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A critical early step in a clinical trial is defining the study sample that appropriately represents the target population from which
the sample will be drawn. Envisaging a “run-in” process in study design may accomplish this task; however, the traditional run-in
requires additional patients, increasing times, and costs. The possible use of the available a-priori data could skip the run-in
period. In this regard, ML (machine learning) techniques, which have recently shown considerable promising usage in clinical
research, can be used to construct individual predictions of therapy response probability conditional on patient characteristics.
An ensemble model of ML techniques was trained and validated on twin randomized clinical trials to mimic a run-in process
within this framework. An ensemble ML model composed of 26 algorithms was trained on the twin clinical trials.
SuperLearner (SL) performance for the Verum (Treatment) arm is above 70% sensitivity. The Positive Predictive Value (PPP)
achieves a value of 80%. Results show good performance in the direction of being useful in the simulation of the run-in period;
the trials conducted in similar settings can train an optimal patient selection algorithm minimizing the run-in time and costs
of conduction.

1. Introduction

A critical early step in a clinical trial design is to define the
study population from which the sample will be drawn, i.e.,
to identify the target population most likely to derive benefit
from the experimental treatment. Envisaging a “run-in”
period in a study design may accomplish this task [1].

The “run-in” is a period before randomization whose
aim is detecting/excluding subgroups of patients less likely
to respond to the therapy [2].

Incorporating such a pre-randomization period in a
study design constitutes a desirable enrichment process of
a clinical study [3], but it requires additional patients,
increasing times, and costs. Instead, using available a-priori

data to inform about the potential patients’ outcome, condi-
tionally to the therapy received, could skip such a period. In
this way, predictions could improve the population segment
selection and the consequent enrolment in clinical trials [4].

The ML is a field of science aimed at fit models with
excellent predictive accuracy [5]. A unique feature of ML
algorithms is their capability to improve their predictive
performance through experience [6]. In a clinical setting,
all the amount of different historical and a-priori known
information, as well as patient everyday-life data [7], can
be employed to learn by improving complex tasks such as
classification (e.g., response to therapy and cancer clinical-
type classification) and clustering (e.g., identification of
groups of patients with shared characteristics).
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For these reasons, ML, which is increasingly applied to
clinical studies [8, 9], represents a new approach to con-
ducting medical research and developing ways to predict
individual outcomes [7–9].

ML techniques have recently been proposed in the
design phases of clinical trials, specifically as a method to
enforce patient selection in the spirit of a population enrich-
ment approach [10, 11]. An enrichment design provides the
prospective use of the patient characteristic to select a study
population in which detection of a treatment effect is more
likely than it would be in an unselected population [12].

The Food and Drug Administration (FDA) guidelines
consider the ML as a suitable method to enhance patient
cohort selection (i) by reducing the sample heterogeneity,
(ii) by choosing patients who are more likely to have a mea-
surable clinical endpoint (prognostic enrichment), and (iii)
by identifying a population more capable of responding to
treatment, also termed (predictive enrichment) [10, 11]. In
addition, the European Medicines Agency (EMA) also rec-
ommends collaborating with the trial stakeholders to design
collaborative clinical trials to innovate and expedite patient
identification procedures [13].

Despite the international guidelines indications, these
methods have been applied rarely. However, some applica-
tion examples can be found in neurological trials on Alzhei-
mer’s disease [14] and cognitive impairment [15].

The literature reports the potentialities of ML in aiding
the patient selection process in clinical trials. However, the
method finds little application except in the initial stages of
patient recruitment [16]. The patients’ enrollment in a clin-
ical trial could constitute a complex issue because of the
complex inclusion criteria and the additional workload that
a systematic patient search could involve for a physician
[17]. The pre-screening process is automatized in several set-
tings by using the ML methods; for example, different auto-
mated clinical trials eligibility screening tools have been
proposed in the literature [18].,

Despite this, using MLT techniques as a method to auto-
mate the run-in process, making it less time- and cost-
consuming in clinical trials, is little addressed in the literature.

For this reason, we propose an ML predictive capabilities
exploitation in clinical trials during early accrual in the spirit
of a population enrichment approach.

With this purpose, an ensemble model of ML techniques
was trained on a couple of twin randomized clinical trials to
learn from one trial data and to mimic a run-in process on
the other one. This work proposes an innovative and
efficient run-in method in clinical trials that combines the
possibility of optimizing the probability that a patient could
benefit from the study treatment with a considerably less
time- and cost-consuming approach than the traditional
run-in.

