
18 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Giant vortex dynamics in confined bacterial turbulence

Published version:

DOI:10.1103/PhysRevE.106.055103

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1885148 since 2024-02-28T10:00:20Z



Giant vortex dynamics in confined bacterial turbulence

L. Puggioni,1 G. Boffetta,1 and S. Musacchio1, ∗

1Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy.
(Dated: January 10, 2023)

We report the numerical evidence of a new state of bacterial turbulence in confined domains. By
means of extensive numerical simulations of the Toner-Tu-Swift-Hohenberg model for dense bacterial
suspensions in circular geometry, we discover the formation a stable, ordered state in which the
angular momentum symmetry is broken. This is achieved by self-organization of a turbulent-like
flow into a single, giant vortex of the size of the domain. The giant vortex is surrounded by an
annular region close to the boundary, characterized by small-scale, radial vorticity streaks. The
average radial velocity profile of the vortex is found to be in agreement with a simple analytical
prediction. We also provide an estimate of the temporal and spatial scales of a suitable experimental
setup comparable with our numerical findings.
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INTRODUCTION

Flowing active matter is one of the most fascinating examples of out-of-equilibrium systems which sits at the inter-
section between statistical physics, biophysics and fluid dynamics [1–3]. In dense active systems, such as suspensions
of bacteria, the collective motion of the individual swimmers produces complex flows at scales much larger than the
single swimmer [4, 5], often with chaotic dynamics on several length scales [6–10]. In these conditions, the flow pro-
duced by the swimmers has several similarities with usual, high Reynolds number turbulence, including the presence
of coherent structures [11–14], a wide range of active scales and anomalous transport [15, 16] and it leads to states
called active turbulence [3].

In order to understand and rationalize the experimental observations, a considerable theoretical effort has been
devoted to develop continuous, coarse-grained descriptions of dense active suspensions [17–20]. More recently, simple
models with a reduced number of parameters have been introduced [12, 21–25], and compared with experimental results
[12, 26–28]. These minimal models reproduce several features of active turbulence such as spontaneous flow [29, 30]
and multiscale dynamics [31–34], clustering [35, 36] and anomalous diffusion [37].

The numerical studies of these models are often performed in two-dimensions. This is motivated by the fact that
most of the experiments of bacterial suspensions are conducted in quasi-two-dimensional domains. Moreover, periodic
boundary conditions are often assumed since one is interested in the bulk properties of the active flow. Nonetheless,
experiments have shown that confining boundaries can play an important role in the organization of the flow, inducing
the emergence of various forms of coherent structures in different types of active fluids [5, 38–42]. In particular, recent
experimental studies have shown that confining the bacterial suspension in circular micro-wells induces the formation
of a rectified vortex [5, 43, 44].

Here we pursue the investigation of the importance of boundaries by presenting the results of extensive numerical
simulations of the Toner-Tu-Swift-Hohenberg (TTSH) model [12, 26] confined in two-dimensional circular domains.
We show that the geometrical confinement induces the transition to a novel regime, characterized by the formation
of a giant vortex surrounded by an annular region of elongated vorticity structures (streaks). This state has larger
size and different velocity profile with respect to the vortical structures reported in previous studies [5, 43, 45] and it
originates from a different process which involves complex interactions between the chaotic flow and the boundaries.
By an exploration of the parameter space we find that the appearance of the giant vortex is a robust feature of the
model in the presence of confinement, and it occurs in a range of physical parameters accessible to experiments of
bacterial turbulence.

