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3Dipartimento di Ingegneria, Università di Bergamo, Dalmine (BG), Italy

Abstract

Consequences of density stratification are studied for an ideal (Euler) incompressible fluid, confined to
move under gravity between rigid lids but otherwise free to move along horizontal directions. Initial conditions
that generate horizontal pressure imbalances in a laterally unbounded domain are examined. The aim is to
show analytically the existence of classes of initial data for which total horizontal momentum evolves in time,
even though only vertical forces act on the fluid in this set-up. A simple class of such initial conditions, leading
to momentum evolution, is identified by systematic asymptotic expansions of the governing inhomogeneous
Euler equations in the small density variation limit. These results for Euler equations are compared and
confirmed with long-wave asymptotic models, which can handle arbitrary density variations and provide
closed-form mathematical expressions for limiting cases. In particular, the role of wave-dispersion arising
from the fluid’s inertia is captured by the long-wave models, even for short time dynamics emanating from
initial conditions outside the models’ asymptotic range of validity. These results are compared with direct
numerical simulations for variable density Euler fluids, which further validate the numerical algorithms and
the analysis.

1 Introduction

This paper deals with some specific aspects of the theory of stratified ideal incompressible fluids, rigidly confined
in (two-dimensional) infinite horizontal-slab domains. Though highly idealized, this set-up nonetheless offers
the simplest setting which can capture the kind of subtle effects sometimes masked in more complex situations.
In a previous paper (Camassa et al. 2012) we isolated and studied a phenomenon which to the best of our
knowledge has not received much attention in the current literature: horizontal momentum conservation can
be violated in the dynamics of a fluid in the above configuration. This violation can be viewed as surprising,
as the only acting body-force field is the vertical gravity and the fluid is free to move laterally. Possibly the
first mention of this peculiar feature of stratified fluid dynamics can be traced back to Benjamin (1986), in his
investigation of the Hamiltonian formalism for inviscid incompressible fluids. Despite the relatively long time
elapsed, it appears that Benjamin’s observation about (in his own words) “this curious fact” have been largely
ignored since.

In the horizontal slab set-up, whenever hydrostatic conditions apply at infinity, this violation of momentum
conservation is proportional (up to terms that arise from possibly different configurations at x = ±∞) to the
difference of the layer-averaged pressure at the far ends of the channel. As we will see, this pressure imbalance
enters another physically interesting quantity, namely the (total) vorticity of the system. Admittedly, the
effects herewith considered can be viewed as small, because the violation of momentum conservation must
necessarily be a vanishing function of the difference ρ∆ of the density range of the fluid as this goes to zero
(momentum conservation recovers in the limit of a homogeneous fluid). Small density variations are common
to many applications such as geophysics, however the large scales often involved in such applications justify
considering the idealized set-up of laterally infinite fluids and might lead to non-negligible cumulative effects,
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even when these are small over local scales. Of course, the implications arising from considering rigid lids upper
constraints in these applications remain to be seen; however, this limiting case may be relevant for establishing
a comprehensive framework in which the dynamics of the incompressible limit for density-stratified fluids can
be properly interpreted.

We shall mainly deal with incompressible, inviscid two-layer (Euler) fluids of constant different densities
ρ2 > ρ1, separated by an interface located at z = η(x, t) (not necessarily smooth), where (x, z) are horizontal
and vertical Cartesian coordinates in the plane. This choice is convenient for analytical purposes, and while
numerically challenging, it can nonetheless be implemented in direct simulations of stratified Euler flows.
While restrictive, the two-layer assumption can be representative of the dynamics of Euler fluids with smooth
density variations as well (see, e.g., Camassa et al. 2006, Camassa & Tiron 2011). In particular, for two-layer
fluids in which the interface height is the same at ±∞, the pressure imbalance P∆ ≡ limx→+∞ p(x, η(x, t)) −
limx→−∞ p(x, η(x, t)) is equal to the difference of the pressures p(±∞, z0) for any reference height z0, as it
could be obtained from Benjamin (1986) for smooth stratifications.

Our main focus will be on initial conditions with null velocity and small ρ∆ ≡ ρ2 − ρ1. This choice, as
shown below, restricts the effects on the pressure imbalance of stratification at initial times to order ρ 2

∆
, as

opposed to order ρ∆ , as it might be expected at first. However, besides being simpler to implement numerically,
this choice has the advantage of leading to closed form formulae, and identifies from a theoretical viewpoint a
significant class of interface profile configurations giving rise to pressure imbalance. In turn, these correspond to
horizontal momentum non-preserving time evolutions. In particular, the setting of zero-velocity configurations
will be instrumental in Section 4, where we shall adopt a perturbative point of view (in the limit ρ∆ → 0) to
solve the elliptic equations which determine the pressure at t = 0. Some compact expressions for the pressure
imbalances can then be obtained. Our analysis will be carried out directly on the Euler equations of motion
in two dimensions; however, as a kind of benchmark for testing ideas, we shall also consider long-wave one-
dimensional reductions of our two-dimensional set-up, such as the strongly nonlinear model introduced in Choi
& Camassa (1999), for the description of strongly nonlinear internal waves in two-fluid systems. We will also
briefly review the Lagrangian and Hamiltonian formalism of the Euler equations, in particular adapting it to
the two-fluid configuration, which allows the framework of conservation laws to be established from a more
general standpoint.

More specifically, the layout of the paper is as follows. In Section 2 we shall review the set-up of our
physical system within the Euler formalism, and, in particular, focus on the relation between non-conservation of
horizontal momentum and the pressure imbalance P∆ established in Camassa et al. (2012). Section 2.2 describes
the asymptotic behaviour of P∆ with respect to the small ρ∆ expansion. In particular, we establish that this
behaviour is linear for generic initial configurations with nonzero initial velocities, while it becomes quadratic
when static initial conditions are considered. The relation between the time derivative of the total vorticity and
the pressure imbalance is derived, both in the smooth and the two-layer stratification, in Section 2.3. In Section
3 we use strongly nonlinear models to derive predictions about the pressure imbalances. The analytical and
numerical fidelity of the models to the parent Euler system is tested on special configurations for zero-velocity
initial data. It is worthwhile to remark that, in the zero-velocity case, the dispersionless limit of the long-wave
model fails to provide the correct predictions for the pressure imbalance P∆ . Accuracy can be restored by
including the first order dispersive correction of the model as introduced in Choi & Camassa (1999).

Next, in Section 4 we discuss pressure imbalances with zero-velocity initial data for two-layer fluids. The
exact problem of solving the Laplace equation for the initial pressure can be viewed as a form of Neumann-
to-Dirichlet problem for a (two-layer) strip. We adopt a simple perturbative approach in the limit of small
density difference ρ∆ , turning this problem into an iterative family of Poisson equations which allow for a
closed-form integral expression for the second order term P (2)

∆
of the pressure imbalance associated with any

interface profile z = η(x). In some cases (e.g., piecewise linear profiles) this expression easily yields explicit
formulae for P (2)

∆
(which in suitable limits are expressed by Bernoulli-like polynomials). A sample of these

formulae and their interpretation is contained in Section 4.3 and Section 4.4. In particular, within a certain
class of initial data, we determine the configuration that maximizes the pressure imbalance. In Section 5 the
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dam-break configuration is studied. At t = 0 an exact explicit value for 〈p〉
∆

can be obtained. The comparison
of the theoretical results with full-Euler numerical experiments, in Section 6, further illustrates the (short-
time) dynamics arising from these pressure imbalances of these configurations and its effects on the horizontal
momentum. Computations are performed with the VARDEN algorithm (Almgren et al. 1998) which solves the
inhomogeneous Euler equations. The two-layer (sharp interface) set-up can be viewed as a severe test for the
code, which gets validated by the overall good agreement with the analytical results. In Section 7 we discuss
our findings and point to future work.

We have also provided additional information in appendices. Specifically, Appendix A is devoted to reconcile
the apparent paradox of lack of momentum conservation with the self-evident translational symmetry of the
systems we study. Appendix B discusses some technical points on the time evolutions of these systems.
Appendix C briefly examines the limiting case of “air-water” systems, in which one of the densities goes
to zero. Non-trivial boundary effects on the pressure imbalance which are masked by the opposite near-density
limit emerge in this case, due to the interface profile touching the channel plates along some intervals.

2 The physical system and its governing equations

We study the Euler equations for an ideal incompressible and inhomogeneous fluid subject to gravity,

vt + v · ∇v = −∇p
ρ
− gk , ∇ · v = 0 , ρt + v · ∇ρ = 0 . (1)

Here v = (u, v, w) is the velocity field with respect to Cartesian coordinates (x, y, z) oriented by unit vectors
(i, j,k), with k directed vertically upwards, ρ and p are the density and pressure fields, respectively, and g is
the constant gravity acceleration; all physical variables depend on spatial coordinates and time t. Besides their
well known theoretical interest, this set of equations can be viewed as governing the motion of real fluids with
sufficient accuracy whenever viscosity, compressibility and diffusivity effects can be considered small during
the time evolution. In particular, the fluid domains we shall consider here are slabs in the (x, z) plane rigidly
confined by horizontal “plates” of infinite extent located at z = zbottom ≡ 0 and z = ztop ≡ h. Our study
will mainly focus on two dimensional y-independent dynamics, though it can be generalized to fully three
dimensional cases. The Euler equations (1) are supplemented by the boundary conditions:

v(x, ·)→ 0 for |x| → ∞, w(x, 0) = w(x, h) = 0, (2)

with the fluid at the far ends of the channel in hydrostatic equilibrium,

∂p

∂z
= −gρ, |x| → ∞. (3)

2.1 Pressure imbalances and horizontal momentum

Consider the Euler equations for the horizontal component of the fluid’s momentum

(ρu)t = −u(ρu)x − w(ρu)z − px . (4)

Assuming a smooth stratification and integrating this equation on the strip S = R × [0, h] yields the time
variation of the horizontal component Π1 of the total momentum

d

dt
Π1 =

∫
S

(ρu)t dA = −
∫
S

(
(ρu2)x + (ρuw)z − ρu(ux + wz) + px

)
dA

= −
∫ h

0

(∫
R

(ρu2 + p)x dx

)
dz = −h(〈p(+∞)〉 − 〈p(−∞)〉),

(5)

3



ρ
2

ρ
1u=0

w=0

w=0

u=0

z-
z+

Figure 1: A two-layer configuration with different asymptotic heights.

where we used incompressibility and the asymptotic hydrostatic conditions (see also Benjamin 1986). Hereafter
the symbol 〈f〉 stands for the (total) vertical channel average,

〈f(·)〉 ≡ 1

h

∫ h

0
f(·, z) dz.

