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Abstract
Linear least squares is one of the most widely used regression methods in many fields. 
The simplicity of the model allows this method to be used when data is scarce and allows 
practitioners to gather some insight into the problem by inspecting the values of the learnt 
parameters. In this paper we propose a variant of the linear least squares model allow-
ing practitioners to partition the input features into groups of variables that they require to 
contribute similarly to the final result. We show that the new formulation is not convex and 
provide two alternative methods to deal with the problem: one non-exact method based on 
an alternating least squares approach; and one exact method based on a reformulation of 
the problem. We show the correctness of the exact method and compare the two solutions 
showing that the exact solution provides better results in a fraction of the time required by 
the alternating least squares solution (when the number of partitions is small). We also pro-
vide a branch and bound algorithm that can be used in place of the exact method when the 
number of partitions is too large as well as a proof of NP-completeness of the optimization 
problem.
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1  Introduction

Linear regression models are among the most extensively employed statistical methods in 
science and industry alike  (Bro et  al., 2002; Intriligator et  al., 1978; Isobe et  al., 1990; 
Nievergelt, 2000; Reeder et  al., 2004). Their simplicity, ease of use and performance in 
low-data regimes enables their usage in various prediction tasks. As the number of obser-
vations usually exceeds the number of variables, a practitioner has to resort to approximat-
ing the solution of an overdetermined system. Least squares approximation benefits from 
a closed-form solution and is perhaps the most well known approach in linear regression 
analysis. Among the benefits of linear regression models there is the possibility of easily 
interpreting how much each variate is contributing to the approximation of the dependent 
variable by means of observing the magnitudes and signs of the associated parameters.

In some application domains, partitioning the variables in non-overlapping subsets is 
beneficial either as a way to insert human knowledge into the regression analysis task or 
to further improve model interpretability. When considering high-dimensionality data, 
grouping variables together is also a natural way to make it easier to reason about the data 
and the regression result. As an example, consider a regression task where the dependent 
variable is the score achieved by students in an University or College exam. A natural way 
to group the dependent variables is to divide them into two groups where one contains 
the variables which represent a student’s effort in the specific exam (hours spent study-
ing, number of lectures attended...), while another contains the variables related to previ-
ous effort and background (number of previous exams passed, number of years spent at 
University or College, grade average...). Assuming all these variables could be measured 
accurately, it might be interesting to know how much each group of variables contributes to 
the student’s score. As a further example, when analyzing complex chemical compounds, it 
is possible to group together fine-grained features to obtain a partition which refers to high-
level properties of the compound (such as structural, interactive and bond-forming among 
others), and knowing how much each high-level property contributes to the result of the 
analysis is often of great practical value (Caron et al., 2013). The LIMPET dataset that we 
introduce in Sect. 5 is a clear-cut example of problems with such structure. In the LIM-
PET dataset, we have a large number of features that can be grouped in well understood 
high-level structures and where variables in each group necessarily have to contribute in 
the same direction (i.e., positively or negatively) to the prediction of lipophilicity of the 
compound under study.

In this paper, we present a novel variation of linear regression that incorporates fea-
ture partitioning into discernible groups. This adapted formulation empowers the analyst 
to exclude unwanted, unrealistic solutions wherein features within a group are assigned 
parameters of contrary signs. Thus, the analyst is able to inject domain-specific knowledge 
into the model. Furthermore, the parameters obtained by solving the problem allow one to 
easily assess the contribution of each group to the dependent variable as well as the impor-
tance of each element of the group.

The newly introduced problem is not easy to solve and indeed we will prove the non-
convexity of the objective, and the NP-completeness of the problem itself. In Sect. 3 we 
introduce two possible algorithms to solve the problem. One is based on an Alternate Con-
vex Search method (Wendell & Hurter, 1976), where the optimization of the parameters 
is iterative and can get trapped into local minima; the other is based on a reformulation 
of the original problem into an exponential number of sub-problems, where the exponent 
is the cardinality K of the partition. We prove convergence of the alternating least square 
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algorithm and the global optimality of the result returned by the second approach. We also 
provide guidance for building a branch and bound  (Lawler & Wood, 1966) solution that 
might be useful when the cardinality of the partition is too large to use the exact algorithm.

We test the two algorithms on several datasets. Our experiments include data extracted 
from the analysis of chemical compounds (Caron et al., 2013) in a particular setting where 
this kind of analysis already proved to be of value to practitioners, and a number of data-
sets having a large amount of features which we selected from the UCI repository  (Dua 
& Graff, 2017): in this latter case the number, size, and composition of the partition has 
been decided arbitrarily just to experiment with the provided algorithms. Our experimental 
results show that the exact algorithm is usually a good choice, the non-exact algorithm 
being preferable when high accuracy is not required and/or the cardinality of the partition 
is too large. Finally, we present and discuss the application of our algorithms to the prob-
lem of predicting house prices, showing that the solution provided by our approach leads to 
more interpretable and actionable results with respect to a least squares model.

While to the best of our knowledge the regression problem and the algorithms we pre-
sent are novel, there has been previous work dealing with alternative formulations to the 
linear regression problem. Some of them have shown to be of great practical use and have 
received attention from both researchers and practitioners.

Partial Least Squares (PLS) Regression (Wold et al., 2001) is a very popular method in 
hard sciences such as chemistry and chemometrics. PLS has been designed to address the 
undesirable behavior of ordinary least squares when the dataset is small, especially when 
the number of features is large in comparison. In such cases, one can try to select a smaller 
set of features allowing a better behavior. A very popular way to select important features 
is to use Principal Component Analysis (PCA) to select the features that contributes most 
to the variation in the dataset. However, since PCA is based on the data matrix alone, one 
risks to filter out features that are highly correlated with the target variables in Y . PLS 
has been explicitly designed to solve this problem by decomposing X and Y simultane-
ously and in such a way to explain as much as possible of the covariance between X and 
Y (Abdi, 2010). Our work is substantially different from these approaches since we are not 
concerned at all with the goal of removing variables. On the contrary, we group them so to 
inject domain knowledge in the model, make the result more interpretable, and to provide 
valuable information about the importance of each group.

Yet another set of techniques that resembles our work are those where a partition of the 
variables is used to select groups of features. Very well known members of this family of 
algorithms are group lasso methods (Bakin, 1999; Yuan & Lin, 2006; Huang et al., 2012) 
provide a review of such methodologies). In these works, the authors tackle the problem 
of selecting grouped variables for accurate prediction. In this case, as in ours, the groups 
for the variables are defined by the user, but in their case the algorithm needs to predict 
which subset of the groups will lead to better performances (i.e., either all variables in a 
group will be used as part of the solution or none of them will be). This is a rather different 
problem with respect to the one that we introduce here. In our case, we shall assume that 
all groups are relevant to the analysis. However, in our case we seek a solution where all 
variables in the same group contributes in the same direction (i.e., with the same sign) to 
the solution. We argue that this formulation allows for an easier interpretation of the contri-
bution of the whole group as well as of the variables included in each group.

Other techniques that bear some resemblance to our proposal are latent class models 
McCutcheon (1987). Latent class models are a categorical extension to factor analysis, try-
ing to relate a set of observed variables to a set of latent variables. The value taken by these 
latter (usually discrete McCutcheon 1987) variables should explain much of the variance in 
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the former ones. Our problem formulation, on the other hand, constrains the prediction of a 
continuous target variable by grouping together sets of observed variables. While the solu-
tions found by the algorithms we propose in this paper may reveal interesting patterns (see 
Sect. 5), our method is not unsupervised and cannot be straightforwardly used to describe 
the variation of the data via discrete, unobservable factors. Our proposal assumes the avail-
ability of a dependent, continuous variable which an analyst is interested in predicting.

In this paper we introduce a new least squares problem and provide algorithms to solve 
it. We note that we presented the original problem formulation for PartitionedLS in a 2019 
paper Esposito et al. (2019). In this follow-up paper, we provide the following new results:

•	 A revised definition for the PartitionedLS-b problem (see Sect. 3), which allows for an 
improved optimality proof;

•	 A complete proof of optimality for the optimal algorithm PartLS-opt, only sketched in 
previous work Esposito et al. (2019);

•	 A proof of NP-completeness for the PartitionedLS problem (not present in previous 
work);

•	 A new branch-and-bound algorithm that may be used in conjunction with PartLS-opt 
when the number of partitions is high;

•	 Information about how to update the algorithms to regularize the solutions;
•	 Information about how to leverage the non-negative least squares algorithm (Lawson & 

Hanson, 1995) to improve numerical stability;
•	 An experimentation of the optimal and the approximate algorithms over three new 

datasets;
•	 An experiment showing how the branch-and-bound algorithm compares with the enu-

merative one;
•	 A new experiment and a discussion of the interpretability of the results obtained by our 

approach when applied to the problem of predicting house prices;
•	 A comparison of the generalization performances of our method with Least Squares, 

Partial Least Squares, and Principal Component Regression.

