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Abstract

Deep neural networks are characterized by multiple symmet-
rical, equi-loss solutions that are redundant. Thus, the order
of neurons in a layer and feature maps can be given arbitrary
permutations, without affecting (or minimally affecting) their
output. If we shuffle these neurons, or if we apply to them
some perturbations (like fine-tuning) can we put them back
in the original order i.e. re-synchronize? Is there a possible
corruption threat? Answering these questions is important for
applications like neural network white-box watermarking for
ownership tracking and integrity verification.
We advance a method to re-synchronize the order of permuted
neurons. Our method is also effective if neurons are further
altered by parameter pruning, quantization, and fine-tuning,
showing robustness to integrity attacks. Additionally, we pro-
vide theoretical and practical evidence for the usual means to
corrupt the integrity of the model, resulting in a solution to
counter it. We test our approach on popular computer vision
datasets and models, and we illustrate the threat and our coun-
termeasure on a popular white-box watermarking method.

1 Introduction
The deployment of deep neural networks for solving com-
plex tasks became massive, for both industrial and end-user-
oriented applications. These tasks are instantiated in a huge
variety of applications, e.g. autonomous driving cars. In this
context, neural networks are in charge of safety-critical op-
erations such as forecasting other vehicles’ trajectories, act-
ing on commands to dodge pedestrians, etc. The interest
in protecting the integrity and the intellectual property of
such networks has steadily increased even for non-critical
tasks, like ChatGPT content detection (Uchida et al. 2017;
Adi et al. 2018; Li, Wang, and Barni 2021). Some water-
marking techniques already allow embedding signatures in-
side deep models (Uchida et al. 2017; Chen et al. 2019a;
Tartaglione et al. 2020), but these are designed to be robust
against conventional attacks, including fine-tuning, pruning,
or quantization, and assume the original location of the wa-
termarked parameters remains unchanged. Neural networks,
however, have internal symmetries such that entire neurons
can be permuted, without impacting the overall computa-
tional graph. Once this happens, although the input-output

This paper has been accepted for publication at the 38th Annual
AAAI Conference on Artificial Intelligence (AAAI 24).

Figure 1: Given some model (left), let us assume we per-
mute the order of neurons and apply other types of corrup-
tion (right): are integrity checks at the neuron’s level enough
to verify the integrity of the model? And what about retriev-
ing the signature in white-box watermarking? This problem
resembles the “find the lady/ three-card monte” game, where
the queen of hearts needs to be found out of shuffled cards.

function for the whole model does not change, the ordering
of the parameters in the layer changes, and for instance, all
the aforementioned watermarking approaches fail in retriev-
ing the signature of the model, despite it still being there.
This is referred to as geometric attack in the multimedia wa-
termarking community (Wan et al. 2022), and we port the
same concept to deep neural networks: the input-output re-
lationship is preserved, but the order of the neurons is per-
muted, disallowing the recovery of signatures (Fig. 1).
Some studies (Hecht-Nielsen 1990; Ganju et al. 2018; Li,
Wang, and Zhu 2022) already raised concerns about permu-
tation in deep layers; yet, such a problem has not yet been
studied in its general form, nor has its formal definition been
stated. The first question we ask ourselves is whether the
original ordering for the neurons can be retrieved, even when
the applied permutation rule is lost. It is also a well-known
fact that deep neural networks are redundant (Setiono and
Liu 1997; Agliari et al. 2020; Wang, Li, and Wang 2021)
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and some works enforce this towards improving the gener-
alization capability of the neural network, like dropout (Sri-
vastava et al. 2014), while others detect such redundancies
and prune them away (Wang, Li, and Wang 2021; Chen et al.
2019b; Tartaglione et al. 2021). Hence, it is not even clear
whether it is possible to “distinguish”, with no doubt, one
neuron from all the others in the layer. This would be an im-
portant step to re-order (re-synchronize) the neurons in the
target layer. Besides, we ask the same question even in the
case we apply some noise to the model: as a fact, the learn-
ing process for deep neural networks is noisy, and robustness
towards the unequivocal identification of the parameters be-
longing to a neuron from the others in a noisy environment
is important in the considered setup.
The main contributions of this study can be summarized as:
• we study the neuron redundancy case for deep neural net-

works, observing that despite some neurons showing the
same input/output function, under the same input, their
parameters can be consistently different;

• we explore different ways to re-synchronize a permuted
model, showing and explaining fallacies for some of the
most intuitive approaches;

• we put in evidence a potential integrity threat for re-
synchronized models and we highlight the counter-
measure for it;

• we advance an effective solution to re-synchronize lay-
ers, even when subjected to noise, and we extensively
validate it with four different noise sources, on five dif-
ferent datasets, and nine different architectures.

2 Permuting neurons
2.1 Preliminaries
In this section, we define the neuron permutation problem.
For the sake of simplicity, we will exemplify the problem
on a single fully connected layer without biases; however,
the same conclusions hold for any other layer typology, e.g.
convolutional or batch-normalization. Let us define the out-
put yl ∈ RNl×1 of the l-th layer:

yl = φ
[〈
wl,yl−1

〉]
(1)

where yl−1 ∈ RNl−1×1 is the input, wl ∈ RNl−1×Nl are
the weights for the l-th layer (as displayed in Fig. 2a), ⟨·⟩
indicates inner product, and φ(·) is the activation function.
Let us consider the case a permutation πl is applied on the
neurons of the l-th layer; the elements in the permutation
matrix Pπl

∈ RNl×Nl are:

(Pπl
)i,j =

{
1 if j = πl(i)
0 otherwise. (2)

The neurons are permuted, and the ordering for the input
channels yl−1 remains intact (Fig. 2b). Hence, the permuted
output for the l-th layer will be

yπl

l = φ
(〈
wπl

l ,yl−1

〉)
, (3)

wπl

l,c,− = ⟨Pπl
, (wl,c,−)⟩ ∀c; (4)

where wl,c,− represents all elements of the l-th layer for the
c-th channel, and wl,−,n represents all elements of the l-th

layer for the n-th neurons. After having applied πl at layer l,
the output of the model is likely to be altered, as the propa-
gated yπl

l ̸= yl, which is processed as input by the next layer
(Fig. 2c). Hence, to maintain the output of the full model un-
altered, we need to also permute the weights in layer l + 1

wπl

l+1,−,n = ⟨Pπl
, (wl+1,−,n)⟩ ∀n. (5)

In this way, the permuted outputs in the l-th layer will be
correctly weighted in the next layer, and the neural network
output will be unchanged (Fig. 2d). To illustrate our study,
we define a companion dataset and an architecture, namely
the CIFAR-10 and VGG-16 (without batch normalization),
respectively. The model we will use as a reference is trained
for 50 epochs using SGD, with a learning rate 10−2, weight
decay 10−4, and momentum 0.9. Let the first convolutional
layer of the fourth block of convolutions (where every block
is separated by a maxpool layer) be our l-th layer.

