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1 Introduction

The MUonE experiment [1–4] will measure the hadronic running of the electromagnetic
coupling α using low-energy elastic electron-muon scattering, eµ → eµ. This will enable
a new and precise determination of the hadronic vacuum polarisation (HVP) contribution
aHVP
µ [5, 6] to the muon anomalous magnetic moment aµ. This is required in light of

the recent tensions between experimental [7], Standard Model (SM) data-driven [8], and
lattice quantum chromodynamics (QCD) [9] results for aµ. Increasing the precision of the
theoretical predictions for eµ → eµ scattering is a high priority for the planned MUonE
experiment [10, 11] and has seen good progress in the last few years [12–16]. The recent
completion of full next-to-next-to-leading order (NNLO) quantum electrodynamics (QED)
corrections [17] indicates that next-to-next-to-next-to-leading order (N3LO) corrections in
differential distributions are required to meet MUonE’s precision goal of 10 parts per million.
Electron-line corrections, meaning corrections to the subprocess with the muon line stripped
off (e → eγ∗), are the dominant corrections [17], and a collaborative project was started
to perform their fixed-order calculation at N3LO [18]. With the triple-virtual corrections
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now available [19–21], the main missing ingredient is the real-double-virtual (RVV) matrix
element (e → eγγ∗) at two loops. While these contributions could be extracted from
amplitudes in the literature [22–24], our direct computation provides the massless RVV
contribution in a complete and compact form.

Another application of the 0 → ℓℓ̄γγ∗ amplitudes is in electron-positron annihilation
experiments [25]. They are required for initial-state corrections in predictions of the ratio of
hadron-to-muon production in e+e− collisions, which is an important input for existing SM
predictions of aHVP

µ [26]. The two-loop amplitudes contribute to RVV corrections to e+e+ →
γ∗ in direct scan measurements, while radiative return measurements concern corrections
to e+e− → γγ∗ [8]. In the latter configuration, the e+e− beam has a fixed centre-of-mass
energy of a few GeV and the on-shell photon originates from initial state radiation (ISR).
The energy lost to the ISR photon is used to effectively scan over the energies of the decay of
the off-shell photon. A differential cross section of, for example, γ∗ → hadrons with respect
to the centre-of-mass energy of the decay, dσ/ds, can be extracted from measurements of the
differential cross section with respect to the energy of the ISR photon, dσ/dEγ . State-of-the-
art predictions for these measurements are currently at next-to-leading order (NLO) [26].
We provide the two-loop e+e− → γγ∗ amplitudes required for the double-virtual (VV)
corrections at NNLO, although the bottleneck remains in the hadronic decay.

Our amplitudes are calculated in the approximation of massless leptons. In the NNLO
massive eµ → eµ cross section calculation [17], the authors obtain photonic corrections
(those with no closed fermion loops), using a small-mass expansion [27–29] applied to the
two-loop amplitudes with massless electrons for the VV corrections. This approximation
relies on the electron mass being much smaller than any other scale, which is valid in the bulk
of phase space. Further splitting the photonic corrections, they take the subset of electron-
line corrections and find that the relative difference to the true massive NNLO differential
cross section is generally around 10−3α2, where α is the fine-structure constant, which is
negligible compared to the 10−5 precision goal. The approximation breaks down in soft and
collinear regions, where they treat the amplitudes using infrared (IR) factorisation [30–32],
and is not used for contributions including closed fermion loops [29, 33]. Our amplitudes
can be used analogously for the RVV corrections at N3LO.

Our computation uses the modern technology developed for QCD amplitudes with
many scales. The high-multiplicity amplitude frontier in massless QCD lies with two-
loop five-particle processes, with leading-colour [34–39] and full-colour [40–43] results in a
form ready for phenomenological application becoming available over the past few years.
Recently, the first single-external-mass calculations are also appearing [44–47]. These com-
putations have made extensive use of finite-field arithmetic to sidestep large intermediate
expressions. This technology has had a considerable impact for solutions of systems of
integration-by-parts (IBP) identities [48–50] but also applies more widely to scattering
amplitude computations [51, 52]. Motivated by the improved algorithms, we choose to
implement a complete finite-field based reduction for the 2 → 2 processes with an off-shell
leg. Since the kinematics are relatively simple in comparison with other high-multiplicity
configurations, this technology is not essential. It does, however, provide an opportunity to
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review the new techniques for readers who are not familiar with them.
A key ingredient for computing the scattering amplitudes are analytic expressions for

the required Feynman integrals. Complete analytic results up to two loops are already
available in the literature [53–57]. Expansions of these integrals up to higher orders in the
dimensional regularisation parameter ϵ have also been reconsidered recently [57], in view of
their usage for N3LO corrections to 2 → 2 processes in QCD [58, 59]. The state of the art for
integrals with this kinematic configuration has reached three loops [60–63]. We revisit the
computation of the one- and two-loop integrals following the approach of refs. [45, 64–67]
based on the construction of a basis of independent special functions, which gives a unique
and uniform representation of all the required Feynman integrals up to transcendental
weight four. This enables a more efficient computation of the amplitudes using the modern
workflow based on finite-field arithmetic, and leads to more compact expressions. We give
explicit expressions for the basis functions in terms of multiple polylogarithms (MPLs)
which can be evaluated in an efficient and stable way throughout the physical phase space.
We compute all crossings of all massless one- and two-loop four-particle Feynman integrals
with an external off-shell leg, so that our results for the integrals may be of use for any
scattering process with these kinematics.

Our paper is organised as follows. In section 2, we describe our decomposition of
the helicity amplitudes and detail how we express the off-shell currents. In section 3, we
discuss our computation of analytic amplitudes by numerical evaluations over finite fields.
In section 4, we present the computation of the Feynman integrals in terms of a basis of
special functions. We draw our conclusions in section 5. We provide useful technical details
in appendices. We define the relevant families of Feynman integrals in appendix A. In
appendix B, we discuss in detail how we handle permutations of the integral families in the
IBP reduction. In appendix C, we describe our rational parametrisation of the kinematics.
Appendix D is devoted to the ultraviolet (UV) renormalisation and IR factorisation which
determine the pole structure of the amplitudes. In appendix E we discuss the analytic
continuation of the special functions to the physical kinematic regions.

2 Structure of the amplitude

We calculate the one- and two-loop QED corrections to the process

0 → ℓ(p1, h1) + ℓ̄(p2, h2) + γ(p3, h3) + γ∗(p4) , (2.1)

which we call 0 → ℓℓ̄γγ∗ for short. Here, ℓ denotes an on-shell massless lepton and γ (γ∗)
an on-shell (off-shell) photon, while hi and pi are the helicity and momentum of the ith

particle. We take the external momenta pi to be all outgoing. They satisfy the following
momentum-conservation and on-shell conditions:

4∑
i=1

pµi = 0 , p2i = 0 ∀ i = 1, 2, 3 . (2.2)
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The single-off-shell four-particle phase space is described by three independent scalar in-
variants, which we choose as

s⃗ := {s12, s23, s4} , (2.3)

where si...j := (pi + . . . + pj)
2. We use dimensional regularisation in the ’t Hooft-Veltman

scheme [68], with D = 4− 2ϵ spacetime dimensions (where ϵ is the dimensional regulator)
and four-dimensional external momenta.

