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A B S T R A C T   

Objectives: Urinary sex hormones are investigated as potential biomarkers for the early detection of breast cancer, 
aiming to evaluate their relevance and applicability, in combination with supervised machine-learning data 
analysis, toward the ultimate goal of extensive screening. 
Methods: Sex hormones were determined on urine samples collected from 250 post-menopausal women (65 
healthy - 185 with breast cancer, recruited among the clinical patients of Candiolo Cancer Institute FPO-IRCCS 
(Torino, Italy). Two analytical procedures based on UHPLC-MS/HRMS were developed and comprehensively 
validated to quantify 20 free and conjugated sex hormones from urine samples. The quantitative data were 
processed by seven machine learning algorithms. The efficiency of the resulting models was compared. 
Results: Among the tested models aimed to relate urinary estrogen and androgen levels and the occurrence of 
breast cancer, Random Forest (RF) proved to underscore all the other supervised classification approaches, 
including Partial Least Squares – Discriminant Analysis (PLS-DA), in terms of effectiveness and robustness. The 
final optimized model built on only five biomarkers (testosterone-sulphate, alpha-estradiol, 4-methoxyestradiol, 
DHEA-sulphate, and epitestosterone-sulphate) achieved an approximate 98% diagnostic accuracy on replicated 
validation sets. To balance the less-represented population of healthy women, a Synthetic Minority Oversampling 
TEchnique (SMOTE) data oversampling approach was applied. 
Conclusions: By means of tunable hyperparameters optimization, the RF algorithm showed great potential for 
early breast cancer detection, as it provides clear biomarkers ranking and their relative efficiency, allowing to 
ground the final diagnostic model on a restricted selection five steroid biomarkers only, as desirable for 
noninvasive tests with wide screening purposes.   

1. Introduction 

Breast cancer is the leading cause of cancer deaths for women and 
accounts for about 12% of new total diagnosed cases worldwide, ac
cording to the new Global Cancer statistics 2020 [1]. In patients’ 

treatment and life expectancy, a fundamental role is played by early 
detection, requiring specific, efficient, and easily measurable bio
markers for routine screening. Steroids are among the candidate bio
markers, since epidemiological studies showed correlation between 
endogenous steroid hormone levels and the increased risk of developing 
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breast, ovarian and endometrial cancer [2–4]. 
Steroids are lipid-based hormones synthesized from cholesterol in 

endocrine glands and encompass androstanes, estrenes, and pregnanes, 
each characterized by unique structure and functions [2]. In the present 
study, we addressed our investigation toward androgens and estrogens, 
i.e., two groups of sex hormones belonging to the families of androstanes 
and estrenes, respectively. In particular, androgens are vital for male 
sexual development and growth, while estrogens impact female traits, 
energy metabolism, and mineral balance. Among estrogens, estrone, 
estriol and 17β-estradiol play crucial roles, the latter being essential for 
the development of secondary sexual features and mammary glands, 
while estriol is pivotal in pregnancy and urinary excretion [2–4]. Ste
roids’ multifaceted functions underscore their physiological importance, 
as the hormone production varies with age and reproductive state. 

Sex hormones also appear to play a significant role in the aetiology of 
breast cancer [4,5]. Several recent studies targeted the role of estrogen 
metabolites while clinical evidence already classifies the main 
free-circulating estrogens as candidate breast carcinogens [5,6]. 
Although the exact mechanism is not fully elucidated, estradiol, estrone 
and catecholic estrogens (the hydroxylated metabolites of estradiol and 
estrone) are thought to exert mitogenic and mutagenic effects by 
interacting with DNA and damaging it, resulting in cellular alterations 
that can degenerate into carcinogenesis [3]. Conversely, the potential 
role of androgens in breast cancer development is controversial: ac
cording to the literature, androgens stimulate the growth of breast 
cancer but also display growth-inhibitory properties [7]. High levels of 
androgens such as dehydroepiandrosterone (DHEA), testosterone, an
drostenedione, and some of their metabolites, are allegedly responsible 
for an increased risk of developing Estrogen-Receptor (ER)-positive 
breast cancers, either directly, by stimulating mammary cell prolifera
tion, or indirectly, by acting as substrates in increased synthesis of es
trogens, after aromatization reaction in the peripheral or adipose breast 
tissue [8,9]. Consistent results were obtained particularly for 
post-menopausal women whose hormone levels, especially estrogens, 
typically decrease and remain constant, with respect to pre-menopausal 
women, whose basal estrogen levels are relatively low and constant, 
enhancing the chance of detecting the occurrence of anomalous and 
potentially pathological levels [10]. Overall, a detailed analysis of es
trogens and androgens profiles in women affected by breast cancer are 
likely to clarify the carcinogenesis mechanisms for both diagnostic and 
prognostic purposes. 

We developed and validated a new analytical method based on ultra- 
high performance liquid chromatography (UHPLC) and time-of-flight 
high-resolution mass spectrometry (QTOF-HRMS) and devoted to the 
determination of large urinary steroid profiles, including androgens, 
estrogens, and their sulfate- and glucuronide-metabolites (20 targeted 
analytes). The method was subsequently applied to urine samples from 
post-menopausal women, 65 healthy and 185 with breast cancer, to 
investigate the relationships between estrogen and androgen levels and 
the incidence of breast cancer. The results were interpreted using several 
machine learning algorithms, whose efficiency in discriminating the 
subjects affected by breast cancer from healthy individuals was 
compared, to yield a final simple and effective classification model. 

