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A B S T R A C T   

The increasing interest in European hazelnut (Corylus avellana L.) cultivation registered in the last years has led 
to a significant increase in worldwide hazelnut growing areas, also involving regions characterized by a marginal 
presence of hazelnut orchards. Despite this increasement, world production still relies on the cultivation of few 
varieties, most of which are particularly suitable to the environment where they have been selected. Therefore, it 
is necessary to develop new cultivars with high environmental plasticity capable of providing constant and high- 
quality productions in the new environments and under the climatic change conditions of traditional growing 
areas. Over the years, many molecular markers for genetic breeding programs have been developed and omics 
sciences also provided further information about the genetics of this species. These data could be of support to 
the application of new plant breeding techniques (NPBTs), which would allow the development of cultivars with 
the desired characteristics in a shorter time than traditional techniques. However, the application of these 
methodologies is subordinated to the development of effective regeneration protocols which, to date, have been 
set up exclusively for seed-derived explants. A further aspect to be exploited is represented by the possibility of 
cultivating hazelnut cells and tissues in vitro to produce secondary metabolites of therapeutic interest. This re-
view aims to consolidate the state of the art on biotechnologies and in vitro culture techniques applied on this 
species, also describing the various studies that over time allowed the identification of genomic regions that 
control traits of interest.   

TDZ: thidiazuron. 
WPM: woody plant medium. 
ZEA: zeatin. 

1. Introduction 

European hazelnut (Corylus avellana L.) is a plant shrub belonging to 
the Betulaceae family, Fagales order. It is a deciduous, monoecious, 
dichogamous, diploid species (2n = 2x = 22) characterized by self- 
incompatibility controlled by a single locus with multiple alleles. This 
plant species has been cultivated for its nuts, rich in fatty acids (Cris-
tofori et al., 2008), particularly requested by chocolate, confectionery 
and bakery industries, since 90% of hazelnuts are destined for process-
ing while raw consumption is less than 10% (Romero-Aroca et al., 
2021). Turkey is the major producer followed by Italy, Azerbaijan, Iran, 
Georgia, United States of America, Chile, Spain and China. Although its 
cultivation area has soared in the last few years from 632,955 ha 

(FAOSTAT, 2014) to 1,039,147 ha (+64%) (FAOSTAT, 2021), world 
production still relies on about twenty varieties, which are particularly 
suitable for cultivation in the environments where they were selected 
(Mehlenbacher, 1994; Mehlenbacher and Molnar, 2021). The cultiva-
tion area expansion led to the hazelnut planting in areas that are not 
particularly suitable for the pool of cultivars currently available, so the 
development of new cultivars with adaptability traits is needed. Genetic 
improvement of hazelnut started in the 1960s, with many programs in 
different countries around the world, aimed to develop varieties with 
interesting traits such as: high yield, early ripening, pests and pathogens 
resistance, cold hardiness (Mehlenbacher, 1994, 2018; Parnia and Botu, 
1994; Weijiang et al., 1994). The breeding activity led by the OSU was 
particularly prolific of results: since 1990 OSU has released 11 cultivars 
for production and 12 cultivars to be used as pollinizers, with particular 
focus on developing varieties resistant to EFB, a destructive disease 
common in the American orchards caused by the fungal pathogen Ani-
sogramma anomala (Mehlenbacher, 2018). Although breeding methods 
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have been standardized, it still takes 17 years from the time a cross is 
made until a new cultivar is released (Mehlenbacher, 2018). Many 
markers have been developed for mapping traits of interest, which are 
often set under polygenic control, enabling their employment in MAS 
(Beltramo et al., 2016; Ozturk et al., 2017; Torello Marinoni et al., 
2018). In the last few years, the drop in the costs of sequencing tech-
nologies has favoured the application of omics sciences in hazelnut 
molecular characterization, with the sequencing of valuable cultivars, 
providing a huge amount of data for gene mining (Lucas et al., 2021; 
Pavese et al., 2021a; Rowley et al., 2018). In this context, biotechno-
logical methods such as genetic transformation and genome editing, 
could represent valid alternatives to speed up the process of new cultivar 
development, although an efficient regeneration protocol is essential 
when these methods are used on woody species, often recalcitrant to in 
vitro morphogenesis (Pavese et al., 2021b, 2022). As the cultivation area 
is increasing, efficient propagation methods should be also considered. 
European hazelnut is routinely multiplied through rooting suckers since 
it is one of the fruit tree species most prone to suckering. However, this 
practice presents many drawbacks as suckers production at the base of 
the trunk must be regularly controlled with negative effects on pro-
duction costs, on environment and on the disease spread (Fideghelli and 
De Salvador, 2009; Pacchiarelli et al., 2022). For this purpose, micro-
propagation is an attractive method that could enable the production of 
pathogen-free, high-quality cultivars at a commercial scale (Bacchetta 
et al., 2008; Damiano et al., 2005; Díaz-Sala et al., 1990). Furthermore, 
in vitro culture of cells and tissues could also be exploited to produce 
valuable secondary metabolites such as paclitaxel, since hazelnut has 
been recognized as a natural source of this effective anti-neoplastic 
compound (Hoffman and Shahidi, 2009). The aim of this review is to 
discuss the biotechnological tools which have been already used in 
European hazelnut, paving the way for the development of new strate-
gies, never applied up to date, which can accelerate the development of 
new varieties or improve the adaptability of the already established 
ones, for a species whose commercial interest is growing year by year. 

