
Bio

Pe
ap
co

Co

mi

Pie

Tin

Dipa

1. I

the
[1–
the
affe
spa
tha

C. R. Biologies 334 (2011) 695–704

A R

Artic

Rece

Acce

Avai

Keyw

Fres

Man

Logi

Dec

Arti

* 

163

doi:
logical modelling/Biomodélisation

rformance comparison among multivariate and data mining
proaches to model presence/absence of Austropotamobius pallipes
mplex in Piedmont (North Western Italy)

mparaison des prestations entre des techniques de statistique multivariée et data

ning pour prévoir la présence/absence de Austropotamobius pallipes complex au

´mont (Italie nord-occidentale)

a Tirelli *, Livio Favaro, Marco Gamba, Daniela Pessani
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Freshwaters, which are rapidly deteriorating all around
 world, have been the focus of more and more attention
3]. This attention has inspired many studies analyzing

 ecological, environmental and habitat factors that
ct the distribution of freshwater organisms at different
tial scales. However, one kind of freshwater organism
t has been relatively neglected is the crustacean [4–9].

In relation to crustaceans, we endeavored to analyze the
relationship between species distribution and ecological
factors, a fundamental step towards increasing our
knowledge of freshwater ecosystems, of the communities
associated with them, and of information important for
management and conservation. Worldwide, freshwater
habitats are being subjected to such marked human
disturbance that the extinction rate of freshwater species
is predicted to be five times that of terrestrial species and
three times that of coastal marine mammals [10]. All this
hastens us to foster habitat and species preservation by
developing practical tools for assessing running waters and
species conditions ecologically.
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A B S T R A C T

Freshwater inhabitants in Piedmont (Italy) have been deeply disadvantaged by

environmental changes caused by human disturbance. Hence there are engendered

species that need human intervention of an entirely different kind – better management

through the development of innovative practical tools. The most ecologically important of

the river-dwelling invertebrates is a threatened species, the native white-clawed crayfish

Austropotamobius pallipes. This is the species that we focused on in our effort to contribute

to species conservation. Specifically we contrasted three different techniques of managing

data relating to the presence/absence of this species: logistic regression, decision-tree

models and artificial neural networks (ANN). Logistic regression and decision tree models

(unpruned and pruned) performed worse than ANN. In this case, tree-pruning techniques

did not make these models significantly more reliable, but did make the trees less complex

and therefore did make the models clearer. ANN performed the best. Therefore we have

judged them to be the most effective techniques.
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The biological model we used in this research project is
the white-clawed crayfish Austropotamobius pallipes com-
plex, the biggest indigenous freshwater invertebrate in
Western and Central Europe [11,12]. Over the last few
decades, European populations of native crayfish have been
fragmented and have declined all over the continent [13].
Human disturbance has provoked habitat fragmentation,
deforestation and water deterioration. Larger, more aggres-
sive, and quicker-growing non-native crayfish [14–17] have
been introduced. On top of this, human disturbance is liable
to become even more severe in the future while non-
indigenous species are transmitting the crayfish plague due
to Aphanomyces astaci (Schikora, 1906) [18].

Obviously, A. pallipes has been in need of special
protective measures and so was listed as ‘‘vulnerable’’ on
the Red List of threatened animal species compiled by the
International Union for the Conservation of Nature and
Natural Resources [19] and in annexes II and V of the
Habitat Directive (Council of the European Communities,
1992, 1997). In Piedmont (NW Italy), A. pallipes is protected
locally by a Regional Law (L.R. number 37 dated 29/12/06),
which lays down new regulations for the management of
aquatic fauna, habitat, and fishing. In particular, it provides
policies aimed at re-establishing consistent populations of
native species.