2.2 Any hope to recover the original order?
Assuming the Pπl

∈ RNl×Nl matrix is known, the answer
is straightforward. Yet, the question becomes hard to answer
when the Pπl

∈ RNl×Nl matrix is unknown. The difficulty
derives from the fact that neural network models internally
have many redundancies (Setiono and Liu 1997; Wang, Li,
and Wang 2021) that can a priori cast confusion when trying
to find the initial order. Many approaches, like dropout (Sri-
vastava et al. 2014), enforce this to make deep models ro-
bust against noise. Consider the case in which two neurons
belonging to the l-th layer are redundant, and let them be
denoted by the i-th and the j-th, with the parameters wl,−,i

and wl,−,j . Given some ξ-th sample in D, with D being the
dataset the model is trained on, yξl,i = yξl,j . From this, we
can have two scenarios:
• wl,−,i = wl,−,j : in this case, the i-th and the j-th neuron

share exactly the same parameters. As such, since they
receive the same input yξ

l−1, and by construction, they
have all the same activation function φ(·), they map the
same function and they are, hence, identical. Since they
are the same from all points of view, ordering them one
way or another does not matter.

• wl,−,i ̸= wl,−,j : in this case, the i-th and the j-th neu-
ron have a different set of parameters, but share the same
outputs for some samples in D.

The second case is the most interesting: is it possible to re-
cover the original ordering of neurons exhibiting the same
output under the same input? It is easy to prove that

wl,−,i = k ·wl,−,j ⇒ yξl,i = k · yξl,j∀ξ, (6)

with k ∈ R being some scalar quantity. To test whether two
neurons are extracting the same information, we can com-
pute the cosine similarity SC(yl,i, yl,j) between their out-
puts, and ask that it is exactly one: from this, we obtain

∑

ξ

yξl,iy
ξ
l,j =

√∑

ξ

(
yξl,i

)2√∑

ξ

(
yξl,j

)2
. (7)

From (1) it is clear that, having non-linear activations and in
general Nl−1 > Nl, (7) is satisfiable for wl,−,i ̸= wl,−,j .
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Figure 2: Representation of the weights tensor for the l-th layer (a), permutation of neurons 1 and Nl (b), representation of the
weights tensor for layer l + 1 (c) permutation on channels, following the same permutation of l (d).
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Figure 3: Evolution of cosine similarity of two non-zero neu-
rons before and after activation function for yl−1 inputs.

Let us observe this empirically, using our companion setup:
we select 2 neurons i,j of the l-th layer such that their co-
sine similarity SC(yl,i, yl,j) = 1, for several values of k.
Since l is a convolutional layer, we know that yξ

l,i ∈ R1×Ml ,
where Ml is a function of the input size for l, kernel size and
stride. Hence, we are able here to plot the cosine similarity
given the input of one single ξ-th sample and to track the
change of the similarity between yξ

l−1 and yξ+1
l−1 . Fig. 3 dis-

plays the cosine similarity between two neurons in the l-th
layer before and after the activation function. Despite the co-
sine similarity remaining to one, this happens thanks to the
non-linear activation, as the pre-activation potentials are less
correlated. Furthermore, we observe that the parameters of
these neurons are essentially de-correlated, as their cosine
similarity values −0.02. This shows that even if two neu-
rons have a similar (non-zero) response to the same input,
their internal function (before the non-linearity) can be dif-
ferent. This gives us hope to distinguish each neuron, hence,
retrieving the original ordering of the neurons.

3 Re-synchronizing neurons
In this section, we first define against which additional mod-
ifications, applied in conjunction with the permutation, the
counterattack should still retrieve the original order, namely:

Gaussian noise, fine-tuning, pruning, and quantization. Sec-
ond, we explore the potential counterattack solutions by pre-
senting methods of the state-of-the-art and showing where
they worked and failed. Finally, we present our method
leveraging the cosine similarity to recover the original order.

3.1 Robustness in retrieving the original order
In the previous section, we discussed how neurons can be
permuted inside a neural network without impacting the
model performance. In this section, assuming the initial per-
mutation matrix is no longer available, we will explore ways
to recover the original ordering for permuted neurons, even
when they are possibly modified. In particular, we will ex-
plore robustness in retrieving the original order when under-
going four different transformations:
• Gaussian noise addition: we apply an additive noise
N (0, σlΩ), with Ω ≥ 0, σl standard deviation of l.

• fine-tuning: we resume the original training of the model
with Θ standing for the ratio of fine-tuning epochs to the
original training epochs.

• quantization: we reduce the number of bits B used to
represent the parameters of the model.

• magnitude pruning: we mask the T fraction of the
smallest weights of the model, according to the ℓ1-norm.

Even when the model undergoes these transformations, our
goal is to be able to recover the original ordering for the
model: we denote by Ψ as the fraction of neurons we were
able to place back to their original position (multiplied by
100), and we shall refer it as re-synchronization success rate.
Here follows a sequence of approaches aiming at bringing Ψ
close to 100, under the aforementioned transformations.

3.2 In the search of the lost synchronization
The next sections explore the different methods to solve the
permutation problem.