2. Tissue culture of hazelnut 

2.1. Micropropagation 

Although several protocols suitable for hazelnut micropropagation 
have been proposed, most have been tested or resulted to be effective for 
just one or two varieties (Bacchetta et al., 2008; Damiano et al., 2005; 
Díaz-Sala et al., 1990; Mardani et al., 2020), while very few have been 
proved to perform well on a wider range of cultivars, as different ge-
notypes usually need different combinations and concentrations of salts 
and growth regulators. Indeed, many basal media have been employed 
for micropropagation of this species. For example, Yu and Reed (1993) 
compared the effect of DKW (Driver and Kuniyuki, 1984), WPM (Lloyd 
and McCown, 1980) and Anderson medium (Anderson, 1984) on shoot 
cultures of Italian round-shaped nut ‘Tonda Gentile Romana’ and the 
local American variety ‘Nonpareil’, founding out that DKW medium 
outperformed the others in terms of shoot multiplication, elongation and 
appearance. They also studied the effect of different carbon sources, 
reporting that explants grown on 3% glucose or fructose medium pro-
duced more and longer shoots than those grown on sucrose. On these 
bases, they effectively multiplicated 10 cultivars on a DKW medium 
supplemented with 3% glucose, 1.5–3 mg/L BAP and 0.01 mg/L IBA, 
with subculture at 4-week intervals. Considering the mineral composi-
tion of hazelnut and almond nuts, as this last one is a species particularly 
adaptable to in vitro environment, Bacchetta et al. (2008) developed a 
modified version of MS medium (Murashige and Skoog, 1962), named 
HM, which has been employed to effectively propagate six traditional 
Italian cultivars, although rooting phase needed some improvements. 
Silvestri et al. (2020) tested the effect of different concentrations of 
NH4

+/NO3
− in both proliferation and rooting phases of ‘Tonda Gentile 

Romana’ nodal segments and concluded that a reduction to half con-
centration of NH4NO3 in MS basal medium produced shoots with a 
greater internode number and higher chlorophyll a and b contents. The 
lack of ammonium nitrogen, coupled both with the reduction to half 
concentration of the nitrate nitrogen or leaving that unchanged in half 
strength MS medium, resulted in a higher percentage of rooting. They 
also reported that an iron supply in the form of Fe-EDDHA at the 
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concentrations of 100 and 200 mg/L increased the shoot height and 
node number and produced better quality shoots respect to explants 
grown in the presence of Fe-EDTA, as demonstrated by the higher total 
chlorophyll, chlorophyll a and chlorophyll b contents. Furthermore, this 
study showed that adding 2.5 mg/L CuSO4

. 5H2O to the establishment 
medium was a practical and effective way to reduce contamination rate, 
maintaining high bud sprouting in the explants. Several statistical ap-
proaches have been used to model a medium whose composition was 
suitable for in vitro cultivation of a wide range of cultivars. A 
genotype-specific mineral requirement was highlighted by Hand et al. 
(2014) and Hand and Reed (2014) who used a RSM to determine the 
most appropriate mineral nutrient concentrations for shoot growth in 
five and three cultivars, respectively, testing different concentrations of 
DKW medium salts. Hand et al. (2014) concluded that new medium 
formulations will require optimization for higher Ca(NO3)2, NH4NO3, 
meso- and micronutrients. Hand and Reed (2014) focused on micro-
nutrients requirement of three cultivars and concluded that improved 
growth and shoot quality in ‘Dorris’ and ‘Jefferson’ required greatly 
increased B, Mo and Zn combined with low Mn and Cu, while ‘Sacaja-
wea’ required a higher content of B, Mn, Zn and Ni with low Mo for the 
best growth. Akin et al. (2017b) employed a CHAID data mining algo-
rithm to analyse the growth of ‘Dorris’, ‘Wepster’ and ‘Zeta’ shoots 
varying DKW macronutrient salts concentration from 0.5 × to 3 × , 
reporting that an improved version of that medium should contain 0.5 ×
NH4NO3, 3 × KH2PO4, 1.5 × Ca(NO3)2, while other macronutrient salts 
could be set at the standard DKW concentrations (1 × ). The same al-
gorithm was employed using ions instead of salts as independent vari-
ables, in order to prevent ion confounding, for modelling the best ion 
concentrations for shoot growth responses of ‘Barcelona’, ‘Jefferson’ and 
‘Wepster’ in a DKW-based medium, concluding that it should include 
NO3− ≤88 mM, NH4+ ≤20 mM, Ca2+ ≤5 mM, Mg2+ >5 mM and K+ ≤46 
mM (Akin et al., 2017a). Since shoot length and multiplication rate are 
influenced by concentration of cytokinins (Bassil et al., 1990), many 
attempts have been carried out to define which of these growth regu-
lators are the most effective for hazelnut micropropagation and in which 
concentration. Thomson and Deering (2011) reported BAP to perform 
better than KIN, ZEA and 2-iP in promoting new shoots formation and 
elongation in cultivar ‘Daviana’ when present at a concentration of 5 
mg/L. Prando et al. (2014) reported that coconut water, which is 
particularly rich in nutritious substances and cytokinins, promoted 
shoot elongation and proliferation in the Italian cultivar ‘Tonda Gentile 
delle Langhe’ shoots when applied at a 20% concentration in presence of 
2 mg/L BAP, 0.01 mg/L IAA and 0.5 mg/L GA3 on a DKW medium with 
an 80% reduction of macronutrients. Díaz-Sala et al. (1990) employed a 
double-phase system for efficient proliferation and elongation of ‘Tonda 
Gentile delle Langhe’ explants cultured on a modified MS medium 
supplemented with 5 mg/L BAP, 0.01 mg/L IAA and 0.1 mg/L GA3. They 
showed that a 3-month cold storage of field collected branches prior to 
forced outgrowth of axillary buds greatly increases morphogenic ca-
pacity of nodal segments excised from newly formed shoots. Plant 
rooting was achieved by immersing the single micro-shoot basal end in 
0.1–1 mg/L IBA solution for 10 s followed by a 20-day culture on a 
modified MS medium. An efficient protocol was developed by Sgueglia 
et al. (2019) for micropropagation of four traditional Sicilian cultivars: 
‘Carrello’, ‘Ghirara’, ‘Minnulara’, and ‘Panottara’. They reported a 
concentration of 17.6 μM IBA to be effective for obtaining more than 
85% of rooted and acclimatized shoots in all tested genotypes. It has 
been suggested that rooting is positively affected by polyamines which 
could act synergistically with auxins. Rey et al. (1994) reported an 
enhanced rooting ability in ‘Gironell’ micro-shoots both when these 
explants were stimulated for 15 s with a solution containing 5 μM IBA 
alone or in combination with 1 μM of putrescine, spermine or spermi-
dine, and when the same amount of one of these polyamines was present 
in the basal medium and not in the stimulating solution. A beneficial 
effect of putrescine (1 mg/L), coupled with 1 mg/L IBA, has been re-
ported also by Ellena et al. (2018) on rooting of ‘Tonda Gentile delle 

