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LAPLACIAN ALGEBRAS, MANIFOLD SUBMETRIES AND
THE INVERSE INVARIANT THEORY PROBLEM

Ricardo A. E. Mendes And Marco Radeschi

Abstract. Manifold submetries of the round sphere are a class of partitions of the
round sphere that generalizes both singular Riemannian foliations, and the orbit
decompositions by the orthogonal representations of compact groups. We exhibit a
one-to-one correspondence between such manifold submetries and maximal Lapla-
cian algebras, thus solving the Inverse Invariant Theory problem for this class of
partitions. Moreover, a solution to the analogous problem is provided for two smaller
classes, namely orthogonal representations of finite groups, and transnormal systems
with closed leaves.

1 Introduction

A manifold submetry is a map σ : M → X from a Riemannian manifold M to a
metric space X, such that metric balls are mapped to metric balls with the same
radius, and such that the preimage of every point of X is a smooth, possibly dis-
connected, submanifold of M . Typical examples of submetries arise from taking the
quotient M → M/G under the isometric action of a compact group, or the leaf space
quotient M → M/F of a singular Riemannian foliation (M, F) or, more generally,
of a transnormal system.

Much like the isometric action case, the local structure of a manifold submetry
σ : M → X around a point p ∈ M is given by a manifold submetry σp : V →
Cone(Y ) from a (real) Euclidean vector space V (the slice at p) to a metric cone
Cone(Y ). This is equivalent to a manifold submetry σp : S(V ) → Y from the unit
sphere of V to the link Y of the cone. Given the central role played by these manifold
submetries, we give them a special name: spherical manifold submetries.

Given a spherical manifold submetry σ : S(V ) → X, we define the subalgebra
of σ-basic polynomials, as the algebra generated by homogeneous polynomials over
V which are constant along the fibers of σ. In the homogeneous case σ : S(V ) →
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S(V )/G, the σ-basic polynomials coincide with the ring of G-invariant polynomials
R[V ]G, which is the central object studied in Classical Invariant Theory. Recently,
the authors have made progress extending results of Classical Invariant Theory to
the context of singular Riemannian foliations [LR18, MR19b, MR19a].

Going in the other direction, the Inverse Invariant Theory problem is to char-
acterize those subalgebras A ⊂ k[V ] of the polynomial algebra k[V ] over a field k
that can be realized as A = k[V ]Γ for some representation ρ : Γ → GL(V, k). This
problem has been solved in positive characteristic p, when k is a Galois field of order
ps [NS02, Section 8.4] (hence necessarily Γ is finite), but to the best of our knowledge
no such result is known in characteristic zero. The main result of this paper shows
that enlarging the category to include manifold submetries allows for a satisfying
answer to this problem, and hence is very natural from the Invariant Theory point
of view.

Theorem A. Let V be a finite-dimensional Euclidean space. Then taking the
algebra of basic polynomials induces a one-one correspondence between spherical
manifold submetries σ : S(V ) → X and maximal, Laplacian algebras A ⊂ R[V ].

The concepts of maximal and Laplacian algebras are defined and discussed in
Sect. 2.2, where in particular a more precise statement of Theorem A is given in
Theorem 8, in terms of equivalence of categories. While the concept of maximal
algebra is a bit technical, a Laplacian algebra is easily defined as a polynomial
algebra A ⊂ R[V ] = R[x1, . . . xn] such that r2 =

∑
i x

2
i ∈ A and such that, for

every polynomial P ∈ A, its Laplacian ΔP =
∑

i
∂2

∂x2
i
P is in A as well. Similar

conditions have appeared in the literature before (cf. Remark 5), but to the best of
our knowledge the concept of Laplacian algebra is new.

In view of the correspondence in Theorem A, it is natural to ask for algebraic
characterizations of special classes of manifold submetries. As a first such example
we consider manifold submetries with finite fibers, and provide an answer to the
Inverse Invariant Theory problem for k = R and Γ finite:

Theorem B. A subalgebra A ⊂ R[V ] is of the form A = R[V ]Γ for a finite group
Γ ⊂ O(V ) if and only if A is maximal, Laplacian, and its field of fractions has
transcendence degree (over R) equal to dim(V ).

A manifold submetry has connected fibers if and only if the corresponding fiber
decomposition is a transnormal system. Under this identification, it is possible to
algebraically characterize transnormal systems with closed leaves in spheres as well:

Theorem C. A manifold submetry σ : S(V ) → X has connected fibers if and
only if the corresponding maximal Laplacian algebra A is integrally closed in R[V ].

When the fibers of S(V ) → X are not connected, it turns out that it is possible
to decompose the problem into the case of connected fibers, and the case of finite
group actions.
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Theorem D. Every manifold submetry σ : S(V ) → X can be factored through
S(V ) σc→ Xc → X, where:

(1) Xc is a metric space acted on isometrically by a finite group G.
(2) S(V ) → Xc is a manifold submetry with connected fibers (equivalently, a

transnormal system).
(3) X is isometric to Xc/G, and Xc → X is equivalent to the quotient map Xc →

Xc/G.

The result above can also be interpreted as evidence that the submetry Xc → X
is in some sense a Galois covering. Some previous result about (branched) coverings
of Alexandrov spaces, albeit from a different point of view, can be found in [HS17].

The authors do not know of any example of a Laplacian algebra that is not also
maximal, and make the following:

Conjecture. Every Laplacian algebra is maximal.

As evidence we point out that this claim holds in two special but important situa-
tions, namely when the Laplacian algebra is either generated by quadratic polynomi-
als, or by two polynomials. The former case is essentially the main result in [MR19a],
while the latter follows from Münzner’s results about isoparametric hypersurfaces
of spheres [Mue80], see Sect. 9. If this conjecture is true in general, it would have an
interesting consequence in Invariant Theory: being Laplacian would be a necessary
and sufficient condition for a separating algebra of invariants to be the whole algebra
of invariants. This in turn would have exciting applications for example to the study
of polarizations for representations of finite groups.

The proofs. The first part of the proof of Theorem A consists of showing that
spherical manifold submetries are determined by their algebras of basic polynomials,
in the sense that such polynomials separate fibers, so that in particular spherical
manifold submetries are objects of an algebraic nature. This follows along the same
lines as in the special case of singular Riemannian foliations, previously established
in [LR18], namely through the study of the averaging operator via transverse Jacobi
fields and a bootstrapping argument with elliptic regularity.

The second part of the proof of Theorem A is more involved. The fundamental
result behind it is a procedure (Theorem 25) that allows to build a spherical mani-
fold submetry σ̂A : S(V ) → X̂ out of a Laplacian algebra A, without the maximality
assumption. When maximality is added, this procedure is the inverse of taking basic
polynomials. The spherical manifold submetry σ̂A is first constructed on the regu-
lar part, and then extended to the whole sphere by metric completion. Smoothness
of σ̂A is proved using a combination of differential geometric arguments involving
transverse Jacobi fields, and metric results about submetries from [Lyt02]. The sec-
ond part of Theorem 25, under the additional assumption that A is maximal, relies
on the fact that Laplacian algebras behave very much like algebras of invariant poly-
nomials. More precisely, they admit a Reynolds operator, which is an abstraction of
the averaging operator, see Theorem 23.
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The key to the proof of Theorem D is producing the finite group Γ. This is done
by restricting the map Xc → X to certain open dense subsets which are isometric
to Riemannian orbifolds, proving that this new map is a Galois orbifold covering,
and taking Γ to be the group of deck transformations. Theorems B and C essentially
follow from Theorem D.

The paper is structured as follows. In Sect. 2 we define and discuss the cat-
egories of spherical manifold submetries and maximal Laplacian algebras, and the
two functors that will establish the equivalence of the two categories, allowing us to
give a formal statement of Theorem A.

The remainder of the paper is divided into three parts, with the first two devoted
to the proof of Theorem A. Part 1 contains Sects. 3 and 4, and is focused on showing
that the algebra of basic polynomials of a spherical manifold submetry is a maximal
Laplacian algebra. The other direction of showing that maximal Laplacian algebras
give rise to spherical manifold submetries is the focus of Part 2, consisting of Sects.
5.1 through 7.

Part 3 contains Sect. 8, about characterizing spherical manifold submetries with
disconnected fibers, and Sect. 9, where we provide evidence to the Conjecture that
every Laplacian algebra is maximal.

In the two final Appendices we collect facts that are either well known or that fol-
low easily from known results: in the first appendix we collect results about isotropic
and Lagrangian families of Jacobi fields along a geodesic. In the second, we lay out
the basic properties of manifold submetries that closely follow those of singular Rie-
mannian foliations.

2 The correspondence between maps and algebras

The goal of this section is to state a more formal version of Theorems A and C,
introducing the two categories we will work with, and defining two functors between
them.

2.1 Manifold submetries. Recall that a submetry is a continuous map σ :
X → Y between metric spaces, such that for every p ∈ X and every closed metric
ball B̄r(p), one has σ(B̄r(p)) = B̄r(σ(p)).

Definition 1. A Ck-manifold submetry is a submetry σ : M → X from a Rieman-
nian manifold M to a metric space X, whose fibers are Ck-submanifolds of M .

Unless otherwise specified, we will work with C∞-manifold submetries. This defi-
nition is slightly stronger than the definition of splitting submetry defined in [Lyt02].
Recall that two submanifolds N1, N2 of a Riemannian manifold M are called equidis-
tant if for any p, q ∈ N1, d(p, N2) = d(q, N2) and vice versa. It is easy to check that
a map σ : M → X is a manifold submetry, if and only if the fibers are smooth and
equidistant. Moreover, the distance function on X satisfies the following:

dX(p∗, q∗) = dM (σ−1(p∗), σ−1(q∗)). (1)
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Remark 2. It follows from the definition of manifold submetry, that:

(1) Different fibers are allowed to have different dimension.
(2) Fibers are allowed to be disconnected, but in that case the connected compo-

nents of each fiber must have the same dimension.

The notion of manifold submetry is strongly related to the notions of transnormal
system [Bol73] and singular Riemannian foliation [Mol88]:

Definition 3. A transnormal system is a partition F of a Riemannian manifold M
into complete, connected, injectively immersed submanifolds (called leaves), such
that every geodesic starting perpendicular to a leaf stays perpendicular to all leaves.
A singular Riemannian foliation is a transnormal system, which admits a family of
smooth vector fields spanning the leaves at all points.

We point out the main differences, and similarities, between these concepts:

• The leaves of transnormal systems can be non-closed, while the fibers of spher-
ical manifold submetries can be disconnected. On the other hand, for every
manifold submetry with connected fibers, the fibers define a transnormal sys-
tem with closed leaves, and vice versa.

• Given a singular Riemannian foliation (M, F), then taking closures of the leaves
of F induces a transnormal system (M, F) (even better, a singular Riemannian
foliation, cf. [AR17]). In particular, the projection M → M/F is a manifold
submetry.

• Singular Riemannian foliations are, in principle, more restricted than transnor-
mal systems. However, it is an open question whether or not every transnormal
system is in fact a singular Riemannian foliation.

Given a Riemannian manifold M , we let Subm(M) be the category whose
objects are manifold submetries σ : M → X and whose morphisms (σ1 : M →
X1) → (σ2 : M → X2) are maps f : X1 → X2 such that f ◦ σ1 = σ2. We denote by
∼ the categorical isomorphism relation. Notice that σ1 ∼ σ2 if and only the partition
of M into σ1-fibers is the same as the partition into σ2-fibers.

2.2 Maximal Laplacian algebras. Fix V an n-dimensional Euclidean vector
space, and let S(V ) its unit sphere. Define R[V ] as the space of polynomials over
x1 . . . xn for some orthonormal basis {x1, . . . xn} of V ∗. We define:

Definition 4. A polynomial algebra A ⊆ R[V ] is called Laplacian if r2 :=
∑

i x
2
i

belongs to A, and for every f ∈ A, the Laplacian Δf =
∑

i
∂2

∂x2
i
(f) belongs to A as

well.

Notice that r2 and Δ do not depend on the specific choice of orthonormal basis
x1, . . . xn, and thus are well defined.



R. A. E. MENDES AND M. RADESCHI GAFA

Remark 5. The operators Δ, r2 : R[V ] → R[V ] induce a well-known action of
sl(2,R) on R[V ] related to the Segal-Shale-Weil representation, cf. [HT92, Ch. 2.1].
From this point of view, Laplacian algebras are simply sl(2,R)-invariant subalgebras
of R[V ].

Definition 6. Given a subalgebra A ⊂ R[V ], define the equivalence relation ∼A

on S(V ) by letting p ∼A q if f(p) = f(q) for every f ∈ A. The algebra A is called
maximal if it cannot be enlarged without changing the relation ∼A. In other words,
for every f /∈ A there exist p, q ∈ S(V ) such that p ∼A q but f(p) �= f(q).

We define MaxLapAlg(V ) the category whose objects are the maximal Lapla-
cian subalgebras of R[V ], and the morphisms are simply the inclusions A1 ⊆ A2.