2.1.1 The two-layer case

A curious consequence on the nonconservation of linear momentum due to the interplay between fluid’s inertia,
incompressibility and stratification has been studied in Camassa et al. (2012) for a two-layer incompressible
inviscid fluid. For completeness, here we summarize (with minor notational differences) the main results therein.

The dynamics of an inviscid and incompressible fluid stratified in layers of uniform density ρj is governed
by the Euler equations for the velocity components (uj , wj) and the pressure pj , for each of the layers; in two
dimensional Cartesian coordinates (x, z):

ujx + wjz = 0 (6)

ujt + ujujx + wjujz = −pjx/ρj (7)

wjt + ujwjx + wjwjz = −pjz/ρj − g. (8)

For a two-layer fluid, j = 1 (j = 2) will stand for the upper (lower) fluid, respectively, and ρ1 ≤ ρ2 must
be assumed for stable stratification (see figure 1 for a sketch of this set-up). The boundary conditions at the
interface z = η(x, t) are the continuity of normal velocity and pressure

ηt + u1ηx = w1, ηt + u2ηx = w2, p1 = p2 ≡ P at z = η(x, t), (9)

where P (x, t) denotes the interfacial pressure. Let us rewrite the Euler system (8) in terms of layer-averages
(see, e.g., Wu (1981) and Camassa & Levermore (1997)). (For a smoothly stratified fluid, this is equivalent to
singling out an intermediate level set of constant density z = η(x, t) and carrying similar manipulations since
such a set will always be a material surface.) Layer-mean quantities f̄ are defined by

f̄j(x, t) ≡
1

ηj

∫
[ηj ]

f(x, z, t) dz , (10)

where ηj are the layer-thicknesses (i.e., η1 = h−η and η2 = η) and the intervals of integration [ηj ] are z ∈ (η, h)
for the upper- and z ∈ (0, η) for the lower-layer, respectively. With this notation, integration (6)–(7) across
the layers with the boundary conditions (2) and (9) yields the layer-mean equations for the upper (lower) fluid

ηjt +
(
ηjuj

)
x

= 0 (11)

ρj(ηjuj)t + ρj
(
ηjujuj

)
x

= −(ηjpj)x + (−1)jηxP , j = 1, 2 . (12)

Layer averages are just a local version of the integral form of the horizontal momentum balance for each
layer, which can be expressed for a section of the channel by integrating equations (12) over some x-interval
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L− ≤ x ≤ L+. The horizontal momentum balances of the upper (j = 1) and lower (j = 2) layer for this section
are, respectively,

dΠ`
1j

dt
≡ d

dt

∫ L+

L−

ρjηjuj dx+ ρjηjujuj |L+

L−
= − ηjpj |L+

L−
+ (−1)j

∫ L+

L−

ηxP dx , (13)

since neither the pressure at the rigid horizontal surfaces nor the external gravity field contribute horizontal
components of forces. Taking into account that

2∑
j=1

ηjpj |L+

L−
= h(〈p(L+)〉 − 〈p(L−)〉),

and that the total horizontal momentum of the two-fluid’s system is the sum of the contributions of the
individual layers, in the limit L± → ±∞ (e.g., L± = ±L) and Π`

1 → Π1, system (13) yields the two-layer
analogue of Equation (5), i.e.,

dΠ1

dt
=
dΠ11

dt
+
dΠ12

dt
= −h〈p〉

∆
, (14)

where 〈p〉
∆
≡ 〈p(+∞)〉 − 〈p(−∞)〉. In hydrostatic equilibrium the layer-mean pressures are

pj = (−1)jgρj
ηj
2

+ P , j = 1, 2 . (15)

Taking this into account at ±∞, we get

dΠ1

dt
=
dΠ11

dt
+
dΠ12

dt
= −hP∆ −

1

2
ρ∆g(z2

+ − z2
−)− ρ1gh(z+ − z−), (16)

where P∆ ≡ limx→+∞ p(x, η(x, t))− limx→−∞ p(x, η(x, t)),

z− ≡ lim
x→−∞

η(x, t), z+ ≡ lim
x→+∞

η(x, t), for all t, (17)

and ρ∆ = ρ2 − ρ1. In particular, by comparing (14) and (16), we have

〈p〉
∆

= P∆ +
ρ∆g

2h
(z2

+ − z2
−) + ρ1g(z+ − z−),

so that if the asymptotic interfacial heights are the same at both far ends of the channel, equality between
asymptotic imbalances of the interfacial pressure and of the mean pressure follows,

〈p〉
∆

= P∆ . (18)

It is interesting to view the pressure imbalance from the perspective of a center of mass for the stratified fluid.
For a laterally unbounded channel, the total mass of the fluid is clearly infinite, and care should be taken to
avoid divergent integrals. The local center of mass horizontal coordinate for a section of the channel between
x = L− and x = L+ can be defined as

X`
c(t) ≡

1

M `

∫ L+

L−

x
(
ρ1η1(x, t) + ρ2η2(x, t)

)
dx , (19)

where

M ` ≡
∫ L+

L−

(
ρ1η1(x, t) + ρ2η2(x, t)

)
dx (20)
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is the total mass of the fluid in the section. Differentiating with respect to time, and taking into account (11),
yields

M ` dX
`
c

dt
=

∫ L+

L−

(ρ1η1u1 + ρ2η2u2) dx+
[
(X`

c − x)(ρ1η1u1 + ρ2η2u2)
]∣∣∣L+

L−
. (21)

For velocities that decay sufficiently fast at infinity the end-point terms in this expression vanish and the right-
hand-side is well defined in the limit L± → ±∞, being equal to the total horizontal momentum Π1 of the fluid.
Thus, the position of the center of mass for a sufficiently long section of the channel moves in the direction
defined by the total horizontal momentum, as can be expected.

2.2 Small ρ
∆

limit and the scaling relation between P
∆

and ρ
∆

Some of the results of the previous subsection can be used to unravel a particular scaling of the momentum
evolution with respect to stratification. In particular, we shall focus on the class of zero-velocity initial data.
As we will see later, these initial conditions also allow to derive closed-form expressions for the initial pressure
imbalance.

From the equations of motion and, in particular, from the constraint η1 + η2 = h we have

∂x

(
η1u1u1 + η2u2u2 +

1

ρ1
η1p1 +

1

ρ2
η2p2

)
=
( 1

ρ2
− 1

ρ1

)
ηxP . (22)

If hydrostatic equilibrium at infinity is enforced, the layer-mean pressures are given by (15), so that in the case
of equal asymptotic heights, that is, z− = z+ = z0, the interfacial pressure difference P∆ between the ends of
the channel is

P∆(ρ∆) = P |+∞−∞ =
ρ∆

h1ρ2 + h2ρ1

∫ +∞

−∞
ηxP dx ≡ ρ∆

h1ρ2 + h2ρ1
IP (ρ∆) , (23)

where h1 = h − z0 and h2 = z0. A couple of relevant consequences follow from this relation: First, pressure
imbalances and their associated physical phenomena, such as the nonconservation of total momentum (Camassa
et al. 2012) and vorticity, cannot arise in uniform density fluids. Next, and perhaps more remarkably, these
phenomena cannot be detected in the Boussinesq approximation of neglecting density stratification in the
inertial terms.

Relation (23) further shows that P∆ scales at least linearly with ρ∆ . Of course, the integral term IP also
depends on ρ∆ , so that it cannot be concluded that this linear scaling has general validity. In fact, in the limit
ρ∆ → 0 with ρ2 fixed, the scaling can be different than linear. Assume that the interfacial pressure P admits
the expansion

P∆(0) + P∆

′(0)ρ∆ +
1

2
P∆

′′(0)ρ 2
∆

+ . . .

=
1

h1ρ2 + h2ρ1
IP (0)ρ∆ +

1

h1ρ2 + h2ρ1
I ′P (0)ρ 2

∆
+ . . .

=
1

hρ1
IP (0)ρ∆ +

[
1

hρ1
I ′P (0)− h1

h2ρ2
1

IP (0)

]
ρ 2

∆
+ o(ρ 2

∆
),

(24)

where o(ρ 2
∆

) denotes, as usual, terms going to zero faster than ρ 2
∆

. This implies that IP (ρ∆)→ 0 as ρ∆ → 0 for
localized displacements of the interface. Equating term by term yields P∆(0) = 0, as already manifest from (23).
Now, for a homogeneous fluid, equation (16) shows that horizontal momentum is conserved if P∆(0) = 0. On
the other hand, recalling that the time variation of each layer’s total horizontal momentum is

dΠ1j

dt
≡ d

dt

∫ +∞

−∞
ρjηjuj dx+ ρjηjujuj |+∞−∞ = − ηjpj |+∞−∞ + (−1)jIP , j = 1, 2 , (25)
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we can see that if the upper and lower layer momentum are separately conserved, then not only P∆ = 0, but
also IP = 0. Indeed, the lateral equilibrium boundary conditions imply that for each infinite upper and lower
layer the horizontal momenta are conserved if and only if

−h1P∆ − IP = 0 , −h2P∆ + IP = 0 , (26)

at all times, that is, if and only if
IP = 0 and P∆ = 0 . (27)

Now, given that ρ∆ = 0 implies horizontal momentum conservation, and for zero initial velocities the initial
value of each layer’s total horizontal momentum is clearly zero, the conserved value of the horizontal momentum
in each layer is null for all times (and hence so is the total fluid’s horizontal momentum). Therefore (27) shows
that the linear term in expansion (24) vanishes. Thus, for zero velocities, P∆(ρ∆) is at least quadratic in ρ∆ ,
since from (24) we obtain

P∆ =
1

h1ρ2 + h2ρ1
I ′P (0)ρ 2

∆
+ o(ρ 2

∆
). (28)

Notice that this result is general for zero-velocity initial conditions. If the velocity of the system is different
from zero, the difference of pressure between the ends of the channel can be expected, in general, to scale
linearly with the density difference ρ∆ , at least initially in time.

We remark that, if different asymptotic heights are enforced on the fluid’s configuration, formula (23) has
to be modified as

ρ∆

ρ1ρ2
IP (ρ∆) =

(
h− z+

ρ1
+
z+

ρ2

)
P (+∞)−

(
h− z−
ρ1

+
z−
ρ2

)
P (−∞) + gh(z+ − z−) . (29)

We will henceforth refer to this case as the “kink-like” configuration. Its limiting case, by which one or both
of the two different asymptotic heights reach the channel’s boundaries, will be referred to as “dam-like.”