Langhe’ and ‘Barcelona’ after multiplication stage, which has been 
shown to be significantly enhanced when a temporary immersion system 
on liquid DKW medium was employed respect to cultivation on the same 
solid medium. Micropropagation has the potential to become an effec-
tive technique for rapid multiplication of valuable cultivars, represent-
ing an alternative to traditional methods of propagation and allowing 
the establishment of this culture also in countries where the presence of 
hazelnut orchards is limited by lack of plant material. 

2.2. In vitro virus eradication and germplasm conservation 

Different techniques based on in vitro culture have been proposed for 
virus eradication from hazelnut infected explants, some of which could 
also be effectively employed for germplasm conservation. The less 
laborious way to carry out germplasm conservation probably consists in 
slowing down shoot growth rate acting on in vitro environmental con-
ditions. Sgueglia (2015) evaluated the effect of two types of sugar, su-
crose and sorbitol, at two concentrations, 87.5 mM and 131.2 mM, on 
growth rate of ‘Tonda Gentile Romana’ shoots under dark conditions at 
4 ◦C. After a period of 10 months, with bimonthly observations starting 
from the fourth month of cultivation, plant grown in presence of 131.2 
mM sucrose had a lower percentage of survival and a higher chlorosis 
and necrosis symptoms than plants grown in the other conditions, with 
statistically lower levels of chlorophylls a and b and carotenoids. Control 
plants, which were grown in the same media, but at standard growth 
temperature, did not survive more than four months, confirming that 
keeping the explants at low temperature is an effective way to slow 
down the growth rate, reducing the frequency of subcultures. Kaya 
(2021) compared the efficacy of meristem culture, thermotherapy and 
cryotherapy for eradication of ApMV from infected C. avellana cultivar 
‘Palaz’ plantlets. Meristems from thermotherapy-treated shoots failed to 
regenerate as they rapidly turned brown and died, probably because the 
temperature employed were too high (40 ◦C) for hazelnut growth. 
Although meristem culture resulted in 100% shoot regeneration, shoots 
still presented slight symptoms of the disease, and the presence of the 
virus was confirmed by RT-PCR analysis. Cryotherapy, performed 
through chemical vitrification treating meristems excised from 2-week 
cold hardened (4 ◦C) shoots with 3 μL of PVS 2 (Sakai et al., 1990) on 
an aluminium strip plate for 60 min and then plunging these directly 
into liquid nitrogen for at least 24 h, resulted to be the most effective 
method for virus eradication among the three tested, with a 46.7% of 
regenerated shoots and no detectable ApMV infection. A similar 
approach was employed by Sgueglia et al., 2021a for cryopreservation of 
‘Tonda Gentile Romana’ axillary buds collected from in vitro grown 
shoots. They tested the effects of two different vitrification solutions, 
PVS 2 and PVS 3 (Nishizawa et al., 1993), and two application times, 60 
or 90 min, on shoots regrowth rate, reporting the highest value (56.7%) 
for explants treated with PVS 3 for 60 min. The effect of a cold 
pre-treatment at 4 ◦C for 3 months on axillary buds was also evaluated, 
finding out that this treatment did not affect the regrowth rate. Cryo-
preservation of hazelnut was firstly reported by using embryo axis as 
explant for long term storage (Gonzalez-Benito and Perez, 1994; Reed 
and Hummer, 2001; Reed et al., 1994). Anyway, to preserve the geno-
type of a certain cultivar, the cryopreservation of explants with a clonal 
origin such as shoot tips and axillary buds is necessary. Sgueglia et al., 
2021b tested different conditions for an optimal cryopreservation of 
axillary buds excised from in vitro grown shoots of ‘Tonda Gentile 
Romana’ and ‘Montebello’, through the encapsulation-dehydration 
method. They obtained the best regrowth rate treating 3% alginate 
beads of both cultivars for 1 day in 0.75 M sucrose MS medium, followed 
by an 8 h desiccation stage with silica gel. Concerning the type of 
cytokinin employed in regrowth phase, ‘Tonda Gentile Romana’ did not 
show significant differences between the two phytohormones tested, 
whereas ‘Montebello’ responded better when mT was applied instead of 
BAP. The encapsulation of meristems was reported by Yahyaoui et al. 
(2021) to be an effective technique for virus eradication in vitro grown 
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plants of seven Sicilian cultivars, previously assessed to be ApMV 
infected. Of 128 regenerated plants, with at least 10 individuals per 
genotype tested, a 96.9% resulted to be virus-free as checked with 
RT-PCR analysis. The difference between the results obtained in this 
study and those obtained by Kaya (2021) is probably due to the explant 
size, as meristems in the order of 0.2–0.3 mm are less prone to be 
infected than the larger ones. Despite some valuable methods have been 
reported for hazelnut germplasm conservation, these have been tested 
for only one or two cultivars. It would be interesting to compare the 
response in terms of regrowth rate extending the number of cultivars 
evaluated, as different genotypes usually give different responses to in 
vitro cultivation. Some of these techniques have also been employed for 
effective eradication of ApMV, the most threatening virus affecting 
hazelnut culture, which could lead to severe yield losses in particular 
environments such as Spain and Southern Italy (Rovira and Aramburu, 
2001; Yahyaoui et al., 2021). 