Remark 7. If a group G acts orthogonally on V , it leaves the Laplace operator fixed,
so that the algebra A = R[V ]G of invariant polynomials is a Laplacian algebra. If G
is additionally compact, then A separates G-orbits, and hence x ∼A y if and only if
x, y belong to the same G-orbit. It follows immediately from Definition 6 that A is
maximal.

2.3 Correspondence. Given a map σ : S(V ) → X onto some set X, we define
B(σ) ⊂ R[V ] the algebra of σ-basic polynomials, that is, the algebra generated
by homogeneous polynomials which are constant on the fibers of σ. On the other
hand, given A ⊂ R[V ], define the set XA = S(V )/ ∼A (with ∼A as in Definition
6), and L(A) = σA : S(V ) → XA the natural quotient map. If the fibers of σA

are equidistant, then XA can be given the structure of a metric space, by defining
dXA

(p∗, q∗) = dS(V )(σ
−1
A (p∗), σ−1

A (q∗)). With respect to this metric structure, σA

becomes a submetry.
We can finally restate Theorems A and C:

Theorem 8 (Theorem A). For any Euclidean vector space V , the maps B, L
above define contravariant functors

Subm(S(V ))/ ∼ MaxLapAlg(V )
B

L

which provide an equivalence between the two categories.

Recalling that a manifold submetry with connected fibers defines a partition into
fibers which is a transnormal system, we can restate Theorem C as follows.
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Theorem 9 (Theorem C). For any Euclidean vector space V , the maps B, L
above define a bijection

⎧
⎨

⎩

transnormal systems
with closed leaves

in S(V )

⎫
⎬

⎭

⎧
⎨

⎩

Maximal Laplacian
algebras A ⊆ R[V ]

integrally closed in R[V ]

⎫
⎬

⎭
.

B

L

Part 1. From manifold submetries to Laplacian algebras

The first part, comprising Sects. 3 and 4, aims to show that given a manifold sub-
metry σ : S(V ) → X, the algebra of basic polynomials is a maximal Laplacian
algebra. Combining recent results in the theory of singular Riemannian foliations
(cf. [AR15, LR18]), one can prove this result in the case where σ is the quotient
map S(V ) → S(V )/F for some singular Riemannian foliation (S(V ), F). Here the
strategy is to extend such results to the more general case of manifold submetries.
Some results, such as the Homothetic Transformation Lemma, extend with minimal
changes from the original version for singular Riemannian foliations: all such results
have been added in “Appendix B”. Other results, such as equifocality, require an
original approach, and these form the bulk of the next two sections.

3 Spherical Alexandrov spaces, quotient geodesics, and submetries

3.1 Alexandrov spaces. Alexandrov spaces are a certain class of metric spaces
(X, d) with a lower curvature bound. We will assume that the reader is familiar with
this concept, and we refer to [BGP92] for an introduction to the subject.

Given an Alexandrov space (X, d), a point x ∈ X, and a sequence of positive
real numbers ri converging to zero, the sequence of rescaled pointed metric spaces
(X, x, ri · d) converges in the Gromov-Hausdorff sense to a pointed metric space of
non-negative curvature (TxX, o) called the tangent space to X at x and its elements
are called tangent vectors, even though this space is in general not a vector space. For
a vector v ∈ TxX, one defines the norm |v| = d(o, v). The subset of TxX of vectors
with norm 1 is again an Alexandrov space called the space of directions ΣxX, and
TxX is in fact the metric cone over ΣxX.

Recall that a geodesic in a metric space X is a curve γ : [a, b] → X parametrized
by arc length, minimizing the distance between the end points. If X is an Alexandrov
space, then for every t0 ∈ [a, b] one defines the forward velocity γ+(t0) ∈ Tγ(t0)X.
Almost every unit-norm vector is the velocity of a geodesic. Furthermore, if two
geodesics have the same initial velocity, then they coincide for as long as they are
both defined.
3.2 Infinitesimal submetry. Let σ : M → X be a manifold submetry, and
p ∈ M . From [Lyt02], the sequence of rescalings σr : (M, rg, p) → (X, rdX , σ(p)), as
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r → 0, converges to a submetry dpσ : TpM → Tσ(p)X, called the differential of σ at
p, such that for every r ∈ R+, dpσ(r ·v) = r ·dpσ(v). Moreover, letting Vp = TpLp (Lp

the σ-fiber through p) and Hp = V ⊥
p , the restriction σp := dpσ|Hp

: Hp → Tσ(p)X is
again a submetry, whose fibers are (the blow up of) the intersections between the
fibers of σ and the slice Dp := exp ν<ε

p P . By Lemma 45 in the “Appendix”, these
are manifolds, and thus σp is a manifold submetry.

By construction, the preimage of the vertex in Tσ(p)X is simply the vertex in
Hp, and since σp is a submetry it follows that all the σp-fibers are contained in the
distance spheres of Hp around the origin. Denoting Sp the unit sphere in Hp and
Σσ(p)X the space of directions of X at σ(p), the map σp then restricts to a manifold
submetry Sp → Σσ(p)X, which we call the infinitesimal submetry of σ at p and still
denote by σp.

3.3 Horizontal geodesics. Given a manifold submetry σ : M → X and
p ∈ M , a tangent vector v ∈ TpM is called horizontal if it is perpendicular to
Tpσ

−1(σ(p)). A geodesic γ : [a, b] → M is a horizontal geodesic, if γ′(t) is horizon-
tal for every t ∈ [a, b]. It is known (cf. [Lyt02], Lemma 5.4) that for every vector
w ∈ ΣxX, every point p ∈ σ−1(x), and every horizontal vector v ∈ dpσ

−1(w), the
geodesic γ(t) := expp(tv) is a horizontal geodesic. Furthermore, the projection of a
horizontal geodesic is concatenation of geodesics on X.

3.4 Spherical Alexandrov spaces. One fundamental property of singular
Riemannian foliation is the so-called equifocality, which states that if two horizontal
geodesics γ1, γ2 : (a, b) → M are so that γ1(t) and γ2(t) belong to the same leaf
for every t in some open set (a′, b′) ⊆ (a, b), then in fact γ1(t) and γ2(t) belong to
the same leaf for every t ∈ (a, b). This property was proved for singular Riemannian
foliations in [LT10] and [AT08], in both cases using the existence of smooth vector
fields spanning the leaves.

In this section we prove equifocality for manifold submetries, and to do so we
prove that the Alexandrov spaces which occur as bases of manifold submetries have
very special properties which allow to define geodesics even after they stop minimiz-
ing.

We begin by defining some special classes of Alexandrov spaces. These definitions
are by induction on the dimension. Let B1 be the class of closed 1-dimensional
Alexandrov spaces, namely circles S1, closed intervals [a, b], the real line R and
the half line [0, ∞). Given X ∈ B1, a quotient geodesic on X is a 1-Lipschitz map
γ : [0, �] → X, with a partition 0 ≤ t1 < t2 < · · · < tN ≤ �, such that

(1) Each restriction γ|[ti,ti+1] is a locally minimizing geodesic.
(2) For every i = 1, . . . N , γ(ti) is in the boundary of X.

In other words, quotient geodesics are “geodesics which bounce back and forth”.
Finally, X ∈ B1 is called a spherical Alexandrov space if it admits an involutive

isometry a : X → X such that, for every x ∈ X and v ∈ ΣxX, the quotient geodesic
γ(t) with γ(0) = x, γ′(0) = v satisfies γ(π) = a(x). Let S1 be the set of spherical
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Alexandrov spaces. It is easy to see that S1 consists of intervals [0, π/k] and circles
S1 of length 2π/k, for k positive integer.

Assume the classes Bj , Sj of j-dimensional Alexandrov spaces have been defined,
for j = 1, . . . m − 1.

Definition 10. Let X be an m-dimensional Alexandrov space. Then:

• We say that X is base-like if every tangent vector exponentiates to a geodesic,
and for every x ∈ X, ΣxX ∈ Sm−1.

• We denote Bm the set of base-like Alexandrov spaces of dimension m.
• Given X ∈ Bm, then fixing x ∈ X and v ∈ ΣxX, we define a quotient geodesic

from (x, v) as a 1-Lipschitz map γ : [0, �] → X with a partition 0 ≤ t1 < t2 <
· · · < tN ≤ �, such that
(1) Each restriction γ|[ti,ti+1] is a locally minimizing geodesic.
(2) For every i = 1, . . . N , γ+(ti) = a(γ−(ti)), where γ±(ti) ∈ Σγ(ti)X are the

left and right limit of γ at ti and a : Σγ(ti)X → Σγ(ti)X is the involutive
isometry which exists since Σγ(ti)X ∈ Sm−1.

• Given X ∈ Bm, we say that X is a spherical Alexandrov space if it admits
an involutive isometry a : X → X (called antipodal map) such that, for every
x ∈ X and v ∈ ΣxX, the quotient geodesic γ(t) from (x, v) satisfies γ(π) = a(x)
(independent of v).

• Define Sm the set of m-dimensional, spherical Alexandrov spaces.

Remark 11. By induction, it is easy to see that the antipodal map a for a spherical
Alexandrov space is unique.

Then we have the following:

Lemma 12. (Uniqueness of quotient geodesics) Given a base-like Alexandrov space
X, and two quotient geodesics γi : [0, �i] → X, i = 1, 2 with γ1(0) = γ2(0) and
γ+

1 (0) = γ+
2 (0), then γ1(t) = γ2(t) for any t ∈ [0, min{�1, �2}].

Proof. Let � = min{�1, �2}. It is enough to prove that the set J = {t ∈ [0, �] |
γ1(t) = γ2(t)} is open and closed. Since J is clearly closed, it is enough to show
that it is open. Suppose then that [0, t0] ⊂ J . If t0 > 0, then γ−

1 (t0) = γ−
2 (t0),

therefore γ+
1 (t0) = a(γ−

1 (t0)) = a(γ−
2 (t0)) = γ+

2 (t0). If t0 = 0, then γ+
1 (t0) = γ+

2 (t0)
by assumption.

In either case, there is a δ > 0 small enough that γ1|[t0,t0+δ) and γ2|[t0,t0+δ)

are geodesics with the same initial direction, and therefore they are equal. Thus
[0, t0 + δ) ⊂ J and J is open. ��
Remark 13. The notion of quotient geodesics, and their properties, have also been
discussed and proved in [LT10] in the context of singular Riemannian foliations, see
Definition 3 and the discussion below it.

Proposition 14. Let M be a complete Riemannian manifold, and σ : M → X a
manifold submetry onto an m-dimensional Alexandrov space. Then:
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(1) X ∈ Bm.
(2) A horizontal geodesic in M projects to a quotient geodesic in X.
(3) If M = S

n is the unit sphere of curvature 1, then X ∈ Sm and the antipodal
map is a(σ(v)) = σ(−v).

(4) For any two points p1, p2 ∈ M with σ(p1) = σ(p2) = p∗, and vectors vi ∈ Spi

with σp1(v1) = σp2(v2), the geodesics γ1(t) = exp(tv1) and γ2(t) = exp(tv2)
satisfy σ(γ1(t)) = σ(γ2(t)) for all t.

Proof. We prove it by induction on the dimension n of M . If n = 1, then M is either
R or S

1 and the only nontrivial case is for X to have dimension 1 as well. In this
case, X ∈ B1 trivially, and it is easy to see that σ : M → X is a local isometry away
from σ−1(∂X), and in fact a quotient geodesic. In particular, if M is the unit circle
S

1, one defines a : X → X by a(σ(p)) = σ(−p), and it is easy to see that X ∈ S1.
Suppose now that the result holds for any manifold submetry N → Y with

dim N ≤ n − 1, and take σ : M → X with dimM = n, and let m = dim X. We
make two observations:

a. Fixing a horizontal geodesic γ : [0, �] → M , the projected curve γ∗(t) = σ(γ(t))
satisfies length(γ∗|[t1,t2]) = length(γ|[t1,t2]), for any [t1, t2] ⊆ [0, L]. In particular,
for any t1 ∈ [0, �] there is some t2 > t1 such that γ|[t1,t2] minimizes the distance
between the fibers at γ(t1) and γ(t2), and therefore

length(γ∗|[t1,t2]) = length(γ|[t1,t2]) = dM (Lγ(t1), Lγ(t2)) = dX(γ∗(t1), γ∗(t2)),

which implies that γ∗|[t1,t2] is a geodesic.
b. For any point p∗ ∈ X, and p ∈ σ−1(p∗), the differential of σ at p defines a

manifold submetry σp : Sp → Σp∗X where Sp is the unit sphere in νp(σ−1(p∗))
(cf. 3.2). Since dimSp < n, it follows by induction that Σp∗X ∈ Sm−1.

We proceed to prove the proposition:

(1) For any p∗ ∈ X, p ∈ σ−1(p) and v∗ ∈ Σp∗X, one can find a v ∈ Sp such that
σp(v) = v∗. Since the fibers of σ are closed, there is a constant ε such that
γ(t) = exp tv satisfies

d(Lp, Lγ(t)) = d(p, Lγ(t)) = length(γ|[0,t]) ∀t ∈ (0, ε).

