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A B S T R A C T

Motivated by the rapid advancement of large language models (LLMs), this study explores the potential impact of
them on agricultural labor market. Starting from the task level of each of the 15 selected occupations, their expo-
sure to LLMs was assessed by rating the extent to which the required abilities are aligned with those of LLMs, tak-
ing also into account the importance of the abilities in each occupation. Findings indicate that while LLMs can
significantly enhance cognitive functions, they cannot fully replace the physical, psychomotor, and sensory abili-
ties. As a consequence, while certain tasks are either partially or highly susceptible to LLM implementation, a
considerable proportion, involving manual responsibilities, remains largely unaffected. It was seen that occupa-
tions heavily reliant on data are at greater risk of substitution. Conversely, some occupations will probably expe-
rience an augmenting effect, as LLMs will automate certain cognitive routine tasks, freeing up human workers to
focus on more creative non-routine aspects. Furthermore, a negative correlation between exposure to LLMs and
exposure to robotization was found highlighting the interconnected dynamics between these two variables
within the analyzed context. In conclusion, although LLMs can offer substantial benefits, their integration neces-
sitates careful consideration of their inherent limitations to maximize efficacy and mitigate risks in the agricul-
tural sector.

1. Introduction

Large language models (LLMs), a subset of natural language process
(NLP), have made noteworthy advancements over the past few years.
These innovative artificial intelligence (AI) models are designed to
learn and generate human-like language patterns, syntax, and context
by being trained on vast web-based datasets, refining their accuracy
with reinforcement learning from human feedback [1,2]. Leveraging
deep learning methods, LLMs can discern intricate patterns and seman-
tic relationships demonstrating their proficiency in a range of cognitive
tasks, such as: a) generating coherent text; b) producing code snippets;
c) translating languages; d) summarizing information; e) answering
questions; and f) data analysis [3]. Recent LLMs include also capabili-
ties for image processing and generation, as well as interpreting and re-
sponding to voice queries, allowing for seamless communication

through spoken language [4]. The key capabilities of current LLMs are
summarized in Fig. 1.

LLMs trace their origins back to the early developments in language
modeling and neural network technology, with the development of the
Recurrent Neural Networks (RNN) being an important innovation en-
abling the modeling of sequential data like language. However, the in-
troduction of the transformer architecture was proved to be a crucial
breakthrough in LLMs that enabled parallel processing and effective
handling of long-term dependencies [5]. The LLMs architectures have
formed the foundation for various models including the series of Ope-
nAI Generative Pre-training Transformer (GPT) [6], Language Model
for Dialogue Applications (LaMDA) developed by DeepMind [7], Tur-
ing NLG developed by Microsoft [8], as well as Bidirectional Encoder
Representations from Transformers (BERT) [9], Text-to-Text Transfer
Transformer (T5), PaLM 2 [10], and Gemini [11] developed by Google.
Overall, LLMs have made substantial impacts on the AI landscape, find-
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Fig. 1. Key capabilities of current large language models.

ing applications across various domains, such as education [12], e-
commerce [13], communication networks [14], medicine [15], addi-
tive manufacturing [16], and hardware Trojan research [17], to men-
tion but a few.

Taking into account the ever-increasing growth of LLMs in conjunc-
tion with the innovations shaping modern agriculture, including Inter-
net of Things (IoT), agri-robotics, AI, and big data [18–20], the integra-
tion of LLMs in the agricultural sector appears inevitable, yet, at the
same time as a strategic and transformative move. Indicatively, LLMs
can enhance user interaction with agricultural systems, allowing access
to tools that can analyze vast agricultural data related to resource man-
agement. By simplifying integration with IoT data, LLMs allow users to
adjust practices based on real-time information [21]. LLMs could also
support sustainable practices by connecting users to systems recom-
mending resource-efficient strategies [22] and facilitate access to
knowledge-sharing platforms, particularly in remote areas.

Motivated by the expected penetration of LLMs in agriculture, there
can be a debate surrounding the potential changes to the agricultural
labor market [23]. Based on previous experience of deploying cutting-
edge technologies in agriculture, LLMs could create new roles and op-
portunities for skilled workers complementing their cognitive capabili-
ties. On the other hand, automation via LLMs integration may lead to
skills replacement and job substitution, while other labor roles, espe-
cially manual, may not affected at all [24–26]. Given the relative
scarcity of literature on this topic, further research is needed to under-
stand the full impact as a means of evaluating the long-term effects of
LLMs on agricultural workforce dynamics.

To address this scope, in this work the 15 agricultural occupations
selected in the recent study of Marinoudi et al. [27] were systematically
examined on the basis of possible exposure to LLMs competencies. Simi-
larly to [27,28], each occupation was decomposed into the tasks it in-
volves according to O*NET Online tool [29], while a group of assessors
with diverse expertise in agricultural sector analyzed these tasks to de-
termine how well they can be performed by LLMs. Finally, an in-depth
assessment was conducted on the prospective for substitution or com-
plementarity, where substitution refers to replacing human tasks with
LLMs, and complementarity involves using LLMs to assist human tasks
[30,31].

2. Materials and methods

2.1. Occupations under examination

The O*NET-SOC system was used in this analysis, similarly to works
such as [27,28,31–33]. This work focuses on 15 occupations related to
agriculture [27], whose O*NET-SOC titles, codes, and number of tasks
involved are presented in Table 1. Table 1 also classifies these occupa-
tions into four categories, based on the nature of the majority of tasks
involved: a) “cognitive routine”; b) “cognitive non-routine”; c) “manual
routine”; and d) “manual non-routine”, as evaluated in [27]. This cate-
gorization is going to help in investigating the potential impact of LLMs

Table 1
Summary of the reviewed occupations along with the 8-digit O*NET code, the
categorization into four categories, based on the nature of the majority of
tasks, and the corresponding number of tasks based on the O*NET data,
[27,29].
a/n Occupation 8-digit O*NET