2 � Model description

In this work we denote matrices with capital bold letters such as X and vectors with lower-
case bold letters as v . In the text we use a regular (non-bold) font weight when we refer to 
the name of the vector or when we refer to scalar values contained in the vector. In other 
words, we use the bold face only when we refer to the vector itself. For instance, we might 
say that the values in the � vector are those contained in the vector � , which contains in 
position i the scalar �i . We consistently define each piece of notation as soon as we use it, 
but we also report it in Table 1, where the reader can more easily access the whole notation 
employed throughout the paper.

Let us consider the problem of inferring a linear least squares model to predict a real 
variable y given a vector x ∈ ℝ

M . We will assume that the examples are available at learn-
ing time as an N ×M matrix X and N × 1 column vector y . We will also assume that the 
problem is expressed in homogeneous coordinates, i.e., that X has an additional column 
containing values equal to 1, and that the intercept term of the affine function is included 
into the weight vector w to be computed.
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The standard least squares formulation for the problem at hand is to minimize the quad-
ratic loss over the residuals, i.e.:

This is a problem that has the closed form solution w = (X⊤X)−1X⊤y . As mentioned in 
Sect. 1, in many application contexts where M is large, the resulting model is hard to inter-
pret. However, it is often the case that domain experts can partition the elements in the 
weights vector into a small number of groups and that a model built on this partition would 
provide more accurate results (by incorporating domain knowledge) or/and be much easier 
to interpret. Then, let P be a “partition” matrix for the problem at hand (this is not a parti-
tion matrix in the linear algebra sense, it is simply a matrix containing the information 
needed to partition the features of the problem). More formally, let P be a M × K matrix 
where Pm,k ∈ {0, 1} is equal to 1 iff feature number m belongs to the k-th partition element. 
We will also write Pk to denote the set {m|Pm,k = 1} of all the features belonging to the k-th 
partition element.

Here we introduce the Partitioned Least Squares (PartitionedLS) problem, a model 
where we introduce K additional variables and express the whole regression problem in 
terms of these new variables (and in terms of how the original variables contribute to the 
predictions made using them). The simplest way to describe the new model is to con-
sider its regression function (to make the discussion easier, we start with the data matrix 
X expressed in non-homogenous coordinates and switch to homogenous coordinates 
afterwards):

minimizew‖Xw − y‖2
2
.

Table 1   Notation

Symbol(s) Definition

ai i-th component of vector a
(⋅)n Shorthand to specify vectors (or matrices) in terms of their components. For instance (i)i shall 

denote a vector v such that vi = i

k, K k is the index for iterating over the K subsets belonging to the partition
m, M m is the index for iterating over the M variables
X An N ×M matrix containing the descriptions of the training instances
A × B Matrix multiplication operation (we also simply write it AB when the notation appears clearer)
y A vector of length N containing the labels assigned to the examples in X
∙ Wildcard used in subscriptions to denote whole columns or whole rows: e.g., X∙,k denotes the 

k-th column of matrix X and Xm,∙ denotes its m-th row
⋆ Denotes an optimal solution, e.g., p⋆ denotes the optimal solution of the PartitionedLS prob-

lem, while p⋆
b
 denotes the optimal solution of the PartitionedLS-b problem

P A M × K partition matrix, Pm,k ∈ {0, 1} , with Pm,k = 1 iff variable �m belongs to the k-th ele-
ment of the partition

Pk The set of all indices in the k-th element of the partition: {m|Pk,m = 1}

k[m] Index of the partition element to which �m belongs, i.e.: k[m] is such that m ∈ Pk[m]

◦ Hadamard (i.e., element-wise) product. When used to multiply a matrix by a column vector, 
it is intended that the columns of the matrix are each one multiplied (element-wise) by the 
column vector

⊘ Hadamard (i.e., element-wise) division
⪰ Element-wise larger-than operator: � ⪰ 0 is equivalent to �m ≥ 0 for m ∈ 1..M
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i.e., f (X) computes a vector whose n-th component is the one reported within parenthesis 
(see Table 1 for details on the notation). The first summation is over the K sets in the par-
tition that domain experts have identified as relevant, while the second one iterates over 
all variables in that set. We note that the m-th � weight contributes to the k-th element of 
the partition only if feature number m belongs to it. As we shall see, we require that all � 
values are nonnegative, and that ∀k ∶

∑
m∈Pk

�m = 1 . Consequently, the expression returns 
a vector of predictions calculated in terms of two sets of weights: the � weights, which are 
meant to capture the magnitude and the sign of the contribution of the k-th element of the 
partition, and the � weights, which are meant to capture how each feature in the k-th set 
contributes to it. We note that the � weight vector is of the same length as the vector w 
in the least squares formulation. Despite this similarity, we prefer to use a different sym-
bol because the interpretation of (and the constraints on) the � weights are different with 
respect to the w weights.

It is easy to verify that the definition of f in (1) can be rewritten in matrix notation as:

where ◦ is the Hadamard product extended to handle column-wise products. More for-
mally, if Z is a A × B matrix, 1 is a B dimensional vector with all entries equal to 1, and a is 
a column vector of length A, then Z◦a ≜ Z◦(a × 1⊤) ; where the ◦ symbol on the right hand 
side of the definition is the standard Hadamard product. Equation (2) can be rewritten in 
homogeneous coordinates as:

where X incorporates a column with all entries equal to 1, and we consider an additional 
group (with index K + 1 ) having a single �M+1 variable in it. Given the constraints on � var-
iables, �M+1 is forced to assume a value equal to 1 and the value of t is then totally incor-
porated into �K+1 . In the following we will assume for ease of notation that the problem is 
given in homogeneous coordinates and that the constants M and K already account for the 
additional single-variable group.

Definition 1  The partitioned least square (PartitionedLS) problem is formulated as:

In summary, we want to minimize the squared residuals of f (X) , as defined in (3), 
under the constraint that for each subset k in the partition, the set of weights form a dis-
tribution: they need to be all nonnegative as imposed by � ⪰ 0 constraint and they need 
to sum to 1 as imposed by constraint P⊤ × � = 1.

(1)f (X) =

(
K∑

k=1

�k

∑

m∈Pk

�mxn,m + t

)

n

,

(2)
f (X) =

(
K∑

k=1

�k

∑

m

Pm,k�mxn,m + t

)

n

= X × (P◦�) × � + t,

(3)f (X) = X × (P◦�) × �,

minimize�,�‖� × (�◦�) × � − y‖2
2

s.t. �≽0

�
T × � = 1.
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Unfortunately we do not know a closed form solution for this problem. Furthermore, the 
problem is not convex and hence hard to solve to global optimality using standard out-of-
the-box solvers. Even worse, later on we shall prove that the problem is actually NP-com-
plete. The following theorem states the non-convexity of the objective function formally.

Theorem 1  The PartitionedLS problem is not convex.

Proof  It suffices to show that the Hessian of the objective function is not positive semidefi-
nite. The details of the proof can be found in Esposito et al. (2019).

	�  ◻

In the following we will provide two algorithms that solve the above problem. One is an 
alternating least squares approach which scales well with K, but it is not guaranteed to pro-
vide the globally optimal solution. The other one is a reformulation of the problem through 
a (possibly) large number of convex problems whose minimum is guaranteed to be the 
globally optimal solution of the original problem. Even though the second algorithm does 
not scale well with K, we believe that this should not be a problem since the PartitionedLS 
is by design well suited for a small group of interpretable groups. However, we do sketch a 
possible branch and bound strategy to mitigate this problem in Sect. 3.4.

Remark 1  The PartitionedLS model presented so far has no regularization mechanism in 
place and, as such, it risks overfitting the training set. Since the � values are normalized by 
definition, the only parameters that need regularization are those collected in the � vector. 
Then, the regularized version of the objective function simply adds a penalty on the size of 
the � vector:

where the squared euclidean norm could be substituted with the L1 norm in case a LASSO-
like regularization is preferred.