By point a. it follows that v∗ exponentiates to a geodesic γ∗(t) := σ(γ(t)) for
t < ε. Together with point b., it follows that X ∈ Bm.

(2) By observation a., any horizontal geodesic γ in M is projected to a curve γ∗
which is a piecewise geodesic. Thus it remains to prove that γ+∗ (t) = a(γ−∗ (t))
for every t. Fix a point p = γ(t0), and let v = γ′(t0). Then γ+∗ (t0) = σp(v),
and γ−∗ (t0) = σp(−v), thus we need to prove that the antipodal map a :
ΣpX → ΣpX satisfies a(σp(v)) = σp(−v). For any w∗ ∈ Σv (ΣpX), the quotient
geodesic ψ : [0, π] → ΣpX with ψ+(0) = w∗ is, by the induction step, given by
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σp(cos(t)v + sin(t)w), where w ∈ TvSp � 〈v〉⊥ is the vector projecting to w∗.
Therefore,

a(σp(v)) = ψ(π) = σp(−v).

(3) Let p∗ = σ(p) ∈ X, v∗ ∈ ΣpX and let v ∈ Sp be such that σp(v) = v∗. By point
(2) the quotient geodesic γ∗ with γ+(0) = v∗ is γ∗(t) = σ(exp(tv)). Since in
this case M is a round sphere of curvature 1, exp(tv) = cos(t)p + sin(t)v and
γ∗(t) = σ(exp(πv)) = σ(−p), independently of v∗.

(4) By point (2), (γ1)∗(t) = σ(γ1(t)) and (γ2)∗(t) = σ(γ2(t)) are both quotient
geodesics, and by hypothesis (γ1)+∗ (0) = (γ2)+∗ (0). Since there is no geodesic
branching in Alexandrov spaces, it also follows that quotient geodesics are
uniquely determined by their initial vector, and therefore (γ1)∗(t) = (γ2)∗(t)
for all t. ��

Proposition 15. Let σ : M → X be a C2-manifold submetry, γ : [0, �] → M a
horizontal geodesic, and Lt the fiber through γ(t). Then there is a vector space W
of Jacobi fields along γ, such that:

• W is isotropic, i.e. for any J1, J2 ∈ W , 〈J1(t), J ′
2(t)〉 = 〈J ′

1(t), J2(t)〉.
• For any t ∈ [0, �],

Tγ(t)Lt = W (t) := {J(t) | J ∈ W}.

Proof. Let P0 ⊂ L0 be a relatively compact open set of L0 containing γ(0), and
let ε small enough, that the normal exponential map exp : ν<εP0 → M is a C2-
diffeomorphism. Fixing δ < ε, any vector w ∈ Tγ(δ)Lδ is the initial vector of some
curve αw : (−1, 1) → Lδ with α′

w(0) = w. We can write αw(s) = exp(δv(s)), where
v(s) is a curve of unit normal vectors in νP0. We can then define the family of
horizontal geodesics γs(t) = exp(tv(s)), the Jacobi field Jw(t) = d

ds

∣
∣
s=0

γs(t), and
define W = {Jw | w ∈ Tγ(δ)Lδ}. It is easy to check that w �→ Jw is a linear map,
and W is a vector space.

We first prove that W is isotropic. Recall that for any two Jacobi fields J1, J2,
the function 〈J1(t), J ′

2(t)〉 − 〈J ′
1(t), J2(t)〉 is constant on t, thus it is enough to check

that it vanishes at a single time t = δ. Given Jv1 , Jv2 ∈ W , we have

〈J ′
v1

(δ), Jv2(δ)〉 = 〈∇γ′(δ)Jv1 , Jv2(δ)〉 = 〈Sγ′(δ)Jv1(δ), Jv2(δ)〉 = 〈Sγ′(δ)v1, v2〉
where Sγ′(δ) denotes the shape operator of Lδ in the direction of γ′(δ). Since the
shape operator is symmetric, it follows that 〈J ′

v1
(δ), Jv2(δ)〉 − 〈J ′

v2
(δ), Jv1(δ)〉 = 0,

and thus W is isotropic.
We now check that the equality Tγ(t)Lt = W (t) holds for all t. Letting

γ∗(t) = σ(γ(t)), the family of geodesics γs(t) above defining J ∈ W satisfies
σ(γs(δ)) = γ∗(δ) for all s. By the Homothetic Transformation Lemma (cf. Lemma 42
in the “Appendix”), σ(γs(t)) = γ∗(t) for all s and all t ∈ (0, δ). In particular,
dγs(0)σ(γ′

s(0)) = γ+∗ (0), and by Proposition 14 it follows that σ(γs(t)) = γ∗(t)
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for all s and for all t ∈ [0, �]. In particular, J(t) ∈ Tγ(t)Lt for any J ∈ W , and
W (t) ⊆ Tγ(t)Lt, for all t ∈ [0, �]. Furthermore, W (t) = Tγ(t)Lt for all t ∈ (0, δ) and,
by part 1 of Lemma 45, equality holds for t = 0 as well. We now show equality for
all t, by showing that the set

I = {s ∈ [0, �] | W (t) = Tγ(t)Lt ∀t ∈ [0, s]}

is open and closed. To prove it is closed, suppose [0, t0) ⊆ I, and pick δ′ small enough
that dimW (t0 −δ′) = dimW and such that the Homothetic Transformation Lemma
can be applied in a δ′-neighborhood of Lt0 . For any w = J(t0 − δ′) ∈ W (t0 − δ′) and
any λ ∈ [0, 1], we claim that the homothetic transformation hλ around Lt0 satisfies

(hλ)∗(w) = J(t0 − λδ′).

In fact, letting γs(t) the family of horizontal geodesics such that J(t) = d
ds

∣
∣
∣
s=0

γs(t),

we know that for every s, γs(t0) belongs to Lt0 and ψs(t) := γs(t0 − t) is the
minimizing segment between γs(t0 − δ) and Lt0 . In particular, hλ(γs(t0 − δ′)) =
hλ(ψs(δ′)) = ψs(λδ′) = γs(t0 − λδ′). The claim follows by differentiating this equa-
tion with respect to s. Therefore, (hλ)∗W (t0 − δ′) = W (t0 − λδ′) and for λ = 0 we
have (h0)∗W (t0 − δ′) = W (t0). On the other hand, by part 1) of Lemma 45, we also
have

(h0)∗W (t0 − δ′) = (h0)∗Tγ(t0−δ′)Lt0−δ′ = Tγ(t0)Lt0 ,

and thus t0 ∈ I as well.
To prove that I is open, we use the fact that, since W is isotropic, for every

t0 ∈ [0, �] there is a δ such that dimW (t) = dimW for all t ∈ (t0 −δ, t0 +δ)\{t0} (cf.
Proposition 38). Thus if t0 ∈ I then dimW = dimLt for all t ∈ (t0 − δ, t0), and we
need to prove that dimW = dimLt for every t ∈ (t0, t0 + δ) as well. We prove so by
contradiction: suppose dimW < dim Lt′ for some t′ ∈ (t0, t0 + δ). Then by repeating
the same arguments as above around t′, there is an isotropic subspace W ′ of Jacobi
fields such that W ′(t) ⊆ Tγ(t)Lt for all t, and W ′(t′) = Tγ(t′)Lt′ . In particular,
dim W ′ > dim W . However, for all but finitely many values of t ∈ (t0 − δ, t0), one
has

dim Tγ(t)Lt ≥ dim W ′(t) > dim W (t) = dimTγ(t)Lt,

giving a contradiction. ��

As a corollary of the results in this section, we have

Proposition 16. Let σ : M → X a manifold submetry, let M reg ⊆ M denote the
stratum of fibers with maximal dimension, and let Xreg = σ(M reg). Then Xreg is
convex in X.
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Proof. Let p∗, q∗ ∈ Xreg and let γ∗ : [0, 1] → X a minimizing geodesic between p∗
and q∗. We need to prove that γ∗(t) ∈ Xreg for all t ∈ [0, 1]. Let Lp = σ−1(p∗),
Lq = σ−1(q∗) and let γ : [0, 1] → M be a horizontal geodesic projecting to γ∗.
Clearly γ minimizes the distance between Lp and Lq. Suppose by contradiction that
for some t0 ∈ (0, 1), γ(t0) is contained in a fiber of non-maximal dimension. By
Proposition 15 the tangent spaces of fibers along γ are spanned by an isotropic
subspace of Jacobi fields, and by standard results on isotropic subspaces of Jacobi
fields (see “Appendix A”) the dimension of the fiber Lt through γ(t) is maximal for
all but discretely many values of t. By Lemma 45, for ε small enough, the closest-
point projection map Lt0+ε → Lt0 is a submersion. Since by assumption dimLt0 <
dim Lt0+ε, the fiber of Lt0+ε → Lt0 through γ(t0 + ε) contains at least another point,
call it p̄. Let γ̄ : [t0, 1] → M be the horizontal geodesic such that γ̄(t0) = γ(t0)
and γ̄(t0 + ε) = p̄. Then γ̄∗(t) := σ ◦ γ̄(t) equals γ∗(t) at t = t0 and t0 + ε. By the
Homothetic Transformation Lemma, γ̄∗(t) = γ∗(t) for t ∈ [t0, t0 + ε], and thus by
Proposition 14 (4), γ̄∗(t) = γ∗(t) for every t ∈ [t0, 1]. But then the concatenation
γ|[0,t0] � γ̄ is a (non-minimizing) curve from Lp to Lq with the same length of the
(minimizing) curve γ, contradiction. ��

4 Spherical manifold submetries

A spherical manifold submetry is a manifold submetry from a round sphere of cur-
vature 1. Given a spherical manifold submetry S

n → X, we have from Proposition
14 that X is a spherical Alexandrov space. The goal of this section is to prove the
first part of Theorem A: namely, we prove that given a Euclidean vector space V
and a C2-manifold submetry σ : S(V ) → X from the unit sphere of V , there exists
a maximal Laplacian algebra A := R[V ]σ whose level sets are the fibers of σ.

Proposition 17 (Basic mean curvature). Let σ : Sn → X be a C2 spherical mani-
fold submetry . Then the mean curvature vector field of σ is basic. That is, for any
p1, p2 ∈ S

n in the same fiber L of maximal dimension, the mean curvature vectors
H1, H2 of L at p1, p2 respectively, satisfy dp1σ(H1) = dp2σ(H2).

Proof. It is enough to prove that, given two points p1, p2 with σ(p1) = σ(p2) = p∗
and vectors vi ∈ Spi

, with dpi
σ(vi) = v∗, one has that the shape operator of L =

σ−1(p∗) satisfies tr(Sv1) = tr(Sv2). In fact, we claim that Sv1 and Sv2 have the same
eigenvalues. The proof of this fact, is essentially the same as [AR15, Proposition
3.1], and it hinges on the following facts:

• Letting γi(t) = exp(tvi), i = 1, 2, define the spaces Λi of Jacobi fields along γi

given by

Λi = {J(t) | J(0) ∈ TpiL, J ′(0) = −Sγ(0)J(0)} ⊕ {J(t) | J(0) = 0, J ′(0) ⊥ γ′
i(0) ⊕ TpiL}.

These are the Lagrangian spaces of Jacobi fields (see “Appendix A”) consisting
of Jacobi fields generated by variations of γi via horizontal geodesics through L.
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Their focal functions fΛi
(t) = dim{J ∈ Λi | J(t) = 0} have the property that λ

is an eigenvalue of Svi
with multiplicity m, if and only if fΛi

(arctan(1/λ)) = m.
• The spaces Wi of Jacobi fields along γi defined in the Proposition 15 are clearly

contained in Λi. By Eq. (4) in “Appendix A”, the following formulas for the
focal functions hold:

fΛi
(t) = fWi

(t) + fΛi/Wi
(t).

• By Proposition 15, the function fWi
(t) can be rewritten as

fWi
(t) = dim Wi − dim Wi(t) =

(

max
t∈R

dim Lγi(t)

)

− dim Lγi(t).

Since γ1(t) and γ2(t) are contained in the same leaves for every t, clearly
fW1(t) = fW2(t) for every t.

• Using Wilking’s Transverse Jacobi Equation (see Example 41 in “Appendix
A”) the curvature operators RHi(t) of the quotient bundles Hi = E/EWi

can
be identified, for all but discretely many t ∈ I, with the Riemann curvature
operator of X along γ∗(t). By continuity, RH1(t) = RH2(t) and, in particular,
fΛ1/W1

(t) = fΛ2/W2
(t).

Summing up, we have fΛ1(t) = fΛ2(t) for all t, and therefore the eigenvalues of Sv1 ,
Sv2 agree. ��

Proposition 18. Let σ : S
n → X be a C2 spherical manifold submetry and let

A ⊂ R[x0, . . . xn] be the algebra generated by the homogeneous polynomials which
are constant along the fibers of σ. Then

• A is finitely generated.
• Letting ρ1, . . . , ρk generators of A and ρ = (ρ1, . . . , ρk) : Sn → R

k, then the
fibers of σ coincide with the fibers of ρ.

• Letting X ′ = σA(Sn), the map ρ induces a homeomorphism ρ′ : X ′ → X such
that σ = ρ′ ◦ ρ.

