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Abstract 

Background:  Triple-negative breast cancer (TNBC) is a very heterogeneous disease. Several gene expression and 
mutation profiling approaches were used to classify it, and all converged to the identification of distinct molecular 
subtypes, with some overlapping across different approaches. However, a standardised tool to routinely classify TNBC 
in the clinics and guide personalised treatment is lacking. We aimed at defining a specific gene signature for each 
of the six TNBC subtypes proposed by Lehman et al. in 2011 (basal-like 1 (BL1); basal-like 2 (BL2); mesenchymal (M); 
immunomodulatory (IM); mesenchymal stem-like (MSL); and luminal androgen receptor (LAR)), to be able to accu‑
rately predict them.

Methods:  Lehman’s TNBCtype subtyping tool was applied to RNA-sequencing data from 482 TNBC (GSE164458), and 
a minimal subtype-specific gene signature was defined by combining two class comparison techniques with seven 
attribute selection methods. Several machine learning algorithms for subtype prediction were used, and the best clas‑
sifier was applied on microarray data from 72 Italian TNBC and on the TNBC subset of the BRCA-TCGA data set.

Results:  We identified two signatures with the 120 and 81 top up- and downregulated genes that define the six 
TNBC subtypes, with prediction accuracy ranging from 88.6 to 89.4%, and even improving after removal of the least 
important genes. Network analysis was used to identify highly interconnected genes within each subgroup. Two 
druggable matrix metalloproteinases were found in the BL1 and BL2 subsets, and several druggable targets were 
complementary to androgen receptor or aromatase in the LAR subset. Several secondary drug–target interactions 
were found among the upregulated genes in the M, IM and MSL subsets.

Conclusions:  Our study took full advantage of available TNBC data sets to stratify samples and genes into distinct 
subtypes, according to gene expression profiles. The development of a data mining approach to acquire a large 
amount of information from several data sets has allowed us to identify a well-determined minimal number of genes 
that may help in the recognition of TNBC subtypes. These genes, most of which have been previously found to be 
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associated with breast cancer, have the potential to become novel diagnostic markers and/or therapeutic targets for 
specific TNBC subsets.

Keyword:  TNBC, Prediction, Personalised medicine, Data mining, Machine learning, Druggable targets, Gene network 
analysis

Background
Triple-negative breast cancer (TNBC) affects approxi-
mately 15% of women with mammary tumours. The 
so-called TNBC is an immunohistochemical definition 
corresponding to the absence of oestrogen (ER) and pro-
gesterone (PgR) receptors expression and of the human 
epidermal growth factor receptor 2 (HER2) amplification.

TNBC are large, high-grade carcinomas with a high 
Ki67 mitotic index and numerous nuclear atypia on 
anatomo-pathological examination. These cancers are 
often related to the basal subtype, introduced for the first 
time by Podo et  al. and Perou et  al. in their paramount 
work [1, 2], and have similarities with cancers developed 
on germline BRCA mutation. The basal-like subtype (BL) 
is characterised by basal cytokeratin gene overexpression 
and the absence of oestrogen, progesterone and HER2 
coding genes expression. BRCA1/2 gene mutations are 
found in approximately 30% of cases [3]. TNBC is usu-
ally associated with a younger age at diagnosis, aggressive 
profile and high rates of p53 gene mutations, accompa-
nied by strong immunohistochemically detected p53 [4]. 
They present a high risk of relapse, despite greater sen-
sitivity to chemotherapy, and of metastatic recurrence in 
the first 3 years after diagnosis. They are not eligible for 
treatments targeting hormone receptors or HER2. How-
ever, in addition to chemotherapy, these cancers may 
benefit from new treatment options, depending on the 
tumour nature. Since 2005, the intensive development of 
high-throughput technologies to analyse gene mutation 
status and/or expression has increased the knowledge of 
the genomic and phenotypic profiles of TNBC [5].

First, several subcategories can be identified by analys-
ing their morphology and some have either a particular 
prognosis, or a specific therapeutic response [6]. Second, 
high-tech throughput technologies, thanks to the analysis 
of thousands of genes, have begun to show TNBC molec-
ular subclasses, exhibiting specific molecular abnor-
malities associated with response to treatment and/or to 
survival [7]. Thirdly, evidence has accumulated, showing 
that TNBC microenvironment, the cells and molecules 
present in the tumour stroma play a significant role in 
disease progression [8]. Thus, the characteristics of the 
microenvironment can serve as a new TNBC subclassifi-
cation basis with a potential therapeutic impact [9].

In 2011, Lehman BD and colleagues [10] proposed 
a Web-based subtyping tool through which six TNBC 

subgroups were identified, based on high-throughput 
gene expression profiling of several hundreds of TNBC 
samples. Various expression abnormalities related to 
cell cycle regulatory genes, such as BRCA2 and DNA 
repair ones (TP53), were detected in the basal-like type 
1 (BL1) subtype. The second basal-like subtype (BL2) 
was more associated with abnormal activation of other 
signalling pathways, such as EGFR, MET, cell migra-
tion, extracellular matrix–receptor interaction and 
differentiation. Contrariwise, the mesenchymal stem-
like (MSL) subtype was more associated with under-
expression of cell proliferation and overexpression 
of mesenchymal stem cell-related genes. The immu-
nomodulatory (IM) subtype was mainly recognised by 
immune signal transduction pathways, such as those 
related to NK, B, dendritic and T cell gene expression. 
The mesenchymal (M) subtype, on the other hand, was 
enriched in cell migration-related signalling pathways 
as well as extracellular matrix–receptor interaction 
and differentiation pathways. The luminal androgen 
receptor (LAR) subtype was very different from all the 
others: although  being   ER-negative, it expressed the 
androgen receptor (AR) and/or its downstream effec-
tors, and was highly associated with hormonal-related 
signalling pathways, such as steroid synthesis and 
androgen/oestrogen metabolism.

