniqueness of the fixed point). Nevertheless, the
presence of a symbolic dynamics is a strong indicator of chaos, which is coherent with
the numerical simulations presented in [1], where one can see that, for h large enough,
the refraction model with an elliptic interface presents diffusive orbits typical of chaotic
behaviours. The gap between symbolic dynamics and topological chaos in the general
setting will be filled, in full details, in [3].

An intermediate result, regarding the analytic non-integrability of our billiard can
be obtained by requiring further assumption on a subset (possibly composed by a single
element) of the central configurations of the admissible domain.

Definition 3.1.8. Let D an admissible domain, and let Pi, i ∈ I the set of its
admissible configurations. We say that a central configuration Pj is nondegenerate if it
is a nondegenerate critical point for ∥ · ∥∂D.

Adapting a classical argument by Kozlov ([34]) we can link the presence of a symbolic
dynamics with the non analytic integrability of the system under the assumption that
at least one of the central configurations is nondegenerate.

Theorem 3.1.9. Let D be an admissible domain, and assume that it admits at least
one nondegenerate central configuration. If h is large enough, then there are not
non-constant analytic first integrals of the motion.

This result is heavily based on two facts: first of all, every nondegenerate homothetic
orbit is a saddle hyperbolic equilibrium if h is large enough; on the other hand, whenever
a central configuration is a saddle, by means of the symbolic dynamics it is possible to
construct a one-side infinite trajectory starting from an arbitrary point of (a suitable
subset of) ∂D and intersecting the stable or unstable manifold of the saddle itself.
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Furthermore, requiring that at least two central configurations are non-degenerate,
it is possible to extend this result to find infinite complete heteroclinic connections
between them: this fact is relevant, since multiple heteroclinics are usually indicators
of a complex dynamics (see for instance [82–84]).
Theorem 3.1.9 implies, for example, that elliptic one-center reflection billiards can not
be analytically integrable at high energies, when the gravitational center coincides
with the center of the ellipses. This negatively complements the recent results about
integrability of the one center reflection elliptical billiard with the center occupying
one of the foci by Takeuchi and Zhao [85, 7, 86]. Note that an ellipse with focus at
the center is not an admissible domain, while it becomes admissible when moving the
gravitational center at the center of the ellipses. The interested reader can compare
our result with the well established theory of integrability of the gravitational n-centre
problem ([87–92]). More on integrability at high energies of the n-center problem can
be found in [93, 94].

3.2 Existence of a local dynamics for general do-
mains

In this first section we will study separately the outer and inner dynamics proving
two local existence results, given by Theorems 3.2.3 and 3.2.7; such results are heavily
based on Theorems 2.2.3 and 2.2.1, presented in Section 2.2.2. We begin recalling some
geometric properties of the domain of the refractive billiard, focusing our attention
on what will be crucial in the following. Given our bounded open domain D ⊂ R2

containing the origin, let us take γ : [0, L] → R2, γ ∈ C1([0, L]), such that
∂D = γ ([0, L]) and ∥γ̇(ξ)∥ = 1 for every ξ ∈ [0, L]2.
Since γ is a closed smooth curve, and in particular γ(0) = γ(L), by Weierstrass Theorem,
along with the regularity of γ, the C1-real-valued function ξ 7→ ∥γ(ξ)∥ admits at least
two stationary points; for any of such points ξ̄, it holds

d

dξ
∥γ(ξ)∥ξ=ξ̄ = γ(ξ̄) · γ̇(ξ̄)

∥γ(ξ̄)∥
= 0 =⇒ γ(ξ̄) ⊥ γ̇(ξ̄). (3.2.1)

The following definitions have a central role in the construction of both the local inner
and outer dynamics. Although they have been already presented in Chapter 1, let us
recall them for the sake of clarity.

Definition 3.2.1. We say that the domain D satisfies the local star-convexity assump-
tion with respect to ξ ∈ [0, L] if the half-line connecting the origin to γ(ξ) intersects
∂D only in γ(ξ).

2Note that, in the current chapter, the regularity hypothesis on γ has been weakened, from C2 to
C1.
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Definition 3.2.2. With an abuse of notation, we say that the parameter ξ̄ ∈ [0, L] is a
central configuration if the corresponding point γ(ξ̄) is a central configuration in the
sense of Definition 3.1.2.

The local existence of outer arcs connecting point near a central configuration
follows exactly as in Theorem 2.2.1, here repeated for completeness. Recall that the
notation used to denote the inner and puter problems has been introduced in 1.3.11.

Theorem 3.2.3 (Local existence of the outer arcs). Let ξ̄ ∈ [0, L] be a central
configuration. Then there exists δE,ξ̄ > 0 such that for every ξ1, ξ2 ∈ (ξ̄ − δE,ξ̄, ξ̄ + δE,ξ̄)
there is a unique solution zE(·; γ(ξ1), γ(ξ2)) : [0, T ] → R2 of the fixed-ends problem

(HSE)[z(s)] s ∈ [0, T ]
z(s) /∈ D s ∈ (0, T )
z(0) = γ(ξ1), z(T ) = γ(ξ2)

(3.2.2)

for some T .= T (ξ1, ξ2) > 0. Moreover the solution zE(·; γ(ξ1), γ(ξ2)) is transversal to
the boundary ∂D at the endpoints, namely,

zE(0; γ(ξ1), γ(ξ2)) ∦ γ̇(ξ1) and zE (T ; γ(ξ1), γ(ξ2)) ∦ γ̇(ξ2).

Let us outline that the outer dynamics is local in the sense that an outer arc
connects two points on ∂D belonging to a neighbourhood of the same point γ(ξ̄).
Concerning the inner dynamics, our aim is to connect two points in neighbourhoods of
possibly different images of critical points of ∥γ(·)∥. Hence, also the inner dynamics is
local; nevertheless, as we will see in the proof of Theorem 3.2.7, this local structure is
not necessary to show the existence of the Keplerian arcs themselves, but it is required
to ensure that they are completely contained in the domain D.
In order to proceed with the construction of the inner arcs we give the following
definitions, necessary to address the non-antipodality property to neighbourhoods of a
central configuration in a general domain.

Definition 3.2.4. We say that D is an admissible domain if there are N ≥ 2 central
configurations for D, ξ̄1, . . . , ξ̄N , such that for every i = 1, . . . , N , it holds #NA(i) ≥ 2,
where

NA(i) .=
{
j ∈ {1, . . . , N} : γ(ξ̄i) and γ(ξ̄j) are not antipodal

}
;

in this case every central configuration ξ̄i, i = 1, . . . , N is termed admissible.

We observe that i ∈ NA(i) for every i, hence ξ̄i is admissible γ(ξ̄i) admits a distinct
not antipodal γ(ξ̄j).
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Definition 3.2.5. To ease the notation, for every δ > 0, we define the following sets

U(δ) .=
⋃

i=1,...,N

(ξ̄i − δ, ξ̄i + δ),

UNA(δ; i) .=
⋃

j∈NA(i)
(ξ̄j − δ, ξ̄j + δ),

PNA(δ; i) .= (ξ̄i − δ, ξ̄i + δ) × UNA(δ; i).

Definition 3.2.6. Let δ̄ > 0 be such that

• for every i ∈ {1, . . . , N} and for every (ξ1, ξ2) ∈ PNA(δ; i) the corresponding
images γ(ξ1) and γ(ξ2) are not antipodal;

• the domain D satisfies the local star-convexity assumption with respect to any
ξ ∈ U(δ̄).

Note that, if D is an admissible domain, the quantity δ̄ always exists by construction.
We also point out that Theorem 3.2.3 ensures the existence of an outer dynamics when
we restrict to the components of the set U(δE) with

δE = min{δ̄, δE,ξ̄1 , . . . , δE,ξ̄N
}. (3.2.3)

The existence of a local inner dynamics is heavily based on the general results
described in Section 2.2.2, where the problem of finding a Keplerian arc connecting
two given points is dealt in a more geometric, rather than dynamical, framework.
We are now ready to present the analogous of Theorem 3.2.3 for the inner dynamics.
In the following, the domain D is always supposed to be admissible; recall that the
definition of (TnT ) arcs has been introduced in Definition 2.2.2.

Theorem 3.2.7 (Existence and transversality of the inner arcs). Let N ≥ 2 and
ξ̄1, . . . , ξ̄N ∈ [0, L] be admissible central configurations for D. Then:

(i) there exist h0 > 0 and δI > 0 such that for every i = 1, . . . , N ,
(ξ1, ξ2) ∈ PNA(δI ; i), and for every h > h0 there exists a unique
T
.= T (ξ1, ξ2;h) > 0 such that:

• if ξ1 ̸= ξ2, there exists a unique inner arc, zI(·; γ(ξ1), γ(ξ2);h) ∈ C2([0, T ]),
connecting γ(ξ1) and γ(ξ2) and satisfying (TnT), which solves the fixed-ends
problem 

(HSI)[z(s)] s ∈ [0, T ]
z(s) ∈ D s ∈ (0, T )
z(0) = γ(ξ1), z(T ) = γ(ξ2)

(3.2.4)

• if ξ1 = ξ2, there exists a unique inner arc zI(·; γ(ξ1), γ(ξ2);h) : [0, T ] → R2

which is a collision-ejection solution of the fixed-ends problem (3.2.4) in
[0, T ] \ {T/2}.
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T3

Bρ(0)

Fig. 3.3 The open set A introduced in the proof of Theorem 3.2.7. A is the union of the
circular neighbourhood of the origin Bρ(0) and of the sectors Ti, i = 1, 2, 3.

(ii) For every ϵ > 0 there exists h1
.= h1(ϵ) > h0 such that for every i = 1, . . . , N ,

(ξ1, ξ2) ∈ PNA(δI ; i), ad every h > h1, defined the angles

α1
.= ∠ (γ(ξ1),−z′

I(0; γ(ξ1), γ(ξ2);h)) ,
α2

.= ∠ (γ(ξ2), z′
I (T ; γ(ξ1), γ(ξ2);h)) ,

one has |α1| < ϵ and |α2| < ϵ.

Proof. Let us start with claim (i) when ξ1 ̸= ξ2. Recalling the Definition 3.2.6, by
Theorem 2.2.3 one has that taking (ξ1, ξ2) ∈ PNA(δ̄/2; i) ⊊ PNA(δ̄; i) and h > 0, there
exists T = T (γ(ξ1), γ(ξ2);h) > 0 and a unique zI(·; γ(ξ1), γ(ξ2);h) solution of the Bolza
problem (HSI)[z(s)] s ∈ [0, T ]

z(0) = γ(ξ1), z (T ) = γ(ξ2)
(3.2.5)

which is (TnT). We now have to find a condition ensuring that zI(s; γ(ξ1), γ(ξ2);h) ∈ D
for every s ∈ (0, T ). In general, given P1, P2 ∈ R2 \ {0} not antipodal and distinct,
let us define c(P10P2) as the union of the two straight-line segments from P1 to 0
and from 0 to P2. Considering now the arc H0(γ(ξ1), γ(ξ2); E + h) parametrized by
zI(·; γ(ξ1), γ(ξ2);h), the convergence property stated in Remark 2.2.5 can be rephrased
as

lim
h→∞

dist (H0(P1, P2;h), c(P10P2)) = 0. (3.2.6)

As 0 ∈ D and since D is open, there exists ρ > 0 such that Bρ(0) ⊊ D; moreover, for
every i = 1, . . . , N , one can define the conic set (see Figure 3.3)

Ti =
{
λγ(ξ) | λ ∈ (0, 1), ξ ∈

(
ξ̄i − δ̄, ξ̄i + δ̄

)}
,

and the open set
A =

⋃
i=1,...,N

Ti ∪Bρ(0).

Fixed i ∈ {1, . . . , N}, by the convergence in (3.2.6), for every (ξ1, ξ2) ∈ PNA(δ̄/2; i),
there exists h̄i(ξ1, ξ2) > 0 such that for every h > h̄i(ξ1, ξ2)

zI ((0, T ) ; γ(ξ1), γ(ξ2);h) ⊂ A ⊂ D. (3.2.7)
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zI(s)

γ (ξ2 )
γ (ξ1)

γ̇ (ξ2)

γ̇ (ξ1)
−z′(0)

z′(T )

β2 β1
α1

α2

Fig. 3.4 Angles of the inner arc zI(·) ≡ zI(·; γ(ξ1), γ(ξ2); h) with respect to the initial and
final radial and tangent directions. In particular, α1 and α2 follow the same definition of
Theorem 3.2.7 and βk = ∠

(
γ̇(ξk), γ(ξk)

)
, k = 1, 2.

By the differentiable dependence of the Bolza problem (3.2.5) with respect to the
parameter h and to the endpoints, and the regularity of γ, for every i the function
(ξ1, ξ2) 7→ h̄i(ξ1, ξ2) is continuous on the compact set PNA(δ̄/2; i); as a consequence, it
admits a maximum value h̄i,M . Hence, for every h ≥ h̄i,M , condition (3.2.7) is satisfied
for every (ξ1, ξ2) ∈ PNA(δ̄/2; i). Setting now h0

.= max{h̄1,M , . . . , h̄N,M} and δI = δ̄/2,
one has that for every i = 1, . . . , N , (ξ1, ξ2) ∈ PNA(δI ; i) and every h > h0 the unique
(TnT) solution of Pb. (3.2.5) satisfies also Pb. (3.2.4).

In the case ξ1 = ξ2, the existence of the collision-ejection solution zI(·; γ(ξ1), γ(ξ2), h)
such that zI(0; γ(ξ1), γ(ξ2);h) = zI(T ; γ(ξ1), γ(ξ2);h) = γ(ξ1) is guaranteed by Remark
2.2.7.

The proof of claim (ii) follows the same reasoning: if ξ1 ̸= ξ2, once fixed ϵ > 0,
recalling Proposition 2.2.4 one has that for every i = 1, . . . , N and (ξ1, ξ2) ∈ PNA(δI ; i)
there exists hi(ξ1, ξ2; ϵ) such that for every h > hi(ξ1, ξ2; ϵ) it results |α1| < ϵ and
|α2| < ϵ. The function (ξ1, ξ2) 7→ hi(ξ1, ξ2; ϵ) is again continuous on the compact set
PNA(δI ; i) and achieves its maximal value hi,1; hence, letting

h1
.= max{h0, h1,1, . . . , hN,1}

the claim is proved.
In the case ξ1 = ξ2, one can refer again to Remark 2.2.7 to ensure that

α1 = α2 = 0.

Note that if we define
δ
.= 1

2 min{δE, δI}, (3.2.8)

both Theorems 3.2.3 and 3.2.7 hold simultaneously.

We recall that, casting together Theorems 3.2.3 and 3.2.7 and definition 3.2.2, we
can conclude that if ξ̄ is a central configuration then the complete dynamics admits an
homothetic trajectory in the direction of γ(ξ̄).
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To conclude the exploration of the geometric properties of the inner arcs, in the
next result we show that every arc defined in Theorem 3.2.7 is arbitrarily transversal
to the boundary ∂D, possibly reducing δI and increasing h0.

Proposition 3.2.8. For every ϵ ∈ (0, π/2) there exist δϵ
I ∈ (0, δI ] and h̄ϵ > h0 such

that for every i = 1, . . . , N , (ξ1, ξ2) ∈ PNA(δϵ
I ; i), and every h > h̄ϵ

∣∣∣∣∣∠(γ̇(ξ1),−z′
I (0; γ(ξ1), γ(ξ2);h)) − π

2

∣∣∣∣∣ < ϵ,∣∣∣∣∣∠(γ̇(ξ2), z′
I (T (ξ1, ξ2); γ(ξ1), γ(ξ2);h)) − π

2

∣∣∣∣∣ < ϵ.

(3.2.9)

Proof. For every i = 1, . . . , N , the geometric properties of the admissible central
configuration ξ̄i imply that

cos
(
∠
(
γ̇(ξ̄i), γ(ξ̄i)

) )
= γ̇(ξ̄i) · γ(ξ̄i)

∥γ(ξ̄i)∥
= 0;

hence, by the regularity of γ, for every ϵ > 0, there exists δϵ
I ∈ (0, δI ] such that∣∣∣∣∠ (γ̇(ξ), γ(ξ)) − π

2

∣∣∣∣ < ϵ

2 , (3.2.10)

for every ξ ∈ U (δϵ
I). Moreover, from claim (ii) of Theorem 3.2.7 one has that there

exists h̄ϵ such that for every i = 1, . . . , N , (ξ1, ξ2) ∈ PNA(δϵ
I ; i), and for every h > h̄ϵ

∣∣∣∣∣∠(γ(ξ1),−z′
I (0; γ(ξ1), γ(ξ2);h))

∣∣∣∣∣ < ϵ

2 and
∣∣∣∣∣∠(γ(ξ2), z′

I (T ; γ(ξ1), γ(ξ2);h))
∣∣∣∣∣ < ϵ

2 .

(3.2.11)
Taking together Eqs. (3.2.10) and (3.2.11), one can then conclude that, for every
i = 1, . . . , N , (ξ1, ξ2) ∈ PNA(δϵ

I ; i), and every h greater than h̄ϵ,∣∣∣∣∣∠ (γ̇(ξ1),−z′
I (0; γ(ξ1), γ(ξ2);h)) − π

2

∣∣∣∣∣
≤

∣∣∣∣∣∠ (γ̇(ξ1), γ(ξ1))
∣∣∣∣∣+

∣∣∣∣∣∠(γ(ξ1),−z′
I (0; γ(ξ1), γ(ξ2);h)) − π

2

∣∣∣∣∣ < ϵ,

and the same reasoning applies to ∠(γ̇(ξ2), z′
I (T ; γ(ξ1), γ(ξ2);h)).

Remark 3.2.9. Theorems 3.2.3 and 3.2.7 ensure the existence of the outer and inner
dynamics separately, provided that the endpoints’ parameters ξ1 and ξ2 are in suitable
neighbourhoods of ξ̄i, i = 1, . . . , N . Nevertheless, this is not sufficient to ensure the
good definition of the complete dynamics, that is, a concatenation between outer and
inner arcs satisfying the Snell’s law.
In particular, as observed in Section 1.2, one has that the refraction exterior-interior
is always possible, while the converse, interior-exterior, can take place if and only
if the inner arc is sufficiently transverse to the boundary. Hence, in order to prove
the existence of a complete dynamics, we should find conditions to have uniform
transversality properties of the inner arcs. On the other hand, this is not really
necessary to our purposes: we will prove a posteriori that the particular concatenations
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of outer and inner arcs that realize a symbolic dynamics for our problem are admissible
trajectories. The idea is that the transversality of an inner arc is indirectly deduced
from the validity of the variational formulation of the Snell’s law (see Eq. (1.2.13) in
Section 1.2), along with the transversality of the subsequent outer arc.

3.3 Symbolic dynamics

The current section is devoted to the construction of a symbolic dynamics using as
building blocks the outer and inner arcs whose existence and properties have been
proved in Section 3.2. The final result is Theorem 3.1.5. Before starting, some technical
results connected to the geometric properties of the inner and outer arcs, along with
their variational consequences in terms of Jacobi distances, are stated. From now on,
we refer to the definitions already given in Section 1.2.

3.3.1 Estimates on angles

As substantiated in Section 3.2, to ensure the local good definition of the outer and
inner dynamics in neighbourhoods of γ(ξ̄i), i = 1, . . . , N , the only hypothesis required
on the points ξ̄i is that they are admissible central configurations, and, in particular,
each ξ̄i must be a critical point for ∥γ(ξ)∥. In the following, the nature of such critical
points is crucial to relate the geometry of the domain D to the variational properties
of the inner and outer arcs. We then make additional assumption on D.

Assumption 3.3.1. Let us suppose that there exists a subset I ⊆ {1, . . . , N} such
that:

• #I ≥ 2;

• for any i ∈ I, the critical point ξ̄i is a local strict minimum or maximum for
∥γ(ξ)∥, so that we can write

I = Im ∪ IM ,

where if i ∈ Im (resp. IM) then ξ̄i is a minimum (resp. maximum). Let us note
that one of these two sets can be empty;

• the set I corresponds to a set of admissible central configurations for D (see
Definition 3.2.4).

Although Theorem 3.1.5 can be proved under the assumption γ ∈ C1 and satisfying
Assumption 3.3.1, for the sake of simplicity we will present a proof based on stricter
hypotheses, specified in Assumption 3.3.2; a way more general case will be exposed in
[3].

Assumption 3.3.2. Let us suppose γ ∈ C2([0, L]). With reference to Eq. (3.2.8), let
us suppose that δ is such that:
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(δ1) the function ∥γ(ξ)∥ is respectively strictly convex/concave in [ξ̄i − δ, ξ̄i + δ] for
every i ∈ I, depending on the nature of the critical point ξ̄i;

(δ2) the angle between the radial directions and the tangent vectors to γ is in a small
neighbourhood of π/2, namely, there exists Aδ ∈ (0, π/2) such that for every i ∈ I
and every ξ ∈ [ξ̄i − δ, ξ̄i + δ]one has

0 < π

2 − Aδ < ∠ (γ(ξ), γ̇(ξ)) < π

2 + Aδ < π.

Let us start our study by considering a geometric property holding when the critical
point ξ̄i is a strict local minimum. From now on, the quantity δ > 0 is the one
introduced in Assumption 3.3.2, h0 is the energy bound introduced in Theorem 3.2.7
and the set UNA(δ; i) is the one introduced in Definition 3.2.5.

Lemma 3.3.3. There exist h̄m > h0 and Cm > 0 such that for every i ∈ Im, for every
ξ ∈ UNA(δ; i) and every h > h̄m one has

−
z′

I

(
0; γ(ξ̄i + δ), γ(ξ);h

)
∥z′

I

(
0; γ(ξ̄i + δ), γ(ξ);h

)
∥

· γ̇(ξ̄i + δ) > Cm,

−
z′

I

(
0; γ(ξ̄i − δ), γ(ξ);h

)
∥z′

I

(
0; γ(ξ̄i − δ), γ(ξ);h

)
∥

· γ̇(ξ̄i − δ) < −Cm,

z′
I

(
T ; γ(ξ), γ(ξ̄i + δ);h

)
∥z′

I

(
T ; γ(ξ), γ(ξ̄i + δ);h

)
∥

· γ̇(ξ̄i + δ) > Cm,

z′
I

(
T ; γ(ξ), γ(ξ̄i − δ);h

)
∥z′

I

(
T ; γ(ξ), γ(ξ̄i + δ);h

)
∥

· γ̇(ξ̄i − δ) < −Cm.

where zI(·; ·, ·;h) is the unique inner arc connecting the specified pair of points with
energy E + h, whose existence is guaranteed in Theorem 3.2.7.

Proof. We will prove only the last two inequalities, as the first two can be derived
straightforwardly from them using the time reversibility and the uniqueness of the
solutions claimed in Theorem 3.2.7. Let now h > h0. By the definition of scalar
product, for every i ∈ Im and ξ ∈ UNA(δ; i), it holds

z′
I

(
T ; γ(ξ), γ(ξ̄i ± δ);h

)
∥z′

I

(
T ; γ(ξ), γ(ξ̄i ± δ);h

)
∥

· γ̇(ξ̄i ± δ) = cos
(
∠
(
z′

I

(
T ; γ(ξ), γ(ξ̄i ± δ);h

)
, γ̇(ξ̄i ± δ)

))
,

(3.3.1)
where the last angle can be splitted as a sum of the form

∠
(
z′

I

(
T ; γ(ξ), γ(ξ̄i ± δ);h

)
, γ̇(ξ̄i ± δ)

)
= α±(ξ, ξ̄i, h) + β±(ξ̄i), (3.3.2)
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where
α±(ξ, ξ̄i, h) = ∠

(
z′

I

(
T ; γ(ξ), γ(ξ̄i ± δ);h

)
, γ(ξ̄i ± δ)

)
, and

β±(ξ̄i) = ∠
(
γ(ξ̄i ± δ), γ̇(ξ̄i ± δ)

)
.

We observe that

cos β±(ξ̄i) = γ(ξ̄i ± δ)
∥γ(ξ̄i ± δ)∥

· γ̇(ξ̄i ± δ) = d

dξ
∥γ(ξ)∥|ξ=ξ̄i±δ.

Since ξ̄i is a strict minimum, the function ∥γ(ξ)∥ is strictly convex in [ξ̄i − δ, ξ̄i + δ],

and its derivative d∥γ(ξ)∥
dξ

is strictly increasing in the same interval. Furthermore,

the extremality of ξ̄i ensures that d

dξ
∥γ(ξ)∥|ξ=ξ̄i

= 0, thus, there exist Ã ∈ (0, 1) and
A ∈ (0, Aδ) (where Aδ has been introduced in Assumption 3.3.2) such that for every
i ∈ Im

cos β+(ξ̄i) > Ã, cos β−(ξ̄i) < −Ã, (3.3.3)
and, still by virtue of Assumption 3.3.2,

0 < π

2 − Aδ < β+(ξ̄i) <
π

2 − A < π, 0 < π

2 + A < β−(ξ̄i) <
π

2 + Aδ < π.

Let us now consider the angles α±(ξ, ξ̄i, h); fix ϵ̄ > 0 such that ϵ̄ < min{A, π/2−Aδ}.
By Theorem 3.2.7, there exists h̄m ≡ h1(ϵ̄) such that for every i ∈ Im, for every
ξ ∈ UNA(δ; i), and h > h̄m one has |α±(ξ, ξ̄i, h)| < ϵ̄. Recalling Eq. (3.3.2), one can
then conclude that

0 < π

2 − Aδ − ϵ̄ < ∠
(
z′

I

(
T ; γ(ξ), γ(ξ̄i + δ) <;h

)
, γ̇(ξ̄i + δ)

)
<
π

2 − A+ ϵ̄ < π

0 < π

2 + A− ϵ̄ < ∠
(
z′

I

(
T ; γ(ξ), γ(ξ̄i − δ);h

)
, γ̇(ξ̄i − δ)

)
<
π

2 + Aδ + ϵ̄ < π,

from which one has

cos
(
∠
(
z′

I

(
T ; γ(ξ), γ(ξ̄i + δ);h

)
, γ̇(ξ̄i + δ)

))
> sin (A− ϵ̄) .= Cm ∈ (0, 1)

cos
(
∠
(
z′

I

(
T ; γ(ξ), γ(ξ̄i − δ);h

)
, γ̇(ξ̄i − δ)

))
< − sin (A− ϵ̄) = −Cm.

Recalling Eq. (3.3.1), the last inequalities conclude the proof.

The geometric interpretation of Lemma 3.3.3 is the following: if δ is small enough
and ξ̄i is a strict minimum for ∥γ(ξ)∥, for sufficiently large energies every inner arc
connecting γ(ξ̄i − δ) with a non-antipodal point γ(ξ) forms with γ̇(ξ̄i − δ) an angle
strictly greater than π/2. Conversely, the Keplerian arcs starting from or arriving in
γ(ξ̄i + δ) form with γ̇(ξ̄i + δ) an angle strictly smaller than π/2 (see Figure 3.5, left).
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γ(ξ)

γ
(
ξ̄1
)γ̇

(
ξ̄1 − δ

)

z
′
I

(
T ; ξ, ξ̄1 − δ

)z ′
I

(
T ; ξ, ξ̄1 + δ

)
γ̇
(
ξ̄1 + δ

)

γ(ξ)

z
′
I

(
T ; ξ, ξ̄1 + δ

)

z
′

I
( T
; ξ

, ξ̄
1

−
δ
)γ̇

(
ξ̄1 − δ

)
γ̇
(
ξ̄1 + δ

)

γ

(
ξ̄1
)

Fig. 3.5 Estimates on the angles proved in Lemmas 3.3.3 and 3.3.4 for the strict minimum
case (left) and the strict maximum case (right). While in the first case the angle between the
inner arc and tangent vector to γ is obtuse in ξ̄i − δ and acute in ξ̄i + δ; the estimates are
reversed in the second case. Here, for the sake of brevity, zI(t; ξ1, ξ2) .= zI (t; γ(ξ1), γ(ξ2); h).

When the critical point ξ̄i is a strict local maximum we make use of the same
reasoning of the previous lemma, taking now into account the strict concavity of ∥γ(ξ)∥
around such point. Again, the geometric interpretation of the maximal case can be
found in Figure 3.5, right, and it is completely specular with respect to the minimal
case.

Lemma 3.3.4. There exist h̄M > 0 and CM > 0 such that for every i ∈ IM , for every
ξ ∈ UNA(δ; i) and h > h̄M one has

−
z′

I

(
0; γ(ξ̄i + δ), γ(ξ);h

)
∥z′

I

(
0; γ(ξ̄i + δ), γ(ξ);h

)
∥

· γ̇(ξ̄i + δ) < −CM ,

−
z′

I

(
0; γ(ξ̄i − δ), γ(ξ);h

)
∥z′

I

(
0; γ(ξ̄i − δ), γ(ξ);h

)
∥

· γ̇(ξ̄i − δ) > CM ,

z′
I

(
T ; γ(ξ), γ(ξ̄i + δ);h

)
∥z′

I

(
T ; γ(ξ), γ(ξ̄i + δ);h

)
∥

· γ̇(ξ̄i + δ) < −CM ,

z′
I

(
T ; γ(ξ), γ(ξ̄i − δ);h

)
∥z′

I

(
T ; γ(ξ), γ(ξ̄i − δ);h

)
∥

· γ̇(ξ̄i − δ) > CM .

where zI(·; ·, ·;h) is the unique inner arc connecting the specified pair of points with
energy E + h whose existence is guaranteed in Theorem 3.2.7.

Corollary 3.3.5. Taking h̄ = max
{
h̄m, h̄M

}
and C = min {Cm, CM}, one can unify

Lemmas 3.3.3 and 3.3.4 to obtain estimates holding for every i ∈ I.