Because of the off-shell photon in the process, the helicity amplitudes Aµ(1ℓ, 2ℓ̄, 3γ , 4γ∗)

are actually off-shell currents carrying a free Lorentz index. We consider the perturbative
QED expansion of the helicity amplitudes,

Aµ(1ℓ, 2ℓ̄, 3γ , 4γ∗) = g2e
∑
L≥0

(
nϵ

α

4π

)L
A(L)µ(1ℓ, 2ℓ̄, 3γ , 4γ∗) , (2.4)

with prefactor nϵ = i(4π)ϵe−ϵγE , electromagnetic coupling ge, and α = g2e/(4π). We trun-
cate the expansion at L = 2 loops. We set the renormalisation scale µR to one throughout
the computation and restore the dependence on it in the final analytic result by dimensional
analysis. For the bare amplitudes we have that

A(L)µ(µR) = µ2ϵL
R A(L)µ(µR = 1) . (2.5)

There are two independent helicity configurations (h1, h2, h3), which we take as

{−+− , −++} . (2.6)

We derive the analytic expressions for these helicity amplitudes. We obtain the remaining
helicity configurations, {+−+ , +−−}, through parity transformation (see appendix C
of ref. [42]).

We decompose the loop-level helicity amplitudes A(L)µ into gauge-invariant subam-
plitudes A(L)

i,j

µ
, where the subscript i counts the number of closed massless fermion loops

and j the number of external photons attached to closed fermion loops. The non-zero
contributions are

A(1)µ = A(1)
0,0

µ
+ nl A

(1)
1,1

µ
, (2.7a)

A(2)µ = A(2)
0,0

µ
+ nl

(
A(2)

1,0

µ
+A(2)

1,1

µ
+A(2)

1,2

µ)
+ n2

lA
(2)
2,1

µ
, (2.7b)

where nl denotes the number of charged lepton flavours running in the loops. Represen-
tative Feynman diagrams contributing to these subamplitudes are illustrated in figure 1.
Amplitudes with a closed fermion loop attached to an odd number of photons vanish by
Furry’s theorem.

We decompose the amplitude and subamplitude currents as

A(L)µ =

4∑
k=1

a
(L)
k qµk , A(L)

i,j

µ
=

4∑
k=1

a
(L)
i,j;k q

µ
k , (2.8)
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1ℓ

2ℓ̄ 3γ

4γ∗

(d) A(2)
1,0

µ

1ℓ

2ℓ̄ 3γ

4γ∗

(e) A(2)
1,1

µ

1ℓ
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µ

1ℓ
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(g) A(2)
2,1

µ

Figure 1: Representative Feynman diagrams for the subamplitudes defined in eq. (2.7).
The off-shell external leg is indicated by a bold line.

using the following basis written with the spinor-helicity formalism:

qµk = pµk ∀ k = 1, 2, 3 , qµ4 =
⟨2|p3p1σµ|2]− ⟨1|p3p2σµ|1]

2s12
. (2.9)

Readers not familiar with the spinor-helicity formalism may like to consult one of the many
good reviews on the subject [69–71]. Note that q4 is orthogonal to the momenta pi by
construction; one can in fact show that qµ4 ∝ εµνρσq1νq2ρq3σ. The subamplitude coefficients
a
(L)
i,j;k can be related to the amplitude ones a

(L)
k through eq. (2.7).

The scattering amplitudes M(L) for fully on-shell processes (for instance, for 0 →
e−e+γµ−µ+) are obtained by contracting the amplitude currents A(L)µ (for 0 → e−e+γγ∗)
with a suitable decay current Vµ (in this example, γ∗ → µ−µ+), as

M(L) := A(L) · V =
4∑

k=1

a
(L)
k (qk · V) . (2.10)
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In this manner, the on-shell amplitudes M(L) are given by the scalar product between the
vector of coefficients (a(L)1 , . . . , a

(L)
4 ), and that of decay-vector contractions (q1 ·V, . . . , q4 ·V).

The coefficients a(L)k depend on the helicities of the three on-shell particles in eq. (2.1), while
the decay vector Vµ depends on the helicities of the particles the off-shell photon decays to.
The helicity-summed interference between the L1-loop and the L2-loop matrix elements is
then given by

M(L1,L2) =
1

4

∑
h⃗

M(L1)

h⃗

∗
M(L2)

h⃗
, (2.11)

where the subscripts h⃗ indicates the helicities of all on-shell particles — that is, including
the decay products of the off-shell photon — and the overall constant factor averages over
the helicities of the incoming particles.

The output of the computation described in section 3 is the set of four projections
A(L)

i,j · qk for each helicity configuration listed in eq. (2.6). From these, we determine the

subamplitude coefficients a
(L)
i,j;k by inverting eq. (2.8), as

a
(L)
i,j;k =

4∑
m=1

(
G−1

)
km

(
A(L)

i,j · qm
)
, (2.12)

where G is the Gram matrix of the vectors qi, that is, the matrix of entries Gij := qi · qj for
i, j = 1, . . . , 4. At loop level, we write the subamplitude coefficients as

a
(L)
i,j;k =

4−2L∑
w=−2L

∑
r

cr,w monr(F ) ϵw, (2.13)

where monr(F ) are monomials of special functions F (see section 4), and the coefficients
cr,w are rational functions of the kinematics. We drop the dependence on i, j, k, and L

on the right-hand side of eq. (2.13) for compactness. We truncate the Laurent expansion
around ϵ = 0 to the orders required for computing NNLO predictions. We express the
coefficients cr,w as Q-linear combinations of a smaller set of linearly-independent coeffi-
cients (see section 3). The analytic expressions of the latter are given explicitly in terms
of momentum twistor variables (see appendix C). We simplify these expressions through a
multivariate partial fraction decomposition using MultivariateApart [72], and by collect-
ing the common factors.

In the ancillary files [73], the directory amplitudes/ contains Mathematica files describ-
ing the bare helicity subamplitude currents A(L)

i,j

µ
by their coefficients a

(L)
i,j;k in the form of

eq. (2.13). The Mathematica script current.m is a reference implementation of the numer-
ical evaluation of the bare amplitude coefficients a

(L)
k in eq. (2.13), including summation

of subamplitudes in eq. (2.7), treatment of dependent helicities, and renormalisation scale
restoration in eq. (2.5). The Mathematica script evaluation.wl demonstrates the construc-
tion of the five-particle on-shell amplitudes in eq. (2.10) for the process 0 → e−e+γµ−µ+,
and their helicity-summation to obtain the squared matrix elements in eq. (2.11). The re-
sults of the script are checked against a reference point included in reference_point.json.

We perform the following checks of our amplitudes.
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Ward identity We verify the gauge invariance of the subamplitudes A(L)
i,j

µ
by checking

that they vanish on replacing the on-shell photon’s polarisation vector with its mo-
mentum.

One-loop crosscheck We successfully crosscheck our one-loop nl = 0 helicity-summed
matrix element contracted with the decay γ∗ → µ−µ+ against the QED NLO electron-
line corrections for eµ → eµγ obtained with McMule [74, 75].