2. Materials and methods 

2.1. Reagents and standards 

All 20 steroid standards and 5 Internal Standards (IS) were purchased 
as pure powders from Sigma-Aldrich (Milan, Italy), Steraloids Inc. 
(Newport, RI, USA), or LGC Standards GmbH (Wesel, Germany). The list 
of the steroids and the internal standards is the following: 16α-hydrox
yestrone, 4-methoxyestradiol, 16-epiestriol, 2-methoxyestradiol, 4- 
methoxyestrone, α-estradiol, β-estradiol, estriol, estrone, androstendiol, 
androstenedione, androsterone, dehydroepiandrosterone (DHEA), 
testosterone, DHEA-glucuronide (DHEA-G), DHEA-sulphate (DHEA-S), 

epitestosterone-glucuronide (epitestosterone-G), testosterone- 
glucuronide (testosterone-G), testosterone-sulphate (testosterone-S), 
estrone-β-glucuronide (estrone-β-G), 17β-estradiol-d4, estrone-d4, 
testosterone-d3, testosterone-glucuronide-d3, androsterone-sulphate- 
d4. Methanol, methyl tert-butyl ether (TBME), dansyl chloride, sodium 
hydroxide, sodium phosphate, sodium bicarbonate, synthetic urine and 
β-glucuronidase from Escherichia coli were provided by Sigma-Aldrich 
(Milan, Italy). Sodium hydroxide (reagent grade) and sodium acetate 
(reagent grade) were purchased from Fisher Scientific (Fair Lawn, NJ). 
Ultra-pure water was obtained using a Milli-Q® UF-Plus 6 apparatus 
(Millipore, Bedford, MA, USA). All stock standard solutions were pre
pared in methanol at 1 mg/mL and stored at − 20 ◦C until used. Three 
working solution mixtures were prepared by dilution: one for estrogens 
at 500 μg/mL (MIX I), one for androgens and conjugated at 500 μg/mL, 
except androsterone added at the final concentration of 2500 μg/mL 
(MIX II) and one for internal standards at 500 μg/mL (ISTD). The solu
tions were stored at 4 ºC. The internal standards were used for the 
different working solution mixtures as follows: 17β-estradiol-d4 and 
estrone-d4 for MIX I; testosterone-d3, testosterone-glucuronide-d3 and 
androsterone-sulphate-d4 for MIX II (Table 1). 

2.2. Samples collection and pre-treatment 

Urine samples were collected from 250 patients, including 65 (26%) 
from healthy, volunteer post-menopausal women and 185 (74%) from 
post-menopausal women with diagnosis of breast cancer performed on 
core biopsy samples, examined at the Candiolo Cancer Institute– FPO 
IRCCS (Torino, Italy). The urine samples, collected before surgical 
intervention, were stored at − 80 ◦C. For method development and 
validation, spiked synthetic urine was fortified with two working solu
tions (MIX I and MIX II) at six concentration levels, as indicated in 
Table 1. Synthetic and real urine samples were processed with identical 
procedures and instrumental conditions. 

Two aliquots were collected from each thawed urine sample. An
drogens and steroid conjugates were determined directly on one aliquot 
(100 μL), after dilution with ultrapure water (1:2) and fortification with 
the IS mixture, without any pre-analytical treatment (dilute-and-shoot). 
The diluted aliquot was centrifuged at 13.3 rpm for 5 min, and 5 μL 
supernatant was injected into the UHPLC-MS/HRMS. 

The urine aliquot used for estrogen determination (1.5 mL) was 
fortified with the IS solution at a final 5 ng/mL concentration. The pH 
was adjusted to 6.8–7.4 adding 0.5 mL phosphate buffer 0.1 M. Enzy
matic hydrolysis was conducted by adding 25 μL β-glucuronidase and 
incubating the aliquot at 58 ◦C for 1 h. After cooling, 0.5 mL carbonate 
buffer 0.1 M and drops NaOH 1 M was added to reach a final 9–9.5 pH. 
Liquid-liquid extraction was performed with 2.5 mL of TBME; the 
mixture was shaken in a multi-mixer (10 min), centrifuged at 4000 rpm 
(5 min) and the organic supernatant was transferred into a glass tube. 
The extracts were dried under nitrogen at 70 ◦C. The residue was 
reconstituted with 50 μL carbonate buffer 0.1 M and 50 μL dansyl 
chloride 1 mg/mL in acetone, to convert the free estrogens into the 
corresponding dansyl derivatives. The reaction was allowed to proceed 
at 60 ◦C for 6 min. Lastly, 5 μL of the supernatant was injected into the 
UHPLC system. 

2.3. Instrumentation 

UHPLC separation was performed with a SCIEX ExionLC™ AC sys
tem equipped with a Phenomenex Kinetex C18 column (100 × 2.1 mm, 
1.7 μm) maintained at 45 ◦C. The mobile phases consisted of water (A) 
and acetonitrile (B), both with formic acid 5 mM. The LC flow rate was 
set at 0.5 mL/min, and the mobile phase eluted under the following 
linear gradient conditions: (A:B, v-v) isocratic elution at 95:5 for 
0.5 min, from 95:5–0:100 in 9 min, isocratic elution at 0:100 for 0.5 min 
and final re-equilibration for 1.5 min to the initial condition. The total 
run time was 11 min. All analyses were performed using a quadrupole/ 
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time-of-flight SCIEX X500R QTOF mass spectrometer (Sciex, Darmstadt, 
Germany) equipped with a Turbo VTM ion source operating in elec
trospray positive-ion mode (for the ionization of androgens and estro
gens) and in the negative-ion mode (for steroid conjugates). Data 
acquisition involved a preliminary TOF-MS high-resolution full scan 
followed by a SWATH™ acquisition protocol, which used a variable 
window setup: 12 windows covering the mass range from m/z 
249.5–470.0 for androgens, 12 windows from m/z 244.9–470.0 for the 
conjugates, and 16 windows from m/z 441.0–760.0 for estrogens at 
0.025 resolving power. The target analytes identification was based on 
the coincidence of their retention times, precursor ion and characteristic 
fragment ion m/z values (accepted mass error <5 ppm) (Table 1). Data 
were acquired using the SCIEX OS 1.5 Software. 