Finding the canonical space: rank the neurons Our first
approach consists of ranking all the neurons in the l-th layer
according to some specific scoring function. For instance,
we can attempt to look at the intrinsic properties of the neu-
rons inside the layer, like their weight norm, to perform a
ranking (Ganju et al. 2018). Unfortunately, this approach
is not general: there are specific cases, like spherical neu-
rons (Lei, Akhtar, and Mian 2019) in which the parameters
are normalized and, for instance, not possible to be ranked
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Figure 4: (a) L1 norm distribution of the neurons of the l-th layer a VGG-16 model trained on CIFAR10. (b) Robustness of
ranking L1 norms of neurons, against quantization. Ψ is on the left axis in blue and the err % on the right axis in red.

according to their norm. This effect is not limited to these
special models: if we plot the distribution of the norms for
the l-th layer in our companion VGG-16 model trained, as
represented in Fig. 4a, we observe that typically the values
for the norm of the neuron’s parameters are in a very small
domain: for instance, the minimal gap between these norms
is in the order of 10−5. We expect, hence, that this ranking
is very sensitive to all the aforementioned transformations.
As an example, Fig. 4b displays the non-robustness against
quantization attack: the neurons are permuted (blue line, the
higher the better) before losing any performance on the task
(red line, the lower the better).

Creating a trigger set A second approach could be to
learn an input yl−1 such that the output yl permits to iden-
tify the neurons. With our first approach, we aim to learn
a yl−1 such that we maximize the distance between all the
neurons’ outputs. Then, we say the norm of the output cor-
responds to the ranking of the neuron itself. Empirically, in
our companion setup, we observe that this approach is not
robust to fine-tuning. Indeed, despite having a minimum gap
between outputs larger than one, after just an extra 1% of
training, we observe a re-synchronization success rate al-
ready dropping to 10%, or in other words, we are not able
to recover the exact position for the 90% of neurons. This
effect confirms our idea that neurons could have similar be-
havior for the same input which makes them easily swapped
after any modifications. Another approach is developed in
(Li, Wang, and Zhu 2022) which aims to learn a set of in-
puts to identify a neuron based on the response to the trig-
ger set. However, this method seems ineffective since the
re-synchronization success rate never reaches 100% and it
was only tested on the first layers of the neural network.
Finally, we simplify the problem by identifying each neuron
independently from the others. If we can do so, then we will
also be able to re-synchronize the whole layer. Towards this
end, using a similar strategy heavily employed in many in-

terpretability works (Suzuki et al. 2017), we can learn the
input yl−1 which maximizes the response of the i-th neuron
only, and at the same time minimizes the response of all the
others. With this method we can create a set of Nl inputs for
the l-th layer, to identify all its neurons.
This approach shows its robustness to all the modifications,
but has a big drawback: it demands a lot of memory to store
the learned inputs (we need one input per neuron, hence the
space complexity is O(Nl−1 · Nl ·Ml−1), where Ml−1 is
the size of each output coming from l−1). Besides, we need
also a consistent computational effort, as we need to forward
a batch of Nl inputs. This makes the “re-synchronizer” over-
all bigger than the model itself and becomes prohibitive.

3.3 Find the lady by similarity
With the previous approaches, we have observed that it is,
in general, difficult to learn some input yl−1 such that the
output yl provides us the ranking of the neurons for l, as
this approach is very sensitive to any minor perturbation in-
troduced in the model. We have observed, though, that it is
possible to uniquely recognize each neuron independently,
learning a specific yl−1 which activates the target neuron.
However, this solution consumes a lot of memory and com-
putation resources. We have seen that two neurons, despite
having the same output in some subspace of the trained do-
main, are in general very different. In particular, we can ex-
pect that SC(wl,i,−,wl,j,−) < 1∀j ̸= i.
Let us study this phenomenon practically. Fig. 6a shows the
correlation between the neuron’s weights wl: since it is es-
sentially a diagonal matrix, after applying some unknown
permutation πl as in Fig. 6b, we can easily recover the orig-
inal positions building the Permutation matrix

(Pπl
)i,j =

{
1 j = argmaxk

[
SC(wl,i,−,w

πl

l,k,−)
]

0 otherwise.
(8)



Algorithm 1: Re-synchonization algorithm.

Inputs: the original model Γ, the altered model Γ̃πl
, the

number of layers of these models L.
Output: The re-synchronized model Γ̃
for l = {1, . . . , L− 1} do

Step 1: Compute score metric on w̃πl

l

wl ∈ RNl−1×Nl ← parameters in lth layer of Γ
w̃πl

l ∈ RNl−1×Nl ← parameters in lth layer of Γ̃πl

S ← SC(wl, w̃
πl

l ) =
(wl)

T ·w̃πl
l

∥wl∥2∥w̃
πl
l ∥2

Step 2: Obtain the permutation matrix Pπ−1
l

Pπ−1
l
← [0]Nl,Nl

for i = {1, . . . , Nl} do
j ← argmaxi(S)
(Pπ−1

l
)i,j = 1

end for
Step 3: Permute neurons in lth layer of Γ̃ and channels
in (l + 1)th of Γ̃πl

w̃l ←
〈
Pπ−1

l
,
(
w̃πl

l,c,−

)〉
∀c ▷ equation (4)

w̃πl

l+1 ←
〈
Pπ−1

l
,
(
w̃πl

l+1,−,n

)〉
∀n ▷ equation (5)

end for
return Γ̃

The question is here whether, even after applying some per-
turbation to the parameters, we are still able to recover the
permutation π. As such, let us define w̃l,i,− the set of pa-
rameters of the i neuron in the l-th layer undergoing some
perturbation. We can assume that any perturbation we want
to introduce does not significantly change the performance
LΞ of the trained model. As such, let us evaluate the cosine
similarity between wl,i,− and w̃l,i,−: we expect that when
this measure drops, the performance of the model will drop
as well. Two neurons, despite having the same output in the
trained domain, are in general different: we can expect that

SC(wl,i,−, w̃l,i,−) > SC(wl,i,−, w̃l,j,−)∀j ̸= i. (9)

According to (9), it is possible to detect where the i-th neu-
ron has been displaced, thus, recovering the original order-
ing. This condition obeys some theoretical warranties. Let
us compare the set parameters wl,i to the same, where we
apply a perturbation, which results in w̃l,i = wl,i + ŵl,i.
According to the Cauchy-Schwarz inequality, the only pos-
sible solution is that ŵl,i is a scalar multiple of wl,i.
Let us investigate the case in which we perform fine-tuning
on the parameters: we record a slight improvement in the
performance with Θ = 2%, and we observe that the permu-
tation matrix (Fig. 6d) we obtain from the cosine similarities
(Fig. 6c) is the same as the one recovered before, making out
re-synchronization success rate to 100%. The details of our
method are presented in Alg. 1 and Fig. 5.