The ML-enforced run-in issue has been introduced in
the “Introduction” section (paragraph 1). The “Materials
and Methods” section (paragraph 2) is composed of the case
study description (2.1), together with an overview of the
dataset variable collected at baseline (2.2) and the trial out-
come assessment (2.3). The SL algorithm description is
reported in subsection (2.4) with the procedure performed

to mimic the SL-enforced run-in phase (2.5) with the algo-
rithm implementation in an R [19] environment in subpara-
graph (2.6), imputation method (2.7), implementation (2.8),
and feature selection procedure (2.9). The “Results” are
reported in paragraph 3 by reporting the data description
results (3.1) with the SL cross-validation results (3.2) and
prediction performance (3.3). The relations between the
ML run-in assisted proposal and the available literature
has been reported in “Discussion” (paragraph 5), under-
ling the limitation and potentiality in the “Conclusion”
section (paragraph 6).

2. Materials and Methods

2.1. Case Study. A couple of twin clinical trials that (subse-
quently identified with A and B) consist of two small
short-term trials on knee osteoarthritis are considered. At
the time of writing, authors are not entitled to disclose all
the data information due to confidentiality reasons.

Both trials are randomized, double-blinded, parallel, and
placebo-controlled to assess the superiority of the same
pharmacological treatment for knee osteoarthritis on symp-
toms’ modification at six months of follow-up, measured on
the Western Ontario and McMaster Universities (WOMAC)
scale [20].

The treatment and placebo arms were sealed package so
they were indistinguishable. Patients were randomized to the
intervention groups by using computer-generated random
numbers. The treatment encoding assigned to each patient
was stored in an opaque sealed envelope and only opened
in case of emergency.

2.2. Dataset and Variables Collected at Baseline. Overall, the
analysis of ML predictive capabilities as a run-in period
replacement considered 257 patients (120 from trial A and
137 from trial B) with several baselines demographic, life-
style, and clinical characteristics, including smoking habit,
alcohol consumption, caffeine consumption, diet’s type,
body mass index (BMI), blood pressure, concomitant infec-
tious diseases, concomitant medications, and signs and
symptoms of knee osteoarthritis like knees’ erythema, tem-
perature increase, effusion, bony enlargement, and knees’
degree of flexion and alignment. The distributions of the
baseline characteristics in each trial are shown in Table 1.
Further details concerning the patient’s characteristics for
the twin trial within the treatment arms have been reported
in Supplementary Material (Table S1).

To better clarify the relationship between the variables, a
synthetic dataset that mimics the structure of the original
data frame has been attached as additional material (“sint_
db.txt”). The procedure used to create the dataset is pre-
sented in the Supplementary 2.

2.3. Outcome Assessment. Symptoms’ modification during
the observation period was assessed by measuring (at base-
line and follow-up visits) the WOMAC index by the Visual
Analogue Scale (VAS) version of the index in both studies
(100mm VAS for each question; the total score is repre-
sented by the sum of all the 24 items scores). It is a tri-
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dimensional, disease-specific, health status measure, asses-
sing symptoms in the areas of pain (5 questions, score range:
0mm–100mm each one), stiffness (2 questions, score range:
0mm–100mm each one), and physical function limitation
(17 questions, score range: 0mm–100mm each one). Thus,
a higher WOMAC partial/total score represents worse
symptoms/situation, with 2400mm being the worst possible
total score.

The primary study outcome consists of the six months
comparison (mean difference) of the delta WOMAC
between treatment arms.

The secondary outcomes are the 12 and 24 months com-
parison of the delta WOMAC across treatment arms. The
trial design also assesses the variation in osteoarthritis symp-
toms between Verum and Placebo’s arms on pain stiffness
and physical function subscales as secondary endpoints.

For the study, we considered the negative variation of
total normalized (i.e., with the total length 0-2400mm
rescaled to 0-100) WOMAC index at six months against
the one measured at the baseline. The variation was consid-
ered a dichotomous variable, using the adequate cut-off
levels concerning the WOMAC index at the baseline [21]
to reveal a Minimal Clinically Importance Improvement
(MCII), i.e., -2.6mm cut-off for Low Baseline indexes (less
than or equal to 35.3mm) -14.8mm cut-off for Intermediate
indexes (from greater than 35.3mm and less than or equal to
51.4mm) and -15.1mm cut-off for High indexes (greater
than 51.4mm). This way, a patient with a delta total
WOMAC score (at six months) lower or equal to the cut-
off level referred to their baseline level is considered a
responder; otherwise, they are considered a non-responder.