Code
Categorization Tasks

1 Farmers, Ranchers, and Other
Agricultural Managers

11-9013.00 CnR 30

2 Farm Labor Contractors 13-1074.00 CnR 8
3 Agricultural Engineers 17-2021.00 CnR 14
4 Animal Scientists 19-1011.00 CnR 9
5 Soil and Plant Scientists 19-1013.00 CnR 27
6 Agricultural Technicians 19-4012.00 MR 26
7 Precision Agriculture Technicians 19-4012.01 CnR 22
8 Farm and Home Management

Educators
25-9021.00 CnR 15

9 First-Line Supervisors of Farming,
Fishing, and Forestry Workers

45-1011.00 CnR 30

10 Agricultural Inspectors 45-2011.00 CR 22
11 Graders and Sorters, Agricultural

Products
45-2041.00 MR 6

12 Agricultural Equipment Operators 45-2091.00 MR 17
13 Farmworkers and Laborers, Crop,

Nursery, and Greenhouse
45-2092.00 MR 30

14 Farmworkers, Farm, Ranch, and
Aquacultural Animals

45-2093.00 MR 22

15 Farm Equipment Mechanics and
Service Technicians

49-3041.00 MnR 14

CR: cognitive routine; CnR: cognitive non-routine; MR: manual routine; MnR:
manual non-routine

on each category. In summary, Marinoudi et al. [27] integrated the
agricultural occupations into a two dimensional graph depicting the
cognitive/manual versus routine/non-routine nature by estimating the
corresponding vertical and horizontal coordinates, respectively. To that
end, a thorough examination of the importance of each individual task
within an occupation was conducted (by assigning importance
weights), along with a quantification of the contribution of each aspect,
related to task nature, to its execution, averaged across the occupation
under assessment.

2.2. Abilities under examination

2.2.1. Classification of the reviewed abilities
In the context of this study, “abilities” have been selected as the fea-

ture under questioning rather than “skills”. Skills are specific learned
competencies or expertise, typically task-oriented, that are acquired
through practice and training; they can be developed or improved over
time, reflecting their dynamic nature. In contrast, abilities refer to in-
nate capacities that may or may not be transformed into skills. Thus,
abilities serve as fundamental characteristics that determine the inher-
ent constraints and limits in task execution. Given that this study aims
to investigate the potential impact of LLMs on human substitution or
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complementarity, focusing on abilities allows for a more nuanced un-
derstanding of the long-term effects on workforce dynamics, rather
than merely addressing the short-term skill changes that may arise from
LLM implementation. Consequently, relying on the abilities, the analy-
sis can evaluate how partial or full task exposure to LLMs might impact
the agricultural workforce dynamics.

In total, 45 different abilities are involved in the reviewed occupa-
tions, a short description of which is provided in Table A1 of Appendix
A. The corresponding ability abbreviation, description, and primary
and secondary classification are listed in Table 2. Referring to [29], the
abilities can be classified into:

Cognitive abilities, which impact the acquisition and use of knowl-
edge for problem solving. They are further subdivided into abilities re-
lated to attentiveness, idea generation and reasoning, memory, percep-
tion, quantification, space, and verbality;

Physical abilities, which allow individuals to exert force, manipu-
late objects with precision, and sustain activity over time. They are fur-
ther subdivided into abilities related to endurance, flexibility, balance
and coordination, and physical strength; Physicomotor abilities, which
determine how a person can handle and control objects. They are fur-
ther subdivided into abilities related to control of movement, fine ma-
nipulation, and reaction time.

Sensory abilities, which influence the perception of visual, auditory,
and verbal information. They are further subdivided into abilities re-
lated to auditory, oral, and visual sensory input.

Classifying abilities into cognitive, physical, psychomotor, and sen-
sory categories, along with their secondary classifications, more accu-
rate predictions can be accomplished on task exposure to LLM. In gen-
eral, cognitive abilities, such as problem sensitivity and inductive rea-
soning, are essential for strategic planning, troubleshooting, and deci-
sion-making in agricultural operations, while physical and psychomo-
tor abilities are critical for manual tasks, such as planting and harvest-
ing. Finally, sensory abilities, such as near and far vision, are essential
for detecting signs of pest infestations and monitoring environmental
conditions.

The distribution of the 45 abilities investigated in this study, in the
context of primary classification, is presented in the inner ring of Fig. 2,
whereas the outer ring comprises the secondary classification.

In the present analysis, the majority of abilities are of cognitive na-
ture, 20 in total, while physical abilities account for 8, psychomotor
abilities for 9, and sensory abilities for 8. Focusing on cognitive abili-
ties, most are related to idea generation and reasoning, like problem
sensitivity, fluency of ideas, and originality, while also other cognitive
aspects are presented, however with lower frequency. Concerning phys-
ical abilities, those involving exerting force, maintaining stability, and
controlling body movements during tasks stand out. In the case of psy-
chomotor abilities, those enabling individuals to perform precise and
coordinated actions, manipulate small objects, and respond quickly to
dynamic agricultural environments. Finally, visual and auditory abili-
ties are equally represented in the respective sensory part, demonstrat-
ing their balanced significance in tasks requiring observation, monitor-
ing, and communication within agricultural contexts.

2.2.2. Importance of the reviewed abilities
The importance of an ability reflects how critical that ability is for

effectively performing a specific occupation. In [29], the degree of im-
portance for an ability in a given occupation is rated on a scale from 0
(not important) to 100 (extremely important). Following the classifica-
tion of the 15 agricultural occupations into four categories characteriz-
ing the nature of the majority of tasks involved, namely “cognitive non
routine”, “cognitive routine”, “manual routine”, and “manual non-
routine” [27], and examining the related importance, useful conclu-
sions can be drawn. Fig. 3 provides a graphical representation of impor-
tance values for each occupation (based on importance ratings detailed
in [29]), in the form of a heatmap, where the occupations are grouped

Table 2
Summary of the reviewed abilities along with their abbreviation, short de-
scription, and primary and secondary classification.
a/n Ability Abbreviation Primary

Classification
Secondary
Classification

1 Oral Comprehension OC Cognitive Verbal
2 Oral Expression OE Cognitive Verbal
3 Written Expression WE Cognitive Verbal
4 Written