Thereafter, Burstein supervised another study where 
copy number variations (CNV) analysis and genomic 
profiling techniques were employed to furthermore 
stratify TNBC, finding four different subtypes with 
distinct prognosis: LAR, MES (mesenchymal), BLIS 
(basal-like immunosuppressed) and BLIA (basal-like 
immune-activated) [11].

On the other hand, in a more recent study by Jézéquel 
et al., three distinct subtypes were highlighted by tran-
scriptomic profiling techniques. The first is recognised 
by an apocrine molecular phenotype showing favour-
able prognosis, the other two groups had more basal 
properties: while one was more aggressive and cou-
pled with an immunosuppressive phenotype, the third 
showed adaptive immune response [12].

Finally, another study developed by Liu et  al. and 
based essentially on long-non-coding RNAs (lncRNAs) 
expression resulted in the development of the Fudan 
University Shanghai Classification System (FUSCC) 
with four subtypes: IM, LAR, MES, and BLIS, with 



Page 3 of 17Akhouayri et al. Human Genomics           (2022) 16:70 	

upregulation of proliferative pathways and the worst 
overall survival in the latter [13].

However, the potential driving molecular events within 
each TNBC subtype, as well as their response to per-
sonalised treatment, remain seldom explored. Further 
insights into the underlying genomic alterations, as well 
as towards a standardised and easily applicable subclas-
sification, are therefore needed. Under the perspective 
of integrating a molecular portrait into clinical prac-
tice and starting from Lehman’s classification, we aimed 
at identifying a limited number of genes that can serve 
as a genetic signature for the prediction of the different 
TNBC subtypes.

Materials and methods
Data description
Two TNBC data sets were downloaded from public 
repositories. The first one was retrieved from the Gene 
Expression Omnibus (GEO) and refers to whole tran-
scriptome RNA sequencing (RNA-seq) performed on 
pre-treatment research biopsies from the BrighTNess 
phase III study (AFT-04). This data set (GSE164458) con-
sists of log-normalised RNA-seq expression values of 
clinical stages II to III tumours. It will be called GEO-TN 
[14].

The second one was retrieved from the Genomic Data 
Commons (GDC) Data Portal of the National Cancer 
Institute and refers to the cancer genome atlas (TCGA) 
project: only TNBC samples were selected, based on 
their ER-, PgR- and HER2-negative immunohistochemi-
cal status, for a total of 63 TNBC records out of 1093 
invasive BC records. This data set contains log-normal-
ised RNA-seq expression values and clinical data. It will 
be called TCGA-TN [15].

The third data set was uploaded to the public reposi-
tory under the GEO accession number GSE206912 and 
refers to 72 TNBC from Italian patients surgically treated 
at the Hospital of Biella or at the Policlinico Gemelli 
in Rome, that underwent gene expression profiling at 
the Genomics Lab of Fondazione Edo ed Elvo Tempia, 
Biella (Italy). It will be called Italian-TN. Sample collec-
tion was approved by the Ethical Committees of Novara 
and Policlinico Gemelli (Prot. 861 CE 149/19 and Prot. 
3559, respectively). After tumour area selection, total 
RNA was isolated from macrodissected sections using 
the Agilent Absolutely RNA FFPE Kit, reverse-tran-
scribed to the corresponding cDNA and in  vitro tran-
scribed with the Sigma TransPlex Whole Transcriptome 
Amplification Kit; cDNA was amplified and labelled 
with the Agilent SureTag DNA Labeling Kit; hybridised 
by means of the Agilent Gene Expression Hybridization 
Kit on whole genome SurePrint G3 Human GE 8 × 60 K 
V3 microarrays containing probes for 26,803 coding 

RNAs and 30,606 lncRNAs; slides were washed using 
the Gene Expression Wash Buffer Kit and then scanned 
with the Agilent scanner version C. All protocols and 
kits were purchased from Agilent Technologies. After 
scanning, array image analysis was carried out using the 
Agilent Feature Extraction Software v12.1, and then raw 
expression data were processed by background subtrac-
tion (normexp function, with  offset = 50) followed by 
between array quantile normalisation, using the LIMMA 
(LInear Models for Microarray Analysis) package in R 
software for Statistics v.4.1.0. This data set contains log-
normalised intensities.

TNBC‑subtype prediction
Before subtype prediction, the dplyr package on R was 
used to remove non-expressed genes in all the samples 
(with null expression values). Pre-processed data from 
the GEO-TN, TCGA-TN and Italian-TN data sets were 
then uploaded in the TNBCtype online tool [16], which 
first investigates the presence of any hormone receptor-
positive sample and removes it. Then, it calculates the 
Spearman correlation (and its significance) between each 
sample and the six centroids of the TNBC subtypes pre-
viously determined and assigns samples to the most cor-
related subtype. UNS is assigned to unstable samples, 
with very low and not statistically significant correla-
tion with any subtype. UNS samples were excluded from 
downstream analyses.