A. pallipes, like other native crayfish, is considered a
keystone species [20], an important component of many
food webs in freshwater ecosystems [21–24]. Crayfish are
involved in the food chain: they are prey for vertebrate
predators [25] and, in turn, are omnivorous feeders with a
significant impact on community structures [26–31]. They
play an important role in the well-being of running water
ecosystems [32] and take part in the cycling of matter and
the flow of energy [33]. Although A. pallipes have long been
considered valid bioindicators of water quality [34–36],
they also inhabit moderately polluted waters [8,9,37].
These were the factors that have led us to investigate the
relationship between the environment and the presence/
absence of A. pallipes.

In our research project, we have used modeling, a tool
being considered more and more important for defining
management and conservation policies. Ecosystems have
highly complex nonlinear relationships among their input
variables, and so researchers have been applying machine-
learning methods to ecology in the last decade [38–46].
One reason is that machine-learning techniques introduce
fewer prior assumptions about the relationships among
the variables and hence are better than traditional
statistical analysis in many ways. There are many machine
learning techniques. However, decision trees [47], artificial
neural networks [48], fuzzy logic [49], and Bayesian belief
networks [50] are the techniques that seem to model
habitat suitability the best [41,51].

Our research project evaluates the reliability of various
current classification techniques in modeling A. pallipes

presence/absence and ranks their performances. We used
two types of approaches. Firstly, we used the multivariate-
statistics approach, where we applied logistic regressions
(LRs). Secondly, we used the machine-learning approach,
where we applied decision trees (DTs) and artificial neural
networks (ANNs). These types of machine-learning tech-

niques have been used at various rates – ANNs quite often
from mid-1990s [44–46,48,52–62], DTs sporadically
[41,45,46], and LRs most frequently [56].

2. Material and methods

2.1. Study area and data collection

We chose sites for sampling A. pallipes distribution on
the basis of both recent information and historical
records – by examining the literature, by collecting
information from museums, and by contacting local town
administrators, natural-park and wildlife-reserves person-
nel, and local people. The 175 sites we chose covered a total
area of 25,399 km2 and were located along brooks and
small tributaries flowing into the Po River. They mostly
were characterized by running waters inhabited by native
crayfish in the past. We performed samplings from late
spring to early autumn 2005–2009 in all 8 provinces of
Piedmont Region: Alessandria, Asti, Biella, Cuneo, Novara,
Verbania, Vercelli, and Torino.

The sites had geological conditions typical for Pied-
mont, ranging from the siliceous to the calcareous, and
therefore widely varied in their physical and chemical
characteristics. Species presence was assessed both during
the day performing manual surveys (2 people for 1 hour)
and at night using traps (50 � 25 � 25 cm with a 3 mm
mesh size, baited with pig or chicken liver, left overnight).
Each site was sampled three times before considering it not
inhabited by the crayfish.

2.2. The choice of input variables

The more the parameters used, the more complex the
models are, the greater the calculation times, the greater
the field data collection efforts, and – unfortunately – the
more obfuscated the models. Accordingly, we chose only a
few variables, those most important for detecting
A. pallipes presence, as reported [8,9,15].

2.2.1. Environmental variables

Some stream characteristics were considered in situ:
altitude; width at moderate flow; width at high flow;
percentages (0–100%, not classes) of the sampled area
classified according to granulometry-bedrock, boulders
and pebbles, medium gravel (� 1 cm), little gravel
(1 cm < dimension � 2 mm), sand and silt (dimen-
sion < 2 mm); water velocity; and amount of shade
(classes 0–5; the larger the shade, the larger the value).

2.2.2. Physical-chemical variables

In each site we measured pH, conductivity (C) and
percentage of dissolved oxygen (DO) through a multipa-
rameter probe (mod. Hydrolab Quanta). To avoid floating
materials, we set a 15 cm depth for collecting two 100 mL
water samples from each site. We stored the samples in
sterile polythene test tubes and froze them until they were
analyzed chemically. We measured the concentrations of
the following inorganic ions that are commonly used to
assess water quality: ammonium (NH4

+), nitrates (NO3
�),

ortho-phosphate (PO4
3�), chlorides (Cl�), sulfates (SO4

2�),
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ium (Ca2+), and magnesium (Mg2+). To do this, we used
pectrophotometer Dr Lange Lasa 100 following IRSA
]. Then the BOD5 was evaluated, as in Lenor et al. [64].
erally, ion concentrations are not conservative vari-

es. However, the reason why we used them was that the
plings were always performed during normal flow

imen from late spring to early autumn. Therefore the
 concentrations that were measured were assumed to
constant.