Taking into account the definition of the distances SE(ξ1, ξ2) and SI(ξ1, ξ2;h)3, as
well as the expressions of their derivatives, provided in Section 1.2, Lemmas 3.3.3

3Here, the dependence of SI is explicited since, in view of Theorem 3.2.7, this parameter influences
the good definition of the inner arc itself.
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and 3.3.4 can be translated into the variational formulation given in the following
result, where again strict minima and maxima behave symmetrically. Recall that, given
suitable ξ1, ξ2, ξ3 in [0, L] and h > h0, the quantity SE(ξ1, ξ2) + SI(ξ2, ξ3;h) is the total
Jacobi length of the concatenation of the outer and inner arcs connecting γ(ξ1) to γ(ξ2)
and γ(ξ2) to γ(ξ3). Symmetrically, SI(ξ1, ξ2;h) + SE(ξ2, ξ3) is the total Jacobi length
of the concatenation of the inner arc from γ(ξ1) to γ(ξ2) and the outer one from γ(ξ2)
to γ(ξ3). Moreover, ∂aSE/I and ∂bSE/I denote the partial derivatives of the lengths
with respect to their first and second variable: hence ∂bSE/I + ∂aSI/E are the partial
derivatives of the total Jacobi lengths with respect to the transition point.
Lemma 3.3.6. There exists h̄1 > 0 such that

• for every i ∈ Im, for every ξE ∈ [ξ̄i − δ, ξ̄i + δ], ξI ∈ UNA(δ; i) and every h > h̄1:

∂bSE(ξE, ξ̄i + δ) + ∂aSI(ξ̄i + δ, ξI) > 0
∂bSE(ξE, ξ̄i − δ) + ∂aSI(ξ̄i − δ, ξI) < 0
∂bSI(ξI , ξ̄i + δ) + ∂aSE(ξ̄i + δ, ξE) > 0
∂bSI(ξI , ξ̄i − δ) + ∂aSE(ξ̄i − δ, ξE) < 0

(3.3.4)

• for every i ∈ IM , the above result holds with the inverted inequalities.

Proof. As the other cases are completely symmetric, we will prove only the first two
inequalities of Eq. (3.3.4). With reference to Section 1.2, and in particular to Eq.
(1.2.6), one has that if i ∈ Im

|∂bSE(ξE, ξ̄i + δ)| =
√
VE

(
γ(ξ̄i + δ)

) ∣∣∣∣∣∣
z′

E

(
T ; γ(ξE), γ(ξ̄i + δ)

)
∥z′

E

(
T ; γ(ξE), γ(ξ̄i + δ)

)
∥

· γ̇(ξ̄i + δ)
∣∣∣∣∣∣

=
√
VE

(
γ(ξ̄i + δ)

) ∣∣∣∣∣ cos
(
∠
(
z′

E

(
T ; γ(ξE), γ(ξ̄i + δ)

)
, γ̇(ξ̄i + δ)

))∣∣∣∣∣
≤
√
VE

(
γ(ξ̄i + δ)

)
,

while, making use of Lemma 3.3.3 and Corollary 3.3.5, one obtains that there exist
C > 0 and h̄ > 0 such that for every h > h̄,

∂aSI(ξ̄i + δ, ξI ;h) = −
√
VI

(
γ(ξ̄i + δ)

) z′
I

(
0; γ(ξ̄i + δ), γ(ξI);h

)
∥z′

I

(
0; γ(ξ̄i + δ), γ(ξI);h

)
∥

· γ̇(ξ̄i + δ)

>

√
VI

(
γ(ξ̄i + δ)

)
C.

Taking together the two expressions, one obtains the chain of inequalities

∂bSE(ξE, ξ̄i + δ) + ∂aSI(ξ̄i + δ, ξI ;h) > −
√
VE

(
γ(ξ̄i + δ)

)
+
√
VI

(
γ(ξ̄i + δ)

)
C

= −
√

E − ω2

2 ∥γ(ξ̄i + δ)∥2 +
√

E + h+ µ

∥γ(ξ̄i + δ)∥
C > −

√
E +

√
hC. (3.3.5)
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Taking then h̄1 = max
{
E/C2, h̄

}
one has that for every h > h̄1 the quantity

∂bSE(ξE, ξ̄i + δ) + ∂aSI(ξ̄i + δ, ξI) is strictly positive.
As for the second inequality of the claim, using again the same reasonings, Lemma
3.3.3 and Corollary 3.3.5, one obtains ∂bSE(ξE, ξ̄i − δ) + ∂aSI(ξ̄i − δ, ξI) <

√
E −

√
hC,

which is negative for h > h̄1.
Carrying on the same computations one can conclude the proof also when i ∈ IM .

Note that, adapting the estimates presented in [76] in a way more general framework,
one can obtain analogous results. On the other hand, for the readers’ convenience here
the computations are described, explicitly, in our specific case.

Remark 3.3.7. If γ ∈ C2, in view of the strict convexity or concavity around any ξ̄i,
i ∈ I, it is straightforward that results analogous to Lemmas 3.3.3, 3.3.4 and 3.3.6 can
be obtained for any δ̃ ∈ (0, δ). Taking into account this additional consideration, one
can provide the variational interpretation of Lemma 3.3.6 in the C2-case. For large
enough energies, the minimal critical points ξ̄i with i ∈ Im are also strict local minima
for the total Jacobi length of the arc concatenation connecting γ(ξE) to γ(ξI), either
starting with an inner or an outer arc. Conversely, the maximal points ξ̄i, i ∈ IM , are
also strict maxima for the total Jacobi length.

Remark 3.3.8. From the estimates (3.3.5) one can observe that, as far as h is large,
the dominant quantity in the derivatives of the total Jacobi length is the one related to
the inner arc. In general, this fact holds also for the total length itself and not only for
its derivatives.

3.3.2 Existence of suitable periodic trajectories

The present section is devoted to the statement and proof of a key result, which will
allow, in Section 3.3.3, to prove the existence of a symbolic dynamics for our model.
In particular, we will prove that, for every finite (admissible, in a sense that will be
specified in a moment) sequence of suitable symbols, there exists a periodic trajectory
which realizes it in the sense described in Definition 3.1.4. The first step is to define
our alphabet, as well as the rules to build admissible words.
For every i ∈ I as in Assumption 3.3.1, define

I(i) = (ξ̄i − δ, ξ̄i + δ),

with δ as in Assumption 3.3.2. Let n ∈ N, n ≥ 1, and define the set Ln ⊂ In of the
admissible words of length n as

Ln =
{
ℓ = (ℓ0, . . . , ℓn−1) : ℓi ∈ I and ∀i = 0, . . . , n− 1 ℓ(i+1)mod n ∈ NA (ℓi)

}
,

where the sets NA (ℓi) have been introduced in Definition 3.2.4. By Assumption 3.3.1,
for every n ∈ N\ {0} the set Ln is not empty. Taking the union of such sets over n ∈ N,
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we obtain the set of the admissible finite words

L =
⋃

n∈N\{0}
Ln. (3.3.6)

For any fixed ℓ ∈ L we define the (2n+ 1)−dimensional open rectangle

Uℓ = (I0 × I0) × (I1 × I1) × · · · × (In−1 × In−1) × I0, (3.3.7)

where for all k = 0, . . . , n− 1 one has Ik
.= I(ℓk) = (ξ̄ℓk

− δ, ξ̄ℓk
+ δ). The rectangle Uℓ

is the domain of (the parameters of) the transition points between the inner and outer
arcs of the periodic solutions we are searching for. To this purpose, define the closed
set

Sℓ =
{
ξ = (ξ0, . . . , ξ2n) ∈ Uℓ : ξ0 = ξ2n

}
, (3.3.8)

where the identification between the first and last points takes into account the
periodicity of the searched trajectory.

Let us point out that for every j = 0, . . . , n − 1 the points ξ2j and ξ2j+1 belong
to the same interval Ij, while the points ξ2j+1 and ξ2j+2 belong to possibly different
intervals Ij and I(j+1)mod n and correspond to non-antipodal points in R2. Since our
complete dynamics starts with an outer arc, for every j = 0, . . . , n − 1 the points
γ(ξ2j) and γ(ξ2j+1) must be connected by an outer arc, while we will search for inner
arcs connecting γ(ξ2j+1) and γ(ξ2j+2). We observe that this justifies also the claim of
Theorem 3.2.3, where we proved the existence of the outer dynamics only for endpoints
belonging to the same neighbourhood of a generic central configuration γ(ξ̄i). In
particular, in view of Theorems 3.2.3 and 3.2.7, for every j = 0, . . . , n− 1 the arcs

zE(·; γ(ξ2j), γ(ξ2j+1)), zI(·; γ(ξ2j+1), γ(ξ2j+2);h) (3.3.9)

exist and are unique, as far as h is sufficiently large. Moreover, we recall that the
uniqueness of zI is related to the topological characterization (TnT) introduced in
Definition 2.2.2.

Our purpose is to determine periodic trajectories for the complete dynamics as
critical points of the functional Wℓ (·;h) : Sℓ → R defined as

Wℓ(ξ;h) =
n−1∑
j=0

SE(ξ2j, ξ2j+1) +
n−1∑
j=0

SI(ξ2j+1, ξ2j+2;h). (3.3.10)

The relation between sequences in Sℓ and periodic trajectories for the complete
dynamics can be built as follows: given ξ ∈ Sℓ, the corresponding periodic orbit z(·) is
the concatenation of the arcs in Eq. (3.3.9), which is unique in view of Theorems 3.2.3
and 3.2.7. More precisely, one can give the following definition.
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Definition 3.3.9. Given n ∈ N, ℓ ∈ Ln, ξ ∈ Sℓ and h > h0, let us consider the unique
arcs enlisted in Eq. (3.3.9) which connect pairs of subsequent points; with reference to
Theorems 3.2.3 and 3.2.7, let us define4 for every j = 0, . . . , n− 1

T
(j)
E

.= TE (γ(ξ2j), γ(ξ2j+1)) , T
(j)
I

.= TI (γ(ξ2j+1), γ(ξ2j+2);h) .

and the partial sums T (j) .=
j∑

k=0
T

(k)
E +T (k)

I . Setting T (−1) .= 0, consider the concatenation

z
(
·; ξ;h

)
:
[
0, T (n−1)

]
→ R2 where, for every j = 0, . . . , n− 1,


z
(
s; ξ;h

) .= zE

(
s− T (j−1); γ (ξ2j) , γ (ξ2j+1)

)
s ∈

[
T (j−1), T (j−1) + T

(j)
E

]

z
(
s; ξ;h

) .= zI

(
s− T (j−1) − T

(j)
E ; γ (ξ2j+1) , γ (ξ2j+2) ;h

)
s ∈

[
T (j−1) + T

(j)
E , T (j)

] .

The function z
(
·; ξ;h

)
is trivially continuous, and, since z

(
0; ξ;h

)
= z

(
T (n−1); ξ;h

)
,

it is also periodic. We can then extend it by periodicity and, with an abuse of notation,
suppose z

(
·; ξ;h

)
: R → R2.

We stress that, except for very special cases, concatenations are not C1, as, at every
transition point, the Snell’s law determines a deflection of the velocity vector.

We can give a necessary and sufficient condition for concatenations introduced in
Definition 3.3.9 to be an admissible trajectories for the complete dynamics: the Snell’s
law must be satisfied at every transition point Pi

.= γ(ξi), i = 0, . . . , 2n. More precisely,
for every j = 0, . . . , n− 1,

√
VE (P2j+1)

z′
E

(
T

(j)
E ;P2j, P2j+1

)
∥∥∥∥z′

E

(
T

(j)
E ;P2j, P2j+1

) ∥∥∥∥
· γ̇(ξ2j+1)

=
√
VI (P2j+1)

z′
I (0;P2j+1, P2j+2;h)∥∥∥∥z′
I (0;P2j+1, P2j+2;h)

∥∥∥∥
· γ̇(ξ2j+1),

√
VI (P2j+2)

z′
I

(
T

(j)
I ;P2j+1, P2j+2;h

)
∥∥∥∥z′

I

(
T

(j)
I ;P2j+1, P2j+2;h

) ∥∥∥∥
· γ̇(ξ2j+2)

=
√
VE (P2j+2)

z′
E (0;P2j+2, P2j+3)∥∥∥∥z′
E (0;P2j+2, P2j+3)

∥∥∥∥
· γ̇(ξ2j+2),

(3.3.11)

where, with an abuse of notation, P2n+1 = P1.

Remark 3.3.10. We stress that, fixed h and ξ, the concatenation z
(
·; ξ;h

)
is uniquely

determined: this means that the validity of conditions (3.3.11) depends only on the
transition points determined by ξ and on the inner energy.

4Here the TE and TI denote the final time respectively of the outer and inner arcs defined in
Theorems 3.2.3 and 3.2.7.
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With reference to Section 1.2, the functional Wℓ (·;h) introduced in Eq. (3.3.10)
can be interpreted as the total Jacobi length of the trajectory having transition points
in P0, . . . , P2n−1. Actually, there exists a core relation between trajectories for the
complete dynamics and critical points for the total Jacobi length as a function of
the parameters ξ of γ. Let us in fact suppose that, fixed ℓ ∈ L and h > h0, the
functional Wℓ(·;h) admits a critical point in Sℓ, namely, ∃ξ̂ =

(
ξ̂0, . . . , ξ̂2n

)
∈ Sℓ such

that ∇Wℓ

(
ξ̂;h

)
= 0. Then, for every i = 0, . . . , n− 1

∂Wℓ

∂ξ2i

(
ξ̂;h

)
= ∂bSI

(
ξ̂(2i−1)mod 2n, ξ̂2i;h

)
+ ∂aSE

(
ξ̂2i, ξ̂2i+1

)
= 0

∂Wℓ

∂ξ2i+1

(
ξ̂;h

)
= ∂bSE

(
ξ̂2i, ξ̂2i+1

)
+ ∂aSI

(
ξ̂2i+1, ξ̂2i+2;h

)
= 0.

(3.3.12)

With reference to Definition 3.3.9, consider now the concatenation z
(
·; ξ̂;h

)
. Comparing

Eq. (3.3.12) with the expressions of ∂a/bSI/E computed in Eq. (1.2.6), one can conclude
that the stationarity of ξ̂ is equivalent to state that z satisfies the Snell’s law at every
transition point: this means that the concatenation is an admissible periodic trajectory
for the complete dynamics if and only if ∇Wℓ

(
ξ̂;h

)
= 0. The above reasoning justifies

why the search for critical points of Wℓ(·;h) and for periodic trajectories are equivalent.
Provided that h is large enough, the existence of a critical point of Wℓ(·;h) is a
straightforward consequence of the following classical result.

Theorem 3.3.11 (Poincaré-Miranda Theorem, [33]). Let F1, . . . , Fd d-functions in the
variables (x1, . . . , xd) continuous on the d-dimensional hypercube

R = {(x1, . . . , xd) | |xk| ≤ L for every k = 1, . . . , d}

and such that for every k = 1, . . . , dFk (x1, . . . , xd)|xk=−L ≥ 0,
Fk (x1, . . . , xd)|xk=L ≤ 0.

(3.3.13)

Then there exists at least a solution in R of

Fk(x1, . . . , xd) = 0 for every k = 1, . . . , d. (3.3.14)

Proposition 3.3.12. Given ℓ ∈ L, the total Jacobi length Wℓ(·;h) admits a critical
point ξ̂ in S◦

ℓ provided h > h̄1, where h̄1 is introduced in Lemma 3.3.6.

Proof. This proof relies on a direct application of Poincaré-Miranda Theorem; to ease
the notation and the overall proof, some considerations can be made:

• if there is k ∈ 1, . . . , d such that the inequalities Eq. (3.3.13) are satisfied with
the opposite signs, taking −Fk instead of Fk the Theorem remains valid. As a
matter of fact, the key hypothesis is that any function Fj̄, is continuous and
changes its sign on the boundaries of j̄-th edge

{
(x1 . . . , xd) ∈ R | |xj̄| ≤ L

}
;
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• with the change of variables yk = xk − ck, k = 1, . . . , d, one can prove that the
Theorem is valid also in hypercubes centered at any point (c1, . . . , cd) ∈ Rd;

• if the inequalities Eq. (3.3.13) are strict, the solution of Eq. (3.3.14) must lie in
the interior of R.

Given these premises, let us fix ℓ ∈ L and set n = |ℓ|. Recalling the definitions of Uℓ and
Sℓ given in Eqs. (3.3.7) and (3.3.8) and of the corresponding intervals Ii, i = 0, . . . , n−1,
we know that, if ξ = (ξ0, . . . , ξ2n) ∈ Sℓ, then ξ2i, ξ2i+1 ∈ Īi =

[
ξ̄ℓi

− δ, ξ̄ℓi
+ δ

]
, where δ

is defined as in Assumption 3.3.2. Let us now set d = 2n and R = Πn−1
i=0

(
Īi × Īi

)
. For

every i = 0, . . . , n− 1 and every ξ ∈ Sℓ, define

F2i

(
ξ
)

= ∂bSI (ξ2i−1, ξ2i;h) + ∂aSE (ξ2i, ξ2i+1) ,

F2i+1
(
ξ
)

= ∂bSE (ξ2i, ξ2i+1) + ∂aSI (ξ2i+1, ξ2i+2;h) ,

where ξ−1 = ξ2n−1. Computing the above functions on the hypercube’s edges, one has
that for every i = 0, . . . , n− 1,

F2i

(
ξ
)

|ξ2i=ξ̄ℓi
±δ

= ∂bSI

(
ξ2i−1, ξ̄ℓi

± δ
)

+ ∂aSE

(
ξ̄ℓi

± δ, ξ2i+1
)
,

F2i+1
(
ξ
)

|ξ2i+1=ξ̄ℓi
±δ

= ∂bSE

(
ξ2i, ξ̄ℓi

± δ
)

+ ∂aSI

(
ξ̄ℓi

± δ, ξ2i+2
)
.

(3.3.15)

If h > h̄1, Lemma 3.3.6 ensures that for every i = 0, . . . , n− 1

F2i

(
ξ
)

|ξ2i=ξ̄ℓi
−δ

· F2i

(
ξ
)

|ξ2i=ξ̄ℓi
+δ
< 0, F2i+1

(
ξ
)

|ξ2i+1=ξ̄ℓi
−δ

· F2i+1
(
ξ
)

|ξ2i+1=ξ̄ℓi
+δ
< 0

one can then apply Poincaré-Miranda Theorem to obtain a solution ξ̂ ∈ S◦
ℓ of system

(3.3.14). By the choice of the functions Fk and from direct computations, it results
that ∇Wℓ

(
ξ̂;h

)
= 0.

The main result of this section now follows straightforwardly.

Theorem 3.3.13. Given ℓ ∈ L and h > h̄1, there exists ξ̂ ∈ S◦
ℓ and a periodic trajectory

z
(
·; ξ̂;h

)
for the complete dynamics which realizes the word ℓ, in the sense that it

connects γ
(
ξ̂0
)
, . . . , γ

(
ξ̂2n−1

)
.

3.3.3 Construction of the symbolic dynamics

We are finally ready to prove the existence of a symbolic dynamics for our refractive
billiard model; in particular, we will construct a surjective and continuous application
between a suitable set of initial conditions of trajectories and admissible bi-infinite
words. To this end let us define the energy shell for the external dynamics

Ξ .=
{

(ξ, v) : ξ ∈ [0, L], v ∈ R2,
1
2∥v∥2 − VE(γ(ξ)) = 0

}
.

We now introduce the sets of initial conditions in Ξ for which:
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• the parameter ξ belongs to I(r), for a fixed r ∈ I, where I(r) has been introduced
at the beginning of Section 3.3.2,

• the velocity vector points respectively outward or inward the domain D.

More precisely, we define

Ξ+
r
.=
{
(ξ, v) ∈ Ξ: ξ ∈ I(r) and ⟨n(ξ), v⟩ > 0

}
Ξ−

r
.=
{
(ξ, v) ∈ Ξ: ξ ∈ I(r) and ⟨n(ξ), v⟩ < 0

}
,

where n(ξ) is the outward-pointing normal unit vector to γ in γ(ξ).
Since in our model a crossing through γ implies a refraction of the trajectory, it is
convenient to define analytically a refraction map which of course depends on the
parameter ξ and the energy jump h. From now on we assume h > h̄1, where h̄1 is the
threshold value introduced in Lemma 3.3.6 and used in Proposition 3.3.12.

Definition 3.3.14. Fixed ξ ∈ [0, L] and h > 0, we define the sets

Bξ
E
.=
{
v ∈ R2 : ∥v∥2 = 2VE(γ(ξ))

}
Bξ

I
.=
{
v ∈ R2 : ∥v∥2 = 2VI(γ(ξ))

}
and the refraction map

REI(·; ξ, h) : Bξ
E → Bξ

I

v = a t(ξ) + b n(ξ) 7→ REI(v; ξ, h) = a t(ξ) + sgn(b)
√

2VI(γ(ξ)) − a2 n(ξ)

where we recall that t(ξ) is the tangent unit vector to γ in γ(ξ).

Remark 3.3.15. Some words are due to understand the previous definition. First
of all, we observe that for every ξ ∈ [0, L] the vectors (t(ξ), n(ξ)) form a orthonormal
basis of the plane. Moreover, since v ∈ Bξ

E (namely, a2 + b2 = 2VE(γ(ξ))) and VI > VE

everywhere in the punctured plane, the quantity 2VI(γ(ξ))−a2 is always positive, so that
the refraction map is well defined in its domain. Furthermore, it is clear that the normal
component preserves the sign, so that the image of an outward (resp. inward)-pointing
vector is still outward (resp. inward)-pointing. It can also be easily proved that given
a vector v ∈ Bξ

E, its image REI(v; ξ, h) is the unique vector with which v satisfies the
refraction Snell’s law (1.2.11).

The refraction map REI is clearly injective; if we introduce the set

B̃ξ
I
.=
{
v ∈ R2 : ∥v∥2 = 2VI(γ(ξ)) and ⟨v, t(ξ)⟩ ≤

√
2VE(γ(ξ))

}

then REI(·; ξ, h) : Bξ
E → B̃ξ

I is invertible.

Remark 3.3.16. As already pointed out in Section 1.2, the Snell’s Law (1.2.11) depends
on the point z ∈ ∂D, where the inequality VI(z) > VE(z) is always satisfied. Hence, the
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transition from inside to outside needs that

|αI | ≤ arcsin

√
VE(z)√
VI(z)

 = αcrit.

The restriction of the map REI(·; ξ, h) to the set B̃ξ
I corresponds to require that the

angle between an internal velocity and n(ξ) is less than the critical value αcrit.

Let us now fix (ξ, v) ∈ Ξ+
r and follow step by step the trajectory of the complete

dynamics starting from the initial condition (γ(ξ), v). Assumptions on the allowed
initial conditions will become more and more restrictive as the dynamics proceeds in
order to obtain a final set

X ⊆
⋃
r∈I

Ξ+
r (3.3.16)

for which it is possible to construct a symbolic dynamics.

First of all, let us consider the flow Φs
E(γ(ξ), v) generated by the Cauchy problem

associated to the outer potential, that is(HSE)[z(s)]
z(0) = γ(ξ), z′(0) = v.

(3.3.17)

As customary dealing with this kind of systems, we consider the projections of such
flow onto the configuration and the velocity space respectively:

ΠzΦs
E(·, ·), ΠvΦs

E(·, ·).

Let us now consider the outer arc with initial condition (γ(ξ), v). Then we can define
the set

T−(ξ, v) .=
s1 > 0

∣∣∣∣∣∣
Φs1

E (γ(ξ), v) = (γ(ξ1), v1) for some (ξ1, v1) ∈ Ξ−
r

ΠzΦs
E(γ(ξ), v) /∈ D̄ for every s ∈ (0, s1)

 . (3.3.18)

which contains at most one element. In view of Theorem 3.2.3, there holds{
(ξ, v) ∈ Ξ+

r : T−(ξ, v) ̸= ∅
}

̸= ∅ for all r ∈ I.

Let us now suppose that T−(ξ, v) = {s1} ≠ ∅ and call

(γ(ξ1), v1) .= Φs1
E (γ(ξ), v).

To proceed with the inner dynamics we need to refract our arc: let us then consider the
initial condition (γ(ξ1), v′

1) .= (γ(ξ1), REI(v1; ξ1, h)) to start with an inner arc. Exactly
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γ (ξ0)

v0

v1
v′

1

γ (ξ1)

γ (ξ1)

v′
2

v2

Fig. 3.6 An example of concatenation starting from a point (γ(ξ), v), with (ξ, v) ∈ A.

as for the outer dynamics, we consider the flow associated to the inner problem(HSI)[z(s)]
z(0) = γ(ξ1), z′(0) = v′

1,
(3.3.19)

and the set

T+(ξ, v) .=


s2 > 0

∣∣∣∣∣∣∣∣∣∣∣

Φs2
I (γ(ξ1), v′

1) = (γ(ξ2), v′
2) for some (ξ2, v

′
2) ∈

⋃
r′∈NA(r)

Ξ+
r′

v′
2 ∈ B̃ξ2

I

ΠzΦs
I(γ(ξ1), v′

1) ∈ D for every s ∈ (0, s2)


,

(3.3.20)
where NA(r) has been introduced in Definition 3.2.4. Once more T+(ξ, v) has at most
one element and we can extend its definition to every pair (ξ, v) ∈ Ξ+

r by requiring that

T−(ξ, v) = ∅ =⇒ T+(ξ, v) = ∅.

In view of Theorem 3.3.13, there holds again that{
(ξ, v) ∈ Ξ+

r : T+(ξ, v) ̸= ∅
}

̸= ∅ for all r ∈ I;

indeed, it is sufficient to consider a word ℓ of length at least 2 with the first element
equal to r and take the initial condition of the corresponding trajectory.
Let now (ξ, v) ∈ Ξ+

r be such that T+(ξ, v) ̸= ∅ and let (ξ2, v
′
2) as in Eq. (3.3.20). As

v′
2 ∈ B̃ξ2

I we are allowed to define

v2
.= R−1

EI(v′
2; ξ2, h) (3.3.21)

so that (ξ2, v2) ∈ Ξ+
r′ and we have the initial condition for a second outer arc.

The following non-empty set contains pairs (ξ, v) which satisfy all assumptions
made up to now (see Figure 3.6).



132 Symbolic dynamics and analytic non-integrability for galactic billiards

Definition 3.3.17. Let us define the set A ⊂ [0, L] × R2 as the set of pairs (ξ, v) such
that

1. (ξ, v) ∈ Ξ+
r for some r ∈ I;

2. there exist s1 ∈ T−(ξ, v) and s2 ∈ T+(ξ, v);

The set A contains initial conditions for which it is possible to construct a complete
concatenation outer-inner arc. It is then worthwhile to define the first return map on
A as follows.
Definition 3.3.18. Let us define the first return map5

F : A → F (A), F (ξ, v) .= (ξ2, v2) (3.3.22)

where ξ2 and v2 are introduced respectively in (3.3.20) and (3.3.21).

The function F is a bijection by the uniqueness of the arcs claimed in Theorems
3.2.3 and 3.2.7. Now, by recurrence, we construct the set X as the set on which all the
positive and negative iterates of the map F are defined. Let

X+
1
.= A and X−

1
.= A ∩ F (A) = X+

1 ∩ F (X+
1 )

and observe that X−
1 ̸= ∅ (by Theorem 3.3.13); moreover both F and F−1 are well

defined on X−
1 . Then we introduce the (still non empty) sets

X+
2
.= X−

1 ∩ F−1(X−
1 ) and X−

2
.= X+

2 ∩ F (X+
2 )

so that the maps F , F−1 and F 2 are well defined on both X+
2 and X−

2 , and on X−
2 is

also defined the map F−2. Actually, for any positive integer k ≥ 2 we introduce the
non-empty sets

X+
k
.= X−

k−1 ∩ F−1(X−
k−1) and X−

k
.= X+

k ∩ F (X+
k )

so that on X−
k the iterates F j , with j ∈ Z and |j| ≤ k, are well defined (in our notation

F 0 = Id). We are then ready to define the set of initial conditions in Ξ+
r that generate

trajectories with an infinite number of transversal intersections with ∂D, namely

X
.=
⋂

k∈N
X−

k .

Of course, the set X is non empty, and on X are defined the iterates F j , for any integer
j ∈ Z. As the set X is invariant for the first return map F (see also the remark below),
it is convenient to consider the restriction

F .= F |X
5Note that, in this chapter, the first return map is expressed in terms of the velocity instead of its

angle with the normal vector. Of course, the definitions are completely equivalent.
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Remark 3.3.19. Let us observe that the set X is the set of initial conditions which
generate trajectories for the complete dynamics that cross ∂D an infinite number of
times. For this reason, the double-inclusion F (X) = X holds. Indeed, for every
x
.= (ξ, v) ∈ X it is straightforward to understand that both F (x) and F−1(x) belong to

X.

Let us now consider the set of bi-infinite admissible words

L .=
{
ℓ ∈ IZ : ℓj+1 ∈ NA(ℓj), ∀j ∈ Z

}
(3.3.23)

endowed with the metric (here ρ(i, j) = 0 if i = j and ρ(i, j) = 1 if i ̸= j)

d(ℓ,m) .=
∑
k∈Z

ρ(ℓk,mk)
4k

, (3.3.24)

we refer to the book [30] for complete treatment on the subject. It is straightforward
to prove that, with this metric, the subset of the periodic bi-infinite words

LP
.= {ℓ ∈ L : ℓ is periodic}

is dense in L. Furthermore, we observe that the elements of LP are the periodic
extensions of the finite admissible words of the set L introduced in Eq. (3.3.6).

In order to project the set of initial conditions X into the set of admissible words L
we introduce the map χ : X → I such that

χ(ξ, v) = r ⇐⇒ ξ ∈ I(r) (3.3.25)

which associates to every (ξ, v) the index corresponding to the neighbourhood where ξ
belongs.

Finally, we define the projection map

π : X → L, (ξ, v) 7→ π(ξ, v) = (ℓj)j∈Z with ℓj = χ(F j(ξ, v))

through which we are able to associate to every (ξ, v) the bi-infinite word realized by
the trajectory of initial condition (γ(ξ), v).
We can then consider the commutative diagram

X X

L L

F

π π

σr

where σr is the Bernoulli right-shift. In order to prove the existence of a symbolic
dynamics for our model, we are left to show that the map π is a continuous surjection.
The rest of this section is devoted to prove this result. Again, we recall that h̄1 is the
threshold value for the energy jump h defined in Theorem 3.3.13.
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Proposition 3.3.20. If h > h̄1, the projection map π is surjective.

Proof. Let us take a sequence ℓ = (ℓj)j∈Z ∈ L; our aim is to find (ξ, v) ∈ X such that
π(ξ, v) = ℓ, namely, the initial condition for a trajectory for the complete dynamics
which realizes ℓ in the sense of Theorem 3.3.13.
First of all, for every n ∈ N let us consider the truncated sequences

ℓ(n) .= (ℓ−n, . . . , ℓn),

which are elements of L of length 2n+ 1. Since h > h̄1, by Theorem 3.3.13, for every
n ∈ N there exists ξ̂(n)

∈ Sℓ(n) such that the corresponding trajectory

z(n)(·) .= z
(

·; ξ̂(n)
, h
)

realizes the word ℓ(n). Since the trajectories z(n)(·) are periodic, without loosing in
generality and possibly with a time translation, we can assume that

z(n)(0) ∈ γ(I(ℓ0)).