2.4. SuperLearner. SuperLearner (SL) is an ensemble of ML
techniques combined so it is theoretically proved as being
asymptotically as good as the oracle selector, i.e., the best
possible weighted combination of the base learners [22].

To develop a Super Learner algorithm, it is necessary to
define a library of learners ðΨ1,⋯,ΨLÞ, specifying a meta-
learning method Φ and get a partition of the training obser-
vation into V-folds (in the current application V =5) to carry
out the cross-validation for the performance evaluation.
With these notations, SL works as follows: It generates a
matrix Z of size n × L of cross-validated predictions, i.e.,

during the cross-validation, it obtains fits bΨ
l
−v defined as fit-

ting bΨ
l
that are not in the V th fold and generates predictions

for the observations in the V th fold. Next, it finds the optimal
combination of subset-specific fits according to the specified
meta-learners algorithm bΦ with a new matrix Z and finally,
it fits L models, one for each base learning algorithm, on the
original training set X and it saves the L individual model fit
objects along with bΦ . SL also envisages the use of weights for
some algorithms. The ensemble model obtained can be used
to make predictions on the new data. For a sample size of
about 50-70 patients, it is suggested to use V =5 or V =10
depending on whether we aim to contain the bias or vari-
ance, respectively [23]. To apply SL on a population with
slightly different characteristics for the training set, we have
chosen V =5.

The SL method combines several ML algorithms in a
(convex) weighted combination of separate algorithms. The
weights are selected to minimize the cross-validation error.
Once the optimal combinations of the algorithm have been
selected, an increase in the number of learners does not
affect the SL performance because uninformative learners
are zero weighed [22].

2.5. Procedure. Patients enrolled in trial A were used to train
two SLs at predicting variation of WOMAC score at six
months: one SL was trained on patients enrolled in the pla-
cebo arm and the other one on patients in the experimental
arm. Then for validation purposes, the algorithms developed
on patients in trial A were validated using them to predict
the outcome at six months on patients enrolled in trial B.

The same procedure was applied by reversing A and B,
i.e., two SLs were trained on patients enrolled in trial B to
predict the outcome of patients in trial A.

Sensitivity (Sen), Specificity (Spec), Positive and Nega-
tive Predictive Value (PPV and NPV), Accuracy (ACC),
the Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC), and the ROC were reported to assess
the performance of the procedure.

To simulate a run-in period for both arms, we have
assumed that the randomization process was well balanced
for each trial. This approach was necessary to consider the
population in each arm as they represent an independent
population. Hence, four SLs were trained: two to predict pla-
cebo run-in and two to predict Verum run-in processes.

2.6. Base Learner Algorithms. The following provides a
short description of the ML algorithms used as base
learners. The algorithms are selected to include the most

Table 1: Baseline characteristics, stratified by trial (A or B) and treatment (Placebo or Verum). Continuous variables are expressed in terms
of I., II. (median), and III. quartiles while categorical ones with frequencies and absolute values.

Variables Valid cases
Trial A Trial B

Placebo (N =54) Verum (N =66) Placebo (N =70) Verum (N =67)

Age (years) 253 59/63/69 57/63/66 60/65/69 59/65/71

Body mass index 257 26/27/27 24/26/27 26/28/30 25/28/30

Gender: male 257 30%(16) 20%(13) 23%(16) 21%(14)

Height (cm) 257 160/165/173 163/166/170 154/160/165 154/160/166

Weight (kg) 257 66/71/79 65/70/75 64/69/77 63/70/77

Therapy responder 257 50%(27) 62%(41) 49%(34) 55%(37)
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common technique used in non-deep machine learning
models across the ones already implemented in the Super-
Learner R package.

Classification and Regression Trees (CART) [24] are
methods to fitting models obtained by recursively partition-
ing the data and fitting simpler models within each partition.
As a result, the partitioning can be represented graphically as
a decision tree.