Gene signature determination
This step is based on the calculation of differentially 
expressed genes (DEGs) specific to each TNBC sub-
type, in contrast to the others. Two different methods 
were selected to have the best DEGs pick. The first one 
was class comparison using the LIMMA package  in R, 
where differentially expressed genes between each pre-
dicted TNBC subgroup and the remaining samples were 
obtained by combining a modified t test with empiri-
cal Bayes modelling, in order to moderate the standard 
errors of the estimated log-fold changes. The detection 
of differential gene expression was done by applying a 
cut-off to the Benjamini and Hochberg adjusted p values 
(< 0.01). The second method used was the mean differ-
ence based on Mann–Whitney U (MWU) test, using the 
same method to adjust p values for multiple test compar-
isons. The detection of differential gene expression was 
done by applying a cut-off to the adjusted p values (< 0.01) 
and to the difference in median expression between sub-
groups (LogFC ≥ 1 and < − 1) for up- and downregulated 
genes, respectively. Both methods outcomes were com-
bined by the merge function from the dplyr package in R 
for further analysis.
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TNBC subtypes network analysis and identification 
of druggable targets
Functional analysis of differentially expressed genes was 
performed using the Web-based tool MetaCore™ version 
22.1 software suite (Clarivate Analytics, Philadelphia, PA, 
USA). Gene network analysis was carried out using Dijk-
stra’s Shortest Path algorithm to find the shortest path 
between gene (or gene product) pairs, in each direction, 
allowing for one step (direct  interactions) or two steps 
(one additional network object inserted as intermediary 
interaction).

As for the druggable targets analysis, we looked for 
therapeutic drug–target interactions (experimentally val-
idated) and secondary drug–target interactions that are 
just predicted based on similarities in the structures.

Subtype prediction according to the genetic signature
This step was assessed by Weka v3.9.3 software for data 
mining. The “subtype membership” was considered 
as the variable of interest, while all the other attributes 
(selected genes) were used as predictive variables. Rele-
vant machine learning algorithms were therefore selected 
to compare and evaluate the model performance. The 
following models were used: naive Bayes (NB), logistic 
regression (LR), decision tree (DT), random forest (RF), 
support vector machine (SVM), K-nearest neighbours 
(KNN) classifier, and multilayer perceptron (MP).

The analysis included an automatic feature engineer-
ing, which is based on a k-fold cross-validation, where 
the original sample is partitioned into k subsets. The 
model was trained on all but one subsets (k − 1) and then 
evaluated on the subset that was not used for training. 
This cross-validation process was systematically repeated 
k times (the folds), where each of the k subsets was used 
exactly once as validation data (and excluded from train-
ing) each time. The k-fold results were then averaged (or 
otherwise combined) to produce a single final estimate. K 
was set = 10.

Prediction evaluation metrics
Each prediction model was evaluated by ten different 
metrics, such as true positive (TP) rate, false positive (FP) 
rate, accuracy, Cohen’s kappa, precision, recall, F-meas-
ure, Matthews correlation coefficient (MCC), receiver 
operating characteristic curve (ROC) area and precision–
recall curve (PRC) area.

Best attribute selection
This step was useful to choose a small subset of features 
(genes) that was sufficient enough to effectively classify 
the target class (TNBC subtype), by reducing computa-
tional cost and improving accuracy. Accordingly, the pre-
diction quality of each gene of the training data set was 

evaluated and the genes that provided less value (voted 
by the majority rule of different attribute selection algo-
rithms) were discarded. Seven different attribute selec-
tion algorithms were used by Weka software: Pearson’s 
correlation; information gain; symmetrical uncertainty; 
Cf subset; gain ratio; relief F; and one R.

Their central hypothesis is that the important attrib-
ute sets are strongly correlated with the target class, 
and uncorrelated attributes are less important. Further, 
strong correlation among attribute pairs makes only one 
of them important and the other one can be removed. If 
two or more attributes have the same importance to the 
target class values, only one of them is considered.

The final attribute selection methods list gathers the 
results of the ranking of all the attributes from the most 
to the least important. Only genes that were ranked as 
unimportant by at least four out of seven algorithms were 
then highlighted as the least important attributes.

Results
TNBC subtypes prediction and gene signature 
determination
All the three TNBC data sets were subtyped using the 
TNBCtype online tool. For the GEO-TN data set, there 
were 23 ER + detected and 64 UNS predicted samples, 
which were discarded. Accordingly, the final number of 
samples obtained was 395. This data set is by far the larg-
est and was used as a training set. The TCGA-TN data set 
initially consisted of 63 records from which 13 unstable 
ones were discarded, resulting in 50 TNBC samples. Sev-
enteen samples were predicted as UNS and were there-
fore automatically eliminated from the Italian-TN data 
set, which resulted in a final number of 55 samples. The 
two latter were used as validation sets. Subtyping results 
for the three data sets are detailed in Fig. 1. The IM and 
M subtypes were the most prevalent, while BL2 and LAR 
were the least frequent, which can give us an idea about 
the subgroup imbalance.

The two tests used to determine differentially expressed 
genes converged on the most significant genes within 
each subgroup in contrast to the others. Subsequently, 
two gene lists were generated, the first with the 120 most 
upregulated (Additional file 1: Table S1) and the second 
with the 81 most downregulated genes (Additional file 1: 
Table S2).