2.3. De novo organogenesis and somatic embryogenesis 

The first report of somatic embryogenesis in hazelnut has been made 
by Radojević et al. (1975), who obtained somatic embryos from callus 
culture induced from zygotic embryos isolated from immature seeds and 
cultured on a modified MS solid medium in presence of 1 mg/L of both 
KIN and 2,4-D. Regarding this kind of auxin, they found out that it did 
not inhibit the embryoid induction, whilst it arrested further develop-
ment into plantlets. Pérez et al. (1983) have been the first to obtain 
somatic embryos starting from a vegetative tissue, cultivating cotyle-
donary nodes excised from 5-week-old in vitro grown seedlings. They 
achieved embryogenesis in 60% of the explants cultivated for 20 days on 
a K(h) medium (Cheng and Smith, 1975) in the presence of either 5 μM 
IBA plus 0.5 μM BAP or 5 μM BAP plus 0.5 μM IBA. Subsequent prolif-
eration was successfully maintained during 5 subcultures on K(h) basal 
medium and in an unlimited number of subcultures in K(h) supple-
mented with 0.5 μM BAP. They were also the first to achieve plant 
regeneration via somatic embryogenesis from 50 to 55% of the embry-
oids formed after 10–20 days of cultivation into a basal K(h) medium. 
Centeno et al. (1997) have evaluated the correlation of specific plant 
growth regulators with embryogenic competence of cotyledons from 
free-open pollinated hazelnut fruits of two Spanish cultivars, ‘Casina’ 
and ‘Negret’. The first one were tested in two different ontogenetic 
stages, as immature and mature fruits, respectively, while for the second 
one, only mature fruits were tested. Of these three kinds of explants, 
only the ones obtained from ‘Casina’ were able to produce somatic 
embryos. They did not find any difference associated with the ABA 
content of cotyledons and their developmental stage, while the 
IAA/ABA ratio found in cotyledons of the embryogenic genotype of 
hazelnut (‘Casina’) was nearly twice as high as that in the 
non-embryogenic one (‘Negret’), despite the small differences observed 
in the levels of each individual phytohormone. Furthermore, although 
the three cotyledonary systems studied had a similar content of total 
cytokinins, they showed a very different 2-iP-type/ZEA-type cytokinin 
ratio, which was higher in the embryogenic explants, and they also re-
ported that an excess of ZEA-type cytokinins relative to endogenous IAA 
reduced or inhibited the competence of hazelnut cotyledons to respond 
to exogenous hormonal stimuli. All these parameters could represent 
reliable indexes of cotyledons embryogenic competence. Aygün et al. 
(2009) tested the effect of different auxins, 2,4-D and NAA, in combi-
nation with BAP on somatic embryogenesis from cotyledons of 
open-pollinated immature seeds of most relevant Turkish cultivar 
‘Tombul’, sampled in two different dates, approximately 45 and 30 days 
before the harvest date, respectively. They found out that 1.0 mg/L BAP 
alone was able to induce somatic embryogenesis in 52.5% of the ex-
plants from the first sampling date; the ratio increased to 66.7% when 
0.5 mg/L NAA were used in addition, after 4 weeks of cultivation on MS 
medium. They were the first to test the effect of NAA in hazelnut somatic 
embryogenesis, reporting that, in general, it induced more somatic 

embryos respect to 2,4-D. Silvestri et al. (2016) were able to regenerate 
for the first time plantlets from adventitious shoots obtained using 
several in vitro rejuvenated mature tissues of ‘Tonda Gentile Romana’ as 
explants. They also evaluated the effect of an antibiotic pre-treatment on 
the cultures from which the explants have been taken, as many antibi-
otics are thought to exert an auxin-like effect. In particular, 15 mg of 
carbenicillin, vancomycin and cefotaxime were individually supple-
mented to a 2-year-old axenic culture grown on HM (Bacchetta et al., 
2008) in the presence of 1 mg/L BAP, 0.5 mg/L ZEA and 0.2 mg/L GA3. 
Antibiotic pre-treatments with carbenicillin and vancomycin resulted in 
an average shoot height and internode number significantly higher than 
the control. Leaves, petioles, internodes and stipules were collected for 
carrying out regeneration experiments. Callus with nodules formation 
was observed after a 3-week cultivation of the explants on induction 
medium based on MS basal salts supplemented with 30 g/L sucrose, 
0.55% plant agar, 1 mg/L BAP, 2 mg/L IBA, 2 mg/L KIN. Then, calli 
were transferred on half-strength MS medium, supplemented with 30 
g/L sucrose, 0.55% plant agar and 0.5 mg/L BAP, resulting in the 
appearance of spots of red pigments on the callus surface. Furthermore, 
many tracheary elements, particularly tracheids with annular or helical 
secondary wall thickenings, differentiated in calli obtained from 
different kinds of explants. The regenerated shoots were placed on 
proliferation medium and after that, single shoots were put on 
half-strength MS medium supplemented with 2% sucrose and 1 mg/L 
IBA for rooting, which took place after 20 days of culture; a 60% of plant 
survival was reported. Plantlet regeneration represents the main 
bottleneck to the application of genetic engineering on hazelnut, so 
major efforts for the establishment of effective protocols for somatic 
embryogenesis or adventitious organogenesis induction from mature 
tissues should be pursued. 