2.3 Interfacial pressure imbalance and total vorticity

Next, we briefly examine how the asymptotic interface pressure differential P∆ is related with variation of the
total vorticity. This link can be obtained from the Helmoltz-type equation for the vorticity,

ωt +∇× (ω × v) = −∇
(

1

ρ

)
×∇p. (30)

For a system in the strip S = R× [0, h], the total vorticity is

Γ =

∫
R×[0,h]

ω dA . (31)

Its time variation follows directly by integrating (30), and by using the Green-Stokes’ formula. Taking into
account the boundary conditions on the velocity field yields

dΓ

dt
=

∫
R×[0,h]

∇p×∇
(

1

ρ

)
dA . (32)

Notice that any barotropic component of the pressure pb = pb(ρ) will not contribute to this formula, which
ultimately rephrases the content of the Bjerknes theorem (see, e.g., Yih (1980)) applied to the whole fluid
domain.

We now consider the two-layer case. In this case, ρ = ρ2 − H(z − η(x, t))ρ∆ (by denoting the Heaviside
function as H), and hence the gradient of 1/ρ is

∇
(

1

ρ

)
=

(
−ηx

1

)
ρ∆

ρ1ρ2
δ(z − η(x, t)), (33)
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Figure 2: The contours for Stokes theorem in the case of a two-layer fluid.

which is normal to the interface η(x, t). The integrand in the total vorticity derivative (32) will then involve
products of ∇p-components with a delta-function. Such products are well defined, in general, only if the
functions multiplying the Dirac-δ are continuous. In our case, while the component of the pressure gradient
normal to the interface suffers a jump, the tangential component is continuous, and hence so is the δ multiplier.
We have

∇p×∇
(

1

ρ

)
= −(px + pzηx)

ρ∆

ρ1ρ2
δ(z − η(x, t)) j, (34)

where j is the unit vector normal to the fluid plane. Similar care is needed to apply the Green-Stokes formula
in the two-layer case, because the integrand is again singular at the interface, in general. The contour of
integration has to be modified by separating the different domains where the density is constant, thereby
breaking the contour path used in the smooth density case into two paths enclosing the domain of each fluid.
This decomposition, depicted in figure 2, reduces the problem to evaluating the contour integration at the
interface, because the contributions of the channel boundaries vanish for the same reason as for the smooth
density case. In this paper we will be concerned mainly with the case of zero-velocity initial conditions, so that
the fluid vorticity ω is concentrated on the interface γ in a vortex sheet (see also Yih, 1980, p. 14). Therefore
the kinetic contribution to dΓ/dt is∫

γ
(ω × v1) · dr−

∫
γ
(ω × v2) · dr =

∫
γ
ω × (v2 − v1) · dr. (35)

Since the shear velocity v2−v1 is tangent to the interface, these line integrals also vanish and, with zero-velocity
initial conditions, formula (32) still holds. Thus, by using (34) we can express the time variation of the total
vorticity in terms of the (interface) pressure imbalance as

dΓ

dt
=

∫ ∞
−∞

(∫ h

0
(px + pzηx)

ρ∆

ρ1ρ2
δ(z − η(x, t)) dz

)
dx

=
ρ∆

ρ1ρ2

∫ ∞
−∞

(px + pzηx)|z=η(x,t) dx =
ρ∆

ρ1ρ2

∫ ∞
−∞

dP

dx
dx

=
ρ∆

ρ1ρ2

(
P (+∞)− P (−∞)

)
=
ρ∆P∆

ρ1ρ2
,

(36)

where we have used the definition P (x) = p(x, η(x)).
Formula (36), connecting the time variation of the total vorticity with the asymptotic pressure imbalance,

has to be corrected if the interface touches the boundary of the channel. Indeed, let C be the set in which the
interface coincides with one of the boundaries (see figure 3). For x ∈ C and every z ∈ [0, h] the gradient of the
density is zero, so that the set C × [0, h] does not contribute to the total vorticity time-variation. Therefore

dΓ

dt
=

ρ∆

ρ1ρ2

∫
R/C

dP

dx
dx =

ρ∆

ρ1ρ2

(
P∆ −

n∑
i=1

[
p
(
xRi , η

(
xRi
))
− p

(
xLi , η

(
xLi
))] )

. (37)

We remark that the correction terms might be, in some cases, dominant. Indeed, for vanishing velocity initial
configurations, P∆ behaves as ρ 2

∆
, while the point contributions can produce linear terms in ρ∆ .
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Figure 3: Sketch of a typical interface configuration for a two-fluid density distribution for which boundary
contributions are relevant.

3 Long-wave models

We now briefly describe strongly nonlinear long-wave models for two-layer fluids (see, e.g., Choi & Camassa,
1999). Variants of these models have been extensively studied in the literature, especially for the classical
dispersionless limit, see for instance Baines’s (1995) monograph, and, more recently, Milewski et al. (2004)
and Boonkasame & Milewski (2012) for a study of the stability properties of the motion governed by these
models. While derived under the long-wave approximation, the dispersive case has been studied in the context
of an internal “dam-breaking” problem (which leads to high wavenumber initial conditions) by Esler & Pearce
(2011) in the Boussinesq regime; we will return to this class of initial conditions for the parent Euler system in
§5. By using these models, one can derive in a relatively straightforward manner fairly general results, whose
fidelity with respect to the parent Euler equations can be tested on explicit solutions for special configurations
(typically for zero-velocity initial data). Thus, in this section we anticipate some of the results that will be
computed explicitly later on for the special configurations of vanishing initial velocity within the full Euler
equation study. We remark that models may differ substantially in their effectiveness to predict the “true”
physical behaviour of the systems under consideration. For instance, as mentioned in Section 2, the Boussinesq
limit (of both models) does not capture any pressure imbalance; in turn, the dispersionless limit notably yields
a vanishing pressure imbalance for the vanishing velocity case. As already highlighted in Camassa et al. (2012),
a non-vanishing pressure imbalance in the static case can be obtained by taking into account dispersive terms
in the strongly nonlinear models.

3.1 Equations of motion

For a two-layer incompressible Euler fluid in a channel of height h, the equations of motion (11)–(12) can be
written as

uit + ui uix + (−1)igηix = −Px
ρi

+Di(ui, vi, ηi), ηit + (ηiui)x = 0, i = 1, 2, (38)

where η1 + η2 = h, and the terms denoted by Di lump all the contributions from pressure, vertical velocity
components and from switching layer-averages with products. Shallow water long-wave models can be derived
from this in the case when the layer thicknesses are small with respect to a typical wavelenght L, by retaining
only the leading order terms in Di, and provide effective approximations of (two-layer) incompressible Euler
fluid (see. e.g., Choi & Camassa, 1999). Denoting the small parameter of the model by δ ≡ h/L, at the first
order in δ the hydrostatic equilibrium is valid everywhere and the relations (15) hold not only asymptotically
but along the whole channel. Also, at this order Di = 0, i.e., system (38) is turned into its dispersionless limit

uit + ui uix + (−1)igηix = −Px
ρi
, ηit + (ηiui)x = 0, i = 1, 2. (39)
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In case of zero asymptotic velocities the total flux Q(t) ≡ η1u1 + η2u2 is zero. Solving for Px the dispersionless
equations (39) and using the constraint η1 + η2 = h, yields for the interface pressure asymptotic difference the
(dispersionless) formula

P∆ = h

∫ ∞
−∞

(u1 u2)x
η1/ρ1 + η2/ρ2

dx , (40)

which is equivalent to the form of P∆ reported in Camassa et al. (2012). We remark that in the Boussinesq
approximation the integrand becomes a total derivative, and hence this pressure difference P∆ is zero (see, e.g.,
Milewski et al. 2004) for localized velocities. This fact should not be regarded as a surprise, since pressure
imbalances are phenomena due to the relative inertia of the stratified fluid, and not to the relative buoyancy. The
integrand in (40) is also a total spatial derivative, and hence P∆ = 0, when the interface is flat, independently
of the Boussinesq approximation. In fact, the same conclusion holds for the full Euler system, as seen from
(23), since for a flat interface ηx = 0. However, the dispersionless formula (40) goes too far, as it also predicts
P∆ = 0 whenever the layer-mean velocities vanish. By restoring the dispersive terms in the strongly nonlinear
model, we show next that this conclusion might not be warranted in general.

3.2 Effects of dispersion

The vanishing of the leading order term (40) for zero-velocities requires that the dispersive terms Di of equa-
tion (38) be estimated within the same long-wave asymptotic approach. If such terms are retained, relation (40)
reads

P∆ =

∫ +∞

−∞

(
η1

ρ1
+
η2

ρ2

)−1

[h (u1u2)x + (η1D1 + η2D2)] dx . (41)

The first nontrivial dispersion contribution is given asymptotically as δ → 0 by (see Choi & Camassa, 1999)

Di ∼
1

3ηi

(
η3
i

(
uixt + ui uixx − (uix)2

))
x
, i = 1, 2. (42)

If ui = 0, this implies

P∆ ∼
1

3

∫ ∞
−∞

(
η1

ρ1
+
η2

ρ2

)−1 (
η3

1 u1tx + η3
2 u2tx

)
x

dx . (43)

A consistent approximation of this formula can be given by inserting the expressions for the uit’s obtained in
the zero-dispersion limit. The dispersionless equation of motions (39), when the velocities are near zero, yield

u1t ∼ ρ∆g
η2η2x

ρ1η2 + ρ2η1
, u2t ∼ −

η1

η2
u1t = ρ∆g

η1η1x

ρ1η2 + ρ2η1
(44)

asymptotically as δ → 0. Therefore

P∆ ∼
ρ∆g

3

∫ ∞
−∞

(
η1

ρ1
+
η2

ρ2

)−1(
η3

1

(
η2η2x

ρ1η2 + ρ2η1

)
x

+ η3
2

(
η1η1x

ρ1η2 + ρ2η1

)
x

)
x

dx. (45)

When ρ∆ is small, this asymptotic relation can be simplified to

P∆ ∼
ρ∆g

3h

∫ ∞
−∞

(
1

h
+
η2

h2

ρ∆

ρ1

)(
η3

1 (η2η2x)x + η3
2 (η1η1x)x

)
x

dx+ o(ρ 2
∆

).

The linear term in ρ∆ is a total derivative in x and therefore does not contribute to P∆ , confirming the general
results of the previous section. As expected, the first nonzero term for P∆ is proportional to ρ 2

∆
,

P∆ ∼
ρ 2

∆
g

6ρ1h3

∫ ∞
−∞

η2

(
η3

1

(
η2

2

)
xx

+ η3
2

(
η2

1

)
xx

)
x

dx+ o(ρ 2
∆

). (46)
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Figure 4: A two-bump configuration. Only when S is comparable with the typical width of the bumps the
pressure difference P∆ is significantly different from zero.