Random Forest (RF) [25] recursively creates multiple
decision trees. The training process selects a subset of avail-
able features and recursively partitions the data until the
subspace variation is slight. As a greedy technique, RF does
not necessarily converge to an optimal global solution. For
avoiding such an indecisive convergence, a collection or
ensemble of locally optimal trees can be done (bagging.)
The ensemble of those trees is “the forest.”

Bagging Trees is an ML that falls into the category of
ensemble learning. Several CART algorithms are trained on
different datasets in bagging, each one obtained from the ini-
tial dataset through random sampling with replacement
(bootstrap). The name bagging derives from the combination
of the words bootstrap (that is, the random sampling with
replacement) and aggregation (referring to the aggregation
of more models, typical of ensemble learning) [26].

Gradient Boosting Machines (GBM) [27] construct tree-
based models on the residuals using the specified list of
variables. Next, they explain the variance in the residuals.
The total number of trees specified for the model building
was 500 with an interaction depth of five, and the learning
weight of iteration was 0.1.

Generalized Linear Model (GLM) with elastic net regu-
larization [28] is a regularized regression algorithm that
linearly combines the L1 (lasso) and L2 (ridge) penalties
in synergy with a link function to overcome the linear
model limitation.

Polychotomous regression or classification based on Mul-
tivariate Adaptive Regression Splines (POLYMARS) [29] uses
linear splines and selected tensor products to fit multiple
classifications to avoid estimating pure multiple classifica-
tion methods focusing on the estimation of reliable condi-
tional class probabilities for the classification.

2.7. Missing Data. At the time of writing, SL cannot handle
missing data. Enforcing a Multivariate Imputations by
Chained Equations (MICE) approach [30], we have per-
formed five multiple imputations with a monotone visit
sequence, i.e., the variables are sorted by the increasing
amount of “missingness” to impute the data during each
step (of the five) through the data. The function used to per-
form the imputation is provided by the mice R package [31].

2.8. Implementation. SuperLearner [32] R [19] package is
available at the CRAN (The Comprehensive R Archive Net-
work), and the functions implemented within it are the ones
that were used to train the SL MLTs. SuperLearner requires
the specification of all the candidate algorithms which con-
stitute the ensemble model. The algorithms used by us and
combined in the SuperLearner are the ones that can manage
categorical data that are included in the “SL.complete.

library” library provided by the package. The final set of
algorithms is formed by:

(i) The “SL.caret. rf” and “SL.caret.rpart” are the
SuperLearner functions implementing the RF and
CART (or RPART, recursive partitioning for classi-
fication and regression trees) algorithms, respec-
tively, by considering the caret [33] package
environment. The “SL.rpartPrune” algorithm has
also been considered. The function uses nested
sequences of subtrees by recursively snipping off
the least important splits regarding their complex-
ity. The “SL.randomForest” and “SL.rpart,” respec-
tively, implementing the RF and CART algorithm
in the Random Forest [34] and rpart [35] packages
have also been considered

(ii) The bagging tree algorithm [26, 36] has been imple-
mented with “SL.ipredbagg” interfacing with ipred
[37] R package

(iii) “SL.polymars” is the function implementing POLY-
MARS algorithm by using the MARS [38] (Multi-
variate Adaptive Regression Splines) algorithm
with the function “SL.earth”

(iv) “SL.gbm” implements the GBM function

(v) “SL.glmnet” function implements GLM with elastic
net regularization

(vi) “SL.mean” is the simple weighted mean of the out-
come predictions

2.9. Feature Selection. All the algorithms were computed
based on the set of variables and on the subsets selected by
the screening algorithm “screen. randomForest,” which uses
the Random Forest algorithm for the variable selection.
Overall, 22 (i.e., 11 x 2) different algorithms were evaluated
to be ensemble all together into each of the four SuperLear-
ner trained.

The algorithms have been trained both on the overall set
of predictors and on a subset of relevant features for the
ensemble SL and separate learners. The features have been
selected by considering the mean decrease in accuracy of a
RF algorithm. The performance for the considered models
is reported in Table 2 by identifying the model with the rule
“SL, {Name of algorithm},{selected predictors}.” For exam-
ple, the label “SL, Mars Algorithm, all features” indicates
the performance (defined as the average value of MSE in
the Cross-Validation procedure) of a single Mars algorithm
trained by including as predictors all the candidate features.
The “SL, Mars Algorithm, RF screened features” label
instead indicates the Mars algorithm performance computed
by including a subset of relevant features selected by the RF
Variable importance measure. Moreover, the notation “SL,
average, all features” indicates the performance of the overall
ensemble SL (average) trained by considering all the candi-
date predictors.
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3. Results

3.1. Data Description. The analyses have been performed on
257 patients (120 from trial A and 137 from trial B). The
median age is 63 years in both arms for trial A and 65 for
trial B in all the treatment groups. The study sample is
mainly composed of females. The median Body Mass Index
indicates overweight stratus (BMI>25) in all the treatment
groups for both studies.