3.4 Integrity loss
We will analyze here the special case when ŵl,i = k ·wl,i.
Let us assume the input of the l-th layer follows a Gaussian
distribution, with mean µl and covariance matrix Σl. We

෨Γ𝜋𝑙 ← altered model

𝐿 ← number of layers 

𝑤𝑙 ∈ ℝ𝑁𝑙−1×𝑁𝑙 ← parameter in 𝑙-th layer of Γ

𝑤𝑙
𝜋𝑙 ∈ ℝ𝑁𝑙−1×𝑁𝑙 ← parameter in 𝑙-th layer of ෨Γ𝜋𝑙

END

NO
YES

𝑙 + +

𝑤𝑙 ← 𝑃𝜋𝑙
−1 , 𝑤𝑙,𝑐,−

𝜋𝑙 ∀𝑐

𝑤𝑙+1
𝜋𝑙 ← 𝑃𝜋𝑙

−1 , 𝑤𝑙+1,−,𝑛
𝜋𝑙 ∀𝑛

𝑖 ≤ 𝑁𝑙

𝑃𝜋𝑙
−1 ← [0]𝑁𝑙×𝑁𝑙

𝑖 ← 0

YES

𝑗 ← argmax𝑖 𝑆

𝑃𝜋𝑙
−1

𝑖,𝑗
= 1

𝑖 + +

NO

𝑆 ← 𝑆𝐶(𝑤𝑙 , 𝑤𝑙
𝜋𝑙) =

(𝑤𝑙)
𝑇. 𝑤𝑙

𝜋𝑙

𝑤𝑙 2 𝑤𝑙
𝜋𝑙

2

Γ ← original model

𝑙 < 𝐿 − 1

𝑙 ← 0

START

෨Γ ← re-synchronized model

Output: ෨Γ

Inputs:

Figure 5: Flowchart of Alg. 1.

know that the post-synaptic potential still follows a Gaussian
distribution N (µz, σ

2
z). Given that ŵl,i will produce as out-

put z̃, we can write the KL-divergence between the outputs
generated from the original and from the perturbed neuron

DKL(z||z̃) = log(1 + k) +
σ2
z + k2µ2

z

2(1 + k)2σ2
z

− 1

2
. (10)

Under the assumption of having an activation such that
|φ(x)′| ≤ 1∀x ∈ R, we know that the above divergence
upper-bounds DKL(y||ỹ). Specifically, for ReLU activations,
under the assumption of µz = 0, the KL-divergence is

DKL(y||ỹ) =
2(k + 1)2 log(k + 1)− k(k + 2)

(k + 1)2
, (11)

which is dependent on k only. Despite having maximum
similarity (except for the degenerate case k = −1), the KL
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Figure 6: Cosine similarity for different situations (a) without permutation (b) with permutation (4) and (c) with fine-tuning and
permutation (4) (d) is P (πl) for both (b) and (c). For visibility purposes, (b), (c), and (d) are clipped (first 100 elements).

divergence of the output is non-zero ∀k ̸= 0, which means
the behavior of the model is modified.

4 Experimental results
Datasets We will test our proposed approach on five
datasets: CIFAR-10 (Krizhevsky, Hinton et al. 2009) and
ImageNet-1k (Russakovsky et al. 2015) for image classifi-
cation (metric is here top-1 classification error denoted by
†), CityScapes (Cordts et al. 2016) for image segmentation
(metric is here the complementary mean IoU ‡), COCO (Lin
et al. 2014) for object detection (metric is here the com-
plementary of mAP50 ⋆) and UVG (Mercat, Viitanen, and
Vanne 2020) (metric is here the mean rate-distortion (bpp) •
for a given image quality, MS-SSIM = 0.97).

Implementation details We evaluate our approach on
many different state-of-the-art architectures: VGG-16 (Si-
monyan and Zisserman 2014), ResNet18 (He et al. 2016),
ResNet50 (He et al. 2016), ResNet101 (He et al. 2016), ViT-
b-32 (Dosovitskiy et al. 2021), MobileNetV3 (Howard et al.
2019), DeepLabV3 (Chen et al. 2018), YOLO-v5n (Jocher
et al. 2022) and DVC (Lu et al. 2019). We will test the ro-
bustness of our approach using the re-synchronization suc-
cess rate Ψ after applying random permutation to the penul-
timate layer and the four perturbations. For all of the afore-
mentioned experiments, we have used all the traditional se-
tups described in the respective original papers. We further
notice that for the models trained on CIFAR-10, we have run
10 seeds, and average results are reported.1

Robustness against Gaussian noise We evaluate our
methods against Gaussian noise addition with Ω ∈ [1, 10].
The error starts increasing while Ψ remains very close to
100%. For instance, Ω valuing 6, Ψ is still equal to 100%
while the error has more than doubled. Table 1 reports the
results for all the architectures and the datasets. In partic-
ular, we observe that consistently for all the architectures
except YOLO, when the error starts increasing, Ψ remains
very close to 100%. But for YOLO, we observe the error has

1the source code is available at https://github.com/
carldesousatrias/FindtheLady

more than doubled while we only failed to recover a fifth of
the original order.

Robustness against fine-tuning We here evaluate our
method against perturbations produced by simply fine-
tuning the model, adding more training complexity. Table 2
presents the results for all the architectures. In particular, we
observe that consistently for all the architectures, Ψ remains
equal to 100%. Despite, different experimental setups, the
error on YOLO-v5n always increases: so we decided to not
extend its test.

Robustness against quantization We evaluate our meth-
ods against quantization. In particular, we will evaluate the
performance with B ∈ [2; 16]. Specifically, the error starts
increasing around 3 bits while Ψ remains very close to
100%. A plot is provided as an Appendix. Table 3 presents
the results for all architectures. Remarkably, for most of the
architectures, including YOLO and ViT, Ψ remains close to
100% despite the error being extremely high.

Robustness against magnitude pruning We evaluate our
methods against magnitude pruning T ∈ [90; 99]% of the
aimed layer. The error starts increasing while Ψ remains
very close to 100%. Table 4 shows good robustness for most
of the architectures. For the ResNet and YOLO structures,
Ψ decrease before having a huge increase of the error, but,
even if the aimed layer is fully pruned the error rate remains
below 50% and 70% respectively: this is due to the residual
connections. For both, we did additional experiments apply-
ing global pruning to the model and the performances are
similar to the other architectures.