TNBC‑subtype network analysis
It is of great interest to look for genetic interactions 
within the few TNBC subgroup signature genes. This 
can lead to a better understanding of the TNBC-sub-
type-specific phenotypes than by just considering sin-
gle gene effects. To identify complex pathways that 
control essential functions in TNBC-subtype-specific 
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cancerogenesis, we analysed gene networks using the 
shortest paths function of the Metacore analysis suite, 
allowing for maximum two steps (one extra element 
as intermediary) to connect the genes in the path. We 
found interactions between each subtype-specific gene 
(or its product) and other entities such as binding pro-
teins, enzymes, transcription factors, protein kinases and 
receptors with enzyme activity, through different regula-
tion mechanisms.

All the BL1 upregulated genes except KLRG2 are con-
nected via one or two transcription factors (Additional 
file 1: Table S3), with ELF5, PADI2, Matrilysin (MMP7), 
COBL and CLSP being the most interconnected signa-
ture genes and HNF3-alpha, androgen and oestrogen 
receptors being the most interconnected intermediary 
transcription factors (Fig. 2). Among the BL1 downregu-
lated genes (Additional file 1: Table S4), only IGF-2 and 
PRSS11 (HtrA1) are connected via Vitronectin or IBP 
and the location of all the four proteins is extracellular 
(Fig. 3).

Concerning BL2 upregulated genes (Additional file  1: 
Table  S5), most of them encode for cytoplasmic pro-
teins transcriptionally regulated by a few intermediary 
transcription factors (p53, STAT3, RAR-alpha, androgen 
receptor, and FKHR), except for cytoplasmic Calgranu-
lin A that is directly linked to extracellular Calgranulin 
B via an autoregulatory loop (mutual activation by bind-
ing). S100-A16 is not connected to any other upregu-
lated gene, while the only other extracellular product, 

Stromelysin-1, is transcriptionally regulated by several 
intermediary transcription factors and is also a thera-
peutic drug–target (see chapter below). The only nuclear 
product is SFN, and there are six membrane proteins, all 
controlled by a few intermediary transcriptional factors 
(Fig.  4). Among the BL2 downregulated genes (Addi-
tional file 1: Table S6), the most interconnected proteins 
are NDRG2 and COBL, both cytoplasmic, BAMBI and 
MBOAT1, both located on the cell membrane, and EHZF 
that is located in the nucleus (Fig. 5).

Twelve out of the twenty LAR upregulated gene 
products are directly regulated by the androgen recep-
tor, that is in the LAR signature itself (Additional file 1: 
Table  S7). These include the Amphiregulin extracellular 
protein; four membrane proteins (alpha-ENaC, CD166, 
TSPAN1 and STEAP4); and seven cytoplasmic pro-
teins (ALOX15B, FLJ20184, KIAA1324, ATAD4, CRAT, 
FASN and CYP19) (Fig. 6). Thirty-one out of 35 proteins 
encoded by the LAR downregulated genes are directly 
connected without any intermediary (Additional file  1: 
Table S8), with the transcription factors LBP9, c-Myc and 
CXXC1 controlling most of the signature genes (Fig. 7).

None of the proteins encoded by the M subtype upreg-
ulated genes are directly connected with any of the others 
(Additional file 1: Table S9), but they are all connected if 
one intermediary is added, with SOX6 and ID4 (nuclear), 
MDFI and Desmocollin 3 (cytoplasmic), and the BAMBI 
transmembrane glycoprotein being the most intercon-
nected network hubs (Fig. 8). The network involving the 

Fig. 1  Predicted subtype counts in GEO-TN, TCGA-TN and Italian-TN data sets by TNBCtype tool, using whole transcriptomic data
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proteins encoded by the downregulated M genes (Addi-
tional file 1: Table S10) is not easily interpretable (Fig. 9).

As for the IM subtype, the only two upregulated genes 
encode for two transcription factors (Additional file  1: 
Table  S11), SPI-B and Aiolos, that are among the most 
interconnected within the network when one interme-
diary is included. The majority of intermediaries con-
verge towards IP-10, MIG or I-TAC, three extracellular 
chemokines, or to CD38, a type II transmembrane gly-
coprotein, all overexpressed in the IM subtype. Another 
central node of the IM network is Granzyme B, a pro-
tease secreted by natural killer cells and cytotoxic T 
lymphocytes (Fig.  10). The IM downregulated genes 
(Additional file 1: Table S12) are ID4, MDFI and KRT81. 
Only the proteins encoded by the first two are connected, 
via either the transcription factor p53 or the demethylase 
JMJD2A (Fig. 11).

Finally, the non-coding gene MEG3 is the central ele-
ment in the network resulting from the MSL upregulated 
genes (Additional file 1: Table S13) and is linked to IGF-I 
and IGF-II via inhibition of several microRNAs (miR-
218-3p, miR-96-5p, miR-19-3p, miR-493-5p, miR-665-3p, 
miR-129-5p, miR-18a-5p, miR-129-3p and miR-181a-5p) 
targeting the two extracellular growth factors (Fig.  12). 
On the other hand, cell cycle controlling elements such 
as CDK1 and CDKN2A (Additional file  1: Table  S14) 
have a central role within the MSL downregulated genes 
(Fig. 13).

Identification of druggable targets
The genes differentially expressed in each subtype were 
subsequently analysed with Metacore, to look for any 
druggable target.