Proof. With the work done up to this point, the proof of this proposition is the same
as in the case of singular Riemannian foliations in spheres, cf. [LR18]. We quickly
sum up the strategy of the proof.

• Let [·] : L2(Sn) → L2(Sn) be the averaging operator, which takes a function f
to the function [f ] defined by

[f ](p) =
1

vol(Lp)

∫

Lp

fdvolLp
,

where Lp is the σ-fiber through p, and dvolLp
is the volume form induced by

the inclusion Lp → S
n.
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• Since the mean curvature of any regular fiber is basic, it follows that [·] takes
Lipschitz functions to Lipschitz functions, and Δ[f ] = [Δf ]. By the regularity
theory of elliptic equations, it follows that [·] defines a map

[·] : C∞(Sn) → C∞(Sn)σ

where C∞(Sn)σ denotes the set of smooth functions that are constant along
the fibers of σ, also called smooth σ-basic functions.

• The averaging operator extends to a continuous operator C∞(Rn+1) →
C∞(Rn+1)C(σ), where C(σ) : R

n+1 → Cone(X) is the manifold submetry
taking t · p (t ∈ R+, p ∈ S

n) to t · σ(p), and this operator commutes with
rescaling. Therefore, for any homogeneous polynomial P , the average [P ] is
also a homogeneous polynomial, of the same degree of P .

• Let A = R[x1, . . . xn+1]σ be the ring generated by σ-basic, polynomials. Then
by the point above, the averaging operator defines a map [.] : R[x1, . . . xn+1] →
A which by construction satisfies [PQ] = P [Q] for every P ∈ A, that is, a
Reynolds operator. By classic work of Hilbert, this implies that A is finitely
generated (see also Lemma 24 for a proof).

• Since R[x1, . . . xn+1] is dense in C∞(Rn+1), it follows that A ⊂ C∞(Rn+1)σ is
dense as well in the C0 topology. In particular, the polynomials in A distinguish
the fibers of σ. In other words, the fibers of σ coincide with the fibers of ρ.

• Letting ρ1, . . . ρk generators of A, ρ = (ρ1, . . . , ρk) : Sn → R
k, and X ′ = ρ(Sn),

one can define a map ρ′ : X ′ → X by ρ′(ρ(x1, , . . . xn)) = σ(x1, . . . , xn). The
function ρ′ is well defined and injective because by definition the fibers of σA

equal the fibers of σ. Surjectivity is obvious. Finally, since the σ-fibers are
compact, the map ρ′ is a proper (bijective) map, hence a homeomorphism. ��

In particular, we get the proof of the first half of Theorem A, namely:

Theorem 19. Let V be a Euclidean vector space, and σ : S(V ) → X a C2

manifold submetry. Then the algebra A = B(σ) of homogeneous σ-basic polynomials
is a maximal Laplacian algebra, and L(A) ∼ σ.

Proof. We start by proving that A is Laplacian. First, being r2 =
∑

i x
2
i constant

on the whole sphere, it is σ-basic and thus r2 ∈ A. Secondly, let [·] : R[V ] → A be
the averaging operator defined in the Proposition 18, and notice that [P ] = P if and
only if P ∈ A. Then ΔP = Δ[P ] = [ΔP ] and thus ΔP ∈ A.

By Proposition 18 the algebra A is finitely generated, and letting ρ1, . . . ρk be
generators of A, it is clear that two points p, q ∈ S(V ) satisfy p ∼A q if and only
if ρi(p) = ρi(q) for all i = 1, . . . k. In particular, p ∼A q if and only if p, q are in
the same fiber of ρ : S(V ) → X ′ and thus ρ ∼ σA. Since by Proposition 18 we have
ρ ∼ σ, it follows that σ ∼ σA = L(B(σ)).

Finally, we prove that A is maximal. Letting P /∈ A a polynomial, it follows
by definition of A that there are two points p, q in the same fiber of σ, such that
P (p) �= P (q). Since, by the previous point, the fibers of σ coincide with the fibers
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of σA, it follows that f(p) = f(q) for any f ∈ A, and thus A is maximal by
definition. ��

Part 2 From Laplacian algebras to manifold submetries

Up to now, we started from manifold submetries and constructed polynomial alge-
bras from them. The goal of this second part is to show that any Laplacian algebra
A ⊆ R[V ] gives rise to a manifold submetry π̂A : S(V ) → X̂A.

5 Fundamental properties of Laplacian algebras

In this section, we start exploring the algebraic properties of Laplacian algebras.
The main result is that Laplacian algebras admit a Reynolds operator (Theorem
23). This means that they have many of the same properties as algebras of invariant
polynomials, for example being finitely generated.

5.1 Duality and higher products. Given a graded polynomial algebra A, we
will denote by Ad the subspace of degree-d polynomials in A. We define a sequence
of symmetric, R-bilinear products

•k : R[V ]a ⊗ R[V ]b → R[V ]a+b−2k

f •k g =
n∑

a1=1

. . .

n∑

ak=1

(
∂kf

∂xa1 . . . ∂xak

)(
∂kg

∂xa1 . . . ∂xak

)

=
∑

|α|=k

(
k

α

)

(∂αf)(∂αg),

where in the last line α = (α1, . . . αn) is a multi index with |α| =
∑

i αi,
(

k
α

)
= k!

α1!...αn!

and ∂αf = ∂kf
∂x

α1
1 ...∂xαn

n
. The equality between the second and the third line is due to

the fact that the number of differentials ∂k

∂xa1 ...∂xak

giving rise to the same differential

∂α, |α| = k, is precisely
(

k
α

)
.

Given f ∈ R[V ]k, f =
∑

α cαxα, define the dual operator f̂ : R[V ] → R[V ] by

f̂ =
∑

α

cα∂α.

Since the coefficient cα are constant, it follows from the definition that f̂g = f̂ ◦ ĝ.
It is easy to see from the second definition of •k that for any polynomial g,

1
k!

f •k g = f̂(g),
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because both terms are linear in f , and it easily holds for monomials. Observing
that g •d g is a positive constant for every nonzero g ∈ R[V ]d we may define an inner
product on each R[V ]d by

〈f, g〉d = f̂(g) = ĝ(f) =
1
d!

f •d g.

Note that, with respect to this inner product, multiplication by f is adjoint to
f̂ . Indeed,

〈gf, h〉d = ĝf(h) = ĝ(f̂(h)) = 〈g, f̂(h)〉d−k. (2)

Remark 20. In this generality, we are not aware of these products being used before,
even in classical invariant theory. However, one can easily see that the widely used
polarizations and generalized polarizations of an invariant polynomial f correspond
to taking the product P •1 f and Q •2 f respectively, for very special choices of
polynomials P, Q.

5.2 Laplacian algebras and Reynolds operators. The following lemma
shows that the products •k in the previous section, can be defined in terms of the
Laplacian.

Lemma 21. The higher products •k can be written in terms of the Laplacian and
the product structure, via the inductive formula:

f •0 g := fg, f •k+1 g :=
1
2
(
Δ(f •k g) − (Δf) •k g − f •k (Δg)

)
. (3)

Proof. The result is clear for k = 0. For k > 0 define n = {1, . . . n} and, given
ā = (a1, . . . ak) ∈ nk, let ∂āf := ∂kf

∂xa1 ...∂xak

. It is a direct computation that:

Δ(f •k g) = Δ

(
∑

ā∈nk

(∂āf)(∂āg)

)

= 2
∑

ā∈nk+1

(∂āf)(∂āg) +
∑

ā∈nk

(Δ∂āf)(∂āg) +
∑

ā∈nk

(∂āf)(Δ∂āg).

Since Δ∂āf = ∂āΔf and same for g, the computations become

Δ(f •k g) = 2f •k+1 g +
∑

ā∈nk

(∂āΔf)(∂āg) +
∑

ā∈nk

(∂āf)(∂āΔg)

= 2f •k+1 g + (Δf) •k g + f •k (Δg)

and the result is proved. ��
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Corollary 22. Let A be a Laplacian algebra. Then:

(1) For any f, g ∈ A, and any k, f •k g ∈ A.
(2) A is a graded ring.
(3) For any f ∈ A, the operator f̂ takes A into A.

Proof. 1. Follows directly from Lemma 21, since the operations •k are defined in
terms of the algebra structure, and the Laplacian.

2. Decompose f ∈ A into its homogeneous parts f =
∑

j fj , where fj has degree
j. Then 1

2r2 •1 f =
∑

j j fj ∈ A. Applying this deg(f) many times and using
the invertibility of the Vandermonde matrix shows that fj ∈ A for every j.

3. For f homogeneous it is clear, since f̂(g) = f •j g, with j = deg(f). In general,
decompose f ∈ A into its homogeneous parts f =

∑
j fj , where fj has degree

j. By the previous point, fj ∈ A for all j. Then f̂ =
∑

f̂j and each f̂j takes A
into A. ��

We can now prove the existence of the Reynolds operator (Theorem 23 below).
To do this, let us define the projection Π : R[V ] → A degree wise, by letting
Πd : R[V ]d → Ad be the orthogonal projection with respect to the inner product
〈· , ·〉 defined in Sect. 5.1. Recall that, if A is the algebra of homogeneous basic
polynomials of a manifold submetry σ : S(V ) → X, then there is an averaging
operator [·] : R[V ] → A, see the proof of Proposition 18.

Then:

Theorem 23. Let A ⊂ R[V ] be a Laplacian algebra. Then the projection Π =⊕
d Πd : R[V ] → A is a Reynolds operator, that is, Π(fg) = fΠ(g) for f ∈ A and

g ∈ R[V ]. Moreover, if A is the algebra of basic polynomials of a manifold submetry,
then Π coincides with the averaging operator.

Proof. Let f ∈ Ak and g ∈ R[V ]d−k. Let g = g1 + g2, where g1 = Πd−k(g) lies in
Ad−k and g2 is orthogonal to Ad−k. By linearity,

Πd(fg) = Πd(fg1) + Πd(fg2) = fg1 + Πd(fg2)

and therefore it suffices to show that Πd(fg2) = 0. But this is true because, for every
Q ∈ Ad, 〈Q, fg2〉 = 〈f̂Q, g2〉 [by (2)], which is zero since f̂Q ∈ Ad−k.

Now assume A is the algebra of homogeneous basic polynomials of a manifold
submetry S(V ) → X. Since the averaging operator [·] and the Reynolds operator
Π are idempotent with the same image A, showing that they coincide is equivalent
to showing that the kernel of [·] is orthogonal to A. So let g ∈ R[V ]d such that
[g] = 0, and let f ∈ Ad. Since the Laplacian and the averaging operator commute,
Δ[P ] = [ΔP ] for any P ∈ R[V ] (cf. the proof Proposition 18) and the inductive
formula (3) for •d implies that [f •d g] = f •d [g]. Therefore

〈f, g〉 = f •d g = [f •d g] = f •d [g] = 0

because f •d g is a constant, and hence basic. ��
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The existence of a Reynolds operator is crucial in Invariant Theory, and we collect
below a few standard consequences which we will need later:

Lemma 24. Let A ⊂ R[V ] be a Laplacian algebra. Then

(a) A is finitely generated.
(b) Let F (A) be the field of fractions of A. Then A = F (A) ∩ R[V ].
(c) A is integrally closed in its field of fractions.

Proof. (a) Let A+ ⊆ A be the subspace generated by the homogeneous polynomials
of positive degree, and let I be the ideal in R[V ] generated by A+. Since R[V ] is
Noetherian, I = (ρ1, . . . , ρk) for some ρ1, . . . ρk ∈ A+. We claim that ρ1, . . . ρk

generate A as a ring, by induction on the degree. Suppose that they generate
A<d, and let f ∈ Ad. Since f ∈ I we can write f =

∑
aiρi, where ai ∈ R[V ]

can be chosen homogeneous, of degree deg(f) − deg(ρi) < d. Since f and ρi

belong to A, we can apply Π to the equation and obtain

f = Π(f) = Π
(∑

aiρi

)
=

∑
Π(ai)ρi.

Since Π(ai) live in A<d, by the induction hypothesis they can be written as
polynomials in the ρi’s, and therefore so can f . This proves the induction step.

(b) Let R(V ) be the field of fractions of R[V ]. Since A ⊆ R[V ], clearly F (A) ⊆
R(V ). Let f, g ∈ A and h ∈ R[V ] so that f

g = h ∈ F (A) ∩ R[V ]. Then f = hg

and applying the Reynolds operator we get f = g[h]. Therefore, f
g = [h] ∈ A.

(c) Suppose that α = f
g ∈ F (A) is a root of a monic polynomial P (t) = tn +

∑
hit

n−i in A[t]. Then in particular α ∈ R(V ) and P ∈ R[V ][t]. Since R[V ] is
a Unique Factorization Domain, it is integrally closed in its field of fraction,
and thus α ∈ R[V ]. Hence α ∈ F (A) ∩ R[V ] and by the previous point α ∈ A.