Finite remainder We verify that the ϵ-poles of the bare amplitudes have the structure
predicted by UV renormalisation and IR factorisation [76–80]. We then subtract the
expected poles and define finite remainders at one and two loops as

F (1)µ =

[
A(1)µ − 3

2

β0
ϵ
A(0)µ

]
− Z(1)A(0)µ , (2.14a)

F (2)µ =

[
A(2)µ − 5

2

β0
ϵ
A(1)µ −

(
−15

8

β2
0

ϵ2
+

3

4

β1
ϵ

)
A(0)µ

]
− Z(2)A(0)µ − Z(1)F (1)µ ,

(2.14b)

where the square brackets separate renormalisation of UV poles from subtraction of
IR poles. We present the derivation of these formulae in appendix D.

3 Setup of the calculation

In this section, we outline the workflow we used to calculate our amplitudes. Firstly, we
generate all Feynman diagrams contributing to eq. (2.1) using QGRAF [81]. Each diagram is
then replaced with the corresponding Feynman rules for vertices, propagators, and external
states, leading to a collection of D-dimensional Feynman integrals. Next, we filter the
integrals according to eqs. (2.4) and (2.7) using a collection of Mathematica and FORM
scripts [82, 83]. Within each subamplitude A(L)

i,j

µ
, we then collect the integrals according to

their topology, by which we mean a unique set of denominators. For example, the diagrams
in figures 1d and 1e belong to different topologies, but those in figures 1c and 1f belong to
the same topology (under the assumption of massless lepton propagators). At this point,
the subamplitudes are sums of Feynman integrals over distinct integral topologies, with the
numerators given by linear combinations of monomials that depend on the loop as well as
the external momenta. To work with the projected helicity subamplitudes A(L)

i,j · qk, we
specify the polarisations of external particles according to eq. (2.6), as well as the projector
qµk of the off-shell photon from eq. (2.9). It is natural to express helicity-dependent objects
using the spinor-helicity formalism. Then, the monomials of loop momenta contain the
following scalar products and spinor strings:

{ki · kj , ki · pj , ⟨ij⟩, [ij], ⟨i|ki|j], ⟨i|p4|j], ⟨i|kip4|j⟩, [i|kip4|j]} . (3.1)

Their coefficients, on the other hand, are composed of the same type of objects, but do
not contain any dependence on loop momenta ki. We express these coefficients using the
rational parametrisation of the kinematics discussed in appendix C.
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1
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4

(c) Crossed double-boxes

Figure 2: The two-loop amplitudes include six ordered integral families: three penta-
triangles, a double-box, and two crossed double-boxes. All are planar except for the crossed
double-boxes. The off-shell external leg is indicated by a bold line. External legs have
outgoing momenta.

This marks the start of our finite-field sampling procedure [51]. The goal of this ap-
proach is to sidestep the algebraic complexity which typically plagues the intermediate
stages of symbolic computations by evaluating numerically all rational coefficients. Using
integers modulo some large prime number — which constitute a finite field — for the numer-
ical evaluation allows us to avoid the loss of accuracy inherent to floating-point numbers, as
well as the expensive arbitrary-precision arithmetic required by rational numbers. Manipu-
lations needed to further process the rational coefficients are a completely separate problem
from the calculation of the integrals or special functions that these coefficients multiply. In
fact, they can be implemented as a series of rational transformations over finite fields. We
stress that this is the methodology we follow at each step of the computation described
below. In particular, we use the package FiniteFlow [52], which is conveniently interfaced
to Mathematica. The analytic form of the coefficients is not known at any intermediate
step. It is reconstructed from the finite-field samples only at the very end of the workflow.

Firstly, we note that not all integral topologies are independent: some of them can be
written as subtopologies of others. For this reason, we define the set of maximal topologies,
i.e. topologies with the maximum number of propagators allowed for L-loop, n-particle
diagrams. In figure 2, we present the maximal topologies for the process under consideration
in an arbitrary ordering of the external momenta (we give their explicit definitions in
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appendix A). Several orderings of the external momenta are relevant for the amplitudes,
and we treat them as distinct families. Next, we map all topologies present so far onto
one of these maximal topologies. The loop momenta dependent objects of eq. (3.1) are
then expressed through the nine inverse propagators and irreducible scalar products (ISPs)
associated with the chosen maximal topology. In this way, each subamplitude is now a sum
of integrals compatible with IBP reduction [84, 85], while their coefficients depend on the
external kinematics and ϵ. We generate the required IBP relations using LiteRed [86]. The
resulting IBP system is then solved using the Laporta algorithm [87] with FiniteFlow’s
linear solver to yield the reduction of all the integrals present within our maximal topologies
onto a much smaller subset of master integrals (MIs). It is beneficial to choose the MIs such
that they satisfy differential equations (DEs) in canonical form [88] (see section 4.1). This
property allows us to make the most of the optimisation measures we discuss below. We
stress that the IBP reduction is also done numerically over finite fields, since the coefficients
of the IBP relations are rational functions of external kinematics and the dimensional
regulator ϵ. This is an important simplification, since analytic IBP reduction often proves
to be the bottleneck of amplitude computations. For many amplitude applications, multiple
permutations of the ordered topologies can appear. We outline a strategy to optimise the
reduction in such situations in appendix B.

At this point, each projected helicity subamplitude A(L)
i,j · qk is written as a linear

combination of MIs multiplied by rational coefficients of ϵ and the kinematic variables. We
now write the MIs in terms of a basis of special functions up to the required order in ϵ

(see section 4). Finally, we Laurent expand the amplitude around ϵ = 0, the deepest pole
being 1/ϵ2L at L loops. The only task left is to reconstruct the rational coefficients of
the special-function monomials from their samples over finite fields. In general, this might
be a daunting challenge and its complexity stems from two separate factors. The workflow
described so far is a series of rational operations chained together within a so-called dataflow
graph [52]. As such, we essentially have a black-box algorithm which takes numerical values
of the kinematic variables as input, and returns the corresponding numerical values of the
rational coefficients of the special-function monomials. The first factor is that several sample
points are necessary to infer the analytic expression of these coefficients from their values
in the finite fields. The required number is correlated with the polynomial degrees of the
rational functions viewed as ratios of polynomials: the higher the degree, the more sample
points are required. The second factor affecting the reconstruction complexity is the time it
takes to obtain the values of the coefficients at each sample point. The more complicated the
dataflow graph is, i.e. the more operations are chained together and the more difficult each
operation is, the longer it will take to run the black-box algorithm. The most expensive
operation in this regard is the evaluation of the solution to the IBP system. The total
reconstruction time can thus be estimated as:

reconstruction time ≈ (number of sample points)× (evaluation time per point) . (3.2)

We emphasise that the sample evaluations can be run in parallel. For a detailed discussion of
various strategies to improve the reconstruction time, see section 4 of ref. [41] and section 3.5
of ref. [47]. Here, we give a brief overview of the tools that proved sufficient for this work.
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First, we look for Q-linear relations among the rational coefficients of each helicity sub-
amplitude. This typically requires few sample points with respect to the full reconstruction.
We then solve these linear relations to express all coefficients in terms of a minimal subset
of independent ones. Only the latter need to be reconstructed. Choosing them so that they
have the lowest degrees often leads to a decrease in the complexity of the reconstruction.

