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General Introduction

(Enrico Giusti, Clara Silvia Roero)





Introduction

The texts published in this volume can be subdivided into two categories:
the first consists of the substantial untitled manuscript which contains, in
a sequence numbered by the author, 120 propositions on various subjects,
to which Johann Bernoulli applied himself over a very long period of time,
namely from 1685 to the first decades of the 18th century; the second is com-
posed of a series of articles and manuscripts devoted to problems on the rec-
tification and transformation of curves, on geodesics and on spherical epicy-
cloids.

I. The 120 Propositiones

The manuscript we have entitled 120 propositiones is a valuable document
which allows us to grasp Johann Bernoulli’s vast range of scientific interests,
and the research he carried out starting from the 1680s, at the time when he
was serving his apprenticeship under his brother Jacob, until he reached his
full maturity. Moreover, the chronological ordering of the succession of sub-
jects, the internal references to sources consulted and to problems raised, the
quotations in letters to his contemporaries and the publication of specific con-
tributions allow us to see the stages of his cultural development and to focus
the objectives he pursued and the results he obtained.

The structure of Johann’s manuscript is analogous to that of Jacob’s scien-
tific notebook entitled Meditationes, Annotationes, Animadversiones Theologi-
cae et Philosophicae a me J. B. concinnatae et collectae ab anno 1677. In both
cases what we have is a non-organic collection of – often unconnected – prob-
lems, regarding Euclidean, Apollonian and Cartesian Geometry, Arithmetic
and Theory of numbers, Probability theory, Differential and Integral Calcu-
lus, with reflections on Series, on the Rectification of curves, on Differential
Equations and on the Calculus of Variations.

It is probable that the initial stimulus to record the results of his studies
and mathematical successes came from his brother Jacob, his teacher until
the 1690s; Jacob’s influence is very clear in the whole of the first part of the
manuscript, and can also be seen from the presentation of subjects common
to the research of both and from the Synoptic Table on pages pp. 571–573.

The second part deals rather with problems proposed in journals of the
period or received through Johann’s personal contacts with mathematicians
in various countries during his stay in Groningen and subsequently in Basel.
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More than half the propositions are from the period between 1685 and
January 1692, the date of the publication in the Acta Eruditorum of Propo-
sition 68, the second article Johann published under his own name alone
(Joh. B. Op. VI).

The previous propositions deal with problems of elementary Euclidean
geometry (Prop. 1–5, 11, 18–21), the proof of Ptolemy’s theorem on the qua-
drilateral within a circumference (Prop. 57), exercises in plane trigonometry
(Prop. 6–10), properties of conics, in the style of Apollonius (Prop. 30–38),
and topics of elementary arithmetic and theory of numbers (Prop. 13, 22, 23,
28, 29, 49, 51, 52, 56).

Some of his research, expounded in Prop. 14, 15, 16 and 17, bring out the
influence of J. Wallis’ Arithmetica infinitorum in their use of the particular
terminology adopted (series primanorum, secundanorum) and of the symbol
for the infinite. Others, such as Prop. 24–27, 39–42, 50 and 53, show that he
was familiar with René Descartes’ Géométrie, in the Latin edition by F. van
Schooten, and the use of J. Hudde’s methods which appeared in this work.

It is, however, the marked presence of problems which Jacob Bernoulli had
already tackled in his scientific notebook that lays stress on the close link with
the process by which Johann matured as a scholar. This is clear from Prop. 43–
48 on regular polygons inscribed to a circumference, in particular on the trian-
gle, the heptangle, and the enneagon, on which his brother had been engaged
in reflection from 1684 to 1688 in the Med. LIX and CXX1, with procedures
identical to those used here.

Propositions 39–42, 55 and 58, in both the statements and the solutions,
also return to some problems tackled by Jacob between 1686 and 1689, in
Med. CV, CIV, CXIII, CXIV and CXXXVII2 respectively, with the meth-
ods of Cartesian geometry. These propositions were published in 1742 in the
fourth volume of Johann’s Opera omnia.

Prop. 59–67 on series are also the fruit of studies carried out together with
his brother, as indeed is clear from an explicit observation by Jacob in the
article Positiones Arithmeticae de Seriebus Infinitis (7 June 1689), where he
quotes Johann’s proof on the divergence of the harmonic series3. The merits
of the method Johann employs compared with Jacob’s were also stressed by
Johann Bernoulli himself in his letter to Leibniz of 1 December 16964. Not
infrequently in this period did Jacob publicly recognise his brother’s merits: for

1 Jac. B. Werke 2, pp. 313–315, 447–457.
2 Jac. B. Werke 2, pp. 407–409, 403–404, 419–420, 421, 490–492.
3 Jac. B. Op. XXXV, Positio XVI, Werke 4, pp. 56–58.
4 Leibniz, Math. Schriften 3, p. 339.
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example, in November 1689 in the Acta Eruditorum, at the end of the article
Novum theorema pro doctrina sectionum conicarum (Jac. B. Op. XXXVIII), he
inserted an alternative proof given by Johann, and in other writings he quotes
his acute observations.

Further confirmation of the investigations carried out together with Jacob
and on the same subjects derives from comparison of their manuscripts and
of the publications on series which appeared in Basel between 1689 and 1704,
subsequently republished as an appendix to the Ars Conjectandi in 1713. Spe-
cifically, Johann’s proposition 59 echoes Jacob’s Med. CXXXV, published in
Op. XXXV, Positio X5; proposition 60 echoes Med. CXXXIX, published in
Op. XXXV, Positio XIV6. Propositions 61–62 tackle the series studied in
Med. CXLI and CXLIII, which appeared in Op. XXXV, Positio XVI and
Op. LIV, Positio XXII7.

In proposition 63 of Johann’s manuscript we find the series which Jacob
drew from a problem on the calculus of games of chance, the subject of Med.
CL,8 and presented in Positio XXI of the dissertation Positionum de Serie-
bus infinitis Pars altera, discussed in Basel on 18 November 16929. This also
contains the sums of the series examined by Johann in Propositions 64, 65
and 66, with procedures that are entirely analogous to those expounded by
Jacob in Positiones XXIII, XXIV and XXVI of the same dissertation and in
Med. CXLVII10.

Proposition 68 presents the well-known result of the catacaustic of parallel
light rays falling on a circle from a source to infinity, published in the Acta
Eruditorum in January 1692,11 whose solution very probably goes back to the
end of 1690, before Johann’s journey to Geneva and his stay there, for he hints
at it in his letter to Jacob on 22 May 1691:

Vous me ferez aussy savoir . . . si mon probleme funiculaire n’est pas en-
core mis dans les actes, de méme que ma solution de la caustique par la
Geometrie Cartesienne que je vous ay laissé entre les mains12.

With proposition 72 we find Leibniz’s differential and integral calculus used
for the first time to search geometric loci of point that satisfy specific proper-

5 Jac. B. Werke 4, pp. 186 and 50.
6 Jac. B. Werke 4, pp. 188–190 and 52–54.
7 Jac. B. Werke 4, pp. 192, 195 and 56–58, 70–71.
8 Jac. B. Werke 3, pp. 94–97 and Werke 4, pp. 202–205.
9 Jac. B. Werke 4, Op. LIV, p. 70.

10 Jac. B. Werke 4, Op. LIV, pp. 71–72, 72–75, 76, 197–198.
11 Joh. B. Op. VI, Opera I, pp. 52–59 – Streitschriften, pp. 10–16, 127–131.
12 Joh. B. Briefe 1, p. 105.
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ties. In proposition 73, for example, the problem of the funicular or catenary
curve is tackled with the same analytic procedure expounded in XII of the
Lectiones for the Marquis de l’Hôpital13. The fact that this topic was the ob-
ject of the article which appeared in the Acta Eruditorum in January 1691, in
which it was specified that it had emerged from considerations made together
with his brother Jacob, who had then presented it to the public on May 1690,
and that it is quoted in the letter mentioned above leads us to date this study
at the end of 1690, although in the printed version only the solution and the
geometric construction were given, without the analytic expressions.

Proposition 74 seeks the curve envelope of the parabolas described by the
trajectories of cannonballs fired from a specific point with constant force (a
problem already solved by Torricelli in his Opera geometrica14), proving that
it is a parabola. The same problem appears in Med. CLXVI of Jacob’s scien-
tific diary and in the seventh of his Notae et animadversiones tumultuariae15

to the Latin edition of Descartes’ Géométrie (1695). It is, however, very likely
that it was Johann who suggested the study to Jacob, in a lost letter of 10 June
1691 from Geneva, where he briefly mentioned a problem that had been sug-
gested to him by Jean Christophe Fatio de Duillier16. In the formulation sent
to Leibniz on 2 September 1694, the problem was in the following terms:

de invenienda curva, quae singulas parabolas a globis ex singulis eleva-
tionibus mortarii ejectis descriptas tangit17.

Johann’s result was communicated to his brother in his letter of 27 June 1691:

J’ay aussi trouvé la nature des courbes Ballistiques par la Geometrie vul-
gaire, avant que i’eusse reçu votre lettre; mais avec une maniere semblable
à celle avec quelle i’ay resolu la nature de la caustique; Mr. Fatio est Té-
moin18.

The same problem was to be inserted by de l’Hôpital in article 147 of the
Analyse des infiniment petits (1696, p. 133), having presented it to Leibniz in
his letter of 24 February 169319.

13 Joh. B. Op. CXLIX, Opera III, p. 426.
14 Florentiae 1644 – Opere di Evangelista Torricelli, G. Loria, G. Vassura (eds.), Faenza,

Montanari, 1919, vol. II, Prop. XXX, pp. 178–180.
15 Jac. B. Werke 2, pp. 505–510 and Jac. B. Op. LXVI, Opera, pp. 680–684 – Werke 2,

pp. 561–566.
16 Joh. B. Briefe 1, pp. 106–107.
17 Leibniz, Math. Schriften 3, p. 151.
18 Joh. B. Briefe 1, p. 111.
19 Leibniz, Math. Schriften 2, pp. 225–226.
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As emerges from the correspondence with Jacob, the first studies of the lin-
tearia curve, the form of a cloth filled with water, go back to June 1691 in
Geneva. This was the subject of proposition 76, and Johann took up his stud-
ies on this curve once again in Paris in his lessons to de l’Hôpital20, and sub-
sequently in the context of the controversy with his brother over the isoperi-
metrical problems. Proposition 77 too, on the nature of the curve described
by a ray of light which passes through a dense medium, was presented some
months later to de l’Hôpital21, and later used in the solution to the problem
of the brachystochrone22 .

Propositions 79 and 80 have to do with the calculus of games of chance; they
are probably linked to the problems of throwing dice, tackled in this period by
Jacob Bernoulli in the course of writing the third chapter of the first part of
the Ars conjectandi. The terminology and the methods used to determine the
mathematical expectations of the players are in fact analogous to those his
brother employed.

The two subsequent propositions, 81 and 82, are on series and, like the pre-
vious two, were published in Volume IV of Johann’s Opera Omnia23. It is
possible that they derived from studies of combinatorial analysis connected
to the calculus of probability, as A. Weil shows with regard to Jacob’s cul-
tural path24. Proposition 81, which seeks the maximum term of the binomial
.a C b/c, is the object of study of Jacob’s Med. CCI, linked by him with a
reference to a problem of the doctrine of chances tackled between 1688 and
169025.

Proposition 83 tackles the same problem of determining geometric loci with
Cartesian geometry presented in June 1696 in the Acta Eruditorum26. Jacob
intervened on this very problem in May 1697 with the note Solutio Problema-
tum Fraternorum, una cum Propositione reciproca aliorum27.

Proposition 84 also refers to the search for the equation of a curve subjected
to a property analogous to the preceding one, and for this reason Johann pro-
posed it to those who wished to experience the validity of their methods, in

20 Joh. B. Op. CXLIX, Lectiones XLIV, XLV, Opera III, pp. 512–516.
21 Joh. B. Op. CXLIX, Lectio XLVI, Opera III, pp. 516–518.
22 Prop. 87, pp. 211–213 h. v., Joh. B. Op. XXXVII, AE Maji 1697, Opera I, pp. 187–193 –

Streitschriften, pp. 263–270 and Joh. B. Op. CIII, Opera II, pp. 235–269 – Streitschriften,
pp. 527–568.

23 Joh. B. Op. CLIII, Opera IV, pp. 25–27.
24 Cf. Jac. B. Werke 4, Introduction, p. 11.
25 Jac. B. Werke 3, p. 89 and Med. CLIa, Werke 3, pp. 76–83, 378–383.
26 Joh. B. Op. XXX, Supplementum defectus Geometriae Cartesianae circa Inventionem Lo-

corum, AE Junii 1696, pp. 264–265 – Opera I, pp. 156–157.
27 Jac. B. Op. LXXV, Opera, pp. 775–778 – Streitschriften pp. 276–278.
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the same article of June 1696: «si qui alii in hisce suarum methodorum vires
experiri velint»28. The solution, with its proof, was published in 1742 in the
fourth volume of the Opera29.

Propositions 85 and 91–96, on the problem of the transformation of curves,
are dealt with in § 2.2, which Johann proposed in the Journal des Savants
in 1703. The first brief reference to this problem is in a letter to Leibniz on
10 June 1702, in which Johann says that it was suggested to him, together
with six others, by a Belgian mathematician in 1698.30

The problem of the brachystochrone is tackled in proposition 86 with a geo-
metric procedure and in proposition 87 with Leibnizian analysis. The texts of
these propositions, slightly recast, were published in the context of the contro-
versy with his brother Jacob on the isoperimetrical problems. To be precise, in
February 1718 they appeared at the end of the essay in Acta Eruditorum, De
solutionibus quae extant Problematum isoperimetricorum31. A French trans-
lation, due to P. Varignon, appeared in the Paris Mémoires de l’Academie des
Sciences32. These propositions were written at latest by 21 July 1696, when Jo-
hann sent them to Leibniz for his opinion,33 and Leibniz advised him not to
publish the direct, but only the indirect proof, writing to him on 31 July 1696:

Caeterum ubi solutionis comprobationem edere vel communicare place-
bit, suaserim viam illam directam, quam vocas, seu posteriorem, non edi,
cum prior sufficiat ad demonstrationem, et posterior praeter necessitatem
aliis ante tempus viam aperiat. Praestat enim (ut puto) nonnihil adhuc su-
spensos alios teneri, ut vel ipsi inveniant aliquid fortasse a nostris diver-
sum, quod augebit scientiam; vel agnoscant, non esse haec tam facilia, ut
quidam putant, eoque diligentius has methodos aliquando meditentur34.