3. Climate variables

We used the software DIVA-GIS version 5.4.0.1 (http://
w.diva-gis.org) with raster data taken directly from
CLIM. This is a bioclimatic prediction system that
roximates energy and water balances at given locations

using surrogate terms (bioclimatic parameters) derived
 mean monthly climate estimates [65]. In effect,

CLIM uses monthly or weekly values of maximum
peratures, minimum temperatures, rainfall, radiation,

 evaporation to derive bioclimatic parameters. We used
 following terms: annual mean temperature (the mean
ll the weekly mean temperatures; each weekly mean
perature = the mean of that week’s maximum and
imum temperature), maximum temperature of the

rmest period (the highest temperature of any weekly
ximum temperature), minimum temperature of the
est period (the lowest temperature of any weekly

ximum temperature), annual precipitation (the sum of
the monthly precipitation estimates), precipitation of

 wettest period (the precipitation of the wettest
nth), and precipitation of the driest period (the
cipitation of the driest month).

 Data-set pre-processing

Data was normalized proportionally before we use a data
to build the different models. We normalized as in Tirelli
l. [46]. In addition, we selected attributes by applying
erent feature selection techniques. In general, features

 selected by searching the space of attribute subsets,
ething accomplished by combining an attribute-subset

luator with a search method. In our case, we used filter
thods, which select features on the basis of measures of
ture predictability and redundancy. Supervised filters are
y flexible and allow various search methods and
luation methods to be combined. We chose five
ervised filter evaluators to find the best feature set
, Information Gain, Gain Ratio, Symmetrical Uncertainty,

 OneR), all available in WEKA [66], along with one search
thod (Ranker). We used the 10-fold cross-validation for
h of the five methods. We used the missing-merge option
each of the evaluators, an option that allows users to
ribute counts for missing values, which are distributed

oss other values in proportion to their frequency.
We used three options for the Ranker search method: (a)
erate ranking, a constant option of this method; (b)
ber to select, which allows the user to specify the
ber of attributes to retain; the number we used was the

ault value (�1), which neither excluded any attribute nor
uced the attribute set; and (c) threshold, which allows
rs to set the threshold beyond which attributes can be

discarded. We used threshold at default value because it is
the option according to which no attributes are discarded.

The algorithms used in each evaluator are those
described in detail by Witten and Frank [66]. These are
techniques that search among the attributes for the subsets
most likely to predict the class. Through them, we obtained
the following unique core of 15 inputs: (1) PO4

3�, (2) NH4
+,

(3) NO3
�, (4) Ca2+, (5) BOD5, (6) DO percentage saturation,

(7) pH, (8) conductivity, (9) % of bedrock, (10) water velocity,
(11) amount of shade, (12) width at moderate flow, (13)
altitude, (14) minimum temperature of coldest period, and
(15) precipitation of wettest period. This is the unique core
of variables that is essential for contrasting the perfor-
mances of the different models. We acknowledge that the
selection of variables is not necessarily independent of the
modeling approach (e.g. a variable that can be effective with
ANNs may be ineffective with DTs). Nevertheless, we used
the same set of variables to contrast the performances of the
different models.