The second strategy we employ is to match the rational coefficients with factorised
ansätze informed by the singularity structure of Feynman integrals. The singularities of
Feynman integrals can in fact be read off from the DEs they satisfy. For each coefficient
we then write an ansatz made of the following factors:

{⟨ij⟩, [ij], ⟨i|p4|j], sij − sk4, si4 − s4, s4} , (3.3)

for all i, j, k = 1, 2, 3 such that i ̸= j ̸= k. This list includes denominator factors of the DEs
satisfied by the MIs (listed by eq. (4.2)), as well as spinor structures aimed at capturing
the phase information of helicity amplitudes. We then determine the exponents of the
ansätze by comparing them to the coefficients reconstructed on a univariate slice of the
kinematic variables [34], which are very cheap to obtain. We find that with this ansatz it is
possible to determine all denominator factors — which indeed are linked to the singularity
structure of the amplitude — and sometimes also some numerator factors. As a result,
the undetermined functions yet to be reconstructed are of lower degree and require fewer
sample points. We reconstruct the analytic form of the remaining rational functions using
FiniteFlow’s built-in multivariate functional reconstruction algorithm.

Finally, we note that, for more computationally demanding processes, further ansatz-
based techniques — for instance based on partial fraction decompositions or informed by
the singularity structure of the amplitudes — may be used to optimise the functional
reconstruction; see, for example, refs. [41–43, 46, 47, 89, 90].

4 Computation of the master integrals

The MI for the relevant integral families were first computed analytically in refs. [53, 54].
The basis of special functions for 4-particle kinematics with an off-shell leg has been subse-
quently studied in great detail with attention to the compactness of representations in terms
of polylogarithms and numerical evaluation across a complete phase-space refs. [56, 57, 91]
(see also ref. [55] for a thorough discussion of the analytic continuation). We revisit this
computation to obtain expressions for the MIs which are well suited for the amplitude-
computation workflow discussed in section 3. To this end, we compute the MIs for all
permutations of the external legs in terms of a basis of special functions, following the
approach of refs. [45, 64–67]. In other words, we express all the Feynman integrals con-
tributing to the amplitudes in terms of a set of special functions which are (algebraically)
independent. Having such a unified and unique representation for all permutations of the
integral families allows for simplifications and cancellations among different permutations
of the Feynman integrals. This leads to a simpler expression of the amplitudes and to
a more efficient functional reconstruction in the finite-field setup presented in section 3.
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We emphasise that our results cover all MIs required for computing any two-loop four-
particle amplitude with a single external off-shell leg, and not just the ones required for the
amplitudes presented in this work.

We discuss the construction of the basis in section 4.1, and how we express it in terms
of multiple polylogarithms (MPLs) in section 4.2. Finally, we give some details about the
numerical evaluation and the checks we performed in section 4.3.

4.1 Construction of the special function basis

We follow the strategy presented in ref. [67]. The starting point are the DEs satisfied by the
MIs for each family [92–96]. Let τ label an integral family, e.g. the double-box in figure 2b
for an arbitrary permutation of the external massless momenta. We choose a basis of pure
MIs g⃗τ , that is, a basis which satisfies DEs in the canonical form [88]

d g⃗τ (s⃗; ϵ) = ϵ

(
7∑

i=1

A
(τ)
i d logWi(s⃗)

)
· g⃗τ (s⃗; ϵ) . (4.1)

Here, d is the total differential, df := ds12 ∂s12f + ds23 ∂s23f + ds4 ∂s4f , A(τ)
i are constant

nτ × nτ matrices, with nτ the number of MIs of the family τ , and

W1 = s12 , W2 = s23 , W3 = s12 + s23 , W4 = s12 − s4 ,

W5 = s23 − s4 , W6 = s12 + s23 − s4 , W7 = s4
(4.2)

are called letters. We emphasise that this alphabet covers all permutations of the relevant
integrals. Specific integral families may contain only subsets of it. Canonical bases for the
relevant integral families are already available in the literature [57, 62, 63]. Given that, by
today’s standards, finding canonical bases for these integral families is simple, we re-derived
them using a mixture of methods: the package DlogBasis [97], the analysis of results in
the literature for related integral families (massless two-loop five-point planar integrals [98]
and two-loop four-point integrals with two massive external legs [99, 100]), and a set of
heuristic rules (see e.g. ref. [101]). We normalise the MIs such that their expansion around
ϵ = 0 starts from order ϵ0,

g⃗τ (s⃗; ϵ) =
∑
w≥0

ϵw g⃗(w)
τ (s⃗) . (4.3)

For the purpose of computing two-loop scattering amplitudes up to their finite part (i.e.,
up to order ϵ0), it suffices to restrict our attention to w ≤ 4. Since the MIs satisfy canonical
DEs (4.1), the ϵ-order of the MI coefficients g⃗(w)

τ (s⃗) equals their transcendental weight [88].
We compute the derivatives of the MIs using FiniteFlow [52] and LiteRed [86]. We do so
only for the integral families with the ordering of the external momenta shown in figure 2,
and obtain those for all other orderings of the external massless legs by permutation. We
provide the definition of the pure MIs and the corresponding DEs for all one- and two-
loop four-point one-mass families in figure 2 in the folder pure_mi_bases/ of our ancillary
files [73].
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In order to solve the DEs (4.1) we need boundary values, i.e., values of all MIs up
to order ϵ4 at a phase-space point. Due to the simplicity — by today’s standards — of
the integrals under consideration, an arbitrary (non-singular) phase-space point would do.
Nonetheless, we make a more refined choice following some of the criteria of refs. [65, 66].
We choose the following point in the s12 channel (see appendix E),

s⃗0 =

(
2, −1

2
, 1

)
, (4.4)

motivated by two principles: that it is symmetric under the permutations which preserve
the s12 channel (i.e., swapping p1 ↔ p2), and that it contains few distinct prime factors.
The first condition reduces the number of permuted integral families we need to evaluate
in order to obtain the boundary values. The second condition reduces the number of
independent transcendental constants appearing in the boundary values, which simplifies
the construction of the basis of special functions. The order-ϵ0 boundary values g⃗

(0)
τ are

rational constants. We obtain them up to their overall normalisation by solving the ‘first-
entry conditions’ [102], i.e., by requiring the absence of unphysical branch cuts in the
solutions. We fix the overall normalisation and the higher-order boundary values g⃗

(w)
τ (s⃗0)

(for 1 ≤ w ≤ 4) by evaluating all MIs with AMFlow [103] (interfaced to FiniteFlow [52]
and LiteRed [86]) at s⃗0 with at least 60-digit precision. We anticipate from section 4.2
that, although we use floating-point boundary values, our results in terms of MPLs are
fully analytic.