We now extend by periodicity ξ̂(n) to obtain a sequence in L(
ξ(n)

)
n
, ξ(n) =

(
ξ

(n)
k

)
k∈Z

,

where, for every n, ξ(n) ∈ LP is a (4n+ 2)-periodic sequence. By construction,

∀k ∈ Z, ∃Nk > 0, ∃ik ∈ I : ξ
(n)
k ∈ I(ik), ∀n ≥ Nk, (3.3.26)

namely, fixed k, the points ξ(n)
k belong eventually to the same compact interval pre-

scribed by the sequence ℓ.
We now start with the diagonal process that will imply the existence of a limit

sequence of parameters in [0, L]Z. Let us fix k = 0 and consider the sequence
(
ξ

(n)
0

)
n
:

by Eq. (3.3.26), the compactness of I(ℓ0) (in this case ℓ0 = i0) implies the existence of
a convergent subsequence, that is

∃ ξ̄0 ∈ I(ℓ0), ∃ (ηj,0)j ⊂ N : ηj,0
j→∞−→ ∞ and ξ

(ηj,0)
0

j→∞−→ ξ̄0.

Now, going on with the same reasoning, for every integer k ≥ 1 there exist ξ̄±k ∈ I(i±k)

and a subsequence (ηj,k)j ⊂ (ηj,k−1)j, ηj,k → ∞, such that

ξ
(ηj,k)
i

j→∞−→ ξ̄i, for every i ∈ Z such that |i| ≤ k,

and in particular ξ(ηj,k)
±k

j→∞−→ ξ̄±k.
We now define the diagonal index sequence

(an)n such that an
.= ηn,n.
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Since an → ∞ and, for every k, it holds (an)n ⊂ (ηj,k)j∈N, we have that

ξ
(an)
i

n→∞−→ ξ̄i, for every i ∈ Z.

Let us now define the limit sequence ξ̄ .= (ξ̄i)i: by construction it results that ξ̄ realizes
the word ℓ, in the sense that

ξ̄2j, ξ̄2j+1 ∈ I(ℓj), for every j ∈ Z.

In order to conclude the proof, we need to find the concatenation for the complete
dynamics which realizes the limit sequence ξ̄. To do that the admissibility of the word
ℓ will be crucial. Indeed, since h > h̄1, Theorems 3.2.3 and 3.2.7 guarantee that for
every j ∈ Z there exists a unique pair of arcs

zE

(
·; γ(ξ̄2j), γ(ξ̄2j+1)

)
and zI

(
·; γ(ξ̄2j+1), γ(ξ̄2j+2);h

)
.

We can then define the concatenation z̄ : R → R2 of these arcs as in Definition 3.3.9: our
aim is now to verify that z̄ is an admissible trajectory for the complete dynamics. By
construction, z̄ realizes the word ℓ, hence we are left to show that it satisfies the Snell’s
law at every transition point. This fact follows from the differentiable dependence
of the arcs with respect to the endpoints; indeed, for every j ∈ Z, we have the C1

convergence
zE

(
·; γ

(
ξ

(an)
2j

)
, γ
(
ξ

(an)
2j+1

))
→ zE

(
·; γ(ξ̄2j), γ(ξ̄2j+1)

)
and

zI

(
·; γ

(
ξ

(an)
2j+1

)
, γ
(
ξ

(an)
2j+2

)
;h
)

→ zI

(
·; γ(ξ̄2j+1), γ(ξ̄2j+2);h

)
.

Now the claim follows straightforwardly from the fact that the concatenations
(
z(an)

)
n

⊂(
z(n)

)
n

satisfy the Snell’s law at every transition point.

Defining now (ξ, v) .= (ξ̄0, z̄
′(0)) we have that π(ξ, v) = ℓ and the surjectivity is

proved.

At this point, the continuity of π is the last property to verify. Before proving it,
let us start with a preliminary lemma, which ensures that the time intervals associated
to every (outer or inner) arc are bounded from above uniformly with respect to the
endpoints.

Lemma 3.3.21. Let h > h̄1; then there exists C > 0 such that for every j ∈ I,
ξ0, ξ1 ∈ I(j) and ξ2 ∈

⋃
i∈NA(j)

I(i) it holds

TE(ξ0, ξ1) ≤ C, TI(ξ0, ξ2;h) ≤ C,

where TE and TI are as in Definition 3.3.9.

Proof. The proof follows easily by the continuous dependence of the outer and inner
arcs with respect to variations of the endpoints and by the compactness of the intervals
I(j), j ∈ I.
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We are now ready to verify the continuity of the map π; we recall that the space of
the admissible words L is endowed with the metric associated to the distance d(·, ·),
defined in Eq. (3.3.24), while in X we will consider the usual Euclidean metric over R3.

Proposition 3.3.22. If h > h̄1, the projection map π is continuous.

Proof. Let us fix (ξ0, v0) ∈ X, and take ϵ > 0. We are searching for δ > 0 such that, if
(ξ, v) ∈ X satisfies ∥(ξ, v) − (ξ0, v0)∥ < δ, then

d (π(ξ, v), π(ξ0, v0)) < ϵ. (3.3.27)

To this end, for every k ∈ Z it is convenient to define the k − th projection map

πk : X → I, πk(ξ, v) .= χ
(
Fk(ξ, v)

)
,

where χ is defined as in Eq. (3.3.25). Condition (3.3.27) translates in

∑
k∈Z

ρ (πk(ξ, v), πk(ξ0, v0))
4|k| < ϵ. (3.3.28)

As the above series is always convergent, there exists k0 ∈ N such that for every
(ξ, v) ∈ X ∑

|k|≥k0

ρ (πk(ξ, v), πk(ξ0, v0))
4|k| ≤

∑
|k|≥k0

1
4|k| < ϵ;

we will now prove that, if δ > 0 is small enough and ∥(ξ, v) − (ξ0, v0)∥ < δ, then

∑
|k|<k0

ρ (πk(ξ, v), πk(ξ0, v0))
4|k| = 0, (3.3.29)

and hence Eq. (3.3.27) is true. We observe that Eq. (3.3.29) is equivalent to require
that, if ℓ .= π(ξ, v) and m

.= π(ξ0, v0), then ℓk = mk for every |k| < k0, namely, that
the trajectories generated by (ξ, v) and (ξ0, v0) intersect the boundary ∂D in the same
neighbourhoods in the first k0 steps forward and backward. For δ small enough, this
is a straightforward consequence of the continuous dependence on the initial data of
both the inner and outer arc and the refraction law (along with its inverse): let us
in fact define z(·) and z0(·) as the trajectories for the complete dynamics such that
z(0) = γ(ξ), z′(0) = v, z0(0) = γ(ξ0) and z′

0(0) = v0. In view of Lemma 3.3.21, it is
possible to find a > 0 such that both the trajectories cross ∂D at least 4k0 + 3 times
within the time interval [−a, a] (recall that, for every concatenation outer-inner arcs,
we have exactly two intersections with ∂D): for every ϵ′ > 0, there exists then δ′ > 0
such that, if ∥(ξ, v) − (ξ0, v0)∥ < δ′

∥z − z0∥C0([−a,a]) < ϵ′.

As the intervals γ
(
I(j)

)
, j ∈ I, are disjoint, for ϵ′ small enough the two trajectories

must cross the interface in the same neighbourhoods for s ∈ [−a, a], and then, taking
the corresponding δ′, Eq.(3.3.29) holds.
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Taking together Propositions 3.3.20 and 3.3.22, one can then prove Theorem 3.1.5
in the case of the refractive dynamics. As for the reflective case, all the previous
considerations can be reproduced (actually, the absence of an outer dynamics leads
to a simpler model), including the existence of a symbolic dynamics under the same
admissibility hypotheses described in Assumption 3.3.1. This consideration concludes
the proof of Theorem 3.1.5

3.4 Non-collisional dynamics

Going back to Theorem 3.2.7, we recall that the inner dynamics naturally includes
collisional arcs. As a consequence, we can not a priori exclude the occurrence of
collisions in the symbolic dynamics found by means of Theorem 3.1.5. Nevertheless, as
we will prove in the present section, if we suitably restrict the set L we can construct a
non-collisional symbolic dynamics.

Let us start dealing with periodic trajectories: let ℓ ∈ L, as in Eq. (3.3.6), be
an admissible word and, with reference to Theorem 3.3.13, h > h̄1. Following the
reasoning of Section 3.3, one can then prove the existence of a sequence ξ̂ ∈ S◦

ℓ and
a corresponding trajectory z

(
·; ξ̂;h

)
which realizes the word ℓ, in the sense that the

transition points γ
(
ξ̂0
)
, . . . , γ

(
ξ̂2|ℓ|−1

)
belong to the segments of ∂D fixed by the

sequence ℓ. It is possible that two or more subsequent elements of ξ̂ are equal: in
view of Theorems 3.2.3 and 3.2.7, this implies the presence of homothetic outer arcs or
collisional inner arcs. As we will see in this section, the presence of radial segments
has strong consequences on the global structure of z

(
·; ξ̂;h

)
, as it implies a reflection

which involves every arc in the concatenation: this is possible only if ℓ satisfies precise
symmetry conditions.

Take now ℓ = (ℓ0, . . . , ℓn−1) and h > h̄1. As the trajectory z
(
·; ξ̂;h

)
is periodic,

one can identify ℓ with any of its shift, namely,

ℓ̃ =
(
ℓ̃0, . . . , ℓ̃n−1

)
=
(
ℓ(k)mod n, . . . , ℓ(n−1+k)mod n

)
(3.4.1)

for any k ∈ {1, . . . , n− 1}.

To describe in details the trajectory z
(
·; ξ̂;h

)
, it is worth to keep trace not only of

the transition points γ
(
ξ̂

i

)
, i = 0, . . . , 2n− 1, but also of the inner and outer velocity

vectors at such points. To this aim, let us define the finite sequences (vi)2n
i=0, (ṽi)2n

i=0,
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∂D

γ
(
ξ̂2j+1

)
v2j+1

ṽ2j+1

∂D

γ
(
ξ̂2j+1

)
= γ

(
ξ̂2j+2

)v2j+2

v2j+2

ṽ2j+1 = −ṽ2j+2

Fig. 3.7 Velocity vectors as defined in Eq. (3.4.2) in the non-collisional case (left) and in the
collisional case (right). In the second case, the collisional inner arc forces a reflection in the
adjacent outer arcs.

where, for every j = 0, . . . , n− 1 (see also Figure 3.7, left)6,

v2j = z′
E

(
0; γ

(
ξ̂2j

)
, γ
(
ξ̂2j+1

))
, v2j+1 = z′

E

(
T ; γ

(
ξ̂2j

)
, γ
(
ξ̂2j+1

))
,

v2n = v0,

ṽ2j+1 = z′
I

(
0; γ

(
ξ̂2j+1

)
, γ
(
ξ̂2j+2

)
;h
)
, ṽ2j+2 = z′

I

(
T ; γ

(
ξ̂2j+1

)
, γ
(
ξ̂2j+2

)
;h
)
,

ṽ0 = ṽ2n.

(3.4.2)

We now provide, omitting the straightforward proof, necessary and sufficient condi-
tions for the outer and inner arc to be respectively homothetic and collisional, depending
on their endpoints (see Figure 3.7, right).

Lemma 3.4.1. For any j = 0, . . . , n− 1:

• zE

(
·; γ

(
ξ̂2j

)
, γ
(
ξ̂2j+1

))
is a homothetic outer arc if and only if ξ̂2j = ξ̂2j+1. In

that case, one has also that v2j = −v2j+1 and the velocities are parallel to the
vector γ

(
ξ̂2j

)
;

• zI

(
·; γ

(
ξ̂2j+1

)
, γ
(
ξ̂2j+2

)
;h
)

is a collision-ejection inner arc if and only if
ξ̂2j+1 = ξ̂2j+2. As in the outer case, whenever it happens one has that ṽ2j = −ṽ2j+1

and the velocities are parallel to the vector γ
(
ξ̂2j+1

)
.

The following Theorem underlines as the presence of collisional inner arcs can
impact the overall structure of z

(
·; ξ̂;h

)
.

Theorem 3.4.2. Let ℓ ∈ L and h > h̄1; define n .= |ℓ|, and suppose n > 1. Let ξ̂ ∈ S◦
ℓ

and z(·) .= z
(
·; ξ̂;h

)
as in Theorem 3.3.13, and suppose that the concatenation z(·)

admits a collisional inner arc. Then:
6From this moment on, for the sake of brevity and with an abuse of notation, we will denote with

T the final time of an arc, omitting the dependence on the endpoints and without discerning between
the inner and the outer case.



3.4 Non-collisional dynamics 139

1. if n is even, z(·) has another collisional arc and there exists a shift ℓ̃ which is
symmetric with respect to the axis that separates ℓ̃n/2−1 from ℓ̃n/2;

2. if n is odd, then z(·) has a homothetic outer arc and there exists a shift ℓ̃ such
that the finite sequence (ℓ0, . . . , ℓn−1, ℓ0) is symmetric with respect to the axis that
separates ℓ̃(n+1)/2−1 from ℓ̃(n+1)/2.

Before providing the proof of Theorem 3.4.2, let us give an explicit example, which
will be useful to fix the notation and to clarify the reasoning used, in a completely
general framework, below.

Example 3.4.3. Let ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) ∈ L with n = |ℓ| = 4, and take h > h̄1: the
sequence ξ̂ provided by Theorem 3.3.13 is then of the form ξ̂ =

(
ξ̂0, . . . , ξ̂8

)
, with ξ̂0 = ξ̂8.

Let us suppose that the corresponding concatenation z
(
·; ξ̂;h

)
has a collisional inner

arc, and, in view of Eq. (3.4.1), suppose that this arc is given by zI

(
·; γ

(
ξ̂3, ξ̂4;h

))
.

From Lemma 3.4.1, this implies that ξ̂3 = ξ̂4 and ṽ3 = −ṽ4: by the Snell’s law, one has
then v3 = −v4. Recalling the definitions of vj given in Eq. (3.4.2), we have then

z′
E

(
T ; γ

(
ξ̂2
)
, γ
(
ξ̂3
))

= −z′
E

(
0; γ

(
ξ̂4
)
, γ
(
ξ̂5
))
.

By the uniqueness of the solution of a Cauchy problem, one can then conclude that the
arcs zE

(
·; γ

(
ξ̂2
)
, γ
(
ξ̂3
))

and zE

(
·; γ

(
ξ̂4
)
, γ
(
ξ̂5
))

parametrize the same curve but in
the opposite sense. More precisely,

zE

(
·; γ

(
ξ̂2
)
, γ
(
ξ̂3
))

= zE

(
T − · ; γ

(
ξ̂4
)
, γ
(
ξ̂5
))
,

and, as a consequence, ξ̂2 = ξ̂5 and v2 = −v5. Using the same reasonings, possibly
applied to the inner arc, one can prove that

ṽ2 = −ṽ5 =⇒ zI

(
·; γ

(
ξ̂1
)
, γ
(
ξ̂2
)

;h
)

= zI

(
T − · ; γ

(
ξ̂5
)
, γ
(
ξ̂6
)

;h
)

=⇒ ξ̂1 = ξ̂6 and ṽ1 = −ṽ6

=⇒ zE

(
·; γ

(
ξ̂0
)
, γ
(
ξ̂1
))

= zE

(
T − · ; γ

(
ξ̂6
)
, γ
(
ξ̂7
))

=⇒ ξ̂0 = ξ̂7 and v0 = −v7.

By periodicity, one has also that ξ̂0 = ξ̂8: by means of Lemma 3.4.1 one can
then conclude that the inner arc zI

(
·; γ

(
ξ̂7
)
, γ
(
ξ̂8
)

;h
)

must be of collision-ejection.
The concatenation z

(
·; ξ̂;h

)
bounces then between the collisional arcs described by

zI

(
·; γ

(
ξ̂3
)
, γ
(
ξ̂4
)

;h
)

and zI

(
·; γ

(
ξ̂7
)
, γ
(
ξ̂8
)

;h
)

(see Figure 3.8).
Let us now analyze the actual structure of ℓ; recalling Eqs. (3.3.7) and (3.3.8), one

has that ξ̂0, ξ̂1 ∈ I(ℓ0), ξ̂2, ξ̂3 ∈ I(ℓ1), ξ̂4, ξ̂5 ∈ I(ℓ2) and ξ̂5, ξ̂6 ∈ I(ℓ3). Hence, since ξ̂3 = ξ̂4
and ξ̂5 = ξ̂1, we can infer that ℓ1 = ℓ2 and ℓ0 = ℓ3, and then the finite sequence ℓ is
symmetric with respect to the axis which divides ℓ1 = ℓ4/2−1 from ℓ2 = ℓ4/2.

The reasoning used in the previous example can be generalised to find necessary
conditions on ℓ to have a collisional orbit: as claimed in Theorem 3.4.2 and underlined
in its proof, proposed below, the presence of a collisional reflection arc always forces the
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ξ̂2 = ξ̂5
ξ̂3 = ξ̂4

ξ̂8 = ξ̂0 = ξ̂7

ξ̂1 = ξ̂6

Fig. 3.8 Graphical representation of a possible trajectory with the structure described in
Example 3.4.3

(
to ease the notation, here ξ̂j = γ

(
ξ̂j

))
. The presence of a collisional inner

arc, along with the periodicity of the whole concatenation and the total number of transition
points (determined by the length of ℓ), implies the existence of a second collisional arc.

complete trajectory to have another reflection, which can be either another collision-
ejection arc or a homothetic outer arc depending, on the parity of |ℓ|.

Proof of Theorem 3.4.2. Let us start by assuming that n is even: in view of Eq.
(3.4.1), we can suppose without loss of generality that the collisional arc is the one
connecting γ

(
ξ̂n−1

)
to γ

(
ξ̂n

)
, namely, zI

(
·; γ

(
ξ̂n−1

)
, γ
(
ξ̂n

)
;h
)
. Then, following the

same reasonings used in Example 3.4.3, one has the following equalities:

∀j = 0, . . . , n− 1 ξ̂n−(j+1) = ξ̂n+j, ṽn−(j+1) = −ṽn+j, vn−(j+1) = −vn+j,

∀j = 0, . . . , n− 2
zE

(
·; γ

(
ξ̂n−(j+2)

)
, γ
(
ξ̂n−(j+1)

))
= zE

(
T − · ; γ

(
ξ̂n+j

)
, γ
(
ξ̂n+j+1

))
if j is even,

zI

(
·; γ

(
ξ̂n−(j+2)

)
, γ
(
ξ̂n−(j+1)

)
;h
)

= zI

(
T − · ; γ

(
ξ̂n+j

)
, γ
(
ξ̂n+j+1

)
;h
)

if j is odd.
(3.4.3)

In particular, taking j = n− 1, one has ξ̂0 = ξ̂2n−1; by periodicity, ξ̂2n = ξ̂2n−1. Hence
by Lemma 3.4.1, the inner arc zI

(
·; γ

(
ξ̂2n−1

)
, γ
(
ξ̂2n

)
, h
)

must be collisional, and
then the first claim is proved. Let us now focus on the structure of ℓ = (ℓ0, . . . , ℓn−1).
Since for every k = 0, . . . , n − 1 one has ξ̂2k, ξ̂2k+1 ∈ I(ℓk), equalities in (3.4.3) imply
that for every j = 0, . . . , n/2 − 1 it holds ℓn/2−(j+1) = ℓn/2+j, and then the sequence
(ℓ0, . . . , ℓn−1) is symmetric with respect to the axis which separates ℓn/2−1 from ℓn/2.
Let us now suppose that n > 1 is odd and, without loss of generality, assume that the
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arc zI

(
·; γ

(
ξ̂n

)
, γ
(
ξ̂n+1

)
, h
)

is collisional. One can infer that

∀j = 0, . . . , n− 1 ξ̂n−j = ξ̂n+j+1, ṽn−j = ṽn+j+1, vn−j = vn+j+1,

∀j = 0, . . . , n− 2zE

(
·; γ

(
ξ̂n−(j+1)

)
, γ
(
ξ̂n−j

))
= zE

(
T − · ; γ

(
ξ̂n+j+1

)
, γ
(
ξ̂n+j+2

))
if j is even

zI

(
·; γ

(
ξ̂n−(j+1)

)
, γ
(
ξ̂n−j

)
;h
)

= zI

(
T − · ; γ

(
ξ̂n+j+1

)
, γ
(
ξ̂n+j+2

)
;h
)

if j is odd
(3.4.4)

Again, taking j = n− 1 and considering the periodicity of ξ̂, one has ξ̂1 = ξ̂2n = ξ̂0, and
this implies that the outer arc zE

(
·; γ

(
ξ̂0
)
, γ
(
ξ̂1
))

is homothetic. Eqs. (3.4.4) imply
also that for every j = 0, . . . , (n+ 1)/2 − 2 one has ℓ(n+1)/2−(j+1) = ℓ(n+1)/2+j , and then
the finite sequence (ℓ0, . . . , ℓn−1, ℓ0) is symmetric with respect to the axis separating
ℓ(n+1)/2−1 from ℓ(n+1)/2.

Remark 3.4.4. The proof of Theorem 3.4.2 is particularly rich of further informations:

1. in both the described cases one can not have more than two radial (inner or
outer) arcs; in particular, the concatenation segment between two radial arcs must
contain n− 1 non-radial intermediate arcs. This is necessary to have |ℓ| = n;

2. with completely analogous reasonings, one can prove that, if z
(
·, ξ̂, h

)
admits an

outer homothetic arc, then

• if |ℓ| is even, there must be another outer homothetic arc;
• if |ℓ| is odd, there must be a collision-ejection inner arc.

In both cases, the sequence ℓ must satisfy symmetry properties analogous to the
ones described in Theorem 3.4.2;

3. as a consequence, a periodic trajectory can have either zero or two radial arcs,
between which it is reflected.

Remark 3.4.5. In the particular case n = 1, one has that the concatenation z
(
·, ξ̂, h

)
is

collisional if an only if it is a homothetic orbit for the complete dynamics. In particular,
this is possible if and only if, being ℓ = (j), with j ∈ I, one has ξ̂0 = ξ̂1 = ξ̂2 = ξ̄j.

Theorem 3.4.2 provides necessary conditions on a finite word ℓ for the corresponding
dynamics to be collisional. By periodicity, we can extend this result to periodic
bi-infinite words in LP , and, actually, to any admissible word in L. Indeed, if a
concatenation z satisfying ℓ ∈ L has a collision, then using the same reasoning as in
Theorem 3.4.2, we deduce the symmetry of the word ℓ. In particular, if ℓ ∈ LP we are
again in the case described in Remark 3.4.4.

On the other hand, the same results can be used in a reversed formulation to
have sufficient conditions for the concatenation induced by ℓ to be non-collisional.
In particular, restricting the set of the admissible words to the ones which do not
present the symmetry highlighted in Theorem 3.4.2, one can construct a non-collisional
symbolic dynamics for our refractive billiard.
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θ′

θ

P

v′

v

n

t θ
′
1

θ1

γ (ξ1)

γ (ξ0)

θ0

Fig. 3.9 Left: reflection law for the Keplerian billiard. Right: coordinates of the first return
map f : (ξ0, θ0) 7→ (ξ1, θ1).

Corollary 3.4.6. Define the set L̃ ⊊ L as

L̃ = {ℓ ∈ L | ℓ is not symmetric} ,

then the symbolic dynamics semi-conjugated to L̃ is not collisional, in the sense any
trajectory corresponding to a word ℓ ∈ L̃ does not have any collisional inner arc.

3.5 Dynamical consequences: analytic non-integrability

This last section recollects results obtained along the whole study of the galactic
refraction (and reflection) billiard, through Chapters 1, 2 and 3, to investigate the issue
of the chaoticity and integrability of such model. In Section 1.7 we already observed
that a centred ellipse could produce, given a certain choice of the physical parameters,
diffusive chaotic orbits. More generally, the presence of a symbolic dynamics proved in
Section 3.3 is a strong hint of complex behaviors. It is then reasonable to ask whether,
as far as h is large enough, our system is non-integrable.
Let us start with some considerations related to the presence of infinitely many
heteroclinic connections between different homothetic collision-ejection trajectories (on
this topic see for example [82–84]). We will present results which hold both in the
refractive and reflective case, assuming some further assumptions on the domain D,
according to the following definition.
Definition 3.5.1. An admissible domain D (according to Definition 3.2.4) is termed
non degenerate if every central configuration ξ̄i, i ∈ I, is non degenerate in the sense
that

d2

dξ2 ∥γ(ξ)∥|ξ=ξ̄i
̸= 0.

Proposition 3.5.2. Suppose D is admissible and that there exists a non-degenerate
central configuration ξ̄i, for some i ∈ I. Then if h is large enough, the homothetic
trajectory in the direction of γ

(
ξ̄i

)
is a hyperbolic saddle equilibrium.

Proof. The proof of this result in the case of the refractive dynamics relies on asymptotic
estimates based on 1.5.1. Here, in particular, a general domain is considered, and,
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after the construction of a suitable first return map f , the stability of the homothetic
trajectories is investigated in relation to the local geometric features of the boundary
and the value of the physical parameters E , h, ω, µ. The inspection is carried on by
considering the sign of the discriminant ∆ of the characteristic polynomial associated
to the Jacobian matrix of f centered in an homothetic direction. By straightforward
estimates, one can prove that, as long as the considered homothetic direction is
nondegenerate, lim

h→∞
∆ > 0, and then ξ̄ is a saddle point.

Let us now pass to the reflective Kepler billiard. We refer again to the procedure used
in [1] for the computation of ∆, presenting the explicit computation adapted to the
reflective case. Let us start by giving the analytic formulation of the reflection law:
consider an inner Keplerian arc that intersects the boundary in the point P and with
velocity vector v′ (see Figure 3.9, left). Decomposing v′ with respect to the basis (t, n)
given respectively by the tangent and the normal unit vectors to ∂D in P , one has
that the reflected velocity v has the same tangent component of v′, while the normal
component is equal except for the opposite sign. Equivalently, if θ and θ′ are the angles
respectively of v and v′ with t, one has θ = −θ′ and, as a consequence,

cos θ = cos θ′. (3.5.1)

This relation will be used, in the computation of ∆, as replacement of the Snell’s
law. Let us now take (P, v) ∈ ∂D × Br with r =

√
2
√

E + h+ µ/∥P∥ as the initial
condition of an inward-pointing Keplerian hyperbola: it is uniquely determined by
the pair (ξ, θ), where γ(ξ) = p and θ is defined as before. We want to construct (at
least implicitly) the first return map that, given a pair (ξ0, θ0), returns the parameters
(ξ1, θ1) corresponding to the position and velocity vector obtained after going through
an inner arc and the subsequent reflection (see Figure 3.9, right). By virtue of Lemma
1.2.6 and Eq. (3.5.1), we can infer that the quantities (ξ0, θ0, ξ1, θ1) have to satisfy the
relation

Φ (ξ0, θ0, ξ1, θ1) =
(

Φ1(ξ0, θ0, ξ1, θ1)
Φ2(ξ0, θ0, ξ1, θ1)

)
=
∂ξ0SI (ξ0, ξ1) +

√
VI (γ (ξ0)) cos θ0

∂ξ1SI (ξ0, ξ1) −
√
VI (γ (ξ1)) cos θ1

 =
(

0
0

)

Let us now consider a central configuration ξ̄: it is straightforward that the coordi-
nates

(
ξ̄, θ̄

)
=
(
ξ̄, π/2

)
correspond to the collision-ejection homothetic solution in the

direction of γ
(
ξ̄
)
, which is reflected exactly in itself. This means that, denoted with

q = (ξ̄, θ̄, ξ̄, θ̄) the initial and final parameters related to an homothetic trajectory, one
has that Φ

(
q
)

= 0. Let us now define the matrix

D(ξ1,θ1)
(
q
)

=


∂Φ1

∂ξ1

(
q
) ∂Φ1

∂θ1

(
q
)

∂Φ2

∂ξ1

(
q
) ∂Φ2

∂θ1

(
q
)
 :

if det
(
D(ξ1,θ1)

(
q
))

̸= 0, then by the implicit function theorem f : (ξ0, θ0) 7→ (ξ1, θ1) is
well defined in a neighbourhood of

(
ξ̄, θ̄

)
, and

Df
(
ξ̄, θ̄

)
= −

(
D(ξ1,θ1)

(
q
))−1

D(ξ0,θ0)
(
q
)
.
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From straightforward computations, one has that

det
(
D(ξ1,θ1)

(
q
))

=
√
VI

(
γ
(
ξ̄
))
∂ξ0ξ1SI

(
ξ̄, ξ̄

)
= µ

4∥γ
(
ξ̄
)

∥2
,

where the last equation is obtained by taking into consideration Eqs. (1.5.20). The
implicit function theorem can then be applied to obtain

Df(ξ̄, θ̄) =



−
∂2

ξ0SI

(
ξ̄, ξ̄

)
∂ξ0ξ1SI

(
ξ̄, ξ̄

)
√
VI

(
γ
(
ξ̄
))

∂ξ0ξ1SI

(
ξ̄, ξ̄

)
1√

VI

(
γ
(
ξ̄
))
∂2

ξ0SI

(
ξ̄, ξ̄

)
∂2

ξ1SI

(
ξ̄, ξ̄

)
)

∂ξ0ξ1SI

(
ξ̄, ξ̄

)
 −

∂2
ξ1SI

(
ξ̄, ξ̄

)
∂ξ0ξ1SI

(
ξ̄, ξ̄

)


and then ∆, which is the discriminant of the characteristic polynomial associated to
the above matrix, is given by

∆ =
∂2

ξ0SI

(
ξ̄, ξ̄

)
∂2

ξ1SI

(
ξ̄, ξ̄

)
∂ξ0ξ1SI

(
ξ̄, ξ̄

)
2

− 4

=
32∥γ

(
ξ̄
)

∥4

µ2

(
VI

(
γ
(
ξ̄
)))3/2

k (ξ̄)− 1
∥γ
(
ξ̄
)

∥

×

×


√
VI

(
γ
(
ξ̄
))k (ξ̄)− 1

∥γ
(
ξ̄
)

∥

+ µ

2∥γ
(
ξ̄
)

∥2
√
VI

(
γ
(
ξ̄
))


where we used again Eqs. (1.5.20). The final result is then trivially obtained by
observing that, if ξ̄ is a non degenerate critical point for ∥γ (·) ∥, then ∆ > 0 for h
large enough.