2.4. Method validation 

The validation strategy was based on a protocol recently published 
[11]. Nine independent replicated analyses prepared in synthetic blank 
urine at each concentration level (6 levels) were executed on three 
different days, resulting in three calibration data points collected on day 
1, three on day 5, and three on day 12. This dataset of 54 analyses 
formed the groundwork on which the statistical evaluation of several 
validation parameters was based, including precision, accuracy, limit of 
detection (LOD), limit of quantification (LOQ), ion abundance ratio 
repeatability, selectivity, specificity, and carry-over (adding blank 
samples after the analysis of the samples spiked at the upper limit of 
quantification). Recovery, matrix effect and stability parameters were 
evaluated with further independent experiments. An ad hoc Excel® sheet 
was built in-house to adapt the routine developed by Desharnais et al. 
[12]. All the equations employed to compute the validation parameters 
can be found elsewhere [13]. 

2.4.1. Linearity 
Calibration curves were generated from the peak-area ratio between 

the quantifier transition for each analyte and that of the corresponding 

ISTD; the ratio was then plotted on the y-axis against the hormone 
concentration, from which the curve that best fits and predicts the data 
distribution was computed with the support of statistical tests [14]. 
Three replicates of the calibration curve were prepared by spiking syn
thetic urine at 6 concentration levels in compound-specific ranges 
(Table 1) and assessed using a weighted regression model. The hetero
scedasticity of the data-points distributions was checked to evaluate 
whether a weighting factor of 1/x or 1/x2 was needed in the calibration 
model calculation using least squares regression. Then, the order of the 
calibration model (linear vs. quadratic) was selected based on Mandel’s 
and lack-of-fit tests, using a significance level of 95%. 

2.4.2. Limit of detection (LOD) and limit of quantitation (LOQ) 
The limit of detection (LOD) was determined as the minimal 

detectable analyte concentration in a sample, generating a signal sub
stantially above background noise [15]; the Hubaux-Vos’ algorithm, 
adjusted for heteroscedastic data using Currie’s weighting correction 
[15] was used for LOD calculation. Calculated LOD values were verified 
experimentally by spiking blank matrices with the target analytes at the 
calculated LOD concentrations, confirming that a signal-to-noise ratio 
(S/N) exceeding 3 was obtained. The limit of quantitation (LOQ) was 
established as the lowest analyte concentration which could be quanti
fied with predetermined and acceptable precision and accuracy [15]. 
Trueness was considered acceptable for bias% < ±20%. 

2.4.3. Accuracy and precision 
Accuracy represents the agreement between an analytical result and 

the accepted true or reference value, in our case the concentration ob
tained by spiking. Since our data collection involved the repetition of 
nine analytical sequences at six concentration levels, accuracy was 
estimated by back-calculation, i.e., the results from one sequence were 
elaborated using a calibration obtained from the remaining data-point 
sequences. In particular, intra-day accuracy was computed by 
excluding one calibration sequence at a time out of the three sequences 
of each validation day. This process was repeated over three validation 

Table 1 
Working mixtures, target analytes, chemical formula, molecular weight (after derivatization with dansyl chloride), precursor ion mass, fragment ion mass, UHPLC-MS 
retention times, internal standards used for quantification and concentration levels of the target analytes used to build the calibration curves.   

Target analyte Chemical 
formula 

Molecular weight (after 
derivatization*) 

Precursor 
ion 

Fragment 
ion 

Rt Internal 
standard 

MIX I 16α-hydroxyestrone C18H22O3 519.2* 520.2158 171.1048 6.93 estrone-d4 
4-methoxyestradiol C19H26O3 535.2* 536.2471 171.1048 7.68 17β-estradiol-d4 
16-epiestriol C18H24O3 521.2* 522.2314 171.1048 6.99 17β-estradiol-d4 
2-methoxyestradiol C19H26O3 535.2* 536.2471 171.1048 7.60 17β-estradiol-d4 
4-methoxyestrone C19H24O3 533.2* 534.2314 171.1048 7.86 estrone-d4 
α-estradiol C18H24O2 505.2* 506.2365 171.1048 7.83 17β-estradiol-d4 
β-estradiol C18H24O2 505.2* 506.2365 171.1048 7.71 17β-estradiol-d4 
estriol C18H24O3 521.2* 522.2314 171.1048 6.48 17β-estradiol-d4 
estrone C18H22O2 503.2* 504.2209 171.1048 7.86 estrone-d4 

MIX II androstenedione C19H26O2 286.2 287.2011 97.0653 5.15 testosterone-d3 
androsterone C19H30O2 290.2 291.2324 255.2113 5.72 testosterone-d3 
DHEA C19H28O2 288.2 289.2168 253.1956 5.20 testosterone-d3 
testosterone C19H28O2 288.2 289.2168 97.0653 4.96 testosterone-d3 
androstenediol C19H30O2 290.2 291.2324 151.1123 4.85 testosterone-d3 
estrone-β-glucuronide C24H30O8 446.2 445.2013 269.0662 3.84 testosterone-G-d3 
DHEA-glucuronide C25H36O8 464.2 463.2483 75.0082 4.07 testosterone-G-d3 
testosterone- 
glucuronide 

C25H36O8 464.2 463.2483 75.0082 3.95 testosterone-G-d3 

DHEA-sulphate C19H28O5S 368.2 367.1730 96.9596 4.69 androsterone-S- 
d4 

epitestosterone- 
sulphate 

C19H28O5S 368.2 367.1730 96.9596 4.24 androsterone-S- 
d4 

testosterone-sulphate C19H28O5S 368.2 367.1730 96.9596 4.16 androsterone-S- 
d4 

Calibration level CAL 1 CAL 2 CAL 3 CAL 4 CAL 5 CAL 
6  

Mix I and II (ng/mL) 1 2 5 10 25 50  
Androsterone (ng/ 

mL) 
10 25 50 75 125 250   
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days, and the average bias (%) was determined. Then, inter-day accu
racy was computed following a similar process by repeatedly using two- 
day calibration sequences for evaluating the third-day data. Intra- and 
inter-day accuracy was considered validated if below 20% for the 
averaged calibration levels. Single values were considered “good” in the 
range ±15% and “acceptable” in the range ±20%, while random values 
exceeding ±20% required attention but did not exclude validation if the 
primary condition (<20% for the average) was respected. 