3 � Algorithms

3.1 � Alternating least squares approach

In the PartitionedLS problem we aim at minimizing a non-convex objective, where the 
non-convexity depends on the multiplicative interaction between � and � variables in the 
expression ‖X × (P◦�) × � − y‖2

2
 . Interestingly, if one fixes � , the expression X × (P◦�) 

results in a matrix X′ that does not depend on any variable. Then, the whole expression can 
be rewritten as a problem p� whose objective function ‖X�� − y‖2

2
 depends on the param-

eter vector � and is the convex objective function of a standard least squares problem in the 
� variables. In a similar way, it can be shown that by fixing � one also ends up with a con-
vex optimization problem p� . Indeed, after fixing � , the objective function is the squared 
norm of a vector whose components are affine functions of vector � (see Sect. 3.3 for more 
details). These observations naturally lead to the formulation of an alternating least squares 
solution where one alternates between solving p� and p� . In Algorithm 1 we formalize this 
intuition into the PartLS-alt function where, after initializing � and � randomly, we iterate 

(4)‖X × (P◦�) × �‖2
2
+ �‖�‖2

2
,
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until some stopping criterion is satisfied (in our experiments we fixed a number T of itera-
tions, but one may want to stop the algorithm as soon as a and c do not change between two 
iterations). At each iteration we take the latest estimate for the � variables and solve the p� 
problem based on that estimate, we then keep the newly found � variables and solve the p� 
problem based on them. At each iteration the overall objective is guaranteed not to increase 
in value and, indeed, we prove that, if the algorithm is never stopped, the sequence of � and 
� vectors found by PartLS-alt has at least one accumulation point and that all accumulation 
points are partial optima1 with the same function value.

Theorem 2  Let � i = (�i, � i) be the sequence of � and � vectors found by PartLS-alt to the 
PartitionedLS problem and assume that the objective function is regularized as described 
in (4), then: 

(1)	 The sequence of � i has at least one accumulation point, and
(2)	 All accumulation points are partial optima attaining the same value of the objective 

function.

Proof  The PartitionedLS problem is actually a biconvex optimization problem and Algo-
rithm 1 is actually a specific instantiation of the Alternating Convex Search strategy (Gor-
ski et al., 2007) to solve biconvex problems. Theorem 4.9 in (Gorski et al., 2007) implies 
that:

•	 If the sequence � i is contained in a compact set then it has at least one accumulation 
point, and

•	 If for each accumulation point �⋆ of the sequence � i , either the optimal solution of the 
problem with fixed � is unique, or the optimal solution of the problem with fixed � 
is unique; then all accumulation points are partial optima and have the same function 
value.

The first requirement is fulfilled in our case since � is constrained by definition into [0, 1]M , 
while the regularization term prevents � from growing indefinitely. The second require-
ment is fulfilled since for fixed � the optimization function is quadratic and strictly convex 
in � . Hence, the solution is unique. 	�  ◻

Algorithm 1   Alternating least squares solution to the PartitionedLS problem. The notation 
const (�) (respectively const ( (�) ) is just to emphasize that the current value of � (respec-

1  A partial optima of a function f (�,�) is a point (�⋆,�⋆) such that ∀� ∶ f (�⋆,�⋆) ≤ f (�,�⋆) and 
∀� ∶ f (�⋆,�⋆) ≤ f (�⋆,�).



Machine Learning	

1 3

tively � ) will be used as a constant in the following step

3.2 � Reformulation as a set of convex subproblems

Here we show how the PartitionedLS problem can be reformulated as a new problem with 
binary variables which, in turn, can be split into a set of convex problems such that the 
smallest objective function value among all local (and global) minimizers of these convex 
problems is also the global optimum value of the PartitionedLS problem.

Definition 2  The PartitionedLS-b problem is a PartitionedLS problem in which the � vari-
ables are substituted by a binary variable vector b ∈ {−1, 1}K , and the normalization con-
straints over the � variables are dropped:

The PartitionedLS-b problem turns out to be a Mixed Integer Nonlinear Programming 
(MINLP) problem with a peculiar structure. More specifically, we note that the above defi-
nition actually defines 2K minimization problems, one for each of the possible instances of 
vector b . Interestingly, each one of the minimization problems can be shown to be convex 
by the same argument used in Sect. 3.1 (for fixed � variables) and we will prove that the 
minimum attained by minimizing all sub-problems corresponds to the global minimum of 
the original problem. We also show that by simple algebraic manipulation of the result 
found by a PartitionedLS-b solution, it is possible to write a corresponding PartitionedLS 
solution attaining the same objective.

The main breakthrough here derives from noticing that in the original formulation the 
� variables are used to keep track of two facets of the solution: (i) The magnitude and (ii) 
The sign of the contribution of each subset in the partition of the variables. With the b vector 

minimize�,b‖� × (�◦�) × b − y‖2
2

s.t. �≽0

b ∈ {−1, 1}K .
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keeping track of the signs, one only needs to reconstruct the magnitude of the � contributions 
to recover the solution of the original problem.

The following theorem states the equivalence between the PartitionedLS and the Parti-
tionedLS-b problem. More precisely, we will prove that for any feasible solution of one of the 
two problems, one can build a feasible solution of the other problem with the same objective 
function value, from which equality between the optimal values of the two problems immedi-
ately follows.

Theorem 3  Let (�, b) be a feasible solution of the PartitionedLS-b problem. Then, there 
exists a feasible solution (𝜶̂, 𝜷̂) of the PartitionedLS problem such that:

Analogously, for each feasible solution (𝜶̂, 𝜷̂) of the PartitionedLS problem, there exists 
a feasible solution (�, b) of the PartitionedLS-b problem such that (5) holds. Finally, 
p⋆ = p⋆

b
 , where p⋆ and p⋆

b
 denote, respectively, the optimal value of the PartitionedLS 

problem and of the PartitionedLS-b problem.

Proof  Let (�, b) be a feasible solution of the PartitionedLS-b problem and let 𝜷 be a nor-
malization vector containing in 𝛽k the normalization factor for variables in partition subset 
k:

Then, for each m such that 𝛽k[m] ≠ 0 , we define 𝛼̂m as follows:

while for any m such that 𝛽k[m] = 0 we can define 𝛼̂m , e.g., as follows:

In fact, for any k such that 𝛽k = 0 , any definition of 𝛼̂m for m ∈ Pk such that 
∑

m∈Pk
𝛼̂m = 1 

would be acceptable. The �̂ vector can be reconstructed simply by taking the Hadamard 
product of b and 𝜷:

In order to prove (5), we only need to prove that

The equality is proved as follows:

(5)‖X × (P◦𝜶) × b − y‖2
2
= ‖X × (P◦𝜶̂) × 𝜷̂ − y‖2

2
.

𝜷 =

(
∑

m∈Pk

𝛼m

)

k

= P⊤ × 𝜶.

𝛼̂m =
𝛼m

𝛽k[m]
,

𝛼̂m =
1

|Pk[m]|
.

𝜷̂ = b◦𝜷.

X × (P◦�) × b = X × (P◦�̂) × �̂.
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where in between row 2 and row 3 we used the fact that 𝛽k and 𝛽k[m] are two ways to write 
the same thing (the former using directly the partition number k, and the latter using the 
notation k[m] to get the partition number from the feature number m). To be more precise, 
we only considered the case when 𝛽k[m] ≠ 0 for all m. But the result can be easily extended 
to the case when 𝛽k[m] = 0 for some m, by observing that in this case the corresponding 
terms give a null contribution to both sides of the equality.

Now, let (𝜶̂, 𝜷̂) be a feasible solution of the PartitionedLS problem. Then, we can build a 
feasible solution (�, b) for the PartitionedLS-b problem as follows. For any k ∈ {1,… ,K} 
let:

while for each m, let:

Equivalence between the objective function values at (𝜶̂, 𝜷̂) and (�, b) is proved in a way 
completely analogous to what we have seen before.

Finally, the equivalence between the optimal values of the two problems is an immedi-
ate corollary of the previous parts of the proof. In particular, it is enough to observe that for 
any optimal solution of one of the two problems, there exists a feasible solution of the other 
problem with the same objective function value, so that both p⋆ ≥ p⋆

b
 and p⋆ ≤ p⋆

b
 holds, 

and, thus, p⋆ = p⋆
b
 . 	�  ◻

The complete algorithm, which detects and returns the best solution of the Parti-
tionedLS-b problems by iterating over all possible vectors b , is implemented by the func-
tion PartLS-opt reported in Algorithm 2.