The percentage of therapy responder is 50% in the pla-
cebo group and 62% in the Verum arm for study A. The
response rate of trial B is 49% in the placebo arm and 55%
in the Verum group (Table 1). Other study characteristics
ate reported in the Supplementary Material (Table S1).

3.2. SuperLearner. Table 2 shows the retained learners that
constitute the final ensemble algorithm for each of the four
prediction tasks.

Moreover, for each of the formed SLs, Table 2 reports the
risk associated with each base learner (i.e., an average of the
mean squared errors among the cross-validated algorithms,
the lower, the better) and the weight of each learner within
the given SL.Weights equal to zero are omitted. Notably, every
task differs from the others in the chosen technique.

3.3. Prediction. Table 3 reports the testing performance statis-
tics for outcome predictions on each arm of one study for each
SLs trained on the corresponding arm of the other study.

Corresponding resulting ROC (Receiver Operating
Characteristic) curves are reported in Figure 1.

The results obtained are above 70% by correctly detect-
ing Verum responders when the SL is trained on the first
trial and tested on the second and vice-versa and are above
80% to be in the right when marking a patient on the Verum
arm as non-responders using the second trial SL and of 69%
using the first one for the train. On the other side, the prob-
ability of detecting non-responder correctly for the placebo
arm is over 70% only in one direction, i.e., when the SL is
trained on the second trial and tested on the first. While
on the reverse direction, the performance remains similar
to a coin tossing. For the PPV for the placebo arms, the per-
formance is near 60%. By looking at the sample sizes, and
especially regarding the statistics of interest mentioned, it
emerges that the SL trained on trial.

4. Discussion

This study illustrates the application of an SL algorithm for
the early prediction of patients’ outcomes, which could be

Table 2: Base learner used for each SL trained; risk (average value of MSE in the Cross-Validation procedure) and coefficient (weight of the
base learner convex combination used to form the SL) are reported. Weights equal to zero are omitted. The algorithm composing the SL is
identified; the average indicates the SL average ensemble prediction algorithm. The screening (feature selection) algorithm has been also
identified. For example, “SL, Mars Algorithm, RF screened features” identify the risk associated with the Mars algorithm within SL
ensemble with an RF-based feature selection procedure.

SL trained on study A – Placebo Risk Coefficient

SL, Mars Algorithm, all features 0.177 0.213

SL, Mars Algorithm, RF screened features 0.161 0.257

SL, average, all features 0.139 0.311

SL, Rpart, RF screened features 0.150 0.219

SL trained on study A – Verum Risk Coefficient

SL, average, all features 0.121 0.539

SL, Polymars, RF screened features 0.131 0.410

SL, RF, RF screened features 0.132 0.051

SL trained on study B – Placebo Risk Coefficient

SL, Mars Algorithm, all features 0.099 0.170

SL, Glmnet Algorithm, all features 0.082 0.119

SL, Glmnet Algorithm, RF screened features 0.075 0.298

SL, average, all features 0.127 0.015

SL, RF, RF screened features 0.076 0.398

SL trained on study B - Verum Risk Coefficient

SL, Rpart, all features 0.126 0.124

SL, average, all features 0.127 0.523

SL, Polymars, RF screened features 0.191 0.141

SL, RF, RF all features 0.126 0.213

Abbreviations: SL = SuperLearner; RF = Random Forest; Glmnet = Lasso and Elastic-Net Regularized 329 Generalized Linear Models; Mars = Multivariate
Adaptive Regression Splines; Polymars = Poly-330 chotomous classification based on Multivariate Adaptive Regression Splines; Rpart = Recursive Par-331
titioning Trees.
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helpful as a potential replacement for the run-in period. The
management and conduction costs are one of the possible
issues to be faced when conducting a clinical trial. The
run-in procedure involves additional costs and time to the
study conduction [39]. The use of MLT techniques could
automate the run-in selection process.