Application to white-box watermarking Watermarking
of neural networks is increasingly considered an impor-
tant problem with many practical applications (the chal-
lenge of watermarking ChatGPT or assessing the integrity
of unmanned vehicles). Currently, the white-box watermark-
ing literature fails to be robust against permutation attacks.
Fig. 7 shows the correlation (evaluated as Pearson correla-
tion coefficient) of a white-box watermark when employing
a state-of-the-art approach (Uchida et al. 2017). Uchida et
al.’s approach is considered one of the first white-box wa-
termarking methods, where a regularization term is added

https://github.com/carldesousatrias/FindtheLady
https://github.com/carldesousatrias/FindtheLady


Table 1: Robustness to Gaussian noise addition.

Ω
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

0
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 7.03†±0.28 23.85† 22.63† 24.07† 25.95† 32.26‡ 48.70⋆ 0.177•

1
Ψ(↑) 100±0 100±0 100 100 100 100 100 75.69 100

metric(↓) 10.25†±0.17 7.30†±0.08 24.73† 23.17† 24.08† 40.44† 32.16‡ 79⋆ 0.177•

2
Ψ(↑) 100±0 100±0 99.56 99.26 99.64 100 100 57.65 100

metric(↓) 11.82†±0.17 9.13†±0.59 27.68† 25.08† 24.77† 70.50† 32.75‡ 82.10⋆ 0.177•

7
Ψ(↑) 99.88±0.12 99.90±0.10 57.28 39.45 99.64 85.31 41.02 8.24 100

metric(↓) 41.27†±2.11 99.55†±6.30 66.97† 60.49† 60.39† 98.91† 38.30‡ 99.62⋆ 0.180•

10
Ψ(↑) 93.50±0.98 94.9±0.80 12.93 12.74 99.22 43.05 12.89 5.49 100

metric(↓) 56.62†±2.31 75.18†±5.14 92.65† 83.04† 83.99† 99.41† 39.74‡ 99.23⋆ 0.182•

Table 2: Robustness to fine-tuning.

Θ
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

2
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.97†±0.20 6.96†±0.11 23.35† 22.54† 24.08† 26.60† 34.85‡ 47.40⋆ 0.184•

6
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 6.98†±0.15 23.23† 22.57† 24.08† 26.41† 31.58‡ 46.20⋆ 0.179•

8
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.88†±0.24 7.01†±0.19 23.21† 22.54† 24.07† 26.37† 30.35‡ 46.40⋆ 0.179•

10
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.89†±0.16 6.94†±0.13 23.13† 22.49† 24.07† 26.31† 29.64‡ 46.00⋆ 0.178•

Table 3: Robustness to quantization.

B
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

16
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 7.03†±0.28 23.85† 22.63† 24.08† 25.96† 32.26‡ 48.70⋆ 0.177•

8
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 98.44

metric(↓) 9.97†±0.20 7.05†±0.27 23.91† 22.70† 24.10† 26.00† 31.49‡ 48.90⋆ 0.338•

6
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 98.44

metric(↓) 9.98†±0.17 7.14†±0.27 26.99† 25.12† 29.55† 42.91† 32.26‡ 89.10⋆ 0.823•

4
Ψ(↑) 100±0 100±0 100 100 100 100 100 85.49 98.44

metric(↓) 10.77†±0.28 7.76†±0.26 99.91† 99.99† 96.81† 99.91† 47.28‡ 100⋆ ∞•

2
Ψ(↑) 100±0 100±0 31.54 9.91 100 100 100 56.47 98.44

metric(↓) 87.73†±5.56 88.20†±2.77 99.9† 99.9† 99.81† 99.9† 96.63‡ 100⋆ ∞•

Table 4: Robustness to magnitude pruning.

T
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

0
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 7.03†±0.28 23.85† 22.63† 24.07† 25.95† 32.26‡ 48.70⋆ 0.177•

0.91
Ψ(↑) 100±0 100±0 98.87 98.34 100 100 100 65.88 100

metric(↓) 10.87†±0.22 9.67†±0.95 26.30† 23.94† 25.06† 40.00† 33.11‡ 50⋆ 0.188•

0.95
Ψ(↑) 100±0 100±0 97.61 97.12 100 100 100 51.76 100

metric(↓) 12.11†±0.45 12.88†±1.90 28.35† 24.58† 25.60† 48.73† 33.75‡ 51.10⋆ 0.191•

0.98
Ψ(↑) 100±0 100±0 93.12 91.94 99.83 97.91 99.61 36.47 100

metric(↓) 17.53†±1.28 21.71†±5.39 30.88† 25.65† 26.03† 63.48† 34.47‡ 52.60⋆ 0.198•

0.99
Ψ(↑) 99.90±0.13 99.63±0.31 81.10 78.81 95.37 86.46 90.24 25.88 100

metric(↓) 26.71†±2.84 28.16†±7.35 32.62† 25.98† 26.63† 76.22† 36.43‡ 41.40⋆ 0.219•
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Figure 7: Robustness evaluation of the (Uchida et al. 2017)’s
watermarking method against the 4 attacks.

(a) Original output. (b) Altered output.

Figure 8: Misdetection of the pedestrian induced by the
scalar product modification of the weights.

to the cost function to change the distribution of one pre-
selected layer in the model. It projects the parameter of the
watermarked layer on a space a binary watermark. The or-
der of neurons is mandatory to recover the original binary
mark. We observe that permuted neurons, although not im-
pacting the performance of the model, destroy the correla-
tion. Applying our approach as a counter-attack (CA), we
observe that we successfully retrieve the watermark and pre-
serve the robustness, more applicative results are presented
in (De Sousa Trias et al. 2023).

Integrity loss Let us here consider a counter-attack for our
algorithm, on a real application: pedestrians are not detected
anymore while the cosine similarity remains still equal to
one (the effect in Fig. 8). To protect our method against this
issue, we simply need to add a ℓ2-norm verification between
wl,i and w̃l,i: any modification to the norm can, in this way,
detected and corrected.