For the readers’ convenience, as these sets will be widely used in the following, let
us recall that the construction of the set of initial conditions X is done in Section 3.3.3,
and that the set U(δ) is introduced in Definition 3.2.5.
Let us now present two lemmas, which will be the basis to prove the existence of
heteroclinic connections between nondegenerate saddles. They are based on a construc-
tion which is analogous to the one presented in Section 3.3.2, except for the fact that,
instead of periodic trajectories, we consider fixed-ends ones. For this reason, for any
n ≥ 2 consider the sets

L′
n = {ℓ = (ℓ0, . . . , ℓn−1) : ℓi ∈ I and ∀i = 0, . . . , n− 2 ℓi+1 ∈ NA (ℓi)} ,

U′
ℓ = (I0 × I0) × (I1 × I1) × · · · × (In−2 × In−2) × In−1,

S′
ℓ =

{
ξ = (ξ0, . . . , ξ2n−2) ∈ Uℓ : ξ0 = ξ̃a, ξ2n−2 = ξ̃b

}
,
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where ξa ad ξb are fixed respectively in I0 and In−1. It is easy to prove that

L =
⋃

n∈N\{0}
L′

n,

with L defined as in Eq. (3.3.6).
Let us remark that, in this setting, we have 2n − 3 free points ξ1, . . . , ξ2n−3. As a
consequence, given a sequence ξ ∈ S′

ℓ, the total Jacobi length takes the form

W ′
ℓ(ξ;h) =

n−2∑
j=0

SE(ξ2j, ξ2j+1) +
n−2∑
j=0

SI(ξ2j+1, ξ2j+2;h). (3.5.2)

In this framework, Definition 3.3.9 and Eq. (3.3.11) are the same, with straightforward
modifications in the indices. Again, sequences in S ′

ℓ such that ∇W ′
ℓ(ξ) = 0 correspond

to admissible trajectories for our fixed-ends dynamics which realize the word ℓ.
Lemma 3.5.3. Let us fix ℓ ∈ L, and set n .= |ℓ|. Fixed ξa ∈ I0 and ξb ∈ In−1, there
exists a trajectory which connects γ (ξa) to γ (ξb) realizing the word ℓ.

Proof. The proof of this result is completely analogous of the one of Theorem 3.3.13,
setting d .= 2n− 3,

R
.= I0 × (I1 × I1) × . . .× (In−2 × In−2) ,

Fi(ξ) .=
∂W ′

ℓ

∂ξi

(
ξ
)

for every i = 1, . . . , 2n− 3.

Following exactly the techniques used in Proposition 3.3.20 we can pass from fixed-
ends finite trajectories to one-side infinite ones starting from a chosen point. Before
doing that, it is worth to define the set of the admissible infinite words

L+ .=
{
(ℓ0, . . . , ℓn, . . .) ∈ IN : ℓi + 1 ∈ NA(ℓi) ∀i ∈ N

}
.

Lemma 3.5.4. Let ℓ ∈ L+ and ξ ∈ I(ℓ0). The there exists v ∈ R2 such that (ξ, v) ∈ X
and π(ξ, v) = ℓ7.

The next result is a straightforward consequence of Lemma 3.5.4 and Proposition
3.5.2.
Corollary 3.5.5. Suppose D is admissible and that there exists a non-degenerate central
configuration ξ̄i, for some i ∈ I. Then, if h is large enough, for every ξ ∈ U(δ) there
exist infinitely many half-heteroclinic connections tending forward (resp. backward) to
the homothetic trajectory in the direction of γ

(
ξ̄i

)
.

As far as more than one central configuration is non degenerate, Lemma 3.5.4 allows
to construct heteroclinic connections between different saddle points.

7Here, the projection is intended only for the forward trajectory starting from (γ(ξ), v).
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Corollary 3.5.6. If D is admissible and the energy jump h is large enough, then
for every pair of non degenerate central configurations ξ̄i, ξ̄j, i, j ∈ I, i ̸= j, there
exist infinitely many heteroclinic connections between the homothetic trajectories in the
direction of γ

(
ξ̄i

)
and γ

(
ξ̄j

)
for both the refractive and the reflective dynamics.

Proof. The proof is identical for both the cases: let us suppose that h is large enough
such that both Theorem 3.1.5 and Proposition 3.5.2 hold. Now, taken i ∈ I and
j ∈ NA(i), call z̄i and z̄j the corresponding homothetic trajectories and consider
the bi-infinite (non-periodic) word ℓ = (. . . , i, i, i, [. . .], j, j, j, . . . ), where [. . .] denotes
any word of finite length such that ℓ ∈ L. By means of Theorem 3.3.13, find the
sequence (ξ̂k)k∈Z which realizes ℓ. By the hyperbolicity of both z̄i and z̄j as equilibrium
trajectories, this sequence must belong to the unstable manifold of z̄i as well as to the
stable manifold of z̄j.

The last result of this section connects the presence of infinitely many half-
heteroclinics to the analytic non-integrability of our dynamical systems. This result is
obtained by adapting a classical argument by Kozlov ([34]) and makes use of Lemma
3.5.4 and Corollary 3.5.5.

Theorem 3.5.7. Suppose D is an admissible domain and assume there exists a non-
degenerate central configuration ξ̄i, for some i ∈ I. Then, if h is large enough, there
are no non-constant analytic first integrals associated to the dynamics.

Proof. On every initial condition (ξ, v) ∈ X, the first return map, its inverse and all
their iterates are well defined. In particular, let us observe that, fixed ξ ∈ [0, L], every
outward-pointing velocity vector v starting from γ(ξ) is uniquely determined by the
angle α ∈ (−π/2, π/2) between v and the normal unit vector to γ at γ(ξ). Using α
as a new variable, the initial conditions corresponding to the homothetic arcs will be
denoted with (ξ̄j, 0), j ∈ I. By construction, and with a slight abuse of notation, there
exists δ > 0 and α0 > 0 such that

X ⊂ U(δ) × (−α0, α0).

Let now G : O → R, with O an open set containing U(δ) × (−α0, α0), be an analytic
first integral and let c ∈ R be such that G(ξ̄i, 0) = c. If h is large enough, by Proposition
3.5.2, the stable and unstable manifolds of (ξ̄i, 0) are contained in the same level set
{G = c}.
Fix now ξ̂ ∈ U(δ): Lemma 3.5.4 ensures that there exist infinite pairs
(ξ̂, α) ∈ {ξ̂} × (−α0, α0) that belong to the stable manifold of (ξ̄i, 0). This means that
the c-level of the analytic function G(ξ̂, ·) : (−α0, α0) → R admits an accumulation
point. Hence, this function is constant. We conclude the proof by the arbitrarity of
ξ̂.

We stress that, with the obvious modifications on the quantity involved, the above
results hold also in the reflective case.
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If the domain D is nondegenerate as in Definition 3.5.1, making use of the estimates
in [76], one can prove that the projection π that define the symbolic dynamics determined
in Theorem 3.1.5 is actually injective, so that the dynamical system defined by F|X is
topologically chaotic. The details of this proof, based on the uniqueness of the critical
point provided by Poincaré-Miranda Theorem, will be described in [3].





Part II

Normal forms and Nekhoroshev
theory for geocentric satellites





Chapter 4

Stability estimates for Earth’s
satellites through normal forms

4.1 Introduction

One of the major goals of Celestial Mechanics is the analysis of the stability of the
dynamics of celestial bodies. Knowing the behavior in time of the orbital elements of
an object allows one to predict its future, in particular whether it will cross the orbit
of other celestial bodies and eventually undergo collisions. When applied to artificial
spacecraft and space debris orbiting around the Earth, the question of the stability
becomes of crucial importance, especially in view of the problem of estimating the
orbital survival times of operating satellites or space debris. It is therefore crucial to
devise methods that allow to study the orbital stability of objects moving around our
planet.

In particular, we will not consider the complex dynamics of an artificial spacecraft,
which should include the analysis of its shape, composition as well as its rotational
motion. We will rather consider a point-mass body around the Earth, that we can
identify with one of the several millions of space debris orbiting our planet. In fact,
the proliferation of artificial satellites in the last decades has led to the generation of
an enormous amount of space debris with different sizes, from meters down to microns,
and at different altitudes. Space debris are remnants of non operational satellites or the
result of break-up events, either collisions or explosions. Since the altitude determines
the contribution of the different forces acting on the object (the gravitational attraction
of the Earth, its geopotential perturbation, the influence of Sun and Moon, the Solar
radiation pressure, etc.), it is convenient to make a distinction in terms of the altitude.
To this end, the space in the surrounding of the Earth is commonly split into three main
regions: LEO (‘Low Earth Orbit’) denotes the region up to about 2 000 km of altitude
in which the Earth’s attraction, the geopotential as well as the atmospheric drag are
the terms which greatly affect the dynamics of an Earth’s satellite; MEO (‘Medium
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Earth Orbit’) refers to the region between 2 000 and 30 000 km in which the effects of
Moon, Sun and Solar radiation pressure become important; GEO (‘Geosynchronous
Earth Orbit’) refers to a thin (∼ 200 km) zone around the geostationary orbits (at
42 164 km from Earth’s center), where the satellites are in synchronous resonance with
the 24-hour rotation of the Earth around its spin-axis.

The huge amount of objects (up to millions) in LEO, MEO, GEO needs a careful con-
trol of their orbits and the analysis of their dynamical stability ([39, 42, 41, 95, 43, 96]),
also in view of devising appropriate mitigation measures (see, e.g., [35–37]). For objects
in LEO, it is of crucial importance to evaluate the orbital lifetime, which is strongly
affected by the atmospheric drag which provokes a decay of the orbits ([97, 44, 98–100]).
On the other hand, the study of dynamics at MEO in the conservative regime has
been subject of many works, including the development of analytical models (e.g.,
[101, 42, 102–104]), study of resonances (e.g., [105, 106, 95, 107–113]), as well as the
dynamical chartography (stability maps, onset of chaos) of the MEO region (e.g.,
[114, 115, 46, 47, 116–121]).

In this work we focus on objects in MEO, GEO and beyond, thus not taking into
account the dissipative effect of the atmosphere. Instead of using a propagation of the
orbits to predict the stability time of the orbital elements, we propose a procedure
based on analytical perturbative methods (see also [50]). More precisely, via a suitably
defined sequence of canonical transformations, we construct a normal form of the
Hamiltonian function, which enjoys the property that one or more of the Hamiltonian’s
Delaunay actions define quasi-integrals of motion (namely, integrals of the integrable
part of the new Hamiltonian). Once the transformed Hamiltonian is obtained, the size
of its remainder (which gives a control on the goodness of the approximation) can then
be used to provide bounds on the time variations, and hence the stability time of the
orbital elements (semimajor axis, eccentricity, inclination) as a function of the distance
of the object from the Earth. We refer to this procedure as semi-analytical, which
means that it uses an analytical method, precisely normal forms, whose coefficients are
calculated numerically, namely with the aid of a computer.

We consider two different models to describe the motion of the debris around the
Earth. The first model takes into account only the influence of the geopotential up to
the term J2 of its expansion in spherical harmonics (see [45]); we refer to this problem
as the J2 model and denote the corresponding Hamiltonian as HJ2 , which results from
truncating to a suitable power of the coordinates around reference values, and normal-
izing up to a suitable order, as described in Section 4.4.1. The second model, referred
to as the secular ‘geolunisolar’ model (Hamiltonian Hgls, truncated and normalized
similarly to HJ2 , see Sections 4.2.2 and 4.5.1), includes also the effects of the Moon and
the Sun, placing, for simplicity, the Moon strictly on the ecliptic; this last restriction
means to omit from the Hamiltonian terms corresponding to lunisolar resonances other
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than the ‘inclination-dependent’ ones. The latter resonances, on the other hand, are
those producing the most important effects as regards orbital stability (see [95, 42] for
a review). Furthermore, instead of formally eliminating the fast angle via canonical
transformations (as we do in the pure J2 problem), in Hgls we just take the average
of the Hamiltonian with respect to all fast angles, namely, the mean anomaly of the
satellite as well as the fast angles of the Moon and Sun: this averaged model allows us
to focus on the satellite’s long-term dynamics (i.e. the secular one). The averaging is
done in closed-form (see [122]) and leads to formulas equivalent to those described in
[45]. Furthermore, we reduce this last Hamiltonian to action-angle variables around
each forced equilibrium point, which corresponds to a non-zero inclination defining the
so-called Laplace plane (see Section 4.2.2).

In summary, our stability estimates are obtained according to the procedure (i)-(iii)
outlined below:
i) Within the J2 model, we make a formal elimination in the Hamiltonian of the fast
angle (mean longitude); as a consequence, we get the preservation of the conjugate
action variable corresponding to the semimajor axis. This allows us to compute the
stability time for the semimajor axis at different altitudes, yielding stability times that
increase with the altitude.
ii) Using Hgls, instead, the semimajor axis becomes a parameter (with a priori constant
value), while we proceed to analyze the behaviour of eccentricity and inclination. The
latter is obtained using a quasi-resonant normal form, which reflects the 1:1 near-
resonance of the integrable part of Hgls between the frequencies of the longitude of
the ascending node and the sum of the argument of perigee and the longitude of the
ascending node (see Section 4.2.2). This means that, close to the Laplace plane, the
quasi-preserved secular quantities cannot be defined neither as the eccentricity e nor the
inclination i alone, but rather by the Kozai-Lidov combination I = 1 −

√
1 − e2 cos i ≈

(e2 + i2)/2 (for e, i small). We then explore the dependence of the stability time of I
on the altitude of the orbit. Our results show that the J2 and lunisolar terms have
an opposite effect on the time of stability as the distance from the Earth increases.
As a by-product of this analysis, we also compute the so-called forced inclination
(that is, the inclination of the Laplace plane), which corresponds to the shift of the
secular equilibrium from a strictly equatorial orbit to an orbit with small positive initial
inclination, an effect caused by the fact that the perturbing bodies (Moon and Sun)
are in orbits inclined with respect to the Earth’s equator.
iii) Finally, as a first step towards obtaining exponential stability estimates à la
Nekhoroshev ([53]), we check whether some so-called ‘steepness’ conditions are satisfied
for the integrable part of both Hamiltonians HJ2 and Hgls, namely whether the
integrable parts are convex, quasi-convex, or satisfy the three-jet condition (see [55]
and references therein). The results show that the J2 model is three-jet non-convex,
while the contribution of the lunisolar terms removes the intrinsic degeneracy of the J2
part and allows us to conclude that the geolunisolar model is quasi-convex. A detailed
application of the non-resonant form of Nekhoroshev’s theorem in the Hamiltonian
Hgls is the subject of Chapter 5.

Summarizing, the previous strategy allows us to obtain three different stability
results: one for the semimajor axis in the J2 model, a second for the stability of the
eccentricity and inclination in the geolunisolar model, and a third on the holding,
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altogether, of necessary conditions for Nekhoroshev-type stability of the satellite orbits.
All three results point towards the same direction, i.e. that, at least far from exact
resonances, orbital stability can be ensured at MEO, GEO and beyond for quite long
times (104 − 106 orbital periods, 102 − 104 years). Besides these general numbers,
one may remark that the calculation of the size of the remainder of the normal form
actually provides an estimate of the rate of drift of the orbits in element space, an
information required in orbital diffusion studies for defunct satellites and space debris.
The figures of the current chapter are taken from [4].

4.2 The J2 and geolunisolar models

Bodies orbiting around the Earth are primarily affected by the Keplerian attraction
with our planet. However, for an accurate description of the dynamics it is mandatory
to assume that the Earth is non-spherical. Beside the Earth, the satellite dynamics
is subject to the gravitational influence of Sun and Moon. Section 4.2.1 describes
the Hamiltonian model HJ2kep, which includes the Earth’s Keplerian term and the
first non-trivial term in the expansion of the geopotential. Section 4.2.2 presents the
Hamiltonian model Hgls,sec, which includes J2 and lunisolar terms, averaged over the
fast angles.

4.2.1 The J2 model

We consider a model describing the motion of a point-mass body, say a satellite S,
under the effect of the Earth’s gravitational attraction, including an approximation of
the geopotential due to the oblateness of the Earth. Let r ≡ (x, y, z) be the position
vector of S in a geocentric reference frame, with the plane (x, y) coinciding with the
equatorial plane, and x pointing towards a fixed celestial point (e.g. the equinox). We
consider the Hamiltonian describing the motion of S under the geopotential as the sum
of two terms

HJ2kep = Hkep + VJ2 , (4.2.1)
where

Hkep = p2

2 − µE

r
(4.2.2)

is the Keplerian part (r = ∥r∥), and

VJ2 = −J2
µER

2
E

r3

(
1
2 − 3z2

2r2

)
, (4.2.3)

is the J2 potential term, arising from expanding the geopotential in spherical harmonics
and retaining only the largest coefficient (see, e.g., [45]). The constants are the Earth’s
mass parameter µE = GME (G = Newton’s constant, ME = Earth’s mass), RE is the
mean Earth’s radius, and J2 is a dimensionless coefficient describing the oblate shape
of the Earth. Their numerical values are:

• µE = 1.52984 × 109 R3
E/yr

2;

• RE = 6378.14 km;
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• J2 = −1082.6261 × 10−6.

The Hamiltonian (4.2.1) is expressed in Cartesian coordinates. However, by a
standard procedure, it can be transformed to an expression in the following set of
modified Delaunay canonical action-angle variables

L = √
µEa

P = √
µEa(1 −

√
1 − e2)

Q = √
µEa

√
1 − e2(1 − cos i)


λ = M + ω + Ω
p = −ω − Ω
q = −Ω ,

(4.2.4)

where (a, e, i,M, ω,Ω) are the orbital elements of the satellite (semimajor axis, eccen-
tricity, inclination, mean anomaly, argument of the perigee, longitude of the nodes).
The passage is done by first expressing the Hamiltonian (4.2.1) in elements via the
relations (see e.g. [123])

x = 1
2r(1 + cos i) cos(f + ω + Ω) + 1

2r(1 − cos i) cos(f + ω − Ω)

y = 1
2r(1 + cos i) sin(f + ω + Ω) − 1

2r(1 − cos i) sin(f + ω − Ω) (4.2.5)

z = r sin i sin(f + ω),

where f is the true anomaly and r, cos f and sin f are given by the series

r = a

[
1 + e2

2 − 2e
∞∑

ν=1

(Jν−1(νe) − Jν+1(νe)) cos(νM)
2ν

]
(4.2.6)

cos f = 2(1 − e2)
e

∞∑
ν=1

Jν(νe) cos(νM) − e

sin f = 2
√

1 − e2
∞∑

ν=1

1
2 (Jν−1(νe) − Jν+1(νe)) sin(νM) .

In the actual calculations, all series are truncated to order N = 15 in the eccentricity
e. Finally, we pass from the elements (a, e, i,M, ω,Ω) to the canonical variables
(L, P,Q, λ, p, q) by inverting Eqs. (4.2.4).

To perform the high order normal form computations described in Section 4.4,
using computer algebra, it is convenient that the dependence of the Hamiltonian on
the action-angle variables be expressed as a trigonometric polynomial. To this end, we
first make a shift transformation L → δL around a reference value a∗, with

δL = L− L∗ = √
µEa− √

µEa∗ . (4.2.7)

This means that the Hamiltonian found after expanding in powers of the quantity δL
refers to the local dynamics of orbits with semimajor axis a ≈ a∗. Every time when
we change the reference value a∗ (i.e. the ‘altitude’ or ‘distance’ of the orbit from
the Earth’s center), we then perform the Hamiltonian expansion anew around L∗ and
obtain the stability estimates corresponding to that reference value. One may also note
that P = O(e2/2) and Q = O(i2/2), thus all three quantities δL, P and Q are small
quantities for orbits not very far from the equator and not very far from circular. We
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then expand HJ2kep(δL, P,Q, λ, p, q) in powers of
√
δL,

√
P , and

√
Q up to the same

order N = 15 as the original expansion in the eccentricity (this ensures missing no
term in P,Q in the Hamiltonian up to the order N). After this change, the truncated
Hamiltonian takes the form (apart from a constant):

H≤N
J2kep = n∗δL+ ω1∗P + ω2∗Q+

2N∑
s=1
s ̸=2

Zs(δL, P,Q)

+
2N∑
s=1

∑
k1,k2,k3∈Z

0<|k1|+|k2|+|k3|≤s

Ps,k1,k2,k3(δL, P,Q) cos(k1λ+ k2p+ k3q). (4.2.8)

The functions Zs and Ps,k1,k2,k3(δL, P,Q) are polynomials of degree s/2 in the action
variables (δL, P,Q). The frequency n∗is equal to:

n∗ =
√
µE

a3
∗

+ J2
3µ1/2

E R2
E

a
7/2
∗

, (4.2.9)

while ω1∗ and ω2∗ can be retrieved in Section 5.7 by setting (i∗e∗) = (0, 0). The
Hamiltonian (4.2.8) is the starting point for the stability estimates on the orbits’
semimajor axes; one notices that ω1∗, ω2∗ = O (J2), a fact implying that both these
frequencies are way smaller than n∗ ≃ (µE/a

3
∗)1/2 (third Kepler’s law). Accordingly,

for all orbits the angle λ circulates at a rate which is O(1/J2) faster than the rate of
circulation of the angles p, q. Hence, λ constitutes the ‘fast angle’ of the Hamiltonian
H≤N

J2kep. Its elimination through a suitable sequence of canonical transformations leads
to the approximate constancy of the value of the semimajor axis, as detailed in Section
4.4.

4.2.2 The geolunisolar Hamiltonian

While stability estimates for the semimajor axis depend mostly on the Earth’s J2 term,
the question of the long-term stability as regards secular variations in eccentricity and
inclination requires considering the effects of the Lunar and Solar gravitational tides.
Let us consider a celestial body B (either Moon or Sun) with mass Mb moving around
the Earth and whose orbit is exterior to that of the satellite. Let r = (x, y, z) and
rb = (xb, yb, zb) be the position vectors of S and B in a geocentric reference frame,
with r = |r| and rb = |rb|. The tidal disturbance caused by B on S is described by the
potential

Vb(r, t) = −µb

(
1

|r − rb(t)|
− r · rb(t)

r3
b (t)

)

= − µb

rb(t)
+ µb

2r3
b (t)r

2 + 3
2
µb(r · rb(t))2

r5
b (t) + O

((
r

rb

)3
)
,

(4.2.10)

where µb = GMb. The first term −µb/rb in the multipolar expansion (4.2.10) does not
depend on the coordinates of S, therefore it can be omitted from the Hamiltonian of
motion of S. Thus, the tidal (or ‘third body’) perturbation terms in the Hamiltonian
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takes the form:

H3B = µm

(
1
2

r2

r3
m(t) − 3

2
(r · rm(t))2

r5
m(t)

)
+ µs

(
1
2
r2

r3
s(t) − 3

2
(r · rs(t))2

r5
s(t)

)
+O3 = Hm + Hs,

(4.2.11)
where µm, rm and µs, rs are the mass and geocentric position vectors of the Moon and
Sun respectively, and O3 denotes octupolar or higher order terms in the expansion
of the third body potentials. The exact form of the term H3B depends now on the
model adopted for the geocentric orbits of the Sun and Moon. In the framework of this
chapter, and of Chapter 5 as well, we adopt the following models for Sun and Moon:

1. we suppose that the Sun’s geocentric orbit is an ellipse lying in the Earth’s ecliptic
plane (i.e., with inclination is0 = 23.43◦ with respect to the equatorial plane),
Ωs = 0◦, as = 1.496 · 108 km and es = 0.0167;

2. we assume the lunar orbit as elliptic and also lying on the ecliptic plane, with
am = 384748 km, em = 0.065 and im0 = is0. Note that this assumption ignores
the precession of the Lunar node (with period ≃ 18.6 yr) associated with the
inclination of the Moon’s orbit with respect to the ecliptic (by 5◦15′). While the
precession of the Lunar node is important near secular lunisolar resonances1, it
only has a minimal effect far from these resonances, as substantiated by numerical
studies (e.g. [47], [124]). Thus, we ignore this effect in our present estimates.

Under the above approximations, the satellite Hamiltonian HJ2ls takes the form

HJ2ls = HJ2kep + H3B. (4.2.12)

This is a Hamiltonian depending on three degrees of freedom (the coordinates and
momenta of the satellite) as well as on time (through the vectors rm(t) and rs(t)).
However, contrary to the case of the Hamiltonian HJ2kep, in which we are interested in
establishing the long-term stability of the semimajor axis over short-period oscillations,
here we are interested in the question of the stability of the eccentricity and inclination
of the satellite over secular timescales. Thus, as customary (see [45], [125]), we average
HJ2ls with respect to the mean anomalies of the satellite, Moon and Sun. The averaging
can be done in closed form (see, for example, [45]), and leads to:

H(av)
J2 = 1

2π

∫ 2π

0
HJ2kepdM =

∫ 2π

0
HJ2kep

r2

a2
√

1 − e2
df

H(av)
m = 1

4π2

∫ 2π

0

∫ 2π

0
VmdMdMm =

∫ 2π

0

∫ 2π

0
Vm(1 − e cosE) r2

m

a2
m

√
1 − e2

m

dEdfm

H(av)
s = 1

4π2

∫ 2π

0

∫ 2π

0
VsdMdMs =

∫ 2π

0

∫ 2π

0
Vs(1 − e cosE) r2

s

a2
s

√
1 − e2

s

dEdfs.

Here, f, E are the satellite’s true and eccentric anomaly, while fm, fs are the Moon’s
and Sun’s true anomaly along their geocentric orbits. The averaged J2 term takes the

1By secular lunisolar resonances we mean resonances of the form k1ω̇ + k2Ω̇ + k3Ω̇M = 0, with
(k1, k2, k3) ∈ Z3\{0}, thus involving the rate of variation of the longitude of the ascending node of the
Moon.
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form (apart from constant terms):

H(av)
J2 (e, i, ω,Ω) = −J2

µER
2
E

a3(1 − e2)3/2

(1
2 − 3

4 sin2 i
)
. (4.2.13)

The terms H(av)
m (e, i, ω,Ω) and H(av)

s (e, i, ω,Ω), instead, turn out to be identical to
those given in equations (3.6) and (3.7) of [42], setting iM = 0. Then, the Hamiltonian
averaged over all short period terms, hereafter referred to as the secular geolunisolar
Hamiltonian, takes the form

Hgls,sec(e, i, ω,Ω) = H(av)
J2 + H(av)

s + H(av)
m , (4.2.14)

which, in terms of the Delaunay modified variables, has two degrees of freedom.

Expansion around the forced inclination

As it was done in the case of the J2 model (Eq. (4.2.8)), normal form computations
for the Hamiltonian (4.2.14), expressed in Delaunay action-angle variables, require a
polynomial expansion in the action variables around some preselected values. In the
case of the secular geolunisolar Hamiltonian (4.2.14), a natural choice of the origin
for such expansions is the forced element values: writing Hgls,sec as a function of the
Delaunay variables, say, Hgls,sec(P,Q, p, q; a) (where the semimajor axis a is now a priori
constant, hence, can be considered as a parameter), a forced equilibrium is defined as
an equilibrium point of the secular Hamiltonian, i.e., a point (Q(eq), P (eq), q(eq), p(eq))
for which the following relations hold:(

∂Hgls,sec

∂P

)
eq

=
(
∂Hgls,sec

∂Q

)
eq

=
(
∂Hgls,sec

∂p

)
eq

=
(
∂Hgls,sec

∂q

)
eq

= 0, (4.2.15)

where the subscript ‘eq’ denotes the condition Q = Q(eq), P = P (eq), q = q(eq), p = p(eq).
In the case of the Hamiltonian (4.2.14), a forced equilibrium solution can be computed
by writing first Hgls,sec in terms of the Poincaré variables asX1 =

√
2Q sin q , X2 =

√
2P sin p ,

Y1 =
√

2Q cos q , Y2 =
√

2P cos p .
(4.2.16)

Expanding up to quadratic terms in the Poincaré variables, the truncated secular
Hamiltonian has the form

H̃(Y1, Y2, X1, X2) = A1Y1 +B1(X2
1 + Y 2

1 ) +B2(X2
2 + Y 2

2 ) , (4.2.17)

where the coefficients A1, B1 are given by:

A1 = −3R2
Ea

7/4 sin (2is0)
8(GME)1/4

(
GMm

a3
m

+ GMs

a3
s

)
,

B1 = 3
4

√
GMER

2
EJ2

a7/2 + 3GMm(2 − 3 sin2 is0)
16
√

GME

a3 a3
m

+ 3GMs(2 − 3 sin2 is0)
16
√

GME

a3 a3
s

.
(4.2.18)
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The Hamiltonian (4.2.17) corresponds to two decoupled harmonic oscillators in the
variables (X1, Y1) and (X2, Y2). The second harmonic oscillator (corresponding to the
action-angle pair (P, p), hence, to the orbit’s eccentricity vector) has an equilibrium
point at

(
X

(eq)
2 , Y

(eq)
2

)
= (0, 0), implying P (eq) = 0 and any value 0 ≤ p(eq) < 2π. This

implies that the sub-manifold of circular orbits e = 0 (corresponding to P = 0) is
invariant under the flow of the secular geolunisolar Hamiltonian. On the other hand,
as regards the pair (X1, Y1), Hamilton’s equations for the Hamiltonian (4.2.17) yield:Ẋ1 = A1 + 2B1Y1

Ẏ1 = −2B1X1 .
(4.2.19)

For is0 ̸= 0, the equilibrium point of (4.2.19) is given by

X
(eq)
1 = 0 , Y

(eq)
1 = − A1

2B1
̸= 0.

Setting Q(eq) =
((
X

(eq)
1

)2
+
(
Y

(eq)
1

)2)
/2, ieq ≃ (2Q(eq)/

√
µEa)1/2 (for Q(eq) small), we

arrive at
i(eq) ≃ − A1

2B1

1
(µEa)1/4 , q(eq) = −Ω(eq) = 0. (4.2.20)

More accurate expressions for the forced inclination i(eq) can be obtained by introducing
(4.2.20) along with the remaining equilibrium values in the derivatives of the full secular
Hamiltonian (4.2.14) and finding the roots of Hamilton’s equations. One can readily
verify that q(eq) = 0 at all orders, while i(eq) is subject to small corrections with respect
to the expression (4.2.20). In physical terms, the forced inclination i(eq) defines the
inclination of the Laplace plane: since the perturbing bodies (Moon and Sun) are in
orbits inclined with respect to the equator, a satellite orbit can maintain its inclination
constant when the latter has the value i(eq). Inspecting the form of the coefficients
(4.2.18), we find that i(eq) → 0 as a → 0, while it can be shown that i(eq) → is0 for
values of a greater than the GEO one (see for example [126]), reflecting the fact that
the Laplace plane tends to coincide with the equator for satellite orbits close to the
Earth (as imposed by the oblateness of the Earth), while it tends to coincide with the
ecliptic at large distances from the Earth (where the Lunar and Solar tides dominate).