The most overexpressed BL1 druggable target is Mat-
rilysin, encoded by MMP7 and targeted by several thera-
peutic inhibitor drugs, such as Batimastat, Marimastat 
and Rebimastat (Additional file 1: Table S15).

As for the BL2 subgroup, the main therapeutic drug–
target inhibitory interaction concerns Stromelysin-1 
encoded by MMP3 and targeted by Doxycycline and 
Tanomastat (Additional file 1: Table S16).

On the other hand, one of the most recurrent and 
potentially important upregulated LAR druggable tar-
gets is androgen receptor encoded by AR and inhibited 
by Bicalutamide, Diethylstilbestrol, Drospirenone, Finas-
teride, Flutamide, Metandienone, RU58841, Silibinin and 
Zanoterone. The second is CYP19 encoded by CYP19A1 
and targeted by several aromatase inhibitors, such as 
Aminoglutethimide, Anastrozole, Exemestane, Letro-
zole and Testolactone, and then, GGT1, targeted by Aci-
vicin and by Oxiglutathione; GGTF-I-beta, encoded by 
PGGT1B and targeted by L-778,123; ALDR, encoded by 
AKR1B1 and targeted by Tolrestat; alpha-ENaC, encoded 

SCNN1A and targeted by Amiloride (Additional file  1: 
Table S17). As for the M, IM and MSL subtypes (Addi-
tional file 1: Tables S18, S19, S20), no specific therapeutic 
drug–target interaction was spotted. Conversely, several 
inhibition secondary drug–targets interactions for the 
upregulated genes, predicted based on similarities in the 
structures, were found. Ephrin-B receptor 3, encoded 
by EPHB3 and upregulated in the M subgroup, is a pre-
dicted target of several inhibitory drugs such as CC-223, 
Dovitinib, Nazartinib, Nilotinib and Ponatinib; CD38 in 
the IM subgroup is a predicted target of Ca(’2+), Flu-
ticasone propionate and Quercetin; SR-B encoded by 
SCARB1 and overexpressed in the LAR group is a pre-
dicted target of beta-cyclodextrin, docosahexaenoic acid 
and ITX-5061.

Reciprocally, no activating therapeutic drug–target 
interaction for the downregulated genes was spotted in 
all the six TNBC subgroups (Additional file 1: Table S21 
to Table S26).

TNBC‑subtype prediction
It is very important in any biological study to identify 
the most meaningful information from complex biologi-
cal data. It is known that physiological and pathologi-
cal changes in the tumour phenotype and its sensitivity 
to specific treatments are generally driven by molecular 
interactions. Hence, we evaluated if the subtype-specific 
gene signatures previously described were also able to 
predict sample classes.

Accordingly, seven different prediction models were 
applied on the GEO-TN data set, starting from the lists 
of upregulated (Additional file  1: Table  S1) and down-
regulated (Additional file  1: Table  S2) genes previously 
obtained. For both lists, ten  fold cross-validation was 
used as it gives the models the opportunity to train on 
multiple train–test splits, giving a better indication of 
how well the models perform on unseen data. The vari-
able to predict was “TNBC subtype”, and the explanatory 
features were the up- and downregulated genes.

Tables 1 and 2 summarise the weighted averages across 
the six classes of the metrics used to judge each model’s 
performance in classifying the samples using the up- and 
the downregulated genes, respectively.

The multilayer perceptron (MP), followed by support 
vector machine (SVM) model, stands out with the best 
metrics scores; on the other hand, logistic regression 
(LR) and decision tree (DT) seem to be the least perfor-
mant among all models, for both lists. Therefore, MP was 
then picked for further use in external validation on the 
TCGA-TN and Italian-TN data sets.

Consequently, in order to know if any of the genes 
had a low predictive weight according to the best pre-
dictive model (MP), seven different attribute selection 
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methods were elaborated, which yielded slightly different 
gene rankings. The genes that were voted by the majority 
of algorithms as unimportant were then removed (Addi-
tional file 1: Table S27).

Following the two gene lists refinement, a per-sub-
group ROC comparison was made, before and after 
attribute selection, to evaluate if the aforementioned 
gene elimination altered the prediction performance of 
the same model. The predictions were first measured 
on the training set with the tenfold cross-validation 
option and then on the two validation sets. Very sta-
ble ROC scores were obtained, even after deletion of 
the least important genes. In terms of the upregulated 
genes, despite the removal of 17 genes, the ROC score 
improved in both the training and the validation data 
sets, in the majority of cases. The detailed ROC areas 
by class and the weighted averages are given in Table 3, 
for upregulated (upper rows) and downregulated genes 
(lower rows), before and after attribute selection.

Discussion
The development of a plausible treatment for TNBC neo-
plasms is largely hindered by the high heterogeneity of 
their different phenotypes. Indeed, TNBC patients are 

pathologically defined by the triple-negative expression 
of ER, PgR and HER2 receptors and not positively via 
specific markers that may represent druggable targets.