Some months later, on 23 February 1697, Leibniz repeated the same advice:

28 Joh. B. Op. XXX, AE 1696, p. 267 – Opera I, p. 158.
29 Joh. B. Op. CLV, Geometrica, Propositio VII Problema, Opera IV, pp. 40–41.
30 Leibniz, Math. Schriften 3, p. 702: «Les courbes paraboliques et hyperboliques de

quelques degrez qu’elles soient transformer en d’autres courbes algebraiques, en sorte
que les arcs des unes soient egaux aux arcs des autres.» The Belgian mathematician may
be Jacques-François Le Poivre (1652–1710).

31 Joh. B. Op. CIII, AE Januarii 1718, pp. 15–31, AE Februarii 1718, pp. 74–88.
32 Remarques sur ce qu’on a donné jusqu’ici de solutions des problèmes sur les Isoperi-

metres, Mém. Paris 1718 (1719), pp. 100–138 – Opera II, pp. 267–269 – Streitschriften,
pp. 566–567.

33 Leibniz, Math. Schriften 3, pp. 302–309.
34 Leibniz, Math. Schriften 3, p. 310.
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Repeto autem, quod initio dixi, recte facturum Te si eam tantum par-
tim solutionis tuae edas, quae Analysin adhuc nonnihil involvit methodo,
quam vocas indirectam. Mihi enim (nescio an et Tibi) consultum videtur
nondum in interiora admittere homines ingratos, et beneficium postea
strenue dissimulaturos35.

Proposition 90 is also linked to the isoperimetrical problems. It is set out,
in fact, in the article Solutio Problematum quae Jacobus Bernoullius . . . fratri
proposuit, which appeared in January 1698 in the Acta Eruditorum36, and in
French in Johann’s letter to Varignon on 15 October 169737. The remainder
of the treatment on the isoperimetrical problems, published in 1718 in Latin
and in 1719 in French, appears only in proposition 119 of the manuscript and
was written certainly after January 1712, since in the earlier proposition 115
Johann cites the pages of an article of his which had appeared in the Parisian
Mémoires printed in 1712.

The solution of the linear non-homogeneous differential equation

r.y/x dy C t .y/ dy D dx

is the subject of study in proposition 88, in the corollary of which Johann
tackles the differential equation

a dy D yp.x/ dx C bynq.x/ dx;

suggested by his brother in December 1695 in the Acta Eruditorum38.
The general method presented here was sent to Leibniz on 25 August

1696,39 and was to be published in the Acta in March 1697 in the article De co-
noidibus et sphaeroidibus quaedam, Solutio analytica Aequationis in Actis 1695,
pag. 553 propositae . . . 40.

Proposition 89 considers the square of segments of a cycloid, and the results
obtained were published in the Acta Eruditorum in July 169941. This article
sparked off a further heated argument with Jacob, who saw two of his own

35 Leibniz, Math. Schriften 3, p. 370.
36 Joh. B. Op. XL, Opera I, p. 212.
37 Joh. B. Briefe 2, p. 142.
38 Jac. B. Op. LXVI, Explicationes, Annotationes et Additiones ad ea, quae in Actis sup. anni

de Curva Elastica, Isochrona Paracentrica, & Velaria . . . AE Decembris 1695, p. 553 –
Opera, p. 663.

39 Leibniz, Math. Schriften 3, pp. 323–324.
40 Joh. B. Op. XXXV, AE Martii 1697, pp. 113–118 – Opera I, pp. 174–179.
41 Joh. B. Op. LVIII, Cycloidis primariae segmenta innumera quadraturam recipientia, alio-

rumque ejusdem spatiorum quadrabilium determinatio: post varias illius fortunas nunc
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articles alternating with two of his brother’s in the pages of the German jour-
nal, in September 169942, June 170043, December 170044 and April 170145.
Transformations and integrations of differential quantities are the subject of
propositions 96, 97, 98, 99, 100 and 101, which Johann sent to Varignon on
5 August 1702, in a letter which sadly has been lost, so that they might be
published in the Paris Mémoires de l’Académie des Sciences46.

Varignon’s time in Normandy held back the translation into French of Jo-
hann’s article, which was presented to the Académie on 13 December and
published in the 1702 volume, printed in 170447. An extract in Latin which
includes the slightly recast text of proposition 101, followed in the concluding
part by the text of propositions 96–100, was to appear in the Acta Eruditorum
in January 170348.

The subject expounded was linked to the problem of orthogonal trajectories
to a family of curves, discussed by his brother Jacob in the same journal in
May 1698, as Johann himself states in proposition 101, so these considerations
must be dated between May 1698 and August 170249.

Proposition 103 is linked to the problem of the transformation of algebraic
curves into others of the same length, proposed by Johann in February 1703
and illustrated in § 2.2. Here we see the emergence of the genesis of the repto-
rial motion, which he had conceived for precisely this problem, and published
in 1705.

Propositions 104 and 105 deal with properties relating to the conjugate
diameters of conic sections, while 106 uses the analytic method to solve a
problem of the ellipsis which the French mathematician Philippe de la Hire
had suggested to him, through Varignon, as being particularly difficult50. The
statement of the problem can be found at the end of Varignon’s letter to Jo-

primum detecta, AE Julii 1699, pp. 316–320 – Opera I, pp. 322–327 – Streitschriften,
pp. 393–399.

42 Jac. B. Op. XCII.
43 Joh. B. Op. LX.
44 Jac. B. Op. XCV.
45 Joh. B. Op. LXIX. On this topic cf. Streitschriften, Introduction § 18, pp. 111–112, Jac. B.

Werke 4, Introduction, pp. 30–31.
46 Joh. B. Briefe 3, pp. 33, 64–65.
47 Joh. B. Op. LXX, Solution d’un Problème concernant le calcul intégral, avec quelques abre-

gés par rapport à ce calcul, Mém. Paris 1702 (1704), pp. 289–297 – Opera I, pp. 393–400.
48 Joh. B. Op. LXX, Problema exhibitum a Jo. Bernoullo, AE 1703, pp. 26–31 – Opera I,

pp. 393–400..
49 Cf. H. Goldstine, Introduction, to Streitschriften, pp. 109–111.
50 Joh. B. Briefe 2, pp. 31–32: «voicy un probleme de coniques qu’il vous propose, et qu’il

croit fort difficile».
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hann Bernoulli on 28 March 1693, and requires the construction of the el-
lipse tangent to the sides of a given angle and having an axis equal to a given
segment. The solution, with the synthetic method, is given by Johann in the
manuscript Problème proposé par M. de la Hire51.

Proposition 107 turns on a problem of central forces which, at Johann’s
suggestion, was proposed by his nephew Nicolaus I to the Italians in 1715, at
the conclusion of an article in the Giornale de’ Letterati d’Italia, published in
Venice. This challenge sparked off a heated discussion between the Bernoullis
and the mathematicians Sebastiano Checozzi and Bernardino Zendrini, who
gave its solution, first in the form of an anonymous Admonition (Avverti-
mento) and then in articles which were criticised at length52. The discussions
ended by also involving Hermann, accused by the Bernoullis of having sug-
gested the solution to the Italians who maintained excellent relationships with
him from the new remises at Frankfurt on the Oder where he was teaching
at the time. Problems of central forces are also dealt with in propositions 108
and 109, published together with 107 in volume IV of the Opera53.

Studies on the conditions of integrability of binomial differentials are found
in Propositions 110, [110a], 111, 112, 114, 115, 116 and are linked to the con-
siderations Johann Bernoulli sent to George Cheyne concerning his book Flu-
xionum Methodus inversa, sive quantitatum fluentium Leges Generaliores (Lon-
dini, 1703), as emerges from the observation at the end of proposition 111. The
context in which these propositions were written is described in Johann’s let-
ters to Robert Falconer,54 to Abraham de Moivre55 and to Cheyne himself.56

From Bernoulli’s notes to the Englishman’s work derive the texts (published in
the fourth volume of Johann’s Opera) Animadversiones in Cl. Georgii Cheynaei
Fluxionum Methodum inversam, editam Londini 170357 and Observationes in
Clar. Moivraei Animadversiones in D. Cheynaei Tractatum de Fluxionum Me-
thodo inversa, editas Londini 170458, which are also linked to the Errata cor-

51 Joh. B. Ms. 27a, pp. 333–334 h. v., cf. § II of this Introduction.
52 Cf. S. Mazzone, C. S. Roero, Jacob Hermann and the diffusion of the Leibnizian Calculus in

Italy, Florence, Olschki, 1997, pp. 123, 167–175, 371–372, 377–381, 397, 415, 419–422.
53 Joh. B. Op. CLXXV, De lege virium qua fit ut mobile ad centrum descendat temporibus

quae sint ut potestates datae distantiarum, a quibus descensum inchoat, pp. 243–248.
54 Joh. Bernoulli to R. Falconer, 14 August 1703, UB Basel L I a 674: Wollenschläger 1933,

pp. 315–317.
55 Joh. Bernoulli to A. de Moivre, 15 November 1704, UB Basel L I a 664, Nr. 1: Wollen-

schläger 1933, pp. 179–187.
56 Joh. Bernoulli to G. Cheyne, XV Kal. Decembr. 1703 [17 November 1703], UB Basel

L I a 673, Nr. 16, pp. 165–168.
57 Joh. B. Op. CLXVII, Opera IV, pp. 129–146.
58 Joh. B. Op. CLXVIII, Opera IV, pp. 146–160.
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rige to his text which Cheyne had printed, under the title of Addenda et Ad-
notanda in Libro Fluxionum Georgii Cheynaei, which Cheyne sent to Bernoulli
in April 1704 and which is currently held in Basel at the end of the volume in
Johann’s possession59. These texts were to be described and published in the
volume of the Werke devoted to the controversy with the English.

Proposition 113 deals with the study of series whose coefficients are figurate
numbers and can be dated to a period after 1711, in view of the reference to
Isaac Newton’s Analysis per quantitatum series, fluxiones ac differentias (Lon-
dini, 1711).

Finally, Proposition 120, which shows the analytic solution to the problem
of the curve described by a projectile in resisting media, was published with
a very few variants in May 1721 in the Acta Eruditorum60. As the text cites
Hermann’s Phoronomia, which Johann had received in September 1715, and
this very solution had been communicated to Pierre Remond de Montmort in
the letter of 13 July 1719, it must have been written between 1715 and 171961.

II. The problem of Philippe de La Hire

Among the Bernoulli’s manuscripts preserved in Basel there is also a geomet-
rical problem regarding the construction of an ellipse subject to specific condi-
tions (Ms. 27a). It had been suggested to Johann Bernoulli by Philippe de La
Hire, through Varignon, in 169362. The problem concerns the construction of
the ellipse tangent to two given rays AB, AD and with its centre at point C

within these rays and its axis equal to a given segment PQ. Bernoulli solves

59 UB Basel, Kf. IV. 9.
60 Joh. B. Op. CXXI, Opera II, pp. 513–516.
61 UB Basel L I a 665, Nr. 15.
62 Cf. P. Varignon to Joh. Bernoulli, 28 March 1693, Joh. B. Briefe 2, pp. 31–32, 34. In

1706 Joh. B. suggested this problem to Jacob Hermann, who sent his geometric-synthetic
solution to Jean Christophe Fatio de Duillier (Hermann to Jean Christophe Fatio, Basel
14 August 1706, BPU Geneva MS Fr. 601, ff. 193–194). Hermann sent this solution to
Guido Grandi in his letter of 21 December 1708, cf. S. Mazzone, C. S. Roero, Guido
Grandi – Jacob Hermann, Carteggio 1708–1714, Firenze, Olschki, 1992, pp. 28–29. A
construction and the relevant proof of it is kept in an Italian manuscript autograph by
Hermann in Venice. Cf. J. Hermann, Problem on an ellipse, Venice, Marciana Library
(Ms. It. IV 642 – 5503, ff. 7r–8v), published in S. Mazzone, C. S. Roero, Jacob Hermann
and the diffusion of the Leibnizian calculus in Italy, Firenze, Olschki, 1997, pp. 349–351.
Hermann presented the same problem at the Academy of St Petersburg in August 1729
and published it in the Commentarii. J. Hermann, De ellipsi conica cujus axis alteruter
datus est, angulo positione et magnitudine dato ita inscribenda, ut centrum ejus intra datum
angulum sit etiam positione datum, CP 4, 1729 (1735), pp. 46–49.
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the problem analytically in Prop. 106, by a rather laborious procedure leading
to a fourth degree equation. This is how he proceeds:

If PQ D 2a is the given segment, and if CA D b, CE D x, from the known
property of ellipse it follows that AC W CE D CE W CF , from which

CF D x2

b

and

AF D AC � CF D b2 � x2

b
:

Since the angles AFB and FAB are given, the ratio
AF
BF

D 1

n
is also given.

From these relations Bernoulli obtains

BF D nb2 � nx2

b

and therefore
GF � FE

BF2
D x2

n2.b2 � x2/
D p

q
:

Now let H be a generic point on the ellipse, and from the points B and H

draw BL and HS perpendicular to AG. Let CK D z and
BF
FL

D 1

m
. From the

relation
GK � KE

HK2
D GF � FE

BF2
D p

q
;

since GK � KE D x2 � z2, Bernoulli gets

HK2 D q

p
.x2 � z2/
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and therefore

CH2 D HS2 C CS2 D .HK2 � KS2/ C .CK C KS/2 D

HK2 C CK2 C 2CK � KS D qx2 � qz2 C pz2

p
C 2mz

s
qx2 � qz2

p
:

When H is on the axis of the ellipse, the quantity CH2 D a2 is maximum with
the respect to the variable z. Its differential is therefore equal to zero, so that
he obtains

z
p

qx2 � qz2.p � q/ C m
p

pqx2 � 2m
p

pqz2 D 0:

By squaring the previous equation, Bernoulli finds the biquadratic equation

Œ4m2pq C .p � q/2�z4 � Œ4m2pqx2 C .p � q/2x2�z2 C m2pqx4 D 0

which gives

z2 D 1
2
x2 ˙

1
2
.p � q/x2p

p2 � 2pq C q2 C 4m2pq
:

He now substitutes the value of z, found in this way, in the previous expres-
sion of CH2 D a2, and obtains the equation:

a4 � .p C q/a2 C pq � m2pq D 0:

Finally, replacing p, q with their expressions in the variable x, Bernoulli ob-
tains a biquadratic equation in x that gives the solution of the problem.