��

6 Laplacian algebras give rise to submetries

The main goal of the next two sections is to prove the following:

Theorem 25. Let A ⊂ R[V ] be a Laplacian algebra. Then:

(a) There exists a spherical manifold submetry σ̂A : S(V ) → X̂ whose fibers coin-
cide with the level sets of A, on an open and dense set.

(b) If furthermore A is maximal, then all fibers of σ̂A coincide with the level sets
of A.

Let A ⊂ R[V ] denote a Laplacian algebra, which for the moment is not necessarily
maximal. The strategy is to produce a manifold submetry σ from the whole of V
to a cone X = C(Y ) such that the preimage of the vertex in C(X) is the origin
in V . Then by equidistance, it follows that σ restricts to the manifold submetry
σ : S(V ) → Y we are looking for. In this section, we produce the submetry, and in
the next section we prove that the fibers are smooth.
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6.1 Riemannian submersion almost everywhere. Let A ⊂ R[V ] be a
Laplacian algebra. By Lemma 24, A is finitely generated, so let ρ1, . . . ρk be homo-
geneous generators of A, and let ρ : V → R

k be the map ρ(x) = (ρ1(x), . . . ρk(x)).
Let V reg be the open dense set of V where the rank of dρ (which equals the

dimension of span(∇ρ1, . . .∇ρk)) is maximal, let m denote such a maximal rank,
and denote V sing the complement of V reg. The set V reg can be equivalently defined
as the set where the matrix B̂ ∈ Sym2(Ak) given by B̂ij = ρi •1 ρj has maximal
rank (this is because B̂ = (dρ) · (dρ)∗). Because A is Laplacian, the entries of B̂ are
in A, and in particular V reg is a union of level sets of ρ. Moreover, by the Inverse
Function Theorem, the restriction of ρ to V reg is a submersion onto the image. Our
first result is:

Proposition 26 (Riemannian submersion almost everywhere). The restriction of ρ
to V reg is a Riemannian submersion, for an appropriate choice of metric on ρ(M reg).

Proof. From the Inverse Function Theorem, the leaves in V reg are smooth, and with
the same dimension. Moreover, since ρ∗ has constant rank at all points in V reg,
the image Xreg = ρ(V reg) is a smooth manifold as well, and the map ρ : V reg →
Xreg is a submersion. We need to prove that there exists a metric in Xreg such
that ρ becomes a Riemannian submersion. To produce such a metric, consider the
vector fields Xi = ρ∗(∇ρi) in Xreg. Given the standard basis ei of Rk, we can write
Xi(ρ(p)) =

∑
j bij(ρ(p))ej , where

bij(ρ(p)) = 〈∇ρi, ∇ρj〉p = ρi •1 ρj(p) = B̂ij(p)

(recall, the entries of B̂ij belong to A hence can be written as polynomials in
ρ1, . . . , ρk).

For indices 1 ≤ i1 < · · · < im ≤ k (recall that m is the rank of dρ), let U{i1,...im} ⊆
V reg be the open set where Xi1 , . . . Xim

are linearly independent. For sake of notation
let us consider U{1,...m}. In this case, the matrix B = (bij)i,j=1,...m is nondegenerate
and positive definite. On ρ(U{1,...m}), define the metric

b(Xi, Xj) = bij , ∀i, j = 1, . . . m.

Then, ρ restricted to U{1,...,m} is a Riemannian submersion. Moreover, covering Xreg

by open sets of the form ρ(U{i1,...im}), the metric can be extended on the whole of
Xreg, and thus ρ is a Riemannian submersion. ��
Proposition 27. For any p∗, q∗ ∈ Xreg = ρ(V reg), the fibers ρ−1(p∗) and ρ−1(q∗)
are equidistant.

Proof. Fixing p∗, q∗ ∈ Xreg, let p1, p2 ∈ ρ−1(p∗). To prove that ρ−1(p∗) and ρ−1(q∗)
are equidistant, it is enough to show that d(p1, ρ

−1(q∗)) = d(p2, ρ
−1(q∗)). Let γ :

[0, �] → V , γ(t) = p1 + tv be a shortest geodesic from p1 to ρ−1(q∗). This geodesic
may in principle leave V reg at some points, but since V sing is algebraic and γ is
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an algebraic map, it follows that γ(t) ∈ V reg for all but discretely many t ∈ [0, �].
Furthermore, by the first variation of length it follows that v = γ′(�) is horizontal at
t = �. Since ρ is a Riemannian submersion around ρ−1(q∗) it follows that v = γ′(t) is
horizontal around t = �, that is, v is a linear combination of ∇ρ1(γ(t)), . . . ,∇ρk(γ(t))
for all t in a neighborhood of � in [0, �]. However, this is an algebraic condition, thus
it holds for all t ∈ [0, �], and in particular γ(t) is horizontal around t = 0.

Write v =
∑

i ai∇ρi(p1), and define v2 =
∑

i ai∇ρi(p2), γ2(t) := p2 + tv2. By
construction, γ2 is a horizontal geodesic which projects to the same geodesic in Xreg

as γ(t), for all t small enough. Then the two polynomial maps P1, P2 : [0, �] →
R

k given by P1(t) = ρ(γ(t)), P2(t) = ρ(γ2(t)) coincide in a neighborhood of 0 ∈
[0, �], and thus they coincide everywhere. In particular, γ2 is a geodesics from p2 to
ρ−1(q∗), of the same length as γ, and therefore d(p2, ρ

−1(q∗)) ≤ d(p1, ρ
−1(q∗)). By

inverting the roles of p1 and p2, the other inequality follows, and thus d(p2, ρ
−1(q∗)) =

d(p1, ρ
−1(q∗)). ��

6.2 Submetry everywhere. By Proposition 26, a Laplacian algebra A ⊆ R[V ]
produces a Riemannian submersion ρreg := ρ|V reg : V reg → Xreg, on an open dense
set V reg of V . We want to extend ρreg to a manifold submetry ρ̂ defined on the whole
of V . We start with showing that ρreg can be extended to a submetry.

Proposition 28. There is a metric space X̂ containing Xreg, and a submetry ρ̂ :
V → X̂ extending ρreg.

Proof. On Xreg, define the distance function by d(p∗, q∗) = dV (ρ−1(p∗), ρ−1(q∗)).
Since by Proposition 26 the regular fibers of ρ are equidistant, this is indeed a
distance function. Define X̂ as the metric completion of (Xreg, d). Then we can
extend ρreg to ρ̂ : V → X̂ by defining, for p ∈ V given as a limit of a sequence {pi}i

in V reg, ρ̂(p) = limi→∞ ρ(pi) where pi is a sequence of points in V reg converging to
p.

First, we claim that ρ̂ is well defined. In fact, if {p1
i }i and {p2

j}j are two sequences
converging to p then dV (p1

i , p
i
2) → 0, therefore dX̂(ρ(p1

i ), ρ(p2
i )) → 0, and by defini-

tion of metric completion the two sequences ρ(p1
i ), ρ(p2

i ) define the same limit point.
By definition, ρ̂ is continuous.

Secondly, we claim that ρ̂ is a submetry. Clearly it is distance non-increasing,
since it is the completion of ρreg and this is distance non-increasing. We thus need
to prove that for any p ∈ V and any r > 0, Br(ρ̂(p)) ⊆ ρ̂(Br(p)). Let q∗ ∈ Br(ρ̂(p))
and consider sequences {qi∗}i ⊂ Xreg converging to q∗, {pi}i ⊂ V reg converging to
p, and pick points qi ∈ ρ−1(qi∗) such that d(qi, pi) = d(qi∗, ρ(pi)). The existence of
such points qi is assured by the fact that the ρ-fibers in V reg are equidistant. Since
the points qi are contained in a ball around p, there is a subsequence (which we still
denote by qi) converging to some q ∈ V . By construction, ρ̂(q) = q∗ and

d(q, p) = lim
i→∞

d(qi, pi) = lim
i→∞

d(qi
∗, ρ(pi)) = d(q∗, ρ̂(p)) < r,

therefore q ∈ Br(p) and thus q∗ ∈ ρ̂(Br(p)). ��
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7 Laplacian algebras give rise to manifold submetries

The goal of this section is to show that the submetry ρ̂ : V → X̂ defined in the
previous section is in fact a manifold submetry, thus finishing the proof of Theorem
25(b). For this, we need to show that each singular fiber of ρ̂ is a smooth embedded
submanifold (all of whose connected components have the same dimension). This will
be done in three steps: First, using the transverse Jacobi field equation (introduced
in [Wil07]) we will show that L is a disjoint union of smooth immersed submanifolds.
Second, we will show that L has positive reach, which implies that L is a disjoint
union of smooth embedded submanifolds. Third, we will show that the connected
components of L have the same dimension.

Proposition 29. For any singular fiber L′ of ρ̂ : V → X̂, there is a regular fiber L
and a differentiable map φ : L → V with locally constant rank and φ(L) = L′.

Proof. Fixing a singular fiber L′ and a point q ∈ L′, take any regular leaf L, let
γ : [0, 1] → V , be a minimizing geodesic from L to q, and let p := γ(0). Up to
substituting L with a regular fiber through a later time γ(t), we can suppose that
all fibers through γ(t), t ∈ (0, 1) are regular. Then γ′(0) is perpendicular to L at 0,
thus γ′(0) =

∑
ai∇ρi(p) for some constants ai, and we can define the normal vector

field X =
∑

i ai∇ρi along L, the map Φ : L × R → V by Φt(p′) = p′ + tX(p′), and
the map φ = Φ1.

We first claim that φ(L) = L′. On the one hand, the geodesics γp(t) := Φt(p) all
project to the same geodesic in Xreg near t = 0, then they meet the same geodesics
for all t (see the proof of Proposition 27) and therefore φ(L) ⊆ L′. On the other
hand, since ρ̂ is a submetry and d(ρ̂(Φt(L)), ρ̂(L′)) → 0 as t → 1, for any q′ ∈ L′

there is a sequence of times ti → 1 and points points pi ∈ Φti
(L) converging to q′.

By the continuity of Φ, it follows that q′ ∈ Φ1(L) = φ(L) and thus φ(L) = L′.
We are left to prove that φ has locally constant rank. Equivalently, we can prove

that ker dφ is locally constant. For every p ∈ L, define γp(t) = Φt(p), and Wp the
space of Jacobi fields Jv(t) = dγp(t)Φt(v), for v ∈ TpL. Notice that these really are
Jacobi fields, since they can be written also as Jv(t) = d

ds

∣
∣
s=0

γα(s)(t), where α is a
curve in L with α′(0) = v. Furthermore, for any J1, J2 ∈ Wp and any t ∈ (0, 1) we
have J ′

i(t) = Sγ′
p(t)Ji(t) where Sγ′

p(t) is the shape operator of Φt(L), and thus

〈J ′
1(t), J2(t)〉 − 〈J1(t), J ′

2(t)〉 = 〈Sγ′
p(t)J1(t), J2(t)〉 − 〈J1(t), Sγ′

p(t)J2(t)〉 = 0.

It follows that Wp is an isotropic space (see “Appendix A”). Furthermore, by con-
struction the focal function fWp

(t) is zero for t ∈ (0, 1) and equal to dim ker dpφ for
t = 1.

For any p ∈ L, the space Wp can be extended to a Lagrangian space of Jacobi
fields

Λp = Wp ⊕ {J | J(0) = 0, J ′(0) ⊥ TpL ⊕ γ′
p(0)},
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which corresponds to the space of normal Jacobi fields along γp, given as variations
by horizontal geodesics through L.

Set ε small enough, that the fibers of ρ̂ through γp(t) have constant dimension
in (1, 1+ ε), and set the function ι : L → R given by ι(p) = ind[0,1+ε] Λp. By Eq. (4),
we have

ι(p) = ιv(p) + ιh(p), ιv(p) := ind[0,1+ε] Wp, ιh(p) := ind[0,1+ε] Λp/Wp.

We call ιv the vertical index and ιh the horizontal index. By the discussion above,
ιv(p) = dim kerφ, so in order to prove the final claim it is enough to prove that ι− ιh

is locally constant on the fibers of ρ̂.
On the one hand, since ι denotes the index of a Lagrangian space, it follows from

Proposition 39 in the “Appendix A”, that this function is locally constant. On the
other hand, for any p ∈ L the Lagrangian space Λp/Wp can be identified with the
(isotropic) space of Jacobi fields along γ∗|[0,1+ε]\{1} in Xreg which vanish at 0 (see
Example 41). In particular, ιh(p) does not depend on p ∈ L. ��

The second step it to show that each connected component of a singular fiber L′

is in fact embedded.

Proposition 30. For any singular fiber L′ of ρ̂, and any p ∈ L′, there is a neigh-
borhood Up of p in V such that Up ∩ L′ is a smooth manifold.