Returning to the expansion of the secular geolunisolar Hamiltonian, making the shift
transformation δY1 = Y1 − Y

(eq)
1 allows us to express the Hamiltonian as a polynomial

in the variables (X1, δY1) and (X2, Y2). The Hamiltonian Hgls,sec starts now with terms
of second degree which we regroup in H2:

H2 = b1 + ϵ1

2 X2
1 + b1 + ϵ2

2 δY 2
1 + b1 + ϵ3

2 X2
2 + b1 + ϵ4

2 Y 2
2 , (4.2.21)

where b1 = 2B1 and ϵ1, ϵ2, ϵ3, ϵ4 are corrections of order O(µba
3/2/(µ1/2

E a3
b)), with the

index b referring to the Moon or Sun. All these corrections turn to be rather small,
with relative size ∼ 10−3B10 at semimajor axis a ∼ 104 km, where

B10 = 3
4

√
GMER

2
EJ2

a7/2 .
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Thus, after a canonical rescaling X1 = c12X̃1, δY1 = Ỹ1/c12, X2 = c34X̃2, Y2 = Ỹ2/c34,
with (c12)4 = (b1 + ϵ2)/(b1 + ϵ1) = 1 + O(µba

3/2/(B10µ
1/2
E a3

b) and
(c34)4 = (b1+ϵ4)/(b1+ϵ3) = 1+O(µba

3/2/(B10µ
1/2
E a3

b), the secular lunisolar Hamiltonian
resumes the form:

Hgls,sec = ν1

2
(
X̃2

1 + Ỹ 2
1

)
+ ν2

2
(
X̃2

2 + Ỹ 2
2

)
(4.2.22)

+
∞∑

s=3

∑
k1,k2,l1,l2∈N

k1+k2+l1+l2=s

hk1,k2,l1,l2X̃
k1
1 X̃

k2
2 Ỹ

l1
1 Ỹ

l2
2 .

This is the typical form of a secular Hamiltonian, consisting of linear oscillators
(with frequencies ν1, ν2) coupled with nonlinear terms. However, we have
ν1 = ν2 + O(µba

3/2/µ
1/2
E a3

b), implying that the two frequencies are nearly equal

ν1 ≃ ν2 ≃ 3
2

√
GMER

2
EJ2

a7/2 .

This is a consequence of the axisymmetry of the J2 model, implying that the secular
frequencies q̇ = −Ω̇ and ṗ = −ω̇ − Ω̇ are equal for nearly equatorial orbits in this
model. As we will see in Section 4.5, this near-equality implies that with the present
normal form estimates one cannot establish independently the long term stability of
the eccentricity and the inclination, but only the long-term stability of the Kozai-Lidov
integral I = X̃2

1 + Ỹ 2
1 + X̃2

2 + Ỹ 2
2 , which couples oscillations between the eccentricity

and the proper inclination of the satellite.
Finally, the Hamiltonian (4.2.22) can be written in action-angle variables

X̃1 =
√

2I1 sinϕ1, Ỹ1 =
√

2I1 cosϕ1, X̃2 =
√

2I2 sinϕ2, Ỹ2 =
√

2I2 cosϕ2 as

Hgls,sec = ν1I1 + ν2I2 (4.2.23)

+
∞∑

s=3

∑
s1,s2∈N
s1+s2=s

∑
k1,k2∈Z

|k1|+|k2|≤s
(|k|1+|k|2) ≡ s (mod 2)

h̃s1,s2,k1,k2I
s1/2
1 I

s2/2
2 cos(k1ϕ1 + k2ϕ2).

The Hamiltonian (4.2.23) is the starting point for all normal form calculations in
Section 4.5. For computational reasons, the expansion in (4.2.23) is truncated up to a
maximal order N = 15, leading to the truncated form

H≤N
gls,sec(I1, I2, ϕ1, ϕ2) = ν1I1 + ν2I2

+
N∑

s=3

∑
s1,s2∈N
s1+s2=s

∑
k1,k2∈Z

|k1|+|k2|≤s
(|k|1+|k|2) ≡ s (mod 2)

h̃s1,s2,k1,k2I
s1/2
1 I

s2/2
2 cos(k1ϕ1 + k2ϕ2).

4.3 Hamiltonian Normalization

In this Section we briefly recall some basic definitions related to normal form theory and
its use in obtaining stability estimates based on the size of the normal form’s remainder.
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In Sections 4.4 and 4.5 we will discuss the particular normalizations implemented on
the Hamiltonians (4.2.8) and (4.2.24) respectively.

4.3.1 Normal form and remainder

Consider a Hamiltonian function of the form

H(A,φ) = Z0(A) + H1(A,φ) = ω · A+ H1(A,φ), (4.3.1)

where ωj are real constants, and (A,φ) ∈ Rn × Tn are action-angle variables. We
assume that H1 is analytic in the complex domain (A,φ) ∈ Dρ,σ(U) = BρU × Sσ (or
simply Dρ,σ), where U is an open domain of Rn, BρU is a complex neighborhood of U
of size ρ:

BρU = {A ∈ Cn : dist(A,U) < ρ} , (4.3.2)
Sσ is the complex strip

Sσ = {φ ∈ Cn : Re(φj) ∈ T, |Im(φj)| < σ, j = 1, . . . , n} (4.3.3)

for ρ, σ > 0. On Dρ,σ(U) we define the norm of a function f = f(A,φ) as

∥f∥ρ,σ = sup
(A,φ)∈Dρ,σ

|f(A,φ)| . (4.3.4)

The aim of normalization theory is to introduce a near to identity canonical transfor-
mation Φ : (A,φ) → (A′, φ′), so that in the new variables (A′, φ′) the Hamiltonian
(4.3.1) takes the form

H
(
A(A′, φ′), φ(A′, φ′)

)
= Z(A′, φ′) +R(A′, φ′) (4.3.5)

with the following properties:
i) the transformation Φ is analytic in a domain Dρ′,σ′(U) with 0 < ρ′ < ρ, 0 < σ′ < σ,
ii) the dynamics under Z(A′, φ′), called the normal form, has some desired properties
(see below), and
iii) under the norm definition (4.3.4) one has ∥R∥ρ′,σ′ ≪ ∥Z∥ρ′,σ′ implying that the
function R(A′, φ′), called the remainder, introduces only a small correction with respect
to the flow under the normal form term Z(A′, φ′).

Regarding point ii) above, see, e.g., [51] for a definition of the properties of the
normal form term in various contexts of perturbation theory (e.g. in the Kolmogorov-
Arnold-Moser or Nekhoroshev theories). Here we mention three cases of particular
interest, pertinent to our context:

Case 1: Birkhoff normal form. The function Z is independent of the angles φ′. This
kind of normalization allows us to prove the near-constancy of the action variables A.

Case 2: elimination of short-period terms. The real constants ωj in (4.3.1), called the
unperturbed frequencies, are divided in two groups, ‘fast’ {ω1, . . . , ωKf

}, 1 ≤ Kf < n,
and ‘slow’ {ωKf +1, . . . , ωn}, such that min{|ω1|, . . . , |ωKf

|} ≫ max{|ωKf +1|, . . . , |ωn|}.
In this case, it turns convenient to introduce a normalizing transformation Φ such that
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the normal form Z becomes independent of the ‘fast angles’ {φ′
1, . . . , φ

′
Kf

}. Such is
the case of the normal form encountered in Section 4.4, leading to estimates on the
stability of the semimajor axis in the J2 problem. The corresponding Hamiltonian is of
the form (4.3.1), with n = 3, A1 = δL, A2 = P , A3 = Q, φ1 = λ, φ2 = p, φ3 = q.

Case 3: resonant normal form. The frequencies ωj satisfy one or more quasi - commen-
surability relations of the form m ·ω ≃ 0, with m ∈ Zn, |m| ≠ 0. The maximum number
of linearly independent and irreducible integer vectors ml, 1 ≤ l ≤ lmax, yielding exact
commensurabilities for a given set of frequencies ωj , satisfies 0 ≤ lmax ≤ n. Since H1 is
analytic in Dρ,σ(U) and periodic in φ, H1 admits the Fourier decomposition

H1(A,φ) =
∑

k∈Zn

h1,k(A)eik·φ, (4.3.6)

where, according to Fourier theorem, the coefficients |h1,k(A)| are bounded by expo-
nentially decaying quantities O(e−|k|σ). Then, it turns out that the appropriate normal
form Z has the resonant form:

Z(A′, φ′) =
∑

k∈M
ζk(A′)eik·φ′

, (4.3.7)

for some Fourier coefficients ζk(A′) and where

M := {k ∈ Zn : k ·ml = 0 for all l = 1, . . . , lmax}

is the ‘resonant module’. A normal form of the form (4.3.7) implies the existence of
n− lmax quasi-integrals of the form Ii = Ki · A, i = 1, . . . , n− lmax, where the vectors
Ki satisfy the equations Ki ·ml = 0 for all l with 1 ≤ l ≤ lmax. The quantities Ii are
called the resonant integrals of the Hamiltonian (4.3.7).

As an example, whenever ν1 = ν2 the secular geolunisolar Hamiltonian (4.2.24)
admits a resonant normal form. We have n = 2, lmax = 1, m1 = (1,−1), A1 = I1,
A2 = I2, φ1 = ϕ1, φ2 = ϕ2. Therefore, the normal form contains terms independent
of the angles or depending on the angles through trigonometric terms of the form
cos(k(ϕ′

1 − ϕ′
2)), k = 1, 2, . . .. The associated resonant integral corresponds to the

‘Kozai-Lidov’ integral I = I1 + I2 (see [61]).

Definition 4.3.1. A r-th step Hamiltonian normalization process is a composition of
near identity transformations

Φ(r) = Φr ◦ Φr−1 ◦ . . . ◦ Φ1 (4.3.8)

mapping the initial action-angle variables to the r-th step normalized action-angle
variables via the successive transformations (A(s), ϕ(s)) = Φ(s)(A(s−1), ϕ(s−1)),
s = 1, 2, , . . . , r, (A(0), φ(0)) ≡ (A,φ), defined so that the compositions

Φ(s) = Φs ◦ Φs−1 ◦ . . . ◦ Φ1
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for all s = 1, . . . , r are analytic and with inverse analytic within non-null domains
Dρ(s),σ(s) ̸= ∅, and the rth-step Hamiltonian takes the form:

H(r)
(
A(A(r), φ(r)), φ(A(r), φ(r))

)
= Z(r)(A(r), φ(r)) +R(r)(A(r), φ(r)) (4.3.9)

with ∥R(r)∥ρ(r),σ(r) ≪ ∥Z(r)∥ρ(r),σ(r).

The semi-analytical estimates of stability that we will develop in the next Sec-
tions are based on defining a suitable r-step sequence of canonical transformations
Φ1,Φ2, . . . ,Φr reducing the size of the remainder ∥R(r)∥ρ(r),σ(r) as much as possible given
the initial Hamiltonian model considered. The appropriate sequence is found using
the method of Lie series (see Section 4.4). The obtained times of stability are of order
∥R(ropt)∥−1

ρ(ropt),σ(ropt) , where ropt is the normalization order yielding the smallest possible
remainder norm. The value of ropt can be obtained via theoretical estimates (see [127]),
but in practice, it is also limited by the maximum order in which our computer-algebra
normal form calculations can proceed. Theoretical estimates imply that the size of the
remainder norm is exponentially small in the inverse of the size of the perturbation
∥H1∥ρ,σ in Eq. (4.3.1). For example, in the simplest case of the Birkhoff normal form,
we have the following theorem (see [128] for full details).

Theorem 4.3.2. Consider the Hamiltonian expressed in action-angle variables
H(A,φ) = ω ·A+ f(A,φ), where ω ∈ Rn satisfies the following Diophantine condition:
there exist τ, γ > 0 such that

|k · ω| ≥ γ

|k|τ
∀k ∈ Zn\{0} (4.3.10)

and f is real analytic on Dρ,σ for some ρ, σ > 0. Consider two positive parameters
δ < ρ/2 and ξ < σ/2, and for r ≥ 1, let

ϵ∗
1 = γδξτ+1

2n−τ+4
√

(2τ + 2)! ∥f∥ρ,σ

, ϵ∗
r = ϵ∗

1
rτ+2 . (4.3.11)

Then, for any

r <

 γδξτ+1

2n−τ+4
√

(2τ + 2)!

1/τ+2
1

∥f∥1/τ+2
ρ,σ

, (4.3.12)

there exists a real analytic canonical transformation Φ : Dρ−2δ,σ−2ξ 7→ Dρ,σ such that
the transformed Hamiltonian has the form

H ◦ Φ = h(A) +
r∑

s=1
Zs(A) +R(r+1)(A,φ) , (4.3.13)

where the remainder R(r+1) can be bounded as

∥R(r+1)∥ρ−2δ,σ−2ξ ≤ ∥f∥ρ,σ

4rτ+2

(
1
ϵ∗

r

)r
ϵ∗

r

ϵ∗
r − 1 . (4.3.14)

Casting together (4.3.11) and (4.3.14), one readily sees that the remainder grows
more rapidly than any power of r, namely as (rτ+2)r−1. Consequently, this procedure
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does not converge for r → ∞. In any case, we remark that, as the threshold value for
the normalization order r is proportional to the inverse of ∥f∥1/(τ+2)

ρ,σ , if we manage to
reduce the size of the initial remainder function, then we can increase the maximum
value of r for which Theorem 4.3.2 is satisfied.

Similar estimates hold in the case of the resonant normal form constructions (see
[127]). The behavior of the size of the remainder as a function of the normalization
order r will be examined in detail in our semi-analytical computations in Sections 4.4
and 4.5 below.

4.3.2 Book-keeping and construction of the normal form

Both Hamiltonians (4.2.8) and (4.2.24) are of the form (4.3.1), therefore the above
results on Hamiltonian normalization apply. In order to compute the composition
of canonical transformations required in Eq. (4.3.8), we implement the method of
composition of Lie series, after introducing a suitable book-keeping (see [51]) to separate
terms in the Hamiltonian according to estimates of their order of smallness.
Definition 4.3.3. Consider a ‘book-keeping symbol’ ϵ, with numerical value ϵ = 1. A
book-keeping rule is a splitting of the initial Hamiltonian H(A,φ) in the form

H(A,φ) = ω · A+
∞∑

s=1
ϵsHs(A,φ). (4.3.15)

Remark 4.3.4. The splitting can in principle be arbitrary. However, the sequence
of remainders ∥R(r)∥ρ(r),σ(r) found by Hamiltonian normalization behaves well, i.e.
∥R(s)∥ρ(s),σ(s) < ∥R(s−1)∥ρ(s−1),σ(s−1) for s = 1, . . . , ropt when the splitting (4.3.15) is
done so as to reflect the order of smallness of different terms in the Hamiltonian.
Roughly speaking, one must have ∥Hs∥ρ,σ = O

(
∥H1∥s

ρ,σ

)
(see [51]).

Proposition 4.3.5. Lie series: Let χ(A,φ), called the Lie generating function, be a
function analytic in the domain Dρ,σ(U), and Lχ denote the Poisson bracket operator
Lχ· = {·, χ}. Given positive numbers δ < ρ and ξ < σ, assume that

min

δ
∥∥∥∥∥∥∂χ∂q

∥∥∥∥∥∥
−1

ρ−δ,σ−ξ

, ξ

∥∥∥∥∥∥∂χ∂p
∥∥∥∥∥∥

−1

ρ−δ,σ−ξ

 > 1.

Then, the mapping

(A′, φ′) = exp(Lχ)(A,φ) =
∞∑

j=0

1
j!L

j
χ(A,φ) (4.3.16)

is an analytic canonical transformation of the domain Dρ−δ,σ−ξ(U) onto itself.

The proof consists in implementing Proposition 1 of [128] with r = 1.
Proposition 4.3.6. Exchange theorem: Let f be a real analytic function
f : U × Tn → R extended to the domain Dρ,σ(U). The equality

f(A′, φ′) =
(
exp(Lχ)f(A,φ)

)
A=A′,φ=φ′

(4.3.17)
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holds, where (A′, φ′) are given by the transformation (4.3.16) and (A′, φ′) ∈ Dρ−δ,σ−ξ(U).

See [129] for the proof. In simple words, the exchange theorem implies that the
result of a Lie series canonical transformation onto a function depending on (A,φ)
can be found by implementing the sequence of Poisson brackets of the exponential
operator exp(Lχ) directly on the function f , and substituting, after this operation, the
arguments (A,φ) with (A′, φ′).

Normal form algorithm: The above definitions allow us to establish an algorithm
for the calculation of the sequence of canonical transformations (4.3.8) using Lie series.
The algorithm is obtained recursively by defining the r-th step as follows. Assume the
Hamiltonian after r − 1 normalization steps, denoted by H(r−1), is in normal form up
to the book-keeping order r − 1:

H(r−1) = Z0 + ϵZ1 + . . .+ ϵr−1Zr−1 + ϵrR(r−1)
r + ϵr+1R

(r−1)
r+1 + ϵr+2R

(r−1)
r+2 + . . . (4.3.18)

Then, the r-th step Lie generating function χr and Hamiltonian H(r) are computed as
follows:

(i) split R(r−1)
r as R(r−1)

r = Z(r−1)
r + h(r−1)

r , where Z(r−1)
r denotes the part of R(r−1)

r

being in normal form;

(ii) compute χr as the solution of the homological equation

{ω · A,χr} + ϵrh(r−1)
r = 0; (4.3.19)

(iii) compute the r-th step normalized Hamiltonian as H(r) = exp(Lχr)H(r−1). This
yields the Hamiltonian

H(r) = Z0 + ϵZ1 + . . .+ ϵr−1Zr−1 + ϵrZr + ϵr+1R
(r)
r+1 + ϵr+2R

(r)
r+2 + . . . (4.3.20)

where Zr = Z(r−1)
r .

Remark 4.3.7. In the above algorithm, the notation f (r) implies a function depending
on the canonical variables (A(r), φ(r)), which are connected to the original variables
(A,φ) via the composition of Lie series transformations

(A,φ) = exp(Lχr) ◦ exp(Lχr−1) ◦ . . . ◦ exp(Lχ1)(A(r), φ(r)). (4.3.21)

For simplicity of notation, unless explicitly required in the sequel we do not write the
superscripts in the canonical variables defined in every step, but only in the functions
in which these variables are arguments of.

Remark 4.3.8. In the computer-algebraic implementation of the normalization algo-
rithm, all functions are truncated up to a maximum book-keeping order, specified by
computational restrictions.
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Remark 4.3.9. The solution of the homological equation (4.3.19) is trivial when the
functions h(r−1)

r are written in the Fourier representation

h(r−1)
r =

∑
k∈Zn

h̃
(r−1)
r,k (A) exp(ik · φ),

which gives

χr = ϵr
∑

k∈Zn

ih̃
(r−1)
r,k (A)
k · ω

exp(ik · φ).

4.4 Stability of the semimajor axis in the J2 model

We will now implement the Hamiltonian normalization discussed in Section 4.3 to elim-
inate the short period terms (depending on the mean longitude λ) in the Hamiltonian
(4.2.8), leading to estimates on the long-term stability of the orbits’ semimajor axis.

4.4.1 Normal form

We express the Hamiltonian function in the form (4.3.15), choosing the book-keeping
power equal to s− 2, where s is the index in the Hamiltonian expansion (4.2.8), that is,
collecting together at book-keeping order s all polynomials Zs−2 and Ps−2,k1,k2,k3 . Then

H(0)
J2 (δL, P,Q, λ, p, q) =
= H0(δL, P,Q) + ϵH1(δL, P,Q, λ, p, q) + · · · + ϵNHN(δL, P,Q, λ, p, q)

(4.4.1)

with H0 = n∗δL+ ω1∗P + ω2∗Q. The truncation order (in eccentricity and inclination)
is N = 15.

With reference to the algorithm of Subsection 4.3.2, normal form terms are specified
as those non-depending on the mean longitude λ. That is, the Fourier harmonics
cos(k1λ+ k2p+ k3q) to survive in normal form are selected by the choice of resonant
module (see Subsection 3.1) defined by the relation lmax = 1, m1 = (1, 0, 0). Follow-
ing the choice of book-keeping as described above, the normal form and remainder
computations where done using a program written by the authors in the symbolic
package Mathematica©. The symbolic program performs M = 12 normalization steps,
implementing steps (i) to (iii) of the normalization algorithm discussed at the end of
Section 4.3. The operation H(r) = exp(Lχr)H(r−1) is truncated in book-keeping up
to the order N = 15. The symbolic program performs this truncation automatically,
since every term in both the Hamiltonians H(r−1) and the generating functions χr,
r = 1, . . . ,M carries the book-keeping symbol ϵ raised to some power. Mild memory
requirements (of the order of 100MB) are required for the whole process. We also note
that, for given book-keeping rule, this process takes automatically care of the minimum
and maximum powers in the action variables, as well as the minimum and maximum
Fourier harmonics associated with every book-keeping order (see [51] for a detailed
description of this process).
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After M normalization steps, the Hamiltonian takes the form

HJ2 ≡ H(M)
J2 (δL, P,Q, λ, p, q) = H(M)

J2,sec(δL, P,Q, p, q)+R(M)
J2 (δL, P,Q, λ, p, q) , (4.4.2)

where (setting the book-keeping ϵ = 1)

H(M)
J2,sec = Z0 + . . .+ ZM ,

R(M)
J2 = R

(M)
M+1 + . . .+R

(M)
N

with Z0 = H0.
The term H(M)

J2,sec will be referred to as the ‘secular Hamiltonian’ (not depending
on the fast angle λ). On the other hand, the remainder R(M)

J2 quantifies the difference
between the true evolution of all canonical variables and the one induced by H(M)

J2,sec.
Since in (4.4.2) we can only compute a truncated remainder, we probe numerically that
the finite sum of the leading terms in the remainder (up to order N) yields a remainder
norm close to the limiting one (which corresponds to the limit N → ∞). To this end,
we take as maximum normalization order M = N − 3, ensuring that at least the three
first leading terms are included in the remainder (see [60]). Also, in estimating the size
of the remainder through a suitable definition of the norm, we compute the sup norm
on a closed and bounded domain D ⊂ R2:

∥f∥∞,D = sup
(e,i)∈D

(λ,p,q)∈T3

|f(e, i, λ, p, q)| . (4.4.3)

The calculation of the sup norm in a fixed domain (e, i) ∈ D, (λ, p, q) ∈ T3 can
only be done approximately, by taking a grid of values for all variables involved in this
domain, and computing the maximum of the absolute value of the function involved
on this grid. Since this process can lead to quite strong fluctuations in the norm
estimate, for practical purposes we substitute the sup norm calculation with one based
on majorization: consider a function of the form

f(e, i, λ, p, q) =
∑

k1,k2,k3

fk1,k2,k3(e, i) cos(k1λ+ k2p+ k3q), (4.4.4)

where the sum is over an arbitrary (finite) number of harmonics (k1, k2, k3) ∈ Z3 with
|k1| + |k2| + |k3| ≠ 0, and the functions fk1,k2,k3(e, i) are sums of polynomials

fk1,k2,k3(e, i) =
∑
s1

∑
s2

gk1,k2,k3,s1,s2P
s1/2(e)Qs2/2(i) (4.4.5)

over a finite set of integer pairs s1, s2. Define the domain D∗(e∗, i∗) in the action space
(P,Q) via the relation: D∗(e∗, i∗) = {0 ≤ P ≤ P (e∗), 0 ≤ Q ≤ Q(e∗, i∗)}. Then, one
has:

sup
(e,i)∈D∗

(λ,p,q)∈T3

|f(e, i, λ, p, q)| ≤ ||f ||∞,D∗ =
∑

k1,k2,k3

∑
s1,s2

|gk1,k2,k3,s1,s2|P s1/2(e∗)Qs2/2(e∗, i∗)

(4.4.6)
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We can then use the norm (4.4.6) as an estimate substituting the sup norm in all actual
calculations.

4.4.2 Numerical results: stability of the semimajor axis

Having fixed the procedure for the normal form and remainder computations, we
proceed in deriving stability estimates based on the time variations of the value of the
semimajor axis in the J2 problem. Fixing a reference value a∗ of the semimajor axis,
we assume that, at the time t = 0, we have L = L∗ = √

µa∗, i.e. δL = 0. Our aim is to
estimate the fluctuations of L as functions of the orbital parameters e and i.

The first question to settle is that, for every value of the reference parameter a∗
we have to specify the range of values of the variables (e, i) for which the remainder
R(M)

J2 is small enough to represent only a perturbation with respect to the dynamics
determined by the secular part. In applications, we compute the value of ∥R(M)

J2 ∥∞,D∗

in the domain (e, i) ∈ D = [0, 0.15] × [0, π/2], so that the inclination can take all
possible values; the eccentricity is instead taken in a reasonable interval, where we can
find almost all main Earth’s satellites.

With reference to the Hamiltonian (4.4.2), if we consider the dynamics induced
only by the secular part, we obtain that

d

dt
δL = −

∂H(M)
J2,sec

∂λ
= 0 ,

which implies that δL (hence L) is a constant of motion. We remind that δL is not the
original Delaunay variable, but rather the one obtained after M normalization steps.
If we denote by δL(0) the original variable, then we have

δL = exp(−Lχ(1)(. . . (exp(−Lχ(M)(δL(0)))))) . (4.4.7)

To obtain δL(0) as a function of the new variable δL, we need to invert the transformation
(4.4.7); we observe that

(exp(Lχ))−1 = exp(−Lχ) ,
implying

δL(0) = exp(Lχ(M)(. . . (exp(Lχ(1)(δL))))) .

Since we are dealing with near-identity canonical transformations, we realize that δL(0)

is the sum of δL and short period (small) variations which do not affect its stability.
If we consider the full Hamiltonian in (4.4.2), then L is not constant anymore

because of the dependence of R(M)
J2 on λ. Using again Hamilton’s equations, we see

that
d

dt
L = d

dt
(δL+ L∗) = d

dt
δL = −∂HJ2

∂λ
= −

∂R(M)
J2

∂λ
.

Then, for every set of values, say (e∗, i∗, λ∗, p∗, q∗) ∈ D × T3, we obtain∣∣∣∣∣ ddtL(e∗, i∗, λ∗, p∗, q∗)
∣∣∣∣∣ ≤ sup

(e,i)∈D
(λ,p,q)∈T3

∣∣∣∣∣ ddtL(e, i, λ, p, q)
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣∂R(M)

J2

∂λ

∣∣∣∣∣
∣∣∣∣∣
∞,D∗

.
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Let L(e, i, λ, p, q;T ) be the value at time t = T . To estimate its distance from the
equilibrium point L∗, we can use the mean value theorem which gives

|L(e, i, λ, p, q;T ) − L∗| ≤ ∥L(e, i, λ, p, q;T ) − L∗∥∞,D∗ ≤
∣∣∣∣∣
∣∣∣∣∣dLdt

∣∣∣∣∣
∣∣∣∣∣
∞,D∗

T . (4.4.8)

Requiring that the right hand side of (4.4.8) is of order of unity, then the stability
time T becomes order of O (1/∥dL/dt∥∞,D∗). Let us fix a constant value ∆L and
suppose that we want to estimate the minimal time T1 up to which the variation of
L(e, i, λ, p, q;T ) stays bounded by ∆L:

∥L(e, i, λ, p, q;T ) − L∗∥∞,D∗ ≤ ∆L .

Using (4.4.8) we obtain that T1 is given by

T1 ≥ ∆L
∥dL/dt∥∞,D∗

. (4.4.9)

Equation (4.4.9) can be used to derive the stability time of the semimajor axis a:
recalling that, in general, L = √

µa, one has that ∆L = ∆a/2
√
µ/a, which allows to

obtain a lower bound for the stability time of a given by

T2 = 1
2

√
µ

a∗

∆a
∥dL/dt∥∞,D∗

. (4.4.10)

This estimate will be used in Section 4.5.3 to obtain results on the stability time at
different altitudes; in particular, ∆a is set to be equal to 0.1 RE.

To check that the norm ∥R(M)
J2 ∥∞,D∗ is small in the domain D = [0, 0.15] × [0, π/2],

we compute its value by taking a set of samples for the reference value of the semimajor
axis a∗, that correspond to different distances from the Earth’s center (the radius of
the Earth is RE = 6378.14 km). Precisely, we consider the following semimajor axes:

• a(1)
∗ = (42164 km)/RE: the reference value for GEO satellites;

• a(2)
∗ = (26560 km)/RE: the reference value for GPS satellites;

• a(3)
∗ = (8524.75 km)/RE: an intermediate value in terms of the altitude;

• a(4)
∗ = (7258.69 km)/RE: very close to the Earth’s surface. We remark that in

this case the results obtained are not very relevant from a practical point of view,
because the effect of the atmosphere becomes important.

Table 4.1 shows the values of ∥R(M)
J2 ∥∞,D∗ computed for the above values of a∗ and

for J2 = 1.084 · 10−3, namely the real value of the coefficient for the Earth. As we
can see, ∥R(M)

J2 ∥∞,D∗ is typically very small for all values of a∗: this confirms that for
the J2 problem it is reasonable to take the domain in eccentricity and inclination as
D = [0, 0.15] × [0, π/2].

Table 4.2 provides the results for the estimate of ∥dL/dt∥∞,D∗ , which show that,
using (4.4.9) with ∆L equal for all the considered distances a∗, the stability time for L
increases with the altitude. Figure 4.1 shows the logarithmic plot of ∥R(M)

J2 ∥∞,D∗ in
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Table 4.1 Estimates of ∥R(M)
J2

∥∞,D∗ for different values of a∗ in the J2 model.

Semimajor axis a∗ ∥R(M)
J2 ∥∞,D∗

42164 km 6.6107 2.03365 · 10−10

26560 km 4.16422 1.78552 · 10−9

8524.75 km 1.33656 5.99718 · 10−7

7258.69 km 1.13806 1.45442 · 10−6

Table 4.2 Estimates of ∥dL/dt∥∞,D∗ for different values of a∗ in the J2 model.

Semimajor axis a∗ ∥dL/dt∥∞,D∗

42164 km 6.6107 1.31051 · 10−9

26560 km 4.16422 1.04198 · 10−8

8524.75 km 1.33656 3.10705 · 10−6

7258.69 km 1.13806 7.41578 · 10−6
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Fig. 4.1 Plots of ∥R(M)
J2

∥∞,D∗ for (e, i) ∈ D: a∗ = a
(1)
∗ (left) and a∗ = a

(4)
∗ (right) in the J2

model.
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Fig. 4.2 Stability estimates for the GEO case (with a = a
(1)
∗ ) in the J2 model. (a) plot of

||dL/dt||∞,D∗ as a function of e for fixed values of i. (b) plot of ||dL/dt||∞,D∗ as a function
of i for fixed values of e.
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Fig. 4.3 Stability estimates for the near-Earth case (with a = a
(4)
∗ ) in the J2 model. (a) plot

of ||dL/dt||∞,D∗ as a function of e for fixed values of i. (b) plot of ||dL/dt||∞,D∗ as a function
of i for fixed values of e.

the limit cases a∗ = a(1)
∗ and a∗ = a(4)

∗ . The plots show that the remainder decreases as
one gets farther from the Earth and it becomes larger when increasing the eccentricity
and inclination.