In the fragment in question, Bernoulli proposes a different solution, simpler
and more elegant by far.
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In order to determine the ellipse with centre P , axis equal to D and tangent
to the rays CA, CB, Bernoulli first considers the circle IKON with centre P

and diameter D, which meets the sides of the given angle at the points I , K,
O , N . The normals to the sides at these points meet in G and H . Then Ber-
noulli states that G and H are the foci, and that the diameter EF is the axis of
the ellipse.

The proof, he says, depends on the following beautiful theorem, that he had
proved previously: ˛�ˇ be an ellipse and let ˛�ˇ be the circumference with
diameter equal to the axis. From a point � on the circumference, draw the
lines �ı connecting the point � to one of the foci of the ellipse, and �� tangent
to the ellipse. Then the angle ��ı is always right.

Once this theorem is proved, the result follows immediately. Actually, con-
sider the ellipse with foci in G and H and axis EF , and the circumference
IKON with diameter equal to its axis. If from a point I on the circumference
we draw the segment GI connecting I to one of the foci and the line IC per-
pendicular to it, IC will be tangent to the ellipse.
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III. The rectification of curves

The subject of the rectification of curves often recurs in short texts which Jo-
hann Bernoulli published at various times. This is a matter of a series of differ-
ent problems, ranging from the invention of absolutely rectifiable (algebraic)
curves, i.e. such that the length of the arc can be expressed algebraically in
function of the point, to the transformation of given algebraic curves into
others, also algebraic, of the same length, or rather the same arc element, to
the search for algebraic curves whose arc element, added to that of a given
curve, will give a rectifiable curve.

1. The first research

The first article Johann Bernoulli published on this subject, Meditatio de di-
mensione linearum curvarum per circulares, goes back to 1695, and is to be
found in the August issue of the Acta Eruditorum63. The starting point is
a result of Christian Huygens, who in his Horologium oscillatorium (1673)
had proved that, given a spheroid, it was possible to construct a hyperbolic
conoid such that the two surfaces, taken together, should be equal to a circle.
Bernoulli takes up this problem again in the unidimensional case, generalising
to any curve, and solves the following problem: Given any curve, find a second
curve such that the sum or the difference of their lengths be equal to an arc of
circumference. The construction is rather simple and depends on the following
lemma.

Given any curve ABC, Bernoulli considers a rigid pole DE which, start-
ing from one extreme A rests on the curve remaining always tangent until it
reaches the tangent position at the other extreme C . The two extremes of the
pole will then describe two curves DLG and EMF , whose lengths added to-
gether are equal to the length of the arc of circumference of the radius DE
and whose amplitude is equal to the angle formed by the extreme tangents
DE and GF . This is proved considering the two triangles LBl and MBm gen-
erated by two infinitely close points L and l on the curve DG, and together
with these the triangle NDn, whose sides DN and Dn are equal and parallel
to LM and lm. The three triangles thus constructed are similar, given that the
two sides are parallel and the straight lines LM and lm are perpendicular to
the curves DG and EF , whereas DN and Dn are perpendicular to the arc of

63 Joh. B. Op. XXVI, pp. 335–338 h. v.
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the circumference Nn. Hence we have

BL W BM D Ll W Mm

and therefore, by composition and inversion:

LM W .Ll C Mm/ D BL W Ll D DN W Nn

because of the similarity of the triangles. Since LM D DN, then Ll C Mm
D Nn.

The arc element of the circumference ENO is thus equal to the sum of the
arc elements of the two curves, and hence the length of the arc of circumfer-
ence is equal to the sum of the lengths of the two curves.

The proof of the theorem is now immediate: given the curve DG, to its every
point apply the segment DE perpendicular to the curve. The second extreme E

will generate a curve EF , whose length, added to that of the given curve, is
equal to the arc of circumference EO.

In much the same period Jacob Bernoulli had obtained an analogous result,
which he recorded in his scientific notebook64 .

64 Jac. B. Med. CCXXI, Werke 5, p. 283.
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Three years later, in October 1698, Bernoulli published a second article in
the Acta Eruditorum, entitled Theorema universale rectificationi linearum cur-
varum inserviens65, in which he posed the same problem, postulating that the
sum of the lengths of the two curves be equal to that of a segment.

The solution is given without proof: if x and y are the coordinates of the
given curve, and if we define a new curve by means of parametric coordinates

u D x
dy3

dx3
;

v D 3x

2

dy2

dx2
� 1

2

Z
dy2

dx
;

the sum of the lengths of the new and of the given curve is equal to

x.1 C y02/3=2:

To justify this result, Bernoulli said that it was possible to calculate the sum of
the arc elements of the two curves and check that it is equal to the differential
of the quantity assigned. In fact we have

dt D
q

dx2 C dy2 D
p

1 C y02 dx

ds D
q

du2 C dv2 D y0p1 C y02.y0 C 3xy00/ dx

and the sum of the two arc elements is equal to the differential of the quantity
x.1 C y02/3=2. Specifically, if the starting curve is the generalised parabola of

equation y D xn

n
, the new curve has parametric equations

u D x3n�2;

v D x2n�1

2

�
3 � 1

2n � 1

�
;

and hence it too is a generalised parabola, of equation

v D Au
2n�1
3n�2 :

65 Joh. B. Op. L, pp. 347–351 h. v.
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If then n D 1 C 1

2p
, where p is an integer number, the curve is absolutely

rectifiable.

2. Transformations and rectifications

The same type of problem is the subject of a text published in the Opera un-
der the title De transformationibus et rectificationibus curvarum66, to be found
already in Prop. 91–95 of the 120 Propositiones. This article also tackles the
transformation of (algebraic) curves into other (algebraic) curves of the same
length.

The method is always the same: write the square ds2 D dx2 C dy2 of the
element of arc length of the given curve as the sum of the squares which,
separately integrated, give a parametric representation of the curve sought.
For example, if the given curve has equation y D f .x/ we have

ds2 D .1 C f 02.x// dx2

and it is a matter of writing the quantity 1 C f 02.x/ as the sum a2.x/ C b2.x/,
with a.x/ and b.x/ integrable.

If A.x/ and B.x/ are two primitives of a and b respectively, the curve of
parametric equations u D A.x/, v D B.x/ is the one sought.

In the case of a parabola, of equation y D xn (problem I)), the quantity
1 C n2x2n�2 must be written as the sum of two squares. One possibility is to
take

a.x/ D ˙.nxn�1 � 1/ and b.x/ D ˙
p

2nxn�1;

obtaining the parametric equations

u D ˙.xn � x/; v D ˙ 2

n C 1

p
2nx

nC1
2 :

Specifically, if n D 2, then u D ˙.x2 �x/, v D ˙4
3
x

3
2 and we will have a curve

of equation

81v4 D ˙432auv2 C 144a2v2 ˙ 256au3;

where the unit a has been introduced for dimensional homogeneity.

66 Joh. B. Op. CLXIV, Opera IV, pp. 92–98; Ms. 27, 120 Propositiones, Prop. 91–[95a] 96,
pp. 221–229 h. v.
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If, instead, the given curve is a hyperbola of equation y D x�n (problem II),
we have 1 C f 02.x/ D 1 C n2x�2n�2, which breaks down into the sum of two
squares a2.x/Cb2.x/, with a.x/ D �nx�n�1C1 and b.x/ D p

2nx�n�1. Thus
the curve sought has parametric equations u D x�n � x, v D 2

1�n

p
2nx

1�n
2 .

The transformation does not work in the case of the equilateral hyper-
bola (n D 1), and Bernoulli finds a further decomposition assuming a D
mxp � x�2. We then have

a2 D x�4 � 2mxp�2 C m2x2p and b2 D 2mxp�2 � m2x2p C 1:

For this last quantity to be a square it is necessary that 8mxp�2 D m4x4p, and
hence p � 2 D 4p and 8m D m4, from which p D �2

3
and m D 2. We then

have
a.x/ D 2x� 2

3 � x�2 and b.x/ D 1 � 2x� 4
3 :

Integrating, we obtain the parametric equation of the new curve:

u D x�1 C 6x
1
3 and v D x C 6x� 1

3 :

With the same technique we find a curve whose length is equal to the area
below a given curve. If the equation of this curve is y D f .x/ it will be nec-
essary to split the function f 2.x/ into the sum of two integrable squares:
f 2 D a2 C b2. For example (problem III), if f .x/ D p

1 � x2, we can take

a.x/ D ˙.1 � mx2/ and b.x/ D x
p

2m � 1 � m2x2:

Integrating, the curve sought will have parametric equations:

u D ˙
�
x � m

3
x3
�
; v D 2m � 1 � m2x2

3m2

p
2m � 1 � m2x2:

The other two problems tackled are similar to those in the 1698 article; in-
deed, problem IV had already been solved in this context and in Prop. 94 of
the 120 Propositiones. As for problem V, which was also tackled in the man-
uscript just cited (Prop. 95), it consists of finding a curve whose arc element,
added to that of a circumference, will give a rectifiable curve.

Let a be the radius AC of the circumference and s the arc AB. Thus the
area of the sector CAB is 1

2
as, and the problem can be reduced to finding a

curve whose length, multiplied by 1
2
a, will give the area of the figure AHGB.

In fact, in this case the sum of the lengths of the arcs of the circumference of
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the curve, multiplied by 1
2
a, gives the area of the rectilinear figure AHGBCA.

If x D CD, the differential of the area AHGB will be equal to
ax � x2

p
a2 � x2

dx,

which, divided by 1
2
a, will give the element of the curve sought:

ds D 2x � 2x2

a2p
a2 � x2

dx:

Finally, ds2 must be divided into the sum of two squares with integrable
roots. Bernoulli breaks down ds2 into the sum of the squares

of
mxp

a
C nx2p

a3p
a � x

and of

pxp
a

C qnx2p
a3p

a � x
:

Making the sum of their squares equal to

4x2 � 8x3

a
C 4x4

a2

a2 � x2
;

we obtain for the constants m, n, p and q the values

n D q D �m D �p D ˙p
2:

Introducing these values into the preceding formulae and integrating, we
find the curve of coordinates

˙ 4a2 ˙ 2ax � 6x2

15a
p

a

p
2a � 2x and

˙ 12a2 � 6ax ˙ 2x2

5a
p

a

p
2a C 2x:
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An alternative solution is obtained by supposing ED D x. In this case the

differential of the area AHGB is
x2 � axp
2ax � x2

. It is therefore a matter of break-

ing down the square of this latter quantity divided by 1
2
a into the sum of

two squares, whose roots will be integrable. With similar calculations, Johann
Bernoulli finds the curve of coordinates

� 8a2 � 2ax � 2x2

5a
p

a

p
4a � 2x and

� 10ax ˙ 6x2

15a
p

a

p
2x:

3. A new formula

Within the framework of the theory of reptorial curves, Bernoulli obtains a
new formula for the rectification of curves, published only in the fourth vol-
ume of the Opera67. Bernoulli gives no details of the proof, simply saying that
it derives from the nature of the reptorial curve. Given a curve � and calling
its arc element ds, we indicate the tangent versor with � and the normal versor
with �:

� D dX
ds

D
�

dx
ds

;
dy
ds

�
� D

�
dy
ds

; �dx
ds

�
:

If r is the radius of curvature, we have r d� D � ds, and hence

d� D ds
r

�
dy
ds

; �dx
ds

�
D
�

dy
r

; �dx
r

�
:

ThenZ
�

ds D
Z

�

dx2 C dy2

ds
D
Z

�

�
dx
ds

dx C dy
ds

dy
�

D

D
Z

�

.�; dX/ D
Z

�

d.�; X/ �
Z

�

.X; d�/ D .�; X/jQP C
Z

�

y dx � x dy
r

where P and Q are the extremes of � .

67 Joh. B. Op. CLXIII, pp. 433–438 h. v.
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Now if the vector � at the extremes is perpendicular to X (with an appro-
priate choice of axes, this happens if the tangents at the extremes of the curve
are orthogonal), the length of � is given by the integralZ

�

y dx � x dy
r

:

In reality, Bernoulli writes b � y in place of y, and hence

L.�/ D
Z

�

.b � y/ dx C x dy
r

:

The result applies immediately to the elastic curve, whose equation is

y D
Z x

0

t2dtp
1 � t4

where x is variable between 0 and 1, and y between 0 and

b D
Z 1

0

t2dtp
1 � t4

:

For this curve r D 1

2x
, and sinceZ

2x.b � y/ dx D x2.b � y/ C
Z

x2dy

we have, for the length of the portion of the curve from the first extreme till
the point .x; y/ the expression

x2.b � y/ C 3

Z x

0

t4dtp
1 � t4

:

For the total length, setting x D 1 and y D b in the above formula, we get

L.�/ D 3

Z 1

0

x4dxp
1 � x4

:

On the other hand,

ds D dxp
1 � x4
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and thus we have the relationZ 1

0

dxp
1 � x4

D 3

Z 1

0

x4dxp
1 � x4

:

More generally, if the equation of the curve is

y D
Z x

0

tndtp
1 � t2n

its length, given by the new formula, will be

L.�/ D .n C 1/

Z 1

0

x2ndxp
1 � x2n

;

from which it follows thatZ 1

0

dxp
1 � x2n

D .n C 1/

Z 1

0

x2ndxp
1 � x2n

:

In the event that the tangents at the extremes of the curve are not orthogo-
nal, a corrective term is necessary. We arrange the axes in such a way that the
tangent of the first extreme of the curve will make a right angle with the x-axis,
and suppose that the tangent at the other extreme makes an acute angle with
the y-axis. In this case the scalar product .�; X/ does not vanish at point Q,
but is equal to the length of the projection of X on the tangent. Bernoulli calls
this length t , and thus

L.�/ D t C
Z

�

.b � y/ dx C x dy
r

:

4. The «Schediasma Cyclometricum»

Another text which refers to the rectification of curves – but in this case of a
particular curve, the circumference – was published in the fourth volume of
the Opera under the title De Evolutione successiva et alternante Curvae cujus-
cunque in infinitum continuata, tandem Cycloidem generante, Schediasma Cy-
clometricum68. Bernoulli had concerned himself in various circumstances –
albeit marginally – with the problem of giving a good approximation of the

68 Joh. B. Op. CLXV, pp. 439–449 h. v.
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length of the circumference69; here he approaches it from a rather original
viewpoint.