X × (P◦�̂) × �̂ =X ×

(
P◦

(
𝛼m

𝛽k[m]

)

m

)
×
(
bk𝛽k

)
k

=

(
∑

k

bk𝛽k

∑

m∈Pk

𝛼m

𝛽k[m]
xn,m

)

n

=

(
∑

k

bk𝛽k

∑

m∈Pk

𝛼m

𝛽k
xn,m

)

n

=

(
∑

k

bk

∑

m∈Pk

𝛼mxn,m

)

n

=X × (P◦�) × b,

bk =

{
−1 if 𝛽k < 0

+1 otherwise,

𝛼m = bk[m]𝛽k[m]𝛼̂m.
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Algorithm 2   PartitionedLS-b solution to the PartitionedLS problem. The function extract 
min retrieves the (ṗ, 𝛼̇, 𝛽̇) tuple in the results array attaining the lowest ṗ value

Remark 2  When dealing with the PartitionedLS-b problem, the regularization term intro-
duced for the objective function of the PartitionedLS problem, reported in (4), needs to be 
slightly updated so to accommodate the differences in the objective function when used in 
Algorithm 2. In this second case, since the � variables do not appear in the optimization 
problems obtained after fixing the different binary vectors b , the regularization term ‖�‖2

2
 

is replaced by ‖P⊤ × �‖2
2
 . We notice that since the new regularization term is still convex, 

it does not hinder the convexity of the optimization problems.

3.3 � Numerical stability

The optimization problems solved within Algorithms  1 and 2, despite being convex, 
are sometimes hard to solve due to numerical problems. General-purpose solvers often 
find the data matrix to be ill-conditioned and return sub-optimal results Björck (1996); 
Cucker et  al. (2007). In this section we show how to rewrite the problems so to miti-
gate these difficulties. The main idea is to recast the minimization problems as standard 
least squares and non-negative least squares problems, and to employ efficient solvers 
for these specific problems rather than the general-purpose ones.

We start by noticing that the minimization problem at line 7 of Algorithm 1 can be 
easily solved by a standard least square algorithm since the expression X × (P◦a) com-
putes to a constant matrix X′ and the original problem simplifies to the ordinary least 
squares problem: minimize� (‖X�� − y‖2

2
).

For what concerns the minimization problem at line 13 of the same algorithm, we 
notice that we can initially ignore the constraint P⊤ × � = 1 . Without such constraint, 
the problem turns out to be a non-negative least squares problem. Indeed, we note 
that expression X × (P◦�) × c can be rewritten as the constant matrix X◦(P◦c⊤ × 1)⊤ 
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multiplied by the vector � , so that the whole minimization problem could be rewritten 
as:

After such problem has been solved, the solution of the problem including the constraint 
P⊤ × � = 1 can be easily obtained by dividing each � subset by a normalizing factor and 
multiplying the corresponding � variable by the same normalizing factor (it is the same 
kind of operations we exploited in Sect. 3.2; in that context the normalizing factors were 
denoted with 𝜷).

In a completely analogous way we can rewrite the minimization problem at line 5 of 
Algorithm 2 as:

which, again, is a non-negative least squares problem.
As previously mentioned, by rewriting the optimization problems as described above 

and by employing special-purpose solvers for the least squares and the non-negative 
least squares problems, solutions appear to be more stable and accurate.

Remark 3  Many non-negative least squares solvers do not admit an explicit regularization 
term. An l2-regularization term equivalent to 𝜌‖�‖2

2
= 𝜌‖P⊤ × �‖2

2
= 𝜌

∑
k(
∑

m∈Pk
𝛼m)

2 can 
be implicitly added by augmenting the data matrix X with K additional rows. The trick is 
done by setting all the additional y to 0 and the k-th additional row as follows:

When the additional k-th row and the additional y are plugged into the expression inside 
the norm in (6), the expression evaluates to:

which reduces to �
∑

k(
∑

m∈Pk
�m)

2 when squared and summed over all the k as a result of 
the evaluation of the norm.

3.4 � An alternative branch‑and‑bound approach

Algorithm 2 is based on a complete enumeration of all possible 2K vectors b . Of course, 
such an approach becomes too expensive as soon as K gets large. As already previously 
commented, PartLS-opt is by design well suited for small K values, so that complete 
enumeration should be a valid option most of the times. However, for the sake of com-
pleteness, in this section we discuss a branch-and-bound approach, based on implicit 
enumeration, which could be employed as K gets large. Pseudo-code detailing the 
approach is reported in Algorithm 3.

minimize�‖X◦(P◦c⊤ × 1)⊤ × � − y‖2
2

s.t. � ⪰ 0.

(6)
minimize�̇‖X◦(P◦ḃ

⊤
× 1)⊤ × �̇ − y‖2

2

s.t. �̇ ⪰ 0,

xN+k,m =

�√
� if m ∈ Pk

0 otherwise.

�

m∈Pk

√
𝜌 ḃk𝛼m − 0 = ḃk

√
𝜌
�

m∈Pk

𝛼m,
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Algorithm 3   Pseudo code for a depth-first implementation of the branch and bound opti-
mization of PartLS-opt. � is the current upper bound of the optimal value, Σ is the set of 
constraints associated to the current node. For the sake of simplicity, the algorithm returns 
only the optimal values. It is easy to modify it to keep track of the best solution as well. 
lower_bound computes the relaxation of either (8) or (9) subject to the constraints in Σ 
and returns the lower bound lb (the lower bound itself) and � (the values of the variables 
attaining it)

First, we remark that the PartitionedLS-b problem can be reformulated as follows

where we notice that vector b and the nonnegativity constraints � ⪰ 0 have been elimi-
nated, and replaced by the new constraints, which impose that for any k, all variables �m 
such that m ∈ Pk must have the same sign. The new problem is a quadratic one with a 
convex quadratic objective function and simple (but non-convex) bilinear constraints. We 
note that, having removed the b variables, the scalar objective do not need the distinction 

(7)minimize�
∑

n

�∑
k

∑
m∈Pk

�mxn,m − yn

�2

s.t. �i�j ≥ 0 ∀i, j ∈ Pk, ∀k ∈ {1,… ,K},
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between groups anymore and it can rewritten as 
∑

n

�∑
m �mxn,m − yn

�2 or, in matrix form, 
as ‖X� − y‖2 = (X� − y)⊤(X� − y) . Hence, we can reformulate the problem as follows

where Q = X⊤X , q = −2X⊤y , and q0 = y⊤y . Different lower bounds for this problem can 
be computed. The simplest one is obtained by simply removing all the constraints, which 
results in an unconstrained convex quadratic problem. A stronger, but more costly, lower 
bound can be obtained by solving the classical semidefinite relaxation of quadratic pro-
gramming problems. First, we observe that problem (8) can be rewritten as follows (see 
Shor, 1987)

where Q ∙ A =
∑

i,j QijAij , and �Pk
 is the restriction of � to the entries in Pk , k ∈ {1,… ,K} . 

Next, we observe that the equality constraint A = ��⊤ is equivalent to requiring that A is a 
psd (positive semidefinite) matrix and is of rank one. If we remove the (non-convex) rank 
one requirement, we end up with the following convex relaxation of (8) requiring the solu-
tion of a semidefinite programming problem:

Note that by Schur complement, constraint “ Ak − �Pk
�⊤
Pk

is psd ” is equivalent to the fol-
lowing semidefinite constraint:

No matter which problem we solve to get a lower bound, after having solved it we can con-
sider the vector �⋆ of the optimal values of the � variables at its optimal solution and we 
can compute the following quantity for each k ∈ {1,… ,K}

If �k = 0 for all k, then the optimal solution of the relaxed problem is feasible and also 
optimal for the original problem (8) and we are done. Otherwise, we can select an index 
k such that 𝜈k > 0 (e.g., the largest one, corresponding to the largest violation of the con-
straints), and split the original problem into two subproblems, one where we impose that 
all variables �m , m ∈ Pk , are nonnegative, and the other where we impose that all variables 
�m , m ∈ Pk , are nonpositive. Lower bounds for the new subproblems can be easily com-
puted by the same convex relaxations employed for the original problem (8), but with the 
additional constraints. The violations �k are computed also for the subproblems and, in case 
one of them is strictly positive, the corresponding subproblem may be further split into two 
further subproblems, unless its lower bound becomes at some point larger than or equal to 

(8)
minimize� �⊤Q� + q⊤� + q0
s.t. 𝛼i𝛼j ≥ 0 ∀i, j ∈ Pk, ∀k ∈ {1,… ,K},

(9)
minimize�,A Q ∙ A + q⊤� + q0
s.t. Ak = �Pk

�⊤
Pk

∀k ∈ {1,… ,K}

Ak ≥ O ∀k ∈ {1,… ,K},

minimize�,A Q ∙ A + q⊤� + q0
s.t. Ak − �Pk

�⊤
Pk

is psd ∀k ∈ {1,… ,K}

Ak ≥ O ∀k ∈ {1,… ,K}.