Figures 4.2 and 4.3 refer, respectively, to a = a(1)
∗ and a = a(4)

∗ ; the left plots
provide the graph of ||dL/dt||∞,D∗ as a function of the eccentricity for fixed values of
the inclination, while the right plots give the norm as a function of the inclination for
fixed values of the eccentricity. We notice that the norms tend to decrease when the
eccentricity and the inclination are smaller, although the effect is more evident in the
GEO region than closer to the Earth.

We now examine how the stability time changes as a function of the semimajor axis
a∗: in this case, we consider 1000 values for a∗ uniformly distributed from ain = 1.15679
(corresponding to an altitude of 1000 km, which we take as the first reference value,
although in this region weak dissipative effects are possibly affecting the dynamics)
to af = 16.6786 (corresponding to an altitude of 105 km), using Eq. (4.4.10) with
∆a = 0.1 RE. Figure 4.4 confirms that the stability time increases with the altitude
also in the case of the semimajor axis. Indeed, while for a∗ = ain we can ensure the
stability of the semimajor axis for a period of the order of one year, in the case a∗ = af

we have a stability time of the order of 103 years. From an analytical point of view, this
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behaviour of the stability time can be explained by the fact that, for higher distances,
our model can be approximated by Kepler’s problem in which the semimajor axis is
constant.
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Fig. 4.4 Stability time in the J2 model for a ∈ [ain, af ] (see the text for the definition of ain,
af ) allowing a variation of 0.1 RE .

4.5 Secular stability in the geolunisolar model

Using the J2 model, we have demonstrated how the stability of the semimajor axis
can be established against short-period perturbations (depending on the satellite’s
mean anomaly). In this Section, we focus, instead, on the long-term variations in the
eccentricity and inclination of the satellite’s orbit, for orbits close to circular (e < 0.1
rad) and with small inclination (|i| < 0.1). One can easily verify that, within the
geolunisolar problem (Hamiltonian H≤N

gls,sec, see Eq. (4.2.24)), the phase-space manifold
e = 0, corresponding to I2 = 0, constitutes an invariant manifold of the flow, implying
that circular orbits remain so for infinitely long times independently of their variations in
inclination and longitude of the node. On the other hand, for e small, but non-zero, long-
term variations of both the eccentricity and inclination can occur on timescales given by

the inverse of the frequencies ν1 and ν2 (Eq. (4.2.22)). Since ν1 ≃ ν2 ≃ 3
2

√
GMER

2
EJ2

a7/2 ,

the secular timescale is of order of Tsec = O
(
(a/RE)2J−1

2

)
Tshort, where Tshort is the

characteristic time of the frequency associated to the fast angle. Since J2 ≈ 10−3,
the short and long periods are separated by three orders of magnitudes, a fact which
justifies altogether the simple averaging over mean anomalies which leads to the model
of departure H≤N

gls,sec for the analysis of the secular stability. On the other hand, the
fact that ν1 ≃ ν2 implies that, near the equator (or, more precisely, for orbits near
the Laplace plane, see Section 4.2.2), the eccentricity and inclination have coupled
variations (the so-called ‘Kozai-Lidov’ mechanism). Thus, close to the Laplace plane,
the term ‘secular stability’ cannot mean the long-term preservation of the eccentricity
and inclination one independently of the other, but only the approximate preservation of
the combination I ≈ e2 + i2 (see below for exact expressions) known as the Kozai-Lidov



174 Stability estimates for Earth’s satellites through normal forms

integral. The normal form construction and remainder estimates in the present section
reflect these basic properties of the dynamics.

4.5.1 Normal form

Starting with the model H≤N
gls,sec given in Eq. (4.2.24), the construction of the nor-

mal form proceeds with the algorithm described in Section 4.3 and the following settings:

i) The book-keeping rule (exponent s in Eq. (4.3.15)) is set as s = s1 + s2 − 2,
where s1 and s2 are the exponents appearing in Eq. (4.2.24).
ii) The resonant module (Eq. (4.3.7), case 3 of Subsection 3.1) is set as:

M := {(k1, k2) ∈ Z2 : k1 + k2 = 0}

where k1, k2 are the integers specifying each Fourier harmonic in Eq. (4.2.24).
iii) The maximum truncation order is set to N = 15, while the maximum normalization
order is set to M = 12.

Here, as well, we use a symbolic program to perform all normalizations, which
works in essentially the same way as described in Subsection 4.1 for the case of the
normal form of the J2 problem.

With the following settings, the Hamiltonian after r normalization steps, where r
can take the values r = 1, 2, ...M , resumes the form:

H(r)
gls,sec(I1, I2, ϕ1, ϕ2) = Z(r)

gls,sec(I1, I2) + Z(r)
gls,res(I1, I2, ϕ1 − ϕ2) + R(r)

gls(I1, I2, ϕ1, ϕ2) .
(4.5.1)

The term Z(r)
gls,sec(I1, I2), hereafter called the secular part, contains all terms independent

of the angles (corresponding to the choice k1 = k2 = 0 in the resonant module). The
dynamics of this term implies separate preservation of the eccentricity and inclination
(the latter around the Laplace plane). Instead, Z(r)

gls,res(I1, I2, ϕ1 − ϕ2), called the
resonant part of the normal form, collects all normal form terms depending on the
resonant angle ϕ1−ϕ2. Finally, R(r)

gls(I1, I2, ϕ1, ϕ2) is the remainder term, which contains
non-normalized terms of book-keeping orders s = r + 1, . . . , N . After M normalization
steps, we obtain the final geolunisolar Hamiltonian Hgls ≡ H(M)

gls,sec.
We now look at the dynamics induced by the sum of secular and resonant parts:

Hnorm(I1, I2, ϕ1, ϕ2) = Z(M)
gls,sec(I1, I2) + Z(M)

gls,res(I1, I2, ϕ1 − ϕ2),

called, altogether, the resonant normal form Hnorm (for simplicity, we drop the depen-
dence on the normalization order r from the notation). The quantity I1 + I2 is a first
integral for the dynamics induced by Hnorm, which implies that the vertical component
of the angular momentum, which coincides with Θ, is preserved2. Given that L is

2For the J2 model the preservation of the vertical component of the angular momentum is a direct
consequence of the axisimmetry of the truncated geopotential. For the geolunisolar model, the addition
of the external attractions breaks this symmetry. However, the preservation of this quantity turns to
be still true for the Hamiltonian Hnorm.
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constant, say L = L∗ = √
µEa∗, the quantity

I1 + I2 = L∗ − L∗
√

1 − e2(1 − cos i) (4.5.2)

is a first integral and, as a consequence, the quantity

I(e, i) = 1 −
√

1 − e2(1 − cos i) (4.5.3)

is constant for the dynamics induced by the normal form. This means that e and i can
change only in such a way that the value of I(e, i) remains constant.

The fact that the presence of resonant first integrals determines a locking in the
values of e and i is at the basis of the so-called Kozai-Lidov effect ([61, 130]), which
is common, in a wide range of resonant combinations, in many models of Celestial
Mechanics.

4.5.2 Remainder and stability estimates

As already mentioned in Section 4.4.2, we need to guarantee that the remainder is
small with respect to the normal part; we denote again by D the domain over which
the norm ∥R(M)

gls ∥∞,D∗ is computed. For a function f = f(e, i, ϕ1, ϕ2) of the form:

f(e, i, ϕ1, ϕ2) =
∑

k1,k2

∑
s1,s2

fk1,k2,s1,s2I1(e, i)s1/2I2(e, i)s2/2, (4.5.4)

where the sums are over a finite number of terms, we have

sup
(e,i)∈D,(ϕ1,ϕ2)∈T2

|f(e, i, ϕ1, ϕ2) ≤ ∥f∥∞,D∗ ,

where, recalling the definition in (4.4.6), the norm of f is defined as

∥f∥∞,D∗ =
∑

k1,k2

∑
s1,s2

|fk1,k2,s1,s2|I1(e∗, i∗)s1/2I2(e∗, i∗)s2/2. (4.5.5)

There exists an optimal value of M that minimizes the estimate of the remainder’s
norm, as shown in Section 4.5.3 for GEO orbits.

Since I1 + I2 is a first integral for Hnorm, we have that

{I1 + I2,Hnorm} = 0.

To evaluate the stability of I(e, i), we use the relation:

d

dt
(I1 + I2) = {I1 + I2,Hgls} = {I1 + I2,R(M)

gls };

then, for every (e∗, i∗, ϕ∗
1, ϕ

∗
2) ∈ D × T2, we have the following estimate:∣∣∣∣∣ ddt(I1 +I2)(e∗, i∗, ϕ∗

1, ϕ
∗
2)
∣∣∣∣∣ ≤ sup

(e,i)∈D
(ϕ1,ϕ2)∈T2

∣∣∣∣∣ ddt(I1 +I2)(e, i, ϕ1, ϕ2)
∣∣∣∣∣ ≤ ∥{I1 +I2,R(M)

gls }∥∞,D∗ .



176 Stability estimates for Earth’s satellites through normal forms

Let us now consider an orbit with initial point (I1,0, I2,0) such that the corresponding
eccentricity and inclination belong to D; consider its evolution up to t = T . Using the
mean value theorem, we have that

∥(I1(T ) + I2(T )) − (I1,0 + I2,0)∥ ≤ ∥{I1 + I2,R(M)
gls }∥∞,D∗ T. (4.5.6)

Setting Γ to be the maximum value for the variation of I1 + I2 in time, let us denote
by T̃ the minimum time such that for every T ≤ T̃

∥(I1(T ) + I2(T )) − (I1,0 + I2,0)∥ ≤ Γ .

From (4.5.6), we have
T̃ ≥ Γ

∥{I1 + I2,R(M)
gls }∥∞,D∗

;

then we can use the value of T as T = Γ/∥{I1 +I2,R(M)
gls }∥∞,D∗ , which gives an estimate

for the stability time of I1 + I2 and, consequently, of I(e, i). The stability results for
the quantity I can be translated in terms of the orbital elements (e, i) as follows: in
view of (4.5.3), for small values of e and i we find

I ≃ L∗
e2 + i2

2 , (4.5.7)

hence, if we consider the variations of I, e and i, they are connected by the relation

∆I
I

≃ 2e∆e+ i∆i
e2 + i2

. (4.5.8)

For the limit case of e or i fixed and small, one finds

∆I
I

≃ 2∆e
e

≃ 2∆i
i

; (4.5.9)

then the relative variation of I (and, as a consequence, of I1 + I2) is proportional to
the relative variations of the orbital elements by a factor 2.
To make the stability results for the geolunisolar model consistent with the ones
obtained in Section 4.4.2 for the J2 model, in Section 4.5.3 we set

Γ = 0.05
√
µ

a∗
, (4.5.10)

namely, recalling that ∆L = ∆a/2
√
µ/a and ∆a = 0.1, the maximal variation of I1 + I2

in the geolunisolar model is equal to the maximal variation allowed for the action L in
the J2 model.

4.5.3 Numerical results for the geolunisolar model

For the geolunisolar model, we take the domain (e, i) ∈ D = [0, 0.1] × [0, 0.1] around
the forced eccentricity (which is always zero) and the forced inclination (which depends
on the chosen altitude).
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Table 4.3 Estimate of ∥R(M)
gls ∥∞,D∗ , with M = 12, in the geolunisolar model with D =

[0, 0.1] × [0, 0.1] for different altitudes.

Altitude ∥R(M)∥∞,D∗

3000 km 2.13276 · 10−14

20000 km 3.22704 · 10−13

35790 km 1.3774 · 10−11

50000 km 5.39185 · 10−9

100000 km 1.80878 · 10−5

Since the stability results strongly depend on the distance from the Earth, we select
five different altitudes, that correspond to cases of interest for the satellite’s problem:

• h(1) = 3000 km, above the atmosphere;

• h(2) = 20000 km, that is in MEO region;

• h(3) = 35786 km, the altitude of GEO orbits;

• h(4) = 50000 km, corresponding to far objects;

• h(5) = 100000 km, that corresponds to objects which are very far from the Earth’s
surface.

The value of the remainder’s norm depends on the altitude of the orbit: in particular,
we can state that the stability time decreases as the altitude increases.

Table 4.3 provides the value of ∥R(M)
gls ∥∞,D∗ as a function of the altitude, showing a

significant worsening for altitudes after the GEO region.
Figure 4.5 shows the behaviour of the remainder’s norm as a function of (e, i) in

the bigger domain D′ = [0, 0.1] × [0, π/2]: as we can see, in all cases the domain
D′ is too large to ensure the smallness of ∥R(M)

gls ∥∞,D′
∗ . Moreover, the magnitude of

∥R(M)
gls ∥∞,D′

∗ increases significantly with the altitude. We can easily notice that the
value of ∥R(M)

gls ∥∞,D′
∗ is strongly dependent on the inclination: using this fact, we can

detect a value of i, denoted by icrit, which is the minimum value of the inclination for
which ∥R(M)

gls ∥∞,D′
∗ is of the order of unity. Table 4.4 shows the computed values of icrit

(converted in degrees) for the considered altitudes: we can notice that the smallness
domain shrinks substantially between 50000 km and 100000 km; in any case, we can
see that for every value of the considered altitudes the domain D = [0, 0.1] × [0, 0.1] is
contained in the smallness domain of R(M)

gls .
As mentioned in Section 4.5, the remainder’s norm depends on the normalization

order M . Although the norm does not converge to zero if M tends to infinity, there is
a value of M , called the optimal normalization order, say Mopt, for which the norm of
the remainder is minimal. Typically, this optimal value is greater than the order of the
Taylor expansions of the numerically computed functions, and the estimates for the
remainder is so good that there is no reason to push further the order of the expansion;
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Fig. 4.5 Remainder’s norm for the geolunisolar model in the domain D′ = [0, 0.1] × [0, π/2]
for h(i), i = 1, . . . , 5 (see the text for the definition of h(i)).
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Table 4.4 Value of icrit as a function of different values of the altitude for the geolunisolar
model.

Altitude icrit(deg)
3000 km 67.1◦

20000 km 57.89◦

35790 km 58.43◦

50000 km 37.95◦

100000 km 16.93◦
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Fig. 4.6 Estimate of ∥R(M)
gls ∥∞,D∗ as a function of the normalization order M for h = h(3)

(GEO distance) in the domain D = [0, 0.1] × [0, 0.1] for the geolunisolar model.

for example, this is the case for the normalized Hamiltonian function which describes
the geolunisolar problem computed for the GEO altitude.

As we can see from Figure 4.6, the optimal normalization order is greater than or
equal to 12, that is the order at which we make our estimates.

Once obtained the smallness of ∥R(M)
gls ∥∞,D∗ in D, we proceed to compute the

stability time for the quantity I(e, i) = 1 −
√

1 − e2(1 − cos i).
As we can see from Table 4.5, the stability times are extremely long: this fact

depends on the model we considered, with the Lunar orbit in the ecliptic plane without
precession effects. However, we can notice a relevant decrease in the stability time for
distances greater than GEO. This behaviour is opposite to that of the J2 model where
the stability time was increasing with the altitude (see Figure 4.4). In fact, at low
altitudes the J2 model is strongly affected by the Keplerian part and the geopotential,
while the geolunisolar model takes into account both the inner effect due to the Earth
and the outer effect due to Moon and Sun.

As a final remark, to show the importance of taking the right domain in eccentricity
and inclination, let us assume h = h(5) and consider the domain (e, i) ∈ B = [0, 0.1] ×
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Table 4.5 Stability times in years for different altitudes in the domain (e, i) ∈ D = [0, 0.1] ×
[0, 0.1] for the geolunisolar model.

Altitude Stability time in D
3000 km 4.61551 · 1013

20000 km 2.20144 · 1012

35790 km 3.51266 · 1010

50000 km 1.07263 · 108

100000 km 3.36609 · 104

[0, 0.5], which is larger than the convergence domain [0, 0.1] × [0, icrit] (see Table 4.4).
If we compute the stability time in the enlarged domain B, we obtain just the value
T = 0.00085 years.

4.6 Non-degeneracy conditions

In the previous sections, we examined the question of the long-term stability of the
elements (a, e, i) in the case of the Earth’s satellite orbits using a semi-analytical
computation based on the size of the remainder of the Birkhoff normal form, computed
as described in Sections 4.4 and 4.5. While providing stability times quite long with
respect to any application of practical interests, such estimates cannot probe the
question of the dependence of the optimal remainder on the small parameters of the
problem (the value of J2, as well as the values of (e, i) for non-resonant satellite orbits).
Also, it was stressed before that we have no guarantee of the optimality of the estimates
themselves with respect to the normalization order, which, in theory, should scale as
a power of the inverse of the small parameters of the problem (see [51] for a tutorial
introduction).
All such scalings can be examined, instead, in the framework of the outstanding theorem
developed by Nekhoroshev ([53]). Under suitable assumptions, the theorem gives a
confinement of the action variables for exponentially long times. In particular, the
Hamiltonian must satisfy a non-degeneracy condition which, in the original formulation,
is called steepness condition. The definition of the steepness condition is quite technical
and typically not trivial to verify for a specific Hamiltonian system. However, there
are some sufficient conditions which imply steepness, whose verification requires the
resolution of algebraic equalities and inequalities. This motivates the introduction of
the following definition (see [131, 54]).

Definition 4.6.1. Consider the Hamiltonian h = h(J) for J ∈ B where B ⊂ Rn is an
open connected set. Denote by ω(J) the gradient of h and by Q(J) its Hessian matrix.
Then:

1. h(J) is convex in J ∈ B if

∀u ∈ Rn Q(J)u · u = 0 ⇔ u = 0;
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2. h(J) is quasi-convex in J ∈ B if ω(J) ̸= 0 and

∀u ∈ Rn

ω(J) · u = 0
Q(J)u · u = 0

⇔ u = 0;

3. h(J) is three-jet non degenerate in J ∈ B if ω(J) ̸= 0 and

∀u ∈ Rn


ω(J) · u = 0
Q(J)u · u = 0

n∑
i,j,k=1

∂3h

∂Ji∂Jj∂Jk

(J)uiujuk = 0
⇔ u = 0.

We remark that the convexity condition is equivalent to require that the Hessian
matrix Q(J) is positive (or negative) definite in J . We add also the following definition
of isoenergetically non-degenerate which, for Hamiltonian systems with 2 degrees of
freedom, implies quasi-convexity.

Definition 4.6.2. The Hamiltonian h = h(J) is called isoenergetically non degenerate
in J ∈ B with B ⊂ Rn open, if

det


∂2h

∂J2 (J) ∂h(J)
∂J(

∂h(J)
∂J

)T

0

 ̸= 0.

One can prove (see [132]) that, for every Hamiltonian system with n degrees of
freedom, quasi-convexity implies isoenergetically non-degeneracy: as a consequence,
for two-dimensional Hamiltonian systems, the two conditions are equivalent.

4.6.1 Numerical verification of the non-degeneracy conditions

We now apply the above definitions to the Hamiltonian functions introduced in Sec-
tion 4.2. We consider the following cases:

• the Hamiltonian function related to the J2 problem HJ2 , in form of Taylor
expansion up to order 15 in eccentricity and inclination, normalized up to order
12 with respect to the fast angle λ; we denote the resulting Hamiltonian including
the normalized part H(M)

J2,sec and the remainder R(M)
J2 (see Eq. (4.4.2)), as

HJ2(δL, P,Q, λ, p, q) = H(M)
J2,sec(δL, P,Q, p, q) + R(M)

J2 (δL, P,Q, λ, p, q) .

Given the practical stability of the semimajor axis established in Section 4.4.2, in
our computations we set L = L∗, i.e., δL = 0;

• the Hamiltonian function related to the geolunisolar problem Hgls,sec in (4.2.14),
expanded around the forced values of inclination and eccentricity (see Section
4.2.2) up to order 15 in eccentricity and inclination, see (4.2.24). The Hamiltonian
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Hgls,sec is averaged over the fast angle λ and put in resonant normal form with
respect to the angles ϕ1 and ϕ2 up to order 12 in eccentricity and inclination. As a
consequence, the resulting Hamiltonian Hgls = H(M)

gls,sec, including the normalized
part Z(M)

gls,sec, the resonant part Z(M)
gls,res and the remainder R(M)

gls (see Eq. (4.5.1)),
has two degrees of freedom and it is the sum of three terms:

Hgls(I1, I2, ϕ1, ϕ2) = Hgls,sec(I1, I2) + Hgls,res(I1, I2, ϕ1, ϕ2) + Rgls(I1, I2, ϕ1, ϕ2),

where Hgls,res depends only on the quasi-resonant combination ϕ1 − ϕ2.

To analyze the non-degeneracy conditions, we write the Hamiltonian as the sum of
two terms, namely an integrable Hamiltonian h and a perturbing function f . For the
J2-Hamiltonian, we set h(P,Q) to contain all the terms of HJ2 that are independent on
all angles, while the perturbing function f contains all other terms. For the geolunisolar
case, we choose h(I1, I2) to be the angle-independent part of the truncation up to order
2 of Hgls: in this way, the Hessian matrix of h is independent of the actions, and the
computations are easier3.

Since the Hamiltonian functions depend on the parameter L∗ = √
µa∗, we select

four reference values for the altitudes that correspond to distances of interest in satellite
dynamics:

• 3000 km, for near-Earth objects;

• 20000 km, for distance of the order of MEO;

• 35790 km, for GEO orbits;

• 50000 km, for far objects.

For each of these values, we check the non-degeneracy conditions of convexity, quasi-
convexity and three-jet, for both the case of the J2-problem and the geolunisolar models
in the domain4 (e, i) ∈ D = [0, 0.1] × [0, 0.1], which corresponds to a domain in the
actions D′′ = [0, Pmax] × [0, Qmax] ⊂ R2, where Pmax, Qmax correspond to e = 0.1,
i = 0.1 and can be computed numerically.

Remark 4.6.3. We notice that a Hamiltonian h = h(P,Q) (or, equivalently, h(I1, I2)
in the geolunisolar case) is convex in D′′ ∈ R2, if the product of the eigenvalues of the
Hessian matrix of h is greater than zero for every (P,Q) ∈ D′′. Moreover, h(P,Q) is
quasi-convex in D′′ ∈ R2, if for every (P,Q) ∈ D′′ the determinant of the matrix

A =

h11(P,Q) h12(P,Q) h1(P,Q)
h21(P,Q) h22(P,Q) h2(P,Q)
h1(P,Q) h2(P,Q) 0

 (4.6.1)

is non zero.
3We made this particular choice after verifying that, in the chosen domain in the actions, there

are no substantial differences between taking all the normalized terms up to order 12 or only the
quadratic truncation.

4From now on, unless otherwise specified, the angles are expressed in radians.
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Table 4.6 Values of λ1 λ2 for the J2 model for different altitudes and (P, Q) ∈ D′′.

Altitudes λ1 λ2 intervals
3000 km [−1.53606 · 10−6,−1.44844 · 10−6]
20000 km [−3.9009 · 10−10,−3.67893 · 10−10]
35790 km [−3.00586 · 10−16,−3.19895 · 10−42]
50000 km [−4.3889 · 10−32,−1, 30545 · 10−47]

If the convexity and quasi-convexity tests fail, one can control the three-jet non-
degeneracy condition, that we compute, again, numerically, checking that the system

ω(P,Q) · u = 0
(∂2h(P,Q)u) · u = 0
((∂3h(P,Q)u)u) · u = 0

(4.6.2)

evaluated on a grid of values (P,Q) ∈ D′′ admits only the trivial solution u = (0, 0, 0).
Since convexity implies quasi-convexity and quasi-convexity implies three-jet non-
degeneracy, to identify which of the conditions is satisfied, we proceed in the following
way:

• we begin with the convexity test on the product of the eigenvalues: if the product
is positive for every value of (P,Q) ∈ D′′, then h(P,Q) is convex;

• if the convexity test fails, we pass to the quasi-convexity condition, checking the
criteria given in Definition 4.6.1 and Remark 4.6.3;

• if the quasi-convexity test fails, we check the three-jet non-degeneracy through
the numerical test based on Definition 4.6.1.

4.6.2 Non-degeneracy of the J2 Hamiltonian

We start from the convexity test; we denote by λ1, λ2 the eigenvalues of the Hessian
matrix of h.

Table 4.6 gives the numerical values of λ1λ2 for different altitudes and (P,Q) in the
domain D′′ (we recall that, since the values in the Hessian matrix depend on P and Q,
we have an interval for λ1λ2 instead of a single value). As one can see, the product
of the eigenvalues is always negative or zero within numerical precision level, leading
to the conclusion that the Hamiltonian HJ2 is not convex in D′′ for the considered
altitudes.

We can then pass to the quasi-convexity test. We consider the determinant of the
matrix A defined in (4.6.1) for (P,Q) ∈ D′′. As we can see from Table 4.7, for every
considered altitude the values of detA are equal to zero within the numerical precision
level, leading to the conclusion that the J2 Hamiltonian is not quasi-convex in D′′.
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Table 4.7 Values of det A, with A as in (4.6.1) for the J2 model for different altitudes and
(P, Q) ∈ D′′.

Altitudes detA intervals
3000 km [−1.99418 · 10−10,−1.82748 · 10−10]
20000 km [−2.27575 · 10−15,−2.08271 · 10−15]
35790 km [−1.30574 · 10−17,−1.19784 · 10−17]
50000 km [−5.34517 · 10−19,−4.9035 · 10−19]

Table 4.8 Values of λ1 and λ2 for different altitudes in the geolunisolar model.

Altitudes λ1 λ2
3000 km −11.6416 3.046
20000 km −0.185307 0.0479062
35790 km −0.0294666 0.00703346
50000 km −0.0188881 0.00508227

The failure of the quasi-convexity for the J2 problem is a relevant fact: as we will
see in Section 4.6.3, the effects of the lunisolar attraction will eliminate such degeneracy,
making the total Hamiltonian quasi-convex.

We conclude with the test on the three-jet non-degeneracy condition. To make the
computations quantitative, we solved the system (4.6.2) for values (Pi, Qj) on a mesh
of 10000 points in D′′. For every pair of values (Pi, Qj) the only solution of the system
is the trivial one u = (0, 0), leading to conclude that the Hamiltonian of the J2 model
is three-jet non degenerate in D′′. This fact is not unexpected as for systems up to 3
degrees of freedom the three-jet condition is generically satisfied (see [133]).

4.6.3 Quasi-convexity of the geolunisolar Hamiltonian

As for the J2 model, we start from the convexity test. In this case, the unperturbed
Hamiltonian is a polynomial of degree 2 in the actions; then, the Hessian matrix
of h(I1, I2) does not depend on the values of I1 and I2, and the same holds for its
eigenvalues. This makes the test on the convexity of the Hamiltonian easier.

Table 4.8 shows the values of λ1 and λ2 for different altitudes. As we can see,
in every case the eigenvalues of the Hessian have opposite sign, showing that the
geolunisolar unperturbed Hamiltonian is not convex in R2, and hence in D′′.

As for the quasi-convexity, we check whether the matrix A defined in (4.6.1) is
nondegenerate for every value (I1, I2) ∈ D′′.

From Table 4.9 we can see that the determinant of A is strictly positive for every
value of the selected altitudes and every (I1, I2) ∈ D′′. Hence, we conclude that the
Hamiltonian for the geolunisolar case is quasi-convex. As observed at the end of Section
4.6.2, this fact is highly nontrivial, since it means that the lunisolar perturbation of
the J2 model removes the degeneracy.
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Table 4.9 Values of det A, with A in (4.6.1) in the geolunisolar case for different altitudes and
(I1, I2) ∈ D′′.

Altitudes detA intervals
3000 km [2206.82, 2335.21]
20000 km [0.0271813, 0.0287145]
35790 km [0.000309172, 0.000323288]
50000 km [0.000113523, 0.000118622]





Chapter 5

Nekhoroshev estimates for the
orbital stability of Earth’s satellites

5.1 Introduction

The aim of this chapter is to study the stability of a model for objects in MEO
from an analytical point of view, providing exponential stability estimates using the
celebrated Nekhoroshev theorem ([53]). We stress that, while the Nekhoroshev theorem
is particularly relevant for systems with three or more degrees of freedom, which can
be affected by the phenomenon known as Arnold diffusion ([134]), the applicability of
the theorem in securing the long-term stability in open domains in the action space
holds for systems of any number of degrees of freedom larger than or equal to two. As
already pointed out in Section 4.6, the Nekhoroshev theorem was originally developed
under a suitable non-degeneracy condition, called steepness, while later approaches (e.g.
[135, 54]) focus on the important subcase of convex and quasi-convex Hamiltonians. As
regards the applications, the theorem was proved useful in obtaining realistic estimates
of the domains or times of practical stability of the orbits in a number of interesting
problems in Celestial Mechanics. Among others, we mention the three-body problem
([136]) as well as the problem of the Trojan asteroids ([137], [138]).

In this chapter, we apply the Nekhoroshev theorem to a model approximating the
(averaged over short period terms) dynamics of a small body around the Earth. As
discussed below, this allows to obtain long-time stability estimates for realistic sets of
parameters, at least for altitudes (values of the semi major axis) below 20 000 km.

Our main model, explained in detail in Section 5.2, is in principle the geolunisolar
model already introduced in Chapter 4. Let us recall that it is ruled by a Hamiltonian
function obtained as the sum of different contributions, namely, the geopotential J2
term as well as the third-body perturbations on the small body by the Sun and Moon.
We assume the spatial case of the small body’s motion, while we approximate the
Moon’s and Sun’s orbits as fixed Keplerian ellipses lying in the ecliptic plane. We
argue (Section 5.2) that the Moon’s precession of the nodes introduces only minimal
effects as regards the problem of determining Nekhoroshev stability, due to the fact
that the frequency of the precession is much smaller than any of the frequencies in
the small body’s motion. As a result, our point of departure is a Hamiltonian model
obtained by a 3 degrees-of-freedom and time-dependent Hamiltonian function, which
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depends quasi-periodically on time, since the (fast) frequencies of motion of the Sun
and Moon are non-commensurable.