The canonical DEs (4.1) and the boundary values for all integral families are the in-
put for the algorithm of ref. [67] for constructing a basis of special functions. We refer
to the original work for a thorough discussion. Out of all MI coefficients up to transcen-
dental weight 4, the algorithm selects a subset, denoted F := {F (w)

i (s⃗)}, which satisfy
two constraints. First, they are algebraically independent, that is, there are no polynomial
functional relations among them. Second, the MI coefficients of all families (including all
permutations of the external massless legs) up to transcendental weight 4 are expressed
as polynomials in the {F (w)

i (s⃗)} and the zeta values ζ2 = π2/6 and ζ3. For example, an
arbitrary weight-2 MI coefficient g(2)(s⃗) has the general form

g(2)(s⃗) =
3∑

i=1

ci F
(2)
i (s⃗) +

4∑
i≤j=1

dij F
(1)
i (s⃗)F

(1)
j (s⃗) + e ζ2 , (4.5)

with ci, dij , e ∈ Q. This special subset of MI coefficients, {F (w)
i (s⃗)}, constitutes our special

function basis. We give the number of functions in the basis in table 1. Note that there
is freedom in the choice of which MI coefficients make up the basis. We make use of
this freedom to choose as many basis-elements as possible from the one-loop family, then
complement them with coefficients from the planar two-loop families, and finally complete
them with coefficients from the non-planar two-loop families. In this way no two-loop MI
coefficients appear in the one-loop amplitudes, and no non-planar two-loop MI coefficients
appear in those amplitudes where only planar diagrams contribute (as is often the case in
the leading colour approximation of QCD).

– 12 –



Weight Number of basis functions
1 4
2 3
3 20
4 67

Table 1: Number of functions {F (w)
i } in the basis weight by weight.

The folder mi2func/ of our ancillary files [73] contains the expression of all MI co-
efficients (for all one- and two-loop integral families in all permutations of the external
massless legs) up to weight 4 in terms of our special function basis. This result enables
the efficient amplitude-computation strategy based on finite-field arithmetic discussed in
section 3. However, at this stage the basis functions {F (w)

i } are expressed in terms of Chen
iterated integrals [104] and numerical boundary values g⃗(w)(s⃗0). This representation is ex-
cellent for investigating the analytic properties of Feynman integrals and amplitudes, but it
is not readily suitable for an efficient numerical evaluation. In the next section we discuss
how we construct a representation of the function basis in terms of MPLs and zeta values,
which is well suited for an efficient and stable numerical evaluation.

4.2 Expression in terms of multiple polylogarithms

In this section we construct a representation of our function basis in terms of MPLs. Note
that, while the basis functions {F (w)

i } are by construction algebraically independent, the
MPLs appearing in their representation constructed in this section may not be. Nonetheless,
we take a number of simple measures to reduce their number and optimise the representa-
tion. The weight-n MPL of indices {a1, . . . , an} and argument x is defined recursively as

G(a1, a2, . . . , an;x) :=

∫ x

0

dt
t− a1

G(a2, . . . , an; t) , an ̸= 0 , (4.6)

starting with G(;x) = 1. Trailing zeros, i.e., zeros in the right-most indices, are allowed
through the definition

G(0, . . . , 0︸ ︷︷ ︸
k

;x) :=
1

k!
logk(x) . (4.7)

We refer to ref. [105] for a thorough discussion.
Since the letters in eq. (4.2) are rational and linear in all variables, we can solve the

canonical DEs in eq. (4.1) algorithmically in terms of MPLs. Order by order in ϵ, the
solution is given by

g⃗(w)
τ (s⃗) =

7∑
i=1

A
(τ)
i ·

∫
γ
d log

(
Wi(s⃗ = γ)

)
g⃗(w−1)
τ

(
s⃗ = γ

)
+ b⃗(w)

τ , (4.8)

starting from the constant weight-0 boundary values g⃗
(0)
τ determined in the previous sub-

section. Here, γ is a path connecting an arbitrary base-point s⃗base to the end-point s⃗.
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The weight-w constants b⃗
(w)
τ are given by the values of the integrals at the base-point,

b⃗
(w)
τ = g⃗

(w)
τ (s⃗base). For s⃗base we may use the boundary point s⃗0 in eq. (4.4), so that the

constants b⃗
(w)
τ coincide with the boundary values determined numerically in the previous

section. We follow a different approach, which allows us to trade all numerical constants in
the expressions for zeta values.

We find it convenient to change variables from (s12, s23, s4) to (z1, z2, s4), with

z1 =
s12
s4

, z2 =
s23
s4

. (4.9)

This way, there is only one dimensionful variable, s4, the dependence on which is fixed as an
overall factor by dimensional analysis. We then integrate the canonical DEs as in eq. (4.8)
along the following piece-wise path in the (z1, z2, s4) space:

(0, 0, 0)
γ1−→ (z1, 0, 0)

γ2−→ (z1, z2, 0)
γ3−→ (z1, z2, s4) . (4.10)

Since the Feynman integrals are divergent at the chosen base-point, the latter is understood
in a regularised sense (we refer to section 4 of ref. [106] for a thorough discussion). Choos-
ing (0, 0, 0) as base-point has the important benefit of removing spurious transcendental
numbers that would pollute the solution were we to choose a base-point where the integrals
are finite. As we will see below, only zeta values appear. Roughly speaking, we define regu-
larised, finite values b⃗

(w)
τ := Reg g⃗

(w)
τ (s⃗base) by introducing a regulator and formally setting

to 0 the (divergent) logarithms of the regulator. Since the integrals are finite at a generic
end-point s⃗, the divergences at the base-point must cancel out with divergences arising in
the integration. We can thus drop all these divergences. Provided that we do it consistently
between the integration and the base-point values b⃗

(w)
τ , this leads to a finite and unique

result. In practice, we fix the finite base-point values b⃗(w)
τ by matching the solution g⃗

(w)
τ (s⃗)

evaluated at the boundary point s⃗0 against the boundary values discussed in the previous
subsection.

We therefore keep the b⃗
(w)
τ as symbols and integrate the canonical DEs as in eq. (4.8)

along the path in eq. (4.10) up to weight 4. We parameterise each piece of the path in
eq. (4.10) linearly. For instance, γ2(t) = (z1, t, 0), with t ∈ [0, z2].

• The γ1 integration leads to MPLs with indices in {0, 1} and argument z1.

• The γ2 integration leads to MPLs with indices in {0, 1, 1− z1,−z1} and argument z2.

• The γ3 integration leads to powers of log(−s4), fixed by dimensional analysis.

Once we have obtained expressions for all MIs in terms of MPLs and symbolic constants
b⃗
(w)
τ , we equate them to the numerical boundary values at s⃗0, and solve for the b⃗

(w)
τ . We use

GiNaC [105, 107] to evaluate the MPLs numerically. Finally, we use the PSLQ algorithm [108]
to express the ensuing values of b⃗(w)

τ in terms of ζ2 and ζ3. As a result, we obtain a fully
analytic representation of all MIs — and thus of our special function basis {F (w)

i } — in
terms of MPLs and zeta values, up to weight 4.