TONER-TU-SWIFT-HOHENBERG MODEL

The equation for the coarse-grained collective velocity field u of bacterial suspensions in the TTSH model takes the
form

∂tu + λu ·∇u = −∇p− (α+ β|u|2 + Γ2∇2 + Γ4∇4)u . (1)

The pressure gradient ∇p ensures the incompressibility of the flow, ∇ · u = 0, which is valid for dense suspensions.
The parameters λ, α, β,Γ2,Γ4 are determined by the properties of the microswimmers. For pusher swimmers one has
λ > 1, while λ < 1 corresponds to pullers [3]. The Swift-Hohenberg operator Γ2∇2 + Γ4∇4 selects the characteristic
scale Λ = 2π

√
2Γ4/Γ2 at which the flow is forced by the microscopic motion [46]. For α < 0, the Landau force

(α+ β|u|2)u promotes the formation of collective motion with velocity U =
√
−α/β. Larger values of |α| correspond

to stronger aligning interactions between the swimmers, as in the original Toner-Tu (TT) model for flocking [47, 48].
The TTSH model displays a very rich phenomenology which is the subject of an intense research activity [31, 49–52].
Generalizations of the TTSH model to include coupling with a fluid velocity field and compressible flows have been
proposed [35, 53, 54]. We remind that the TTSH model has been developed as a model for bacterial suspensions.
Therefore, the results presented in the following are not generalizable to other active systems such as cytoskeletal
filaments and molecular motors.

THE RISE OF THE GIANT VORTEX

We performed a set of numerical simulations of the TTSH model confined in two-dimensional circular domains of
radius R. No-slip boundary conditions are imposed at the border of the circular domain by means of the penalization
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method [55], by adding the term − 1
τM(r)u to the r.h.s. of (1) where τ represents the permeability time and is the

smallest dynamical time in the system. The mask function M(r) = (tanh((r − R)/(2∆x)) + 1)/2 imposes a sharp
decay of the fields at the boundary on a scale of few grid points with spacing ∆x. Numerical integration of (1)
supplemented with the penalization term is obtained by fully dealiased pseudospectral code with fourth-order Runge
Kutta time scheme. The parameters of the simulations are reported in Table I.

R N2 α
A1 16Λ 512 × 512 -2.00
A2 -1.75
A3 -1.50
A4 -1.25
B1 23Λ 1024 × 1024 -2.00
B2 -1.75
B3 -1.50
C1 31Λ 1024 × 1024 -2.00
C2 -1.75
C3 -1.50

TABLE I: Values of coefficient α, confinement radius R and numerical resolution N2, for the three sets of
simulations (A, B, C). All the simulations are performed with parameters λ = 3.5, β = 0.01, Γ2 = 2, Γ4 = 1,

τ = 0.001, and grid spacing ∆x = 5/64Λ.

For the analysis, we decompose the velocity field in the radial and angular components u = urr̂+uϕϕ̂ which define
the radial and angular kinetic energies Er = 1

2 〈u
2
r〉 and Eϕ = 1

2 〈u
2
ϕ〉 (here and in the following, 〈·〉 denotes spatial

average over the circular domain of radius R).
We let the system evolve starting form a null velocity field seeded with an infinitesimal random perturbation. At the

beginning of the simulation, the swimmers organize in a large number of small-scale vortices, with equal probability
of positive and negative vorticity and homogeneous and isotropic spatial distribution. In this stage, the statistical
properties of the flow are identical to those observed in simulations with periodic boundary conditions [31, 32]. After
a short time, the system evolves towards an intermediate, turbulent-like regime, characterized by the presence of
multiple large-scale vortices, which move chaotically and are surrounded by regions of vorticity streaks (see Fig. 1,
left panel).

FIG. 1: Vorticity field for the simulation with R = 31Λ and α = −1.75 at t = 210Λ/U (left) and t = 550Λ/U (right).

During this stage of the simulation we observe equipartition (with strong temporal fluctuations) between the radial
and angular components of the kinetic energy (see Fig. 2). At later times, the system displays a rapid increase of Eϕ
accompanied by the decrease of Er, which indicates the transition to a novel regime characterized by Eϕ ' E0 ≡ 1

2U
2

and Er ' 0. This corresponds to the self-organization of the swimmers in a state of circular flocking, that is, a
stationary, single, giant vortex which spans the whole domain (see Fig. 1 right panel), similar to that observed in
experiments of bacterial suspension in a viscoelastic fluid [56].