2.4. Analyses

2.4.1. Logistic Regression and Principal Component Analysis

Classification

We performed Logistic Regression (LR) to distinguish
sites inhabited (positive sites) by A. pallipes complex from
sites not inhabited by them (negative sites). We carried out
multivariate analyses using Principal Component Analysis
(PCA) and LR (following the procedure suggested by 56). PCA
used the 15 inputs from feature selection, so that the
positive correlated variables were transformed into a
smaller number of variables (principal components [PCs]).
This coordinate transformation reduced the redundancy
within the data by creating a new series of components.
These principal components were linear combinations of
the original response vectors and were chosen because they
contained the most data variance and because they were
orthogonal. We assessed how much we could separate
positive sites from negative ones. To do this, we conduced
LRs, only using PCs with eigenvalue > 1. We performed
these analyses by employing the stepwise-forward-selec-
tion entry of independent variables. We used species
presence/absence as the dependent variable and the PCs
as independent variables [9]. We estimated a reliable error
of the models by estimating the performances of LRs from a
leave-one-out jackknifing involving a holdout procedure
repeated 10 times and using a model derived from a
calibration set of 80% of the sites. In turn, this model was
applied to the remaining test sites [46,56]. We calculated the
average predictive performance and chose, as the final
model, one of the 10 LRs included within this range.

2.4.2. DT models

We induced rules in the form of decision trees using a
common technique [47], the top-down induction of decision

trees. These rules related the values of the inputs to the
presence/absence of white-clawed crayfish. We used the
J48 algorithm with a binary split. J48 is the Java re-
implementation of the C4.5 algorithm [67], one of the most
well-known and widely used decision-tree induction
methods. We decided to use a binary split on the basis

http://www.diva-gis.org/
http://www.diva-gis.org/
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of the papers by Dakou et al. [41] and Tirelli et al. [46], both
of whom obtained positive results in a freshwater context.
The outputs of the models are discrete variables (presence
or absence of A. pallipes), but all the inputs are continuous.

We applied the tree-pruning optimization method both
in order to reduce the effects of noise in the data and the
complexity and to improve the accuracy of the predictions.
Tree pruning is a common way to cope with tree
complexity. Optimal tree pruning eliminates errors from
data noise and therefore reduces the size of models and
makes them clearer and more accurate in their classifica-
tions [68]. We used post-pruning with the intensity
controlled by changing the confidence factor (a parameter
affecting the error rate estimate in each node) between
0.15 and 0.25.

To assess model performances, we evaluated five
parameters on the basis of matrices of confusion [69]:
(1) the percentage of Correctly Classified Instances (CCI),
frequently used when presence/absence of taxa is pre-
dicted; (2) model sensitivity (the ability to predict species
presence accurately); (3) model specificity (the ability to
predict species absence accurately); (4) Cohen’s kappa
coefficient [70]; and (5) the area under the receiver-
operating-characteristic (ROC) curve.

The CCI are affected by the frequency of occurrence of
the organism being modeled [68,71]. Thus Cohen’s k

coefficient, being negligibly affected by prevalence, is a
more reliable performance measure of presence/absence
models [72–74]. Cohen’s k gives a rather conservative
estimate of prediction accuracy because it underestimates
agreements due to chance [75]. However, k values come
from the information content of the dataset, which has
limited extractable information. For this reason, there may
be differences in k threshold values according to the
discipline, according to Gabriels et al. [76]. These are the
researchers who have assessed the following k values in a
freshwater ecological context: 0.00–0.20: poor; 0.20–0.40:
fair; 0.40–0.60: moderate; 0.60–0.80: substantial; and
0.80–1.00: excellent. In the area under the ROC curve,
Hosmer and Lemeshow [77] suggest that 0.7 indicates
satisfactory discrimination, 0.8 good discrimination, and
0.9 very good discrimination.

Model training and validation were based on stratified
10-fold cross-validation [78]. To estimate a reliable error of
the models, we repeated 10-fold cross-validation experi-
ments 10 times and we calculated the average predictive
performance. The Mann-Whitney U tests were carried out
to contrast the performances of the unpruned and pruned
models as well as of DTs and LRs. Comparisons were made
on the basis of the parameters mentioned above.