Precision, including both repeatability and reproducibility, was 
estimated from the coefficient of variation (CV%) for repeated de
terminations. Intra-day precision was assessed independently over three 
validation days using three daily replicates, while inter-day precision 
utilized all nine replicates back-calculated from independent calibration 
data. 

2.4.4. Matrix effect and extraction recovery 
Matrix effect (ME) [16] was assessed by comparing the experimental 

results obtained from synthetic blank urine samples and blank deionized 
water samples, equally spiked after the extraction step [11]. Three 
replicates at low, medium, and high concentration levels, corresponding 
to CAL 2, CAL 4 and CAL 5 were made. The ionization suppression or 
enhancement for each target analyte was expressed as the mean per
centage ratio between the two measured signals. 

The extraction recovery was determined by comparing the experi
mental results obtained from blank synthetic urine samples spiked 
before and after the pre-analytical sample handling and extraction steps 
(the second spiking was made before the derivatization step). As for the 
matrix effect, three replicates were made at low, intermediate, and high 
concentrations. The results were expressed as the mean percentage ratio 
between the two signals, with its uncertainty expressed as extraction 
repeatability (CV%) from the three replications. 

2.5. Multivariate data analysis 

2.5.1. Benchmarking 
Seven different supervised classification algorithms were tested and 

their efficiency in the identification of valuable biomarkers was 
compared for discriminating the patients with breast cancer from the 
healthy ones. The tested machine learning (ML) algorithms included 
Logistic Regression (LR) [17], Naive Bayes (NB) [18], Partial Least 
Squares – Discriminant Analysis (PLS-DA), k-Nearest Neighbors (k-NN) 
[19], Classification and Regression Trees (CART) [20], Support Vector 
Machine (SVM) [21], and Random Forest (RF) [22], the latter yielding 
the most reliable output. A brief description of the tested ML models is 
reported in the Supplementary Material. 

The data collected from real urine samples (250 samples × 20 ana
lytes) were initially pre-processed by autoscaling all the features (ana
lytes); then, 10-fold cross-validation was performed on the training data 
to avoid overfitting and get a more robust estimate of the models’ per
formance during the benchmark process. Stratification was performed 
during the data-splitting process to ensure that the class distribution in 
the target variable was preserved in the split datasets. In particular, a 
randomized stratification approach was performed by sorting the in
stances in a random order firstly, and then assigning them to either the 
training or testing set while keeping the class proportions approximately 
the same. To stress the robustness of the developed models, the data- 
splitting process was repeated for ten times. 

Accuracy and balanced accuracy, together with their standard de
viation, were evaluated to compare the performance of the different 
models using the following formulas: 

Sensitivity (Recall) =
TP

TP + FN
Specificity =

TN
TN + FP

Precision

=
TP

TP + FP  

Accuracy =
TP + TN

TP + TN + FP + FN
Balanced accuracy

=
Sensitivity + Specificity

2 

where TP represents the number of patients positive to breast cancer 
that are correctly classified as positive (i.e., true positive), TN stands for 
the number of patients negative to breast cancer that are correctly 
classified as negative (i.e., true negative), FP is the number of patients 
negative to breast cancer that are incorrectly classified as positive (i.e., 
false positive), and FN is the number of patients positive to breast cancer 
that are incorrectly classified as negative (i.e., false negative) [23]. 

2.5.2. Random Forest (RF) modelling 
Following the benchmark process, the selected RF approach was 

optimized to further improve its classification performance. The 
collected data were split into a training set and a test set with a split ratio 
equal to 0.8, providing a training set of 200 patients (i.e., 80% of the 
available data) and a test set of 50 patients (i.e., 20% of the available 
data). Stratification was performed during the data-splitting process. 

Subsequently, a grid-search approach was performed to exhaustively 
inspect different combinations of RF hyperparameter values, train the 
RF models with each combination, and report their performance using 
the balanced accuracy metric [22]. The following RF hyperparameters 
were tuned in cross-validation with k=5, as follows:  

• max _features: this parameter determines the maximum number of 
features to consider when looking for the best split in each decision 
tree of the RF model. Two types of settings were selected, such as ‘n’, 
which means that the total number of n features (in our dataset, 
n=20 free and conjugated sex hormones), and ‘sqrt’, which is equal 
to the square root of the total number of n features in the dataset (i.e., 
4.47, in this case, round up to 5). ‘sqrt’ was selected after tuning. 

• n_estimators: this value defines the number of decision trees (esti
mators) used in the RF model. The values tested, such as 10, 100, and 
1000, stand for different choices for the number of trees created and 
combined to make predictions. A number of estimators equal to 1000 
was selected.  

• max _depth: it controls the maximum depth of each decision tree in 
the RF model by limiting the number of nodes from the root to the 
deepest leaf of the tree. The values provided, such as 0, 2, 5, and 10, 
indicate different depth constraints for the trees. A maximum depth 
of 5 was selected.  

• min _samples_split: it sets the minimum number of samples required to 
split an internal node of each decision tree. The values evaluated, 
such as 2, 5, and 10, represent different thresholds for the minimum 
number of samples required for a node to be split. The optimal 
number of split was set to 5.  