This estimate allows explicit analytic computations of P∆ for special cases. For instance, when the interface
profile is

η(x) = z0 +A exp
(
−(x+ S)2/σ2

)
−B exp

(
−(x− S)2/σ2

)
, (47)

(see figure 4) the asymptotic pressure difference is given by

P∆ ∼
64
√

3πg

81ρ1

S3e−
8S2

3σ2

σ5
AB(A+B)ρ 2

∆
+ o(ρ 2

∆
). (48)

Here, for long-wave asymptotic consistency, σ should be taken sufficiently large; also the parameters A and B
need to be such that the extrema of function (47) do not touch the channel boundary.

Some interesting conclusions can be extracted from (48). First, if A = −B the interface of the system
becomes symmetric and, as always in these configurations, P∆ = 0 (see Camassa et al. 2012). Second, explicit
dependence on the asymptotic height z0 does not appear in formula (48). However, notice that the ranges of A
and B are constrained by the choice of z0 if the interface has to stay away from boundaries. Thus, by choosing,
e.g., A + B = k and B = z0 − s (for given parameters k and s) we fix the maximum and the minimum of
the interface leaving only z0 as a free variable. In this case P∆ is a quadratic function of the interface height
z0 and the extremum of this quadratic relation is at A = B. Third, the most interesting behaviour is related
to the dependence on the separation parameter S. If the two bumps are well separated (S � σ), then P∆ is
exponentially small. However, when the supports of the two bumps have an intersection (S ' σ), then P∆ is
nonzero to leading order O(ρ 2

∆
).

4 Full Euler system: pressure jump at t = 0 in the small ρ
∆

asymptotic
limit

We consider again the full Euler system for a two-layer fluid with zero initial velocity. As seen in Section 2.2,
in this case the expansion in ρ∆ of the pressure imbalance starts with the quadratic term. We now compute
this term explicitly. Throughout this section, unless otherwise stated, we will reference density to that of the
lower fluid, so that ρ2 = 1.

4.1 The small ρ
∆

expansion

Consider an initial condition for the two-fluid stratification such as the one depicted in figure 1. Let the initial
velocity be identically zero, with the fluid in hydrostatic equilibrium as |x| → ∞. In this case, the Euler
equations (1) determine the pressure p(x, z) at time t = 0 through the solution of the elliptic equation

∇ ·
(

1

ρ
∇p
)

= 0 , (49)
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subject to the Neumann boundary conditions

∂p

∂x
→ 0 as |x| → ∞ ,

∂p

∂z
= −gρ at z = 0, h . (50)

Of course, non-differentiability of the density distribution for the case of figure 1 requires an appropriate
interpretation of equation (49). We will enforce (49) separately in each of the ρ1 and ρ2 domains, Ω1 and Ω2

say,
∇2p = 0 , (x, z) ∈ Ωi, i = 1, 2 ,

so that p is harmonic in each subdomain, and assign boundary conditions at the discontinuities of ρ. These
consist of continuity of p everywhere, while its normal derivatives jump according to the “flux-continuity”
condition

1

ρ1

∂p

∂n

∣∣∣∣
1

=
1

ρ2

∂p

∂n

∣∣∣∣
2

, (51)

with obvious meaning of the notation.
Let the variable density be defined as a perturbation away from a uniform density fluid

ρ = ρ2 − εr(x, z) , 0 < ε� 1, (52)

where r positive, so that ρ2 is the maximum density of fluid. For notational convenience, we further choose
units in such a way that h = 1, and g = 1. We seek a solution for the pressure equation as an asymptotic
expansion

p = p(0) + εp(1) + ε2p(2) + o(ε2) (53)

whence, equating like-powers of ε,

∇2p(0) = 0 , ∇2p(1) +∇ · (r∇p(0)) = 0 , ∇2p(2) +∇ · (r∇p(1)) +∇ · (r2∇p(0)) = 0 , . . . (54)

with boundary conditions, respectively,

∂p(0)

∂z

∣∣∣∣∣
z=0,1

= −1 ,
∂p(1)

∂z

∣∣∣∣∣
z=0,1

= r|z=0,1 ,
∂p(2)

∂z

∣∣∣∣∣
z=0,1

= 0 ,

∂p(k)

∂x
→ 0 as |x| → ∞ for k ≥ 0.

(55)

The O(ε0)-equation is simply solved by p(0) = −z + const., which yields the equation for p(1) in the form

∇2p(1) = rz .

Since the fluid is two-layer, still denoting the usual Heaviside function as H, we have

r(x, z) = H(z − η(x)),

where the interface location z = η(x) behaves as

η(x)→ z± as x→ ±∞ , 0 < η(x) < 1 .

This means that the heavy fluid density is ρ2 = 1 and the light fluid density is ρ1 = 1− ε, so that, in the chosen
units, ρ∆ = ε. Let

p(1) = p
(1)
h + (z − z0)H(z − z0) , (56)
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where z0 is any reference height. The summand (z − z0)H(z − z0) takes care of the top and bottom boundary

conditions, leaving a homogeneous Neumann problem for p
(1)
h (x, z) in the infinite strip. The equation for

p
(1)
h (x, z) is then

∇2p
(1)
h = δ(z − η(x))− δ(z − z0) . (57)

To solve this we can make use of the identity

∞∑
n=1

cos(nπθ) = −1

2
+ δp(θ) ≡ −

1

2
+

+∞∑
k=−∞

δ(θ + 2k) ,

from the theory of distributions (Gelfand & Shilov, 1964). Indeed, we have

2
∞∑
n=1

cos(nπz) cos(nπη) =
∞∑
n=1

(
cos
(
nπ(z − η)

)
+ cos

(
nπ(z + η)

))
= −1 + δp(z − η) + δp(z + η) = −1 + δ(z − η)

since 0 < z < 1 and 0 < η < 1, so that the support of the second Dirac-δ always falls outside the channel. For
the same reason the periodic shifts can be ignored for the first δ. Hence, we are lead to the following expression
of the right-hand side of (57):

δ(z − η(x))− δ(z − z0) = 2
∞∑
n=1

cos(nπz)(cos(nπη(x))− cos(nπz0)), (58)

from which, taking the homogeneous Neumann boundary conditions into account, the coefficient of the Fourier

series expression of p
(1)
h (x, z) can be read off. Indeed,

p
(1)
h (x, z) =

∞∑
n=0

an(x) cos(nπz) (59)

yields
a′′n − n2π2an = 2(cos(nπη(x))− cos(nπz0)) for n ≥ 0.

For n = 0, a′′0 = 0 ⇔ a0 = constant, say a0 = 0. For n > 0, the equation for an can be solved by use of the
Green function for the operator ∂2

x − n2π2 on the real line,

Gn(x, ξ) = − 1

2nπ
e−nπ|x−ξ| ,

to finally obtain

p
(1)
h (x, z) =

∫ +∞

−∞

∞∑
n=1

e−nπ|x−ξ|

nπ
cos(nπz)

(
cos(nπz0)− cos(nπη(ξ))

)
dξ . (60)

This expression shows that the layer-average of p
(1)
h is always zero at any fixed x-location, as integration of

cos(nπz) vanishes for all n. Since the average of p(0) and the component (z−z0)H(z−z0) of (56) is the same for
any fixed x, we can conclude that no contribution to the average pressure differential 〈p(+∞)〉 − 〈p(−∞)〉 can
arise at order ε, as expected from the results of Section 2.2, and the fact that, for equal asymptotic interfacial
heights, the average and interface pressure imbalances are equal.

Next, we work on the second order pressure contribution p(2). We concentrate only on the layer-average of
the boundary term ∂xp

(2) instead of the exact z-dependence. Multiplying the p(2) equation by x, integrating
over the fluid volume and taking into account the boundary conditions yields

lim
L→∞

∫ 1

0

(
p(2)(L, z)− p(2)(−L, z)

)
dz = − lim

L→∞

∫
[−L,+L]×[0,1]

r ∂xp
(1) dx dz.
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The top and bottom boundary contributions cancel out exactly from the p
(1)
h and p(2) terms. Passing to the

limit we retrieve a close relative of the general formula for the pressure differential in an infinite strip,

〈p(2)〉∆ ≡
∫ 1

0

(
p(2)(∞, z)− p(2)(−∞, z)

)
dz = −

∫
R×[0,1]

r ∂xp
(1) dx dz. (61)

Substituting expression (60) for p
(1)
h yields

〈p(2)〉∆ =−
∫ +∞

−∞

(∫ +∞

−∞
sgn(x− ξ)

∞∑
n=1

e−nπ|x−ξ| (cos(nπη(ξ))− cos(nπz0)) dξ ×

×
∫ 1

0
cos(nπz)H(z − η(x)) dz

)
dx .

(62)

The last integral is ∫ 1

η(x)
cos(nπz) dz = − 1

nπ
sin(nπη(x))

and hence

〈p(2)〉∆ =

∞∑
n=1

∫ +∞

−∞
sin(nπη(x))×

×

(∫ +∞

−∞
sgn(x− ξ) e

−nπ|x−ξ|

nπ

(
cos(nπη(ξ))− cos(nπz0)

)
dξ

)
dx.

(63)

We remark that all the theoretical arguments for the determination of the pressure jump 〈p(2)〉∆ have assumed
that the interface does not touch the channel boundary. Thus, we assume that there are always slivers of light
and heavy fluid near the top and bottom lid, respectively. However, it is not difficult to realize that, since all
integrals are bounded, and the integrands decay exponentially, we can pass to the limit of zero sliver-width
in the above formulae. Furthermore, since p(2) is no longer affected by the density difference at the top and
bottom interfaces, this limit coincides with the “physical” instance of zero sliver-width. Indeed, the density
difference is taken care by p(1), while p(2) satisfies a Neumann problem with vanishing boundary conditions at
z = 0 and z = 1. It is however suitable to anticipate here that, in general, care should be taken in performing
such limits for general density values. In particular, in Appendix C we shall show that the behaviour of p(x, z)
in “air-water” systems, obtained by considering the limit ρ1 → 0, might not follow from the näıve limit of
vanishing sliver width.

4.2 Comparison with the long wave model

Expression (63) can be used to test the long-wave model result (46) with, e.g., η(x) given by (47). While we
are unable to compute the integrals in (63) explicitly, their numerical evaluation for up to 25 terms in the series
yields agreement over a broad range of parameters. Table 1 reports a few examples. For these, the long wave
model pressure imbalance (46) is always of the same order of its Euler counterpart (63), with the discrepancy
decreasing as the main long wave parameter σ increases. Remarkably, the agreement is acceptable already for
σ = 3

√
8/3 ' 4.9, which for a channel of height h = 1 would correspond to a value of the long-wave small

parameter δ ' 0.2. The trend exemplified by table 1 persists in general for all the parameter combinations we
have checked.

