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Abstract We study the Cauchy problem for the linear generalized double disper-
sion equation and derive long time decay estimates for the solution in Lp spaces and
in real Hardy spaces.

Keywords Double dispersion equation · Decay estimates · Hardy spaces ·
Fourier multipliers

1 Introduction

In this note, we extend the results recently obtained by the authors [2] for the Cauchy
problem for the linear generalized double dispersion equation

{
utt − Δu − aΔutt + bΔ2u − dΔut = 0, t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1)

with a = b = d = 1, to the general case of parameters a > 0, b > 0 and d > 0.
By using a Mikhlin-Hörmander type multiplier theorem, which provides Hp

boundedness of parameter-dependent operators, we are able to estimate the solution
in real Hardy spaces Hp with p ≤ 2 (we recall that Hp = Lp for p > 1).
Our main result is the following.

Theorem 1 Let n ≥ 1, p ∈ (0, 2], q0, q1 ∈ (0, p], k ∈ N and α ∈ N
n. Let θ =

θ(n, p) = n(1/p − 1/2). Assume that u0 ∈ Hq0 with (1 − Δ)
θ+k+|α|

2 u0 ∈ Hp,
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and u1 ∈ Hq1 with (1 − Δ)
θ+k+|α|−1

2 u1 ∈ Hp. Moreover, assume that

n

(
1

q1
− 1

p

)
≥ 1,

if k = |α| = 0. Then the solution to (1) verifies the estimate

‖∂k
t ∂α

x u(t, ·)‖Hp ≤ C(1 + t)
− 1

2

(
n
(

1
q0

− 1
p

)
−θ+k+|α|

)
‖u0‖Hq0 (2)

+ Ce−ct‖(1 − Δ)
θ+k+|α|

2 u0‖Hp (3)

+ C(1 + t)
− 1

2

(
n
(

1
q1

− 1
p

)
−θ−1+k+|α|

)
‖u1‖Hq1 (4)

+ Ce−ct‖(1 − Δ)
θ+k+|α|−1

2 u1‖Hp , (5)

for any t ≥ 0 and for some C, c > 0, independent of the initial data.

The statement of Theorem 1 is the same of [2, Theorem 1.2], but its proof need
suitable modifications when the parameters a, b, d fail to fullfill a condition which
is always verified when a = b = d = 1. Namely, when a zone of the phase space
appears, where the two characteristic roots of the full symbol of (1) are real-valued,
and not complex valued. Since this zone only appears at intermediate frequencies,
the dissipation remains noneffective and the decay estimates are independent on
the specific values assigned to the constants a, b, d > 0. We address the interested
reader to [7] for a classification of effective and noneffective structural dissipation
for damped evolution equations. Decay estimates for evolution equations with
effective structural dissipation are obtained in Lp spaces in [3–6, 8, 10] and in real
Hardy spaces in [9].

Even if problem (1) is interesting by itself from a theoretical mathematical point
of view, it is originated by a real world physical problem.
A presentation of the model is provided in [19]: in some problems of nonlinear
wave propagation in waveguides, in case of energy exchange between the surface
of nonlinear elastic rod in material (e.g., the Murnaghan material) and an external
medium, the following double dispersion equation (DDE)

utt − Δu = 1

4
(6Δu2 + aΔutt − bΔ2u) (6)

and the general cubic DDE (CDDE)

utt − Δu = 1

4
(cΔu3 + 6Δu2 + aΔutt − bΔ2u + dΔut ) (7)

can be derived from Hamilton Principle. Here u(t, x) is proportional to strain ∂U
∂x

,
where U(t, x) is the longitudinal displacement, a > 0, b > 0, and d �= 0 are
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some constants depending on the Young modulus, the shear modulus μ, density
of waveguide ρ and the Poisson coefficient ν. Equations (6) and (7) were studied
in literature: the travelling wave solutions, depending upon the phase variable z =
x ± ct were studied by Samsonov in [16, 17], the strain solutions of equations (6)
and (7) were analyzed in [12, 18]. Equation (7) is a special case of the following
generalized double dispersion equation

utt − Δu − aΔutt + bΔ2u − dΔut = Δf (u). (8)

The double dispersion equation and its generalized form have attracted lots of
researchers’ interests and many interesting results have been established: the global
existence and asymptotic decay of solution to the problem (8) are proved in [2] for
a = b = d = 1 and nonsmooth f (u). As customary, the proof is based on the
contraction mapping principle and makes use of the sharp decay estimates for the
linearized problem. However, in this case the oscillations coming from the wave part
of the equation produces two issues when one works in Lp spaces with p ∈ (1, 2):
a loss of regularity which is known from the theory of damped wave equations,
and a loss of decay rate, which is known from the theory of strongly damped wave
equations.
The double dispersion equation has been well investigated in recent times, in
particular see [1, 15, 19, 20].