The starting point consists in the observation that given any curve, if we
trace its involute, and then the involute of the involute starting from the final
point, and then again the involute of the second, and so on, always starting
from the point of arrival, the succession of curves thus obtained will converge
to a cycloid. Moreover, this convergence will be very rapid, so much so that
after a small number of repetitions the curve will not be perceptibly distin-
guishable from the cycloid. Johann Bernoulli offers no justification for this
statement, saying merely that «its truth will readily appear to anyone who re-
flects attentively». On the other hand it is not so much the proof of this result
that interests Bernoulli, as its application to the rectification of the circumfer-
ence.

For this, let the starting curve be a quarter of a circle ADB of radius 1,
and let AEF , FGH, HIK, KLM, MNO, OPQ, QRS, etc. be the successive
involutes. Starting from point D, trace the tangents DE, EG, GI , IL, LN, LP,
etc. which will each prove to be perpendicular to the next. Then if z D AD,

1

dz
D ED

d.AE/
D GE

d.HG/
D IG

d.HI/
D LI

d.ML/
D NL

d.MN/
D : : :

Now, if a marks the length of the circumference ADB and b, c, e, f , : : : the
lengths of the odd-numbered curves AEF , HIK, MNO, QRS, : : :, because of
the properties of the involutes the tangents ED, IG, NL, etc. will be equal to
the arcs AD, HG, ML, etc., while the segments GE, LI, PN will be equal to
the arcs FE, KI , ON, that is to say to b � AE, c � HI , e � MN. The above
relations can then be written

1

dz
D z

d.AE/
D b � AE

d.HG/
D HG

d.HI/
D c � HI

d.ML/
D ML

d.MN/
D : : :

69 See for instance the letters with Leibniz on the reptoria curve, between 1707 and 1709, in
Leibniz, Math. Schriften 3, pp. 811–844.
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or

d.AE/ D z dz

d.HG/ D .b � AE/ dz

d.HI/ D HG dz

d.ML/ D .c � HI/ dz

d.MN/ D ML dz

from which one gets easily

AE D z2

2

HG D bz � z3

2 � 3

HI D bz2

2
� z4

2 � 3 � 4

ML D cz � bz3

2 � 3
C z5

2 � 3 � 4 � 5

MN D cz2

2
� bz4

2 � 3 � 4
C z6

2 � 3 � 4 � 5 � 6

QP D ez � cz3

2 � 3
C bz5

2 � 3 � 4 � 5
� z7

2 � 3 � 4 � 5 � 6 � 7

QR D ez2

2
� cz4

2 � 3 � 4
C bz6

2 � 3 � 4 � 5 � 6
� z8

2 � 3 � 4 � 5 � 6 � 7 � 8

and so on.

Now if z D a, the point D coincides with B and we will have

AEF D b D a2

2

HGF D ba � a3

3Š
D 2a3

3Š

HIK D c D ba2

2
� a4

4Š
D 5a4

4Š

MLK D ca � ba3

3Š
C a5

5Š
D 16a5

5Š
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MNO D e D ca2

2
� ba4

4Š
C a6

6Š
D 61a6

6Š

QPO D ea � ca3

3Š
C ba5

5Š
� a7

7Š
D 272a7

7Š

QRS D f D ea2

2
� ca4

4Š
C ba6

6Š
� a8

8Š
D 1385a8

8Š
etc.

At this point, Bernoulli takes, in place of the curve QRS, a semicycloid,
generated by a circumference of diameter ST . From the properties of the cy-
cloid we have QRS D 2ST , and QT D BC D 1 is the semicircumference of
diameter ST . Hence QT W 2ST D ADB W 2AC D a W 2 and thus

a9 D 2 � 8Š

1385
D 16128

277
:

Extracting the ninth root we obtain70 a D �

2
D 1:570805 from which it

follows that � D 3:141610.
It is even possible to avoid the extraction of the root, since after a certain

number of iterations we see that the involutes will be substantially equal. If,
for example, QRS D QPO, we have

1385a8

8Š
D 272a7

7Š

from which it follows that

a D 8 � 272

1385
D 1:57112

which gives, for � , the value 3:14224.

70 Bernoulli gives for the ninth root the value
135

86
, from which he obtains for � the value

135

43
, i.e. about 3.1395, considerably lower than the truth.
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IV. The problem challenge of 1703 and the controversy with Craig

The transformation of curves is also the focus of the controversy in which Jo-
hann Bernoulli, between 1703 and 1710, was engaged with the English mathe-
matician John Craig. The starting point is a problem which Bernoulli claimed
to have received from «a Belgian mathematician71 » and which he sent, to-
gether with six more, to Pierre Varignon and to Gottfried Wilhelm Leibniz on
6 May and 10 June 1702 respectively72. As he believed it to be of a certain
importance, in January 1703 he begged Varignon to bring it to the attention
of mathematicians in the Journal des Savants:

Pour remplir ce vuide, je vous fais part d’un problème tres general que
quelque mathematicien de mon voisinage m’a proposé et que j’ay resolu.
. . . Il me le proposa donc en ces termes generaux Datam curvam algebrai-
cam id est vulgo geometricam transformare in infinitas alias curvas etiam
geometricas sed diversae speciei, singulas scilicet longitudine aequales pro-
positae . . . Vous voyez de quelle importance ce probleme est, d’autant
que la solution donne une grande ouverture pour la rectification et la re-
duction de courbes; car une courbe etant rectifiable, on aura une infinité
d’autres de differentes especes qui le seront aussy . . . Si vous jugez ce
probleme aussy digne qu’il me paroit, je vous prie de le proposer publi-
quement aux scavans, on leur donne tout le temps de cette année cy. On
souhaiteroit leur solution, car on espere d’en profiter pour le bien de la
geometrie interieur.73

On 12 February 1703 a Problème à résoudre was published in the Paris and
Amsterdam editions of the Journal des Savants, in the following terms:

71 Bernoulli gives no further information about this Belgian mathematician who could be
Jacques-François Le Poivre.

72 In Joh. B. Op. LXXIV, pp. 359–373 h. v., Bernoulli states that he solved it shortly after
receiving it «ab egregio quodam Belgii mathematico» and dates the solution back to four
years before it was actually published, in summer 1705 in the AE. His letter to Varignon
from Groningen (6 May 1702) has been lost, but its contents are known from Varignon’s
answer (Paris 24 May 1702, Joh. B. Briefe 2, p. 314) and from later missives to Leibniz
(Groningen, 10 June 1702, Leibniz Math. Schriften 3, pp. 699, 701–702) and to Varignon
(Groningen, 20 January 1703, Joh. B. Briefe 3, pp. 54–55). In the attachment to the letter
to Leibniz the problem in question is the third of the seven presented there and is formu-
lated as follows: «Les courbes paraboliques et hyperboliques de quelques degrez qu’elles
soient transformer en d’autres courbes algebraiques, en sorte que les arcs des unes soient
egaux aux arcs des autres», Leibniz, Math. Schriften 3, p. 702. Subsequently, as we shall
see, the statement was changed into a more general formulation. Johann Bernoulli’s first
solution on this subject appears in Prop. 85 of the manuscript 120 Propositiones, Ms. 27,
pp. 206–208 h. v.

73 Joh. Bernoulli to P. Varignon, 20 January 1703, Joh. B. Briefe 3, p. 55.
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Une courbe algébraïque (vulgairement appellée géométrique) étant don-
née, la transformer en une infinité d’autres aussi géométriques, mais
d’especes differentes, lesquelles soient chacune de même longueur que la
proposée74.

The possibility cannot be excluded that among Johann Bernoulli’s objec-
tives was a new challenge to his brother, as appears from brief references in
his correspondence with Varignon,75 and with Jacob Hermann76, but Jacob,
despite these urgings, decided not to concern himself with it.77 Some attempts
at solution, which proved mistaken or unsatisfactory, and remarks on the dif-
ficulties encountered, emerge from the correspondence between Johann Ber-
noulli and various mathematicians between 1703 and 1705. The commonest
flaw in the solutions attempted by Varignon,78, by Hermann79 and later by
Abraham de Moivre80 was that they had not ruled out the possibility that
the new curve was nothing but the previous one, in a different coordinate sys-
tem81.

1. Leibniz’s solution

The first person to send Bernoulli a correct and appropriate solution was
Leibniz, in a letter (in Latin) of 3 January 1704, to which he attached a text
in French, containing the same solution ready for publication in the Journal
des Savants, although it was never, in fact, published82. His method is based

74 Joh. B. Op. LXXII, p. 353 h. v.
75 P. Varignon to Joh. Bernoulli, 17 February 1703, Joh. B. Briefe 3, p. 56; Joh. Bernoulli to

P. Varignon, 20 March 1703, Joh. B. Briefe 3, pp. 68–69.
76 Joh. Bernoulli to J. Hermann, 10 March 1703, UB Basel ms. L I a 659, Nr. 2.
77 Joh. Bernoulli to J. Hermann, 26 January 1704, UB Basel ms. L I a 659, Nr. 4; J. Her-

mann to Joh. Bernoulli, 13 February 1704, UB Basel ms. L I a 659, Nr. 4*; Joh. Bernoulli
to J. Hermann, 28 June 1704, UB Basel ms. L I a 659, Nr. 5.

78 P. Varignon to Joh. Bernoulli, 7 May 1703, Joh. B. Briefe 3, p. 87.
79 J. Hermann to Joh. Bernoulli, 14 November 1703 and 22 December 1703, UB Basel

ms. L I a 659, Nr. 2*, 3*.
80 A. de Moivre to Joh. Bernoulli, 27 July 1705, UB Basel L I a 664, Nr. 3*: Wollenschläger

pp. 210–212.
81 On the history of this problem in various cultural contexts, cf. H. Krieger, Konstruc-

tion bogengleicher algebraischer Kurven in historischer Sicht, Centaurus, 16, 1972, pp. 92–
162 and C. S. Roero, Johann Bernoulli’s and Leibniz’s solutions to the 1703 Problem on
the Transformation of Algebraic Curves, H. Breger, J. Herbst, S. Erdner (eds.), VIII
Internationaler Leibniz-Kongress, Einheit in der Vielheit, Vorträge 2, Hannover 2006,
pp. 848–855.

82 Leibniz, Math. Schriften 3, pp. 732–736. The original is preserved in UB Basel ms. L I a
19.2, ff. 215r–216r and an autograph copy in LA Hanover ms. LBr 57, f. 94r–95v.
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on the theory of involutes and caustics, which was greatly developed at this
time83.

Leibniz considers three curves: the one given by B.B/, a curve F.F / which
acts as a mirror, and another, C.C/, enveloped by rays of light reflected from
F.F /. The curves B.B/ and C.C/ are of the same length and are both invo-
lutes of F.F / (this is why Leibniz also calls them «co-evolutes») and if this
datum is algebraic, the caustic C.C/ will be algebraic too. A specific example
of application of the method, in which the mirror curve is an ellipse, is offered
by Bernoulli in his letter of 27 December 170584.

2. Craig’s first solution

A year later a solution by John Craig, in a handful of lines, appeared in
the Philosophical Transactions85. Craig reduces the problem to finding a new
curve whose arc element is equal to the given curve. If v and s are the coordi-
nates of the given curve, and x, y those of the new curve, then

dv2 C ds2 D dx2 C dy2:

83 G. F. de l’Hôpital, Analyse des infiniment petits, Sections V–VII, Paris 1696, pp. 71–130.
84 Leibniz, Math. Schriften 3, pp. 778–781. The original is preserved in UB Basel ms. L I a

19.2, ff. 239r–240r and an autograph copy in LA Hanover ms. LBr 57, f. 147v. Johann
Bernoulli told Hermann of this solution by Leibniz, and Hermann passed on the infor-
mation to the Italian mathematician Guido Grandi (cf. S. Mazzone, C. S. Roero, Guido
Grandi – Jacob Hermann, Carteggio (1708–1714), Firenze, Olschki, 1992, pp. 173–175)
who was to make use of it in his book Risposta apologetica . . . , Lucca 1712, p. 282.

85 fJ. Craigg Op. 73, pp. 355–358 h. v.
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Let dx D dv � m dz we have

dy D
q

ds2 C 2m dv dz � m2dz2:

If in this last equation ds is replaced with its expression in function of v and dv,
obtained from the equation of the curve, and if dz (expressed in terms of v
and dv) is chosen in such a way that dx and dy be algrebraically integrable,
the functions x.v/ and y.v/ thus determined are the coordinates of the curve
required.

In support of his solution, Craig gives four very simple examples: when the
given curve is respectively a parabola, a circumference, an ellipse and a cubic
parabola.

3. Bernoulli’s reaction and his solution with «reptorius» motion

Johann Bernoulli’s answer was to arrive more than a year later, and was to
be published in the August 1705 issue of the Acta Eruditorum86. The first
pages are devoted to a criticism of Craig’s supposed universal method, which,
says Bernoulli, reduces the problem to one no less difficult, namely how to
choose dz, in such a way that dx and dy be integrable. It is true that the method
worked in the examples, but it is as though someone who had found the solu-
tion of certain second- and third-degree equations, claimed to have found the
general solution of all algebraic equations. On the other hand, the problem
Craig tackled is more difficult than the one posed, which actually asked only
that the two curves be of the same length, whereas Craig demands that the
single arc elements be equal87.

Once the criticism of Craig’s article has been completed and a glancing
reference has been made to Leibniz’s method with the co-evolutes, Bernoulli
turns to expounding his own solution, for which he introduces a new method
of generation of curves by motus reptorius88.

86 Joh. B. Op. LXXIV, pp. 359–373 h. v.
87 Bernoulli made harsh criticisms of Craig’s solution in his letters to de Moivre (15 No-

vember 1704, UB Basel L I a 664, Nr. 1: Wollenschläger pp. 186–187; 11 July 1705, UB
Basel L I a 664, Nr. 2: Wollenschläger p. 200), to Varignon (13 June 1705, Joh. B. Briefe 3,
p. 159) and to Leibniz (25 July 1705, Leibniz Math. Schriften 3, p. 769).

88 On this motion, see Eugene Prouhet, Sur le courbes engendrées par le mouvement de rep-
tation, pour servir d’eclaircissement à plusieurs passages des Oeuvres de Jean Bernoulli and
Sur les reptoires, Nouvelles Annales de Mathématiques, 1854, pp. 274–282 and 335–348,
to which we refer for a more thorough mathematical analysis.
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Given two curves, one fixed and the other mobile, the latter is made to run
always parallel to itself, in such a way that it be always tangent to the fixed
curve. The definition of the motion is split in two, according to whether the
mobile curve touches with its convexity the convex part of the fixed curve, as
in the first figure (motus obreptionis) or its concave part as in the second figure
(motus subreptionis). A point on the plane of the mobile curve will describe a
new curve, which is called reptoria.