The literature demonstrated that the improvement of the
human abilities with ML could involve significant enhance-
ment, over the classical procedure, of the patient pre-
screening process, substantially increasing the number of
patients eligible for the trial enrollment. Moreover, the pro-
cedure reduces the person-hours required and the elapsed
time between patient eligibility assessment and the final
enrollment [40].

In contrast, the proposed use of MLT techniques to
mimic the run-in process remains poorly investigated in
the literature. However, our results highlight an approach
that may prove promising for clinical trial design.

The prediction based on known information about the
same given therapy (Placebo or Verum) on the same
amount of time in a similar population concerning eligible
criteria can assess a good approximation of a real run-in,
e.g., a trained SL on patients treated with the placebo is
supposed to have learned “the way the placebo influences
the population’s outcome” in such a period considering
the predictors provided.

In the case study, we have modeled the working pattern
of the placebo arm and the Verum one, testing the model on
a similar population, achieving a moderate discrimination
ability (i.e., AUC from 63% to 76%).

However, the distribution of the baseline characteristics
highlights balanced randomization of the patients in each
trial but not that good similarity between the “twins.” This
result enforces our assumption that it is possible to con-
sider only the patients in one arm as a distinct population
in this situation.

Each study was divided into two parts for what concerns
the arm, and each used to train a classifier. So, the classes’
sizes were reduced to a minimum of 54 patients for the pla-
cebo arm (study A) and a maximum of 70 patients for the
placebo arm (study B). Regarding variance (high when the
cases in each fold of the cross-validated training sets are
too much different from each other) and bias (high when
the cases in each training set are too similar to each other)
trade-off, relying on those figures makes cross-validation
difficult concerning the number of folds to specify [41].

On one side, this could be seen as a contextual issue, and
on the other side, it shows how this procedure, particularly
the SL, performs well even with pretty small sample size.
Regardless, data sharing will allow researchers to overcome
this limitation from a collaborative perspective and achieve
better results.

Table 3: Predictive performance statistics. The sentence “X to Y” (where X is trial A or trial B and Y is the other trial) indicates the
performance of an algorithm trained on study X and tested on study Y (only on the indicated arm).

Sens Spec Acc PPV NPV AUC

A to B Placebo 0.611 0.529 0.571 0.579 0.563 0.658

B to A Placebo 0.370 0.778 0.574 0.625 0.553 0.630

A to B Verum 0.700 0.541 0.612 0.553 0.690 0.693

B to A Verum 0.760 0.634 0.682 0.559 0.813 0.763

Sens = sensitivity; Spec = specificity; Acc = accuracy; PPV=Positive Predictive Values; NPV=Negative Predictive Values; AUC = Area Under Curve.
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placebo; av = SL trained on trial A Verum, tested on trial B Verum; bp = SL trained on trial B placebo, tested on trial A placebo; bv = SL
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6 Computational and Mathematical Methods in Medicine



4.1. Potential of SL for Use in Run-In Selection. A fine-tuned
SL could be successfully exploited to forecast the possible
run-in results of a clinical trial, provided that (i) its predic-
tion capability has been assessed on an independent test data
and it reaches the desired levels; (ii) appropriate data is avail-
able, e.g., containing the predictor and outcome variables
required for the prediction model; and (iii) the use of such
predictions will not introduce any selection bias in the clin-
ical trial process. For example, Figure S1 (Supplementary
Material) depicts a hypothetical example of a run-in period
envisaged to screen out patients who fail to respond at a
short-term evaluation, thus are not suitable for the long-
term evaluation, which is the trial’s primary objective. In
this case, the application of SL before randomization
(Figure S2, Supplementary Material) could help excluding
patients failing in the short term by tightening cost and
time without introducing a bias.

The strength of the procedure is in the long-term appli-
cation and team/consortium work: an SL, trained on a first
trial and validated on a second similar one, can be used to
predict the outcome of other trials. This way, every member
of the consortium could use the trained SL to anticipate the
outcome of its subsequent trial’s run-in process, thus exclud-
ing patients with a high probability to be non-responders
(NPV) under treatment and to have the dually high proba-
bility that a true responder will be marked as responder
(Sens). On the other side, it is advisable to have a high prob-
ability of correctly detecting a non-responder (Spec) under
the placebo and ensuring that a patient marked as a
responder under placebo is likely to be true (PPV).

