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Abstract

The Dirac-Dolbeault operator for a compact Kähler manifold is a special case of a Dirac op-

erator. The Green function for the Dirac Laplacian over a Riemannian manifold with boundary

allows to express the values of the sections of the Dirac bundle in terms of the values on the bound-

ary, extending the mean value theorem of harmonic analysis. Utilizing this representation and the

Nash-Moser generalized inverse function theorem we prove the existence of complex submanifolds

of a complex projective manifold satisfying globally a certain partial differential equation under a

certain injectivity assumption. Next, we show the existence of complex submanifolds whose funda-

mental classes span the rational Hodge classes, proving the Hodge conjecture for complex projective

manifolds.
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