The formation of this large-scale structure causes a symmetry breaking of the angular momentum of the flow
M = 〈r × u〉. As shown in Fig. 3, the values of M fluctuate around zero before the formation of the giant vortex.
Later, M saturates to a constant value |M | 'M0 ≡ 2

3UR with definite sign. Changing the initial condition of the flow,
we observed a strong variability of the transition times from the intermediate turbulent regime to the giant-vortex
state (see the inset of Fig. 3).

In Figure 4 we compare the energy spectra E(k) before and after the transition (the spectra correspond to the fields
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FIG. 2: Temporal evolution of the radial and angular components of the kinetic energy Er (blue, dashed line), Eϕ
(red, solid line) normalized with E0 = 1
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FIG. 3: Temporal evolution of the angular momentum M normalized with M0 = 2
3UR for the simulation at

R = 31Λ and α = −1.75. The inset shows the evolution of the angular momentum for an ensemble of simulation
with different initial conditions with α = −1.50 and R = 16Λ.

shown in Figure 1). Before the transition, we find that the intermediate regime is characterized by a turbulent-like
power-law energy spectrum E(k) ∼ k−ζ , similar to what observed in recent numerical simulations of the TTSH model
with periodic boundary conditions [57], although the spectral slope ζ ' −2 observed in our simulations is steeper
than the value −3/2 reported in [57]. After the formation of the giant vortex, we observe a spectral condensation of
the energy in the lowest mode, accompanied by a depletion of the energy spectrum at intermediate wavenumbers. At
wavenumbers k & 2π/Λ the spectrum remains almost unchanged.

The degree of order of the collective motion of the swimmers in the giant vortex can be quantified by the vortex
order parameter [5, 43, 44] which is defined as Φ = (〈|u · ϕ̂|〉/〈|u|〉 − 2/π)/(1− 2/π). A velocity field oriented in the
angular direction u ‖ ϕ̂ gives Φ = 1, while Φ = 0 corresponds to random-oriented velocity. The values of Φ measured
in the late stage are very close to 1, (see Figure 5), which indicates that the motion of the swimmers is highly ordered.
The degree of order increases reducing the radius R of the domain and increasing |α|.
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FIG. 4: Energy spectra for the simulation with R = 31Λ and α = −1.75 at t = 210Λ/U (blue, solid line) and
t = 550Λ/U (red, dashed line). The black, dash-dotted line represents the slope k−2.
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FIG. 5: Mean value of the vortex order parameter Φ as a function of α for R = 16Λ (green triangles), R = 23Λ (red
circles), R = 31Λ (blue squares).

RADIAL PROFILES OF THE GIANT VORTEX

The time-averaged, mean radial vorticity profile of the giant vortex ω(r) = 1
2πr

∫
ω(r′)δ(|r′|−r)d2r′ displays a power

law behavior ω(r) ∝ 1/r in the region Λ . r . R − Λ far from the boundaries and from the center (Figure 6). A
theoretical prediction for ω(r) can be derived by assuming that the radial component of the velocity vanishes, ur = 0,
and that the angular component depends only on r as uϕ = rΩ(r), where Ω(r) is the angular velocity. The resulting
vorticity field is ω = ∇× u = 2Ω(r) + r∂rΩ(r). Inserting these expressions in the equation for the vorticity, which is
obtained by taking the curl of Eq. (1), and imposing the stationarity condition, one gets the following equation for
Ω(r)

(α+ Γ2∇2 + Γ4∇4)(2Ω + r∂rΩ) + βr2Ω2(4Ω + 3r∂rΩ) = 0 . (2)

With the further assumption (justified a posteriori [58] ) that the Swift-Hohenberg term is negligible for r � Λ,
Eq. (2), admits the power-law solution Ω(r) = crγ with c = ±

√
−α/β and γ = −1. This gives a prediction for the

radial profiles of velocity u(r) = ±Uϕ̂ and vorticity ω(r) = ±U/r, which is in perfect agreement with our numerical
findings (see Figure 6).