Contrary to the functions in the basis {F (w)
i }, the MPLs in their representation satisfy

functional relations. We make use of this freedom to optimise our expressions in view of their
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numerical evaluation by reducing the number of distinct MPLs that need to be evaluated.
First, we use the shuffle algebra of MPLs to push all trailing zeros into logarithms through
eq. (4.7) [105]. Next, we employ the scaling relation

G(a1, . . . , an;x) = G
(a1
x
, . . . ,

an
x
; 1
)
, (4.11)

which holds for x, an ̸= 0. As a result, all MPLs have argument 1 and indices

l0 = 0 , l1 =
s4
s12

, l2 =
s4
s23

, l3 =
s4 − s12

s23
, l4 = −s12

s23
. (4.12)

Finally, we decompose the MPLs to Lyndon words [109] using PolyLogTools [110]; we refer
to the latter work for a thorough explanation, and give here only a simple example. This
procedure requires that we choose a symbolic ordering of the MPL indices. We choose
l0 ≺ l1 ≺ l2 ≺ l3 ≺ l4, meaning that l1 is greater than l0, and so on. Consider the MPL
G(l1, l0; 1), whose indices are not sorted according to the ordering above, since l1 ≻ l0. We
can use the shuffle algebra of MPLs to rewrite it in terms of MPLs whose indices are sorted
according to the chosen ordering, as

G(l1, l0; 1) = G(l0; 1)G(l1; 1)−G(l0, l1; 1) . (4.13)

Doing this consistently throughout all expressions reduces the number of higher-weight
MPLs in favour of products of lower-weight ones, which are cheaper to evaluate numerically.
To maximise the impact in this sense, we tested all possible orderings of the indices and
selected the one — given above — which minimises the number of weight-4 MPLs. The
resulting representation of the function basis contains 4 weight-1, 6 weight-2, 19 weight-3,
and 25 weight-4 MPLs, as well as 3 logarithms:

log(s12/s4) , log(s23/s4) , log(−s4) . (4.14)

We write the latter in terms of logarithms rather than MPLs as they play an important
role in the factorisation of the IR divergences in the scattering amplitudes (see appendix D
for the IR structure of the amplitudes we compute here). We stress that log(−s4) is the
only function of a dimensionful argument in our representation of the function basis.

We provide in the folder mi2func/ of our ancillary files [73] the expression of the basis
functions {F (w)

i } in terms of MPLs, logarithms, ζ2 and ζ3.

It is important to stress that the MPLs are multi-valued functions. For unit argument,
there is a pole on the integration contour whenever one of the indices lies between 0 and 1.
In this case the contour must be deformed in the complex plane, either above or below the
pole, leading to different branches. Our MPLs are thus well-defined only in the kinematic
region where all MPL indices in eq. (4.12) are either less than 0 or greater than 1, and we
need s4 < 0 for the argument of all logarithms in eq. (4.14) to be positive. In appendix E,
we discuss how to analytically continue the MPLs to the kinematic regions of interest by
adding infinitesimal imaginary parts to the indices in the numerical evaluation.
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4.3 Performance and validation

We validated our results for the MIs of all families by crosschecking them against values
obtained with AMFlow [103] at several random points in all the physical kinematic regions
discussed in appendix E. Furthermore, we find agreement with the results of ref. [57]. We
employ GiNaC [105, 107] to evaluate the MPLs.

Our results allow for an efficient and stable evaluation of the MIs, and are thus ready
for immediate deployment in phenomenology. Indeed, the amplitudes we computed in this
work have already been implemented in McMule [74, 75] to provide the real-double-virtual
electron-line corrections to eµ → eµ scattering. The evaluation is efficient, running at ≈ 130

events per second in the bulk of the phase space [111] using handyG [112] for the evaluation
of the MPLs.

5 Conclusions

In this article, we calculated analytically the two-loop QED helicity amplitudes for the
process 0 → ℓℓ̄γγ∗ in terms of a basis of multiple polylogarithms that are suitable for fast
and stable numerical evaluation. We employed modern finite-field evaluation techniques to
reconstruct the amplitudes directly in terms of the special function basis, sidestepping the
symbolic computation in all intermediate stages. As a by-product we have recomputed all
two-loop master integrals for four-point functions with an off-shell leg up to transcendental
weight four, and provide all the necessary ingredients needed to use them in amplitude
computations with the same kinematics.

We hope these new results will now open the path to N3LO predictions that can be
used for the future MUonE experiment.
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A Definition of the Feynman integral families

For each two-loop integral family τ corresponding to one of the maximal topologies shown
in figure 2, the Feynman integrals have the form

jτ (a1, . . . , a9) = e2ϵγE
∫

d4−2ϵk1
iπ2−ϵ

d4−2ϵk2
iπ2−ϵ

1

Da1
τ,1 . . . D

a9
τ,9

. (A.1)

The sets {Dτ,1, . . . , Dτ,9} contain seven (inverse) propagators and two ISPs (a8, a9 ≤ 0).
For the maximal topologies under consideration, they are given by1:

1We use a naming convention analogous to that of ref. [113].
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• penta-triangle, mzz configuration:{
k21, (k1 + p1 + p2 + p3)

2, (k1 + p2 + p3)
2, (k1 + p3)

2, k22, (k2 − p3)
2,

(k1 + k2)
2, (k2 − p1 − p2 − p3)

2, (k2 − p2 − p3)
2
}
,

(A.2)

• penta-triangle, zmz configuration:{
k21, (k1 − p1)

2, (k1 + p2 + p3)
2, (k1 + p3)

2, k22, (k2 − p3)
2, (k1 + k2)

2,

(k2 + p1)
2, (k2 − p2 − p3)

2
}
,

(A.3)

• penta-triangle, zzz configuration:{
k21, (k1 − p1)

2, (k1 − p1 − p2)
2, (k1 − p1 − p2 − p3)

2, k22, (k2 + p1 + p2 + p3)
2,

(k1 + k2)
2, (k2 + p1)

2, (k2 + p1 + p2)
2
}
,

(A.4)

• planar double-box:{
k21, (k1 − p1)

2, (k1 − p1 − p2)
2, k22, (k2 + p1 + p2 + p3)

2, (k2 + p1 + p2)
2,

(k1 + k2)
2, (k1 − p1 − p2 − p3)

2, (k2 + p1)
2
}
,

(A.5)

• crossed double-box, mz configuration:{
k21, (k1 + p1 + p2 + p3)

2, (k1 + p2 + p3)
2, k22, (k2 − p2)

2, (k1 + k2)
2,

(k1 + k2 + p3)
2, (k1 + p3)

2, (k2 − p1 − p2 − p3)
2
}
,

(A.6)

• crossed double-box, zz configuration:{
k21, (k1 − p1)

2, (k1 − p1 − p2)
2, k22, (k2 − p3)

2, (k1 + k2)
2,

(k1 + k2 − p1 − p2 − p3)
2, (k1 − p1 − p2 − p3)

2, (k2 + p1)
2
}
.