In this context, automatic implementation of run-in
would greatly speed up enrollment procedures. Moreover, a
further potential of the method is that the MLT system could
learn to predict the patient’s responsiveness to therapy not
only from the information available within the trial being con-
ducted but also using data from trials conducted in similar
experimental settings. All of this could be useful in building
increasingly efficient and accurate predictive machines.

The run-in process is used in clinical trials to exclude
patients after the selection procedure before the randomiza-
tion. The procedure could improve the probability of detect-
ing a treatment effect [42]. In this regard, the literature
demonstrated that ML algorithms could assist the trial con-
duction by supporting the patient recruitment process. The
ML algorithms could enhance the trial selection as addressed
by the Food and Drug Administration (FDA) [43] by limit-
ing the heterogeneity of the sample selecting the patients
who are more likely to result in an observable outcome
(prognostic enrichment). Moreover, it is recognized also
the ML role in the predictive enrichment process by improv-
ing the possibility of identifying a sample of patients more
capable of responding to the treatment [11].

There is a considerable variety of ML reported in the
literature according to their different properties and charac-
teristics; the SL ensemble allows combining many candidate
algorithms. Some authors demonstrate that the SL generally
performs better in comparison with the separate ML
learners. The SL ensemble also has an important practical
advantage limiting the need for trial planners to choose

among different ML algorithms, because all of them could
be considered for developing an SL [44].

The regulatory agencies have extensively commented
on the procedures for conducting classical clinical trial
run-in, emphasizing advantages and disadvantages and
also suggesting data analysis procedures peculiar to this
context [10]. Certainly, the application of MLT techniques
in the run-in phase poses new issues to be argued by
regulatory agencies as the procedures of MLT algorithms
tuning will have to be well established and validated for
the real cases of application.

4.2. Study Limitation. The predictive performance of the
proposed tool is not optimal on the case study considered
due to the limited sample size (the computation has been
reported in the Supplementary material).

Moreover, the run-in approach could involve a bias in
favor of the active treatment [45]. However, the procedure
is widely applied in clinical trials to exclude patients who
probably would be poor responders or poorly compliant
with the therapy. The patient exclusions are used to achieve
an enriched study sample with increased treatment
response and increased statistical power [46]. Machine
learning techniques in the run-in phase, compared to con-
ventional procedures, could improve the patient selection
procedure by using several types of information such as
textual data, imaging, and device data [11], abating the
costs and the times related to run-in. Appropriate selection
bias management techniques, for example, based on miss-
ing data imputation, are suggested to analyze the run-in
trial data accounting for all participants who were intended
to be randomized [45].

The quantification of the MLT-based run-in effect on a
possible selection bias, in comparison with the traditional
procedures, remains an interesting point to be addressed
from a clinical and regulatory point of view; few studies report
a systematic comparison between the traditional medical-
assisted run-in phase and the ML-assisted patient selection
procedure. Future research developments are needed to
further investigate these aspects according to the clinical trial
settings, patients’ characteristics, and disease profile.

5. Conclusions

The potentiality of the SL-enforced run-in approach consists
in the fact that trials conducted in similar settings can be
used to train an optimal patient selection algorithm tailored
to optimize the treatment response according to the patient’s
characteristics. In this manner, the developed SL algorithm
would mimic a run-in process in a new starting clinical trial.

Moreover, the SL algorithm shows a high grade of adapt-
ability about the possibility to choose the most suitable base
learners in each situation, maintaining the possibility to
incorporate any newly developed MLT into its library.

Data Availability

Data available upon reasonable request to the authors.
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Supplementary 1. Table S1 Baseline characteristics, stratified
by trial (A or B) and treatment (Placebo or Verum). Continu-
ous variables are expressed in terms of I., II. (median), and III.
quartiles while categorical ones with frequencies. LK=Left
Knee; RK=Right Knee; OA=Osteoarthritis; Y=Yes. Supple-
mentary material Figure S1: Classical paradigm implementa-
tion of a run-in period into a clinical trial workflow.
Supplementary material Figure S2: SuperLearner paradigm
proposal to substitute a run-in period for all the trial, in a
framework of study with similar population and treatment,
out of the one(s) selected to train the SuperLearner itself.
Supplementary material Figure S3 Comparison of variable
distributions among the synthetic and observed data.

Supplementary 2. Synthetic dataset in txt format.
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