2.4. Haploid culture, polyploids and protoplast technology 

Individuals with different ploidy levels could enrich the genetic 
variability pool of a species, representing a benefit for breeding pro-
grams. Gametic embryogenesis allows the rapid development of a 
completely homozygous line in a single generation, which is particularly 
attracting in a self-incompatible species like hazelnut, characterized by 
high heterozygosity and long juvenile phase. Haploid and doubled 
haploid plants are useful for a series of applications such as parental line 
fixing, production of F1 hybrids, introgression of new traits through 
backcrossing, genomic studies and genome sequencing. A first attempt 
to perform gametic embryogenesis in C. avellana was made by Chian-
cone et al. (2013) who carried out anther culture of six cultivars, eval-
uating the effect of two different thermal stresses exposing anthers to 60 
min at 35 ◦C and 30 min at − 20 ◦C. Although a sporophytic pathway was 
initiated, as bicellular (with symmetrical nucleus division), tricellular 
and multicellular structures were observed, and a strong interaction 
between the cultivar and the type of thermal stress was observed, no 
embryo was obtained. Gniech Karasawa et al. (2016) were the first to 
perform hazelnut microspore culture. They tested the effect of two 
media, P and N6, and four thermal stresses (35 ◦C for 30 min, 40 ◦C for 
60 min, − 20 ◦C for 30 min and − 20 ◦C for 60 min) on microspores 
isolated from anthers of five cultivars, previously stored at 4 ◦C for 2 
weeks. Also in this study, different responses among genotypes tested 
were reported. After 20 months of culture, microspores development 
was assessed revealing a sporadic presence (less than 3%) of binucleated 
microspores with asymmetrical division of the nucleus, indicating a high 
number of microspores which underwent the sporophytic pathway. For 
the first time, microspore-derived embryos were detected, as assessed 
through SSR marker analysis, and average number of callus and embryo 
production was also evaluated. Although thermal stress has been re-
ported as an enhancer of gametic embryogenesis onset, four out of five of 
the cultivars evaluated produced a higher number of embryos when 
cultured on both media without stress treatment. Silvestri et al. (2018) 
tested the effect of two basal media, N6 and BN, and three 
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phytohormones combinations (1 mg/L 2,4-D, 0.5 mg/L IAA, 1 mg/L 
ZEA; 2.5 mg/L BAP, 0.1 mg/L NAA and 1 mg/L 2,4-D, 1 mg/L KIN) on 
Italian cultivars ‘Nocchione’, ‘Tonda Gentile Romana’ and ‘Tonda di 
Giffoni’ anther culture. Explants were grown for 21 days in dark con-
ditions and then subcultured in half-strength MS supplemented with 3% 
sucrose, 0.5 mg/L IAA, 1 mg/L TDZ and placed under light. They 
observed that hormone combination has a strong interaction with both 
cultivars and basal salts and reported the combination of 1 mg/L 2,4-D, 
0.5 mg/L IAA and 1 mg/L ZEA as the most effective for swollen and 
callus induction on anthers, although no haploid callus was detected in 
any of the conditions tested. Developing plants with a higher level of 
ploidy also represents an important achievement for breeders, as poly-
ploidy often results in individuals which show enhanced agronomical 
performances compared to the relative diploids, as gene duplication 
leads to alteration of gene expression, which has an impact on plant 
morphology and physiology. To date, only one study has reported 
polyploid induction in hazelnut: callus treated for 5 and 6 days with 
0.2% colchicine on solid medium and callus-derived cells treated for 3 
and 4 days with 0.3% colchicine in liquid medium resulted in the 
obtainment of tetraploid cells as assessed through flow cytometry 
(Rahpeyma et al., 2017). Tetraploid cell suspensions showed a 1.7-fold 
increase in paclitaxel production compared to diploid cells. NPBTs such 
as CRISPR/Cas systems allow the editing of specific genomic regions, 
without the drawback of DNA integration in the host genome when 
these systems are delivered as a RNP complex. For this application, 
protoplasts seem to be the most suitable explant due to their high 
permeability to exogenous macromolecules. Up to now, only one pro-
tocol for hazelnut protoplast isolation has been published (Revilla et al., 
1987). Briefly, the most recently fully expanded leaves were harvested 
from 1-4-month-old greenhouse grown seedlings, chopped into narrow 
strips and then plasmolyzed for 1 h in 13 M CPW medium. Then, about 
200 mg of the plasmolyzed leaf tissue were incubated in 5 mL aliquots of 
a cell wall degrading enzymatic solution at 25 ◦C with a continuous 
diffuse illumination, for 18 h, in agitation. After digestion, the tissue was 
filtered through a 64 μm nylon sieve and the filtrate centrifuged for 10 
min at 100×g. The supernatant was discarded, and the protoplasts were 
purified through a 20 μm nylon sieve. The protoplasts were resuspended 
in 9 M CPW medium, and the absence of cell walls was confirmed 
microscopically with Calcofluor White and protoplast viability was 
measured with fluorescein diacetate. This protocol allowed the recovery 
of 21 × 106 protoplasts/g fresh weight, with a 99% viability. Although 
these are valuable approaches for hazelnut genetic variability pool 
enlargement, a particularly intriguing aspect for genetic improvement 
programs, research still needs to make steps forward to determine the 
most suitable experimental conditions for the obtainment of the desired 
responses from different hazelnut explants. 