Beside the giant vortex, Figure 1 also shows the presence of vorticity fluctuations in an annular region close to
the boundary. These have the aspect of elongated structures, slightly leaned in the direction of the mean flow of the
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FIG. 6: Radial profiles of the vorticity, ω(r) (empty symbols), and of the RMS vorticity, ωrms(r) (filled symbols),
for simulations with R = 31Λ, α = −1.5 (blue squares), α = −1.75 (red circles) and α = −2 (green triangles). The

black line is the prediction |ω(r)| = U/r.

vortex, which extend from the boundary toward the center of the domain. These structures are composed by pairs of
vortical streaks with opposite sign, corresponding to radial velocity jets with a typical transverse width of the order of
Λ. The average number of streaks in a domain of radius R is therefore N ' 2R

√
Γ2/2Γ4. The formation of alternated

streaks in the TTSH model has been observed also in numerical simulations in the absence of boundaries [37], and it
is responsible for superdiffusive behavior of Lagrangian tracers [59].

The intensity of the vorticity fluctuations can be quantified by the RMS vorticity profile ωrms(r) = (ω2(r))1/2 which
is shown in Figure 6. Vorticity fluctuations are absent in the central region of the vortex in which ωrms(r) coincides
with the mean radial profile |ω(r)|. They appear at larger r, as shown by the increase of ωrms(r) which reaches an
almost constant plateau close to the boundary ωrms(r) ' U/Λ.

Further details on the statistics of the streaks are revealed by the profiles of radial and angular velocity fluctuations
defined as u′r(r) = (u2r(r))

1/2 and u′ϕ(r) = (u2ϕ(r)− uϕ2(r))1/2, shown in Figure 7. The radial component is predomi-
nant in the velocity field of the streaks. Close to the boundary, the ratio between the intensities of radial and angular
fluctuations is almost constant u′r/u

′
ϕ ' 4.2. The intensity of velocity fluctuations decays at increasing the distance

from the boundary R− r.
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FIG. 7: Radial profiles of the radial and tangential components of the velocity fluctuations, u′r(r) (empty symbols)
and u′ϕ((r) (filled symbols), as a function of the distance from the boundary for α = −1.75, R = 31Λ (blue squares),

α = −1.5, R = 23Λ (red circles) and α = −1.25, R = 16Λ (green triangles).

The width of the region in which the streaks are present can be quantified as the distance δ from the boundary
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FIG. 8: Radial profiles of the vortex order parameter, Φ(r), for simulations with R = 31Λ, α = −1.5 (blue squares),
α = −1.75 (red circles) and α = −2 (green triangles). The black dashed line is the threshold value Φthr = 0.9995
used to define the width δ of the region in which the streaks are present. Inset: Width δ of the annular regions of

the streaks as a function of α for R = 16Λ (green triangles), R = 23Λ (red circles), R = 31Λ (blue squares).

at which the radial profile of the order parameter exceeds a given threshold value Φ(R − δ) = Φthr (see Fig. 8).
The values of δ (with Φthr = 0.9995) are reported in the inset of Figure 8. We find that δ increases monotonically
increasing the radius R of the circular domain and decreasing the parameter |α|. The scaling of δ as a function of the
parameters of the model and of the radius R remains an open question which deserves further theoretical studies.

DISCUSSIONS

The formation of the giant vortex surrounded by streaks is the results of competing mechanisms which can be
understood by the comparison with the phenomenology observed in numerical simulations with periodic boundary
conditions. In the latter case, the Landau potential and the self-propulsion term promote the development of a flocking
state, in which all the bacteria swim in the same direction with a constant speed [47]. This collective ordered motion
is destabilized by the Swift-Hohenberg operator which causes the formation of vorticity streaks in the transverse
direction with respect to the mean flow [21]. A possible explanation of our findings is that the confinement in circular
domains drives the system toward a state of circular flocking and then stabilizes it, preventing the formation of
streaks in the center of the giant vortex. Vorticity fluctuations are nonetheless generated close to the boundary by
friction forces. The vorticity production triggers the symmetry breaking of the angular momentum and facilitates the
formation of the giant vortex.