• min _samples_leaf: this hyperparameter sets the minimum number of 
instances (samples) required at a leaf node of each decision tree. The 
tested values (i.e., 1, 2, and 4) show different thresholds for the 
minimum number of samples required at each leaf. The optimal 
minimum number of samples was set to 4.  

• bootstrap: this parameter controls whether the RF model should build 
trees using bootstrapped samples. Setting it to ‘True’ allows for 
bootstrapping, while setting it to ‘False’ means that the entire dataset 
is used for building each tree [24]. Bootstrap was used in the 
benchmarking step of our RF models computation, not in the final 
refinement described in this chapter. 

The optimal, final trained RF model was evaluated using the 
Receiver Operating Characteristic (ROC) curve, the precision-recall 
curve (PRC), and the confusion matrix. 

Subsequently, the study explored the feature importance provided by 
the RF model in terms of Gini importance, which measures the total 
reduction of impurity (or weighted Gini impurity) across all decision 
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trees of the RF model attributed to a specific feature [25]. Therefore, the 
Gini impurity for each class is given by 1 −

(
p2

0 +p2
1
)
, where p0 is the 

probability of a negative patient being classified in either class defined 
for breast cancer, and p1 is the corresponding probability for a positive 
patient. Higher Gini importance indicates greater predictive significance 
of the feature. The results provided by Gini feature importance were 
confirmed using a complementary approach known as SHAP (SHapley 
Additive exPlanations) Values. This method is rooted in the cooperative 
game theory developed by Shapley [26,27], which assigns a value to 
each player in a game based on their contribution to different coalitions 
and, in this context, offers a comprehensive understanding of the 
importance of a particular feature in the RF model [28] by quantifying 
how much each feature contributes to the overall decision-making 
process of the ensemble model. 

2.5.3. Software 
The data analysis was performed using Python version 3.10.8 with 

essential libraries, including numpy, pandas, scikit-learn [24], seaborn, 
matplotlib, and shap [28]. These libraries provided efficient tools for 
data manipulation, machine learning implementation, and visualiza
tion, ensuring a smooth and effective analysis workflow. The complete 
list of references is provided in the Supplementary Material. 

3. Results and discussion 

3.1. Method validation 

3.1.1. Linearity 
Residues and variances of calibration data points across low, me

dium, and high concentration levels revealed the occurrence of heter
oscedastic distributions for all target analytes, making the introduction 
of weighting factors in the calibration (either 1/x or 1/x2) beneficial. 
Additionally, the statistical significance of the quadratic term in the 
calibration model was observed for all substances under evaluation. 
Consequently, a quadratic calibration model was chosen for all analytes 
combined with a weight of 1/x2, except for DHEA, testosterone, and 
androsterone, whose weights were 1/x. The calibration curve equations 

used for each analyte are provided in Table S1 of the Supplementary 
Material. 

3.1.2. LOD and LOQ 
Calculated LOD values ranged from 0.50 ng/mL for estrone-β-G up to 

3.4 for DHEA. The LOD value of 12.5 ng/mL calculated for androsterone 
partly depends on the different calibration range adopted to best fit its 
physiological urinary concentration. The calculated LOD values 
(weighted Hubaux-Vos method) were experimentally verified by spiking 
blank matrices at the approximate LOD concentrations for the different 
analytes, confirming a S/N ratio exceeding 3. Table 2 reports the mean 
values obtained for LOD. The mean values are calculated by averaging 
the six values obtained for the corresponding concentration levels, 
which are reported in detail in in Table S1 in the Supplementary 
Material. 

With the exception of estriol, DHEA, and androsterone, all analytes 
exhibited LOD values falling below the lower limit of the calibration 
curve, which in turn was used as LOQ. 

3.1.3. Accuracy and precision 
The validation procedure adopted in the present study allows the 

calculation of precision and accuracy at all concentrations involved in 
the calibration process (6 calibration levels, except for 16α-hydrox
yestrone with 5 calibration levels), not only at low, intermediate and 
high concentrations, as most validation protocols recommend. Table 2 
reports the mean values obtained intraday and interday accuracy 
(expressed as bias %) and intraday and interday precision (expressed as 
CV%). The corresponding values for each concentration and target an
alyte are reported in Table S2 and Table S3 of the Supplementary 
Material. 

All conjugated analytes showed intra-day and inter-day accuracy 
values below 15%. Among the free-form androgens, only DHEA and 
androsterone exhibited values exceeding 20% at the lowest calibration 
point. Among the remaining androgens, only four bias values resulted 
between 15% and 20%, while the other outcomes were all below 15%. 
Similarly, the analytical procedure for estrogens also yielded optimal 
bias% values (<15%), with only 16-epiestriol showing occasional bias 
exceeded the ±20% limit. Overall, the accuracy of both analytical 

Table 2 
Mean values obtained for LOD, intraday accuracy, interday accuracy, intraday precision, interday precision, matrix effect, and extraction recovery. The mean values 
are calculated by averaging the data obtained for the six (three for matrix effect and extraction recovery) concentration levels under study. The specific values for each 
concentration level are reported in Tables S2-S5 of the Supplementary Material.   