In this research study, starting from a large data set of 
TNBC records and applying the classification proposed 
by Lehman and collaborators, which relies on whole tran-
scriptomic profiles, we were able to define two small-size 
classifiers, one based on the most overexpressed and the 
other on the most under-expressed genes within each of 
the six TNBC subtypes. The models were tested on two 
independent data sets, in order to evaluate the accuracy 
of the subtype prediction. The least important genes were 
discarded, to define a minimum number of genes associ-
ated with TNBC subtyping. The final classifiers consisted 
in 103 upregulated or 77 downregulated genes, most of 
which had been previously found by several authors to be 
associated with TNBC or to basal-type BC or to BC in 
general. Therefore, our results add new important pieces 
of information that may help clinicians in the classifica-
tion of TNBC. Knowing that a “one-size-fits-all” treat-
ment approach is questionable for TNBC, molecular 
subtyping is crucial in determining the best therapeutic 
option for each single patient.

Table 1  Comparative overview of seven prediction algorithms according to the 120 upregulated genes

TP, true positive; FP, false positive; MCC, Matthews correlation coefficient; ROC, relative operating characteristic; PRC precision–recall curve

TP rate FP rate Accuracy % Mean 
absolute 
error

Kappa Precision Recall F-measure MCC ROC area PRC area

Naive Bayes 0.863 0.035 86.3291 0.0452 0.8281 0.864 0.863 0.863 0.828 0.981 0.934

Logistic regression 0.595 0.105 59.4937 0.1343 0.4884 0.596 0.595 0.594 0.492 0.862 0.664

Multilayer perceptron 0.894 0.027 89.3671 0.0429 0.8658 0.894 0.894 0.893 0.867 0.987 0.951

Support vector machine 0.889 0.029 88.8608 0.2257 0.8597 0.889 0.889 0.888 0.860 0.963 0.845

k-Nearest neighbours 0.808 0.049 80.7595 0.0677 0.7579 0.811 0.808 0.808 0.759 0.872 0.695

Decision tree 0.646 0.096 64.557 0.1414 0.5488 0.653 0.646 0.646 0.557 0.845 0.603

Random rorest 0.858 0.046 85.8228 0.134 0.8191 0.865 0.858 0.852 0.821 0.985 0.941

Table 2  Comparative overview of seven prediction algorithms according to the 81 downregulated genes

TP, true positive; FP, false positive; MCC, Matthews correlation coefficient; ROC, relative operating characteristic; PRC, precision–recall curve

TP rate FP rate Accuracy % Mean 
absolute 
error

Kappa Precision Recall F-measure MCC ROC area PRC area

Naive bayes 0.846 0.037 84.557 0.0515 0.8055 0.848 0.846 0.846 0.809 0.980 0.926

Logistic regression 0.668 0.082 66.8354 0.1091 0.5828 0.672 0.668 0.669 0.587 0.919 0.758

Multilayer perceptron 0.886 0.029 88.6076 0.047 0.8563 0.885 0.886 0.886 0.858 0.988 0.953

Support vector machine 0.861 0.036 86.0759 0.2264 0.8241 0.861 0.861 0.860 0.826 0.958 0.808

k-Nearest neighbours 0.744 0.066 74.4304 0.0884 0.6777 0.744 0.744 0.740 0.677 0.836 0.615

Decision tree 0.618 0.098 61.7722 0.1542 0.5131 0.612 0.618 0.610 0.521 0.847 0.582

Random forest 0.825 0.053 82.5316 0.1386 0.7755 0.827 0.825 0.813 0.781 0.979 0.919
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Concerning the basal-like phenotype, stratified into two 
further subtypes, we found that genes overexpressed in 
BL1 tumours are enriched in the major mechanisms that 
define this particular subtype: cell proliferation and DNA 
damage response. Most of these genes have been previ-
ously associated with the basal phenotype, and our study 
highlights their BL1-specificity. Specifically, CRABP1, 
which proved to be under-expressed in hormone-
dependent tumours but maintained at high expression 

levels in triple-negative tumours, inhibits retinoic acid 
which should normally inhibit growth and induce apop-
tosis [17]. GABRP was already proven to be critical for 
TNBC cell growth [18], and its inhibition was reported 
to suppress basal-like BC progression [19]. Likewise, 
Powell et  al. reported that the majority of breast carci-
nomas that stain with CALB2 are more likely to be high-
grade, ER-negative and display a basal-like phenotype 
[20]. TM4SF1, as well, is known to be downregulated in 

Fig. 2  BL1 upregulated genes network analysis. Red arrows refer to inhibition, green arrows to activation and grey ones to unspecified effects, 
while red circles refer to uploaded differentially expressed genes

Fig. 3  BL1 downregulated genes network analysis
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hormone-positive tumours [21], while increased expres-
sion of MMP7 distinguishes the basal-like breast can-
cer subtype from other triple-negative tumours [22, 
23]. Indeed, Matrilysin is a validated target of several 
compounds that could be proposed to personalise BL1 
TNBC. At the same time, PGBD5 levels were found sig-
nificantly higher in basal-like BC [24], and the same goes 
for CALML5, one of the top expressed genes in TNBC 
samples [25], PADI2 [26] and KLRG2 [27]. Gong et  al. 
demonstrated that the upregulation of MGP promotes 
the proliferation of cancer which probably makes it a 
novel biomarker or therapeutic target for TNBC patients 
[28]. The same was also reported for KRT16 by Lehmann 

et al., who showed its differential expression in the basal-
like subtype [10], and confirmed by our Metacore analy-
sis that revealed this basal cytokeratin as the predicted 
target of L-Triiodothyronine. Two other predicted drug 
targets within the BL1 signature are KCNQ4, targeted 
by Bepridil and Fampridine, and CA8 encoding carbonic 
anhydrase VIII and targeted by Foscarnet.