(
1 �⊤

Pk

�Pk
Ak

)
is psd.

𝜈k =
∑

i,j∈Pk

max{0,−𝛼⋆
i
𝛼⋆
j
}.
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the current global upper bound of the problem, which is possibly updated each time a new 
feasible solution of (8) is detected. As previously commented, Algorithm 3 provides a pos-
sible implementation of the branch-and-bound approach. More precisely, Algorithm 3 is an 
implementation where nodes of the branch-and-bound tree are visited in a depth-first man-
ner. An alternative implementation is, e.g., the one where nodes are visited in a lowest-first 
manner, i.e., the first node to be visited is the one with the lowest lower bound.

4 � Complexity

In this section we establish the theoretical complexity of the PartitionedLS-b problem. 
In view of reformulation (7), it is immediately seen that the cases where |Pk| = 1 for all 
k = 1,… ,K , are polynomially solvable. Indeed, in this situation problem (7) becomes 
unconstrained and has a convex quadratic objective function. Here we prove that as soon 
as we move from |Pk| = 1 to |Pk| = 2 , the problem becomes NP-complete. We prove this 
by showing that each instance of the NP-complete problem subset sum (see, e.g., Garey 
and Johnson, 1979) can be transformed in polynomial time into an instance of problem 
(7). We recall that problem subset sum is defined as follows. Let s1,… , sk be a collection 
of K positive integers. We want to establish whether there exists a partition of this set of 
integers into two subsets such that the sums of the integers belonging to the two subsets 
is equal, i.e., whether there exist I1, I2 ⊆ {1,… ,K} such that:

Now, let us consider an instance of problem (7) with K partitions and two variables �m1,k
 

and �m2,k
 for each partition k (implying M = 2K ). The data matrix X and vector y have 

N = 3K + 1 rows defined as follows (when k and m are not restricted, they are assumed to 
vary on {1…K} and {1…M} respectively):

When the values so defined are plugged into problem (7) we obtain:

(10)I1 ∪ I2 = {1,… ,K}, I1 ∩ I2 = �,
∑

k∈I1

sk =
∑

k∈I2

sk.

xk,m1,k
= 1,

xk,m2,k
= −1,

xk,m = 0, yk = −sk m ∉ {m1,k,m2,k}

xK+k,m1,k
=
√
�, xK+k,m2,k

= 0,

xK+k,m = 0,

yK+k = 0 m ∉ {m1,k,m2,k}

x2K+k,m1,k
= 0,

x2K+k,m2,k
=
√
�,

x2K+k,m = 0, y2K+k = 0 m ∉ {m1,k,m2,k}

x3K+1,m = 1, y3K+1 = 0.
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with 𝜌 > 0.
We prove the following theorem, which states that an instance of the subset sum 

problem (10) can be solved by solving the corresponding instance (11) of problem (7), 
and, thus, establishes NP-completeness of the PartitionedLS-b problem.

Theorem 4  The optimal value of (11) is equal to

if and only if there exist I1, I2 such that (10) holds, i.e., if and only if the subset sum problem 
admits a solution.

Proof  As a first step we derive the optimal solutions of the following restricted two-dimen-
sional problems for k ∈ {1,… ,K}:

This problems admits at least a global minimizer since its objective function is strictly con-
vex quadratic. Global minimizers should be searched for among regular KKT points and 
irregular points. Regular points are those who fulfill a constraint qualification. In particu-
lar, in this problem all feasible points, except the origin, fulfill the constraint qualification 
based on the linear independence of the gradients of the active constraints. This is trivially 
true since there is a single constraint and the gradient of such constraint is null only at the 
origin. Thus, the only irregular point is the origin. In order to detect the KKT points, we 
first write down the KKT conditions:

where � is the Lagrange multiplier of the constraint. We can enumerate all KKT points of 
problem (12). By summing up the first two equations, we notice that

must hold. This equation is satisfied if:

(11)

minimize�

K∑

k=1

(�m1,k
− �m2,k

− sk)
2 + �

K∑

k=1

(�m1,k
)2+

�

K∑

k=1

(�m2,k
)2 +

[
K∑

k=1

(�m1,k
+ �m2,k

)

]2

s.t. �m1,k
�m2,k

≥ 0 ∀k ∈ {1,… ,K},

�
∑K

k=1
s2
k

1 + �
,

(12)
minimize�m1,k ,�m2,k

(�m1,k
− �m2,k

− sk)
2+

�(�m1,k
)2 + �(�m2,k

)2

s.t. �m1,k
�m2,k

≥ 0.

2(�m1,k
− �m2,k

− sk) + 2��m1,k
− ��m2,k

= 0

−2(�m1,k
− �m2,k

− sk) + 2��m2,k
− ��m1,k

= 0

�m1,k
�m2,k

≥ 0

��m1,k
�m2,k

= 0

� ≥ 0,

(� − 2�)(�m1,k
+ �m2,k

) = 0,
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•	 Either �m1,k
+ �m2,k

= 0 , which implies �m1,k
= �m2,k

= 0 , in view of �m1,k
�m2,k

≥ 0 . As 
previously mentioned, the origin is the unique irregular point. So, it is not a KKT point 
but when searching for the global minimizer, we need to compute the objective func-
tion value also at such point and this is equal to s2

k
;

•	 Or 𝜇 = 2𝜌 > 0 , which implies, in view of the complementarity condition, that 
�m1,k

�m2,k
= 0 , and, after substitution in the first two equations, we have the two KKT 

points 

 The objective function value at both these KKT points is equal to �

1+�
s2
k
 , lower than the 

objective function value at the origin, and, thus, these KKT points are the two global 
minima of the restricted problem (12).

Based on the above result, we have that problem

which is the original one (11) without the last term 
�∑K

k=1
(�m1,k

+ �m2,k
)
�2

 , and which can be 

split into the K subproblems (12), has global minimum value equal to �
∑K

k=1 s
2
k

1+�
 and 2K global 

minima defined as follows: for each I1, I2 ⊆ {1,… ,K} such that I1 ∩ I2 = � and 
I1 ∪ I2 = {1,… ,K},

Now, if we replace these coordinates in the omitted term 
�∑K

k=1
(�m1,k

+ �m2,k
)
�2

 , we have the 
following

which is equal to 0 for some I1, I2 if and only if the subset sum problem admits a solution. 
As a consequence the optimal value of problem (11) is equal to �

∑K

k=1
s2
k

1+�
 if and only if the 

subset sum problem admits a solution, as we wanted to prove. 	�  ◻

5 � Experiments

In this section, we present the experimental findings obtained through the application of 
the algorithms proposed in this paper over several commonly used datasets (see Table 2).

(
sk

1 + �
, 0

)
,

(
0,−

sk

1 + �

)
.

minimize�
∑K

k=1
(�m1,k

− �m2,k
− sk)

2+

�
∑K

k=1
(�m1,k

)2 + �
∑K

k=1
(�m2,k

)2

s.t. �m1,k
�m2,k

≥ 0 ∀k ∈ {1,… ,K},

𝛼⋆
m1,k

=

{ sk

1+𝜌
k ∈ I1

0 k ∉ I1,
𝛼⋆
m2,k

=

{
−

sk

1+𝜌
k ∈ I2

0 k ∉ I2.

[
K∑

k=1

(𝛼⋆
m1,k

+ 𝛼⋆
m2,k

)

]2

=
1

(1 + 𝜌)2

[
∑

k∈I1

sk −
∑

k∈I2

sk

]2

,
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In Sect. 5.1, we investigate the properties in terms of regression performance and runt-
ime of PartLS-opt, PartLS-alt, and PartLS-bnb, providing insights about when one should 
be preferred over the other.

In Sect.  5.2, we provide an example of interpreting the solution provided by our 
approach. Unfortunately, interpretability is not easily measurable and is, in general, highly 
task-dependent Doshi-Velez and Kim (2017). Nonetheless, previous research has discussed 
interpretability of models across multiple dimensions, such as simulatability, decompos-
ability and algorithmic transparency  (Lipton, 2016). To show the benefits of framing a 
regression task as a partitioned least squares problem, we report an experiment analyzing 
the solution found by the PartLS-opt algorithm on an additional dataset (the Ames House 
Prices dataset). In particular, we will show that the grouped solution found via the Parti-
tioned Least Squares formulation is arguably more simulatable and decomposable com-
pared to the more commonly employed “feature-by-feature” linear regression solutions. 
Finally, in Sect.  5.3, we compare the generalization performances of our approach with 
those of least squares and two established variants: Partial Least Squares (PLS) and Princi-
pal Component Regression (PCR).