We see immediately that two different points describe congruent reptoriae
curves (Lemma II). Bernoulli proves that if the generating curves are algebraic,
the reptoria curve too will be algebraic (Lemma I); its length is equal to the
sum (in the case of motus obreptionis) or the difference (in the case of motus
subreptionis) of the lengths of the generating curves (Theorem I).

The proof comes from the definition of the motus reptorius.
Let ACB be the fixed curve and FCE the mobile curve, and let E be the

point which describes the reptoria by motus obreptionis. Let Cm be an infin-
itesimal element of the curve FCE, and let n be the point on ACB, infinitely
close to C , in which the tangent will be parallel to the tangent in m to FCE.
When point m goes into n, point E will be moved to e and will have travelled
an infinitesimal arc Ee parallel to mCn. Thus Ee D mn D mC C Cn; the arc
element of the reptoria is equal to the sum of the arc elements of the generat-
ing curves. If now the curves are of equal width, i.e. if the angles formed by
the normals to the curves at their endpoints are equal, they will simultane-
ously absorb each other in the motus reptorius and hence the total length of
the reptoria is equal to the sum of the lengths of the curves.

The reptoria solves the problem posed. In fact, given an algebraic curve, di-
vide it into two parts of equal width which move one on the other in motus
reptorius. The resulting curve will be algebraic and its length will be the sum
of the two, i.e. equal to the length of the given curve. The same procedure
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can be applied to this new curve, obtaining a second, then a third and so on;
hence infinite curves all of the same length as the given curve. These curves are
all different, except in one case, when the initial curve is an arc of circumfer-
ence. For this case Bernoulli finds a particular solution, from which with the
previous procedure infinite curves of the same length are obtained.

Bernoulli’s article did not bring the controversy with Craig to an end, for
Craig was to take up the question again, as we shall see, some years later.

Meanwhile, motus reptorius was the subject, at the beginning of 1707 and of
1709, of an exchange of letters between Johann Bernoulli and Leibniz, par-
tially published in the Miscellanea Berolinensia89. In the first letter, dated
15 January 1707, under the title Inventa de Appropinquationibus promtis ad me-
tiendas figuras per Motus repentis considerationem exhibitis, Johann examines
the case in which the curves of the motus reptorius are two equal ellipses, but
one rotated by 90ı with respect to the other, in such a way that the semi-axes
be exchanged.

Bernoulli begins his letter by finding the equation of the reptoria curve. Call-
ing a and b the semi-axes of the immobile ellipse, the semi-axes of the mobile
ellipse will then be b and a, and the two ellipses, as regards their centres, will
have respectively the equations90

x2

a2
C z2

b2
D 1 and

x2

b2
C z2

a2
D 1:

Now let S D .x; z/ be a point of the fixed ellipse E. The angular coefficient
of the line tangent in S is

t D �x

z

b2

a2
:

89 Joh. B. Op. LXXVII, pp. 375–381 h. v., which is an extract from Joh. Bernoulli’s letter to
Leibniz, 15 January 1707, Leibniz Math. Schriften 3, pp. 803–809, the original of which
is held in LA Hanover, ms. LBr. 57, ff. 165r–167r; Leibniz Op. 78, p. 383 h. v., which is
an extract from Leibniz’s letter to Joh. Bernoulli, 1 February 1707, Leibniz Math. Schrif-
ten 3, pp. 811–812, the original of which is held in UB Basel ms. L I a 19,2 ff. 250–251;
Joh. B. Op. LXXIX, pp. 385–387 h. v., extract from Joh. Bernoulli’s letter to Leibniz,
23 March 1707, Leibniz Math. Schriften 3, pp. 812–814, an autograph copy of which
is held in UB Basel ms. L I a 18, ff. 166–167; Joh. B. Op. LXXX, pp. 429–430 h. v., ex-
tract from Joh. Bernoulli’s letter to Leibniz, 15 April 1709, Leibniz Math. Schriften 3,
pp. 842–843.

90 We use the variable z because, as we shall see, Bernoulli uses the symbol y for another
magnitude.
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Similarly, the angular coefficient of the tangent to the mobile ellipse E1 at
the point S1 D .x1; z1/ is

t1 D �x1

z1

a2

b2
:

In motus reptorius, the points S and S1 will touch if the two coefficients t

and t1 are equal, i.e. if

z1 D a4z

b4x
x1:

The values of x1 and z1 are found by making the point S1 be on E1, i.e.
x2

1

b2
C z2

1

a2
D 1. We find

x1 D b4xp
b6x2 C a6z2

;

z1 D a4zp
b6x2 C a6z2

:
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At this point it is not difficult to find the equation of the serpentine curve
described by the centre of the mobile ellipse. In fact X D x C x1 and Z D
z C z1, so the generic point of the reptoria has coordinates

X D x C b4xp
b6x2 C a6z2

;

Z D z C a4zp
b6x2 C a6z2

;

or, writing with Bernoulli, y D a

b
z,

X D x C b3xp
b4x2 C a4y2

;

Z D b

a
y C a3yp

b4x2 C a4y2
:

The new curve, he says, is contained between two circumferences of radius
a C b and

p
2a2 C 2b2, and is tangent to the first at the points .0; ˙.a C b//,

.˙.a Cb/; 0/ and to the second at four intermediate points between these two.
As a result, its length, equal to twice the length of the ellipse of semi-axes a

and b, is included between those of the circumferences found. Specifically, if
the ellipse has semi-axes 4 and 5, the radii of the circumferences are 9 andp

82, which differ by less than one part in 160, so that the length of the ellipse
is included between those of the circumferences of radii 9

2
and 1

2

p
82.

Bernoulli does not prove these statements, which can be checked by consid-
ering the maximum and minimum of the distance of the points of the curve
from the origin, or in other words the function

f .x/ D x2

 
1 C b3p

b4x2 C a4.a2 � x2/

!2

C .a2 � x2/

 
b

a
C a3p

b4x2 C a4.a2 � x2/

!2
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which is the square of the distance. If v2 D b4x2 C a4.a2 � x2/, then

f .x/ D
.a6 � v2/

�
1 C b3

v

�2

C .v2 � a2b4/

�
b

a
C a3

v

�2

a4 � b4
D g.v/

a4 � b4
;

and it is a matter of finding the maximum and minimum of the function g.v/

in the interval ab2 � v � a3.
Setting the first derivative equal to zero and simplifying, we arrive at the

equation
v4 � a2bv3 C a6b3v � a8b4 D 0;

which in the interval being considered has a single solution v D a2b. The
value of the function f .x/ at this point is 2.a2 C b2/, while at the extremes
of the interval the function has the value .a C b/2. Hence we have in conclu-
sion a curve with four «humps», one in each quadrant, and four «troughs»
at the intersection with the axes. At this point Bernoulli constructs a new
reptoria moving on itself the previous one, or rather the homothetic curve
of coefficient 1

2
in order to preserve its length, after aligning a hump with a

trough. He thus obtains a curve with eight humps, lying between two circum-
ferences which are even closer than the previous ones. Continuing this process,
curves are obtained with 16, 32, etc. humps, of a length equal to a multiple of
that of the ellipse, and which approximate ever more closely to the circumfer-
ence. In the preceding example, the second reptoria is between the circumfer-

ences of radii 9
2

C 1
2

p
82 and

q
41 C 1

2

p
6562; the third between those of radii

9
4

C 1
4

p
82 C 1

2

q
41 C 1

2

p
6562 and

q
41 C 1

2

p
6562, which differ by less than

one in 56000.
Leibniz’s answer was not slow to arrive, and on 1 February 1707 he sug-

gested to begin, rather than from an ellipse, from a rectifiable curve, for exam-
ple from an epicycloid. In this way all the subsequent reptoriae curves would
be rectifiable, and it would be possible to obtain excellent approximations of
the circumference. On 23 March, Bernoulli replied that in place of the ellipse
any closed curve could be taken, for instance one formed by two arcs of a
parabola. Indeed, it is not even necessary to start from a closed curve; any
arc of curve can be the starting point, as long as in the initial configuration
the two (equal) curves are tangent to each other. In the case, the subsequent
reptoriae will approximate an arc of a circle of the same amplitude. Finally,
coming back to the reptoria generated by an ellipse, Bernoulli remarks that if
this has an infinitely small semi-axis, i.e. if it is reduced to a segment counted
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twice, the subsequent reptoriae will be regular polygons, of 4, 8, 16, etc. sides
respectively.

Two years later, in a letter dated 15 April 1709,91 Bernoulli explicitly calcu-
lated the radii of the circle circumscribed to and inscribed in the reptoria with
2n humps, generated starting from the ellipse. To this end he divided in 2n

equal parts the circumference of diameter AB, equal to the sum AC C CB of
the semi-axes of the ellipse, and draw the segments C1; C2; : : : ; C2n�1 connect-
ing the point C to the points of division. The arithmetic mean of the segments
in odd places .C1 C C3 C : : : C C2n�1/ W 2n�1 is the radius of the circle circum-
scribed to, whereas the arithmetic mean of the segments in even places and of
the radius R of the circumference, .C2 C C4 C : : : C C2n�2 C R/ W 2n�1 is the
radius of the circle inscribed in the reptoria with 2n�1 humps, whose length is
equal to that of the ellipse.

4. Craig’s second solution

After the criticisms made in 1705 in the Acta Eruditorum Craig prepared his
response, which was published in the March–April 1708 issue of the Philo-
sophical Transactions and republished in 1710 in the Leipzig journal92. It was
a question of rebutting the statement made by Bernoulli, who had stressed the
difficulty of writing the square of the arc element dz2 C ds2 of the given curve
as dx2 Cdy2, the sum of the squares of the differentials of the unknown curve,
subject to the condition that dx and dy be integrable. Craig remarks that it is a
trivial problem: recalling with Diophantus that the integers m2 C n2, m2 � n2

and 2mn form a Pythagorean triple, setting

dx D .m2 � n2/dz C 2mn ds
m2 C n2

; dy D .n2 � m2/ds C 2mn dz
m2 C n2

91 Joh. B. Op. LXXX, pp. 429–430 h. v.
92 fJ. Craigg Op. 81, pp. 389–391 h. v.
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then
dx2 C dy2 D dz2 C ds2:

Hence if z and s are the coordinates of the given curve,

x D .m2 � n2/z C 2mns
m2 C n2

and y D .n2 � m2/s C 2mnz
m2 C n2

will be the coordinates of a new curve, which obviously will be of the same
length as the given curve.

Having solved the problem in such a surprisingly simple fashion, Craig went
on to criticise Bernoulli’s solution, which he felt must be regarded as a me-
chanical solution, since it used motion.

5. Bernoulli’s reply and Craig’s retraction

Bernoulli’s reply is contained in a letter to William Burnet dated 9 January
1709, an extract from which was to be published the following year in the first
volume of the Miscellanea Berolinensia93. Believing that he had found a new
curve of the same length as the given curve, Craig did not realise, Bernoulli
pointed out, that it was a matter of the same curve, written in a different sys-
tem of coordinates. He admitted that he himself had at first fallen into the
same misconception, but added that he had realised it immediately, as indeed
is clear from the footnote to Prop. 85 of the manuscript of the 120 Proposi-
tiones. The same thing had happened to Hermann and to De Moivre, who –
fortunately for them – had told Johann Bernoulli before publishing the solu-
tion, and thus had been advised of the error. Two years later, in an article in
the Philosophical Transactions94, Craig was to admit his mistake and recog-
nise the correctness of Bernoulli’s solution. The controversy ended without
bloodshed. However, at the height of the dispute between Leibniz and New-
ton over the priority of the invention of infinitesimal calculus, in a letter to
Leibniz Bernoulli came back to this problem, stressing that the English had
not been able to solve it:

. . . sicuti Cheynaeus quondam inepte iactavit, nihil nempe intra hos 20
vel 30 annos prodiisse in lucem, quae non sint iteratae repetitiones vel
ad summum levia tantum corollaria eorum, quae Newtonus iam pridem
invenerit, quasi nobis amplius relictum fuisse, vel nullius esse pretii, quod

93 Joh. B. Op. LXXXII, pp. 427–428 h. v.
94 fJ. Craigg Op. 83, p. 431 h. v.
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subinde a nobis nihil amplius relictum fuisse, vel nullius esse pretii, quod
subinde a nobis publicatum extat, et cuius in Newtonianis ne vestigium
quidem videre est: qualia sunt quae de Catenariis, Velariis, Isochronis pa-
racentricis, Brachystochronis, de novis proprietatibus Cycloidis, de eius
segmentis innumeris quadrabilibus, de Calculo exponentialium seu per-
currentium eosque differentiandi modo, de Coevolutarum dimensione,
de Motu traptorio, de reptorio, de Curvarum reductione ad circulares, de
earum transformatione, et de innumeris aliis, quae Angli pro parte tenta-
runt, sed omni suo calculo fluxionum adiuti irresoluta reliquerunt, quod
vel ex solo problemate Catenariae et Curvarum transformandarum pa-
tet, cui pertinaciter et longo tempore insudantes, aliud nihil quam turpes
paralogismos produxerunt95 .

V. Geodesics

The problem of the equation of lines of minimum length on a given surface ap-
pears for the first time in Johann Bernoulli’s writings in the form of a problem
he proposed in the Journal des Savants96 on 26 August 1697. It was the first
of a group of six problems brought to the attention of scholars, limited to the
surfaces of conoids or spheroids. The following year, his brother Jacob gave a
solution in the Acta Eruditorum97, and Johann commented on this solution a
few months later98. Further references to the problem can be found in the cor-
respondence with Leibniz, where Johann notes the fundamental property of
geodesics, namely that the plane osculatory to the curve is orthogonal to the
surface99. Although in his letter to Leibniz he claims to have found the general
equation of geodesics, the first surviving writing on this subject is from the last
months of 1728, when Johann sent the solution to the Swedish mathematician
Samuel Klingenstjerna (1698–1765). The latter wrote a review which was to
be inserted in the fourth volume of Johann’s Opere, the manuscript of which
is preserved in UB Basel, I a 12.4, ff. 256r–265r. Almost simultaneously, the

95 Joh. Bernoulli to Leibniz, 29 July 1713, Leibniz, Math. Schriften 3, p. 916.
96 Joh. B. Op. XXXIX, Opera I, pp. 204–205 – Streitschriften, pp. 292–293. Cf. Joh. B. Brie-

fe 2, pp. 120–121.
97 Jac. B., Solutio sex problematum fraternorum in Ephem. Gall. 26 Aug. 1697 propositorum,

AE Maij 1698, pp. 226–230, Opera, pp. 796–806 – Streitschriften, pp. 332–336. Cf. also
Streitschriften, Introduction, pp. 87–94.