2 Notation

We denote by F the Fourier transform with respect to the space variable x,

Fϕ(ξ) =
∫
Rn

ϕ(x)e−ixξ dx,

and we write ϕ̂(ξ) = Ff (ξ), and ϕ̂(t, ξ) = (Fϕ(t, ·))(ξ).
Differential operators are denoted by ∂α

x = ∂
α1
x1 · · · ∂αn

xn
, where α = (α1, . . . , αn) ∈

N
n and |α| = α1 + · · · + αn is the length of α.

With the symbol Δ we denote the Laplace operator as Δ = ∑n
i=1 ∂2

xi
. Fractional

powers s > 0 of −Δ and 1 − Δ are intended as defined by their action

(−Δ)sϕ = F−1(|ξ |2s ϕ̂), (1 − Δ)sϕ = F−1(〈ξ 〉2s ϕ̂),

where

〈ξ 〉 = (1 + |ξ |2) 1
2 .

Similarly, we define the Riesz potentials (see also the Appendix) for s > 0:

Isϕ = F−1(|ξ |−s ϕ̂), (1 − Δ)−sϕ = F−1(〈ξ 〉−2s ϕ̂).
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By Wm,p, p ∈ [1,∞] we denote the usual Sobolev space of Lp functions with
derivatives up to the order m in Lp, recalling that Wm,p = (1 − Δ)− m

2 Lp if p > 1.
Moreover we use the following.

Definition 1 Let f, g : Ω → R be two functions. We use the notation f � g

(resp. f � g) if there exists a constant C > 0 such that f (y) ≤ Cg(y) (resp.
f (y) ≥ Cg(y)) for all y ∈ Ω .

The definition of real Hardy spaces Hp and some of their properties are collected
in the Appendix.

3 Fundamental Solution and Decay Estimates

Applying to (1) Fourier transform w.r.t. x, we get

{
ût t + |ξ |2û + a|ξ |2ût t + b|ξ |4û + d|ξ |2ût = 0, t ≥ 0, ξ ∈ R

n,

û(0, ξ) = û0(ξ), ût (0, ξ) = û1(ξ).
(9)

Solving the characteristic equation

(1 + a|ξ |2)λ2 + d|ξ |2λ + (|ξ |2 + b|ξ |4) = 0, (10)

we have the characteristic roots:

λ± = −d|ξ |2 ± |ξ |√−4ab|ξ |4 + (d2 − 4a − 4b)|ξ |2 − 4

2(1 + a|ξ |2) . (11)

If we consider ξ− < |ξ | < ξ+ and d > d , where explicity

ξ± =
√

(d2 − 4a − 4b) ± √
(d2 − 4a − 4b)2 − 64ab

8ab
, (12)

d =
√

4a + 4b + 8
√

ab = 2
√

a + 2
√

b, (13)

then the characteristic roots are real and distinct. In this zone, it holds

û(t, ξ) = λ+eλ−t − λ−eλ+t

λ+ − λ−
û0 + eλ+t − eλ−t

λ+ − λ−
û1. (14)

The presence of this zone is neglected in [2], due to the choice a = b = d = 1,
which implies that d̄ = 4 > 1 = d. However, out of this zone, namely at low
frequencies |ξ | < ξ− and at high frequencies |ξ | > ξ+, the analysis is qualitatively
equivalent to the study carried on in [2]. For this reason, we omit the study of these
two zones and only study the “new” intermediate zone |ξ | ∈ (ξ−, ξ+).
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More precisely, we will fix ε > 0 in the proof, sufficiently small, and we will
study the region

ξ− + ε ≤ |ξ | ≤ ξ+ − ε.

For the sake of brevity, we also omit the study of the two transition regions
|ξ | ∈ (ξ− − ε, ξ− + ε) and |ξ | ∈ (ξ+ − ε, ξ+ + ε) (near the surfaces |ξ | = ξ±,
at which λ− = λ+).