Mean values  

Target analyte LOD (ng/ 
mL) 

Intraday Accuracy 
(Bias %) 

Interday Accuracy 
(Bias %) 

Intraday Precision 
(CV%) 

Interday Precision 
(CV%) 

Matrix 
Effect % 

Extraction 
Recovery % 

MIX I 16α- 
hydroxyestrone  

1.38  2.10%  10.76%  14.51%  1.29%  98.20%  81.70% 

4- 
methoxyestradiol  

0.71  -0.67%  0.02%  6.62%  13.88%  100.20%  105.50% 

16-epiestriol  0.92  -5.95%  -0.76%  11.70%  19.63%  115.34%  102.70% 
2- 
methoxyestradiol  

0.73  -0.50%  2.23%  6.21%  20.83%  113.76%  101.10% 

4-methoxyestrone  0.62  0.17%  0.14%  5.55%  14.53%  93.59%  78.50% 
α-estradiol  0.56  -0.11%  0.39%  5.16%  14.58%  90.92%  85.00% 
β-estradiol  0.70  0.04%  0.65%  5.09%  15.24%  97.80%  91.50% 
estriol  1.31  0.40%  4.71%  14.45%  32.64%  124.79%  109.30% 
estrone  0.74  -1.63%  -0.32%  5.46%  16.08%  76.71%  110.10% 

MIX 
II 

androstenedione  0.71  -3.74%  -0.12%  6.90%  7.99%  96.06%   
androsterone  12.5  0.30%  3.10%  0.30%  3.10%  95.50%   
DHEA  3.40  3.47%  6.29%  11.30%  13.05%  102.95%   
testosterone  1.34  1.37%  -8.41%  5.83%  5.92%  103.15%   
androstenediol  1.20  -2.00%  0.03%  8.69%  13.62%  88.01%   
estrone-β-G  0.50  1.06%  0.26%  6.41%  8.71%  98.43%   
DHEA-G  0.75  -1.93%  0.28%  4.00%  9.33%  96.01%   
testosterone-G  0.84  -2.13%  0.73%  4.48%  11.21%  96.47%   
DHEA-S  1.08  -0.57%  0.63%  5.79%  12.17%  89.66%   
epitestosterone-S  1.16  0.88%  0.89%  5.72%  12.45%  95.58%   
testosterone-S  0.81  -2.99%  0.17%  6.18%  9.48%  88.73%    
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methods proved satisfactory for the determination of androgens, estro
gens, and their conjugates, with the exception of the lowest calibration 
point for DHEA and androsterone. 

The precision results reported in the Supplementary Material 
(Table 4 S) show optimal values for the conjugated steroids and an
drogens, with only three scattered values out of 108 slightly exceeding 
20%. On average, higher variations were observed for estrogens, as a 
consequence of the more complex sample pre-treatment, also involving 
a derivatization step, in particular for estriol interday precision (21%<

CV%<41%) and 2-methoxyestradiol interday precision (8%<CV%<

32%). 

3.1.4. Matrix effect and extraction recovery 
The results relative to the evaluation of the matrix effect for the 

studied analytes at low, medium, and high concentration levels are re
ported in Table 2 and Table S4 of the Supplementary Material. All the 
reported percentages are close to 100%, not evidencing any significant 
suppression or increase effect on the analytical signal. This was pre
dictable, since limited effect from the of synthetic urine components is 
expected. Modest ion suppression was observed for 4-methoxyestrone 
and estrone, particularly at high concentrations. 

Since the procedure used for androgens and conjugated did not 
involve any extraction, purification, or concentration steps, no extrac
tion recovery was determined. For estrogens, the results obtained for the 
estimation of the extraction recovery are reported in Table 2 and 
Table S5 of the Supplementary Material. The mean percentage of re
covery for the various estrogens varied in the 78% - 110% range. The 
overall mean value was 96.6%, with lower percentages (~93%-94%) 
observed for the lower concentrations. The lowest recoveries (~80%) 
were obtained for 4-methoxyestrone and 16α-hydroxyestrone. Overall, 
the recovery achieved by the procedure is satisfactory. 

3.2. Benchmarking 

In the domain of multivariate data analysis, gaining comprehensive 
insights into both data structure and algorithm performance is essential 
for addressing the supervised classification objectives. The use of a 
model selection and comparison process, commonly referred to as 
benchmarking, proves beneficial in shedding light on the estimated 
accuracy of various machine learning models. The results obtained from 

the benchmarking process provided a comprehensive comparison of the 
different supervised classification models selected. Fig. 1 shows the 
boxplots of the accuracies (A) and the balanced accuracies (B) provided 
by each model built using a 10-fold cross-validation strategy. In 
particular, the orange line represents each model’s median (balanced) 
accuracy, and the circles outside the boxplots are anomalous data. 

The median accuracy is homogeneously around 0.8 (Fig. 1A), even if 
the PLS-DA model exhibit the lowest accuracy while RF and CART 
models the highest. In contrast, Fig. 1B displays more varied outcomes 
concerning median balanced accuracy: PLS-DA and SVM models yielded 
low values (around 0.5–0.6), whereas the RF and NB models delivered 
superior accuracy around 0.85. The observed differences between ac
curacy and balanced accuracy results stem from a significant class 
disparity (185 positive patients vs. 65 negative patients) within our 
dataset, suggesting a different weighting for our binary classification 
problem. In this scenario, the use of balanced accuracy is known to 
mitigate the bias introduced by class distribution and deliver a more 
objective evaluation of the model by assessing accuracy for each indi
vidual class and then averaging the outcomes. In our case, where one 
class (positive patients) prevails over the other (negative patients), this 
method assigns equal importance to them, helping to unravel the 
strengths and limitations of different algorithms. Table S6 in the Sup
plementary Material summarises the collected results, showing the 
median accuracy and the median balanced accuracy values of each 
model, together with their standard deviation. 

Among the best classifiers, we chose to further develop RF models 
rather than NB, since NB is prone to glitches stemming from collinearity 
among the variables, which is likely to introduce instability into the NB 
model and reduce its reliability. The higher instability of NB is evident in 
Fig. 1A by the high standard deviation of NB accuracy and in Fig. 1B by 
the occurrence of two outliers. In the case of NB, multicollinearity may 
lead to inflated standard errors and hinder the accurate estimation of 
model coefficients [27]. In contrast, RF is fundamentally resilient to the 
challenges posed by multicollinearity. In fact, RF is a powerful and 
versatile machine learning ensemble method, working on a multitude of 
decision trees during the training phase, each trained on a random 
subset of the data (bootstrap aggregation) and a random subset of fea
tures (feature randomness). The final prediction is made by aggregating 
the predictions of all individual trees, typically using majority voting 
[22]. 