Comprehension
WC Cognitive Verbal

5 Problem Sensitivity PS Cognitive Idea generation &
reasoning

6 Deductive
Reasoning

DR Cognitive Idea generation &
reasoning

7 Inductive Reasoning IR Cognitive Idea generation &
reasoning

8 Information
Ordering

IO Cognitive Idea generation &
reasoning

9 Originality OR Cognitive Idea generation &
reasoning

10 Category Flexibility CF Cognitive Idea generation &
reasoning

11 Fluency of Ideas FI Cognitive Idea generation &
reasoning

12 Flexibility of Closure FC Cognitive Perceptual
13 Speed of Closure SCL Cognitive Perceptual
14 Perceptual Speed PSP Cognitive Perceptual
15 Visualization VS Cognitive Spatial
16 Mathematical

Reasoning
MR Cognitive Quantitative

17 Number Facility NF Cognitive Quantitative
18 Time Sharing TS Cognitive Attentiveness
19 Selective Attention SA Cognitive Attentiveness
20 Memorization MZ Cognitive Memory
21 Stamina ST Physical Endurance
22 Gross Body

Equilibrium
GBE Physical Flexibility, balance &

coordination
23 Gross Body

Coordination
GBC Physical Flexibility, balance &

coordination
24 Extent Flexibility EF Physical Flexibility, balance &

coordination
25 Static Strength SS Physical Physical strength
26 Dynamic Strength DS Physical Physical strength
27 Explosive Strength ES Physical Physical strength
28 Trunk Strength TST Physical Physical strength
29 Control Precision CP Psychomotor Control movement
30 Multilimb

Coordination
MC Psychomotor Control movement

31 Rate Control RC Psychomotor Control movement
32 Response

Orientation
RO Psychomotor Control movement

33 Arm-Hand
Steadiness

AHS Psychomotor Fine manipulative

34 Finger Dexterity FD Psychomotor Fine manipulative
35 Manual Dexterity MD Psychomotor Fine manipulative
36 Wrist-Finger Speed WFS Psychomotor Reaction time & speed
37 Reaction Time RT Psychomotor Reaction time & speed
38 Far Vision FV Sensory Visual
39 Near Vision NV Sensory Visual
40 Visual Color

Discrimination
VCD Sensory Visual

41 Depth Perception DP Sensory Visual
42 Auditory Attention AA Sensory Auditory & speech
43 Hearing Sensitivity HS Sensory Auditory & speech
44 Speech Clarity SC Sensory Auditory & speech
45 Speech Recognition SR Sensory Auditory & speech

by nature and the abilities by kind (primary classification). Overall, the
dominance of light green and yellow-green in the upper left region of
the heatmap is obvious, demonstrating a positive correlation of occupa-
tions of cognitive non-routine and routine nature with cognitive abili-
ties. In contrast, as moving to the right and towards physical and psy-
chomotor abilities, lower values of importance are observed, indicating
the absence of cognitive tasks for these occupations. Concerning the
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Fig. 2. The distribution of the reviewed abilities into the primary (inner ring) and secondary classification categories (outer ring).

Fig. 3. Heatmap visualizing the importance of different kinds of abilities across various occupations of different nature.
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sensory abilities, some of them, like speech recognition and clarity are
important, whereas others like hearing sensitivity are less significant.
As moving downwards, occupations of manual nature are noted revers-
ing the above pattern, with physical, psychomotor, and sensory abilities
being more important than cognitive ones.

2.3. Assessment of exposure to large language models

Let denote the set of indices of the occupations un-
der examination (an occupation is symbolized as ) in accor-
dance with Table 1 and the set of indices of the
tasks composing occupation (a task is symbolized as .
Let , , denote the set of the defined abilities
(an ability is symbolized as ), based on the information in
Table 2. Since not all abilities are connected to an occupation, we de-
note as , the number of the involved abilities in oc-
cupation Finally, let denote that importance of
ability for occupation , as provided in [29].

As a means of assessing the exposure to LLMs, a bottom-up approach
was followed starting from the task level involved within the selected
agricultural occupations. As a first step, focusing on a single occupation
, it was assessed whether each ability, , is required to perform

the task , at hand. If so, the assessors used the following
three-tier scoring scale to approximate the different degrees of LLM ca-
pacity in covering the specific ability within the specific task under as-
sessment:

(1)

It is important to note that the choice of this scoring scale was arbi-
trary, as any other scale could have been used. However, the aim of this
study is to highlight trends in the transformation of agricultural occupa-
tions rather than offering precise measurements of the anticipated
changes, which in any case is not possible. The rating was given inde-
pendently by the assessors, namely the authors of this study, who also
considered participatory interviews with agricultural professionals sim-
ilarly to [27,28,34]. To resolve any disagreements and finalize scores,
the authors held a consensus tele-meeting. The assessors possess exper-
tise across diverse scientific fields including skills and workforce dy-
namics, agricultural robotics, AI, human-machine interaction, human
factors, precision agriculture, and sustainability assessment, among
others.

Next, considering also the effect of the importance of ability
in the occupation, the weighted exposure to LLM of a single ability
was estimated by:

(2)

In this stage, also the standard deviation of those weighted expo-
sures of each ability is calculated as:

(3)

Finally, the average weighted exposure to LLMs and average stan-
dard deviation at occupation level are provided:

(4)

(5)

2.4. Substitution versus augmentation potential assessment

In this section, we turn our interest into how LLMs could potentially
affect the content of occupations, focusing on their substitution or com-
plementarity potential [35]. On the one hand, substitution potential
refers to the capability of technology to completely replace human
workers in specific tasks or roles, aiming to increase efficiency and/or
reduce direct human involvement [36,37]. On the other hand, comple-
mentarity potential, refers to also as augmentation potential, integrates
technology to enhance human capabilities and decision-making with-
out entirely replacing human workers. It gives emphasis to improving
task performance through leveraging LLMs, thereby complement and
empowering human workers rather than displacing them [25,38].