We note that the convergence of the series in (63) is slow for the class of smooth profiles from (47) we
have explored, which partially adds to the discrepancy in table 1. In fact, a general convergence proof and
an estimate of the convergence rate shows that the series coefficients are bounded by 1/n2, for any interface
function η of bounded variation class. Next, we focus instead on special profiles where the series summation
can be performed explicitly.
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Table 1: Comparison of pressure imbalances P∆/ρ
2

∆
as predicted by long-wave model and full Euler results for

interface (47) with asymptotic height z0 = 1/2.

A B σ S Model (eqn. (48)) Euler (eqn. (63)) Model/Euler

1/3 1/3
√

8/3 1 5.69× 10−3 4.01× 10−3 1.42

2/5 1/5
√

8/3 1 3.69× 10−3 2.62× 10−3 1.40

3/5 1/3 2
√

8/3 1 9.49× 10−4 8.25× 10−4 1.15

3/5 1/3 3
√

8/3 1 1.44× 10−4 1.32× 10−4 1.09

4/5 1 4
√

8/3 1 2.76× 10−4 2.57× 10−4 1.07

3/5 2/3 4
√

8/3 3 1.59× 10−3 1.49× 10−3 1.06

1/3 1/3 4
√

8/3 20 1.68× 10−12 1.70× 10−12 0.99

4.3 Special initial conditions: piecewise-constant interfaces

Let us consider the integral formula (63) for a profile η that is smooth on the whole line, except possibly at a
finite number of points A1, A2, . . . , AN , where the jumps η(A+

α )− η(A−α ) are finite. We also require, as usual,
that limx→±∞ η(x) = z± for some asymptotic values z±. Taking into account the distributional identity

sgn(x− ξ)e−nπ|x−ξ| = 1

nπ

d

dξ
e−nπ|x−ξ|,

integrating by parts, and considering the distributional derivative of cos(nπη(ξ)), leads to an expression equiv-
alent to (63),

〈p(2)〉∆ =

∞∑
n=1

1

nπ

∫ +∞

−∞
sin(nπη(x))

(∫ +∞

−∞
e−nπ|x−ξ|η′(ξ) sin(nπη(ξ)) dξ

)
dx

−
∞∑
n=1

1

n2π2

N∑
α=1

∫ +∞

−∞
dx sin(nπη(x))e−nπ|x−Aα|

(
cos(nπη(A−α ))− cos(nπη(A+

α ))
)

dx.

(64)

Now, for piecewise-constant interface profiles

η(ξ) = zi for Ai < ξ < Ai+1, i = 1, . . . , N − 1,

η(ξ) = z− ≡ z0 for ξ < A1 and η(ξ) = z+ ≡ zN for ξ > AN ,
(65)

only the second line of equation (64) provides a contribution, and we have η(A−α ) = zα−1, η(A+
α ) = zα.

Because of the shape achieved by each fluid’s domain in the limiting three step case with z1 = 0 and z2 = 1,
i.e., disconnected domains with no connecting slivers at the top and bottom plates, in what follows we will
often refer to this class of initial conditions as “hooks,” see figure 5. We remark that these are possibly the
simplest configurations yielding explicit expressions for non-vanishing pressure imbalances. Moreover, hooks
can in principle be implemented experimentally by use of gates separating the fluids, just as in the limiting
configuration of the dam-break case (corresponding to z0 = 0, z3 = 1, z1 = z2 = 0, all A’s zero) with a single
gate spanning the whole width of the channel.

Performing the integrations in (64) we get that the pressure jump at the second order in the ρ∆ expansion
is given by

〈p(2)〉∆ =

∞∑
k=1

1

π3 k3

∆
(k)
0 +

∑
1≤α<β≤N

∆
(k)
[α,β]e

kπ(Aα−Aβ)

 , (66)
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Figure 5: Initial hook-like configuration for a two-fluid density distribution in an x-infinite channel between
two rigid plates located at z = 0, 1.

where

∆
(k)
0 =

N∑
α=1

sin(kπ(zα − zα−1)) +
1

2
(sin(2kπ z0)− sin(2kπ zN )) , (67)

and

∆
(k)
[α,β] = (cos(kπ zβ)− cos(kπ zβ−1))(sin(kπ zα)− sin(kπ zα−1)+

− (cos(kπ zα)− cos(kπ zα−1))(sin(kπ zβ)− sin(kπ zβ−1)),
(68)

or, equivalently,

∆
(k)
[α,β] = sin(kπ(zα − zβ))− sin(kπ(zα−1 − zβ))+

− sin(kπ(zα − zβ−1)) + sin(kπ(zα−1 − zβ−1)).
(69)

In particular, for the ‘three-jump’ case, with discontinuities located at A1 ≤ A2 ≤ A3 and arbitrary heights
0 ≤ z0, z1, z2 ≤ 1, z0 = z3, we have

〈p(2)〉∆ =
∞∑
k=1

1

π3 k3

[
(sin(kπ(z1 − z0)) + sin(kπ(z2 − z1)) + sin(kπ(z0 − z2)))

×
(

1− ekπ(A1−A2)
)(

1− ekπ(A2−A3)
) ]
.

(70)

Setting for simplicity A3 = −A1 = A, A2 = 0, and z1 = 0, z2 = 1, yields the compact expression

〈p(2)〉∆ = −2
∞∑
n=0

sin((2n+ 1)πz0)

((2n+ 1)π)3

(
1− e−(2n+1)πA

)2
. (71)

If A is sufficiently large the exponentials can be neglected and we get the simple quadratic expression

〈p(2)〉∆ = − 2

π3

∞∑
n=0

sin
(
(2n+ 1)πz0

)
(2n+ 1)3

= −1

4
z0(1− z0) .

As shown in figures 6(a) and 6(b), the comparison between the results predicted by these formulae and
those obtained numerically with an Euler solver (more on this in section 6 below) are very reasonable. Another
comparison with the numerics is offered by figure 7. Here, for the hook configuration, the quadratic asymptotic
scaling of 〈p〉

∆
∝ ρ 2

∆
can be seen explicitly, with the theory providing an excellent fit for small values of ρ∆ .

The agreement persists up to fairly large values of ρ∆ . A relative error of 10% is not reached until ρ∆ ' 0.2.
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Figure 6: (a) Full hook case, with A2 − A1 = A3 − A2 = 1.5, z3 = z0, z1 = 0, z2 = 1, ρ∆ = 0.01 (crosses),
ρ∆ = 0.1 (diamonds), from numerics (§6), theoretical value (solid line) from asymptotics ρ∆ → 0 . (b) Kink-like
case, with A2 − A1 = A3 − A2 = 1.5, z1 = 0.3, z2 = 0.8, z3 = 0.5, ρ∆ = 0.01 (crosses), ρ∆ = 0.1 (diamonds),
from numerics (§6), theoretical value (solid line) from asymptotics ρ∆ → 0 (equation (71)).
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Figure 7: Pressure imbalance P∆ vs. density difference ρ∆ . Theory (solid line) from equation (71) and VARDEN
simulation (dots). The interface is a “hook” (figure 5) with parameters given by z0 = z3 = 0.5, z1 = 1, z2 = 0,
and A2 − A1 = A3 − A2 = 1.5 as in figure 6(a). The 2:1 slope is maintained up to density differences as large
as ρ∆ ' 0.2 (in units of ρ2).
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Figure 8: The special configuration of a staircase hook for a two-fluid density distribution in an x-infinite
channel between two rigid plates located at z = 0, 1.

In general, in the limit (Ai+1 − Ai) large (as compared with the height of the channel), the Fourier series
of (66) can be easily summed. Indeed, in this case the expression of the pressure jump reduces to

〈p(2)〉∆ =

(
N∑
α=1

∞∑
k=1

1

π3 k3
(sin(kπ(zα − zα−1)) +

1

2

∞∑
k=1

1

π3 k3
(sin(2kπz0)− sin(2kπzn))

)
,

which yields

〈p(2)〉∆ =

(
N∑
α=1

sgn(zα − zα−1)Q1(|zα − zα−1|) +Q2(z0)−Q2(zN )

)
, (72)

where Q1 and Q2 are the polynomials (see, e.g., Gradshteyn et al., 2000)

Q1(x) =
1

12
x3 − 1

4
x2 +

1

6
x =

1

12
x(x− 1)(x− 2)

Q2(x) =
1

3
x3 − 1

2
x2 +

1

6
x =

1

3
x(x− 1)

(
x− 1

2

)
.

(73)

It is interesting to note that even for a piecewise constant interfacial profile a qualitative agreement with
the long-wave model result (48) can be detected. For the configuration depicted in figure 4, with an upward
tooth of height A followed by a downward tooth of height B, equation (70) shows exponential decay of the
pressure imbalance with increasing separation of the teeth. Further, the leading order behaviour is cubic in the
heights A and B, and both expressions (48) and (70) are independent of rigid z-translations of the profile, for
as long as the profile does not hit the channel’s boundaries.

4.4 Special initial conditions: linear interfaces

We next consider the problem of the maximal 〈p〉
∆

with respect to special configurations. An interesting
example is the “crooked hook” configuration depicted in figure 8: with the asymptotic heights at z = z0, the
first jump is to z1 = 0, the second is to z2 = 1, followed by a sequence of “steps” of heights

z3 ≥ z4 ≥ · · · zN = z0 .

We assume min(Ai+1 − Ai) � 1, so that we can safely use formula (72) to determine the pressure jump as a
function of the decreasing heights z3, z4, . . . , z0. The outcome is that the configuration maximizing |〈p(2)〉∆| is
that of the left-hand side of the “crooked hook” being a well-crafted staircase, with steps of equal heights (e.g.,
in the figure, for N = 5 we have z0 = 1/5, z3 = 4/5, z4 = 3/5, z5 = 2/5). The sequence of the values of 〈p(2)〉∆
as N varies can be shown to admit 〈p(2)〉∆ = −1

6 as the asymptotic value (as N →∞).
Other cases where the computations can be easily performed are those of piecewise linear profiles. For

instance, let us consider the case of the “incline hook“ as in figure 9, that is, a configuration of a jump located
at x = 0, followed by a constant (negative) slope connecting the top of the step to the asymptotic height z = z0.
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Figure 9: The “incline hook” configuration for a two-fluid density distribution in an x-infinite channel between
two rigid plates located at z = 0, 1.