2.4.3. ANN models

We used sites that tested both positive and negative for
crayfish. We employed all the measured parameters and
thereby built a model using a feed-forward multilayer
perceptron trained by the back-propagation error algorithm
[75], a very common training method [43,45,46,80]. We
built a three-layered feed-forward neural network with bias
and developed it with an architecture that is described as
follows. There were 15 input nodes, the 15 features resulting
from the feature selection. There was only one output node

– crayfish presence/absence. There was one hidden layer
between the input and the output layers. In this hidden
layer, the number of neurons was optimized by trial and
error. We chose this single layer because a single layer
generally shortens computation times and often yields the
same results as ANNs with more than one hidden layer
[81,82]. We chose the number of hidden neurons to
minimize the trade-off between network bias and variance
[82], and determined the optimal number empirically by
contrasting the performances of different ANNs. We tested a
range of architectures with variations in momentum (range
0.1–0.5), learning rates (range 0.1–0.5), epochs, and number
of neurons in the hidden layer. We did this until we obtained
the best predicting models. Then we examined models with
similar performances and chose the simplest of them – those
with the fewest hidden nodes. Simple models are more
useful for two reasons. First, the simpler of two similar
networks is the one more likely to predict new cases better
[82]. Second, the best of all network geometries is that of the
smallest network that captures the relationships in the
training data adequately [74]. Cross-validation is particu-
larly useful when the number of cases is limited. We
therefore used cross-validation to avoid over-training the
networks and used the error back-propagation algorithm
[79] to train cross-validated neural networks. We assessed
the performance of predictive models using the same five
parameters on the basis of the matrixes of confusion [69]
already mentioned for DTs.

Model training and validation were based on stratified
10-fold cross-validation [78]. In order to estimate a reliable
error of the models, 10-fold cross-validation experiments
were repeated 10 times. Finally, we calculated the average
predictive performances and chose one of the 10 networks
included within this range as the final network for our
model. We performed the Mann-Whitney test to contrast
the performances of the ANN models with DTs and models
with LRs. We did not use a dedicated test set because the
amount of data available was limited [46].

3. Results

3.1. Crayfish distribution

Detected streams showed extensive habitat wealth.
Some of the sampling sites were greatly affected by human
activities (25.14%) while others were not. The areas of high
anthropic impact were characterized by discharges and by
the modification of landscape features. Most anthropic
impact came from farms, factories, and sewers. Most of the
landscape modifications were due to plantation, canaliza-
tion, dredging, reservoirs, and engineering work. Native
crayfish populations were not found in 77 (44.00%)
watercourses, but were found in 98 (56.00%). Fig. 1 shows
the distribution of both the positive and the negative
sampled sites.

3.2. PCA and LR classification

PCA showed that the total variance of all 6 components
with eigenvalue > 1 ranged up to 68.36% (Table 1). The
mean performances and standard deviations of LRs were
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ulated on models built using the 6 PCs with
envalue > 1. Mean LR models correctly classified
96% of the sites – 74.81% of the sites with crayfish
sence and 59.02% of the sites with absence. The best
forming LR model showed the best classification results
en it had three PCs (PC2, PC3, and PC4) and when these
re retained in the equation at the step 3 (Table 2).
rall, this model correctly classified 74.60% of the sites –

00% for presence and 57.10% for absence (Table 3).

 DT models

The average and standard deviations of the five
formance parameters were calculated both for un-
ned and post-pruned DTs (Table 4). The unpruned trees

 very many leaves, which made them more complex
 hindered ecological interpretations (Table 4). Pruning
ally makes models less complex and makes their
formances more efficient. Thus, models with different
nsities of post-pruning were induced by varying the
fidence factor between 0.15 and 0.25. The optimal
fidence factor was 0.15. The percentages of CCI and

Cohen’s k statistic were quite low in all the cases. Cohen’s k

statistic made the models reliability poor. The values
obtained by Cohen’s k revealed that most of the predictions
were based on chance. Sensitivity always reached quite
high values (> 73.0%), while specificity was only 55.5%. The
area under the ROC curve (0.7) indicated satisfactory
discrimination. The best performing DT from among these
10 inputs had CCI = 72.45%, Cohen’s k = 0.43, sen = 80.33%,
spe = 62.50% and area under the ROC curve = 0.71.