Seeing an occupation as an assembly of various tasks with different
degrees of exposure to LLMs, it is of major importance to investigate,
apart from the average weighted exposure ( ), also its average stan-
dard deviation ( ) across the tasks on occupation level [30]. To deter-
mine whether the examined occupation has a substitution or comple-
mentarity potential through solely the use of LLM technology, combi-
nations of and can be examined. [2,8]. As can be seen in Fig. 4,
when low values of both and take place, these occupations are rea-
sonably classified as “Not Affected” (green region), since LLMs have in-
significant capacity to execute most of the involved tasks. Occupations
with a moderate to high and low are classified as having “Substitu-
tion Potential” (red region), because most tasks within these jobs have
remarkable exposure to automation via LLMs. The same classification is
assigned for combinations of high and moderate . In contrast, occu-
pations with “Complementarity Potential” (orange region) have a low

and moderate to high , indicating a mixture of tasks where some can
be easily performed by LLMs while others cannot. Combinations of
moderate with high demonstrate also occupations with “Comple-
mentarity Potential”.

The categorization of occupations into those having substitution po-
tential, complementarity potential, or being not affected, left a group of
occupations out of discussion. Towards filling this gap, occupations
with high mean exposure to LLMs and significant variation in task-level
scores can be characterized as “Unknown” (blue region). The same ter-
minology applies to cases with moderate values of both where
a balanced exposure to both complementarity and substitution is ob-
served. For the sake of consistency and clarity, the same colors used in
Fig. 4 are adopted for the graphs illustrating the above classification in
the results section.

Finally, for the purpose of defining the thresholds for low, moderate,
and high values of , a method based on 33rd and 67th per-
centiles was utilized, allowing for clear interpretation and analysis of
data based on their distribution in the dataset. In particular, values be-

Fig. 4. The classification of the reviewed occupations based on their average
weighted exposure to LLMs, , and average standard deviation, .
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low the 33rd percentile were classified as “low”, values between the
33rd percentile and 66th percentile were classified as “moderate”, and
values above the 67th percentile were classified as “high”.

3. Results

3.1. Exposure to large language models

Following the methodology detailed in 2.3, the exposure to LLMs
was evaluated by focusing on each occupation and the constituent
tasks. In Appendix B, multinode graphs are provided for each agricul-
tural occupation in Figures B1a-o. The main nodes, shown as light blue
circles, represent the abilities being evaluated, while the target nodes,
depicted as grey circles, indicate the specific tasks associated with each
occupation. The vectors illustrate the correspondence between abilities
and tasks, with their color indicating the assessed capacity degree of
LLMs in the ability for undertaking the task in question: a) negligible
(green); b) partial (orange); and b) full (red).

Fig. 5 integrates the above evaluations for all occupations in one
graph for the purpose of providing a detailed overview, allowing for
comparison and analysis of how LLMs can potentially engage in dif-
ferent roles involved. The capacity of LLMs for performing part or all
the task is commensurate with the potential exposure of this task to
LLM technology. It is obvious that occupations including several man-
ual tasks, such as “Graders and Sorters, Agricultural Products” (45-
2041.00) and “Agricultural Equipment Operators” (45-2091.00)
demonstrate negligible exposure LLM technologies, as these roles re-

quire hands-on abilities and adaptability to varying physical environ-
ments.

In the same vein, resilient to LLMs are the other manual routine oc-
cupations, namely “Farmworkers and Laborers, Crop, Nursery, and
Greenhouse” (45-2092.00), and “Farmworkers, Farm, Ranch, and
Aquacultural Animals” (45-2093.00). The small parts of orange and red
within the corresponding rings are attributed to the small need for car-
rying out some tasks requiring also cognitive abilities that can be par-
tially or entirely performed by LLMs. A larger part is occupied by or-
ange and red regions for “Farm Equipment Mechanics and Service
Technicians” (49-3041.00), which although manual in nature inte-
grates some non-routine tasks. In contrast, green color, indicative of
negligible exposure to LLMs, starts to subside, when moving towards
the center of the graph, corresponding to occupations of mainly cogni-
tive nature. From this qualitative distribution, it can be deduced that
more susceptible to LLM exposure is “Precision Agriculture Techni-
cians” (19.4012. 01), who utilize various technologies in agricultural
production or management, such as yield mapping and variable-rate ir-
rigation. These analyses usually involve the use of software to analyze
and interpret data and images that current LLMs can undertake provid-
ing advanced data processing and predictive analytics [3,39].

Fig. 6 consolidates the above results, based on the authors’ assess-
ments, to provide a holistic view of the agricultural labor market land-
scape. It presents the exposure levels of the entire agricultural domain
to current LLMs capabilities. The pie chart is divided into three sec-
tions, each illustrating the varying degrees of exposure to LLM integra-
tion. The largest section, displayed in green, accounts for 55 % of the

Fig. 5. Qualitative illustration of exposure to current LLM technology for each agricultural occupation.
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Fig. 6. Exposure to current LLM technology for the entire agricultural labor market.

tasks executed within agricultural occupations. This indicates that over
half of tasks within agriculture are likely to experience negligible expo-
sure to LLMs. The orange section, representing 25 % of the tasks, mir-
rors partial exposure, signifying that LLM technology is capable of
moderately influencing only certain tasks. Therefore, while some as-
pects of the reviewed occupations can be supported by LLMs, there ap-
pears to remain a substantial prerequisite for both human involvement
and expertise. Finally, the red section, which comprises 20 % of the re-
viewed cases, indicates high exposure to LLMs. In this instance, a note-
worthy portion of tasks are highly susceptible to substitution by LLM
technology, marking a potential shift in the workforce dynamics, where
these roles may be considerably transformed or even replaced by ad-
vanced AI capabilities [40,41].

3.2. Substitution versus complementary potential

3.2.1. Classification of agricultural occupations
In this section, we shift our focus to examine how LLMs might influ-

ence the core of occupations, by taking into consideration also the im-
portance of the abilities for executing each of them according to the val-
ues summarized in Fig. 3. To predict which occupations are most sus-
ceptible to substitution by LLM technology, which may benefit from
technological complementarity, and which will not be affected, the av-
erage weighted exposure to LLMs, and standard deviation, , were
first calculated. Table 3 presents the resulting values for each occupa-
tion.