(A.7)

We also use the one-loop (one-mass) box family, made of the following integrals:

jbox(a1, a2, a3, a4) = eϵγE
∫

d4−2ϵk

iπ2−ϵ

1

Da1
box,1D

a2
box,2D

a3
box,3D

a4
box,4

, (A.8)

with the four inverse propagators Dbox,i{
k21, (k1 − p1)

2, (k1 − p1 − p2)
2, (k1 − p1 − p2 − p3)

2
}
. (A.9)

Feynman’s prescription for the imaginary parts of all propagators is implicit.
These family definitions (strictly with the ordering of inverse propagators and ISPs

shown above) correspond to the integrals j[family,a1,...] that build the canonical MI
bases provided in the pure_mi_bases/ directory of our ancillary files [73]. In this notation,
each j[...] represents a Feynman integral within a given integral family, while the numbers
ai refer to the powers of its propagators and ISPs.
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B Optimised IBP reduction procedure for amplitudes with many per-
muted integral families

An amplitude will in general have contributions from permutations of the ordered integral
families shown in figure 2. To reduce the tensor integrals in the amplitude, IBP identities
must be generated for all the permutations of these ordered families. This can lead to a
very large IBP system. The performance of the reduction setup is extremely sensitive to
the number of IBP identities required so, to minimise the memory consumption, we choose
to generate IBP identities only for the ordered families. Next, we obtain the reduction
for any permutation of these families by permuting the ‘ordered’ reduction numerically
over finite fields. The result is then given in terms of MIs of each family permutation,
but it is missing the symmetry relations that can be found between subsectors of different
families. To express the final result in terms of a minimal set of MIs, we find such relations
from a separate computation. One may account for integral symmetries using automated
tools such as LiteRed [86]. Since we use a pure basis of MIs, the symmetry relations
amongst them will have rational numbers as coefficients. This is because the presence of
any kinematic invariant would spoil the purity of the canonical DEs (see section 4), and
would mean that such a symmetry relation in fact involves non-pure integrals. Therefore,
the computation of the missing symmetry relations can be performed with all kinematic
invariants set to numeric values, which significantly lowers the complexity of this task.
Finally, we note that even if symmetries amongst the MIs were missed, a representation of
the integrals in terms of a basis of special functions — as we construct in section 4 — would
automatically incorporate the extra simplifications and so the same final result would be
obtained. Nonetheless, in practice we do find it useful to include these symmetry relations,
as they reduce the number of independent coefficients that have to be processed further.

The procedure can be summarised as follows:

1. Generate (analytic) IBPs for the six ordered families.

2. Compute the mappings between permutations of the MIs of the system above.

3. Take the tensor integrals in the amplitudes for each permutation of these families and
solve the linear system over finite fields.

4. Apply the symmetry mappings between the MIs of each family permutation to find
the minimal set for the full system.

Since there are a few additional bits of terminology, we can consider a concrete example
to clarify everything. At one-loop, a four-point process with a single off-shell leg can be
described by a single independent integral family which is simply the box topology (see
appendix A for its explicit definition). Following the Laporta reduction algorithm leads to
a basis of four MIs,

MIbox = {jbox(1, 1, 1, 1), jbox(1, 0, 1, 0), jbox(0, 1, 0, 1), jbox(1, 0, 0, 1)} , (B.1)

which are the scalar box and scalar bubble integrals in channels s12, s23 and s4 respectively.
An amplitude will, in general, be written in terms of three permutations of this family. Let
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us denote these permutations as jbox,1234, jbox,2314, and jbox,3124, where jbox,1234 = jbox as
above and the additional superscript indices refer to the order of the external legs. Following
our procedure we would load one set of IBP relations generated for jbox. These identities
can then be permuted numerically, for example as FiniteFlow graphs, to reduce tensor
integrals in each of the three permuted families. The result is now in terms of twelve MIs:
three boxes and nine bubbles. While the amplitude is already in a minimal basis of box
integrals, there is clearly an over-complete set of bubbles. The independent bubbles are in
the channels s12, s23, s13, and s4, so the five additional symmetry mappings are

jbox,2314(1, 0, 1, 0) = jbox,1234(0, 1, 0, 1) , jbox,3124(1, 0, 1, 0) = jbox,2314(0, 1, 0, 1) ,

jbox,3124(0, 1, 0, 1) = jbox,1234(1, 0, 1, 0) , jbox,2314(1, 0, 0, 1) = jbox,1234(1, 0, 0, 1) ,

jbox,3124(1, 0, 0, 1) = jbox,1234(1, 0, 0, 1) .

(B.2)

After applying these identities we arrive at the final result with seven MIs which cover
all permutations of the integral families. This approach would not lead to any significant
performance enhancements in this simple example of course, but it can be particularly
important when considering high-multiplicity examples where the number of permutations
is high.

C Rational parametrisation of the kinematics

Since we are applying finite-field techniques to helicity amplitudes, we employ a ratio-
nal parametrisation of the external kinematics using Hodges’s momentum twistor formal-
ism [114]. While this is not essential to combat the algebraic complexity for the kinematics
considered here, it does provide a convenient parametrisation of the spinor products.

The single-off-shell four-particle phase space p is obtained from a massless five-particle
parametrisation q (defined in appendix A of ref. [41] with {x2 ↔ x4, x3 ↔ x5}) under

pi = qi ∀i = 1, 2, 3, p4 = q4 + q5 . (C.1)

The momentum twistor variables xi for p are then related to the scalar invariants s⃗ through

s12 = x1 , s23 = x1x2 , s4 = x1x3 . (C.2)

Momentum twistors allow us to express any spinor expression as a rational function
in the variables xi. In this representation the helicity scaling is however obscured, as
we have fixed the spinor phases in order to achieve a parameterisation in terms of the
minimal number of variables (see e.g. ref. [115]). Therefore, we need to manually restore
the phase information at the end of the computation. This can be achieved by multiplying
the momentum twistor expression by an arbitrary factor Φ with the same helicity scaling
as the helicity amplitude under consideration, divided by that factor written in terms of
momentum twistor variables. For example, for the helicity configurations of eq. (2.6), we
can use the phase factors

Φ(−++) =
⟨12⟩
⟨23⟩2

, Φ(−+−) =
[12]

[13]2
, (C.3)

– 19 –



which in our momentum twistor parameterisation are given by

Φ(−++) = x21 , Φ(−+−) = − 1

x1(1 + x2 − x3)2
. (C.4)

We refer to appendix C of ref. [42] for a thorough discussion of how to restore the phase
information in a momentum twistor parameterisation.