We performed the Mann-Whitney U test to contrast the
five parameters (CCI, model sensitivity, model specificity,
Cohen’s kappa coefficient, and the area under the ROC
curve) used to assess performances and the mean number
of leaves between pruned and unpruned models. No
significant differences in the predictive performances were
detected, while a significant difference was found in the
number of leaves. For this reason, we will only consider
pruned trees for further comparisons.

Moreover, the Mann-Whitney U tests were carried out
to compare CCI, model sensitivity, and model specificity in
LR and in pruned-DT models. There were no significant
differences in their predictive performances (P > 0.05).

Fig. 1. Map of the Piedmont region showing the distribution of the 175 sampling sites.
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3.4. ANN models

The optimization of the number of hidden neurons by
trial and error resulted in the following network
architecture: 15 input neurons, 8 hidden neurons and 1
output neuron. The learning rate was set to 0.3, the
momentum set to 0.2, and the maximum number of
epochs to 400. We calculated the average and the standard
deviation of the five performance parameters of the 10
repeated 10-fold cross-validated ANNs (CCI = 72.99%,
k = 0.45, sen = 75.16%, spe = 70.18%, ROC = 0.80). We chose
the final network from among these 10 ANNs. This
network had quite a high percentage of CCI (78.95%), of

sensitivity (79.56%), of specificity (78.04%), a moderate k
coefficient (0.57) [78] and an area under the ROC curve of
0.81. This area of 0.81 indicates that the model dis-
criminates well [77].

We performed the Mann-Whitney U test to compare
the performances of DT and ANN models. ANNs
performed better than DTs (P < 0.05), except for sensi-
tivity (P > 0.05). We carried out the Mann-Whitney U test
to compare the performances of the LR and the ANN
models. The tests showed that ANNs performed better
than the LRs (P < 0.001), except for sensitivity (P > 0.05).
The final ANN model was influenced by all the 15 inputs
used to model the presence/absence of the species in
Piedmont. This illustrates that if we choose the features
accurately, those features that we retain are the only
effective inputs.

4. Discussion

The most obvious finding of our research project is that
A. pallipes is distributed across Piedmont in a heteroge-
neous and fragmented way (as it is in the Lazio Region in
central Italy [16]). Over the last few decades, populations

Table 1

Weight of each one of the 15 selected variables in building the principal components (PCs).

PCs

1 2 3 4 5 6

Eigenvalue 3.10 2.08 1.70 1.27 1.11 1.01

% of variance 20.66 13.86 11.34 8.45 7.39 6.67

Conductivity 0.678 �0.133 0.249 0.388 0.113 0.114

Ca2+ 0.665 �0.005 0.251 �0.357 0.061 �0.205

Dissolved oxygen [% of saturation] �0.642 �0.040 0.119 �0.287 �0.058 �0.154

Altitude �0.578 0.413 0.103 0.151 �0.064 0.350

Minimum temperature coldest period 0.564 �0.271 0.542 �0.063 �0.101 0.175

Water velocity �0.541 0.029 0.225 �0.183 0.261 0.326

Precipitation wettest period 0.074 �0.663 �0.133 0.381 �0.171 �0.143

NH4
+ 0.407 0.648 0.113 0.315 0.074 �0.101

PO4
3� 0.221 0.584 0.247 0.130 0.427 0.207

BOD5 0.011 0.521 �0.234 0.406 �0.271 �0.360

pH 0.128 0.150 0.686 �0.214 �0.457 �0.026

Width at moderate flow �0.363 �0.325 0.565 0.263 0.161 �0.231

% of bedrock �0.429 �0.308 0.273 0.552 �0.030 0.227

NO3
� 0.335 �0.337 �0.278 �0.034 0.543 0.055

Shade 0.419 �0.072 �0.344 �0.010 �0.430 0.593

Table 2

Results of the logistic regressions (LRs) for principal components (PCs).