Proof. Fix a singular fiber L′. By Proposition 29, every connected component of L′

is an immersed submanifold, thus the tangent space at every point is a union of
vector spaces. On the other hand, since ρ̂ is a submetry, by Proposition 12.10 of
[Lyt02] every fiber has positive reach, that is, for every p ∈ L′ and every ε small
enough, there is a map Upt : Bε(p) → L′ such that Upt(q) is the unique point in L′

minimizing the distance between q and L′. It is well known (cf. [Fed59], Part (12) of
Theorem 4.8) that a set of positive reach has a tangent space at each point, which
is a convex cone. In particular, each tangent space of L′ consists of a single vector
space. By Proposition 1.4 in [Lyt05] it follows that L′ is an injectively immersed
C1,1 manifold. Since L′ is also a closed immersed smooth manifold, it follows that it
is embedded as well. ��

It remains to prove that different connected components of the same fiber have
the same dimension.

Lemma 31. The mean curvature H of the regular fibers of ρ̂ : V → X̂ descends to
a vector field on Xreg.

Proof. It is enough to show that for every f ∈ A, 〈H, ∇f〉 is constant along the
fibers of ρreg : V reg → Xreg. Since ρreg is a Riemannian submersion and f is constant
along its fibers, there is a smooth function f ∈ C∞(Xreg) such that f = f ◦ ρ. Then
straightforward computations (cf. [AR15]) show that

Δf = (ΔXregf) ◦ ρ + 〈H, ∇f〉.
Since A is Laplacian, Δf is also constant along L, and therefore so is 〈H, ∇f〉. ��
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Proposition 32. Any two connected components of a same fiber of ρ̂ : V → X̂
have the same dimension.

Proof. This is clearly true for fibers in V reg, thus we focus on the singular fibers.
By Theorem 10.1 in [Lyt02], it follows that the submetry ρ̂ : V → X̂ factors as

V
ρ̂0−→ X̂0 → X̂ where the fibers of ρ̂0 are the connected components of the fibers of

ρ̂, and X̂0 → X̂ is a submetry with discrete fibers. By Proposition 30, the submetry
ρ̂0 is in fact a manifold submetry.

Let p1, p2 be points lying in different connected components of a singular fiber
L′ = ρ̂−1(p∗), and let L′

1, L
′
2 ⊆ L′ the fibers of ρ̂0 containing p1 and p2, respectively.

Since ρ̂0 is a manifold submetry, it follows from Lemma 12 that there are horizontal
geodesics γ1, γ2 : [0, �] → V such that ρ̂(γ1) = ρ̂(γ2), γi|[0,
) ⊂ V reg, and γi(�) = pi,
i = 1, 2.

By Proposition 15, there are families of Jacobi fields W1, W2 along γ1 and γ2

respectively, such that Wi(t) = {J(t) | J ∈ Wi} is the tangent space to the fiber
(of ρ̂ or ρ̂0, it is the same) through γi(t). Therefore, it is enough to prove that
dim W1(�) = dimW2(�).

Recall that Wi are isotropic subspaces (cf. “Appendix”), and therefore for every
t ∈ [0, �), dimWi(t) = dimWi = dimV − m, where m denotes the rank of ρreg.
Furthermore, for every t ∈ [0, �) there is a symmetric endomorphism Si(t) : Wi(t) →
Wi(t) such that Si(t)J(t) = prWi(t)J

′(t) for every J ∈ Wi, where prWi(t) denotes the
projection onto Wi(t). This endomorphism coincides with the shape operator of the
leaf through γi(t), in the direction of γ′

i(t), and it satisfies the Riccati equation

S′
i(t) + S2

i (t) = 0,

where S′
i(t) : W (t) → W (t) is the covariant derivative of Si(t). By standard theory

of solutions to the Riccati equation (cf. Remark 1, and Proposition of [HE90]), close
to t = � the operator Si(t) becomes asymptotic to

Si(t) ∼
( 1


−tIdi

S̃i(t)

)

where di = dim{J ∈ Wi | J(�) = 0} = dim Wi − dim Wi(�), and S̃i(t) is bounded as
t → �−. In particular, close to t = � we have

〈H(γi(t)), γ′
i(t)〉 = tr(Si(t)) =

di

� − t
+ O(1).

On the other hand, since γ1, γ2 project to the same geodesic in Xreg and, by
Lemma 31, H projects to a vector field in Xreg, it follows that 〈H(γ1(t)), γ′

1(t)〉 =
〈H(γ2(t)), γ′

2(t)〉 and thus d1 = d2. Since dimL′
i = dimWi(�) = n − m − di, we have

the result. ��
By collecting the results in the previous section and this one, we obtain a proof

of Theorem 25.
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Proof of Theorem 25. (a) Given a Laplacian algebra A ⊆ R[V ], by Corollary 24
there are finitely many functions ρ1, . . . , ρk generating A. Let ρ = (ρ1, . . . ρk) :
V → R

k, and define the submetry ρ̂ : V → X̂ as in Proposition 28. By
Proposition 30, the fibers of ρ̂ are unions of smoothly embedded submanifolds,
and by Proposition 32 the connected components of each fiber have the same
dimension. Therefore, ρ̂ is a manifold submetry. Furthermore, since r2 ∈ A,
it follows in particular that the origin is a (0-dimensional) fiber of ρ̂, and the
other fibers are contained in the distance spheres of V around the origin. In
particular, the restriction of ρ̂ to S(V ) defines a manifold submetry

σ̂A = ρ̂|S(V ) : S(A) → X̂A := ρ̂(S(V )) ⊂ X̂.

Since L(A) is equivalent to ρ
∣
∣
S(V )

, in particular its restriction to V reg ∩ S(V )
is equivalent to σ̂A.

(b) Suppose now that A is also maximal, and thus A = B(L(A)). Since every f ∈ A
is, by construction, constant along the fibers of σ̂A, it follows that the σ̂A-fibers
are contained in the fibers of L(A), and Â := B(σ̂A) contains B(L(A)) = A.

By Theorem 19, we have σ̂A ∼ L(B(σ̂A)) = L(Â) and thus, in order to show that
σ̂A ∼ L(A), it is enough to prove that Â = A.
We start by proving that A and Â have the same field of fractions: F (A) = F (Â).
Clearly since A ⊂ Â, F (A) ⊂ F (Â) and it is enough to prove the other inclusion.
Let f ∈ Â, and let g ∈ A be a nonzero polynomial vanishing on V sing – for example,
take P the be the product of all the determinants of the m × m minors of B =
(ρi•1ρj)i,j=1,...k (see Sect. 6.1). Then the product fg is zero on V sing, and on V reg it is
constant along the fibers of L(A). Thus fg = h ∈ B(L(A)) = A, and f = h

g ∈ F (A).

This gives Â ⊆ F (A) and thus F (Â) ⊆ F (A). By Lemma 24 part (b), since both Â
and A are Laplacian, it follows that

Â = F (Â) ∩ R[V ] = F (A) ∩ R[V ] = A. ��
Remark 33. Assume A ⊆ R[V ] is a Laplacian but not necessarily maximal algebra.
Then by Theorem 25 there exists a spherical manifold submetry σ̂A : S(V ) → X̂
and the algebra Â = B(σ̂A) is a maximal Laplacian algebra containing A since, by
construction of σ̂A, all the polynomials of A are constant along the σ̂A-fibers. Again
by construction, it also follows that σ̂A =: L(Â) coincides with L(A) on the open
dense set S(V reg). By the proof of Theorem 25, in order to prove that A = Â (hence
show that A is, after all, maximal), it would be enough to show that F (A) = F (Â).

Proof of Theorem A. Given a manifold submetry σ : S(V ) → X, it follows from
Theorem 19 that B(σ) ⊆ R[V ] is a maximal and Laplacian algebra, and L(B(σ)) ∼ σ.
Letting A be a maximal and Laplacian algebra, it follows from Theorem 25 that
L(A) ∼ σ̂A for some manifold submetry σ̂A : S(V ) → X̂A and, since A is maximal,
B(L(A)) = A. ��
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Part 3 Disconnected fibers and the maximality conjecture

8 Disconnected fibers

In this section, we study submetries σ : S(V ) → X with disconnected leaves. In
particular, we prove Theorem C and Theorem D.

By [Lyt02], any submetry σ : S(V ) → X factors as S(V ) σc→ Xc → X, where
π : Xc → X is a submetry with finite fibers, and the fibers of σc are the connected
components of the fibers of σ.

Recall from “Appendix B” that any manifold submetry induces a stratification
by the dimension of the fibers. In our case, σ and σc induce the same stratification,
and we let S(V )(2) be the union of the strata Σp of codimension ≤ 2 (see Sect. 10).
Since the complement of S(V )(2) in S(V ) consists of finitely many submanifolds of
codimension ≥ 3, it follows by transversality that S(V )(2) is simply connected. Since
σc is a manifold submetry with connected fibers, we can apply Proposition 49 in
“Appendix B”, which says that the partition (S(V )(2), F) into the fibers of σc is a
singular Riemannian foliation.

We are finally able to prove the main results for this section.

Proof of Theorem D. Since S(V )(2) is simply connected and (S(V )(2), F) is a full sin-
gular Riemannian foliation, by [Lyt10] Corollary 5.3 the quotient Oc = S(V )reg/F =
σc(S(V )reg) (where S(V )reg denotes the union of leaves of maximal dimension in
S(V )(2)) is a Riemannian orbifold, simply connected as an orbifold. Let O =
σ(S(V )reg). Since different components of a σ-fiber have same dimension, it follows
that the submetry π : Xc → X restricts to a submetry π : Oc → O. Further-
more, for any open set U ⊂ O, the preimage π−1(U) equals σc(σ−1(U)), and thus
π|π−1(U) : π−1(U) → U is a submetry. By Theorem 1.2 of [Lan18], it then follows
that O is a Riemannian orbifold as well, and π : Oc → O is a Riemannian orbifold
covering. Since Oc is simply connected as an orbifold, it is the universal cover of
O, and in particular there exists a properly discontinuous, free isometric action of
G = πorb

1 (O) on Oc, such that Oc/G is isometric to O.
Finally, recall from Lemma 47 that Oc ⊂ Xc and O ⊂ X are connected and

dense, hence every isometry g : Oc → Oc extends to an isometry ĝ : Xc → Xc.
In particular, the same group G acts on Xc by isometries, and Xc/G is isometric
to X. ��
Remark 34. In the situation of Theorem D, it is not always the case that the
G-action lifts from Xc to the sphere S(V ). For instance, consider V = R

6 as the
space of 2 × 3 matrices, on which the group SO(2) × SO(3) acts by left and right
multiplication (see third line of Table E in [GWZ08]), and let σc : S(V ) → Xc

be the corresponding orbit space projection. Then Xc is isometric to an interval
of length π/4, the endpoints of which correspond to the two singular orbits of the
SO(2) × SO(3)-action. One of the singular isotropy groups is isomorphic to SO(2),
while the other is isomorphic to Z2 × SO(2), which implies that the two singular
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orbits are not diffeomorphic. Thus the isometric involution of Xc = [0, π/4] given
by reflection across the midpoint does not lift to an isometry of S(V ). Nevertheless,
the two singular orbits have the same dimension, so that the composition S(V ) →
Xc → Xc/Z2 is a (inhomogeneous) manifold submetry.

Given a manifold submetry σ : S(V ) → X which factors as S(V ) σc→ Xc → X,
by Theorem D we have that X is isometric to Xc/G for some discrete group G. We
will then say that σ corresponds to the pair (σc : S(V ) → Xc, G).

Lemma 35. Let σ : S(V ) → X a manifold submetry with disconnected fibers, corre-
sponding to the pair (σc : S(V ) → Xc, G). Then G induces an action on Ac = B(σc),
whose fixed point set is A = B(σ).

Proof. Let KX, KXc the Euclidean cones of X and Xc respectively. The manifold
submetries σ, σc induce manifold submetries Kσ : V → KX, Kσc : V → KXc.
Furthermore, any g ∈ G induces an isometry Kg : KXc → KXc preserving the
codimension of the fibers of Kσc.

Define the ring C∞(V )σc of smooth functions which are constant along the σc-
fibers. Since Kg : KXc → KXc preserves the codimension of the fibers of Kσc,
by Theorem 1.1. of [AR15] it induces a map Kg∗ : C∞(V )σc → C∞(V )σc by
Kg∗(f)(p) = f(Kg(σc(p))), which commutes with the rescalings rλ : V → V ,
rλ(v) = λv. In particular, it takes homogeneous polynomials of degree d in C∞(V )σc

to smooth, homogeneous functions f in C∞(V )σc such that f(rλ(v)) = λdf(v), i.e.,
homogeneous polynomials of degree d. In other words, Kg∗ restricts to a morphism
of Laplacian algebras Kg∗ : Ac → Ac. Furthermore K(g1g2)∗ = Kg∗

2 ◦ Kg∗
1 and

thus G acts (on the right) on Ac. Clearly, f ∈ Ac is invariant under the G-action if
and only if f is constant on the unions of σc-fibers Lp∗ =

∐
g∈G σ−1

c (gp∗), for any
p∗ ∈ Xc. However, since π : Xc → X coincides with the quotient by the G action
on Xc, we have Lp∗ = σ−1(π(p∗)) and thus f ∈ Ac is G-invariant if and only if it is
constant along the σ-fibers. ��

The following proposition is a stronger version of Theorem C:

Proposition 36. A manifold submetry σ : S(V ) → X has disconnected fibers if
and only if A = B(σ) is not integrally closed in R[V ]. In this case, letting Ac denote
the integral closure of A in R[V ], σ corresponds to the pair (σc : S(V ) → Xc, G)
where:

• σc = L(Ac)
• G is the Galois group of the extension of fields of fractions F (A) ⊂ F (Ac).