5.1 � Runtime vs. solution quality

We start by experimenting with PartLS-opt and PartLS-alt and on four regression prob-
lems on the following datasets: Limpet, Facebook Comment Volume, Superconductivity, 
and YearPredictionMSD. Details about these datasets may be found in the Appendix. 
We choose these datasets because of their relatively high number of features. In particu-
lar, the Limpet dataset had already been the subject of a block-relevance analysis in pre-
vious literature (Ermondi & Caron, 2012; Caron et al., 2013). We ran PartLS-alt (Algo-
rithm 1) in a multi-start fashion with 100 randomly generated starting points. The four 
panels in Fig.  1 report the best objective value obtained during these random restarts 
along with the cumulative time needed to obtain that value (so the rightmost point will 
plot the cumulative time of the 100 restarts versus the best objective obtained in the 
whole experiment). We repeated the experiment using two different values of param-
eter T (number of iterations), setting it to 20 and 100, respectively. So for a single ran-
dom restart with T = 20 (or T = 100 ), Algorithm 1 will alternate 20 (100) times before 
returning. As one would expect, we see that increasing the value of parameter T slows 
down the algorithm, but allows it to converge to better solutions.

The experiments confirm that PartLS-opt retrieves more accurate solutions, as 
expected due to its global optimality property established in Sect.  3.2. Depending on 

Table 2   Summary of dataset 
statistics

We stress that the number of feature groups may be adapted depending 
on the analyst’s needs and the constraints they wish to impose on the 
regressor

Dataset Rows Columns # 
Feature 
groups

Limpet 82 44 6
Facebook comment volume 40000 53 5
Superconductivity 10000 81 7
YearPredictionMSD 10000 90 9
Ames house regression 2931 79 10
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the dataset, this solution may be either cheaper or more costly to compute compared to 
the approximate solution obtained by PartLS-alt. Notably, in typical scenarios, the alter-
nating least squares approach, PartLS-alt, outperforms PartLS-opt in terms of running 
time only when the total number of iterations (and thus the total number of convex sub-
problems to be solved) is smaller than 2K . However, in our experimentation, this often 
results in solutions that grossly approximate the optimal one. Consequently, we find that 
PartLS-opt is likely preferable in most cases, providing an optimal solution within a 
reasonable timeframe, often even quicker than PartLS-alt. Furthermore, although the 
alternating algorithm can occasionally deliver a solution faster than PartLS-opt, which 
might be deemed “good enough”, its iterative nature introduces a degree of uncertainty.

Clearly there are cases where the number of groups or where the time required to 
solve a single convex problem is very large. In these cases, when approximate solu-
tions are acceptable for the application at hand, PartLS-alt could be a very compelling 
solution. We conclude by noting that a use case with a large number of groups appears 
to us not very plausible. In fact, it could be argued that the reduced interpretability of 
the results defies one of the main motivations behind employing the Partitioned Least 
Squares model in the first place.

It is worth mentioning that, in case a problem with a large K were to arise, the 
PartLS-bnb algorithm (see Algorithm 3) is likely to allow users to retrieve the optimal 
solution more efficiently than PartLS-opt. We propose here a further experiment with 
synthetic data, through which we show when it is convenient to switch from PartLS-
opt to the Branch-and-Bound approach implemented in PartLS-bnb and discussed in 

Fig. 1   Plot of the behavior of the two proposed algorithms on four datasets. PartLS-alt has been repeated 
100 times following a multi-start strategy and in two settings (T = 20 and T = 100). Each point on the 
orange and blue lines reports the cumulative time and best objective found during these 100 restarts. 
PartLS-opt outputs a single solution, drawn in green (Color figure online)
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Sect. 3.4. In all the previously discussed experiments the cardinality K of the partition is 
relatively small. Thus, PartLS-opt is able to solve the related problems efficiently. How-
ever, the computing times of PartLS-opt quickly increases exponentially as K increases. 
In these cases, a Branch-and-Bound approach is a much better choice. To better clarify 
this point, we report in Table 3 the results on synthetic data obtained by randomly gen-
erating in the interval [−10, 10] the entries of X , by generating y by adding some random 
noise generated in the interval [−50, 50] to each entry of a target solution yref = Xwref , 
and by randomly generating the K sets in the partition. In the table we compare the 
computing times (in seconds), for different values K, N, M, of PartLS-opt and of Algo-
rithm  3 (with lower bounds at branch-and-bound nodes computed through the solu-
tion of least squares problems with additional non-negativity constraints). A − denotes 
a computing time exceeding 1,000  s. The results clearly show that, as K increases, a 
branch-and-bound approach is much more efficient than PartLS-opt.

5.2 � Interpretability on ames house prices

We present here an analysis of a solution found by PartLS-opt on the Ames House Prices 
dataset, which is publicly available via Kaggle Anna Montoya (2016). This dataset has a 
relatively high number of columns—79 in total—each detailing one particular character-
istic of housing properties in Ames, Iowa. The task is to predict the selling price of each 
house.

We propose a grouping of the features into 10 groups, each one representing a high-
level characteristic of the property (see Table  5). As an example, we collect 6 columns 

Table 3   Computing times (in 
seconds) for PartLS-opt and 
Algorithm  3, for different values 
of K, N, M 

K N M Time PartLS-opt Time BB

10 100 400 3.62 0.81
10 100 600 3.74 0.58
10 150 400 9.50 1.15
10 150 600 9.63 2.52
10 200 400 14.90 2.09
10 200 600 15.19 7.05
15 100 400 141.71 1.70
15 100 600 151.29 1.65
15 150 400 346.65 5.95
15 150 600 403.24 4.31
15 200 400 525.27 8.24
15 200 600 595.25 18.26
20 100 400 – 1.71
20 100 600 – 1.42
20 150 400 – 13.26
20 150 600 – 3.67
20 200 400 – 22.57
20 200 600 – 6.60
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Fig. 2   Feature groups and associated � values as found by PartLS-opt on the Ames House Prices dataset 
Anna Montoya (2016)

Fig. 3   � values for group “Outside Facilities” found by PartLS-opt on the Ames House Prices dataset 
Anna Montoya (2016)
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referring to the availability and quality of air conditioning systems, electrical system, heat-
ing and fireplaces in a “Power and Temperature” group. Other feature groups refer to over-
all quality of the construction work and materials employed (“Building Quality”), external 
facilities such as garages or swimming pools (“Outside Facilities”). We show the feature 
groups we designed and the � values found by PartLS-opt2 in Fig.  2. We note that the 
grouped solution enabled by the partitioned least squares formulation is able to give a high-
level summary of the regression result. An analyst is therefore able to communicate easily 
to, e.g. an individual selling their house, that the price is mostly determined by the building 
quality and the attractiveness of the lot. A deeper analysis is of course possible by investi-
gating the � values found by the algorithm. For instance, we report the � s contributions for 
the “Outside Facilities” group in Fig. 3. Here, one is able to notice that garage quality has 
the biggest impact on the property’s price, which is potentially actionable knowledge.

In Fig. 4, we report the weights of the features in the “Outside Facilities” group as learnt 
by the least squares algorithm.

We argue that the group- and feature-level analysis made possible by our contributions 
improves on the interpretability of ungrouped linear regression. While linear regression is 
a relatively simple model and therefore intuitively satisfies some notion of transparency, 
previous work has established that this is not necessarily the case. Lipton (2016) discusses 
interpretability of models around three separate dimensions: simulatability, decomposabil-
ity and algorithmic transparency. Simulatability may be achieved when a person is able to 

Fig. 4   Feature weights for group “Outside Facilities” of a regularized linear regression on the Ames House 
Prices dataset Anna Montoya (2016)

2  In this the regularization parameter has been set to � = 10



	 Machine Learning

1 3

contemplate all the model at once in reasonable amount of time. While the amount of time 
is of course subjective, Lipton stresses the fact that linear models may not be simulatable 
if a high number of features are involved. On the other hand, the partitioned least squares 
formulation we propose finds a higher-level, grouped solution via the � values. Thus, a 
practitioner would be able to build a simpler mental model of the solution by focusing on 
the groups rather than the individual features.