Towards classifying into “low”, “moderate”, and “high”, a
method based on the 33rd and 66th percentiles was used, which pro-
vides an effective way to segment datasets. Small values are defined as
those below the 33rd percentile, moderate values as those between the
33rd and 66th percentiles, and high values as those above the 66th per-
centile. The resulting values for 33rd and 66th percentiles for were

Table 3
Summary of the average weighted exposure to LLMs, , of the reviewed occu-
pations along with the corresponding standard deviation, .
O*NET-SOC 2019 Title O*NET

Code

Farmers, Ranchers, and Other Agricultural Managers 11-9013.00 0.096 0.107
Farm Labor Contractors 13-1074.00 0.075 0.103
Agricultural Engineers 17-2021.00 0.108 0.092
Animal Scientists 19-1011.00 0.226 0.092
Soil and Plant Scientists 19-1013.00 0.118 0.044
Agricultural Technicians 19-4012.00 0.078 0.073
Precision Agriculture Technicians 19-4012.01 0.202 0.059
Farm and Home Management Educators 25-9021.00 0.13 0.106
First-Line Supervisors of Farming, Fishing, and

Forestry Workers
45-1011.00 0.064 0.061

Agricultural Inspectors 45-2011.00 0.096 0.076
Graders and Sorters, Agricultural Products 45-2041.00 0 0
Agricultural Equipment Operators 45-2091.00 0 0
Farmworkers and Laborers, Crop, Nursery, and

Greenhouse
45-2092.00 0.002 0.01

Farmworkers, Farm, Ranch, and Aquacultural
Animals

45-2093.00 0 0

Farm Equipment Mechanics and Service Technicians 49-3041.00 0.012 0.039

approximately 0.044 and 0.099, respectively, whereas for were ap-
proximately 0.042 and 0.079, respectively.

Based on the methodology outlined in Section 2.4, different combi-
nations of can classify the occupations into different categories
reflecting their substitution or complementarity potential (Fig. 4). Fig.
7 compiles the combinations of for all agricultural occupations
accompanied by how LLMs might affect occupations. Our analysis
demonstrated that the following occupations with both low are
considered to be "Not Affected": “Graders and Sorters, Agricultural
Products” (45-2041.00); “Agricultural Equipment Operators” (45-
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Fig. 7. Standard deviation, , versus average weighted exposure to LLM technology, , for the reviewed agricultural occupations alongside their classification in
terms of substitution or complementarity potential.

2091.00); “Farmworkers and Laborers, Crop, Nursery and Greenhouse”
(45-2092.00); “Farmworkers, Farm, Ranch, and Aquacultural Animals”
(45-2093.00), and “Farm Equipment Mechanics and Service Techni-
cians” (49-3041.00). The core responsibilities in these green-coded oc-
cupations involve mainly manual labor and necessitate physical pres-
ence. They usually require hands-on responsibilities, such as planting,
weeding, and harvesting, and physical engagement with agricultural
products, animals, and machinery. These activities are inherently phys-
ical and necessitate strength, manual dexterity, and adaptability to
varying weather conditions that are beyond the scope of LLMs.

Two occupations were found with moderate to high and low as
well as high and moderate and were classified as having "Substitu-
tion Potential". This indicates that most tasks within these occupations
have considerable exposure to substitution via LLMs. These red-coded
occupations were “Soil and Plant Scientists” (19-1013.00) and “Preci-
sion Agriculture Technicians” (19-4012.01). The former occupation ex-
amines soil composition, plant growth, and environmental impacts on
agriculture. LLMs can support a considerable part of its tasks, by au-
tomating, for instance, data analysis, and generations of detailed re-
ports, as well as providing insights based on feed of agricultural and en-
vironmental related information [42,43].

Two orange-coded occupations are depicted in Fig. 7, indicative of
occupations tending to “Complementarity Potential” by leveraging LLM
technology. These occupations are “Farmers, Ranchers, and Other Agri-
cultural Managers” (11-9013.00) and “Farm Labor Contractors” (13-
1074.00). In the context of the above occupations, LLMs can serve as
powerful tools for enhancing decision-making. For agricultural man-
agers, LLMs can provide data-driven insights for assisting with regula-
tory compliance and long-term planning. Similarly, for farm labor con-
tractors, LLMs can support the recruitment process and ensure compli-
ance with labor regulations. Potential support of large part of these oc-
cupations via LLM, can free up time to address complex challenges and
focus more on strategic planning.

As elaborated in Section 2.4, the classification of occupations in
those with substitution or complementarity potential and those seen as
not to be affected, left a key group of professions positioned between

the these regimes, labeled as “Unknowns”. The occupations are: “Agri-
cultural Engineers” (17-2021.00); “Animal Scientists (19-1011.00);
“Agricultural Technicians” (19-4012.00); “Farm and Home Manage-
ment Educators” (25-9021.00); “First-Line Supervisors of Farming,
Fishing, and Forestry Workers” (45-1011.00); and “Agricultural Inspec-
tors” (45-2011.00). For instance, “Agricultural Engineers” can leverage
data-driven insights provided by LLMs to optimize equipment design
and support in engineering challenges. “Animal Scientists” can benefit
from LLMs in research, by LLM assistance in analyzing large datasets on
animal health and productivity. “Agricultural Technicians” can use
LLMs to automate data collection and analysis as well as stay updated
on the latest research and technological advancements. “Farm and
Home Management Educators” can use LLMs to develop personalized
training material, while “First-Line Supervisors of Farming, Fishing,
and Forestry Workers” can exploit LLMs to analyze performance data
and identifying areas for improvement. However, these occupations be-
long to a group that is not clearly susceptible to either substitution or
complementarity. In fact, roles like engineers, scientists, and supervi-
sors involve complex decision-making and adaptability, while techni-
cians and educators rely on hands-on experience and tailored communi-
cation. This unique combination of skills highlights their essential hu-
man element for technical expertise, human judgment, and creative
problem-solving, making them resistant to substitution.