For the sake of brevity, in the following we deal with u0 = 0. We denote

u(t, ·) = G(t, ·) ∗ u1 = F−1(Ĝ(t, ξ)û1). (15)

In order to prove Hp estimates with p ∈ (0, 2), the derivatives of Ĝ(t, ξ) come into
play.

Theorem 2 Let n ≥ 1, p ∈ (0, 2), q ∈ (0, p], k ∈ N and α ∈ N
n. Assume

that ϕ ∈ Hq with ϕ supported in {ξ ∈ R
n : |ξ | ∈ [ξ− + ε, ξ+ − ε]}. Then we have

the estimate

‖∂k
t ∂α

x G(t, ·) ∗ ϕ‖Hp � e−ct‖ϕ‖Hp , (16)

for any t ≥ 0 and for some c > 0.

Proof We consider the Fourier multiplier (see Definition 3)

m(t, ξ) = 〈ξ 〉−θ−k−|α|(iξ)α∂k
t Ĝ(t, ξ),

and we prove that the operator Tm is Hp-bounded, with

‖m(t, ·)‖M(Hp) � e−ct , (17)

for some c > 0. Let us fix ε > 0, sufficiently small. For any

ξ− + ε ≤ |ξ | ≤ ξ+ − ε,

it holds λ+ − λ− � cε > 0.
We notice that we may estimate

|∂γ
ξ (λ+ − λ−)(ξ)| � |ξ |−|γ |. (18)

Taking into account of (18), writing

eλ+t − eλ−t

λ+ − λ−
= eλ+t

λ+ − λ−
(1 − e(λ−−λ+)t ),
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together with

∂ξj
eλ+t = teλ+t ∂ξj

λ+,

∂ξj
e(λ−−λ+)t = te(λ−−λ+)t ∂ξj

(λ− − λ+),

we may estimate

|∂γ
ξ ∂k

t Ĝ(t, ξ)| � |ξ |k−|γ |(1 + t)|γ |eλ+t ,

where we used that (1 + t |γ |) � (1 + t)|γ |. Therefore,

|∂γ
ξ m(t, ξ)| � |ξ |−|γ |(1 + t)|γ |e−ct ,

where

c = min|ξ |∈[ξ−,ξ+](−λ+) > 0.

The minimum is nonnegative, since λ+ is nonpositive. We remark that

λ+ → − d|ξ |2±
2(1 + a|ξ |2±)

as |ξ | → ξ±.

By applying Theorem 3 in the Appendix, with a = 0 and A = 1 + t , we obtain

‖m(t, ·)‖M(Hp) � (1 + t)θ e−ct .

Therefore, we obtain (17) with a different c. This completes the proof. 
�
Remark 1 The polynomial decay rate of formula (4) comes from the multiplier
estimate at low frequencies (as it happens for damped waves in the whole space Rn,

in general), whereas the regularity of the initial data (1 − Δ)
θ+k+|α|−j

2 uj ∈ Hp,
j = 0, 1, comes from the multiplier estimate at high frequencies (see [2] for the
proof). In the intermediate frequencies, on the one hand we derive an exponential
decay, on the other hand, no regularity issue comes into play.

Acknowledgements The results for the linear problem in this contribution are a variant of the one
contained in the master thesis of the second author, who has been a student at University of Bari.

Appendix

We recall how the Hardy spaces Hp(Rn) are presented by Fefferman and Stein [11].
We use the notation Hp instead of the classical notation Hp to avoid possible
confusion with the Sobolev space Wp,2.
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Fix, once for all, a radial nonnegative function φ ∈ C∞
c (Rn) supported in the

unit ball with integral equal to 1. For u ∈ S ′(Rn) we define the maximal function
Mφu by

Mφu(x) = sup
0<t<∞

|(u ∗ φt )(x)|,

where φt (x) = t−nφ(x/t).

Definition 2 Let 0 < p < ∞. A tempered distribution u ∈ S ′(Rn) belongs to
Hp(Rn) if and only if Mφu ∈ Lp(Rn), i.e.,

‖u‖Hp = ‖Mφu‖Lp < ∞.

For p = ∞, we set H∞(Rn) = L∞(Rn).