Among the seven downregulated genes in BL1, 
COL14A1 [29], CYP1B1 [30] and ELN had been previ-
ously associated with TNBC. The latter was considered 
in a TNBC genetic signature [31], in line with our find-
ings. On the other hand, HTRA1 was found to be signifi-
cantly expressed within the breast normal ductal glands 

Fig. 4  BL2 upregulated genes network analysis

Fig. 5  BL2 downregulated genes network analysis
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and its expression is significantly downregulated in inva-
sive breast cancer in general [32]. Our study therefore 
confirms and specifies its down-modulation in the BL1 
subtype.

The BL2 subtype is mainly defined by the abnormal 
over-activation of several signalling pathways such as 
Wnt/β-catenin; indeed, one of the overexpressed genes 
found in our study is WNT7B, also reported by sev-
eral studies in governing BC generally and TNBC more 

specifically [33]. Through the latter, another BL2 gene 
(WLS) promotes the proliferation of breast cancer cells 
[34]. In terms of S100A9/8, Bergenfelz was the first to 
report that it can be considered as a novel therapeu-
tic target for patients with ER(−) PgR(−) breast can-
cers [35] followed by several other studies [36]. Indeed, 
our Metacore analysis identified Calgranulin B, encoded 
by S100A9, as the predicted target of Paquinimod as 
well as of Tasquinimod. Gene expression studies have 

Fig. 6  LAR upregulated genes network analysis

Fig. 7  LAR downregulated genes network analysis
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previously identified KRT5 mRNA in normal breast 
and basal-like breast cancer, and monoclonal antibod-
ies against KRT5 have been used to identify basal-like 
TNBC [37]. This basal cytokeratin has been identified 
as a predicted target of Androstanolone by our analysis; 
however, it is widely expressed in normal gland struc-
tures such as salivary and sweat glands and therefore 
targeting it may be critical. Previous findings indicated 

that CRABP2 promotes invasion and metastasis of ER− 
breast cancer. No studies to date have demonstrated the 
direct involvement with the BL2 phenotype of CPA4 
[38], TMEM45A [39], S100A16 [40], COL4A5, GSDMC, 
MMP3, ITGB6, or GJB2 [41]. However, our drug interac-
tion analysis revealed that GJB2 is a predicted target of 
beta-Cyclodextrin.

Fig. 8  M upregulated genes network analysis

Fig. 9  M downregulated genes network analysis
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On the other hand, Kloten et  al. reported the loss of 
NDRG2 protein expression in human BC and low NDRG2 
immunoreactivity in TNBCs [42], which goes in line with 
the significant downregulation we found in the BL2 sub-
group. SORBS2, another gene downregulated in BL2, is 
a tumour suppressor that was reported by Alsafadi et al. 
as a candidate marker to predict metastatic relapse in BC 
[43]. In terms of PADI2 gene, we found that—as men-
tioned before—it is significantly highly expressed in BL1 

subtype, contrary to BL2 subtype where it is significantly 
lowly expressed. Therefore, it can be proposed as a poten-
tial biomarker for differential diagnosis within the basal-
like TNBC tumours. This has also prognostic implications 
as the BL1 subtype showed a significantly higher response 
rate to chemotherapy than the BL2 [44, 45].

The mesenchymal-like subtype (M) is mainly defined 
by a variety of signalling pathways, such as extracellular 
matrix–receptor interactions and gap junctions, which 

Fig. 10  IM upregulated genes network analysis

Fig. 11  IM downregulated genes network analysis
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can explain the differential overexpression of DSG3 com-
pared to the other subtypes [46]. The latter operates by 
facilitating cancer cell growth and invasion by control-
ling E-cadherin-Src signalling and cell–cell adhesion. The 
same goes for COL9A3 [47], which is involved in matrix 
synthesis and controls its degradation. It was also identi-
fied as significantly associated with the prognosis of TNBC 
in an independent prognostic signature [48]. MSLN has 
been explored by several studies and found to promote 

epithelial-to-mesenchymal transition and tumorigenicity 
[49]. This can explain its overexpression in this particu-
lar TNBC phenotype as also reported by Del Bano et  al. 
[50]. ID4 was reported to be highly expressed in TNBCs 
by Donzelli et  al. [51], and it acts as an oncogene. Shen 
et al. found that the majority of ER-negative breast cancer 
cells expressed moderate to high levels of KCNK5 protein, 
whereas minimal/low levels of KCNK5 were detected in 
ER-positive cells [52]. SOX6 has also been investigated 

Fig. 12  MSL upregulated genes network analysis

Fig. 13  MSL downregulated genes network analysis
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by Mehta et al. who found it had an emerging role in BC 
development and maintenance as well as an involvement 
in the mesenchymal phenotype [53]. A set of genes found 
to have a promoter and primordial role in TNBC-related 
epithelial-to-mesenchymal transition includes: EPH [54], 
EDIL3 [55] and TRIM29. On the other hand, no analy-
sis has explored MDFI, CSPG4, CP, LAMB3, RNF152, 
BAMBI, SERTAD4 and SFRP1 to show their involvement 
in promoting the mesenchymal phenotype of TNBC, while 
ILRG is a predicted target of Nedocromil.