D Renormalisation and infrared structure

We renormalise the coupling constant by trading the bare coupling αbare for the renor-
malised one αR through

αbare = αR(µR)Zα

(
αR(µR)

)
µ2ϵ
R Sϵ , (D.1)

with Sϵ = (4π)−ϵeϵγE . The renormalisation factor Zα in the MS scheme is [116, 117]

Zα(α) = 1− α

4π

β0
ϵ

−
( α

4π

)2(
−β2

0

ϵ2
+

1

2

β1
ϵ

)
+O

(
α3
)
. (D.2)

The β-function is defined from the renormalised coupling as

dαR(µR)

d lnµR
=
[
−2 ϵ+ β

(
αR(µR)

)]
αR(µR) , (D.3)

and expanded as

β(α) = −2
α

4π

∑
k≥0

βk

( α

4π

)k
, (D.4)

with

β0 = −4

3
nl , β1 = −4nl . (D.5)

The photon wavefunction renormalisation factor is ZA = Zα, which we include due to the
external off-shell photon. The complete renormalisation procedure then is

Aµ
renorm(αR) = Z

1
2
A(αR)Aµ

bare(αbare) , (D.6)

where αbare is expressed in terms of αR through eq. (D.1).
The IR poles of the renormalised amplitude factorise as [76–80]

Aµ
renorm(αR) = Z(αR)Fµ(αR) , (D.7)

so that Z(αR) captures all IR poles and Fµ is a finite remainder. We obtain the explicit
two-loop expression of the IR factor Z(αR) by choosing QED parameters (CA = 0, CF = 1,
and TF = 1) in the non-abelian gauge-theory expressions of ref. [80]. We expand it as

Z(α) =
∑
k≥0

Z(L)
( α

4π

)L
. (D.8)
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The coefficients Z(L) are expressed in terms of the anomalous dimension

Γ = γcusp ln

(
−s12
µ2

)
+ 2γl + γA , (D.9)

and its derivative

Γ′ :=
∂Γ

∂ lnµ
= −2γcusp . (D.10)

Here, γcusp is the cusp anomalous dimension, while γl and γA are the lepton’s and the pho-
ton’s collinear anomalous dimensions, respectively. We expand all anomalous dimensions
y ∈ {Γ, γi} as

y =
α

4π

∑
k≥0

yk

( α

4π

)k
, (D.11)

with coefficients

γl0 = −3 , γl1 = −3

2
+ 2π2 − 24 ζ3 + nl

(
130

27
+

2

3
π2

)
, (D.12a)

γA0 = −β0 , γA1 = −β1 , (D.12b)

γcusp
0 = 4 , γcusp

1 = −80

9
nl . (D.12c)

Finally, the coefficients of the IR factor Z up to two loop are given by

Z(0) = 1 , Z(1) =
Γ′
0

4ϵ2
+

Γ0

2ϵ
, Z(2) =

Z(1)2

2
− 3β0Γ

′
0

16ϵ3
+

Γ′
1 − 4β0Γ0

16ϵ2
+

Γ1

4ϵ
. (D.13)

Putting together the subtraction of UV and IR poles, and expanding the resulting finite
remainder Fµ(αR) in αR leads to the definitions in eq. (2.14).

E Analytic continuation

We analytically continue the MPLs by adding an infinitesimal positive (or negative) imag-
inary part to the MPL indices li in eq. (4.12) whenever they fall between 0 and 1. The
imaginary part of each index prescribes how to deform the integration contour around the
pole associated with it. We do similarly for the logarithms in eq. (4.14). To this end, follow-
ing ref. [55], we change variables from (s12, s23, s4) to (s12, s23, s13), with s4 = s12+s23+s13.
We then add a small positive imaginary part to the latter variables, as

s12 −→ s12 + i c1 δ , s23 −→ s23 + i c2 δ , s13 −→ s13 + i c3 δ , (E.1)

where c1, c2 and c3 are arbitrary positive constants, and δ is a positive infinitesimal. Finally,
we check whether this substitution gives a positive or negative imaginary part to each MPL
index li. This depends on the domain of the kinematic variables. We focus on three
kinematic regions which are of phenomenological interest. The analytic continuation for
any other region may be obtained similarly.

– 21 –



Index Peµ→eµγ Peē→γγ∗ Pγ∗→eēγ

l1 − + 0

l2 − 0 0

l3 − 0 0

l4 0 0 0

Table 2: Imaginary parts of the MPL indices defined by eq. (4.12) in the three kinematic
regions discussed in appendix E. The symbol + (−) denotes a positive (negative) imaginary
part, while 0 means no analytic continuation is needed.

Electron-line corrections to e−µ− → e−µ−γ. To define the domain of the kinematic
variables relevant for this application, we embed the four-particle off-shell process of eq. (2.1)
in the five-particle process e−µ− → e−µ−γ. We then determine the kinematic constraints
for the five-particle process (see e.g. appendix A of ref. [66]), and from them derive the
constraints on the four-point off-shell kinematics. The result is

Peµ→eµγ := {s⃗ : s12 < 0 ∧ s23 < 0 ∧ 0 < s13 < −s12 − s23} . (E.2)

The MPL index l4 = −s12/s23 is always negative in Peµ→eµγ , hence no analytic continuation
is required. The other three indices may instead fall between 0 and 1. Let us study l1.
Changing variables from s4 to s13 and adding imaginary parts as in eq. (E.1) gives

l1 =
s12 + s13 + s23

s12
+

iδ

s212
[(c2 + c3)s12 − c1(s13 + s23)] +O

(
δ2
)
. (E.3)

The imaginary part of l1 may be either negative or positive in Peµ→eµγ . However, it is
strictly negative in the subregion of Peµ→eµγ where 0 < l1 < 1. We therefore assign
a negative imaginary part to l1 whenever 0 < l1 < 1 in Peµ→eµγ . The analysis of the
other indices follows similarly, and is summarised in table 2. The arguments of the three
logarithms in eq. (4.14) are positive in Peµ→eµγ .

Corrections to e−e+ → γγ∗. The relevant domain of the kinematic variables in this
case can be derived directly for the four-point kinematics, and is typically named the s12
channel. It is given by

Peē→γγ∗ := {s⃗ : s23 < 0 ∧ s13 < 0 ∧ s12 > −s23 − s13} . (E.4)

The MPL indices l2, l3 and l4 can never fall between 0 and 1 in Peē→γγ∗ , and hence require
no analytic continuation. We instead need to add a positive imaginary part to l1. In this
region also the logarithms in eq. (4.14) need to be analytically continued. The argument of
log(s12/s4) is positive in Peē→γγ∗ . By adding imaginary parts to the arguments of the other
logarithms and studying them where the arguments are negative in Peē→γγ∗ , we determine
that the analytic continuation is achieved through the following replacements:

log(s23/s4) −→ log(−s23/s4) + iπ , log(−s4) −→ log(s4)− iπ . (E.5)
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Corrections to the decay γ∗ → e−e+γ. The relevant domain of the kinematic vari-
ables is

Pγ∗→eēγ := {s⃗ : s12 > 0 ∧ s23 > 0 ∧ s13 > 0} . (E.6)

All MPL indices li in eq. (4.12) are either li < 0 or li > 1, hence no analytic continuation
is required. The same holds for the first two logarithms in eq. (4.14), whose arguments
are positive. The only function which needs to be analytically continued is log(−s4). We
achieve this by replacing

log(−s4) −→ log(s4)− iπ . (E.7)

The information about the imaginary parts of the MPL indices can be fed into the
publicly available libraries for evaluating these functions numerically, such as FastGPL [118],
GiNaC [105, 107], and handyG [112]. This typically leads to longer evaluation times with
respect to MPLs which do not need analytic continuation. We find that this is not an
issue for the planned applications of our results (see section 4.3). Nonetheless, we note
that a more performant evaluation may be achieved by tailoring the representation to the
kinematic region of interest in such a way that no MPLs require analytic continuation. We
refer to ref. [53–57] for a detailed discussion.
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