98 Joh. B. Op. LII, Annotata in solutiones fraternas problematum quorundam suorum . . . , AE
Octobris 1698, pp. 466–474 – Streitschriften, pp. 383–392.

99 Joh. Bernoulli to Leibniz, 16/26 August 1698, Leibniz Math. Schriften 3, p. 532.
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problem was put to Leonhard Euler by way of Daniel Bernoulli, who was liv-
ing in St Petersburg100 at the time. We shall see Euler’s solution in due course;
for the moment, let us begin with Bernoulli’s.

1. Johann Bernoulli’s solution

As we have said, the starting point is the orthogonality between the plane
tangent to the surface and the plane osculating the curve, the latter being de-
termined by three infinitely close points l , b and c on the curve.

If ˛ and ˇ are the angles that the osculating plane � and the tangent plane

bGI make with the vertical plane, we have ˛ C ˇ D �

2
and hence

tan ˛ tan ˇ D 1:

It is then a matter of expressing this last equation in terms of the coordinates
and their differentials. Let L, B and C be the projections of the points l , b

and c on the plane xy. We put BD D EF D dx, DC D dy, ce D dz, and

LB D BC D be D ds D
q

dx2 C dy2 D constant101.
The calculation of tan ˇ is relatively easier, and is tackled first. To identify

the plane tangent to the surface, Bernoulli takes the straight lines bI tangent

100 Joh. Bernoulli’s letter to his son Daniel of 10/21 May 1728 on this subject has been lost,
but reference is made to it by L. Euler writing to Joh. Bernoulli, 18 February 1729, Euler
Opera IV/2, p. 92.

101 This is equivalent to taking as independent variable the arc length of the projection of
the curve on the horizontal plane xy.
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to the geodesic and bG tangent to the curve obtained by intersecting the given
surface with the plane102 x D xB .

The straight line IB, projection of bI on the horizontal plane, is tangent to
the projection curve LBC. Drawing GH perpendicular to IB, from the sim-
ilarity between the triangles103 CBD and BGH, it follows that BC W BD D
BG W HG and BC W CD D BG W HB, so that HG D T

dx
ds

and HB D T
dy
ds

.

The triangles ceb and bBI are also similar, hence ce W eb D bB W BI , from

which BI D z
ds
dz

. Consequently, HI D BI � HB D z
ds
dz

� T
dy
ds

.

The triangles bce and IHh are also similar, since bHhI and cbec are right an-
gles and bhIH D ccbe. It follows that bc W ce D IH W Hh, and since bc Dp

ds2 C dz2, we have

Hh D
�

z
ds
dz

� T
dy
ds

�
dzp

ds2 C dz2
D z ds2 � T dy dz

ds
p

ds2 C dz2
:

Finally, since GH is perpendicular to the plane IBb and Hh is perpendicular
to bI , intersection of the planes IBb and IGb, the triangle HhG is in a plane
orthogonal to both IBb and to IGb, with the result that 1GhH D ˇ. As bGHh is
a right angle, we have

tan ˇ D HG
hH

D T
dx
p

ds2 C dz2

z ds2 � T dy dz
: (1)

We now come to the calculation of tan ˛. The first equation is obtained
considering the vertical planes which pass through the two arc elements lb
and bc. Let lw D be D ds be the horizontal projections of lb and cb, and
let bw D dz, ce D dz0. Let ef D bw D dz and on the straight line bf mark
bp D bc. Then fc D ef � ce D dz � dz0 D �d2z.

102 If the equation of the surface is z D f .x; y/, the subtangent will be given by T D BG D
f .xB ; yB /

fy.xB ; yB/
.

103 As was usual at the time, Bernoulli identifies the infinitesimal arc of the curve with the
corresponding infinitesimal part of the tangent.
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The triangles bce and cfp are similar; in fact bbcp and bbpc are right angles
(the angle bpbc is infinitesimal), hence cfcp D ccbe. Therefore bc W be D fc W cp,
from which

cp D � ds d2zp
ds2 C dz2

:

Now let us compare the configuration on the curve with the configuration
on the projection on the plane xy.

Let BQ D BC and let QO be perpendicular to DC. Correspondingly, let104

bˇ D bc D bp. The straight line bˇ has the same inclination as bp, and thus
the segment pˇ is horizontal, and is projected on to BQ. The triangles BCD
and OQC are similar; in fact, 1BCQ and 1QOC are right angles, and therefore
1QCO D 1OBD. Thus we have BD W BC D OC W QC, and as OC D OD�CD D
BW � CD D d2y, then

QC D pˇ D d2y ds
dx

:

Now note that both cp and cˇ are orthogonal to bc, and thus the triangle
cpˇ rests on a plane orthogonal to both the osculating plane and the vertical
plane IBb. Since bcpˇ is a right angle, we have

tan ˛ D pˇ

cp
D �d2y

p
ds2 C dz2

dx d2z
: (2)

From the equation tan ˛ tan ˇ D 1, it follows that

�T dx
p

ds2 C dz2

z ds2 � T dy dz
d2y

p
ds2 C dz2

dx d2z
D 1

104 Nota bene: bˇ is on the plane lbw, while bp is on the plane bce.
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and in conclusion

T .ds2 C dz2/ d2y D .T dy dz � z ds2/ d2z: (3)

Thus far, the manuscript written by Klingenstjerna. Later, having learned
of Euler’s results on the same topic, Bernoulli added a number of comments
and specifications105 .

2. Euler’s solution

Euler’s complete solution was published in the 1728 volume of the Commen-
tarii Academiae Scientiarum Imperialis Petropolitanae106 which came out in
1732; but he told Johann Bernoulli of it – though omitting the proofs – in his
letter of 18 February 1729. Here Euler starts from the equation of the surface
written in differential form:

P dy D Q dz C R dx

where he assumes x as independent variable (i.e. dx D constant) in order to
obtain the equation of the geodesics107

Q d2y C P d2z

Q dy C P dz
D dy d2y C dz d2z

dx2 C dy2 C dz2
:

Starting from this equation, Euler discusses certain specific cases in this
letter. First of all, if the given surface is a cylinder over a curve whose equation
is

P dy D Q dz;

the equation of the geodesics becomes

dy d2y C dz d2z

dy2 C dz2
D dy d2y C dz d2z

dx2 C dy2 C dz2

105 These repeated interventions made themselves felt: Bernoulli several times changed no-
tations, creating no small difficulty for the reader.

106 L. Euler, E. 9, De linea brevissima in superficie quacumque duo quaelibet puncta jungente,
CP III 1728 (1732), pp. 110–120 – Euler Opera I/25, pp. 1–12.

107 L. Euler to Joh. Bernoulli, 18 February 1729, Euler Opera IV/2, pp. 92–94. Note that
Euler writes t , x and y instead of x, y and z. We have changed the notations here to
render them uniform with those Bernoulli had used previously.
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from which we derive dy d2y C dz d2z D 0, or in other terms

dy2 C dz2 D cost. D n2dx2:

If instead the surface concerned is a surface of revolution around the x-axis,
its equation is

y dy D �z dz C R dx

and therefore
y d2y � z d2z

y dy � z dz
D dy d2y C dz d2z

dx2 C dy2 C dz2
:

Remembering that d2x D 0, this equation can be integrated, obtaining

log.y dz � z dy/ D log
q

dx2 C dy2 C dz2 C c

and hence108

y dz � z dy D a

q
dx2 C dy2 C dz2:

If we set w2 D y2 C z2 and du2 D dx2 C dy2 C dz2, the previous equation can
be written in the more concise form

du D w
p

dx2 C dw2

p
w2 � a2

:

Specifically, for the sphere we have w2 C x2 D b2, and hence

du D b dxp
b2 � a2 � x2

from which Euler claims that he can deduce that the geodesics are great circles.
Finally, if the surface is a cone, its equation is of the kind

x

y
D F.y; z/

with F a homogeneous function of degree 0. Thus we have

y dx � x dy D y2dF D y2.M dy C N dz/

108 Euler omits the integration constant c, but still obtains the factor a in the subsequent
equation.
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which, compared with the general equation P dy D Q dz C R dx, gives P D
My2 C x and Q D �Ny2.

On the other hand, as F is homogeneous, yM C zN D 0, which together
with the preceding equation supplies the values of M and N :

M D z.y dx � x dy/

y2.z dy � y dz/
; N D � y.y dx � x dy/

y2.z dy � y dz/

and hence those of P and Q:

P D zy dx � xy dz
z dy � y dz

; Q D y2dx � xy dy
z dy � y dz

:

Finally, we obtain the equation

z dx d2z � x dz d2z C y dx d2y � x dy d2y

z dx dz � x dz2 C y dx dy � x dy2
D dy d2y C dz d2z

dx2 C dy2 C dz2
:

This last equation can be integrated, taking dx2 C dy2 C dz2 D ds2 and
x2 C y2 C z2 D w2. Remembering that d2x D 0, the right-hand side is equal

to
d2s

ds
, while as

y dy C z dz D w dw � x dx and dy2 C dz2 D ds2 � dx2;

the denominator of the left-hand side can be written as

w dw dx � x ds2:

As for the numerator, we have

w d2w C dw2 � ds2 D d.w dw/ � ds2 D
D d.x dx C y dy C z dz/ � dx2 � dy2 � dz2 D
D y d2y C z d2z

and hence in conclusion the equation of the geodesics on a conic surface be-
comes

w dx d2w C dx dw2 � dx ds2 � x ds d2s

s dw dx � x ds2
D d2s

ds
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or in other terms

ds D .w d2w C dw2/ ds � w dw d2s

ds2
D d

w dw
ds

:

This last equation admits an immediate integral:

s D w dw
ds

;

from which

s2 D w2 C c D x2 C y2 C z2 C c:

This last equation can be used in single cases to obtain the properties of the
geodesics.

3. Bernoulli’s remarks

At the time of publication of the work in the fourth volume of the Opera,
Johann Bernoulli added a series of observations which specified and simplified
what was to be found in Klingenstjerna’s manuscript.

In the first place, Bernoulli comments that it would have been possible to
cut the surface with the plane y D yB . In this case the resulting equation is
obtained from (3) putting x in place of y and writing 	 in place of T :

	.ds2 C dz2/ d2x D .	 dx dz � z ds2/ d2z: (4)

If we now take ds D constant (i.e. if we parameterise according to the length
of the arc of the projection curve on the plane xy), then dx d2x C dy d2y D 0,
and hence multiplying (4) by �T dx W dy we obtain:

T 	.ds2 C dz2/ d2y D
 

�	T
dz dx2

dy
C Tz

ds2dx
dy

!
d2z:

On the other hand, for any surface the equation

	 dy C T dx
T	

D dz
z
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is valid, hence T	 dz D z.	 dy C T dx/, which, when introduced into the pre-
ceding equation, gives

T	.ds2 C dz2/ d2y D
 

�z	 dx2 � Tz
dx3

dy
C Tz

ds2dx
dy

!
d2z D

D
�

�z	 dx2 C Tz
dx
dy

.ds2 � dx2/

�
d2z D

D .�	 dx2 C T dx dy/z d2z (5)

since ds2 � dx2 D dy2. Remembering that T	 dz D z.	 dy C T dx/, the final
equation becomes

.	 dy C T dx/.ds2 C dz2/ d2y D .�	 dx C T dy/ dx dz d2z

or, since dx d2x C dy d2y D 0,

dz d2z

ds2 C dz2
D 	 dy C T dx

�	 dx C T dy
d2y

dx
D 	 d2x � T d2y

	 dx � T dy
: (6)

Johann notes that he could have arrived at the same equation directly from (3).
In fact, multiplying by 	 , and remembering that T	 dz D z.	 dy C T dx/, we
obtain

T	.ds2 C dz2/ d2y D .	z dy2 C Tz dy dx � 	z ds2/ d2z D
D .�	 dx2 C T dy dx/z d2z;

namely equation (5).
These equations may take on a simpler form with the use of Euler’s nota-

tions109, specifically writing the equation of the surface in the form P dy D
Q dzCR dx. Then T D Qy=P and 	 D �Qy=R, and equations (6), (3) and (4)

109 Note however that the formulae do not coincide, since Bernoulli takes ds D constant,
whereas Euler assumes dx D constant.
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become respectively

dz d2z

dx2 C dy2 C dz2
D P d2x C R d2y

P dx C R dy

d2z

dx2 C dy2 C dz2
D Q d2y

Q dy dz � P dx2 � P dy2

d2z

dx2 C dy2 C dz2
D Q d2x

Q dx dz C R dx2 C R dy2
:

In a second note, Bernoulli comments that the problem admits an imme-
diate generalisation: instead of making the osculating plane of the unknown
curve orthogonal to the surface, one may assume that it makes a given angle 
.