The spaces Hp(Rn) are independent of the choice of φ. For p = 1, ‖u‖H1 is a norm
and H1(Rn) is a normed space densely contained in L1(Rn). For p > 1, ‖u‖Hp

is a norm equivalent to the usual Lp norm and we denote Hp(Rn) = Lp(Rn), by
abusing notation. For 0 < p ≤ 1, the space Hp(Rn) is a complete metric space with
the distance

d(u, v) = ‖u − v‖p

Hp , u, v ∈ Hp(Rn).

Although Hp(Rn) is not locally convex for 0 < p < 1 and ‖u‖Hp is not truly a
norm, we will still refer to ‖u‖Hp as the “norm” of u, as it is customary.

The property f ∈ Hp can be characterized by appropriate singular integrals
in a way that has some analogy with the earlier maximal characterization [14,
Theorem C]: a function f ∈ L2 belongs to Hp when p ∈ (0, 1], if and only if
f ∈ Lp and Rαf ∈ Lp, for |α| ≤ k, where k = 1 + [(n − 1)(1/p − 1)], and Rαf

denotes the Riesz transform of f , defined via the Fourier transform by

R̂αf (ξ) = (iξ |ξ |−1)αf̂ (ξ).

Moreover,

‖f ‖Hp ≈
∑
|α|≤k

‖Rαf ‖Lp .

Another number fixes the order of the moment conditions which the functions in
Hardy spaces shall verify. Indeed,

∫
Rn

xαf (x) dx = 0, ∀ |α| ≤ [n(1/p − 1)]

for any function f ∈ Hp ∩ C∞
c .
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In Theorem 2 we use a variant of the celebrated Mikhlin-Hörmander multiplier
theorem for Hardy spaces (see [13]) to obtain the boundedness of operators acting
on Hp(Rn).

Definition 3 Let m be a bounded function on R
n and consider the operator Tm

defined by

Tmf = F−1(m(ξ)f̂ (ξ)
)
. (19)

We say that m is a Fourier multiplier for Hp if Tmf ∈ Hp for all f ∈ Hp and

‖Tmf ‖Hp ≤ C‖f ‖Hp ; (20)

in other words, if Tm can be extended to a bounded operator from Hp to Hp.
In this context, M(Hp) denotes the set of all the Fourier multipliers for Hp. The
norm ‖m‖M(Hp) is defined to be the operator norm of Tm in Hp, i.e.

‖m‖M(Hp) = sup
f ∈Hp,f �=0

‖Tmf ‖Hp

‖f ‖Hp
. (21)

Theorem 3 Let p ∈ (0, 2), and θ = θ(n, p) = n(1/p − 1/2). Assume that m ∈
Ck(Rn), with m(ξ) = 0 in a neighborhood of the origin, and k = max{[θ ], [n

2 ]}+1.
If

|∂γ
ξ m(ξ)| ≤ |ξ |−aθ (A|ξ |a−1)|γ |, |γ | ≤ k,

for some constant a ≥ 0 and A ≥ 1, then m ∈ M(Hp(Rn)) and

‖m‖M(Hp(Rn)) ≤ CAθ,

where C > 0 is a constant independent of A.

Theorem 4 Let p ∈ (0, 2), and θ = θ(n, p) = n(1/p − 1/2). Assume that m ∈
Ck(Rn \ {0}), with m(ξ) = 0 for |ξ | ≥ 1, and k = max{[θ ], [n

2 ]} + 1. If

|∂γ
ξ m(ξ)| ≤ |ξ |aθ (A|ξ |−a−1)|γ |, |γ | ≤ k,

for some constant a ≥ 0 and A ≥ 1, then m ∈ M(Hp(Rn)) and

‖m‖M(Hp(Rn)) ≤ CAθ,

where C is a constant independent of A.
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Let Ir be the Riesz potential with order r > 0, defined by means of Irf (ξ) =
F−1(|ξ |−r f̂ (ξ)). If r ∈ (0, n), then there exists cn,r such that

Irf (x) = cn,r

∫
Rn

f (y)

|x − y|n−r
dy

and sufficiently smooth f . Real Hardy spaces have the property that the Hardy-
Littlewood-Sobolev theorem for Riesz potential, valid in Lp spaces, with p > 1,
extends to Hp, with p ∈ (0,∞), see [14, Theorem F].

Theorem 5 Consider r > 0 and 0 < p < n/r . Then, there exists C = C(r, p) > 0
such that

‖Irf ‖Hq (Rn) ≤ C‖f ‖Hp(Rn),
1

q
= 1

p
− r

n
.
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