As for the immunomodulatory subtype (IM), mainly 
enriched in immune cell markers and signalling, it turned 
out that all the genes overexpressed in this subtype, 
according to our analysis, are involved in the tumour 
immune infiltrate: CD79A [56], CXCL10 [57] and CXCL9 
[58] which proved to be a potential biomarker of immune 
infiltration associated with favourable prognosis in ER-
negative BC; GZMB [59], KLHDC7B [60], LTF [61], 
GBP5 [62] and CXCL11 [63], which were found to be sig-
nificantly overexpressed in the plasma of breast cancer 
patients compared to healthy controls; LAX1, which was 
reported by Mamoor et al. as associated with survival in 
TNBC; IKZF3, which contributes to the immunologic 
phenotype of TNBC [64]. A very recent study showed the 
prognostic value of tumour-infiltrating B lymphocytes 
along with CD38 and plasma cells in TNBC [65]. All the 
remaining genes have been confirmed to be associated 
with immune-induced pathways along with breast can-
cer, but not specifically triple negative, thus contributing 
to a better refinement of TNBC.

Regarding the mesenchymal stem-like subtype (MSL), 
by definition it expresses low levels of cell proliferation-
related genes and high levels of stemness-related genes 
[66]. This is supported by the genes we found downreg-
ulated, such as CDK1, or overexpressed, such as IGF1 
[67] and IGF2 [68], as well as CXCL14 [69]. The long 
non-coding RNA MEG3 is generally downregulated in 
BC, but it has been found highly expressed in Hs578T 
TNBC cells [70]. Conversely, ID4 and MDFI are highly 
expressed in the M subtype but downregulated in the IM 
subtype. On the other hand, CALML5 is overexpressed 
in BL1 but downregulated in the MSL subtype. Ehmsen 
et al. reported that S100A14 is overexpressed in epithe-
lial-like, but not in mesenchymal-like phenotype [71], 
which converges with our findings.

The LAR subtype, even though it does not express 
the ER receptor, shows highly activated hormonal-
related signalling pathways. Lehman et  al. reported 
that tumours within the LAR group expressed numer-
ous downstream AR targets and coactivators such as 
ALCAM and FASN [10], which were both contained 
in our LAR-related signature. We found that six of the 
upregulated LAR genes, among which AR itself, are 
experimentally validated druggable targets of up to 30 
existing compounds. However, AR targeting in TNBC 
[72, 73] has not achieved so far the expected efficacy. In 
an inverse perspective, Bhattarai et al. [74] suggested a 
new refinement of the classification of TNBC by intro-
ducing quadruple-negative BC based on AR expression 
negativity (Additional file 1).

Table 3  Per-subgroup prediction ROC scores for up- and downregulated genes, before and after attribute selection

The three validation options are reported

BL1 BL2 M IM MSL LAR Weighted 
average

Validation option

Per-subgroup prediction ROC metric before attribute selection (Total number of upregulated genes = 120)

Upregulated genes 0.979 0.97 0.983 0.992 0.996 0.999 0.987 Cross-validation on GEO set (tenold)

0.862 0.949 0.837 0.890 0.904 0.784 0.852 Validation set: Italian set

0.958 0.981 0.958 0.958 0.816 0.92 0.948 Validation set: TCGA set

Per-subgroup prediction ROC metric after attribute selection (Total number of upregulated genes = 103)

0.975 0.978 0.984 0.988 0.996 1 0.986 Cross-validation on GEO set (tenfold)

0.916 0.955 0.843 0.922 0.962 0.7 0.883 Validation set: Italian set

0.96 0.955 0.974 0.951 0.801 0.864 0.94 Validation set: TCGA set

Per-subgroup prediction ROC metric before attribute selection (Total number of downregulated genes = 81)

Downregulated genes 0.986 0.977 0.987 0.991 0.988 0.998 0.988 Cross-validation on GEO set (tenfold)

0.727 0.808 0.924 0.871 0.897 0.886 0.858 Validation set: Italian set

0.678 0.788 0.861 0.781 0.858 0.985 0.813 Validation set: TCGA set

Per-subgroup prediction ROC metric after attribute selection (Total number of downregulated genes = 77)

0.984 0.961 0.984 0.986 0.985 0.996 0.984 Cross-validation on GEO set (tenfold)

0.742 0.962 0.816 0.815 0.776 0.91 0.83 Validation set: Italian set

0.743 0.807 0.813 0.776 0.7 0.977 0.802 Validation set: TCGA set
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Conclusion
Our study took full advantage of available TNBC data 
sets to stratify samples and genes into distinct subtypes, 
according to gene expression profiles. The development 
of a data mining approach to acquire a large amount 
of information from several data sets has allowed us to 
identify a well-determined number of genes that may 
help in the recognition of TNBC subtypes. Although fur-
ther empirical experiments that can serve as validation 
for the robustness and relevance of the selected genes are 
needed, our study identified a small number of genes can 
be tested in the clinics without the need of whole tran-
scriptomic approaches. Most of the signature genes have 
been previously found to be associated with (triple nega-
tive) breast cancer and/or have the potential to become 
novel diagnostic markers and/or therapeutic targets for 
specific TNBC subclasses.

Potential implications
Overall, our refined genetic signatures for each TNBC 
subtype may provide a simple clinical tool, affordable 
by most pathology departments, that might contribute 
to explore TNBC heterogeneity and identify the appro-
priate treatment for each patient based on the subtype-
specific druggable targets. Novel clinical trials taking into 
account the molecular portrait of the tumour are in fact 
under development, for TNBC as well.
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