Fig. 1. Benchmark of supervised classification models including Logistic Regression (LR), Naive Bayes (NB), Partial Least Squares – Discriminant Analysis (PLS-DA), 
k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Classification and Regression Trees (CART), and Random Forest (RF). The y-axis shows the accuracy (A) 
and the balanced accuracy (B) metrics, the orange line represents the median balanced accuracy of each model, and the circles outside the boxplots represent the 
anomalous data (outliers). 
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3.3. Random Forest modelling 

The RF model optimization involved a grid-search hyperparameter 
tuning step aimed to avoid over-fitting by setting appropriate con
straints on the model’s growth. Limiting the depth of the trees and 
increasing the minimum number of samples required to split a node 
ensures that the final RF model is expressive enough to learn from the 
data and make accurate predictions [22]. The balanced accuracy results 
obtained for each combination of hyperparameters (reported in Section 
2.5.2) was used to identify the hyperparameter values that yielded the 
best performance. 

The grid-search hyperparameter tuning resulted in a remarkable 
improvement of the Area Under the Curve (AUC) score on the test set (50 
samples) which rose from 0.85 (benchmarking process) to 0.94, indi
cating a substantial enhancement of the model’s predictive ability to 
distinguish the patients positive to breast cancer from negative ones. 
Among the crucial variables, limiting the maximum number of features 
to be considered in the pursuit of the best split in each decision tree 
(square root of the total = 5 ≅

̅̅̅̅̅̅
20

√
) produced a significant improve

ment of the model, prevented overfitting, added randomness to the 
model, and yielded faster model computation. Setting the minimum 
number of samples to be selected for each leaf to 4 (i.e., at least 4 
samples have to be selected for each leaf) also prevented the occurrence 
of overfitting by forcing the decision trees not to consider isolated out
liers. The ROC curve and the confusion matrix obtained on the test set 
after the tuning process are reported in Fig. 2. 

The confusion matrix reported in Fig. 2 shows the model’s ability to 
distinguish most of the patients positive or negative to breast cancer, 
with the exception of three false positives and one false negative. 

Fig. 3A shows the importance of different features in terms of 
weighted Gini importance: the features/variables are listed on the y- 
axis, and their importance is shown on the x-axis. Since the Gini 
importance of a feature is calculated by measuring how much the feature 
decreases the impurity of the trees in the RF model (averaged for all 
trees), the more a variable decreases the Gini mean impurity, the more 
influential the variable is in discriminating the patients under exam. 

The most important feature reported in this plot is clearly 
testosterone-S, followed by alpha-estradiol, 4-methoxyestradiol-, DHEA- 
S, epitestosterone-S, and, to a lower extent, DHEA and androsterone. All 
these steroids have been previously associated with breast cancer [8]. 
The remaining features are apparently less important in classifying the 
patients and could be removed. 

In Fig. 3B, the SHAP values of the features under investigation are 
illustrated as a beeswarm plot, offering a detailed viewpoint on the in
fluence of each feature (sex hormone) on the instances (patients) under 

exam. In particular, this plot is designed to display an information-dense 
summary of how the features in a dataset impact the RF model’s output. 
For each patient, the given explanation is represented by a single dot on 
each feature row, showing the variability and impact range that each 
feature has on the model’s predictions. The x position of the dot is 
determined by the SHAP value of that feature, while the color display 
the original value of each feature (red for higher values, blue for low 
values). As an example, from Fig. 3B it results that testosterone-S is the 
most important feature and patients with low testosterone-S levels 
(blue) are more likely to be negative to breast cancer. Conversely, pa
tients with high testosterone-S levels (red) are more likely to be positive 
to breast cancer. Features with broader distributions or more extreme 
values indicate higher variability in their contributions to predictions. A 
further explicative force plot for a positive patient is reported in Fig. 3C, 
showcasing the features that drive the prediction towards the maximum 
value (=1) from the expected base value (=0.5), the neutral prediction 
made by the model representing an equal likelihood of belonging to 
either class when no specific features are taken into account [28]. Again, 
the largest positive SHAP value is obtained for testosterone-S, whose 
high level means that this patient has a high prediction of being positive 
to breast cancer. The other features with the highest importance and 
positive SHAP values are 4-methoxyestradiol, epitestosterone-S, 
alpha-estradiol, and DHEA-S, while the only feature with a negative 
SHAP value is testosterone-G, meaning that a high level of 
testosterone-G is associated with a negative prediction to suffer from 
breast cancer. 

The univariate boxplots reported in Fig. 4 show the five model- 
shaping sex hormones that exhibit higher concentration values in the 
patients positive to breast cancer than in healthy women. These boxplots 
were obtained by considering all the patients available in the dataset. 
Testosterone-S and epitestosterone-S are phase-2 metabolites produced 
in the ovaries and adrenal glands, alpha-estradiol is produced in the 
ovaries, 4-methoxyestradiol is a metabolite of estradiol, and DHEA-S is a 
DHEA conjugate produced in the adrenal glands. Scattered studies have 
remarked that women with breast cancer are likely to have higher levels 
of these sex hormones than women without breast cancer [8,9], as our 
outcomes confirm. This suggests, again, that these sex hormones play an 
crucial role in the development or progression of breast cancer [5–7]. 
The univariate boxplots for all 20 targeted steroids comprising all 250 
patients enrolled in this study, are reported in the Supplementary Ma
terial (Figure S1). A visual comparison among them provides a rough 
identification of the most (and the least) influential features, leading to 
an initial insight into the factors more likely to contribute to a multi
variate model prediction. This preliminary knowledge facilitates both 
feature selection and dimensionality reduction, leading to more efficient 
and interpretable models [29]. 