5.3 � Quality of the inferred model

While one of the major benefits of the Partitioned Least Squares problem is in simplifying 
the interpretation of the results, it should be self-evident that this would be a pointless exer-
cise if the returned hypothesis were not at least comparable to other widely used techniques 
in terms of generalization capabilities. In this section, we investigate generalization per-
formances of regressors learnt by PartLS-opt and compare them with Least Squares (LS), 
Principal Component Regression (PCR) and Partial Least Squares (PLS). All experiments 
are repeated 100 times on different train/test splits.

We experiment on the four datasets earlier in this section and on an additional data-
set Artificial which we created for this specific test. The main goal of this dataset is to 
showcase a situation where we have complete and accurate domain knowledge about the 
partition. The artificial dataset contains 70 training samples and 930 test samples. Samples 
contains feature values randomly sampled from a normal distribution. This dataset’s target 
variable may be computed without cross-partition feature interactions: Specifically, the tar-
get is computed as y = X × (P◦�) × � + t , where P is a partition in 5 sets having cardinali-
ties 5, 10, 4, 12, 6. The X matrix has been perturbed with gaussian noise with mean 0 and 
standard deviation 0.05 after generating the target column. t and � have been generated 
using a uniform distribution in [0, 1]. � has then been normalized so that P⊤ × � = 1 . The 
� are the normalization factors used to ensure P⊤ × � = 1 multiplied by 11, 4, 2, 1, and 3. 
Signs of the groups have been set to −1, 1, 1,−1, and 1. These latter parameters have been 
set arbitrarily and without tuning.

Results are reported in Table 4. When the test error of a method is significantly better3 
than the competitors, it is shown in bold. If more than one result is in bold, then the bold-
faced results are not significantly better with respect to each other, but are significantly bet-
ter than all the remaining results.

The PCR algorithm has been run setting the maximal number of principal components 
equal to the number of groups in the P matrix. We conducted experiments with PartLS-
opt three times, utilizing three distinct partitioning methods: one based on the partitions 
devised by ourselves (“P arbitrary” or “P from DK”), one where features were grouped 
based on their signs in the solution found by LS in the experiment with the same train/test 
split (“P from LS”), and one (“P opt”) using this same methodology but on the results of 
LS run on the full dataset (i.e., before the train/test split). This latter experiment aims at 
simulating a situation where the domain knowledge closely matches the “natural” parti-
tioning of the columns of the dataset. The settings “P from LS” and “P opt” aim to dem-
onstrate that, with the correct partitioning, the algorithm converges to an optimal solution.

3  According to a paired t-test at the 99% confidence level.
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We start discussing these results by noting that, for all datasets except Limpet where the 
problem is heavily under-determined, LS and PartLS-opt on “P from LS” yield identical 
results. This is expected as the problems are equivalent from the optimizer perspective. 
Furthermore, results of PartLS-opt on “P opt” show that, when the provided partition is 
accurate, the inductive bias allows for better generalization in most situations.

Table 4   Train/Test mean squared errors of Least Squares (LS), Principal Component Regression (PCR), 
Partial Least Squares (PLS) and Partitioned Least Squares (PartLS). Partitioned Least Squares has been run 
with several configurations of the partition matrix: in “P from DK” experiments the partition matrix is built 
from domain knowledge; in “P arbitrary” the partition matrix is arbitrary (used instead of DK when domain 
knowledge was not available); in “P from LS” we use a binary partition matrix based on the signs of the 
attributes in the solution of the LS problem computed on the training set; in “P opt” the partition matrix is 
built as in “P from LS”, but the LS is run over the complete dataset. We report the average and the standard 
deviation of results over 100 repetitions based on different train/test splits. Bold faced averages are statisti-
cally better at the 99% significance level (using a dpaired t-test)

Dataset Method Train Test

Artificial LS 0.18 ±0.04 0.81 ±0.16
PCR 23.56 ±4.48 30.33 ±2.26
PLS 0.51 ±0.10 2.06 ±0.64
PartLS: P from LS 0.18 ±0.04 0.81 ±0.16
PartLS: P from DK 0.19 ±0.05 0.68 ±0.11
PartLS: P opt 0.19 ±0.05 0.68 ±0.11

Limpet LS 0.00 ±0.00 4.14 ±3.95
PCR 0.71 ±0.13 1.05 ±0.39
PLS 0.64 ±0.76 1.27 ±1.65
PartLS: P from LS 0.00 ±0.00 6.91 ±12.56
PartLS: P from DK 0.00 ±0.00 46.34 ±47.30
PartLS: P opt 0.00 ±0.00 4.44 ±4.20

Facebook LS 2785.66 ±450.79 3012.92 ±725.57
PCR 3672.98 ±503.71 3687.18 ±789.64
PLS 3765.28 ±509.81 3784.41 ±798.20
PartLS: P from LS 2785.66 ±450.79 3012.92 ±725.57
PartLS: P arbitrary 2850.49 ±457.82 3023.13 ±733.19
PartLS: P opt 2791.91 ±450.93 2988.19 ±722.48

Year prediction LS 89.96 ±1.97 91.87 ±2.20
PCR 115.24 ±2.39 115.52 ±2.71
PLS 3.42E5 ±6.8E3 3.5E5 ±1.1E4
PartLS: P from LS 89.96 ±1.97 91.87 ±2.20
PartLS: P arbitrary 100.30 ±2.02 101.83 ±2.28
PartLS: P opt 90.18 ±1.97 91.70 ±2.18

Superconductivity LS 307.64 ±3.68 310.87 ±5.76
PCR 762.74 ±6.77 764.47 ±11.35
PLS 566.86 ±5.25 567.64 ±8.32
PartLS: P from LS 307.64 ±3.68 310.87 ±5.76
PartLS: P arbitrary 376.82 ±3.91 379.36 ±5.87
PartLS: P opt 307.73 ±3.68 310.77 ±5.76
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On the Artificial dataset, PartLS-opt on “P from DK” significantly outperforms the 
competitors. This shows once more that, when the correct partitioning is provided, PartLS-
opt exhibits an inductive bias that enhances generalization. On this dataset PartLS-opt 
attains the same results when using “P from DK” and “P opt”. This is expected since “P 
from DK” is built using perfect knowledge of the P matrix, and we verified that the signs 
of the features found by LS on the complete dataset induce a partition that can be formally 
shown to be equivalent to the one that have been used to generate the data.

The PCR and the PLS algorithms are the clear winners on the Limpet dataset. The data-
set matrix is under-determined and collinear, which is the ideal case for these techniques. 
In all the other cases, their inductive biases significantly hinder the algorithms perfor-
mances, most likely because the number of principal components guessed on the basis of 
the P matrix was not sufficient to explain enough variance in the data. Setting the number 
of maximal number of principal components to be equal to the number of features does not 
seem to change much the results: either they converge to the LS solution, or they obtain 
result not too distant from the ones presented in Table 4.

For Facebook, Year Prediction, and Superconductivity datasets, PartLS-opt yields 
the best performances when equipped with the “P opt” partition. It lags a little behind 
LS when equipped with the partitions we used in our previous experiments (“P arbi-
trary”), which is totally reasonable since those partitions were chosen to showcase the 
difference in the time performances between the approaches, rather than the quality of 
the generalization results.

The experiments overall demonstrate that the constraints imposed by the Partitioned 
Least Squares approach can serve as a strong inductive bias when the partition knowl-
edge is accurate. However, the technique encounters difficulties when analyzing datasets 
with many collinear features. Indeed, the current formulation of Partitioned Least Squares 
does not address this specific issue, suggesting that further research is needed to tackle this 
challenge.

6 � Conclusions

In this paper we presented an alternative least squares linear regression formulation. Our 
model enables scientists and practitioners to group features together into partitions, hence 
allowing the modeling of higher level abstractions which are easier to reason about. We 
provided rigorous proofs of the non-convexity of the problem and presented PartLS-alt and 
PartLS-opt, two algorithms to cope with the problem.

PartLS-alt is an iterative algorithm based on the alternating least squares method. The 
algorithm is proved to converge, but there is no guarantee that the accumulation point 
results in a globally optimal solution. On the contrary, as experiments have shown, the 
algorithm can be trapped in a local minimizer and return an approximate solution. Experi-
ments suggest that it could be faster and preferable to the exact algorithm PartLS-opt in 
some circumstances (e.g., when the time needed to solve a single sub-problem is large and 
the application allows for sub-optimal answers).