In fact, in place of ˛ C ˇ D �

2
we may simply write ˛ C ˇ D 
, or

tan ˛ C tan ˇ

1 � tan ˛ tan ˇ
D tan 
 D n:

Remembering the equations (1) and (2), we may easily derive the differential
equation

.T dx2d2z � z ds2d2y C T dy dz d2y/

q
ds2 C dz2 D

D nz ds2dx d2z � nT dx dy dz d2z C nT dx d2y.ds2 C dz2/

or alternatively, proceeding as above,

.	 dx dy d2z C T dx2d2z � 	 dx dz d2y C T dz dy d2y/

q
ds2 C dz2 D

D n	 dx2dz d2z � nT dx dy dz d2z C .n	 dy d2y C nT dx d2y/.ds2 C dz2/:

Equation (3) of the geodesics is of the second order. In some cases, however, it
is reduced to the first order; for example, when the given surface is a cylinder
with generatrices parallel to the x-axis. In this case we have T D C1 and
equation (3) becomes .ds2 C dz2/d2y D dy dz dz, or

d2y

dy
D dz d2z

ds2 C dz2
:
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Recalling that ds D constant, we therefore have log dy2 D log.ds2 C dz2/ C c,
and hence

n dy2 D ds2 C dz2 D dx2 C dy2 C dz2:

In our case, z is function only of x, and so dz D p dx. Thus .n � 1/dy2 D
.1 C p2/dx2, and hence

p
n � 1 dy D

p
1 C p2 dx:

The quantity on the right-hand side is the element of the arc of the curve
z D z.x/. If A.x/ is its length, we have

y
p

n � 1 D A.x/:

4. Surfaces of revolution

Having commented that it is possible to arrive at equation (6) without calcu-
lating the angle ˇ (but the calculations are no less lengthy than those which
preceded), Bernoulli tackles the specific case of surfaces of revolution around
the z-axis. In this case the cylindrical coordinates110 
, � and z are more con-
venient, linked to x, y, z by the equations

x D � cos 


y D � sin 


z D z:

Reasoning in a manner similar to the general case, Bernoulli calculates

tan ˇ D tan1GhH D �d�
p

ds2 C dz2

� d
 dz

and

tan ˛ D � ds d2
 C 2d� ds d


d�
:

110 In place of 
, � and z, Bernoulli continues to use x, y and z. In the interests of clarity we
have uniformly used the modern notation.
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Since ˛ Cˇ D �

2
, we have tan ˛ tan ˇ D 1 and hence we arrive at the equation

.� d2
 C 2d� d
/.ds2 C dz2/ D � d
 dz d2z

which can also be written in the form

�2d2
 C 2� d� d


�2d

D 1

2

2dz d2z

ds2 C dz2
: (7)

This last equation admits an immediate integral:

log �2d
 D log b C log
q

ds2 C dz2

or

�2d
 D b

q
ds2 C dz2:

On the other hand, in a surface of revolution z is a function only of �, hence
dz D p.�/ d�. Recollecting that ds2 D d�2 C �2d
2, we will thus have the
equation

d
 D b d�

�

s
1 C p2

�2 � b2
: (8)

This is an equation with separable variables, and hence the determination of
the projection curve is reduced to the quadratures. Once this curve has been
found, the geodesic on the surface is immediate, at least in principle.

Three examples illustrate the method, when the surface is 1. a horizontal
plane; 2. a cone, and 3. a sphere. In the first case, we have z D constant and
hence p D 0. Equation (8) thus becomes

d
 D b d�

�
p

�2 � b2

and integrating

c C 
 D arctan

p
�2 � b2

b
:

It readily follows from this that

� cos.c C 
/ D b
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and hence the geodesic is a straight line, whose projection on the plane xy has
the equation

x cos c � y sin c D b:

If the surface is a cone, we have z D n� and hence p D n D constant. Equa-
tion (8) thus becomes

d
 D
p

1 C n2
b d�

�
p

�2 � b2

whose solution is

c C 
p
1 C n2

D arctan

p
�2 � b2

b
:

Reasoning as above, and selecting the origin of the angles in such a way as to
have c D 0, we thus obtain the equation

� cos

p

1 C n2
D b:

In this case the projection curve is not explicitly expressed in terms of the
variables x and y; Bernoulli, however, gives it a construction by points. If

˛ D 
p
1 C n2

, the quantity � proves equal to b sec ˛. Then, taking the circum-

ference with centre A and radius AL D b, take an arbitrary angle ˛ and draw
the straight line AD D sec ˛. This done, take an angle 1LAF D ˛

p
1 C n2, and

on the straight line AF obtain the segment AB D AD. Point B will be on the
projection curve.

The example of the sphere is the most complex of the three. If a is the radius,

we have z D p
a2 � �2 and p D � �p

a2 � �2
. Equation (8) thus becomes

d
 D ab d�

�
p

�2 � b2
p

a2 � �2
:
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In order to integrate the second member, Bernoulli carries out a series of
changes of variable in succession111:

� D ab
u

;

u2 D cv;

v D a2 C b2

2c
� t;

and arrives at the equation

d
 D dt

2
p

˛2 � t2
;

with ˛ D a2 � b2

2c
.

Integrating, we get

2
 D arcsin
t

˛

or

t D a2 C b2

2c
� a2b2

c�2
D sin 2
:

Multiplying by �2, we obtain

�2.a2 C b2/ � 2a2b2

a2 � b2
D 2�2 sin 
 cos 


and returning to the variables x and y,

2xy.a2 � b2/ D .x2 C y2/.a2 C b2/ � 2a2b2;

or else

a2.x2 C y2 � 2xy/ C b2.x2 C y2 C 2xy/ D 2a2b2:

111 The constant c in the last two formulae is not essential, serving merely as a guarantee of
homogeneity.
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At this point Johann carries out the change of variables

x C y D up
2

;

x � y D vp
2

;

and arrives at the equation
u2

a2
C v2

b2
D 1:

Bernoulli stops at this equation, without saying that the projection of the ge-
odesic is an ellipse with major axis equal to the radius a of the sphere nor –
which is more important – that consequently the geodesics on the sphere are
arcs of great circles, a fact which Cramer, in a footnote, proves by recourse to
a property of spherical trigonometry.

5. Jacob Bernoulli’s solution and Johann’s criticisms

As we said at the beginning, the problem of the geodesics on a surface of
revolution had been posed by Johann in the summer of 1697. A few months
later, Jacob Bernoulli had given the following solution. Let z.�/ be the equa-
tion of the surface in cylindrical coordinates112 , and let t be the segment
of the tangent to a meridian (intersection of the surface with the halfplane

 D constant) from the tangency point to the z-axis.

Then, taking


 D
Z

at d�

�2
p

�2 � a2
; (9)

the point of the cylindrical coordinates .�; 
; z.�// lies on the geodesic.
Jacob offers no justification for this result, which he applies only to the case

of the cone. In his response, Johann states that at the basis of his brother’s
solution is the principle that the difference between two angles which the so-
lution curve makes with two infinitely close meridians is equal to the angle
between the two tangents to the meridian at the points of intersection. This
property is obviously valid only for surfaces of revolution, whereas Johann
maintains that he has a general solution valid for any surface.

112 Jacob writes x instead of �, indicates the arc 
 with CF and does not introduce the co-
ordinate z, which appears only implicitly by means of the tangent t . Johann uses Jacob’s
notations, calling z the arc 
.
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In the text published in his Opera, Johann returns to Jacob’s solution both
to compare it with his own and show that they coincide, and to offer a proof
that depends on the principle set forth. As regards the comparison between
the two solutions, we need only remark that

t D �

q
d�2 C dz2

d�
D �

p
1 C p2:

Introducing this value into the previous formula, we at once obtain (8), only
changing b into a.

Once the agreement between the two formulae has been established, Johann
goes on to the proof according to the above principle. To this end he calculates,
on the one hand, the tangent of the angle � between the geodesic and the
meridian:

tan � D � � d
q
d�2 C dz2

and on the other, the angle ı between the two tangents113:

ı D �
d


t
D d� d
q

d�2 C dz2
:

113 As it is infinitesimal, the angle ı coincides with its tangent.
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In view of what has been said, this angle will be equal to the differential of � .

Writing d� D
q

d�2 C dz2, we have

d� d


d�
D �

d
� d


d�

1 C
�� d


d�

�2
:

Setting v D � d


d�
, the equation becomes

v d�

�
D � dv

1 C v2

from which it follows that

log
a

�
D log v � log

p
1 C v2

and hence
a

�
D vp

1 C v2
:

In conclusion we have

ap
�2 � a2

D v D � d


d�
D �2 d


t d�

which immediately gives Jacob’s formula (9).

6. Leibniz’s method

In a letter, of 29 July 1698, Leibniz had suggested another approach to the
general problem114. The given surface was considered as a polyhedron with
infinitesimal plane sides; taking two points R and S on the curve, belonging
to two contiguous faces, it was a matter of finding a point T on the segment
common to the two faces, in such a way that the sum RT C TS would be
minimal. From this, Leibniz said, an equation would be derived which would
define the required curve. As is evident, it was a matter of a programme rather
than of a solution, and in his reply Bernoulli calls it «your method, or rather

114 Leibniz to Joh. Bernoulli, 29 July 1698, Leibniz, Math. Schriften 3, pp. 526–527.
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the basis of some method»115 , stating that it was the first idea that had struck
him, but it did not lead to the construction of the curve.

Subsequently he certainly had to change his mind, because at the end of
the text in the Opera we find a new solution to the problem of the geodesics,
precisely according to the lines proposed by Leibniz.

Bernoulli considers three infinitely close points a, b and c on the curve, and
the corresponding projections A, B and C on the plane xy.

Let

AE D f; EB D m; Bb � Aa D c;

ED D g; DC D n; Cc � Bb D e;

we have ab D p
f 2 C m2 C c2, bc D p

g2 C n2 C e2. The sum

ab C bc D
p

f 2 C m2 C c2 C
p

g2 C n2 C e2

must be minimal, when point b is made to vary, while a and c remain fixed.
Bernoulli makes b vary on the plane x D xB ; calling the corresponding point
ˇ we will then have

aˇ D
p

f 2 C .m C dm/2 C .c C dc/2:

Analogously,

ˇc D
p

g2 C .n � dm/2 C .e � dc/2:

115 Joh. Bernoulli to Leibniz, 16/26 August 1698, Leibniz Math. Schriften 3, p. 532.
«Methodus tua vel potius basis alicujus methodi . . . »
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Since ab C bc is minimal, the first variation must vanish, and hence

m dm C c dcp
f 2 C m2 C c2

� n dm C e dcp
g2 C n2 C e2

D 0:

Now let T be the subtangent to the intersection curve of the surface with the

plane x D xB . We have T D z
dm
dc

, which, when introduced into the preceding

equation leads to

mT C czp
f 2 C m2 C c2

D nT C ezp
g2 C n2 C e2

:

This last can also be written in the form

T

�
mp

f 2 C m2 C c2
� np

g2 C n2 C e2

�

D z

�
ep

g2 C n2 C e2
� cp

f 2 C m2 C c2

�
:

Apart from the sign, the terms within brackets are the differences of the quan-

tities
mp

f 2 C m2 C c2
and

cp
f 2 C m2 C c2

. Bearing in mind that the points

a, b and c are infinitely close, these two quantities are simply

dyp
dx2 C dy2 C dz2

and
dzp

dx2 C dy2 C dz2
;

so that in conclusion we have

T d

�
dyp

dx2 C dy2 C dz2

�
C z d

�
dzp

dx2 C dy2 C dz2

�
D 0:

Specific forms of the equation of the geodesics are obtained by making an ap-
propriate choice of the independent variable. If ds D p

dx2 C dy2 D constant,
we come back to Bernoulli and Klingenstjerna’s equation (3); if instead we
take as constant the arc element

p
dx2 C dy2 C dz2, we find the equation

T d2y C z d2z D 0:
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In any case it is generally impossible to reduce the equation to one of first
order.

VI. Spherical epicycloids

1. Hermann’s article

The problem of the spherical epicycloids originated long before in the famous
problem posed several decades earlier by Vincenzo Viviani116, who had chal-
lenged the geometers to cut out a portion from a sphere in such a way that the
remaining surface be quadrable. As we know, the problem, which according
to Viviani’s intentions was to mark a defeat for the new infinitesimal calculus,
was solved without difficulty by the exponents of the new analysis, first of all
by Leibniz117.

A quarter of a century later, a similar problem was posed by Jacob Her-
mann under the pseudonym of Carl Ernest Offenburg: in the April 1718 is-
sue of the Acta Eruditorum he proposed to «perforate a hemisphere with an
arbitrary number of oval windows, each of which to have an absolutely (i.e.
algebraically) rectifiable perimeter»118.

This problem does not appear to have had the same impact as Viviani’s;
it was only in 1726, six years after he had posed it, that Hermann decided
to publish the solution119 in the Commentarii of the St Petersburg Academy.
The curves Hermann found are spherical epicycloids, generated by a point on a
circumference which lies on a sphere and rolls on a parallel of the same sphere.
More precisely:

116 Die 4 April. 1692 Aenigma Geometricum de Miro Opificio Testudinis Quadrabilis He-
misphaericae a D. Pio Lisci Pusillo Geometra propositum, Florence – AE Junii 1692,
pp. 274–275, PT 17, 1692/93, pp. 585–586.

117 G. W. Leibniz, Constructio testudinis quadrabilis hemisphaericae, AE 1692, pp. 275–279 –
Leibniz Math. Schriften 5, pp. 274–278. Cf. C. S. Roero, Sull’Aenigma Geometricum Flo-
rentinum, Jac. B. Werke 2, pp. 623–635; Leibniz and the temple of Viviani. His prompt reply
and the repercussions in the field of mathematics, Annals of Science 47, 1990, pp. 423–443;
La matematica tra gli affari di stato, nel Granducato di Toscana, alla fine del XVII secolo,
Bollettino di Storia delle Scienze Matematiche XI, 1991, pp. 85–142.

118 C. E. Offenburg, Annotationes in Epistolam mensi Julio Act. Erud. superioris anni inser-
tam, una cum solutione Problematis in ea propositi. Accedit geminum problema Clarissi-
mo Epistolae Autori vicissim propositum a Carolo Ernesto Offenburgio, AE Aprilis 1718,
p. 175: «Testitudinem Hemisphaericam tot fenestris ovalibus perforare quot libuerit, sed
iis tamen quarum unaquaeque peripheriam independenter a rectificatione arcuum circu-
larium absolute rectificabilem habeat».

119 fJ. Hermanng Op. 141, pp. 451–458 h. v.
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A spherical epicycloid is the curve described on the surface of a sphere
by a given point on the circumference of the base of a right cone while
the base of the cone rolls on the circumference of a fixed circle, and the
vertex of the cone remains fixed in the center of the sphere (whose radius
is equal to the side of the cone)120.

The base of the cone is called the generating circle or mobile circle, and the
parallel on the sphere is called the fixed circle. If this is not a great circle, we
have two epicycloids, according to whether the generating circle is above or
below the plane of the fixed circle. Hermann believes he can prove that all
these epicycloids are rectifiable. His – very simple – proof is based on two
lemmas. The first is none other than Carnot’s theorem: if p and q are two
sides of a triangle and ˛ is the angle they form, the length of the third side isp

p2 C q2 � 2pq cos ˛:

120 fJ. Hermanng Op. 141, pp. 451–458 h. v.
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The second lemma is a sort of geometrical integration: in the semicircle
BLA the sum of the products of the chords BO up to BL by the arc ele-
ment Om, in formulae the integral

R
BO ds, is equal to the product AB �

.AB � AL/.
This can immediately be verified. In fact, calling R the radius of the semi-

circle and setting 2# D 1BCO and 2#0 D bBCL, we have BO D 2R sin # ,
ds D 2R d# , and hence

Z
BO ds D 4R2

Z #0

0

sin # d# D 4R2.1 � cos #0/ D AB � .AB � AL/:

Hermann’s proof proceeds considering the figure, in which ALB is the gen-
erating circle of radius b, EBb the fixed circle of radius a, Be the tangent to
both at the point B, and L the point which describes the epicycloid.