5 Conclusion
In this paper, we have defined and investigated one uprising
question for deep learning models: is it possible to recog-
nize parameters in a neuron after some perturbations? Is it
possible to recover an original ordering for the neurons after
random permutations and some perturbations?
We have explored the realm of neuron similarity, observing
the parameters and outputs of different layers. We have in-
vestigated many ways to do so, observing and assessing their
failure reasons. Finally, we advance a method that leverages
the cosine similarity between the original layer and its per-
muted, perturbed version. We empirically assessed the ro-
bustness of this approach against several perturbations, for a
variety of architectures and datasets.

This work has a direct impact on watermarking, where it
serves as a generic counter-attack tool against parameter per-
mutation, and has an indirect impact in various other AI do-
mains, like pruning: as a result, neurons having perfectly
correlated outputs typically have orthogonal kernels.
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A Table of notation
In Table 5, we present the table of notation used in the main document.

Table 5: Table of notation.

Symbol Definition
yl output of the l-th layer
wl weights of the l-th layer of the model
⟨·⟩ the inner product
(·)T the transpose operator
φ(·) the activation function
wl,c,− all elements of the l-th layer, for the c-th channel
wl,−,n all elements of the l-th layer, for the n-th neurons

Pπl

permutation matrix (square matrix of size
number of neurons)

DKL the Kullback–Leibler divergence
Ξ the dataset the model is trained on
SC cosine similarity matrix
Ψ re-synchronization success rate
Ω the power of the Gaussian noise
Θ percentage of additional training
B number of bits
T fraction of masked weights

B Toy example of permutation
In this section, we take a simple example to describe the permutation problem using a three-layer model, Fig. 9a. It is a fully
connected model without bias and we observe the final output of this model: yl+1 ∈ R2×1. The equation (1) become:

(
yl+1,D

yl+1,E

)
= ϕ

[(
wl+1,B,D wl+1,A,D wl+1,C,D

wl+1,B,E wl+1,A,E wl+1,C,E

)
·
(
yl,B
yl,A
yl,C

)]
(12)

where yl ∈ R3×1 is the input of the l + 1-th layer, and wl+1 ∈ R2×3 are the weights for the l + 1-th layer. We can use again
equation (1) to include the expression of the l-th layer in equation (12):

(
yl+1,D

yl+1,E

)
= ϕ

{(
wl+1,B,D wl+1,A,D wl+1,C,D

wl+1,B,E wl+1,A,E wl+1,C,E

)
· ϕ
[(

wl,1,B wl,2,B

wl,1,A wl,2,A

wl,1,C wl,2,C

)(
yl−1,1

yl−1,2

)]}
(13)

where yl ∈ R3×1 is the input of the l-th layer wl ∈ R3×2 are the weights for the l-th layer. Let us consider the case a
permutation between neuron A and neuron B (πl) is applied on the neurons of the l-th layer; the permutation matrix is

Pπl
=

(
0 1 0
1 0 0
0 0 1

)
(14)

The neurons are permuted, and the ordering for the input channels yl remains intact (Fig. 9b). Hence, the permuted output for
the l + 1-th layer will be:

(
yπl

l+1,D

yπl

l+1,E

)
= ϕ

{(
wl+1,B,D wl+1,A,D wl+1,C,D

wl+1,B,E wl+1,A,E wl+1,C,E

)
· ϕ
[(

wl,1,A wl,2,A

wl,1,B wl,2,B

wl,1,C wl,2,C

)(
yl−1,1

yl−1,2

)]}
(15)

After having simply applied πl at layer l, however, the output of the model is likely to be altered, as the propagated yπl

l ̸= yl,
which is processed as input by the next layer. We know, however, that yπl

l is a permutation of yl; hence, to maintain the output
of the full model unaltered, we need to also permute the weights in layer l + 1 as

(
yπl

l+1,D

yπl

l+1,E

)
= ϕ

{(
wl+1,A,D wl+1,B,D wl+1,C,D

wl+1,A,E wl+1,B,E wl+1,C,E

)
· ϕ
[(

wl,1,A wl,2,A

wl,1,B wl,2,B

wl,1,C wl,2,C

)(
yl−1,1

yl−1,2

)]}
(16)

In this way, the permuted outputs in the l-th layer will be correctly weighted in the next layer, and the neural network output
will be unchanged (Fig. 9c).



(a) original state (b) neuron permutation (c) channel permutation

Figure 9: Illustration of the permutation process on a fully connected neural network of three layers

C Additional figures for the experimental section
In this section, we propose some figures, showing robustness to Gaussian noise (Fig. 10a), robustness against quantization
(Fig. 10b) and robustness against pruning (Fig. 10c).

Finally, we propose a plot showing the impact of modifying the scalar product on the model’s behavior (integrity attack), in
Fig. 10d.
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(a) Robustness against Gaussian noise addition. Ψ is on the left axis
in blue and the err % on the right axis in red.
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(b) Robustness against quantization. Ψ is on the left axis in blue and
the err % on the right axis in red.
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(c) Robustness against magnitude pruning. Ψ is on the left axis in
blue and the err % on the right axis in red.
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(d) Impact of the scalar product modification. Ψ is on the left axis in
blue and the err % on the right axis in red.

Figure 10: Robustness analysis for VGG-16 and ResNet18 trained on CIFAR-10.



D Derivation of (9)
Let us evaluate the similarity score

SC =
w · w̃

∥w∥2 · ∥w̃∥2
(17)

where we drop all the indices for abuse of notation. We can write w̃ as

w̃ = w + ŵ (18)

where ŵ is some perturbation applied to w to get w̃. We can expand (17):

SC =

∑
i w

2
i +

∑
i wiŵi√∑

i w
2
i ·
√∑

i(wi + ŵi)2
(19)

Since we are looking for the conditions such that SC = 1, we need to look for the conditions such that

∑

i

w2
i +

∑

i

wiŵi =

√∑

i

w2
i ·
√∑

i

(wi + ŵi)2

(∑

i

w2
i

)2

+

(∑

i

wiŵi

)2

+ 2 ·
(∑

i

w2
i

)
·
(∑

i

wiŵi

)

=

(∑

i

w2
i

)
·
(∑

i

w2
i +

∑

i

ŵ2
i + 2

∑

i

wiŵi

)(∑

i

w2
i

)2

+

(∑

i

wiŵi

)2

+ 2 ·
(∑

i

w2
i

)
·
(∑

i

wiŵi

)
=

=

(∑

i

w2
i

)2

+

(∑

i

w2
i

)
·
(∑

i

ŵ2
i

)
+ 2 ·

(∑

i

w2
i

)
·
(∑

i

wiŵi

)
.