Proof. Suppose first that σ : S(V ) → X has connected fibers, and let f ∈ R[V ] be
an integral element over A = B(σ). Then f is satisfies a polynomial equation

fn + a1f
n−1 + · · · + an−1f + an = 0, a1, . . . , an ∈ A.



R. A. E. MENDES AND M. RADESCHI GAFA

Restricting this equation to a fiber L of σ, the restrictions a1|L, . . . an|L are constant,
and therefore the restriction f |L is a solution of a polynomial with constant real
coefficients. Since f is continuous and L is connected, it follows that f must be
constant on L. Since L was chosen arbitrarily, it follows that f is constant along all
σ-fibers, hence f ∈ A and thus A is integrally closed in R[V ].

Suppose now that σ has disconnected fibers, with corresponding pair (σc, G).
Recall that σc : S(V ) → Xc is the manifold submetry whose fibers are the connected
components of the fibers of σ, and G a finite group of isometries of Xc whose quotient
is X. By the first part of the proof, Ac = B(σc) is integrally closed in R[V ]. We claim
that A ⊂ Ac is an integral extension: in fact, by Lemma 35, G acts on Ac with fixed
point set A. For any f ∈ Ac\A, define the polynomial in Ac[t]:

P (t) =
∏

g∈G

(t − g · f) = 0.

This is a monic polynomial, and f satisfies P (f) = 0. Furthermore, since g · P = P ,
it follows that all the coefficients of P are G-invariant, hence P ∈ A[t]. Therefore, f
is integral over A, hence Ac is the integral closure of A in R[V ].

It remains to prove that G coincides with the Galois group of the extension
F (A) ⊂ F (Ac), and for this it is enough to show that the field fixed by G is F (A).
Let a

b ∈ F (Ac) an element fixed by G, where a, b ∈ Ac. We multiply and divide by
b̄ =

∏
g∈G\{e} g · b, and obtain

a

b
=

a

b

b̄

b̄
=

ab̄
∏

g∈G g · b
=:

a′

b′

where b′ ∈ Ac is fixed by G and thus b′ ∈ A by Lemma 35. But then a′ ∈ Ac is fixed
by G as well, and thus again a′ ∈ A, which proves a

b = a′

b′ ∈ F (A). ��

9 About the maximal and Laplacian conditions

Theorem A establishes an equivalence between manifold submetries, and polynomial
algebras that are both Laplacian and maximal.

Of these two conditions, being Laplacian is certainly the most compelling one,
because it can be fairly easily checked, and it specializes to well-known conditions in
two different situations, namely when all generators are quadratic, and when there
are exactly two generators. Moreover, in these two situations, Laplacian implies
maximal, which provides evidence for the Conjecture in the Introduction.

Proposition 37. Let A ⊂ R[V ] be an algebra generated by homogeneous polyno-
mials ρ1, . . . ρk, with ρ1 = r2. Then:

(a) A is Laplacian if and only if Δρi, 〈∇ρi, ∇ρj〉 ∈ A for every i, j.
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(b) Suppose ρi is quadratic for all i. Then A is Laplacian if and only if the vector
space span{ρ1, . . . ρk} is a Jordan algebra with respect to the product f •1 g :=
〈∇f,∇g〉. In this case, A is maximal.

(c) Suppose k = 2, and let g̃ = deg ρ2. Then A is Laplacian if and only the
generator ρ2 can be replaced with a (homogeneous) polynomial F̃ satisfying
the Cartan-Münzner equations (see [Mue80, equations (5), (6)]):

ΔF̃ = crg̃−2, ‖∇F̃‖2 = g̃2r2g̃−2.

In this case, A is maximal.

Proof. (a) One implication follows immediately from the standard formula for the
Laplacian of a product

Δ(fg) = fΔg + gΔf + 2〈∇f,∇g〉.
For the other, assume that Δρi, 〈∇ρi, ∇ρj〉 ∈ A for every i, j. By linearity it is
enough to show that the Laplacian of every monomial f in the ρi belongs to A.
This can be accomplished by proving the following seemingly stronger state-
ment by induction on the length of a monomial f in {ρi}: Δf and 〈∇f,∇ρi〉
belong to A, for every i.

(b) Under the natural identification between quadratic polynomials and self-
adjoint endomorphisms, the product f •1g := 〈∇f,∇g〉 reduces to the standard
Jordan product between self-adjoint endomorphisms (X, Y ) �→ (XY +Y X)/2.
Since Δρi are constant, it follows from part (a) that A is Laplacian if and only
if span{ρ1, . . . ρk} is closed under this Jordan product.
Theorem B of [MR19a], shows that for any such algebra A ⊆ R[V ], the par-
tition F = L(A) is a singular Riemannian foliation, given by the product of
Clifford foliations and orbit decompositions of standard diagonal representa-
tions. By [MR19a, Theorem C], all such foliations satisfy the property that
Â = B(F) is also generated by degree 2 elements. We then have that A ⊆ Â,
and also that L(A) = L(Â) which, by Theorem F of [MR19a], implies that A
is isomorphic to Â. Therefore, A = Â and thus A is maximal.

(c) Assume first that A is generated by ρ1 = r2 and F̃ satisfying the Cartan-
Münzner equations. In particular, ΔF̃ , 〈∇F̃ , ∇F̃ 〉 ∈ A. Since Δr2 is a constant,
and 〈∇r2, ∇F̃ 〉 = 2g̃F̃ ∈ A, it follows from part (a) that A is Laplacian.
Conversely, suppose A is Laplacian. Then Δρ2 is an element of A that is
homogeneous of degree g̃ − 2, and hence a scalar multiple of rg̃−2. Similarly,
‖∇ρ2‖2 is a linear combination of rg̃−1 and ρ2r

g̃−2. If g̃ is odd, it follows that a
(non-zero) scalar multiple of ρ2 satisfies the Cartan-Münzner equations. If g̃ is
even, we set F̃ = aρ2+brg̃, and compute ΔF̃ and ‖∇F̃‖2. It then becomes clear
that a, b ∈ R can be chosen so that: F̃ satisfies the Cartan-Münzner equations;
and a �= 0, so that A is also generated by ρ1 = r2 and F̃ .
Finally, assume F̃ satisfies the Cartan-Münzner equations. To show that the
algebra A generated by r2 and F̃ is maximal, first recall that, by [Mue80,
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Satz 3], there exists an isoparametric hypersurface M in the sphere S(V ),
with g principal curvatures, such that the associated so-called Cartan-Münzner
polynomial F (of degree g) satisfies either F̃ = F , or F̃ = ±(2F 2 − r2g). The
parallel and focal submanifolds to M form an isoparametric foliation F , which
is also given by the common level sets L(r2, F ) of r2 and F .
Fix a point p ∈ M and let Σ ⊂ V be the (two-dimensional) normal space of
M at p. Then Σ is a section of the foliation F , in the sense that every leaf
of F meets Σ, and does so orthogonally. Clearly, the partition of Σ into the
intersections of the leaves with Σ coincides with L(r2|Σ, F |Σ). Moreover, F is
constructed (see [Mue80, Section 3]) so that F |Σ(z) = Re(zg) for all z ∈ C ∼= Σ.
It is a well-known fact in Invariant Theory that |z|2 and Re(zg) generate the
algebra of invariants of the natural action of the dihedral group Dg with 2g
elements on R

2 ∼= C.
Let h ∈ R[V ] be constant on the common level sets of A. We need to show
that h ∈ A.
If F̃ = F , then h|Σ is Dg-invariant, and hence a polynomial in r2|Σ and F |Σ.
Since Σ meets all leaves of F , this shows that h ∈ A.
If, on the other hand, F̃ = ±(2F 2 − r2g), then

F̃ |Σ = ±
(

2
(

zg + z̄g

2

)2

− zg z̄g

)

= ± Re(z2g).

Thus h|Σ is D2g-invariant, hence a polynomial in r2|Σ and F̃ |Σ. Since Σ meets
all common level sets of {r2, F̃}, it follows that h ∈ A. ��
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Appendix A. Lagrangian families of Jacobi fields

The goal is this section is to recall some results regarding Lagrangian families of
Jacobi fields, and important results by Wilking and Lytchak. For a deeper introduc-
tion on this topics, we refer the reader to [Wil07, Lyt09] and Chapter 4 of [Rad].
Let I be an interval of any type (it can be a half line or the whole real line as
well). Consider a vector bundle π : E → I together with a smoothly-varying inner
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product 〈 , 〉 on each fiber, a covariant derivative D : Γ(E) → Γ(E) compatible
with the inner product (we will write X ′ := D(X) for a section X ∈ Γ(E)), and a
symmetric endomorphism R ∈ Sym2(E) called curvature operator. Clearly, given a
Riemannian manifold (M, g) and a geodesic γ : I → M , then E = γ′⊥ automatically
comes equipped with 〈 , 〉t = gγ(t), D = ∇γ′ , and R(t) = RM (·, γ′(t))γ′(t) where ∇
and RM denote the Levi Civita connection and the Riemann curvature tensor of g,
respectively.
Since I is contractible, E is trivial and thus it can be identified, via parallel transport,
to V × I → I for some Euclidean vector space (V, 〈 , 〉). Via this identification, R
becomes a function R : I → Sym2(V ).
With this setup, we can define the space of (R-)Jacobi fields as the set of sections

J = {J : I → V | J ′′(t) + R(t)J(t) = 0 ∀t ∈ I}.

This space has dimension 2 dim V , isomorphic to V ⊕ V via the map J �→
(J(0), J ′(0)). It is easy to see that for J1, J2 ∈ J the function ω(J1, J2) =
〈J1(t), J ′

2(t)〉 − 〈J ′
1(t), J2(t)〉 is in fact constant, and defines a symplectic product

on J .
A subspace W ⊂ J is called isotropic if ω|W = 0. Equivalently, W is isotropic
if 〈J ′

1(t), J2(t)〉 = 〈J1(t), J ′
2(t)〉 for any J1, J2 ∈ W . The maximal dimension of an

isotropic space is dim V . An isotropic subspace of maximal dimension is called a
Lagrangian subspace.
Given a subspace W ⊂ J , define Wt = {J ∈ W | J(t) = 0} and W (t) = {J(t) | J ∈
W}. One fundamental property of isotropic subspaces is the following:

Proposition 38. ([Lyt09], Lemma 2.2) An isotropic space W of Jacobi fields sat-
isfies dim W (t) = dimW for all but discretely values of t.

It follows from the proposition above that the focal function fW (t) := dim(Wt)
equals zero for all but discretely many values of t ∈ I. Thus, it makes sense to
define, for every compact interval [a, b] ⊂ I, the index of W over [a, b] by

indI W =
∑

t∈[a,b]

fW (t).

The index satisfies the following semi-continuity property, cf. [Lyt09]:

Proposition 39. Let Rn : I → Sym2(V ) be a sequence of families of symmetric
endomorphisms converging in the C0 topology to R. Let Wn be isotropic subspaces
of Rn-Jacobi fields that converge to an isotropic subspace W of R-Jacobi fields. Let
[a, b] ⊆ I be a compact interval and assume that fWn

(a) = fW (a) and fWn
(b) =

fW (b), for all n large enough.

Then ind[a,b] W ≥ ind[a,b] Wn for all n large enough. If all Wn are Lagrangians then
this inequality becomes an equality.
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A.1. Transverse Jacobi equation. Let E � V × I → I be a vector bundle with
R ∈ Sym2(V ), and Λ be a Lagrangian family of R-Jacobi fields, and let W be a
subspace of Λ. Then W is isotropic by default, and by [Wil07] the subspaces

W̃ (t) = {J(t) | J ∈ W} ⊕ {J ′(t) | J ∈ Wt} ⊂ Et

define a smooth vector bundle EW :=
∐

t∈I W̃ (t) → I. The quotient H := E/EW

comes equipped with:

• A Euclidean product 〈[v1], [v2]〉 := 〈prE⊥
W

(v1), prE⊥
W

(v2)〉, where prE⊥
W

E → E⊥
W

denotes the orthogonal projection onto E⊥
W .

• A covariant derivative DH([X(t)]) = [D(prE⊥
W

X(t))].
• A vector bundle map A : EW → H given by A(v) = [J ′(t)], where J ∈ W is

such that J(t) = v.
• A symmetric endomorphism RH ∈ Sym2(H) given by

RH
t ([v]) = [Rt(prE⊥

W
(v)) + 3AA∗[v]],

where A∗ : H → EW is the adjoint of A.

Proposition 40 (Transverse Jacobi equation). The projection E → H sends the
Jacobi fields in Λ to an isotropic subspace of RH -Jacobi fields in H, which is iso-
morphic to Λ/W as a vector space.