Now, similarly to what we already observed in in Chapter 4 and as will be discussed
in Section 5.2, this model is still not convenient for the discussion of Nekhoroshev
stability over secular timescales, because both short and long period effects are included
in it. Working, however with closed-form perturbation theory (namely, without series
expansions in eccentricity and inclination, see [139, 122] for a review), one can eliminate
all short-period terms and arrive at an autonomous Hamiltonian with two degrees of
freedom which is convenient for the description of the secular motions of the small body.
As our basic model, we then adopt the one found after averaging (in closed-form) over
the Earth’s J2 term and the Sun’s and Moon’s quadrupolar (P2) terms. Several studies
(see [46–48, 140] and references therein) have demonstrated the relevance of this model
in capturing all important effects for the long-term dynamics at MEO. On the other
hand, unlike Chapter 4, in Section 5.5 we will consider also a more complicated model
including the Earth’s J3 and J4 terms to first order, as well as J2

2 terms. The latter are
computed by implementing a closed form averaging through Deprit’s elimination of
the parallax technique ([141–143]). One finds (see the discussion in Section 5.5) that
the relative importance of these terms over lunisolar terms decreases with altitude;
yet, these terms provide relevant contributions to the Hamiltonian for the lowermost
altitudes considered in our analysis (namely, with semimajor axis a ≈ 11000 km).

After fixing the initial model, an important aspect of the work presented in this
chapter concerns a number of preliminary operations performed on the initial Hamilto-
nian, which turn to be crucial to the purpose of bringing the Hamiltonian in a form
allowing to explicitly demonstrate the fulfilment of the conditions for the holding of the
Nekhoroshev theorem in the form given in [54]. These preliminary steps are explained
in detail in Section 5.2 below, and can be summarized as follows:

(i) Average over fast angles. We start by averaging the Hamiltonian over the
problem’s fast angles, i.e., the mean anomalies of the small body’s, Moon’s and Sun’s
orbits. After this operation, the semi-major axis a of any orbit becomes a constant
which can be used to label the altitude of each orbit. We stress that an analogous
averaging procedure has been applied in Section 4.2.2.

(ii) Expansion around reference values in the eccentricity and inclination. The
remaining elements (eccentricity e and inclination i), which can be mapped into the
action variables of the problem, undergo ‘secular’ (slow) evolution under the averaged
Hamiltonian. Our purpose is to characterize the stability of the orbits in the space (e, i)
of the orbital elements. To this end, fixing a grid of reference values (e∗, i∗) in the plane
(e, i) for each (constant) semi-major axis a = a∗, we perform a Taylor expansion of the
averaged Hamiltonian around the points in action space associated with the reference
point (e∗, i∗). This step is important, since the Taylor-expanded Hamiltonian can be
easily manipulated in terms of normalizing canonical transformations necessary to
perform with the aid of a computer-algebraic program (see below). This step represents
a fundamental difference with respect to the expansion used in Chapter 4 to obtain
the lunisolar Hamiltonian. As a matter of fact, while here the reference values (e∗, i∗)
will range over a wide domain of eccentricities and inclinations, in the case already
presented in Section 4.2.2 only small values of e and i have been considered.
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Table 5.1 Inclination-dependent resonances of order ≤ 4 in the lunisolar model. The coefficients
are such that αω̇ + βΩ̇ = 0, where ω is the argument of the perigee and Ω is the longitude of
the ascending node ([112]).

α β i(deg) α β i(deg) α β i(deg) α β i(deg)
1 0 63.43 0 1 90 1 1 46.37 1 -1 73.1
2 1 56 1 2 0 2 -1 69 -1 12 78
3 1 58.75 3 -1 67.33 1 -3 81.47

(iii) Preliminary normalization. We perform a preliminary normalization of the
averaged and Taylor-expanded Hamiltonian, aiming to eliminate some terms which,
albeit reflecting a trivial dynamics (see Section 5.3), may artificially affect the estimates
found by implementing Pöschel’s version of the Nekhoroshev theorem. We argue below
that this step is a consequence of the non-zero value of the inclination of the Laplace
plane with respect to the Earth’s equatorial plane. The value of such inclination has
already been expressed in (4.2.20). A key result of this chapter is the use of normal
form techniques to reduce the size, in the Hamiltonian, of all terms related to the
Laplace plane (see Section 5.3); whenever convergent, this procedure is crucial to
put the initial Hamiltonian in a form for which Nekhoroshev’s nonresonant stability
estimates can be produced, since it allows us to control the norm of the perturbing
function under a suitable choice of the domain in the actions.

Now, following steps (i) to (iii) above, the procedure leads to a normalized 2-
dimensional Hamiltonian expressed in suitably defined action-angle variables (I,u) ∈
R2 × T2, of the form:

H(I,u) = h0(I) + h1(I,u) . (5.1.1)
Using the Hamiltonian (5.1.1), we can derive stability results on the eccentricity and
the inclination by implementing the estimates provided in [54, Proposition 1]. This
proposition refers to the so-called non-resonant regime, i.e., when the fundamental
frequencies deduced by the integrable part of the Hamiltonian, h0, are subject to no
resonance conditions. Under particular assumptions on the non-resonance condition
for h0, as well as on the smallness of the norm of h1 in a suitable functional space
and domain in the action variables (see Section 5.3.1), one can prove that the actions
remain in a small neighborhood of their initial values for a period of time which is
exponentially long with respect to the norm of h1. We remark that Proposition 1 in
[54] does not require any convexity assumption on the Hamiltonian. This assumption
is relevant when analyzing resonant regimes (a thorough analysis of different non-
degeneracy conditions such as convexity, quasi-convexity, 3-jet, etc., has been already
presented in Chapter 4). However, we also stress that, despite our use of Pöschel’s
proposition in the non-resonant regime, the presence of resonances at MEO plays an
important role also in our results, as becomes evident in the discussion of our results in
Section 5.4. In fact, we find that our obtained stability domains typically exclude some
zones around the so-called inclination-dependent resonances ([112]), i.e., resonances
appearing for particular values of the inclination of the orbit, independently of the
value of the semimajor axis or the eccentricity. This is because the series constructed in
our preliminary normalization of the Hamiltonian are affected by small divisors related
to the most-important of these resonances, given in Table 5.1. Also, the frequencies
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associated with these divisors influence the determination of the so-called ‘Fourier
cut-off’ (Section 5.3) which appears in the implementation of the Proposition 1 of [54].

As described in Section 5.4, the stability estimates obtained in this chapter depend
strongly on the distance of the small body from the Earth’s center: our results show
that the domain of Nekhoroshev stability in the plane (e, i) has a large volume (limited
only by narrow strips around resonances) at the distance of 10 000 km, while it shrinks
to a near-zero volume beyond the distance of 20 000 km. We should stress that this
result is partly due to the dynamics itself (the J2 dynamics alone is integrable, but
the third body perturbations increase in relative size as the distance from the Earth
increases), but also probably due, in part, to our particular technique used to apply the
Nekhoroshev theorem, i.e. including the processing of the Hamiltonian as described in
steps (i)-(iii) above. We thus leave open the possibility that this latter constraint be
relaxed with the use of a better technique. Also, our present treatment is simplified in
that we ignore the periodic oscillation of the Moon’s line of nodes (by an amplitude
of 11.5◦ over a period of 18.6 yr) and inclination (by ±5◦) around the ecliptic of the
Moon’s orbit with respect to the Earth’s equatorial plane. This oscillation introduces
one more secular frequency to the problem; however, it substantially affects the orbits
only for semi-major axes a > 20 000 km, which is, anyway, beyond the domain of
stability presently found even while ignoring this effect.
The figures of the current chapter are taken from [6].

5.2 Hamiltonian preparation

In this section, we provide details on the model (Section 5.2.1), on the corresponding
secular Hamiltonian function averaged over fast angles (Section 5.2.2), the expansion
around some reference values for the eccentricity and inclination (Section 5.2.3), and
the preliminary normalization to remove specific terms (Section 5.2.4).

5.2.1 Model

Although the model used in this chapter is analogous to the geolunisolar one already
introduced in Chapter 4, let us recall, for the readers’ convenience, the basic steps of
its construction. This will be useful as, starting from Section 5.2.3, the expansion we
will consider will be different from the one used previously, as well as the normalization
techniques carried on to apply Nekhoroshev theorem.
In particular, we consider the following approximation to the body’s equations of
motion:

r̈ = −∇VE(r) − µ⊙

(
r − r⊙

|r − r⊙|3
+ r⊙

|r⊙|3

)
− µM

(
r − rM

|r − rM |3
+ rM

|rM |3

)
, (5.2.1)

where VE(r) approximates the geopotential via the relation

VE(r) = Vkep(∥r∥) + VJ2(r) , (5.2.2)

where Vkep(r) = −µE

r
and VJ2 in spherical coordinates (r, φ, ϕ) is given by
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VJ2(r, φ, ϕ) = µEJ2

r

{(
RE

r

)2 (3
2 sin2 ϕ− 1

2

)}
1. (5.2.3)

In the above formulas:

- G is the gravitational constant, µE = GmE, µM = GmM , µ⊙ = Gm⊙ with mE,
mM , m⊙ the masses of the Earth, Moon and Sun respectively.

- We adopt the value J2 = 1.082 × 10−3 for the J2 coefficient, and RE = 6 400 km
for the Earth’s equatorial radius.

- r, r⊙ and rM are, respectively, the geocentric position vectors of S, Sun and
Moon with respect to an inertial reference frame.

The expressions of r⊙ and rM depend on the assumptions on the orbits of Sun and Moon.
Here, the geocentric orbit of the Sun is taken as a fixed ellipse with a⊙ = 1.496 × 108

km, e⊙ = 0.0167 and i⊙ = 23.44◦, while the geocentric orbit of the Moon is taken as
a fixed ellipse with orbital parameters aM = 384 748 km, eM = 0.0554 and iM = i⊙.
As already pointed out, the last assumption implies that the only lunisolar resonances
which affect the dynamics of the body are those whose location in the element space
(a, e, i) depends only on the inclination (see [112]). More resonances, instead, appear
when the effect of nodal precession (by a period of 18.6 years) of the Moon’s orbit is
taken into account. However, these resonances affect the dynamics only at altitudes
exceeding the ones where we presently establish Nekhoroshev stability (see [47] and
Section 5.4 below), thus they can be again ignored in the framework of our present
study.

The Hamiltonian function which describes the motion of S can be expressed as the
sum of three contributions:

H = HE + H⊙ + HM , (5.2.4)
where HE = p2/2 + VE(r) with p = ṙ, and H⊙ and HM are the solar and lunar third-
body perturbation terms. Considering the quadrupolar expansion of the third-body
perturbation terms in the equations of motion (5.2.1), we find again the expansions in
Eq. (4.2.10).

5.2.2 Average over fast angles - Secular Hamiltonian

As already pointed out in Section 4.2.2, the secular motion of the body S can be
modeled by computing the average of (5.2.4) over all canonical angles associated to
the fast motions of S, the Sun and the Moon. Note that the period of the Sun is only
‘semi-fast’ (one year, compared to secular periods of ∼ 10 yrs for the small body),
and more detailed models can consider also the case of ‘semi-secular’ resonances, i.e.,
resonances in the case in which the equations of motion (and Hamiltonian) are not
averaged with respect to the Sun’s mean anomaly (see, for example, [42]).

1In the present section, as well as in Sections 5.3 and 5.4, we limit our analysis to the J2-term,
which is the dominant term of the Earth’s potential at all altitudes; however, in Section 5.5 we
will discuss the influence on our results by the terms J3, J4, and J2

2 (obtained through a canonical
transformation), which become relevant for the lowermost limit in altitude of the MEO domain.
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Averaging with respect to all fast angles leads to the following, called hereafter,
secular Hamiltonian, given by the sum of the averaged contributions of the Earth, Sun
and Moon:

H(sec) = H(av)
E + H(av)

⊙ + H(av)
M . (5.2.5)

The function H(sec) = H(sec)(G,Θ, ω,Ω) is a two degrees of freedom Hamiltonian, which
can be explicitly computed in terms of Delaunay canonical action-angle variables G, Θ
(with conjugated angles ω, Ω), related to the orbital elements by the expressions (see,
e.g., [70]):

G =
√
µEa(1 − e2), Θ =

√
µEa(1 − e2) cos i . (5.2.6)

Since the averaged Hamiltonian does not depend on the mean anomaly M of S, the
conjugated Delaunay action L = √

µEa, and hence the semi-major axis a, is a constant
of motion of the Hamiltonian H(sec). We set L = L∗, or, equivalently, a = a∗ when
referring to trajectories whose semi-major axis has the reference value a∗.

Following the same procedure as in Section 4.2.2, one obtains the geopotential term

H(av)
E = − µ2

E

2L2 − J2
µER

2
E

a3
∗(1 − e2)3/2

(1
2 − 3

4 sin2 i
)
. (5.2.7)

We note that this procedure of scissor averaging yields a formula for H(av)
E , which is

identical to the formula obtained at first order through a Lie canonical transformation,
a procedure known as the Delaunay normalization (see [144, 139]). However, from a
physical point of view, this implies that in all results described below, by elements are
implied the ones found after eliminating from the Hamiltonian the short-period terms
(see discussion in Section 5.5). The same property holds for the averaging of the terms
H(av)

⊙ , H(av)
M , which can be performed by a canonical transformation leading, to first

order, to the same formula as using the scissor averaging integral

H(av)
⊙ = 1

4π2

∫ 2π

0

∫ 2π

0

(
−µ⊙

r⊙
− µ⊙

2r3
⊙
r2 + 3

2
µ⊙(r · r⊙)2

r5
⊙

)
dMdM⊙

(and analogously for H(av)
M ); we recall that, in this case, it turns convenient to change

the integration variables from M to u (eccentric anomaly of S) and from M⊙ to f⊙
(true anomaly of the Sun). We note that, up to quadrupolar terms, this yields the
same result as considering the Moon and Sun in circular, instead of elliptic, orbits
(in which case M⊙, MM would be equal to f⊙, fM), but replacing each third-body’s
semi-major axis ab with the expression ab → ab(1 − e2

b)1/2 (index b standing for Sun or
Moon). This replacement accomplishes the first step in the Hamiltonian preparation.

5.2.3 Expansion around reference values (e∗, i∗)

After performing the above operations, the Hamiltonian H(sec) becomes a function of
the body’s action-angle variables (G,ω), (Θ,Ω), while it depends also on the Delaunay
action L, which however, does not affect the secular dynamics and can be carried on all
subsequent expressions as a parameter (equal to L∗). We use, alternatively, a∗ as the
parameter appearing in the coefficients of all trigonometric terms in H(sec). Furthermore,
it turns convenient to express H(sec) in terms of modified Delaunay variables instead
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of the original Delaunay variables, as they have already been introduced in (4.2.4)
and (4.2.7) (note that, in the following, Γ corresponds to the old P and Θ̃ to the old
Q). Starting now from the Hamiltonian H(sec)(Γ, Θ̃, p, q), our goal will be to examine
Nekhoroshev stability in a covering of the action space in terms of local neighborhoods
around a grid of reference values corresponding to a grid of element values (a∗, e∗, i∗)
(see Section 5.3.2). This motivates to introduce the variables P and Q defined byP = Γ∗ − Γ,

Q = Θ̃∗ − Θ̃ ,
(5.2.8)

where Γ∗ and Θ̃∗ are the values corresponding to the orbital elements (e∗, i∗), and
compute the Taylor expansion of H(sec) in powers of the small quantities (Q,P ),
truncated at a maximum order N (we set N = 12)2. We then arrive at the following
truncated secular Hamiltonian model

H(sec,N)(P,Q, p, q) =
N∑

j=1
g(j)(P,Q, p, q) . (5.2.9)

In the model (5.2.9) we have

g(1)(P,Q) = ω1P + ω2Q . (5.2.10)

For reasons that will become clear later, for j ≥ 2 we split each of the functions
g(j)(P,Q, p, q) as a sum depending only on the actions and a sum depending also on
the angles:

g(j)(P,Q, p, q) =
∑
l∈Z2

|l|=j

a
(j)
l P l1Ql2 +

∑
l,k∈Z2

|l|=j−2

b
(j)
l,kP

l1Ql2ei(k1p+k2q) . (5.2.11)

Expansion (5.2.11) is the analogous of Eq. (4.2.23) presented in Chapter 4, though
the latter has been expressed as a trigonometric polynomial instead of the exponential
expansion. Moreover, for reasons related to the particular normalization algorithm we
will use in Section 5.2.4, the terms depending only on the action are separated from the
time-dependent ones. This last splitting completes the second step in the Hamiltonian
preparation. The explicit expressions of the quantities ω1, ω2, al, bl,k for j = 2 are
given in Section 5.7, in terms of the orbital elements of the satellite, Moon and Sun.

5.2.4 Preliminary normalization

It was already mentioned in Section 5.1 that the presence of the averaged lunisolar terms
in (5.2.9) implies the existence of a secular equilibrium solution of Hamilton’s equations
of motion under the Hamiltonian H(sec), corresponding to the values e = 0, i = i(eq)

(see Eq.(4.2.20), where i(eq) = i(p)), where i(p) is called the inclination of the Laplace
plane or proper inclination. It is easy to see that the non-zero value of the inclination

2This is actually the first difference between the geolunisolar Hamiltonian presented in Chapter 4
and the one constructed here. As a matter of fact, while in the current Hamiltonian (i∗, e∗) could be
arbitrary, in Chapter 4 the expasion was done around e = 0 and the inclination proper of the Laplace
plane.
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of the Laplace plane is reflected into the Hamiltonian H(sec,N) by the presence of
purely trigonometric terms, i.e., terms with |l| = 0. Such terms yield coefficients
which are dominant with respect to the remaining terms in the Hamiltonian expansion.
Furthermore, in the splitting of the Hamiltonian as H = h0(I)+h1(I,u), where (I,u) are
action-angle variables, as required for the implementation of the Nekhoroshev theorem
(see next section), the above terms generate terms with a dominant coefficient largely
affecting the size of the perturbation h1(I,u). In the present subsection, we implement
a procedure for controlling the size of the terms (5.2.9) of the expansion, so that we
obtain a Hamiltonian satisfying the norm bounds required for the implementation of
the Nekhoroshev theorem.

More specifically, the aim of the normalization algorithm described below is to
remove, up a certain order Nnorm with respect to the expansion (5.2.9), the angle-
dependent terms which are constant or linear in the actions: this leads to a Hamiltonian
H(Nnorm), in which the norm of the angle-dependent part decreases at least quadratically
with the size of the domain Ar0 in which local action variables are defined.

The normalization procedure relies on the use of Lie series, already introduced in
Section 4.4. In every normalization step, the transformed Hamiltonian is given by

H(new) = exp(N)(Lχ)H(old), (5.2.12)

where Lχf = {f, χ} ({·, ·} denotes the Poisson bracket) and exp(N)(Lχ) is defined by

exp(N)(Lχ)f =
N∑

s=0

1
s!L

s
χf . (5.2.13)

To illustrate the procedure, rename the initial Hamiltonian (5.2.9) as H(0) (where
superscripts denote how many normalization steps were performed). Then:

H(0)(P,Q, p, q) =
N∑

j=1
g(j,0)(P,Q, p, q) , (5.2.14)

where

g(1,0)(P,Q) = ω1P + ω2Q

and, when j ≥ 2,

g(j,0)(P,Q, p, q) =
∑
l∈Z2

|l|=j

a
(j,0)
l P l1Ql2 +

∑
l,k∈Z2

|l|=j−2

b
(j,0)
l,k P l1Ql2ei(k1p+k2q). (5.2.15)

The second term of the sum (5.2.14) takes the form

g(2,0)(P,Q, p, q) =
∑
l∈Z2

|l|=2

a
(2,0)
l P l1Ql2 +

∑
k∈Z2

b
(2,0)
0,k ei(k1p+k2q) . (5.2.16)
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The generating function χ(1) eliminating the above terms has the form

χ(1)(P,Q, p, q) =
∑

l,k∈Z2

x
(1)
l,kP

l1Ql2ei(k1p+k2q) , (5.2.17)

where the coefficients x(1)
l,k are obtained as the solution of the homological equation

{ω1P + ω2Q,χ
(1)} = −

∑
k∈Z2

b
(2,0)
0,k ei(k1p+k2q) , (5.2.18)

namely

χ(1)(p, q) = −
∑

k∈Z2

b
(2,0)
0,k

i(ω1k1 + ω2k2)
ei(k1p+k2q) . (5.2.19)

The normalized Hamiltonian after the first step can be written as

H(1)(P,Q, p, q) = ω1P + ω2Q+ Z(2,1)(P,Q, p, q) +
N∑

j=3
g(j,1)(P,Q, p, q) , (5.2.20)

where
Z(2,1) = g(2,0) + Lχ(1)(ω1P + ω2Q) =

∑
l∈Z2

|l|=2

a
(2,0)
l P l1Ql2 (5.2.21)

and
g(j,1) =

j−1∑
s=0

1
s!L

s
χ(1)g

(j−s,1). (5.2.22)

In general, since the generating function χ(1) is constant in the actions, one can see
that, if f(P,Q, p, q) has polynomial order ℓ in the actions, then the order in the actions
of the transformed function Lχ(1)f is ℓ− 1. This means that all terms in H(1) can be
labeled through their polynomial orders in the actions: choosing the expansion order
N to be odd and distinguishing the indices j with respect to their parity, we have, for
n = 1, . . . , (N − 1)/2:

g(2n,1)(P,Q, p, q) =
∑
l∈Z2

|l|=2n

a
(2n,1)
l P l1Ql2 +

n−1∑
s=0

∑
l,k∈Z2

|l|=2s

b
(2n,1)
l,k P l1Ql2ei(k1p+k2q) (n ≥ 2),

g(2n+1,1)(P,Q, p, q) =
∑
l∈Z2

|l|=2n+1

a
(2n+1,1)
l P l1Ql2 +

n−1∑
s=0

∑
l,k∈Z2

|l|=2s+1

b
(2n+1,1)
l,k P l1Ql2ei(k1p+k2q).

(5.2.23)

After the classical normalization step, the function Z(2,1)(P,Q, p, q) does not contain
angle-dependent terms which are constant or linear in the actions.

The second step focusses on the manipulation of the term

g(3,1)(P,Q, p, q) =
∑
l∈Z2

|l|=3

a
(3,1)
l,k P l1Ql2 +

∑
l,k∈Z2

|l|=1

b
(3,1)
l,k P l1Ql2ei(k1p+k2q) . (5.2.24)
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Precisely, the second normalization step aims to remove the second sum in g(3,1) which
is angle-dependent and linear in the actions. The generating function χ(2), given by
(5.2.17) with a suitable change in the upper indexes, must satisfy the normal form
equations

{ω1P + ω2Q,χ
(2)} = −

∑
l,k∈Z2

|l|=1

b
(3,1)
l,k P l1Ql2ei(k1p+k2q) , (5.2.25)

which gives

χ(2)(P,Q, p, q) = −
∑

l,k∈Z2

|l|=1

b
(3,1)
l,k

i(ω1k1 + ω2k2)
P l1Ql2ei(k2p+k2q) .

As a result, the generating function χ(2) is linear in the actions, so that the oper-
ator Lχ(2)f preserves the polynomial degree in the actions of any generic function
f(P,Q, p, q).

The second-order transformed Hamiltonian H(2) can be written as

H(2)(P,Q, p, q) = ω1P + ω2Q+
3∑

j=2
Z(j,2)(P,Q) +

N∑
j=4

g(j,2)(P,Q, p, q) , (5.2.26)

where, noticing that g(0,2) ≡ 0, one obtains

Z(2,2) =
∑
l∈Z2

|l|=2

a
(2,2)
l P l1Ql2 , Z(3,2) =

∑
l∈Z2

|l|=3

a
(3,2)
l P l1Ql2 , g(j,2) =

⌊ j
2 ⌋∑

s=0

1
s!L

sg(j−2s,2) .

(5.2.27)
Taking into account the parities of the indexes j, one can obtain also for g(j,2) the
analogous of (5.2.23).

We can now give the explicit formulas for the normalization steps for r > 2.

• The r−th normalization step allows one to transform the Hamiltonian

H(r−1)(P,Q, p, q) = ω1P + ω2Q+
r−1∑
j=2

Z(j,r−1)(P,Q, p, q) +
N∑

j=r

g(j,r−1)(P,Q, p, q)

(5.2.28)
into

H(r)(P,Q, p, q) = ω1P + ω2Q+
r∑

j=2
Z(j,r)(P,Q, p, q) +

N∑
j=r+1

g(j,r)(P,Q, p, q),

(5.2.29)
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with

Z(2,r) =
∑
l∈Z2

|l|=2

a
(2,r)
l P l1Ql2 , Z(3,r) =

∑
l∈Z2

|l|=3

a
(3,r)
l P l1Ql2 ,

Z(j>3,r) =
∑
l∈Z2

|l|=j

a
(j,r)
l P l1Ql2 +

j−2∑
s=2

∑
l,k∈Z2

|l|=s

b
(j,r)
l,k P l1Ql2ei(k1p+k2q),

g(j,r) =
∑
l∈Z2

|l|=j

a
(j,r)
l P l1Ql2 +

j−2∑
s=0

∑
l,k∈Z2

|l|=s

b
(j,r)
l,k P l1Ql2ei(k1p+k2q) . (5.2.30)

By the above parity rules, which apply also for r > 3, both Z(j,i) and g(j,i) contain
only the terms with s even if j is even and s odd if j is odd. Notice that, for
j > 3, Z(j,i) can contain also angle-dependent terms, which are at least quadratic
in the actions.

• The r-th order generating function can be expressed as

χ(r)(P,Q, p, q) = −
∑

l,k∈Z2

|l|=0,1

b
(r+1,r−1)
l,k

i(ω1k1 + ω2k2)
P l1Ql2ei(k1p+k2q), (5.2.31)

which contains only purely trigonometric terms (independent on the actions) if r
is odd and only terms linear in the actions if r is even.

• After Nnorm normalization steps, the final Hamiltonian is given by

H(Nnorm)(P,Q, p, q) = ω1P + ω2Q+
Nnorm∑

j=2
Z(j,Nnorm)(P,Q, p, q)

+
N∑

j=Nnorm+1
g(j,Nnorm)(P,Q, p, q).

(5.2.32)

From (5.2.30) it is clear that the functions g(j,ℓ) might contain terms which are angle-
dependent and constant or linear in the actions. As we will see later, the series are
convergent in particular domains of the parameters. In that case, the normalization
procedure succeeds to reduce the magnitude of all the terms in the perturbation to a
size sufficiently small for the application of the Nekhoroshev theorem.

It is also important to observe that particular angle combinations in the angle-
dependent part of the Hamiltonians can produce, if r is odd, constant terms both in
actions and angles, which do not affect the dynamics; however, when r is even, the
same combinations can produce terms which do not depend on the angles, but are
linear in the actions. These terms represent a perturbation on the frequencies, which
can have important effects on the applicability of Nekhoroshev theorem.

From the definition of the r−th order generating function (5.2.31), one can observe
that the convergence of the normalization algorithm depends heavily on the presence of
resonances, which produce small divisors of the type ω1k

(res)
1 + ω2k

(res)
2 ≈ 0 for suitable
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integers k(res)
1 , k(res)

2 . Section 5.4.2 provides numerical examples of how the presence
of resonances can affect the convergence of the normalization procedure, along with
effects on the variation of the initial frequencies.

5.3 Nekhoroshev stability estimates

We are now ready to recall the version of the Nekhoroshev theorem developed in [54]
for frequencies satisfying a non-resonance condition (see Section 5.3.1). Based on this
theorem, we developed an algorithm computing all quantities needed in order to check
whether the necessary conditions for the holding of the theorem are fulfilled in the case
of the Hamiltonian (5.2.32). The algorithm is presented in Section 5.3.2.

5.3.1 Theorem on exponential stability

Let us consider an n−dimensional quasi-integrable Hamiltonian of the form

H(I,u) = h(I) + fϵ(I,u) ,

with h called the integrable part and fϵ the perturbing function, depending on a small
real parameter ϵ > 0. The Hamiltonian H is assumed real analytic in the domain
(I,u) ∈ A× Tn with A ⊆ Rn open and bounded. Besides, we assume that H can be
extended analytically to the set Dr0,s0 defined as

Dr0,s0 = Ar0 × Tn
s0 , (5.3.1)

where for r0, s0 > 0:
Ar0 = {I ∈ Cn : dist(I, A) < r0} (5.3.2)

and
Tn

s0 = {u ∈ Cn : Re(uj) ∈ T, max
j=1,...,n

|Im(uj)| < s0} .

Finally, we assume that there exists a positive constant M such that

sup
I∈Ar0

∥Q(I)∥o ≤ M ,

where Q denotes the Hessian matrix associated to h and ∥ · ∥o denotes the operator
norm induced by the Euclidean norm on Rn.

For any analytic function

g(I,u) =
∑

k∈Zn

gk(I)eik·u,

in Dr0,s0 , we define its Cauchy norm as

|g|A,r0,s0 = sup
I∈Ar0

∑
k∈Zn

|gk(I)|e|k|s0 , (5.3.3)
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where |k| is the ℓ1-norm of k ∈ Zn. Finally, let ϵ be such that

|fϵ|A,r0,s0 ≤ ϵ . (5.3.4)

The following Theorem provides a bound on the action variables for exponentially long
times; we refer to [54] for the proof and further extensions. First we need the following
definition.

Definition 5.3.1. A set D ⊆ A is said to be a completely α,K-nonresonant domain
in A, if for every k ∈ Zn\{0}, |k| ≤ K, and for every I ∈ D

|k · ω(I)| ≥ α > 0 , (5.3.5)

where ω(I) = ∂Ih(I).

Theorem 5.3.2 ([54]). Let D ⊆ A be a completely α,K-nonresonant domain. Let
a, b > 0 such that 1

a
+ 1
b

= 1. Let ϵ be as in (5.3.4) for some r0, s0 > 0. If the following
inequalities are satisfied:

ϵ ≤ 1
27b

αr

K
= ϵ∗, r ≤ min

(
α

aMK
, r0

)
, (5.3.6)

then, denoting by || · || the Euclidean norm in A, one has

∥I(t) − I0∥ ≤ r for |t| ≤ s0r

5ϵ e
Ks0/6 (5.3.7)

for every orbit of the perturbed system with initial position (I0,u0) in D × Tn.

5.3.2 Algorithm for the application of the theorem

To apply Theorem 5.3.2 to the final Hamiltonian H(Nnorm) defined in (5.2.32), one has
to compute all the quantities involved in the Theorem itself. This procedure gives
rise to an explicit constructive algorithm to give stability estimates for every pair of
reference values (e∗, i∗) in the uniform grid [0, 0.5] × [0, 89.5◦] with step-size equal to
0.1 in eccentricity and 0.5◦ in inclination. Notice that the upper value of the grid in
inclination is equal to 89.5◦ to avoid singularities.