B S.E. Wald df P Exp (B)

Step 1 PC2 �0.549 0.182 9.090 1 < 0.01 0.578

Constant 0.451 0.179 6.380 1 < 0.05 1.570

Step 2 PC2 �0.611 0.194 9.881 1 < 0.01 0.543

PC3 �0.517 0.191 7.290 1 < 0.01 0.596

Constant 0.424 0.183 5.363 1 < 0.05 1.529

Step 3 PC2 �0.613 0.194 10.004 1 < 0.01 0.542

PC3 �0.526 0.193 7.429 1 < 0.05 0.591

PC4 0.378 0.187 4.061 1 < 0.05 1.459

Constant 0.430 0.187 5.285 1 < 0.05 1.537

Variable(s) entered on step 1: PC2, step 2: PC3, step 3: PC4.

Table 3

Classification table of logistic regression (LR) for the 6 principal

components (PCs).

Overall (%) Presence (%) Absence (%)

Step 1 59.9 83.7 23.2

Step 2 66.2 84.9 37.5

Step 3 74.6 86.0 57.1

The cut-off value is 0.500.
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. pallipes declined considerably in Piedmont [83], as in
of Europe [12,13,18,84,85]. We no longer observed

yfish in 77 previously inhabited watercourses probably
ause there has been habitat fragmentation, engineering
rk, stream canalization, deforestation, and increased
ter pollution.
We have endeavored to determine the predictive model
t performs the best because such a model can be used to
nage and protect endangered species better. Not all the
deling procedures we tested performed well. LR models
formed as they did in the tests of Manel et al. [56]. ANNs
performed both LR models and DT models. LRs
formed worse in relation to specificity than in relation
ensitivity probably because there were more sites with
yfish presence than absence. DTs performed the worst
ll. Cohen’s k statistic showed that DT models yielded
eliable predictions, in that most of the classifications
re based on chance, as they did in previous studies
ere they did not perform well in predicting macro-
ertebrates [41]. In Dakou et al. [41], Cohen’s k values
re even lower than those in the present study. The
runed DTs were too complex with their many leaves to

ld any ecological interpretation. The J48 algorithm
duced very detailed trees that prevented the models

 generalizing any more. Therefore we used post-
ning to reduce tree complexity and variance. Post-
ning did not make the models perform better, as in
lli et al. [46] and Tirelli and Pessani [45]. However, they

 yield simpler trees that could be interpreted ecolog-
ly [41,45,46].
Learning in ANNs is sensitive to the input data used.
en researchers choose the appropriate features through
-processing, their models perform considerably better
ecological contexts [46]. When there is no variable
ction in ANNs, irrelevant information passes through

 nodes, influences the connection weights slightly, and
cts the overall performance of ANNs. On the other
d, variable selection decreases ANN size, reduces
putational costs, increases speed, and uses less data
stimate connection weights efficiently. Feature selec-

 eliminates all but the most relevant attributes,
uces the number of input variables, and helps models
dict better [46,74,86]. In general, predictions are more
urate when the number of presences and absences is
und 50% [87]. This is obviously a problem, especially
en modeling rare species. It is especially important to
dict presences correctly and to have accurate models
en we need to predict the presence of scarce species.

Such accuracy helps conserve and manage the species by
identifying the potential protected areas. With this in
mind, the ANN approach is valuable for modeling A. pallipes

presence.