3.2.2. Relation to cognitive/manual and routine/non-routine nature
From the above analysis, it appears that the nature of the tasks in-

volved, encompassing cognitive or manual demands as well as routine
or non-routine activities, affects the extent to which LLMs can support
these roles. These dynamics highlight the importance of recognizing
how the specific demands of each role influence the degree to which
LLMs can potentially substitute or augment the agricultural workforce.
For shedding light on the relation between the substitution/comple-
mentarity potential and the overall occupation nature, Fig. 8 is pre-
sented. The coordinates of the reviewed occupations in this 2D cogni-
tive/manual versus routine/non-routine space were estimated by Mari-
noudi et al. [27]. In this paper, this mapping is kept for a common
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Fig. 8. 2D cognitive/manual versus routine/non-routine space of the agricultural occupations along with their exposure to LLM technology and classification as to
the potential for substitution or augmentation.

ground and combined with the assessed average weighted exposure to
LLMs, . As a broad overview, most of the green occupations (classified
as “Not Affected”) are positioned in the third quadrant characterized
from roles normally of manual and routine nature. As analyzed above,
tasks that require manual work cannot be undertaken by LLMs. “Farm
Equipment Mechanics and Service Technicians” (49-3041.00), belong-
ing also in this group, rely on manual activities, however by requiring
more cognitive tasks, thus located in the fourth quadrant. The presence
of an “Unknown”, namely “Agricultural Technicians” (19-4012.00), in
the third quadrant is attributed to the combination of domain-specific
knowledge and practical skills [27]. While LLMs excel at data analysis
and information retrieval, hands-on expertise required for agricultural
technician tasks will still be needed. All contribute to the uncertainty
surrounding their future role in the face of advancing AI.

In contrast, occupations having either “Substitution Potential” or
“Complementarity Potential” were positioned in the first quadrant, in-
dicative of the cognitive and non-routine nature of most tasks involved.
The cognitive and non-routine nature of the majority of tasks in these
occupations refers to the complexity and variability involved in the
work performed. Cognitive tasks require higher-level thinking
processes, such as creativity, problem-solving, and decision-making.
These tasks often demand the ability to interpret and process informa-
tion, adapt to new situations, and develop innovative solutions [44].
The distinction between substitution and complementarity is crucial for
understanding the future of work in an AI-driven economy. Occupa-
tions with substitution potential may experience significant shifts as
technology takes over not only routine but also non-routine tasks,
prompting discussions about job workforce adaptation. Conversely,
roles with complementarity potential stress the opportunities for col-
laboration between humans and technology, emphasizing the impor-
tance of developing skills that complement AI capabilities.

Finally, the rest of occupations belonging to the “Unknowns” are sit-
uated primarily in the quadrants characterized by cognitive and non-
routine nature, while the occupation placed in the second quadrant
consists of a substantial part of non-routine tasks. The uncertainty sur-
rounding these roles emphasizes the need for further research and
analysis to comprehend how advancements in LLM technology might
impact them [30]. In other words, as LLM technology continues to ad-
vance, the substitution and complementarity potential of various occu-
pations may shift, possibly transforming these professions or giving rise

to new occupations, as highlighted above. This evolution reveals the
dynamic interplay between technological advancements, including
LLMs, and occupational structures within the agricultural sector, high-
lighting how innovations can reshape traditional roles and workflows.
Understanding this interplay is crucial for developing effective strate-
gies that balance technological progress with the need for human exper-
tise and judgment.

3.3. Correlation between large language models exposure and robotization
in agriculture

In this fashion, it will be interesting to investigate how the studied
LLMs exposure is correlated with the corresponding robotization expo-
sure involving using software or machines to perform tasks automati-
cally without human involvement. In contrast with LLM framework, ro-
botization may involve robots especially designed to carry out mainly
repetitive tasks requiring physical exertion with higher speed and preci-
sion than humans. These machines often mitigate safety and health
risks associated with human labor, making them suitable for fields such
as agriculture [37]. However, for non-routine tasks, current AI capabili-
ties can provide support to various aspects, allowing even tasks requir-
ing cognitive flexibility to be managed more efficiently [45]. Towards
examining the aforementioned correlation, the average susceptibility
rate to robotization, , estimated in [27] was used for the same group
of occupations associated with agriculture. As can be deduced from
Fig. 9, a Pearson's correlation coefficient ( ) approximately equal to -
0.52 was calculated. This value indicates a moderate negative correla-
tion between exposure to LLMs technology, and exposure to roboti-
zation, . This negative correlation suggests that as exposure to LLMs
increases, exposure to robotization tends to decrease, and vice versa.
The associated p-value of 0.047 indicates that this correlation is statis-
tically significant at the 5 % level (since p-value < 0.05), emphasizing
the interrelated dynamics between these two variables in the context
analyzed. This result, qualitatively agrees with [31], and is attributed
to the manual nature mainly of the routine tasks and the level of ma-
chinery exposure that many agricultural occupations entail. As men-
tioned above, manual tasks are beyond the scope of LLMs. These tasks
often involve hands-on activities, such as physically handling objects,
which require physical presence and manual dexterity, capabilities
that LLMs cannot provide. LLMs, being software-based models, are typ-
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Fig. 9. Correlation between the average weighted exposure to Large Language Models, estimated in this study, and to robotization, , estimated in [27] both at oc-
cupation level.

ically designed to process and generate text, analyze data, and assist
with cognitive functions rather than perform physical actions.

4. Discussion

In agriculture, LLMs have the potential to transform traditional
practices and synergize with Agriculture 4.0 technologies towards revo-
lutionizing the sector. This study examined the possible implications of
LLMs on the agricultural labor market, focusing on how these technolo-
gies might affect various occupations. To that end, the cognitive, physi-
cal, physicomotor, and sensory abilities required for the execution of
each task involved in agricultural occupations were investigated with
respect to the potential capacity of current LLMs.

As a first step, the distribution of the 45 abilities, along with their
corresponding importance, across the 15 selected agricultural occupa-
tions revealed significant insights into how LLMs might influence these
roles, with cognitive abilities dominating. Nevertheless, owing to the
nature of agricultural domain, which requires physical interaction with
a dynamic environment and hands-on involvement, physical, psy-
chomotor and sensory abilities remain critical. Accordingly, while
LLMs can enhance cognitive functions, such as data analysis and deci-
sion-making through advanced reasoning, they cannot handle the phys-
ical and psychomotor facets of agricultural work. Additionally, sensory
abilities, like near vision, still remain vital for tasks such as monitoring
plant health and detecting pests. As a consequence, although some tasks
are partially (25 % out of all tasks) or highly (20 % out of all tasks) sus-
ceptible to exposure to LLMs, a significant portion remains largely unaf-
fected (55 % out of total). This varied impact on the agricultural work-
force highlights the dual nature of technological progress of LLMs, al-
lowing for intervention in certain roles while preserving traditional
roles that rely on human skills.