Figure 10: The piecewise constant vs. linear configurations for a two-fluid density distribution in an x-infinite
channel between two rigid plates located at z = 0, 1.

From formula (64), the quantity 〈p(2)〉∆ is the sum of two terms, one given by the jump at x = 0, and the other
given by the slope of the incline. Performing the integration, we get

〈p(2)〉∆ =

∞∑
k=1

(
Φ3a

3 + Φ2a
2 + Φ1a+ Φ0

k3π3 (1 + a2)2

)
, (74)

with

Φ3 =
(

1 + (−1)k cos (kπ z0)
)(

ekπ (z0−1)/a − 1
)

Φ2 = kπ(z0 − 1)− (−1)k sin(kπz0)
(

1 + 2 ekπ (z0−1)/a)
)

Φ1 = −
(

1− (−1)k cos (kπ z0)
)(

1 + ekπ (z0−1)/a
)

Φ0 = kπ(z0 − 1)− (−1)k sin(kπz0).

(75)

In the limit a→ 0, z0 → 0, the series (74) reduces to

−
∞∑
k=1

1

π2 k2
= −1

6
.

This result matches the limiting value of the staircase of figure 8. Its interest lies in part on the fact that,
although geometrically one would expect the limit of zero slope of the incline to yield a dam-break configuration,
in which half of the channel is filled with “light” fluid and the remaining half is filled with “heavy” fluid, we see
that the pressure differential is not given by the näıve geometrical limit. As computed exactly (for any density
variation) in section 5 below, the dam-break configuration leads to zero pressure imbalance.

As a final example, we examine the pressure imbalances associated with sequences of staircase configurations
with a fixed total width (see figure 10), with an increasing number of smaller and smaller steps. By using
symbolic manipulators (Maple or Mathematica), it can be shown that the configuration that maximizes the
pressure imbalance is that of the incline (solid line in figure 10), and that the limits from below and from above
of the pressure imbalances of the piecewise constant staircases coincide with the pressure imbalance of their
limiting linear profile. In this case the pressure imbalance agrees with the geometrical limit.
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gg

Figure 11: Dam-break configuration for a two-fluid density distribution. The pressure is everywhere continuous
(and so, ∂zp1 = ∂zp2 at the interface x = 0) with the jump condition for its normal derivative at the interface
∂xp1 = (ρ1/ρ2)∂xp2.

The above examples illustrate in a simple way how pressure imbalances can arise from localized variations
of stratification, and how limiting processes can be affected by subtleties that require some care in order to
be handled correctly. Next, we take a closer look at this issue in the context of an exact result, valid for any
density difference, for the stratified Euler system.

5 Dam-breaking class

A nontrivial exact solution of equation (49), with the usual boundary conditions, can be obtained in the
dam-break configuration depicted in figure 11: the heavier fluid (density ρ2) fills the right side of the channel
(assumed of height h = 1) and the rest of the channel (density ρ1) is filled with the lighter fluid. The interface
is therefore vertical, say at x = 0. In this case the asymptotic values of the interface are obviously different.
By variable separation and solving by Fourier series, one finds closed-form expressions for pressure,

p1 = −ρ1gz − ρ1g
ρ∆

ρ1 + ρ2

(
1

2
− 4

∑
n odd

1

n2π2
cos(nπz)enπx

)
if x ≤ 0

p2 = −ρ2gz + ρ2g
ρ∆

ρ1 + ρ2

(
1

2
− 4

∑
n odd

1

n2π2
cos(nπz)e−nπx

)
if x ≥ 0

(76)

where p1 (p2) is the pressure in the domain filled with the fluid with density ρ1 (ρ2). The pressure given in (76)
is continuous in the whole channel, with a discontinuous x-derivative at x = 0. Moreover, this gradient has
a (logarithmic) divergence at the points where the interface touches the boundaries. Indeed, it can be shown
that

∂p1

∂x

∣∣∣
x=0−

=
ρ1ρ∆g

π(ρ1 + ρ2)
log

(
1 + cos(πz)

1− cos(πz)

)
.

One could expect that this configuration, due to the overall mass imbalance of the fluid, would consequently
generate an overall pressure imbalance. However, this is not the case since for all x ∈ R∫ 1

0
p1(x, z, 0) dz =

∫ 1

0
p2(x, z, 0) dz = −g ρ1ρ2

ρ1 + ρ2
. (77)

Hence we have that 〈p〉
∆

= 0 at t = 0. (Notice however that the numerical simulations presented in figure 13
show that a pressure imbalance will develop at times t > 0, so that the horizontal momentum is not conserved
in the course of evolution.)
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This example confirms that the nonconservation of the total horizontal momentum does not simply rely
on the asymptotic difference of the purely hydrostatic pressure. In particular, we can interpret this result
as an occurrence of another non trivial instance of boundary effects. In fact, let us consider a partial dam-
break configuration, with the heavier fluid in the region [0,+∞) × [0, z1]. One could expect it to generate a
pressure difference which increases with the partial-dam height z1 ∈ [0, 1]. However, as equation (77) shows,
this is once again not the case, since the pressure differential for the dam-break limit (z1 = 1) is null. This
discontinuity might be regarded as a boundary effect, as suggested by the perturbative results of Section 4.3.
Indeed, the expression for 〈p(2)〉∆ in this partial dam-break case, obtained by appropriate use of the polynomial
formulae (72), yields 〈p(2)〉∆(z1) = (z2

1 − z3
1)/4, whose minimum is at z1 = 2/3.

Next, we remark that total horizontal momentum is always equal to that of the subsection of the chan-
nel spanned by the (maximal) horizontal support of the interface between the two fluids. In fact, volume
conservation by incompressibility implies that at all times the volume flux vanishes,∫ 1

0
u(x, z, t)dz = 0,

as this is satisfied as |x| → ∞ (or at the lateral vertical walls for a finite channel). Since for homogeneous fluid
the mass flux is simply proportional to the volume flux, the horizontal momentum for any channel’s section
of homogeneous fluid, i.e., sections that the “gravity currents” developing from the dam-break have not had
time to reach, is zero. Further, the horizontal momentum of the fluid from a dam-break is directed towards
the lighter fluid, since for computing horizontal momentum one needs to weigh the zero-volume-flux currents
resulting from the dam-break with their different densities. The sign of pressure imbalance as it grows past the
initial time can then be predicted to be opposite that of the momentum (i.e., positive when the denser fluid is
to the right of the dam). This can also be seen intuitively from the center of mass time evolution (21). The
two-fluid system admits a configuration of minimum potential energy corresponding to a flat interface, and it
can be expected that the fluid’s initial motion would be in the direction to achieve such configuration. Thus,
the center of mass for a section between end points fully lying in regions of homogeneous fluids (where mass
flux is zero), would move towards the lighter fluid, giving rise to a corresponding total horizontal momentum
according to (21).

Let us now consider total vorticity evolution for the dam-break class. A general feature of the motion can
be gleaned from (32). Taking into account that the interface is the segment {(0, z) | z ∈ [0, 1]} and the density
is given by ρ = ρ1H(x) + ρ2H(−x) yields ∇p×∇(1/ρ) = −δ(x) pz(0, z)ρ∆/(ρ1ρ2). Thus, from (32),

Γdam
t =

∫
R×[0,1]

∇p×∇
(

1

ρ

)
dA

= −
∫
R×[0,1]

pz(x, z)ρ∆

ρ1ρ2
δ(x) dA =

ρ∆

ρ1ρ2
(p(0, 0)− p(0, 1)) .

(78)

The explicit solution (76) for the dam configuration implies

Γdam
t = − 2ρ∆

ρ1 + ρ2
. (79)

We remark that this behaviour can be described as a boundary effect, by considering a limit in which the
interface between the two fluids is made to coincide with one the boundaries of the channel (the lower for
x > 0 and the upper for x < 0). Formula (37) can be used as depicted in figure 12, understanding the dam
configuration as the limit of the full hook case when A → +∞, with A the length of the hook “teeth.” In
this limit the interface at −∞ goes to 1 while at +∞ it goes to 0. From (37) the time derivative of the total
vorticity for the hook configuration is

Γhook
t =

ρ∆

ρ1ρ2
[P∆ − (p(A, 0)− p(0, 0))− (p(0, 1)− p(−A, 1))] . (80)
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Figure 12: The geometric limit from the hook to dam configuration.

In the dam-break limit A→∞, z− → 1, and z+ → 0, where P∆ = p(+∞, 0)− p(−∞, 1), we have

Γdam
t = lim

A→+∞
Γhook
t

=
ρ∆

ρ1ρ2
[(p(+∞, 0)− p(−∞, 1))− (p(+∞, 0)− p(0, 0))− (p(0, 1)− p(−∞, 1))]

= −
(

1

ρ1
− 1

ρ2

)
[p(0, 1)− p(0, 0)] ,

(81)

which agrees with (78).

6 Time evolution: numerical results

We now focus on providing examples of the time evolution ensuing from the class of initial data we have
analyzed. So far as we can see, this can only be done numerically. Of course, our analysis of inertia and
incompressibility effects of the previous sections has been carried out with laterally unbounded domains in
mind. For numerical investigations these infinite domains have to be truncated, for instance by erecting
vertical no-flux walls. However, with rigid walls at the ends of sufficiently long channels, the inertia effects
manifest in a similar way (for details, see Camassa et al. 2012). In the context of the theoretical examples
studied in the previous sections, these inertia effects can be illustrated with direct numerical simulations of
the time evolution of Euler equations in two dimensions. Our simulations are performed using the numerical
algorithm VARDEN which solves the stratified incompressible Euler equations (see Almgren et al. 1998).

Details are as follows. The initial conditions in all our simulations (all performed using nondimensional
quantities) are chosen among the specific cases discussed in Section 4 with zero initial velocities. The compu-
tation domain is [−8, 8] × [0, 1], and gravity is unity. We typically use a square grid of 512 points along the
vertical, although we have run cases with doubled and half the resolution to assess convergence. For t = 0
results, two to three significant digits are kept as they are the same for all three resolutions. As fluid motion
ensues, different resolutions show some discrepancies. However, the general density and velocity profiles as well
as the important features in pressure jumps and total vorticity remain similar across resolutions.