2.5. Genetic engineering 

To date, genetic engineering experiments on hazelnut genome have 
not been reported yet, nevertheless, recombinant DNA technology has 
been successfully employed for molecular cloning and heterologous 
expression of several hazelnut genes codifying for allergens (Akkerdaas 
et al., 2006; Beyer et al., 2002; Garino et al., 2010; Lauer et al., 2008; 
Lüttkopf et al., 2002) or involved in the biosynthesis of taxanes (Qaderi 
et al., 2013; Wang et al., 2007, 2010). The HMGCR gene, which acts as a 
key regulator in taxanes biosynthesis catalysing the first committed step 
in mevalonate pathway, has been cloned in a binary vector and tran-
siently expressed via agroinfiltration in hazelnut leaves and calli, 
resulting in a higher amount of recovered paclitaxel in both tissues 
respect to the controls (Qaderi et al., 2013). The amenability of hazelnut 
to Agrobacterium-mediated transformation has been also reported by 
Jalalipour Parizi et al. (2020) and Vaedi et al. (2020), who induced hairy 
roots in C. avellana explants incubated with Agrobacterium rhizogenes 
with the aim of establishing a new source for paclitaxel production. The 
positive effect of A. rhizogenes on hazelnut rooting induction has been 

also reported by Bassil et al. (1991), although T-DNA integration has not 
been assessed. Genetic engineering could represent a reliable method for 
the rapid obtainment of new varieties or the improvement of the 
traditional ones, as it enables the rapid introduction of desired traits, 
with the possibility to perform site-specific modifications when genome 
editing techniques are employed. The most limiting factor in the 
application of these methodologies on hazelnut results in the lack of a 
protocol for regeneration starting from somatic tissues, which would 
allow the genetic base of an established cultivar to be maintained. 

3. Genome sequencing, mapping and QTL 

Several SSRs have been detected and characterized in hazelnut, 
allowing their employment as markers in germplasm characterization, 
phylogenetic studies and gene mapping (Bassil et al., 2005; Boccacci 
et al., 2005; Gürcan et al., 2010). A particular effort has been made 
through the years by the OSU to identify markers tightly linked to EFB 
resistance (Mehlenbacher, 2018). At first, many RAPD markers linked to 
a dominant locus derived from ‘Gasaway’, an obsolete pollinizer resis-
tant to EFB, have been identified studying the segregation pattern in 138 
individuals of an F1 generation derived from a cross between ‘OSU 
252.146’ X ‘OSU 414.062’, the maternal susceptible and the paternal 
resistant parent, respectively (Mehlenbacher et al., 2004). The infor-
mation obtained from this study, coupled with the use of SSR markers, 
allowed the construction of the first genetic map for hazelnut aimed to 
unravel the presence of markers linked to this qualitative resistance trait 
and to the S-locus as well, enabling their localization on LG 6 and 5, 
respectively (Mehlenbacher et al., 2006). From this F1 generation, 
through the years, breeders have selected the cultivar ‘Jefferson’ which 
is resistant to EFB as it carries the ‘Gasaway’ gene. To better characterize 
the region responsible for resistance, Sathuvalli et al. (2017) used a BAC 
library of ‘Jefferson’ to developed a high-resolution genetic map for that 
resistance trait from 1488 individuals from the F1 generation obtained 
by Mehlenbacher et al. (2004) and their reciprocal crossings. Further-
more, they constructed a high-density physical map of the resistance 
region and detected five candidate genes, two of which were recognized 
as part of super-families known to have disease-resistance properties. 
EFB resistance has been studied in several cultivars (Mehlenbacher and 
Molnar, 2021). Although analysis through SSR markers has mapped the 
resistance to LG 6 in ‘Culplà’, ‘Crvenje’, ‘OSU 495.072’ and ‘Uebov’, the 
absence of two RAPD markers tightly linked to ‘Gasaway’ resistance and 
irregular segregation ratios probably indicate that the loci involved in 
EFB resistance in these accessions are different respect to ‘Gasaway’ 
(Bhattarai et al., 2017; Colburn et al., 2015). Another source of quali-
tative resistance was recognized in ‘Ratoli’, a Spanish cultivar for which 
segregation ratios indicated the presence of a dominant allele at a single 
locus mapping on LG 7 (Sathuvalli et al., 2011a). The construction of a 
SNP marker–based ddRADseq genetic linkage map revealed that EFB 
resistance source from ‘Rutgers H3R07P25’ resides on LG 2 (Honig et al., 
2019), similarly to what has been observed in Georgian accession ‘OSU 
759.010’ (Sathuvalli et al., 2011b). Other than qualitative traits, also 
quantitative traits have been investigated. Beltramo et al. (2016) was 
the first to generate a QTL linkage map aimed to study the genetic basis 
of variation in vegetative traits like vigour, sucker habit, and time of bud 
burst, crossing ‘Tonda Gentile delle Langhe’ X ‘Merveille de Bollwiller’. 
They genotyped 163 plants of an F1 population with 152 SSR markers, 
obtaining a map of the 11 hazelnut LGs from which they have identified 
15 QTLs. Ten of these explained more than 10% of the phenotypical 
variance and were representative of all the three traits investigated. 
Particularly interesting was the detection of a stably expressed region on 
LG 2 controlling leaf bud burst which explained around 50% of the 
phenotypical variance with a LOD score higher than 20. Over time, this 
map has been further saturated through a GBS approach by Torello 
Marinoni et al. (2018) who discovered 9999 SNP markers enabling the 
detection of 11 and 18 QTLs for leaf budburst on the ‘Merveille de 
Bollwiller’ and on the ‘Tonda Gentile delle Langhe’ map, respectively. 
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On LG 2 of this last one, they confirmed the presence of a stable QTL 
responsible for 31.4–54.6% of the phenotypical variance over a 5-year 
period, and relatively to that genomic region, they reported the pres-
ence of three genes which are potentially involved in leaf bud burst 
control. These genetic maps were also employed by Valentini et al. 
(2021) to map phenology related traits, discovering an overall of 71 
QTLs. They investigated the genomic regions surrounding these QTLs, 
detecting five and 16 candidate genes for time of male and female 
flowering, respectively, 14 candidate genes for dichogamy and five 
genes potentially involved in seed development. Employing for the first 
time on hazelnut an association mapping approach, which takes 
advantage of the historical recombination in a population without 
relying on biparental crossings, Ozturk et al. (2017) performed QTL 
analysis for 17 nut and kernel related traits on a diversity panel 
comprising 24 cultivars and 40 wild Slovenian accessions genotyped 
with 49 SSR primer pairs. They reported the general linear model cor-
rected with the population structure Q-matrix as the one with the 
highest proportion of significant results among those tested, which 
enabled the identification of 49 SSR markers associated with nine of the 
17 traits studied. Based on a similar approach, the largest scale QTL 
analysis performed on hazelnut has been carried out by Frary et al. 
(2019a) who have screened 30 SSR primers in a diversity panel of 390 
accessions composed of 16 cultivars, 232 landraces and 142 wild in-
dividuals from nine provinces in Turkey with the aim of unravel the 
association of these markers with 44 agro-morphological traits. They 
detected 145 QTLs with the largest proportions identified for involucre 
(26%) and inflorescence (14%) morphology. Several markers 
co-localized with more than one trait, such as markers for male catkin 
abundance which were shared with plant vigour and height, whereas 
markers for female flower abundance co-localized with suckering and 
alternate bearing. The same diversity panel has also been characterized 
for 13 nut and 12 kernel traits allowing the detection of 78 loci, the most 
of which were related to kernel (26%) and nut (24%) morphology fol-
lowed by quality (19%), shell thickness (16%) and yield-related (15%) 
traits (Frary et al., 2019b). The era of high-throughput sequencing 
technologies has enabled the application of omics sciences also on 
hazelnut, allowing the generation of a huge amount of data. Rowley 
et al. (2012) have provided the first de novo assembled transcriptome of 
this species retrieved from cultivar ‘Jefferson’ young leaves, catkins, 
bark, and whole young seedlings, employing an Illumina-based tech-
nology. They obtained a transcriptome assembly comprising 28,255 
transcript contigs, about the 93.3% of which encode proteins as recog-
nized by OrfPredictor tool (Min et al., 2005), with about the 75% of 
these which aligned to sequences already deposited in NCBI database as 
shown by BLASTX analysis, resulting in 16,488 transcript contigs 
functionally annotated by Gene Ontology analysis through Blast2GO 
program (Conesa et al., 2005). A differential expression analysis was 
also performed, allowing the identification of genes whose expression 
was found to be different among the four tissues analysed. The first 
hazelnut genome assembly was reported by Rowley et al. (2018) who 
sequenced the cultivar ‘Jefferson’ using two paired-end and one 
mate-pair Illumina libraries, collectively representing 93x genome 
coverage, obtaining 36,641 contigs and scaffolds with an N50 of 21.5 
Kbps and total sequence length of 345 Mbps, which is about 91% of the 
estimated hazelnut genome size. With AUGUSTUS tool (Stanke et al., 
2004), a total of 36,090 putative coding loci were identified, 22,474 of 
which have been functionally characterized via alignment through 
BLASTP tool on NCBI database, then, Blast2GO program (Conesa et al., 
2005) functionally classified 11,221 of these protein coding loci. 
Emphasis was placed on the identification of resistance and 
self-incompatibility determining genes, since 115 putative NBS-LRRs 
and 17 candidate genes annotated as encoding self-incompatibility or 
S-locus-linked proteins have reported. Lastly, they re-sequenced seven 
cultivars representatives of four different regions of the world, detecting 
several variations among these accessions and the ‘Jefferson’ reference 
assembly, probably involved in different responses against pathogens 