By simplifying, we obtain (∑

i

wiŵi

)2

=

(∑

i

w2
i

)
·
(∑

i

ŵ2
i

)
,

finding back (10).

E Derivation of (13)
Let us assume the input follows a gaussian distribution, with mean µ and covariance matrix Σ. We know that the post-synaptic
potential, still follows a gaussian distribution, having

µz =
∑

i

wiµi

σ2
z =

∑

i

wi

(
wiΣii + 2

∑

i′<i

wi′Σii′

)

When introducing a perturbation ŵ = k ·w having k scalar, we know

µ̃z =µz +
∑

i

ŵiµi = µz + µ̂z = (1 + k)µz

σ̃2
z =

∑

i

(1 + k)wi

(
(1 + k)wiΣii + 2

∑

i′<i

(1 + k)wi′Σii′

)
= (1 + k)

∑

i

wi

(
wiΣii + kwiΣii + 2

∑

i′<i

wi′Σii′ + kwi′Σii′

)

=(1 + k)

{[∑

i

wi

(
wiΣii + 2

∑

i′<i

wi′Σii′

)]
+ k

[∑

i

wi

(
wiΣii + 2

∑

i′<i

wi′Σii′

)]}
= (1 + k)2σ2

z

Hence, we can write the KL divergence

DKL(z||z̃) = log(1 + k) +
σ2
z + k2µ2

z

2(1 + k)2σ2
z

− 1

2



F Derivation of (14)
In the specific case of employing a ReLU activation, assuming µz = 0 we know that

{
DKL(y||ỹ) = 0 z ≤ 0
DKL(y||ỹ) = DKL(z||z̃) z > 0

. (20)

Hence, we can write the KL divergence as

DKL(y||ỹ) =
∫ +∞

0

1

σz

√
2π

e
− x2

2σ2
z (1 + k)σz

√
2πe

x2

2(1+k)2σ2
z dx =

1

σz

√
2π

∫ +∞

0

e
− x2

2σ2
z

[
log(1 + k)− k2x2

2(1 + k)2σ2
z

]
dx

=
1

σz

√
2π

σ3
z

√
2π
[
2(k + 1)2 log(k + 1)− k2 − 2k

]

4σ2
z(k + 1)2

=
2(k + 1)2 log(k + 1)− k(k + 2)

(k + 1)2

G Additional results
Here follow the detailed tables (all the numbers for all ranges) for all four types of modifications. For Gaussian noise addition,
the main document presents 5 values Ω = [0, 1, 2, 7, 10] while Table 6 presents all the results for Ω ∈ [1, 10]. For fine-
tuning, Table 7 just add one the value compare to the main document =. For quantization, the main document presents 5 values
B = [2, 4, 6, 8, 16] while Table 8 presents all the results for B ∈ [2; 16]. For magnitude pruning, the main document presents 5
values T = [0, 91, 95, 98, 99]% while Table 9 presents all the results for T ∈ [90; 99]%.

Table 6: Robustness to Gaussian noise addition.

Ω
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

0
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 7.03†±0.28 23.85† 22.63† 24.07† 25.95† 32.26‡ 48.70⋆ 0.177•

1
Ψ(↑) 100±0 100±0 100 100 100 100 100 75.69 100

metric(↓) 10.25†±0.17 7.30†±0.08 24.73† 23.17† 24.08† 40.44† 32.16‡ 79⋆ 0.177•

2
Ψ(↑) 100±0 100±0 99.56 99.26 100 100 100 57.65 100

metric(↓) 11.82†±0.17 9.13†±0.59 27.68† 25.08† 24.77† 70.50† 32.75‡ 82.10⋆ 0.177•

3
Ψ(↑) 100±0 100±0 98.24 97.26 100 100 100 35.29 100

metric(↓) 15.20†±0.40 13.95†±2.24 33.15† 28.60† 26.63† 88.83† 34.06‡ 94.14⋆ 0.177•

4
Ψ(↑) 100±0 100±0 91.89 91.21 100 100 100 24.31 100

metric(↓) 20.39†±0.88 23.47†±4.93 42.09† 33.95† 30.02† 95.25† 35.73‡ 90.49⋆ 0.178•

5
Ψ(↑) 100±0 100±0 77.34 76.12 100 99.84 92.19 16.08 100

metric(↓) 27.13†±1.34 36.88†±6.91 54.28† 41.36† 37.05† 97.46† 37.06‡ 98.45⋆ 0.180•

6
Ψ(↑) 100±0 100±0 57.28 56.78 100 99.62 64.69 7.84 100

metric(↓) 34.32†±1.68 49.46†±7.19 66.97† 50.47† 48.25† 98.45† 37.44‡ 99.28⋆ 0.182•

7
Ψ(↑) 99.88±0.12 99.90±0.10 57.28 39.45 99.64 85.31 41.02 8.24 100

metric(↓) 41.27†±2.11 99.55†±6.30 77.49† 60.49† 60.39† 98.91† 37.96‡ 99.62⋆ 0.180•

8
Ψ(↑) 99.47±0.46 99.59±0.28 27.49 26.86 100 71.72 26.17 5.49 100

metric(↓) 52.48†±2.23 71.63†±5.35 84.62† 69.53† 70.79† 99.16† 38.30‡ 99.67⋆ 0.187•

9
Ψ(↑) 97.68±0.49 98.10±0.53 19.53 18.07 100 54.37 19.12 8.24 100

metric(↓) 56.62†±2.34 75.18†±5.14 89.52† 77.11† 78.58† 99.30† 39.62‡ 99.94⋆ 0.182•

10
Ψ(↑) 93.50±0.98 94.9±0.80 12.93 12.74 99.22 43.05 12.89 5.49 100

metric(↓) 56.62†±2.31 75.18†±5.14 92.65† 83.04† 83.99† 99.41† 39.74‡ 99.23⋆ 0.182•



Table 7: Robustness to fine-tuning.