Because of the proposition above, we can identify the quotient Λ/W with the corre-
sponding isotropic space of RH -Jacobi fields. Furthermore, by Lemma 3.1 of [Lyt09],
for every t ∈ I one has

fΛ(t) = fW (t) + fΛ/W (t) (4)

and in particular, for every compact subinterval [a, b] ⊂ I,

ind[a,b] Λ = ind[a,b] W + ind[a,b] Λ/W. (5)

Example 41. Let π : M → B be a Riemannian submersion, γ : I → M a horizontal
geodesic, let γ∗ = π(γ), and let E = (γ′⊥) be the vector bundle along I. Letting W
be the (isotropic) space of Jacobi fields along γ such that π∗J ≡ 0, it follows by the
O’Neill’s formulas that H = E/EW can be canonically identified with (γ′∗)⊥, in such
a way that RH(v) = RB(v, γ′∗(t))γ′∗(t) where RB denotes the Riemann curvature
tensor of B.

Furthermore, letting Λ ⊇ W denote the (Lagrangian) subspace of Jacobi fields J
along γ, obtained as variation of horizontal geodesics, and such that π∗(J(0)) = 0,
then Λ/W corresponds to the Lagrangian space of Jacobi fields J∗(t) along γ∗, such
that J∗(0) = 0. In particular, in this case fΛ/W (t) counts the conjugate points of
γ∗(0) along γ∗.
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Appendix B. Manifold submetries

As mentioned in Sect. 2.1, the definitions of singular Riemannian foliation and man-
ifold submetries are very close. The two key features which characterize singular
Riemannian foliations are:

(1) The leaves are connected.
(2) There is a family of smooth vector fields which span the tangent spaces to the

leaves at all points.

A lot of literature has focused mainly on singular Riemannian foliations, and uses
the presence of smooth vector fields in several crucial places. The goal of this section
is then to re-develop most of the basic results to the case of manifold submetries.
In this whole section, we will assume σ : M → X is a C2-manifold submetry unless
states otherwise.

B.1. Homothetic Transformation Lemma, and stratification. Let σ : M →
X be a manifold submetry. Since leaves are equidistant, it follows from the first
variation formula for the length function that every geodesic starting perpendicular
to a leaf, stays perpendicular to all the leaves it meets. Such geodesics are called
horizontal geodesics.
The first, fundamental result is the following (cf. [Mol88, Lemma 6.2] for transnormal
systems):

Lemma 42 (Homothetic Transformation Lemma). Let σ : M → X be a manifold
submetry, L a fiber of σ, P ⊂ L a relatively compact open subset of L (called a
plaque), and let ε > 0 be small enough that for every v ∈ ν<εP = {v ∈ νP | ‖v‖ < ε},
the geodesic γv(t) = exp(tv) minimizes the distance between γv(1) and P . Then for
any ρ1, ρ2 < ε with ρ2 = λρ1, the map

hλ : exp(νρ1P ) → exp(νρ2P ), hλ(exp v) := exp(λv)

sends fibers of σ into other fibers.

Proof. Let q = exp v, q′ = exp v′ ∈ νρ1P be points such that σ(q) = σ(q′) = q∗,
and let σ(P ) = p∗. By construction, the geodesics γv(t) = exp(tv) and γv′(t) =
exp(tv′) are projected to distance minimizing geodesics from p∗ to a bit past q∗. Since
there is no bifurcation of geodesics in Alexandrov spaces, it follows that σ(γv(t)) =
σ(γv′(t)) =: γ∗(t) and therefore hλ(q) = γv(λ) and hλ(q′) = γv′(λ) both project to
γ∗(λ). ��
For any integer r, define Σr ⊂ M the union of σ-fibers of dimension r. Any point p ∈
M belongs to some stratum Σr, and we define the stratum through p, and denote it by
Σp the union of connected components of Σr containing the (possibly disconnected)
fiber through p. As a direct application of the Homothetic Transformation Lemma,
one has
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Proposition 43 (cf. [Mol88], Proposition 6.3). Given a manifold submetry M →
X, for every point p ∈ M the stratum Σp is a (possibly non-complete) smooth
submanifold of M . Furthermore, for any relatively compact open subset P ⊂ L of
the leaf through p, there is an ε such that every horizontal geodesic from p initially
tangent to Σp stays in Σp at least up to distance ε.

Remark 44. It is important to notice that, in particular, if Σp is disconnected, then
different components will still have the same dimension.

Lemma 45. Let σ : M → X, L, P , and ε as above. Consider the closest-point map
f : exp ν<εP → P . Given a σ-fiber L′ intersecting exp νεP , let P ′ := L′ ∩ exp ν<εP
and f ′ be the restriction of f to P ′. Then:

1. The differential dqf
′ is surjective.

2. For any p ∈ P and x ∈ ν<ε
p P , the fiber L′ through q := expx is transverse to

the slice Dp := exp ν<ε
p P at q.

3. The function M → Z, p �→ dim(Lp), is lower semicontinuous.

Proof. (1) Let γ(t) = exp tx. For any vector v ∈ TqP
′, let Jv(t) the Jacobi field

defined by Jv(t) = (ht)∗v. By the Homothetic Transformation Lemma, Jv(t)
is tangent to the σ-fibers for all t ∈ [0, 1]. In particular, Jv(0) ∈ TpP . Let
W = {Jv | v ∈ TqP

′}. Notice that W is contained in the Lagrangian family ΛL

consisting of Jacobi fields generated by variations of normal geodesics through
L (cf. Appendix A). In particular, W is isotropic and any Jv ∈ W vanishing
at 0 satisfies J ′

v(0) ⊥ TpL.
We can also embed W in the Lagrangian space ΛL′ of Jacobi fields generated
by variations of horizontal geodesics through L′. Letting Λ0 = {J ∈ ΛL′ |
J(1) = 0, J ′(1) ⊥ TqP

′}, we have ΛL′ = Λ0 ⊕ W . By Sect. 10 we get

γ′(t)⊥ = {J(t) | J ∈ ΛL′} ⊕ {J ′(t) | J ∈ ΛL′ , J(t) = 0}.

In particular, every w ∈ TpP can be written as

w = Ju(0) + J ′
v(0) + J3(0) + J ′

4(0), (6)

where Ju, Jv ∈ W , J3, J4 ∈ Λ0, and Jv(0) = J4(0) = 0. Notice that:
• J4 = 0 because otherwise p and q would be conjugate points.
• By the discussion above, Ju(0) ∈ TpP and J ′

v(0) ∈ νpP .
• Taking the projection of Eq. 6 onto νpP and using the previous points,

we get

0 = J ′
v(0) + prνpP J3(0).

However, by the definition of Lagrangian space of Jacobi fields,

−‖J ′
v(0)‖2 = 〈J ′

v(0), prνpP J3(0)〉 = 〈J ′
v(0), J3(0)〉 = 〈Jv(0), J ′

3(0)〉 = 0

and thus J ′
v(0) = 0 and J3(0) ∈ TpP .
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• J3 = 0, because otherwise q would be a focal point for q, which is not
possible because γ keeps minimizing past q.

Therefore, it must be w = Ju(0). Notice however that Ju(0) = dqf
′(u) and

therefore dqf
′ : TqP

′ → TpP is surjective.
(2) Since the kernel of dqf : TqM → TpL is TqDp and dqf is surjective by the

previous point, the result follows.
(3) It is enough to prove that for every p ∈ M there is a neighborhood U around

p such that dimLq ≥ dim Lp for every q ∈ U . This is exactly what point (1)
shows. ��

Remark 46. (1) In the case of singular Riemannian foliations, the semicontinuity
of the dimension of leaves follows immediately from the existence of smooth
vector fields spanning the foliation.

(2) Lemma 45 shows that for every r0, the union
⋃

r≥r0
Σr is open. In particular,

the regular part, consisting of fibers of maximal dimension, is open in M .

B.2. Generic strata. In this section we assume that σ : M → X is a smooth
manifold submetry with connected fibers, and let M (2) be the union of the strata
Σp of codimension ≤ 2 (see Sect. 10). The main result of this section will be to show
that the fibers of σ form a full singular Riemannian foliation on M (2) (see Definition
48 below).

Lemma 47. There are no strata of codimension 1. Moreover, let σ : M → X a
manifold submetry, and Σp be a stratum of codimension 2. Let U be a relatively
compact neighborhood of p in Σp, and ε small enough that all normal geodesics from
U minimize the distance from Σp up to time ε. Let Bε(U) = exp ν<ε(U). Then for any
q = expp′ v ∈ Bε(U)\U , v ∈ ν<ε

p′ (U), the σ-fiber through q is given by Sd(Lp′)∩Sd(U)
where d = dist(q, U) and Sd(Lp′) (resp. Sd(U)) denotes the boundary of the tube of
distance d around Lp′ (resp. around U).

Proof. First of all notice that q /∈ Σp and, by Lemma 45 and the Homothetic Trans-
formation Lemma, dim(Lq) > dim Lp′ . By definition of ε, it follows d = dist(q, U) =
dist(q, Lp′) = dist(q, p′). Notice furthermore that Sd(Lp′) ∩ Sd(U) = exp νdU

∣
∣
Lp′

is
a manifold and, since U has codimension 2 in M by assumption, one has

dim Sd(Lp′) ∩ Sd(U) = dim exp νdU
∣
∣
Lp′

= dim νdU
∣
∣
Lp′

= dimLp′ + 1.

By equidistance of the σ fibers, the fiber Lq through q must lie in Sd(Lp′). More-
over since dist(·, U) = infr∈U dist(·, Lr), it follows that the distance from U is con-
stant along the σ-fibers in Bε(U), and thus Lq must lie in Sd(U) as well. Therefore,
Lq ∩ Bε(U) is contained in Sd(Lp′) ∩ Sd(U). On the other hand, it is easy to see
that dim(Sd(Lp′) ∩ Sd(U)) = dimLp + codim Σp − 1. Thus, if Σp was a stratum
of codimension 1, then dimLq ≤ dim Lp which would give a contradiction, hence
there are no strata of codimension 1. Now letting Σp be a stratum of codimension
2, this would imply that dim(Lq ∩ Bε(U)) ≤ dim(Sd(Lp′) ∩ Sd(U)) = dimLp′ + 1
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and the only possibility is that the inequality is in fact an equality, in which case
Lq ∩ Bε(U) = Sd(Lp′) ∩ Sd(U). ��
Recall Definition 3 for the notion of singular Riemannian foliation. We now define
the concept of full singular Riemannian foliation (see [Lyt10]):

Definition 48. A singular Riemannian foliation (M, F) is called full if for every
point p ∈ M there exists an ε, such that the normal exponential map exp : ν<εL →
M from the leaf L through p is well defined.

We can now prove the following:

Proposition 49. Let σ : M → X be a manifold submetry with connected fibers.
Then the partition (M (2), F) of M (2) into the fibers of σ|M (2) is a full singular
Riemannian foliation.

Proof. Since the fibers of σ are connected by assumption, the only thing to prove
is that every vector v tangent to a σ-fiber, can be locally extended to a vector field
everywhere tangent to the σ-fibers. Once this is proved, the foliation is automatically
full since every leaf L of F is compact.

Fix p ∈ M (2), let L be the σ-fiber through p and Σp the stratum through p,
and fix v ∈ TpL. Clearly if the codimension of Σp is zero, then σ is a Riemannian
submersion around L and it is straightforward to produce a local vector field V
everywhere tangent to the σ-fibers extending v. Furthermore, by Lemma 47 Σp

cannot have codimension 1, which only leaves the case of Σp having codimension 2.
In this case, σ|Σp

is still a Riemannian submersion, and any vector v ∈ TpL can be
extended to a vector field V1 in Σp, tangent to the σ-fibers. Take a neighborhood U
of p in Σp, and let ε small enough, as in Lemma 47. We can extend V1 to a vector
field V in Bε(U) as follows: first take any extension V2 of V1 to Bε(U). Secondly,
define the linearization of V2 along U as

V 

2 = lim

λ→0
(hλ)−1

∗ (V2 ◦ hλ),

where hλ : Bε(U) → Bλε(U) denotes the homothetic transformation exp v �→ expλv,
v ∈ ν<εU . By the properties of linearized vector fields (cf. [MR19b], Proposition
13) V 


2 is still smooth and it projects to V1 via the closest-point-map projection
π : Bε(U) → U . In particular, letting K ⊂ TBε(U) be the smooth distribution given
by ker(π∗), the projection V = prK⊥V 


2 is the unique vector field perpendicular to
the π-fibers which projects to V1 via π (that is, V the horizontal extension of V1

with respect to the submersion π : Bε(U) → U). It then follows that the flows Φt
V ,

Φt
V1

satisfy π ◦ Φt
V = Φt

V1
◦ π. The flow lines of V (which stay at a constant distance

from U by the first variation of length) are thus also equidistant to L′ thus V is
tangent to the intersections Sd(U) ∩ Sd(L′). These, by Lemma 47, coincide with the
leaves Lq ∩ Bε(U), q ∈ Bε(U).

Summing up V is a local vector field, everywhere tangent to the leaves, which
coincides with the vector v at p. Since v was arbitrary, (M (2), F) is a (full) singular
Riemannian foliation. ��
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