and different sexual compatibility. Since it was highly fragmented, 
‘Jefferson’ genome was also sequenced using the long-read technology 
Pacific Biosciences (PacBio), providing a backbone scaffold with 49×
coverage, which was error-corrected using the previously obtained 
Illumina reads and subsequently assembled into chromosome-level 
scaffolds using HI–C proximity ligation method (Dovetail™), obtain-
ing 11 pseudomolecules corresponding to the haploid karyotype of 
hazelnut (Hill et al., 2021; Snelling et al., 2018). Hill et al. (2021) have 
sequenced both ‘Jefferson’ parents using an Illumina platform and the 
sequences retrieved were aligned to the reference ‘Jefferson’ genome. 
Those sequences were used for the development of SSR and HRM 
markers close to the S-locus, narrowing that region to 193.5 Kbps and 
detecting 18 genes within it. Lucas et al. (2021) produced a 370 Mbps 
chromosome-level genome assembly for the most highly valued Turkish 
cultivar ‘Tombul’, representative of the 97.8% of the estimated 
C. avellana genome size, combining three different sequencing tech-
nologies which provided data with different size ranges: short reads 
(0.1–1 Kbp; Illumina paired-end), long reads (1–10 Kbps; NanoPore) and 
proximity ligation (10 Kbps–10 Mbps; Dovetail™). They identified 27, 
270 protein-coding genes, 20,000 of which have been functionally an-
notated and emphasis was placed on the detection of genes involved in 
susceptibility to powdery mildew-causing pathogens, identifying 12 
full-length MLO genes, and on genes encoding for allergens, detecting all 
known hazelnut allergens-encoding genes and several others previously 
unreported which could encode for potential allergenic proteins. 
‘Tombul’ genome was used as a guide by Pavese et al. (2021a) for 
scaffolding the sequence retrieved from the linked-reads sequencing 
(10× Genomics) of the Italian reference quality cultivar ‘Tonda Gentile 
delle Langhe’, obtaining 11 pseudomolecules. The Maker-P tool 
(Campbell et al., 2014) identified a total of 27,791 genes, whose func-
tion has been annotated using BLASTP tool on SwissProt database and 
the InterProScan domain inspection tool (Jones et al., 2014). Particular 
attention was given to the identification of genes involved in resistance 
response as 810 putative resistance genes were detected, with the 
chromosome 2 being the richest one, followed by 5, 3, and 4. They re-
ported most resistant genes to be RLKs, followed by RLPs, while only few 
of resistant genes contain at least one NB-ARC domain. Omics sciences 
have shown that a big amount of information could be retrieved relating 
to the genetic basis of traits of interest, enabling their employment in 
MAS or genetic engineering for the obtaining of high value cultivars in 
less time. 