Ω
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

2
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.97†±0.20 6.96†±0.11 23.35† 22.54† 24.08† 26.60† 34.85‡ 47.40⋆ 0.184•

4
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.93†±0.24 8.12†±0.34 23.22† 22.52† 24.08† 26.51† 32.09‡ 47.20⋆ 0.180•

6
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 6.98†±0.15 23.23† 22.57† 24.08† 26.41† 31.58‡ 46.20⋆ 0.179•

8
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.88†±0.24 7.01†±0.19 23.21† 22.54† 24.07† 26.37† 30.35‡ 46.40⋆ 0.179•

10
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.89†±0.16 6.94†±0.13 23.13† 22.49† 24.07† 26.31† 29.64‡ 46.00⋆ 0.178•

Table 8: Robustness to quantization.

Ω
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

16
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.96†±0.19 7.03†±0.28 23.85† 22.63† 24.09† 25.96† 32.03‡ 48.70⋆ 0.177•

15
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.97†±0.19 7.04†±0.28 23.86† 22.62† 24.09† 25.94† 31.61‡ 48.70⋆ 0.177•

14
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.96†±0.19 7.03†±0.28 23.85† 22.64† 24.09† 25.94† 31.63‡ 48.70⋆ 0.177•

13
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.96†±0.19 7.03†±0.28 23.84† 22.63† 24.09† 25.93† 31.63‡ 48.70⋆ 0.177•

12
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.97†±0.19 7.04†±0.28 23.84† 22.66† 24.10† 25.95† 31.73‡ 48.90⋆ 0.177•

11
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.98†±0.18 7.03†±0.28 23.84† 22.72† 24.10† 25.99† 31.89‡ 48.90⋆ 0.179•

10
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.97†±0.19 7.04†±0.28 23.84† 22.72† 24.10† 25.99† 31.26‡ 49.10⋆ 0.178•

9
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 9.97†±0.18 7.03†±0.27 23.92† 22.69† 24.10† 26.00† 30.85‡ 47.60⋆ 0.203•

8
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 98.44

error (↓) 9.97†±0.20 7.05†±0.27 24.03† 23.11† 24.10† 26.37† 31.84‡ 48.90⋆ 0.338•

7
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

error (↓) 10.00†±0.20 7.06†±0.29 24.42† 25.11† 24.13† 27.93† 32.46‡ 56.40⋆ 2.20•

6
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 98.44

error (↓) 9.99†±0.17 7.14†±0.27 26.98† 25.12† 29.55† 42.91† 32.03‡ 89.10⋆ 0.823•

5
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 98.44

error (↓) 10.13†±0.28 7.27†±0.39 97.19† 99.17† 75.83† 94.82† 39.40‡ 99.90⋆ ∞•

4
Ψ(↑) 100±0 100±0 100 100 100 100 100 85.49 98.44

error (↓) 10.77†±0.28 7.76†±0.26 99.91† 99.90† 96.81† 99.91† 47.28‡ 100⋆ ∞•

3
Ψ(↑) 100±0 100±0 100 96.48 100 100 100 61.18 89.06

error (↓) 15.07†±0.83 11.61†±1.19 99.90† 99.90† 96.71† 99.89† 89.93‡ 100⋆ ∞•

2
Ψ(↑) 100±0 100±0 31.54 9.91 100 100 100 56.47 98.44

error (↓) 87.73†±5.56 88.20†±2.77 99.90† 99.90† 99.81† 99.90† 96.63‡ 100⋆ ∞•



Table 9: Robustness to magnitude pruning.

Ω
CIFAR10 ImageNet Cityscapes COCO UVG

VGG16 ResNet18 ResNet50 ResNet101 ViT-b-32 MobileNetV3 DeepLab-v3 YOLO-v5n DVC

0
Ψ(↑) 100±0 100±0 100 100 100 100 100 100 100

metric(↓) 9.96†±0.19 7.03†±0.28 23.85† 22.63† 24.07† 25.95† 32.26‡ 48.70⋆ 0.177•

0.91
Ψ(↑) 100±0 100±0 98.63 98.34 100 100 100 65.88 100

metric(↓) 10.87†±0.22 9.67†±0.95 26.57† 23.94† 25.06† 40.00† 33.11‡ 50⋆ 0.188•

0.92
Ψ(↑) 100±0 100±0 98.43 98.24 100 100 100 61.57 100

metric(↓) 11.03†±0.33 10.19†±1.17 26.85† 24.14† 25.21† 41.62† 33.40‡ 50.10⋆ 0.188•

0.93
Ψ(↑) 100±0 100±0 98.29 97.94 100 100 100 59.61 100

metric(↓) 11.23†±0.35 10.84†±1.31 27.38† 24.20† 25.25† 43.18† 33.58‡ 50.20⋆ 0.192•

0.94
Ψ(↑) 100±0 100±0 96.97 96.48 100 100 100 56.47 100

metric(↓) 11.63†±0.40 11.65†±1.56 27.80† 24.39† 25.41† 45.75† 33.78‡ 50.80⋆ 0.189•

0.95
Ψ(↑) 100±0 100±0 97.61 97.12 100 100 100 51.76 100

metric(↓) 12.11†±0.45 12.88†±1.90 28.35† 24.58† 25.60† 48.73† 33.75‡ 51.10⋆ 0.191•

0.96
Ψ(↑) 100±0 100±0 96.97 96.48 100 100 100 47.05 100

metric(↓) 13.84†±0.51 14.94†±2.67 29.02† 24.89† 25.74† 52.49† 33.98‡ 51.60⋆ 0.192•

0.97
Ψ(↑) 100±0 100±0 96.09 94.92 100 100 100 40.78 100

metric(↓) 14.36†±0.85 17.52†±3.62 29.81† 25.23† 26.03† 57.67† 34.62‡ 51.90⋆ 0.205•

0.98
Ψ(↑) 100±0 100±0 93.12 91.94 99.83 97.91 99.61 36.47 100

metric(↓) 17.53†±1.28 21.71†±5.39 30.88† 25.65† 26.03† 63.48† 34.47‡ 52.60⋆ 0.198•

0.99
Ψ(↑) 99.90±0.13 99.63±0.31 81.10 78.81 95.37 86.46 90.24 25.88 100

metric(↓) 26.71†±2.84 28.16†±7.35 32.62† 25.98† 26.63† 76.22† 36.43‡ 41.40⋆ 0.219•
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