The classification of agricultural occupations into “Not Affected”,
"Substitution Potential", "Complementarity Potential", and “Unknowns”
provided also key understandings into how LLMs might reshape agri-
cultural labor landscape. Roles with " Substitution Potential" are char-

acterized by a considerable amount of data-driven tasks, which aligns
with the hypothesis that LLMs are highly effective at automating cogni-
tive repetitive functions [46,47]. Occupations with "Complementarity
Potential" are anticipated to benefit from LLMs by supporting various
aspects of their work, such as report generation and routine administra-
tive tasks. This will enable professionals to focus on more complex and
creative tasks, supporting the argument that LLMs can enhance human
capabilities rather than fully replace them. This point of view aligns
with current perspectives on the complementary role of AI and human
expertise [48,49]. As stressed by Jarrahi [49], the symbiosis of humans
and AI implies that interaction between them can enhance the intelli-
gence of both over time. Most AI algorithms, including LLMs, can in-
crease their effectiveness with more data and interactions with human
partners. Likewise, LLMs can serve as powerful tools that augment hu-
man capabilities, allowing for more efficient decision-making with
data-driven insights.

Agriculture features considerable diversity not only across different
occupations, but also within the same occupation, making it complex to
assess how LLMs might reshape these professions. As a consequence,
the 40 % of the reviewed occupation fell into the category of “Un-
knowns”. The uncertainty surrounding these occupations highlights the
need for further research to figure out the evolving dynamics between
human expertise and LLMs capabilities. This ongoing evolution empha-
sizes also the necessity for adaptive workforce skills development to en-
sure that the agricultural labor force can effectively collaborate with
LLMs, thus, harnessing their strengths and mitigating potential disrup-
tions. Continuous updating of skill sets is expected to ensure that the in-
tegration of LLMs complements human expertise, fostering a symbiotic
relationship that maximizes the benefits of both human and AI contri-
butions in the agricultural sector. Finally, the present analysis revealed
several key insights into the interplay between LLM exposure and robo-
tization-automation, as notably, a negative correlation between them
was found. As the reliance on robotization for repetitive, physically de-
manding tasks increases, the exposure of LLMs tends to decrease, and
vice versa. This outcome suggests that while LLMs can enhance cogni-
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tive and data processing tasks, they cannot replace the physical capabil-
ities provided by robotic systems, highlighting the distinct and comple-
mentary roles these technologies might play in the agricultural sector.

The integration of LLMs into the agricultural sector has the potential
to exacerbate job polarization, where the labor market increasingly
splits into high-skill (high-wage jobs) and low-skill (low-wage jobs),
with a decline in middle-skill roles [50,51]. As analyzed, LLMs are
likely to automate several cognitive routine tasks, disproportionately
affecting mid-level occupations that rely on tasks like data handling and
report generation. In contrast, high-skill jobs requiring advanced ana-
lytical abilities and the integration of LLMs into workflows may grow,
whereas low-skill manual roles remain relatively unaffected due to the
physical limitations of LLMs. Nonetheless, the extent to which LLMs in-
fluence job polarization in agriculture will depend on several factors,
including the speed of technological progress, the range of tasks that
can be automated, and the adaptability of the workforce to emerging
technologies. To address the potential challenges of job polarization,
policymakers must prioritize proactive policies and training programs
to reduce disparities and ensure equitable access to the opportunities
created by these technologies.

Building upon the findings of this work, several potential research
directions arise to further explore the integration of LLMs and their im-
pact on the agricultural sector. First, given that the majority of agricul-
tural occupations belong to the "Unknowns" category, future research,
mainly under case study approaches, should focus on these roles to
deepen the understanding of how LLMs might influence them through
identifying areas for possible substitution or complementarity. This pre-
supposes tracking of the evolving dynamics between LLM capabilities
and human expertise over time. It would be interesting to apply the cur-
rent methodology to other sectors, allowing for a broader understand-
ing of how LLMs may impact different industries and occupations,
thereby fostering cross-sectoral insights. Identifying timely key skills
for enhancing collaboration between human workers and LLMs is of
major importance leading to adaptive training programs development.
Future policy makers should also consider risks related to the applica-
tion of LLMs [52–55], such as potential:

Bias: For example, if an LLM is trained on datasets that favor large-
scale farming methods, it may prioritize recommendations for high-
input, mechanized agriculture over alternative practices suited to
smallholders, such as regenerative agriculture [56].

Information 'hallucination': LLMs are prone to generating plausible
but factually incorrect outputs. In agriculture, this could have serious
consequences which could harm both the environment and crop pro-
ductivity.

Privacy concerns: As LLMs process vast amounts of sensitive data,
there is a risk of unauthorized data sharing without the farmer's con-
sent, undermining trust and exposing farms to unfair competition.

Ethical considerations: Adoption of LLMs, like other technological
advancements, may disproportionately benefit larger, technologically
advanced farms, further widening the gap between smallholder farmers
and agribusinesses [57].

Finally, given the evidence of the fundamental analysis of the rela-
tionship between LLMs exposure and robotization, the investigation of
their combined effects on agricultural occupations would also be valu-
able. This analysis can provide understanding on how these technolo-
gies can influence various roles within the sector as well as spotting op-
portunities for optimizing their integration to improve productivity and
efficiency in agriculture.

5. Conclusions

In conclusion, this study highlights the nuanced impact of LLMs on
the agricultural labor market, emphasizing their potential to replace or

augment cognitive functions while being limited in replacing the physi-
cal, psychomotor, and sensory demands of agricultural work. The find-
ings suggest that while certain roles, particularly those reliant on data-
driven tasks, are more susceptible to substitutions, other occupations
will experience a complementary effect, with LLMs supporting cogni-
tive tasks and allowing human workers to focus on more creative re-
sponsibilities. However, a significant portion of occupations remains
unaffected or uncertain, signaling the need for ongoing research and
adaptive workforce development to ensure effective collaboration be-
tween human expertise and LLMs.