6.1 Exact solutions: the dam problem

We begin our numerical simulations with the dam case, which is solved exactly in Section 5, and hence provides
possibly the best test for numerical validation. We choose density parameters of the top and lower layers to
be ρ1 = 0.9 and ρ2 = 1.0. Figure 13(a) shows the time evolution of 〈p〉

∆
, from which we can see that 〈p〉

∆
= 0

and ∂t〈p〉∆ = 0 at t = 0, validating our theoretical results (see also Appendix B). Here, as well as in figures 14
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Figure 13: (a) Pressure jump and (b) total vorticity time history for the dam-break initial condition sketched
in figure 11, in the time interval 0s < t < 2.8s with 512 (solid line) and 256 (dotted line) vertical points
resolutions. The initial velocities of the fluids are zero, the fluid densities are ρ1 = .9 and ρ2 = 1 and the height
of the channel is fixed to 1.

and 15, we perform numerical simulations with 256 and 512 vertical grid points, confirming that the time
evolution is largely independent of resolutions. Figure 13(b) shows the total vorticity, exhibiting a linear
behaviour of Γ near to t = 0, despite the fact that the pressure imbalance evolves from zero with zero slope.
With the density parameters we have chosen in this section the value of the total vorticity obtained from this
formula is Γdam

t = −1.05 × 10−1. The value obtained from the numerical simulation related to figure 13(b) is
Γdam
t = −1.05 × 10−1 which agrees rather well with the theory. Snapshots of fluid time evolutions are shown

in figure 16.

6.2 Asymptotic solutions: the hook case(s)

Our next example is the case of figure 5, in which z0 = z3 = 0.5, z1 = 0.1, z2 = 0.9, and A2−A1 = A3−A2 = 1.5.
We choose density parameters of the top and lower layers to be ρ1 = 0.9 and ρ2 = 1.0 so that the case qualifies
small ρ∆ analysis discussed in Section 4.1. Figure 17 are snapshots of density profile up to time t = 2.8.
Figures 14(a) and 14(b) show the pressure jump 〈p〉

∆
and the total vorticity Γ for t = 0 ∼ 2.8. The pressure

jump is −4.95 × 10−4 at t = 0, in reasonable quantitative agreement with equation (70), which predicts
〈p〉

∆
∼ ρ 2

∆
〈p(2)〉∆ = −4.72 × 10−4. The total vorticity time derivative Γt = −5.49 × 10−5 also shows a good

agreement with equation (37), by which Γt ∼ −5.25 × 10−5. Since in this case the interface does not reach
either the top or the bottom of the channel, the pressure difference between the interacting points xLi and xRi is
neglected. When t < 0.5, the pressure jump is almost constant and the total vorticity behaves linearly, which
can be explained by 〈p〉

∆ t
= 0 for t = 0 in case of zero initial velocities. Next we let z1 = 0 and z2 = 1, so that

the interface touches the channel’s boundary. Figure 18 shows the snapshots of density profile for time between
0 and 2.8. At t = 0, the pressure jump (figure 15(a)) is −6.46 × 10−4 and the total vorticity time derivative
(figure 15(b)) is 2.80 × 10−5. Equations (70) and (37) provide 〈p〉

∆
∼ −6.13 × 10−4 and Γt ∼ 2.82 × 10−5.

The error is consistent with a second order-ρ 2
∆

estimate when ρ∆ = 0.1. From the figures it is apparent that,
in both the full hook and in the hook with slivers, the pressure imbalance 〈p〉

∆
has initial zero time-derivative

(this point is further taken on in Appendix B).
We remark that we limited the time of evolution in all our numerical simulations to relatively short times,

in order to maintain reasonable accuracy. An example of convergence for our numerical simulations is depicted
in figure 19. As can be seen, the difference of two resolutions, 256 and 512 in the vertical directions, in the
density field is maximal within a thin layer around the interface of the two fluids, not unexpectedly due to
slight differences in the interface position and the effects of numerical diffusivity.

7 Conclusions

Total momentum conservation in the time-evolution of a stratified, incompressible ideal fluid is subject to
a subtle interplay among boundary forces, incompressibility and inertia linked to the spatial extent of the
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Figure 14: (a) Same as figure 13 but for the “hook with sliver” initial condition (figure 5) with z0 = z3 = 0.5,
z1 = 0.1 and z2 = 0.9.

(a) (b)

512

256

t
0 0.6 1.2 1.8 2.4

0

8

4

12

16

20
10-4

Γ

t

10-4

512

256

p
Δ

Figure 15: (a) Same as figure 13 but for “complete hook” initial condition (figure 5) with z0 = z3 = 0.5, z1 = 0
and z2 = 1.

Figure 16: Snapshots of density ρ and velocities (u,w) (for horizontal and vertical component, respectively)
for the time evolution of motion with the dam-breaking initial condition sketched in figure 11. Resolution is
512 vertical points, with physical parameters for this computation listed in the caption of figure 13. The initial
density configuration is depicted in the top panel, which also illustrates the actual computational domain and
its aspect ratio, while the subdomain for the snapshots is highlighted by a dashed contour.
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Figure 17: Same as figure 16 but for the “hook with sliver” initial condition case (figure 5). Physical parameters
listed in caption of figure 14.

Figure 18: Same as figure 16 but for the “complete-hook” initial condition case (figure 5). Physical parameters
listed in caption of figure 15.

 0.099

-0.098

Figure 19: Convergence of numerical algorithm for the “hook with sliver” initial data. Plotted here is the
density difference at t = 2.8, generated by subtracting off the density from computations with 512 and 256
(vertical) nodes. Only the central portion (1/3 of the total length) of the channel is shown. For initial conditions
that do not smooth the density jump, the resolution error becomes noticeable along the interface, where slight
differences in its position in addition to numerical diffusion lead to nonzero density differences between the two
computations.
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fluid’s domain. The case of an inhomogeneous, laterally infinite fluid confined between two-horizontal rigid
plates offers perhaps the simplest set-up to illustrate this interplay, as we have shown directly from the motion
equations in Camassa et al. (2012), and remarked by Benjamin (1986) in his study of Hamiltonian invariants.
General formulae established by either approach suggest that horizontal momentum can fail to be conserved,
even though only forces along the vertical direction act on such systems. These formulae connect momentum
conservation to the pressure imbalance in the far field dynamics of the fluid, with the dynamics evolving from
localized initial data and hydrostatic equilibrium enforced at infinity. While general plausibility arguments,
together with long-wave model calculations and direct numerical simulations, certainly make a convincing case
for the validity of the conclusions in the above studies, an explicit computation of such pressure imbalances
has so far been lacking. In the present study we fill this gap by providing explicit examples.

Specifically, we have presented a systematic study of classes of initial data which allow closed-form ex-
pressions for pressure imbalances to be derived. In particular, we have examined in detail the case of zero
initial velocities and two-fluid systems, showing that in this case the nonlocal pressure component arising from
localized density displacements is the result of a Neumann-to-Dirichlet boundary map. In the limit of small
density differences such map can be computed asymptotically, revealing non-intuitive properties of limiting
configurations with simple piecewise constant initial conditions. (A similar analysis can be performed in the
opposite limit ρ1 → 0, akin to an “air-water” system whenever air can be viewed as approximately incom-
pressible, and will be studied in future publications). In particular, an exact expression shows that an internal
“dam-breaking” problem, which leads to evolution of internal gravity currents, initially evolves maintaining
constant horizontal momentum, as the total pressure imbalance is zero for such configuration.

Throughout our study, the long-wave models, and in particular the strongly nonlinear dispersive terms, have
provided intuition, while correctly predicting scalings and parametric dependences for pressure imbalances for
all the cases we have examined. Remarkably, qualitative and partially quantitative agreement continued to
hold even when non-smooth data violated the asymptotic assumption that lay at these models’ foundation.
To this end, we have treated the technical point arising in connection with distributional derivatives due to
density and velocity jumps. We have further shown how global-vorticity balance-laws for the class of initial
data we have studied relate to pressure imbalances.

Lastly, in Appendix A we briefly discuss how our set-up can be framed within known variational principles.
This allows a compact formulation of conservation laws through invariance under symmetry and Noether’s
theorem.

It is worth stressing again that in this study we have focussed on providing explicit expressions for the
initial conditions we have examined. More general results along these lines of investigation properly pertain to
mathematical analysis of general elliptic problems, and in particular to their Neumann-to-Dirichlet operators.
These go beyond a fluid mechanical perspective, though nonetheless worth pursuing in future studies.
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A Translational invariance and symmetries

In this appendix we discuss the translational invariance of the system. Indeed, regardless of the kind of
constraint represented by the lids, translation along the horizontal axis is a symmetry of the system, so that
a conservation law should ensue, as already clearly pointed out by Benjamin (1986). However, this conserved
quantity for motion between two rigid lids does not correspond to the horizontal component of momentum,
as is usually the case in unconstrained dynamics; instead it includes a contribution from boundary terms, as
we briefly summarize below. To tackle these issues, we review the Lagrangian and Hamiltonian formulation of
the governing equation (1) for a heterogeneous fluid. It is fair to say that the results of this appendix can be
derived from those in the referenced literature. However, it is useful to collect them here for self-consistency
and ease of reference.

As well known, the Euler system (1) admits a variational formulation. We focus first on the Lagrangian
approach, following Zakharov et al. (1985) and Zakharov & Kuznetsov (1997). The basic idea is to use a subset
of the Euler equations as constraints in the Lagrangian. Thus, the action is written with the usual difference
between kinetic and potential energy, plus terms with Lagrange multiplier for constraints,

A ≡
∫ t1

t0

Ldt (82)

=

∫ t1

t0

(
1

2

∫
D
ρ|v|2 dV −

∫
D
ρgz dV +

∫
D

Φ∇ · v dV −
∫
D
λ(ρt + (v · ∇)ρ) dV

)
dt,

where D is the fluid domain and dV its (two-dimensional) volume measure. By varying the action A with
respect to all the fields entering L, we get the following equations

δA

δΦ
= 0⇒ ∇ · v = 0 ,

δA

δλ
= 0⇒ ρt + (v · ∇)ρ = 0 ,

δA

δρ
= 0⇒ λt +∇ · (λv) +

1

2
|v|2 − g z = 0,

(83)

and, in particular, the defining relation

δA

δv
= 0⇒ ρv −∇Φ− λ∇ρ = 0. (84)

This set of equations (Zakharov & Kuznetsov 1997) can be considered to be equivalent to the Euler equations
(1).