When the circle ABL turns (anticlockwise), the arc element Bˇ revolves
around B covering the parallel arc Bb. Meanwhile the segment BL describes
a sector LBl similar to the sector Bˇb. Thus we have BL W Ll D Bˇ W bˇ, and
hence Ll � Bˇ D BL � bˇ.
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If we now set Bb D Be D Bˇ D Lm D ds, we have eb D ds2

a
, eˇ D ds2

b
,

and by the first lemma, calling # the angle of inclination bbeˇ, we get

bˇ D ds2

ab

p
a2 C b2 � 2ab cos #:

Thus we have

ab�Ll D ds�BL�
p

a2 C b2 � 2ab cos # D BL�Lm�
p

a2 C b2 � 2ab cos #

and by the second lemma the length of the arc EL will be

1

ab
AB � .AB � AL/

p
a2 C b2 � 2ab cos #

D 2

p
a2 C b2 � 2ab cos #

a
� .AB � AL/:

2. Johann Bernoulli’s first memoir

Hermann’s proof contained a basic error, as a result of his neglecting the an-
gle of contact bBe, a second-order infinitesimal and thus comparable to eb
and eˇ. Consequently, the statement that «the sector LBl is similar to the sec-
tor Bˇb» is not generally valid and the reasoning collapses; specifically, the
epicycloids are algebraically rectifiable in only one case.

In fact things are far more complex than might appear from Hermann’s ar-
ticle. Six years were to pass before Johann Bernoulli’s two memoirs, published
by the Paris Académie des Sciences, settled the question121. We begin with the
first of these memoirs.

121 Joh. B. Op. CXLII and Op. CXLIII, pp. 507–519 h. v. and pp. 529–536 h. v. A version
of these two articles in Latin was sent by Joh. Bernoulli to P. L. M. de Maupertuis as an
attachment to a letter of 8 May 1732, UB Basel, L I a 662, Nr. 20, in which Bernoulli
writes: «Je vous y ai promis ma solution directe du Probleme des courbes algebriques
et rectifiables à tracer sur la surface spherique. Pour m’acquitter de cette promesse, voici
le cahier cy joint qui contient ma methode: peutetre y trouverés vous de quoi repaitre
votre curiosité par la singularité de l’analyse dont je me suis servi». In UB Basel L I a
12.3, ff. 150–153, there is an autograph copy, in Latin, of the text sent to Maupertuis
and translated into French. Cf. also P. M. de Maupertuis, Solution du mesme probleme
et de quelques autres de cette espece, Mém. Paris 1732 (1735), pp. 255–256. With this,
ff. 154–156, is a first draft of the same work, again in Latin, in slightly reduced form.
f. 157 contains the figures, which are redrawn on the following page.
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As has been remarked, the problem is rather complicated, and demands a
subtle analysis of the second-order infinitesimals. In order to facilitate reading,
we will divide the argument into several parts.

2.1. Position of the problem

Two infinitely close positions of the generating circle are to be considered; the
first has its centre in G and is tangent at B to the fixed circle with centre C ;
the second has its centre in g and touches the fixed circle at b.

The intersection of the planes of the two circles (mobile and fixed) is the
straight line tangent to both: BS in the first case and bs in the second. It is
clear that BS is perpendicular to both CB and GB (radii of the two circles)
and bs is perpendicular to Cb and to gb. The angle # D 1CBG D bCbg is the
constant angle of inclination of the two planes.

Now let L be a point on the epicycloid, l the infinitely close point, and let
LR and lr be the perpendiculars to the radii BG and bg of the mobile circle.
In addition, let N and n be the projections of L and l on the fixed plane, and
let the curve ENn be the projection on this plane of the epicycloid ELl. From
L and l we draw the perpendiculars LS and ls to the tangents BS and bs, and
from the points S and s the perpendiculars on the fixed plane to the tangents
BS and bs, which meet at the point O .

It is clear that BS is perpendicular to the plane of the straight lines CB
and BG, and also to the plane of the straight lines SN and SL; analogously,



VI. Spherical epicycloids 63

bs is perpendicular to the plane of the straight lines Cb and bg, as well as to
the plane of the straight lines sn and sl. Consequently the angles bOSL and bOsl
will both be equal to the inclination # .

Finally, indicating with t the intersection point of the straight lines sO
and BS, the triangle SOt is similar to tbs, which in its turn is similar to BCb.
In addition, let NP be drawn on the fixed plane parallel to St.

2.2. On the plane of the mobile circle

Assuming LS D BR D x and GB D b, we will have RL D BS D p
2bx � x2

and hence

dLS D dx; dBS D dRL D b � xp
2bx � x2

dx:

Calling ' the angle bBGL D arccos
�
1 � x

b

�
, then d' D dxp

2bx � x2
and hence

d�BL D b d' D b dxp
2bx � x2

:
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2.3. On the meridian plane

The radius R of the sphere can be found in function of the radii a of the fixed
circle and b of the generating circle, and of the angle of inclination # . In fact
we have

a D BH C HC D b

cos #
C AC tan # D b

cos #
C

p
R2 � a2 tan #

from which

R D
p

a2 C b2 � 2ab cos #

sin #
:

2.4. On the fixed plane
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We have d�BL D �bl��BL D�bE��BE (because of the nature of the epicycloid) D
�Bb D b dxp

2bx � x2
(by 2.2) and hence, since up to higher-order infinitesimals

dBS D bs � BS D bt � BS D bB � St, we have, again by 2.2,

St D d�BL � dBS D x dxp
2bx � x2

:

2.5. Similar triangles

a) The triangles SOt and BCb are similar. In fact, neglecting infinitesimals,
we have Ot D OS, CB D Cb, and the angle in O is equal to the angle in C ,
since their sides are parallel.

b) The triangles sbt and SOt are similar. In fact, neglecting second-order in-
finitesimals, we have bs D bt, and the angles in s and S are equal.

From a) it follows that Bb W St D CB W OS, or

b dxp
2bx � x2

W x dxp
2bx � x2

D a W OS

and hence
OS D ax

b
:

Moreover, it follows from a) and b) that the triangles sbt and BCb are similar,
and hence BC W bs D Bb W st, or, bearing in mind that bs D BS up to higher-
order infinitesimals,

a W
p

2bx � x2 D b dxp
2bx � x2

W st

and hence

st D b dx
a

:
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2.6. Projections

Since SN D SL cos # D x cos # , we have dSN D cos # dx. But dSN D
sn � SN D (up to second-order infinitesimals) sn � tP D st C Pn. It follows
that

Pn D cos # dx � st D a cos # � b

a
dx:
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On the other hand OS W ON D St W NP, and since (by 2.5 and 2.4)

OS D ax
b

ON D OS � SN D ax
b

� x cos # D a � b cos #

b
x

St D x dxp
2bx � x2

then

NP D ON � St
OS

D a � b cos #

a

x dxp
2bx � x2

:

Moreover, since LN D SL sin # D x sin # , we have dLN D sin # dx.

2.7. Arc elements

It is now possible to express the arc elements of the epicycloid ELl and of its
projection ENn on the fixed plane. For the latter we have

Nn D
p

NP2 C Pn2 D
s�

a � b cos #

a

�2
x

2b � x
C
�

a cos # � b

a

�2

dx

whereas for the first we have

Ll D
p

Nn2 C dLN2 D

D
s�

a � b cos #

a

�2
x

2b � x
C
�

a cos # � b

a

�2

C sin2 # dx D

D
s

2b.a2 C b2 � 2ab cos #/ � b2 sin2 # x

2b � x

dx
a

:

2.8. Reduction to the quadrature of the hyperbola

In conclusion, the length of the epicycloid depends on the calculation of inte-
grals of the form Z s

˛ � ˇx
� � x

dx
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which, by a change of the variable x D � � u2, becomes

�2

Z p
˛ � ˇ� C ˇu2 du:

Since ˇ D b2 sin2 # > 0, this last integral can be expressed by means of the
quadrature of the hyperbola, and hence by means of logarithms.

2.9. Rectifiable epicycloids

Thus spherical epicycloids are rectifiable algebraically only in a small num-
ber of cases, contrary to what Hermann had affirmed. One of these is when
# D 0, i.e. when the mobile circle lies on the same plane as the fixed circle. The
resultant curve is the epicycloid of the circle, for which

Ll D
r

2b.a � b/2

2b � x

dx
a

and hence

EL D 2.a � b/

a

�
2b �

p
4b2 � 2bx

�
:

A second case of rectifiability occurs when a D 1, i.e. when the fixed cir-
cumference is a straight line and the rotating cone becomes a cylinder. The
curve obtained is the ordinary cycloid, and thus

Ll D
r

x

2b � x
C 1 dx D

r
2b

2b � x
dx:

Apart from these trivial cases, the epicycloid will be algebraically rectifiable
when a � b cos # D 0, in other words when the mobile circle is a great circle
of the sphere. If this occurs, then

Ll D
s�

a cos # � b

a

�2

C sin2 # dx D tan # dx

and hence
EL D x tan #:

All that has been said works in the same way if the inclination is greater than
�

2
; in this case the epicycloid is never algebraically rectifiable, because the con-

dition a � b cos # D 0 cannot be satisfied.
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2.10. Construction by points

Points can be constructed on the projection ENn on the fixed plane by taking
a circle equal to the mobile circle. Having fixed a point � on this, let ˇ be a
generic point, ˇ˛ the diameter passing through ˇ and � the projection of �

on ˇ˛.

Now on the fixed circle take an arc �EB D �ˇ�, on the tangent in B a
segment BS D ��, and from S draw perpendicularly a segment of length
SN D ˇ� sin # .

Point N is in the projection. In fact by construction we have �ˇ� D �EB D
�BL, and hence �ˇ D x and SN D x cos # , as in 2.6.

Once points have been constructed on the projection we need only raise the
perpendicular until it meets the sphere in order to have the same number of
points on the epicycloid.

2.11. Lengthened or shortened epicycloids

If point L is within or outside the generating circle we have lengthened or
shortened epicycloids. This also happens when, while point L rotates at a con-
stant angular speed, the mobile circle slides along the fixed circle at constant
speed. If the ratio between these speeds is 1 W n, the epicycloid is lengthened if
n > 1 and shortened if n < 1. In any case we have122:

Nn D
s

Œ.n � 1/ab C .a � nb cos #/x�2

2bx � x2
C .a cos # � nb/2

dx
a

122 In the autograph ms. UB Basel L I a 12.3, f. 162r Bernoulli gives the details of the related
calculations.
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and

Ll D
s

Œ.n � 1/ab C .a � nb cos #/x�2

2bx � x2
C a2 � 2nab cos # C n2b2

dx
a

:

Neither of these curves is algebraically rectifiable.

3. Another point of view

In an immediately following article, Sur les Courbes algébriques & rectifiables
tracées sur une surface sphérique123, which appeared in the same volume of
the Paris Académie, Johann Bernoulli took up a different viewpoint, which
was more direct and immediate than the earlier one, and less closely linked to
Hermann’s work on spherical epicycloids.

The problem, we may recall, consists of drawing on the unitary sphere an
algebraic curve, whose arc element is algebraically integrable. To this end,
Bernoulli expresses the equation of the curve in the form z D '.s/, where
z is the height of the point of the curve on the equatorial plane and s is the
length of the arc of the projection on this plane. In fact, he chooses a priori
the form of the function ' in the simplest manner, taking '.s/ D a C bs. If
polar coordinates are introduced on the equatorial plane, with vector radius y

and angle x, we have

ds2 D y2 dx2 C dy2

z D
p

1 � y2 D '.s/ D a C bs

dz D �y dyp
1 � y2

D '0.s/ ds D b ds

and hence

b2.y2 dx2 C dy2/ D y2

1 � y2
dy2

123 Joh. B. Op. CXLIII. The Latin version of this article was sent to Maupertuis together
with the letter dated of May the 8th 1732. In UB Basel ms. L I a 12.3 two versions are
conserved, with slight differences, of the manuscript sent to France, both autograph,
precisely in ff. 159r–160r and 161r–v, 162v.
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from which we may easily derive

dx D m2y dyp
.1 � y2/.m2y2 � 1

� dy

y
p

.1 � y2/.m2y2 � 1

with m2 D 1 C b2

b2
.

The right-hand-side terms are integrated without difficulty, albeit with a
certain prolixity in the calculations, obtaining the equation of the projection
curve in the from

x D f .y/ D f1.y/ C f2.y/

with

f1.y/ D m

2
arcsin

2m2y2 � m2 � 1

m2 � 1
D m

2
A

f2.y/ D 1

2
arcsin

2 � y2.m2 C 1/

y2.m2 � 1/
D 1

2
B:

Hence the equation of the projection curve is

2x D mA C B:

If we want this to be algebraic, the preceding equation should be written
as an algebraic equation in between124 y and sin x. This is possible if m is a
rational number. In fact the sine of the sum of two angles A and B, as well
as that of a multiple and a submultiple of an angle A, is a rational function
of sin A and sin B. Consequently the sine of mA C B is an algebraic function
of sin A and sin B, which in their turn are algebraic functions of y. On the
other hand sin 2x is an algebraic function of sin x, and thus if m is rational the
projection curve is algebraic.

The same obviously happens for the curve of the sphere, which furthermore
also proves to be algebraically integrable. In fact if d
 is the arc element of the
curve, then

d
 D
q

ds2 C dz2 D
p

1 C b2 ds D mb ds

and the integrability of d
 is a consequence of the integrability of ds.

124 We recall that if � and � are the Cartesian coordinates on the equatorial plane, we have
y2 D �2 C �2 and sin x D �

y
.
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In reality, Bernoulli comments, the curves found in this way are precisely the
spherical epicycloids in the integrable case, i.e. those generated by a great circle

which rotates on a lesser one. In fact in these epicycloids we have d
 D ds
sin #

,

and hence we need only take mb sin # D 1.
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