PartLS-opt is an enumerative, exact, algorithm and our contribution includes a formal 
optimality proof. In our experimentation, we confirmed that it behaves very well under sev-
eral different settings, although its time complexity grows exponentially with the number 
of groups. We argue that this exponential growth in time complexity should not impede its 
adoption: a large number of groups seems implausible in practical scenarios since it would 
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undermine interpretability of the results and hence the attractiveness of the problem for-
mulation. However, for the sake of completeness and to provide guidance to the interested 
reader, we provided a branch-and-bound solution that shares the same optimality guaran-
tees of PartLS-opt. This latter formulation, depending on the actual structure of the prob-
lem as implied by the data, might save computation by pruning the search space, possibly 
avoiding to solve a large number of sub-problems. In Sect. 5.1 we have shown the benefits 
of this strategy when the number of partition sets increases, but we intend to further inves-
tigate this issue in future work.

In Sect. 5.3, we explore how the constraints introduced by the Partitioned Least Squares 
formulation impact the generalization properties of the inferred model. Our findings indi-
cate that when the partition knowledge aligns with the underlying data distribution, the 
Partitioned Least Squares algorithms are very effective in leveraging this information. 
However, the results obtained from the Limpet dataset clearly demonstrate that collinearity 
can pose a challenge for the proposed technique and, indeed, neither the problem formula-
tion, nor the proposed algorithms try to address this issue. We believe that addressing col-
linearity problems represents an interesting avenue for future research.

One topic for further research is about how to evaluate the partitions created by a domain 
expert. In this work, we have taken feature partitions “at face value” or otherwise assumed 
that an agreed-upon partitioning was developed by an expert. Investigating the challenges 
of the (human) partitioning process, possibly by performing an interactive user study as 
suggested by Doshi-Velez and Kim (2017), is a possible avenue for future developments.

Table 5   Summary of the groups of features used in the Ames House Prices experiment. See the Kaggle 
Anna Montoya (2016) repository for detailed information about the meaning of each feature label

Group Features

LotDescritption MSSubClass, MSZoning, LotFrontage, LotArea, Street, Alley, LotShape, Land-
Contour, LotConfig, LandSlope

BuildingPlacement Utilities, Neighborhood, Condition1, Condition2
BuildingAge YearBuilt, YearRemodAdd
BuildingQuality BldgType, HouseStyle, OverallQual, OverallCond, RoofStyle, RoofMatl, 

Exterior1st, Exterior2nd, MasVnrType, MasVnrArea, ExterQual, ExterCond, 
Foundation, Functional

Basement BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinSF1, BsmtFin-
Type2, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF

PowerAndTemperature Heating, HeatingQC, CentralAir, Electrical, Fireplaces, FireplaceQu
Sizes 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea
Rooms BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, BedroomAbvGr, KitchenAb-

vGr, KitchenQual, TotRmsAbvGrd
OutsideFacilities GarageType, GarageYrBlt, GarageFinish, GarageCars, GarageArea, GarageQual, 

GarageCond, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3Ssn-
Porch, ScreenPorch, PoolArea, PoolQC, Fence

Various MiscFeature, MiscVal, MoSold, YrSold, SaleType, SaleCondition
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Appendix

Dataset descriptions

Limpet dataset

This dataset (Caron et al., 2016) contains 82 features describing measurements over simu-
lated (VolSurf+  (Goodford, 1985)) models of 44 drugs. The regression task is the predic-
tion of the lipophilicity of the 44 compounds. The 82 features are partitioned into 6 groups 
according to the kind of property they describe. The six groups have been identified by 
domain experts and are characterized in (Ermondi & Caron, 2012) as follows:

•	 Size/Shape: 7 features describing the size and shape of the solute;
•	 OH2: 19 features expressing the solute’s interaction with water molecules;
•	 N1: 5 features describing the solute’s ability to form hydrogen bond interactions with 

the donor group of the probe;
•	 O: 5 features expressing the solute’s ability to form hydrogen bond interactions with the 

acceptor group of the probe;
•	 DRY: 28 features describing the solute’s propensity to participate in hydrophobic inter-

actions;
•	 Others: 18 descriptors describing mainly the imbalance between hydrophilic and hydro-

phobic regions.

This dataset, while not high-dimensional in the broadest sense of the term, can be par-
titioned into well-defined, interpretable groups of variables. Moreover and perhaps more 
importantly, this is a clear case where the Partitioned Least Squares formulation is impor-
tant to correctly handle the structure of the problem: each group contains variables describ-
ing phisical properties of the compound that are theoretically bound to act in the same 
“direction” on the target variable (its lipophilicity). Previous literature which employed 
this dataset has indeed focused on leveraging the data’s structure to obtain explainable 
results (Caron et al., 2013). We used as training/test split the same one proposed in (Caron 
et al., 2016).

For this particular problem, the number of groups is 6 and PartLS-opt needs to solve 
just 26 = 64 convex problems. It terminates in ∼ 1.4 seconds reaching a value of the objec-
tive function of about 4.3 ⋅ 10−14 (note that the annotation “ 1e − 13 ” at the top of the plot 
denotes that all values on the y axis are to be multiplied by 10−13 ). PartLS-alt (Algorithm 1) 
in this particular case is doing very well. Even though the plot shows that PartLS-opt 
reaches a better loss value, PartLS-alt starts already at a very low value of about 3 ⋅ 10−13 
requiring a fraction of the time needed by its optimal counterpart. It is also worth noting 
that, despite the small changes in the objective value reached by the two algorithms, the 
configuration of the � and � variables are substantially different.

Facebook comment volume dataset

The Facebook Comment Volume dataset (Singh, 2016) contains more than 40 thousand 
training vectors along with 53 features. Each sample represents a post published on the 
social media service by a “Facebook Page”, an entity which other users can follow and 
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“like” so to receive updates on their Facebook activity. Features range from the number 
of users which “like” and follow the page to the number of comments the post received 
during different time frames. We removed the column which indicated whether a post was 
a paid advertisement, as this feature only contained 0 values, i.e., no advertisements were 
collected. Then, we divided the features into 5 blocks, each containing 10 features save for 
the last one which contained 11 features. The task here is to predict how many comments 
the same post will receive in the next few hours. The dataset is hosted at the UCI repository 
(Dua & Graff, 2017). To keep training time and memory usage low, we limited the training 
samples to the first 15000 examples of the training set. On this dataset, PartLS-opt is able 
to find the highest quality solution in less than 5 s. PartLS-alt with T = 20 finds a similar 
quality solution after about 7 s. PartLS-alt with T = 100 takes more than 3 min to converge 
to a comparable objective value.

Superconductivity dataset

The Superconductivity dataset contains 81 features representing characteristics of super-
conductors. The dataset contains 21264 examples. In our experiment we trained the model 
over the first 10000 examples. The task is to predict a material’s critical temperature. The 
features are derived from a superconductor’s atomic mass, density and fusion heat among 
others. We refer the reader to the original paper (Hamidieh, 2018) for the specific details 
about the process. In our experiment, we created 7 feature blocks with 10 features each and 
an additional one which contained 11 features. PartLS-opt takes ∼ 47 seconds reaching an 
objective value of ∼ 2051 . At about the same computational cost, PartLS-alt with T = 20 
reaches an objective of ∼ 2150 . It will take the algorithm about ∼ 440 seconds to lower that 
figure to a loss objective value ( ∼ 2072 ) comparable to the one obtained by PartLS-opt. 
Setting T = 100 slightly improves the situation: after about 40 seconds the loss objective 
is ∼ 2117 , which lowers to ∼ 2080 after ∼ 186 seconds and to ∼ 2064 after ∼ 881 seconds.

YearPredictionMSD dataset

We also propose an experimentation on the YearPredictionMSD dataset. It is a subset of 
the Million Songs dataset (Bertin-Mahieux et al., 2011). When compared with the original 
dataset, it has about half the examples (around 500 thousands) and instead of the raw audio 
and metadata 90 timbre-related features are included. As for the Superconductivity dataset, 
we limited our experimentation to the first 10000 examples. The target variable represents 
the year a song has been released in. In this dataset we experimented with 9 blocks of 10 to 
12 features. PartLS-opt takes ∼ 130 seconds to reach the optimal loss at ∼ 920 . PartLS-alt 
with T = 20 is instead able to find a solution which is reasonably close ( ∼ 922 ) to the opti-
mal one in a much shorter time (around 20 s). When T = 100 is used instead, PartLS-alt 
reaches a reasonable approximation only after ∼ 178 seconds.
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