When the domain, as in our case, is the infinite strip S = R× [0, h], translation along the x-axis is a
symmetry of the system, and Noether’s (first) theorem yields a conservation law for the Euler equations. For a
Lagrangian system in two spatial dimensions with N fields (ϕ1, ϕ2, . . . , ϕN ), the expression for this conservation
law is

N∑
α=1

(
∂

∂t

( ∂L

∂ϕα,t
ϕα,x

)
+

∂

∂x

( ∂L

∂ϕα,x
ϕα,x − L

)
+

∂

∂z

( ∂L

∂ϕα,z
ϕα,x

))
= 0, (85)

so that for the Lagrangian (82) we get

∂

∂t
(λρx) +∇ · J = 0, J = (−Φux + λuρx +

1

2
ρ|v|2 − ρgz,−Φwx + λwρx). (86)

In order to properly identify the conserved quantity

I =

∫
S
λρx dV (87)

it is useful to cast the problem in the Hamiltonian formalism.
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The Hamiltonian H = T+U associated with the Lagrangian in (82) makes use of a pair of Clebsch variables
(λ,Φ) (the Lagrange multipliers of the Lagrangian), and reads

H =

∫
S

(
1

2
ρ|v|2 + gρ z

)
dV with v = (λ∇ρ+∇Φ)/ρ.

It turns out that the equations of motion imply

ρt =
δH

δλ
, λt = −δH

δρ
,

that is, the density ρ and the Clebsch variable λ are canonically conjugate. We thus recover the conserved
quantity (87), since, with respect to the canonical brackets, the functional generating translations along x is
indeed I.

To proceed further, we connect this formalism with the set-up of Benjamin (1986), which does not make
use of the (implicitly defined) Clebsch variables. The basic variables here are the density ρ together with a
kind of density-weighted vorticity σ defined by

σ = (ρw)x − (ρu)z. (88)

The equations of motion for these two fields are

ρt + uρx + wρz = 0
σt + uσx + wσz + ρx

(
gz − 1

2(u2 + w2)
)
z

+ 1
2ρz
(
u2 + w2

)
x

= 0
(89)

They can be written in the form

ρt = −
[
ρ,
δH

δσ

]
, σt = −

[
ρ,
δH

δρ

]
−
[
σ,
δH

δσ

]
, (90)

where, by definition, [A,B] := AxBz −AzBx, and

H =

∫
S

1

2
ρ
(
|v|2 + gz

)
dV. (91)

In turn, the Hamiltonian H is to be written in terms of the stream function ψ, which is related to Benjamin’s
variables (ρ, σ) via

σ = (ρw)x − (ρu)z = −(ρψx)x − (ρψz)z = −ρ∇2ψ −∇ρ · ∇ψ. (92)

As shown by Benjamin, equations (90) are actually a Hamiltonian system with respect to a non-canonical
(actually, Lie algebraic) Hamiltonian structure, i.e., (89) can be written as

ρt = {ρ,H}B, σt = {σ,H}B

for the Poisson bracket that can be easily spelled out by (90).
A straightforward computation shows that the canonical (Zakharov 1985) and modified (Benjamin 1986)

Hamiltonian structures are equivalent under the “coordinate transformation”

(ρ, λ)→ (ρ, σ) = (ρ, λxρz − λzρx), (93)

where the equality σ = λxρz − λzρx is a consequence of (84).
Benjamin’s (1986) formalism is explicitly tailored for symmetries. The generator of translations along the

horizontal directions (the “impulse”) is, as it is easily verified,

I =

∫
D
zσ(x, z) dV .
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In particular, for two-dimensional motion between two rigid horizontal lids we have a bulk and boundary
components,

I =

∫
S
ρ udV −

∫
R
z ρu|z=hz=0 dx,

where the first term in this sum is the ordinary total horizontal momentum, while the second term is a boundary
term — called B6 in Benjamin (1986). Indeed we have, in the infinite strip S = R× [0, h],∫

S
zσ dV =

∫
S
z(ρw)x dV −

∫
S
z(ρu)z dV =

∫ h

0

(∫
R

(zρw)x dx

)
dz −

∫
R

(∫ h

0
z(ρu)z dz

)
dx

=

∫ h

0
zρw|x=+∞

x=−∞ dz −
∫
R
zρu|z=hz=0 dx+

∫
S
ρudV = −

∫
R
zρu|z=hz=0 dx+

∫
S
ρudV,

(94)

thanks to the boundary conditions. This yields

I +

∫
R
zρu|z=hz=0 dx =

∫
R×[0,h]

ρudV.

Using the Euler equation for the horizontal momentum (see (4))

(ρu)t = −1

2
ρx(u2 + w2)−

[
1

2
ρ(u2 + w2) + p

]
x

+ w σ (95)

at z = h (where w vanishes) yields

(ρu)t = −1

2
ρx(u2)−

[
1

2
ρu2 + p

]
x

,

and so
dB6

dt
= −h

(∫
R

1

2
ρx(u2)|z=hdx+ p(+∞, h)− p(−∞, h)

)
. (96)

In the case of constant density at the top lid, and with an equilibrium distribution ρ0 = ρ0(z) (the case of
Benjamin, 1986), this reduces to

dB6

dt
= −h (p(+∞, h)− p(−∞, h)) .

Quoting Benjamin (1986):

“Here p(+∞, h) and p(−∞, h) are the pressure levels as x = +∞ and x = −∞
relative to hydrostatic pressure in the quiescent state of the whole system; and
while only their difference can have any dynamic significance there is no reason
in general for it to be zero or take any other constant value.”

In the bulk of the paper we have constructed solutions for which this pressure difference can be computed
analytically. Here we have consistently recovered that the systems admits a conservation law corresponding to
the x-translational invariance, but this quantity might not coincide (in general) with the x-component of the
total momentum. Rather, the invariant is the sum of such a bulk term and of the boundary term B6, whose
time variation is given by the pressure imbalance of the system for x→ ±∞.
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B Time derivative of 〈p〉
∆

at t = 0

The results of §4 in general hold only when the velocity v vanishes (the initial condition for all our numerical
simulations). Here we consider the time derivative of 〈p〉

∆
and show how the behaviour of our numerical

simulations for small (but nonzero) time can be framed within our theoretical set-up.
The continuity equation implies that if v = 0 then ρt = 0. Differentiating the momentum equations with

respect to time when v = 0 yields

vtt +
1

ρ
∇pt = 0. (97)

From incompressibility of the fluid we have that

∇ ·
(

1

ρ
∇pt

)
= 0. (98)

Therefore pt satisfies the same equation as p but with homogeneous boundary conditions. Indeed,

∂pt
∂x
→ 0 as |x| → ∞ ,

∂pt
∂z

= 0 at z = 0, h, t = 0, (99)

where we used again the fact that ρt = 0 when v = 0. If ρ is smooth, Gauss theorem implies

0 =

∫
R×[0,h]

pt∇ ·
(

1

ρ
∇pt

)
dx dz =

∫
R×[0,h]

1

ρ
|∇pt|2 dx dz , (100)

where the last equality follows from the vanishing Neumann boundary conditions for pt. Therefore ∇pt = 0
and in particular its first component pxt vanishes. Hence

∂t〈p〉∆ =

∫ h

0
pt

∣∣∣
x=+∞

dz −
∫ h

0
pt

∣∣∣
x=−∞

dz =

∫ h

0

(∫ +∞

−∞
pxt dx

)
dz = 0. (101)

Thus, if at t = 0, the velocity data are v = 0, then the time derivative of the pressure imbalance vanishes as
well.

The presence of an interfacial discontinuity in the density requires some attention in applying Gauss theorem.
For this, in analogy with what we have done in computing the time derivative of the total vorticity in §2, we
have to break the integration domain according to figure 2. This contributes new boundary terms to the right
hand side of (100), in the form of a net flux through the interface between the two fluids∫

γ

1

ρ1

∂pt
∂n1

dσ +

∫
γ

1

ρ2

∂pt
∂n2

dσ , (102)

where n1 (n2) is the normal to the interface exterior to the domain of fluid with density ρ1 (ρ2), and integration
is taken along the interface γ = {(x, η(x)) | x ∈ R}. The boundary conditions on the interface given in (51)
imply

1

ρ1

d

dt

∂p

∂n1
= − 1

ρ2

d

dt

∂p

∂n2
, (103)

because n2 = −n1 ≡ n. Note that the normal to the interface between the two fluids depends on time. However,
when the velocity of the fluid is everywhere zero, the kinematic boundary condition reduces to ηt = 0, so that
nt = 0. Finally,

1

ρ1

∂pt
∂n1

= − 1

ρ2

∂pt
∂n2

, (104)

and therefore the new interface contribution (102) is identically zero. Thus, for the special case of vanishing
velocity initial condition, ∂t〈p〉∆ = 0 at t = 0.

30



C Boundary effects in air water systems

For those configurations in which the interface of a two-layer fluid coincides somewhere with one of the channel
upper or lower boundaries, the formulae previously computed may, in general, be incorrect and have to be
appropriately modified. This is best appreciated by looking at specific examples, which we consider next. A
deeper and more systematic analysis of this kind of phenomena would be outside of the aims of the present
paper and will be reported separately. Here we limit ourselves to a brief discussion, by using the long-wave
model, of how the combination of “air-water”-like stratification and boundary effects influence the pressure
imbalance.

As previously remarked, in the long-wave (dispersionless) approximation, the pressure difference P∆ is given
by

P∆ = h

∫ ∞
−∞

(u1 u2)x
η2/ρ2 + η1/ρ1

dx. (105)

If the interface is (sufficiently) far from the upper boundary (that is, if η2(x) = η(x) 6= h for all x), then P∆ ,
for fixed ρ2, goes to zero when ρ1 goes to zero. However, the same conclusion cannot be drawn when the region
occupied by the lighter fluid is disconnected.

In order to study this problem for ρ1 → 0, let us rewrite (105) as

P∆ = h

∫
R/C

(u1 u2)x
η2/ρ2 + η1/ρ1

dx+ h

∫
C

(u1 u2)x
η2/ρ2 + η1/ρ1

dx, (106)

where C is the subset of R (which we can assume, for the sake of definiteness, to be the segment C = [xL, xR] )
where η1 is sufficiently small in such a way that

ρ1

η1
' ρ2

η2
(107)

holds even if ρ1 � ρ2. In this case only the second integral contributes to the pressure imbalance P∆ . If we
consider the double scaling limit ρ1/η1 ' ρ2/η2 for ρ1 → 0 and η1 → 0 (and therefore C = {x ∈ R | η1(x) ≤
hρ1/ρ2}), then relation (106) becomes

P∆ = ρ2h

∫
C

(u1 u2)x
2η2

dx ' ρ2

2
u1 u2

∣∣∣xR
xL
. (108)

Hence, in this particular limit, there is no reason for P∆ to vanish when ρ1 goes to zero.
We finally mention that a similar qualitative result can be obtained in the case of zero initial velocities,

provided that the dispersive terms of (45) be included in the calculation of P∆ . In the same approximations of
the dispersionless case we obtain the estimate

P∆ ∼ −
gρ2h

2

12
η2xx

∣∣∣xR
xL
. (109)
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