First, we need to determine the greatest integer K̄, to which we refer as the cut-off
value, such that conditions (5.3.6) hold. From the definition of α in (5.3.5) and ϵ∗ in
(5.3.6), it is clear that ϵ∗ decreases as K increases; then, provided that condition (5.3.6)
holds for K = 1, the maximal value K̄ exists. On the other hand, if (5.3.6) does not
hold for K = 1, it continues to remain false for all K > 1.

From a computational point of view, the procedure is composed by the following
steps, (S1), ..., (S8), performed for every pair (e∗, i∗) in the grid defined above; by trial
and error, we fix the values of r0, s0, a, b. Their choice is arbitrary and can be tuned
so to satisfy the conditions of the Theorem and to optimize the final estimates.

(S1) Taylor expansion up to order N = 12 in the expansion (5.2.9) around the actions
(P∗, Q∗), corresponding to the Keplerian elements (e∗, i∗);
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(S2) normalization up to order Nnorm = 6, following the procedure described in
Section 5.2.4, which leads to compute the normalized Hamiltonian H(Nnorm);

(S3) splitting of the Hamiltonian H(Nnorm) in the unperturbed part h0(P,Q), containing
the terms of H(Nnorm) which depend only on the actions, and the perturbing part
h1(P,Q, p, q) = H(Nnorm)(P,Q, p, q) − h0(P,Q); computation3 of ω = (ω1, ω2),
with ω1 and ω2 coefficients respectively of P and Q in h0;

(S4) definition of the real and complexified domains in the actions as in (5.3.1) and
computation of the quantity

M = sup
(P,Q)∈Ar0

||Q(P,Q)||o ; (5.3.8)

in particular, we define

A = [P∗ − dP (max), P∗ + dP (max)] × [Q∗ − dQ(max), Q∗ + dQ(max)]

with dP (max) = dQ(max) = 0.1; we select r0 = s0 = 0.1 and, following [54], we
take a = 9/8 and b = 9;

(S5) for every K = 1, . . . , 50, computation of the quantities

αK = min
|l|≤K

{ω · l}, rK = min
{

αK

aMK
, r0

}
, ϵ∗

K = 1
27b

αKrK

K
; (5.3.9)

(S6) defining ϵ = |h1|A,r0,s0 , check of the condition ϵ ≤ ϵ∗
K for every K = 1, . . . , 50;

(S7) if ϵ ≤ ϵ∗
1, computation of K̄, namely the greatest K such that ϵ ≤ ϵ∗

K , and of the
corresponding stability time

t = s0rK̄

5ϵ eK̄s0/6 ; (5.3.10)

(S8) if ϵ > ϵ∗
1, the conditions for the application of Theorem 5.3.2 are not satisfied. In

this case, we impose K̄ = 0.

We remark that the order of the Taylor expansion N = 12, the order of normalization
Nnorm = 6, the iteration of K up to 50 are set on the basis of having a reasonable
computational execution time on standard laptops.

5.4 Results

The current section is devoted to the presentation of the results of the application of
Theorem 5.3.2 to the Hamiltonian model described in Section 5.2. This allows us to
derive stability estimates as well as to discuss the convergence of the normalization
procedure.

3With an abuse of notation, we continue to define the new frequencies, which could be modified
by the normalization, with the symbols ω1 and ω2. When, in Section 5.4.2, it will be required to
distinguish between the initial and the final frequencies, the latter will be denoted by ω̃1 and ω̃2.
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Table 5.2 Inclination-dependent resonances which affect the stability in the lunisolar model.
The coefficients α and β are such that αṗ + βq̇ = 0.

α β i(deg) α β i(deg) α β i(deg) α β i(deg)
1 0 46.37 0 1 90 1 1 0 1 -1 63.4351
2 1 33.0156 -1 2 73.1484 -2 1 56.0646 -2 3 69.007
-4 3 60.0001 -4 1 51.5596 -1 3 78.4633 -4 5 66.422

5.4.1 Stability estimates

We apply the algorithm of Section 5.3.2 to probe the Nekhoroshev stability for satellites
with semimajor axes between 11 000 km and 19 000 km under the model presented in
Section 5.2. The results exposed below highlight the strong dependence of the stability
conditions on the precise values of the elements (e, i). Of crucial role in this dependence
is the location of the ‘inclination-dependent’ resonances (see Section 5.1). These satisfy
a condition of the form αṗ+ βq̇ = 0 for some coefficients α, β ∈ Z.

Table 5.2 shows the values of the inclinations corresponding to each pair of coeffi-
cients (α, β). We find that these resonances determine regions where Theorem 5.3.2
cannot be applied. This can be exemplified with the help of Figure 5.1, showing (in blue)
the region where the algorithm of Section 5.3.2 returns that the necessary conditions of
Theorem 5.3.2 hold true. The algorithm provides an answer as a function of the chosen
reference values i∗ and e∗ (for a fixed a∗). Figure 5.2 shows the Nekhoroshev stability
times computed at every grid point (e∗, i∗) in the previous figure’s blue region.

It is evident from Figure 5.1 that increasing the distance from the Earth’s center
causes a shrinking of the size of the domains of Nekhoroshev stability, as well as a
fast decrease of the corresponding computed stability times. From the physical point
of view, this tendency is evident and can be explained on the basis of the simple
remark that the averaged Hamiltonian Hkep + HJ2 without third-body perturbations is
integrable (this Hamiltonian has in fact no dependence on the Delaunay angles). Since
the overall relative size of third body perturbations increases with the altitude, these
perturbations affect the stability more as a∗ increases. At a formal level the effect of
the semimajor axis on the estimates can be identified by an analysis of the convergence
of the preliminary normalization algorithm (see Section 5.4.2 below).

On the other hand, also evident from Figure 5.1 is the strong role of resonances in
affecting the stability properties of the system: in fact, around every of the resonances
listed in Table 5.2 we observe, in the figure, the formation of a white zone, which
indicates values (e∗, i∗) excluded from the Nekhoroshev stability as detected by our
algorithm. As a general comment, the presence of the resonances acts at two different
stages of the computation:

(i) it can affect the convergence of the classical normalization, producing an increase
of the size of the perturbing function and a consequent failure of conditions
(5.3.6);
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Fig. 5.1 Domains of applicability of Theorem 5.3.2 for different values of the altitude. The
blue regions represent the values of (i∗, e∗) for which the Theorem can be applied, while the
red lines define the values of the inclination which are associated with the most important
resonances in the considered regions (see Table 5.2).

(ii) near the low-order resonant values of the inclination, the quantity αK (see (5.3.9))
can be extremely small, even for low values of K. As a consequence, in the
proximity of a resonance, the corresponding value of the quantity ϵ∗

K might not
be small enough to satisfy (5.3.6).

At any rate, we stress that Theorem 5.3.2 used in this framework holds only for
non-resonant domains in the phase space; therefore, by definition it cannot be used to
probe the Nekhoroshev stability very close to resonances. We defer to a future study
the question of the precise investigation of the conditions for Nekhoroshev stability
inside resonances, by implementing a resonant form of the theorem, as first suggested
in [53].
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Fig. 5.2 Stability time (in years) computed for the values of (i∗, e∗) in the domain of
applicability of Theorem 5.3.2.
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Fig. 5.3 Blue: plot in LogLog scale of |fϵ|A,r,s0 for a = 13 000 km, e∗ = 0.2, and i∗ = 23◦ (left)
and i∗ = 56◦ (right). For the computations, we selected A = [P∗ − r, P∗ + r] × [Q∗ − r, Q∗ + r],
r0 = r, s0 = 0.1. The slope of the plot for high r is compared with that of a line with slope 2
(red); the value at the plateau (denoted with a green line) is compared with the value of the
norm of the purely trigonometric part of fϵ with s0 = 0.1.

5.4.2 Convergence of the preliminary normalization

As pointed out in Section 5.2.4, the aim of the preliminary normalization is to allow
to control the norm of the perturbing function |fϵ|A,r0,s0 by reducing the size of the
complexified action domain Ar0 (see (5.3.2)). In particular, the consequence of the
removal of angle-dependent terms which are constant or linear in the actions is that,
within certain values of the size of the domain Ar0 , the norm of the perturbation
decreases quadratically with the actions.

Figure 5.3 shows the behaviour of |fϵ|A,r,s0 for a = 13 000 km, e∗ = 0.2 and two
selected values of i∗, as a function of the size of the action in the complexified domain
Ar (the domain A is set to be a rectangle of width 2r around the central values P∗
and Q∗). As expected, the value of |fϵ|A,r,s0 decreases quadratically with r, until it
reaches a plateau, whose value is the norm of the terms of fϵ which do not depend on
the actions.

As already mentioned in Section 5.4.1, the convergence of the normalization pre-
sented in Section 5.2.4 for H(sec) is crucial to control the size of the perturbing function
h1; such value plays a fundamental role in Theorem 5.3.2. A first study of the ef-
fect of the chosen value of the semimajor axis on the convergence can be performed
by considering a simpler model to which a normalization procedure similar to the
one implemented in Section 5.2.4 can be performed. The model is defined by the
Hamiltonian

H̃(in)(P,Q, p, q) = ω1P + ω2Q+ c2

2 Q
2 + f1 cos q , (5.4.1)

where the frequencies ω1, ω2 and the coefficient c2 depend essentially only on the J2
averaged Hamiltonian, while the coefficient f1 depends on the lunar and solar third-
body perturbation potentials, and it is proportional to the sinus of the inclination i0 of
the ecliptic. We will examine the effect of performing the preliminary normalization
algorithm on the Hamiltonian H̃(in) so as to remove purely trigonometric terms. After
Nnorm normalization steps, the Hamiltonian takes the form:

H̃(fin) = ω1P + ω2Q+ c2

2 Q
2 +

Nnorm∑
ß=1

Zi(P,Q, q) +
∞∑

i=Nnorm+1
Ri(P,Q, q) , (5.4.2)



5.4 Results 205

where the normalized parts Zi(P,Q, q) do not contain terms which depend only on
the angle q (as well as linear terms in the actions multiplied by trigonometric terms).
By an explicit computation of the Poisson brackets involved in the normalization, we
readily find that RNnorm+1 contains trigonometric terms with coefficients proportional
to the quantity

2af1

(
c2f1

4ω2
2

)Nnorm

, (5.4.3)

where a = 1, 2, 3 depends on the value of Nnorm. The convergence of the remainder
through the steps of the normalization algorithm depends, then, on the value of the
ratio c2f1/4ω2

2; in particular, when this quantity is greater than 1, the normalization
does not converge. Neglecting the lunar and solar contributions in ω1, ω2 and c2, the
coefficient c2f1/4ω2

2 can be expressed in terms of the orbital elements of debris, Sun
and Moon as

c2f1

4ω2
2

= 1
32

sin 2i0
R2

EµEJ2

(
µM

(aM(1 − eM))3 + µ⊙

(a⊙(1 − e⊙))3

)
a5(2 + 3e2

∗)(1 − e2
∗)3/2 tan i∗ .

(5.4.4)
As a consequence, it is clear that its size strongly depends on a and i∗: it grows sharply
when a increases and when i∗ approaches 90◦.

On the other hand, the coefficient f1 is proportional to sin 2i0, that is, proportional
to the (non-zero) inclination i(p) of the Laplace plane (see Eqs. (4.2.20) and further).
Hence, the presence in the secular Hamiltonian of purely trigonometric terms is a
manifestation of the presence in the model of a Laplace plane. Since i(p) increases with
a and f1 increases both with i(p) and i∗, this gives a first explanation of the loss of
stability of the model as a and i∗ increase.

As already mentioned in Section 5.4.1, the other important factor influencing the
size of the remainder across the preliminary normalization process is the effect of
resonances, which, due to Eq.(5.2.31), leads to the appearance, in the series terms, of
small divisors. Of particular importance are the small divisors appearing in the series’
purely trigonometric terms, whose size cannot be controlled by altering the size of the
domain in the actions Ar0 .

Figure 5.4 shows the behaviour of the norm of the purely trigonometric part of the
perturbation h1 (with the notation (S3) of Section 5.3.2) as a function of the inclination
for four different values of a and two different values of e. As one can see, the size of
the trigonometric part reaches its peaks in correspondence of the resonant values of
the inclination, as expected. We also notice that the number of resonances involved in
the growth of the size of the trigonometric part increases with a and e.

As explained in Section 5.2.4, the normalization algorithm used here does not
perform a re-tuning of the frequencies for every normalization step. This fact has
important effects on the applicability of Theorem 5.3.2: when the normalization
converges, the change between the original and the new frequencies is negligible with
respect to their magnitude; on the other hand, when it does not converge, a large
variation in the value of the frequencies occurs, with important consequences on the
computation of αK and, therefore, of the quantities involved in Theorem 5.3.2.

As an example, Figure 5.5 shows the variations of the frequencies as a function of
the inclination for a = 13 000 km and e∗ = 0.2. Comparing Figures 5.4 and 5.5, it is
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Fig. 5.4 Behaviour of the norm of the purely trigonometric part of h1 as a function of the
inclination i∗ for different semimajor axes and eccentricities (left: e = 0, right: e = 0.5). The
red lines represent the inclinations of the resonances (see Table 5.2).
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Fig. 5.5 Variation between the initial (ω1 and ω2) and the final (ω̃1 and ω̃2)
frequencies as a function of the inclination i∗ for a = 13 000 km and e∗ = 0.2. The red

lines represent the values of i∗ associated to the resonances which affect the
convergence of the normalization algorithm (see Figure 5.4).

i∗(deg) N(i∗) K̄ i∗(deg) N(i∗) K̄ i∗(deg) N(i∗) K̄ i∗(deg) N(i∗) K̄
46.5 1 0 89.5 1 0 1 2 1 63.5 2 0
33 3 2 73 3 0 56 3 0 38 3 3
53 4 1 78.5 4 3 40.5 4 5 27 5 4

51.5 5 4 58.5 5 0 69 5 0 81.5 5 4
41.5 6 5 50.5 6 5 83.5 6 4

Table 5.3 Comparison between the order N(i∗) of the nearest resonance and the computed
cut-off value K̄, computed for a = 13 000 km and e = 0.1.

clear that the resonances which affect the growth in size of the purely trigonometric
part of h1 and the variation of the frequencies are the same.

5.4.3 Behaviour of the cut-off value K̄

Provided that the classical normalization converges, from the definition of the cut-off
value K̄ given in Section 5.3.2, one expects that exactly at a resonance, once denoted
with N(i∗) = |α| + |β| its order, one has K̄ = N(i∗) − 1. Since in our analysis the
inclinations are selected in a mesh of [0, 89.5◦] with step 0.5◦, the computations of
the quantities involved in Theorem 5.3.2, including K̄, are not performed exactly at
resonance (with the exception of i∗ = 60◦, whose distance from the exact resonance
is of the order of 10−3): Table 5.3 shows the value of K̄ computed for the points
of the mesh which are near to the resonances up to order 6, with a = 13 000 km
and e = 0.1, along with the resonance order N(i∗) of the nearest one. With the
exception of the inclinations associated to resonances which affect the convergence of
the classical normalization, the majority of the listed inclinations follows the expected
rule K̄ = N(i∗) − 1, while some slight deviation is probably due to the numerical
computation.
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Fig. 5.6 Plot in LogLog scale of the points {|fϵ|A,r0,s0 , K̄} for a = 13 000 km, e∗ = 0.2 and
i∗ ∈ [0, 90◦] on a mesh of step 0.5◦.

To conclude, Figure 5.6 shows the relation between the computed values of K̄
and |fϵ|a,s0,r0 for a = 13 000 km, e∗ = 0.2 and i∗ ∈ [0, 90◦]. As expected, the cut-off
decreases exponentially with the norm of the perturbing function.

5.5 Effect of higher order geopotential terms

The results of Section 5.4 were obtained by considering as basic model for MEO the one
based on the J2 geopotential terms. It is well known that for the lowermost altitude
at MEO (a = 10000 km) the secular dynamics is shaped by higher order terms (e.g.,
J2

2 ) as well as higher harmonics in the Earth’s geopotential. In the present section,
we examine a model in which the J2

2 terms obtained by second order averaging of the
J2 Hamiltonian term with respect to the particle’s mean anomaly, as well as the first
order averaging with respect to the J3 and J4 terms, are considered. The Hamiltonian
is now as in Eq. (5.2.5), but with

H(av)
E = H(av)

kep + H(av)
J2 + H(av)

J3 + H(av)
J4 + H(av)

J2
2

, (5.5.1)

where

H(av)
J3 = J3

3µER
3
Ee sin i

2a4η5

(
1 − 5

4 sin2 i
)

sin(ω)

H(av)
J4 = J4

3µER
4
E

8a5η7

− 1 − 13e2

2 +
(

5 + 15e2

2

)
sin2 i

− 35
8

(
1 + 3e2

2

)
sin4 i− 15e2 sin2 i

4

(
1 − 3 sin2 i

2

)
cos 2ω
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while

H(av)
J2

2
= −J2

2
3µER

4
E

8a5η7

5
2 + η − 1

2η
2 −

(
5 + 3η − 1

2η
2
)

sin2 i

+
(35

16 + 9
4η + 5

16η
2
)

sin4 i−

(15
4 (1 + η) − 23

4 η
2 − 7

4η
3
)

sin2 i

+
(35

8 (1 − η) + 55
8 η

2 + 15
8 η

3
)

sin4 i

cos(2ω)
1 + η


with η =

√
1 − e2.

The Hamiltonian (5.5.1) can be obtained directly by eliminating the small body’s
mean anomaly through a Lie canonical transformation performed in two stages, as
indicated in [141] (see [139] for details): in the first stage, called the elimination of the
parallax, the Hamiltonian is transformed into a function of the form

H(el) = Hkep + 1
r2

(
h

(el)
J2 (a, e, i, ω,Ω)

+ h
(el)
J3 (a, e, i, ω,Ω) + h

(el)
J4 (a, e, i, ω,Ω) + h

(el)
J2

2
(a, e, i, ω,Ω)

)
,

thus reducing the dependence of the Hamiltonian on the small body’s mean anomaly
M in only the factor 1/r2. In the second stage, we then eliminate this dependence
with the usual procedure of Delaunay normalization ([145]). It should be stressed
that this procedure yields equivalent results for the terms H(av)

J2 , H(av)
J3 and H(av)

J4 as
the simple scissor averaging of Eq. (5.2.7), but it allows to formally introduce terms
of higher order as H(av)

J2
2

(a, e, i, ω,Ω). Also, an important difference is in the physical
interpretation, since the Lie transformation, which is a near to identity transformation
mapping the original canonical variables to new ones, still contains short-periodic terms.
In the jargon of astrodynamics, this is called a transformation from osculating to mean
elements. As already pointed out in Section 5.2.2, this means that, formally, all the
results on Nekhoroshev stability in this and in previous sections refer to the stability
of the mean elements, while the osculating elements perform short-period bounded
oscillations around the secularly evolving values of the mean elements.

Returning to the latter question, Figure 5.7 allows to compare the results on
Nekhoroshev stability using the Hamiltonian (5.2.5) with H(av)

E computed as in (5.5.1),
with those of the simple J2-only model obtained as in (5.2.7).

Figure 5.7 provides information on both the domain of applicability of the Nekhoro-
shev theorem as well as the corresponding stability times: we consider the case of orbits
with e = 0.3 and two different values of the semi-major axis, namely a = 11000 km
(top panel in Fig. 5.7) and a = 17000 km (middle panel). The abscissa of each of the
marked points indicates a value of the inclination for which applying Pöschel’s theorem
in the form of the algorithm of subsection 5.3.2 yields a positive result, i.e., that the
Nekhoroshev stability criterion holds. The ordinate then indicates the corresponding
time of Nekhoroshev stability. From these figures stem the following remarks:
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Fig. 5.7 Comparison of the domains and times of Nekhoroshev stability for different values
of the inclination between the J2 model (yellow dots) and the model including J2

2 , J3, J4
(blue dots), for a fixed eccentricity e = 0.3 and semimajor axis equal to a = 11000 km (top
panel), or a = 17000 km (middle panel). A colored point indicates that Pöschel’s criterion
for Nekhoroshev stability is satisfied at the corresponding value of the inclination, shown in
the abscissa. The ordinate shows the corresponding value of the Nekhoroshev stability time
(in years). Bottom panel: comparison of the Nekhoroshev stability times as a function of the
semimajor axis a in the J2 model and in the extended model for e = 0.3 and i = 20o.
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i) the two models (named simply J2 and ‘extended’) yield practically identical domains
of stability. This is to be expected, since the domains of stability are mostly determined
by the values of the (Diophantine) frequencies of the integrable part of the Hamiltonian
h0. In the extended model, the frequencies differ from those of the J2−model by the
addition of the terms O(J2

2 ), O(J3) and O(J4). All these terms are about 10−3 the size
of the leading (J2) terms, thus they only affect the frequencies at the third digit. This
implies, in turn, that all Diophantine constants, cut-off in Fourier space etc., entering
into the application of Pöschel’s theorem remain practically invariant in computations
with the extended model.

ii) On the other hand, the computed times of Nekhoroshev stability change, by
about one order of magnitude at the lowest limit of the MEO zone (a = 11000 km),
and marginally as we approch to the limit of the overall loss of the Nekhoroshev
stability in Pöschel’s sense a > 17000 km. The main reason for this difference lies in the
integrability of the J2 averaged model, which implies that only lunisolar perturbations
affect the size of the term h1 in the Hamiltonian of the simple J2 model. In the
extended model, instead, all three O(J2

2 ), O(J3) and O(J4) terms contribute to H1 due
to their containing cos(2ω) and sin(ω) terms depending on the canonical angles. It is
noteworthy that the relative importance of these terms decreases as a power of the
semimajor axis (see Eq.(5.5.1)), while the lunisolar perturbations increase with a, e.g.
as a2 for the quadrupolar terms. In particular, we find that the cos(2g) term due to
J2

2 and J4 is dominant over the cos(2ω) term generated by the lunisolar perturbation
when a = 11000 km, but the former is only about 1.5% the size of the latter when
a = 20000 km. As a result, the two different models converge as regards the times of
stability as a increases, a tendency shown clearly in the bottom panel of Fig.5.7.

At any rate, it is important to note that in both models the computed times of
stability correspond to 107 orbital revolutions in the lowermost limit of the MEO zone,
reducing to about 105 orbital revolutions in the highermost limit where Nekhoroshev
stability holds. These times are thus quite consistent with applications of the Nekhoro-
shev theorem in the practical context of the long term stability of satellite orbits, as
they are larger by orders of magnitude compared to the satellites’ operational lifetime.

5.6 Conclusions

The work presented in this chapter has a two-fold aim: on one side, we provide a
specific algorithm by which we are able to formally specify the domains in the space of
orbital elements (a, e, i) for which Nekhoroshev stability holds in the sense that all the
necessary conditions for the applicability of Pöschel’s theorem for non-resonant orbits
are satisfied. On the other side, in those domains where Nekhoroshev stability holds
we compute the associated Nekhoroshev times, and demonstrate that these times are
long enough to be of use in practical Earth satellites applications. Our main results
can be summarized as follows.

1. We examine in detail a secular model based on a ‘scissor’ averaged Hamiltonian over
the fast angles, including the term J2 as well as lunisolar perturbations. For this model,
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we propose: i) a detailed ‘book-keeping’ algorithm allowing to write the Hamiltonian
in a form suitable for the application of Pöschel’s theorem, and ii) a ‘preliminary
normalization’, which leads to a model devoid of the effects of trigonometric terms
generated by the shifting of the secular equilibrium from the Earth’s equator to the
Laplace plane. Albeit technical, this step, explained in detail in subsection 5.2.4, turns
to be crucial in suitably engineering the Hamiltonian so that relevant estimates on the
real size of the secular perturbations can be obtained.

2. We then propose, in subsection 5.3.2, a particular algorithm by which the theorem
of Pöschel can be transformed into a binary (“yes” or “no”) criterion for the holding of
Nekhoroshev stability in a small domain around any preselected value of the elements
(a, e, i) within the MEO zone. Implementing this algorithm leads to the results of
Figure 5.1: as intuitively expected, we find that the domains of Nekhoroshev stability
shrink as the altitude (semimajor axis a) increases. This is due to the growing size of
lunisolar perturbations as a increases. The most robust domain is found in the intervals
0 ≤ e ≤ 0.3 and 10o ≤ i ≤ 30o; the latter interval roughly corresponds to a domain
well protected from major inclination-only dependent lunisolar resonances.

3. Using the same algorithm we can compute the times of Nekhoroshev stability,
which span from 105 to 107 satellite orbital periods. These times are sufficiently high
for applications related to the operational lifetime and end-of-life deployment of satel-
lites, as well as to the long term orbital evolution of populations of space debris.

4. Finally, we examine a more extended model including the J3 and J4 harmon-
ics of the Earth’s potential as well as J2

2 terms obtained by second order averaging
of the Hamiltonian in closed form. While the complexity of the new model renders a
full investigation of this extended model beyond our present scope, we provide some
key comparisons with our basic (only J2) model: i) the domains of stability remain
practically the same in the two models, while ii) the times of stability are affected by
about one order of magnitude at the lowermost limit of the MEO zone, a difference
tending nevertheless to vanish as a increases. Section 5.5 discusses in detail the origin
of these differences.

As a final remark, we should emphasize again that our study was limited only to
the case in which the frequencies of motion satisfy suitable non-resonant conditions.
Another limitation is that we disregarded the slow precession of the lunar nodes with
respect to the ecliptic plane, by simply considering a constant inclination of the Moon,
equal to the one of the ecliptic. Notwithstanding the arguments presented in section 5.2
as regards the precision of this model (presently motivated mostly by our computational
limits), we still emphasize that we consider the results presented in this chapter as a first
step that paves the way to several future directions of research. Among possible future
extentions, we indicate: i) exploring the application of the resonant Nekhoroshev’s
theorem, which becomes relevant for particular values of the inclination associated
with lunisolar resonances, and ii) removing the assumption of a fixed ellipse for the
Moon’s orbit. These possibilities leave open that Nekhoroshev stability might actually
hold in domains larger than the ones found here, extending to altitudes a > 18000 km
were many satellites reside (e.g., GPS and geosynchronous satellites).
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5.7 Analytical expressions of H(av)
b and H(sec) in

Section 5.2

5.7.1 Expansion of H(av)
b

In this additional section we provide an expression of H(av)
b for a third body (index b,

referring to the Moon or Sun) as a function of its orbital parameters (ab, eb, ib, ωb,Ωb)
and the debris’ parameters (a, e, i, ω,Ω). Up to second order in the eccentricity we
have:

H(av)
b = a2

16a3
b(1 − e2

b)3/2

− 2 + 3e2

8 (1 + 3 cos (2i))(1 + 3 cos (2i0))

− 15
4 e

2(1 + 3 cos 2i0) sin i2 cos 2ω − 3
2(2 + 3e2) sin i2 sin i02 cos 2(Ω − Ωb0)

− 15e2 cos (i/2)4 sin i02 cos 2(ω + Ω − Ωb0) − 3
2(2 + 3e2) sin (2i) sin (2i0) cos (Ω − Ωb0)

+ 30e2 cos (i/2)3 sin (i/2) sin (2i0) cos (2ω + Ω − Ωb0)

+ 15
2 e

2(−1 + cos i) sin i sin i0 cos (2ω − Ω + Ωb0)

− 15e2 sin (i/2)4 sin (i0)2 cos 2(ω − Ω + Ωb0)
 .

(5.7.1)

5.7.2 List of the nonzero terms in H(sec) for j = 1, 2

Assuming, as in Section 5.2, that both the lunar and solar orbits lie on a fixed ecliptic
plane inclined with respect to the Earth’s equatorial plane by an angle i0, the frequencies
ω1 and ω2 appearing in (5.2.10) are given by:

ω1 = ω
(J2)
1 + ω

(M)
1 + ω

(⊙)
1 , ω2 = ω

(J2)
2 + ω

(M)
2 + ω

(⊙)
2 ,

where

ω
(J2)
1 = −3

4R
2
EJ2µ

4
E

(−1 + 5 cos i∗2 − 2 cos i∗)
(µEa)7/2(1 − e2

∗)2

ω
(J2)
2 = 3

2
R2

EJ2µ
4
E

(µEa)7/2(1 − e2
∗)2 cos i∗

ω
(M/⊙)
1 = − 3

64a
3/2µM/⊙

[3 + 2e2
∗ − 2(2 + 3e2

∗) cos i∗ + 5 cos 2i∗](1 + 3 cos 2i0)√
1 − e2

∗
√
µE(aM/⊙(1 − eM/⊙))3

ω
(M/⊙)
2 = 3

32a
3/2µM/⊙

(2 + 3e2
∗) cos i∗ (1 + 3 cos 2i0)√

1 − e2
∗
√
µE

(
aM/⊙(1 − eM/⊙)

)3 . (5.7.2)
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The coefficients al and bl,k in (5.2.15) are given by:

a(2,0) =3
4

J2R
2
E

a4(1 − e2
∗)5/2 (1 + 10 cos i∗ − 15 cos2 i∗)

− 3
128

a

µE(1 − e2
∗)

(
µM

R3
M

+ µ⊙

R3
⊙

)
(1 + 3 cos 2i0)(21 + 4e2

∗ − 40 cos i∗ + 15 cos 2i∗)

a(1,1) =3
2

J2R
2
E

a4(1 − e2
∗)5/2 (5 cos i∗ − 1)

− 3
32

a

µE(1 − e2
∗)

(
µM

R3
M

+ µ⊙

R3
⊙

)
(1 + 3 cos 2i0)(2 + 3e2

∗ − 10 cos i∗)

a(0,2) = − 3
4

J2R
2
E

a4(1 − e2
∗)5/2

− 3
64

a

µE(1 − e2
∗)

(
µM

R3
M

+ µ⊙

R3
⊙

)
(1 + 3 cos 2i0)

(
2 + 3e2

∗

)

b(0,0),(±2,0) = −15
32(a2e2

∗ sin2 i0 cos4 (i∗/2))
(
µM

r3
M

+ µ⊙

r3
⊙

)

b(0,0),(±2,±1) = 15
16
[
a2e2

∗ sin (2i0) cos3 (i∗/2) sin (i∗/2)
] (µM

r3
M

+ µ⊙

r3
⊙

)

b(0,0),(±2,∓2) = − 15
128

[
a2e2

∗(i+ 3 cos (2i0)) sin2 i∗
] (µM

r3
M

+ µ⊙

r3
⊙

)

b(0,0),(±2,∓3) = −15
16
[
a2e2

∗ sin (2i0) sin3 (i∗/2) cos (i∗/2)
] (µM

r3
M

+ µ⊙

r3
⊙

)

b(0,0),(±2,∓4) = −15
32
[
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)

b(0,0),(0,±1) = − 3
64
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64
[
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M
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)
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