Following the hints provided by the preceding data processing, a 
final RF model was built using the five most significant features evi
denced in Figs. 3 and 4 (testosterone-S, alpha-estradiol, 4-methoxyestra
diol, DHEA-S, and epitestosterone-S). The new RF model was tested on 
the same evaluation set, showing optimal and improved performance 
metrics. The related ROC curve displays an AUC value equal to 0.97. The 
confusion matrix reported in Fig. 5 A confirms that the latest RF five- 
features model is capable of identifying both positive and negative pa
tients correctly, with only one false positive outcome. Comparable re
sults (from 0 to 1 false positive results) were obtained for all ten data-sets 
obtained after using the stratified data-splitting strategy. 

The reduced features set leads to a more efficient classification model 
with reduced computation time and improved interpretability. The 
features with negligible importance can be removed from the analytical 
procedure, reducing the costs, the analytical complexity, the dimen
sionality of the dataset, and simplifying the model without compro
mising its performance, but rather improving it, thus facilitating the 
decision-making process. 

Fig. 2. ROC curve and confusion matrix obtained after the hyperparameter 
tuning process. 
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3.4. RF and PLS-DA comparison 

Further investigations were made to understand the reasons why RF 
models overperformed PLS-DA, which is generally considered the 
golden standard for binary classification. A possible explanation can be 
found in a Brereton and Lloyd study [30], reporting that PLS-DA may 
turn fragile when applied to class-imbalanced data. Intriguingly, this 
vulnerability may persist even when the PLS-DA model is calculated 
using a "weighted" approach. In our data, this phenomenon was already 
highlighted in Fig. 1, which depicts the pronounced alterations in the 
model performance when accuracy is computed with balanced approach 
(Fig. 1B) instead of a non-weighted (Fig. 1A). Indeed, RF and PLS-DA 
models provide diverging results in the precision-recall curve [30] and 
confusion matrices computed on the evaluation set (Fig. 5). Other 
studies support our findings: for example, Song [31] observed a superior 
efficiency of RF modelling in comparison with PLS-DA, when both 
models were tested on datasets with significant class imbalance, such as 
ECOLI and Glass datasets (references in the Supplementary Material). In 
our context, the inherent dataset imbalance depended on the recruited 
patients, arising from a dedicated cancer hospital, where the prevalence 
of breast cancer patients significantly outweighed the negative cases 
(non-cancer patients). 

RF and PLS-DA models provide diverging results in the precision- 
recall curve (PRC) computed on the evaluation set. The RF model’s su
perior performance compared with PLS-DA is highlighted by the 
confusion matrix reported in Fig. 5B, showing that PLS-DA wrongly 
classifies all negative patients as false positive. In the present case, it is 
more appropriate to represent the performance features by means of 
PRC curves (Fig. 5C, D) rather than ROC curves displaying sensitivity vs. 
1-specificity [32], since ROC curves are susceptible to class imbalance, 
particularly when the minority class has small size. Notably, the 

“precision” of a specific class denotes the level of certainty in the 
model’s predictions when assigning instances to that class. Conversely, 
the “recall” quantifies the model’s ability to identify instances belonging 
to a given class effectively and emphasizes the classifier’s performance 
concerning the smaller class. 

The two class models were investigated further using the Synthetic 
Minority Oversampling Technique (SMOTE) method as a data simula
tion algorithm [33]. This method helps when there are unequal numbers 
of data points in the considered classes. SMOTE creates additional 
“artificial” data for the less represented class by shaping the new data 
points just to be similar to the existing ones [34]. By removing class 
imbalance, SMOTE improves the models and makes predictions more 
reliable. As a result, a balanced dataset (185 subjects per class) was 
created, and the RF and PLS-DA models were recalculated using the 
same 5 variables selected in Section 3.3. As reported in the PRC plot of 
Fig. 5D, the RF model continues to exhibit robust performance. 
Conversely, PLS-DA displays improvement with respect to the previous 
case (Fig. 5C), though it consistently lags behind RF’s performance, thus 
remarking RF superiority in case of class-imbalanced datasets. 

While PLS-DA may possibly provide optimal performance under 
conditions closer to ideal, the synergy between capabilities of SMOTE 
data simulation and RF ability to accommodate class imbalanced data 
highlights the efficacy of this strategy in addressing constrained condi
tions commonly encountered in clinical trials. In such contexts, an 
imbalanced distribution among collected patients is a common chal
lenge that can be effectively mitigated using this approach [35]. 

4. Conclusions 

Although preliminary, the results of the present research suggest that 
a limited number of steroid biomarkers in conjunction with adequate RF 

Fig. 3. Importance plots: (A) the variables are listed on the y-axis and their Gini importance is reported on the x-axis; (B) beeswarm plot showing the SHAP values 
and the features’ impact on the RF model and instances; (C) force plot of a positive patient: the length and direction of the bar indicate the feature’s impact on the 
prediction; longer bars have a more substantial influence towards the positive (red) or negative (blue) prediction. 
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modelling hold promise for early screening of breast cancer. The pro
posed protocol involves non-invasive sampling and provides improved 
precision with respect to the routine practice presently adopted. Similar 
protocols might be addressed to discriminate cancer sub-types and 
prognosticate cancer evolution, in response of surgical and pharma
ceutical treatments, within an individually-specific precision therapy 
management. 

Among the five selected biomarkers, the detection of two free es
trogens requires a specific and quite complex analytical method in order 
to cope with their low urinary concentration. Their possible substitution 
in the model with their (or other) conjugate metabolites represents a 
forthcoming step of our research, so as to simplify the overall analytical 
procedure and extend it to a larger population. Indeed, conjugated ste
roids are relatively underexplored biomarkers in the existing scientific 
literature despite their potential significance. 
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