Despite this simple interpretation, the formation of the giant vortex, is a highly non-trivial process which is far from
being fully understood. As shown in Figure 1, the final state with a single vortex is achieved after a long turbulent
regime in which several large-scale vortices compete with each other to prevail. We observed a strong variability of
the duration of this intermediate regime for different realizations of the flow, which confirms the complexity of this
process and suggests that the transition to the giant vortex may have a stochastic nature, with a broad distribution
of the transition times.

We remark that the phenomenon presented here differs deeply from those previously reported in experiments [5, 43]
and numerical simulations [45] of confined bacterial suspensions. The confining scale in these studies is much smaller
than in our case, and the rectified vortex originates directly from the linear instabilities of the steady, no-flow state.
Moreover, they found a double vortex with a non-monotonic radial profile of the azimuthal velocity [45], Conversely,
the giant vortex observed in our study displays a uniform profile of azimuthal velocity surrounded by an annular
region of vorticity streaks and it is produced by a non-linear mechanism from the interaction of the chaotic flow
with the boundaries. This process requires a domain large enough to allow for the development of the turbulent-like
regime which precedes the transition to the giant vortex. Our simulations show that a domain with radius R = 16Λ
is sufficient for this purpose.

The exact determination of the range of values of R/Λ in which the giant vortex forms remains an open question.
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At fixed α we find that there is a maximum size of the domain which allows for the formation of the giant vortex.
Nonetheless, it is extremely difficult to determine the precise value of this maximum size, because of the strong
variability of the transition times. For values of R close to the maximum size, we observed the formation a giant
vortex whose core consists of a binary rotating system of two small, equal-sign vortices (see Fig.9). Increasing further
the radius R the evolution of the system remains in the turbulent regime characterized by multiple large-scale vortices
which fail to merge in a single vortex during the simulation time.

FIG. 9: Vorticity field in late stage of the simulation with R = 31Λ and α = −1.50, which displays a giant vortex
whose core consists of a binary rotating system of two small, equal-sign vortices.

A comparison of the results of numerical simulations of the TTSH model and experiments of bacterial turbulence in
confined geometry could shed new insight on this puzzling phenomenon. A quantitative correspondence between our
simulations and a feasible experimental setup can be established by matching the parameters of the TTSH model with
the typical values of the characteristic scale Λ and velocity U of the collective bacterial motion which are observed in
experiments (e.g., in [4, 12, 26]). As an example, by fixing Λ ' 25µm and U ' 50µm/s the values of the radius R of
the circular domain considered in our study correspond in physical units to the range R ' (400− 800)µm, the values
of the parameter α are in the range −α ' (1.4 − 1.8)s−1 and the typical time required to observe the formation of
the giant vortex is of the order of minutes (see Figure 2). These spatial and temporal scales are easily accessible in
experiments of dense bacterial suspensions, such as those of Bacillus subtilis.

ACKNOWLEDGMENTS

We acknowledges support from the Departments of Excellence grant (MIUR) and INFN22-FieldTurb. We thank
M. Cencini for useful comments and suggestions.

∗ Corresponding author; stefano.musacchio@unito.it
[1] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85,

1143 (2013).
[2] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).
[3] R. Alert, J. Casademunt, and J.-F. Joanny, Annu. Rev. Condens. Matter Phys. 13 (2021).
[4] A. Sokolov and I. S. Aranson, Phys. Rev. Lett. 109, 248109 (2012).
[5] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).
[6] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).
[7] A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson, Phys. Rev. E 80, 031903 (2009).
[8] A. Creppy, O. Praud, X. Druart, P. L. Kohnke, and F. Plouraboué, Phys. Rev. E 92, 032722 (2015).
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