4.1. Physical-chemical variables

One finding our research project that seconds earlier
research is that the organic matter dissolved in the water is
a factor crucial for explaining the white-clawed crayfish
distribution (all models use BOD5) [8,9,88,89]. Broquet
et al. [15] and Trouilhé et al. [8] underlined that organic
matter is one of the most important features of brooks with
native crayfish. Vegetal residues and organic detritus are of
great importance for the crayfish diet. In fact, they are the
most important sources of energy and food available in
freshwater ecosystems [31,90]. In our project, the BOD5

index was used to measure the organic matter that can be
biologically attached by bacteria [9,15]. In addition, we
built models using several other physical-chemical vari-
ables that have already been reported to be important for
A. pallipes distribution [7–9]: the pH, the concentration of
Ca2+, the concentration of NO3

�, the percentage of
dissolved oxygen in water, and the level of conductivity.
Ca2+ is especially important for determining the occur-
rence of crayfish because it is essential for exoskeleton
calcification. NH4

+ and PO4
3� and the pollution they cause

do not affect A. pallipes presence. In fact, these ions are
often found in streams inhabited by A. pallipes

[8,9,15,37,89,91,92]. Mean value and standard deviation
of the physical-chemical variables characterizing sites
inhabited by this species are reported in Favaro et al. [9].

4.2. Environmental and climate variables

Another finding that our research project supports is
that A. pallipes need to avoid potential predators, extreme
temperature ranges, and extreme changes in the flow of
water. Thus the environmental features that can help
explain their distribution are the ones that play a role in
their avoiding these circumstances: (1) shade due to
canopy cover and bedrock used as shelter from potential
predators; (2) temperature variations (a minimum tem-
perature during cold seasons) and temperature variations
due to altitude (a good integrator of the thermal
conditions); (3) scarcity or flooding of flowing water
(precipitation during the wettest period and water
velocity). The availability of shelters and borrows in a

le 4

ictive results of decision tree models based on the J48 algorithm without pruning and with post-pruning optimization.

s with binary split CCI k sen spe ROC # l c.f.

pruned Mean 65.3 0.30 73.0 55.5 0.7 18.6 0.18

s.d. 2.8 0.06 3.8 4.2 0.03 1.5

uned Mean 65.9 0.30 74.4 55.5 0.7 15.7 0.15

s.d. 3.4 0.07 4.0 4.6 0.03 1.3

ann-Whitney P n.s. n.s. n.s. n.s. n.s. < 0.001

 percentage of correctly classified instances; sen: sensitivity; spe: specificity; k: Cohen’s k; ROC: area under the ROC curve; # l: number of leaves; c.f.:

dence factor; s.d.: standard deviation.
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stream – critical for the survival of adults – is the most
important resource bottleneck in crayfish populations
[7,93]. This association of canopy cover with A. pallipes

presence has been supported by Smith et al. [4], Naura and
Robinson [5], and Broquet et al. [15], but not by Barbaresi
et al. [7].

Mean value and standard deviation of the environmen-
tal and climate variables characterizing the elective habitat
of A. pallipes in Piedmont are reported in Table 5.

In conclusion, A. pallipes are being subjected to an
unprecedented crisis [11,85]. Therefore it is imperative that
researchers choose the best way to take on this crisis by
understanding the relationships between endangered spe-
cies and their habitats more deeply. With this in mind, they
can better plan conservation and management strategies.
Our advice is this: researchers must first use various
techniques and then contrast their performances. Our
own results illustrate the advantages of contrasting various
approaches. In fact our method enabled us to predict white-
clawed crayfish presence in Piedmont with reasonable
accuracy. It helped us choose the best model for managing
A. pallipes. Had we used fewer approaches, we would have
come up with a poorer model. Our research project has
underlined the synergic effects of several biotic and abiotic
factors on the occurrence of A. pallipes in an effort to provide
information for the maintenance of natural populations and
the selection of sites and streams where reintroduction
strategies may be planned. We conclude with the suggestion
that researchers use and contrast various techniques, as we
did, in their research in other areas.
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