The insights gained from this work can constitute a valuable founda-
tion for comprehending how these technologies can transform various
agricultural occupations and task dynamics. This transformation is ex-
pected to lead to a shift towards positions that focus on analytical abili-
ties, as LLMs can support and interface, among others, data processing,
decision-making support, and strategic planning. Moreover, a growing
demand is anticipated for skilled professionals who can effectively in-
teract with these technologies by exploiting their capabilities to man-
age and optimize agricultural practices. Accordingly, targeted re-
skilling initiatives and workforce development programs will be imper-
ative tailored to the emerging technological landscape. Finally, LLMs
will be continually advanced and incorporated into various applica-
tions. Hence, it is crucial for policymakers to effectively manage biases
in training data and ensure ongoing human oversight for maximizing
the benefits of LLMs in agriculture while mitigating potential risks.
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Appendix A

Table A1 presents the short description for each ability according to [29].

Table A1
. Summary of the 45 reviewed abilities along with a short description of their content, [29].
Ability Description

Oral Comprehension Listen to and understand information and ideas presented through spoken words and sentences
Oral Expression Communicate information and ideas in speaking so others will understand
Written Expression Communicate information and ideas in writing so others will understand
Written

Comprehension
Read and understand information and ideas presented in writing

Problem Sensitivity Tell when something is wrong or is likely to go wrong. It does not involve solving the problem, only recognizing that there is a problem
Deductive Reasoning Apply general rules to specific problems to produce answers that make sense
Inductive Reasoning Combine pieces of information to form general rules or conclusions (includes finding a relationship among seemingly unrelated events)
Information Ordering Arrange things or actions in a certain order or pattern according to a specific rule or set of rules (e.g., patterns of numbers, letters, words, pictures,

mathematical operations)
Originality Come up with unusual or clever ideas about a given topic or situation, or to develop creative ways to solve a problem
Category Flexibility Generate or use different sets of rules for combining or grouping things in different ways
Fluency of Ideas Come up with a number of ideas about a topic (the number of ideas is important, not their quality, correctness, or creativity)
Flexibility of Closure Identify or detect a known pattern (a figure, object, word, or sound) that is hidden in other distracting material
Speed of Closure Quickly make sense of, combine, and organize information into meaningful patterns
Perceptual Speed Quickly and accurately compare similarities and differences among sets of letters, numbers, objects, pictures, or patterns. The things to be compared may

be presented at the same time or one after the other. This ability also includes comparing a presented object with a remembered object
Visualization Imagine how something will look after it is moved around or when its parts are moved or rearranged
Mathematical

Reasoning
Choose the right mathematical methods or formulas to solve a problem

Number Facility Add, subtract, multiply, or divide quickly and correctly
Time Sharing Shift back and forth between two or more activities or sources of information (such as speech, sounds, touch, or other sources)
Selective Attention Concentrate on a task over a period of time without being distracted
Memorization Remember information such as words, numbers, pictures, and procedures
Stamina Exert yourself physically over long periods of time without getting winded or out of breath
Gross Body

Equilibrium
Keep or regain your body balance or stay upright when in an unstable position

Gross Body
Coordination

Coordinate the movement of your arms, legs, and torso together when the whole body is in motion

Extent Flexibility Bend, stretch, twist, or reach with your body, arms, and/or legs
Static Strength Exert maximum muscle force to lift, push, pull, or carry objects
Dynamic Strength Exert muscle force repeatedly or continuously over time. This involves muscular endurance and resistance to muscle fatigue
Explosive Strength Use short bursts of muscle force to propel oneself (as in jumping or sprinting), or to throw an object
Trunk Strength Use your abdominal and lower back muscles to support part of the body repeatedly or continuously over time without "giving out" or fatiguing
Control Precision Quickly and repeatedly adjust the controls of a machine or a vehicle to exact positions
Multilimb

Coordination
Coordinate two or more limbs (for example, two arms, two legs, or one leg and one arm) while sitting, standing, or lying down. It does not involve
performing the activities while the whole body is in motion

Rate Control Time your movements or the movement of a piece of equipment in anticipation of changes in the speed and/or direction of a moving object or scene
Response Orientation Choose quickly between two or more movements in response to two or more different signals (lights, sounds, pictures). It includes the speed with which

the correct response is started with the hand, foot, or other body part
Arm-Hand Steadiness Keep your hand and arm steady while moving your arm or while holding your arm and hand in one position
Finger Dexterity Make precisely coordinated movements of the fingers of one or both hands to grasp, manipulate, or assemble very small objects
Manual Dexterity Quickly move your hand, your hand together with your arm, or your two hands to grasp, manipulate, or assemble objects
Wrist-Finger Speed Make fast, simple, repeated movements of the fingers, hands, and wrists
Reaction Time Quickly respond (with the hand, finger, or foot) to a signal (sound, light, picture) when it appears
Far Vision See details at a distance
Near Vision See details at close range (within a few feet of the observer)
Visual Color

Discrimination
Match or detect differences between colors, including shades of color and brightness

Depth Perception Judge which of several objects is closer or further away from you, or to judge the distance between you and an object
Auditory Attention Focus on a single source of sound in the presence of other distracting sounds
Hearing Sensitivity Detect or tell the differences between sounds that vary in pitch and loudness.
Speech Clarity Speak clearly so others can understand you
Speech Recognition Identify and understand the speech of another person

Appendix B

Fig. B1 presents multimode graphs for each agricultural occupation, with light blue circles representing the 45 evaluated abilities, grey circles
indicating associated tasks, and colored vectors showing the correspondence between them and the capacity levels of current LLMs.
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Fig. B1. . Multimode graphs for each agricultural occupation. The main nodes (depicted with light blue circles) represent the ability under assessment, whereas each
target node (depicted with grey circles) denotes the reviewed task involved in the occupation at hand. The vectors show which abilities correspond to which tasks,
while their colors illustrate the corresponding different level of capacity of current LLMs: negligible (green); partial (orange); full (red).
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