4. Secondary metabolite production 

European hazelnut contains many important phytochemicals like 
phenolic acids, flavonoids, tannins, proanthocyanidins, diary-
lheptanoids, lignans, taxanes and volatile compounds (Bottone et al., 
2019). Special attention has been given to taxanes: among these mole-
cules, paclitaxel or Taxol™, is known for its antimitotic effect in G2-M 
phase of the cell cycle, leading to an important antitumor activity 
(Jennewein and Croteau, 2001). This molecule is already used as a drug, 
but it sees the strong limit in the short supply, due to the non-easiness of 
the synthetic production (Croteau et al., 2006). At first, paclitaxel was 
found in Taxus genus but its extraction from the in vivo growing plants 
resulted ecologically unsustainable and Taxus spp. Is known to be 
recalcitrant to in vitro culture (Jennewein and Croteau, 2001). Once it 
was individuated in hazelnut, many studies were carried out to establish 
efficient protocols for using hazelnut plant tissue culture to produce 
paclitaxel, or at least its precursors. 

4.1. Cell suspensions 

First detection of paclitaxel in hazelnut cell suspension was reported 
by Bestoso et al. (2006) when they succeeded to produce this compound 
at 17 μg/mL concentration. With the aim to increase taxanes content, 
chemical elicitation was carried out using 200 μM methyljasmonate plus 
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182 μg/mL chitosan resulting in a doubling of taxol production, with 
respect to the control. This first result was encouraging and not so far 
from the results obtained with Taxus baccata L. cell suspensions (Malik 
et al., 2011). The second report on hazelnut cell as biofactory of pacli-
taxel was given by Bemani et al. (2013): they proposed to elicitate cells 
with 6 mM phenylalanine, obtaining an increment of paclitaxel respect 
to the control, even though the concentration was still at a low level (48 
μg/L for both intracellular and extracellular paclitaxel). Moreover, the 
combination of 3 μM phenylalanine with 0.1 mM vanadyl sulfate led to 
the production of 4.2 μg/g dry weight of paclitaxel (Rahpeyma et al., 
2015). The first physical elicitation treatment of hazelnut cells was 
carried out using ultrasounds at 455 mW for 8 and 20 min, obtaining the 
production of major taxanes: paclitaxel, 10-deacetylbaccatin, and bac-
catin III at a concentration of 0.46, 0.26, and 0.07 mg/L, respectively 
(Safari et al., 2012). Sonication with 29 KHz continuous ultrasound at 4 
mW/cm2 intensity for 20 min also provided the enhancement of lip-
oxygenase, phenylalanine ammonia-lyase, and 1-deoxy-D-xylulose-5--
phosphate reductoisomerase activities (Ghanati et al., 2015). Given 
the extraordinary variety of possible cultivation and elicitation tech-
niques, a model for forecasting paclitaxel biosynthesis in hazelnut cell 
culture based on ANFIS was proposed. Using this technology, Farhadi 
et al. (2020) set up a protocol employing three fungal elicitors, derived 
from an endophytic fungus isolated in Taxus baccata L., resulting in a 
final paclitaxel concentration of 0.40 mg/L. Among fungal elicitors, also 
Camarosporomyces flavigenus isolated from C. avellana was tested, 
obtaining a concentration of total paclitaxel of 351.4 μg/L (Salehi et al., 
2020). One of the crucial steps in cell culture establishment for an in-
dustrial production is the transition from a laboratory scale to a biore-
actor scale. For hazelnut cells, a protocol based on UniVessel®SU 
bioreactor resulted efficient with a total taxanes production of 6.24 
mg/L (Gallego et al., 2015). 

4.2. Callus culture 

A fast-growing and optimized callus culture is the basis for an effi-
cient cell suspension for the accumulation of metabolites. Salehi et al. 
(2017) investigated several components of the culture medium for 
cotyledon-derived callus growth optimization. First, they focused on the 
basal salts, starting from a modified MS medium. They also evaluated 
the effect of several concentrations of casein hydrolysate, spirulina 
powder and various amino acids. The modified MS medium developed, 
named M10, with 1000 mg/L algae powder, 1000 mg/L casein hydro-
lysate and 3 g/L gelrite (pH 6.0), resulted in an increasement of callus 
biomass of C. avellana. Using this medium, a cell suspension producing 
106.6 μg/L of paclitaxel was set up (Salehi et al., 2017). One of the major 
problems concerning hazelnut callus is the browning effect in the callus 
induction phase. To overcome this problem, Shirazi et al. (2020) pro-
posed two different systems: first, the addition in the medium of anti-
oxidant molecules such as PVP, acetic acid and citric acid; second, a 
change in the subculture system, where the induced calli were trans-
ferred to a liquid medium with the same composition and then the 
resulting cells were immobilized on a solid medium. The latter resulted 
in a 10-fold growth rate increasing respect to the routine cultivation 
methods. To evaluate the effect of different medium composition on 
callus growth and metabolite production, Hazrati et al. (2022) set up an 
experiment combining different basal salts, hormones and ultrasound 
exposures, carrying out subsequent physiological and metabolic anal-
ysis. They found out that combining 2,4-D (2 mg/L) and KIN (0.2 mg/L) 
with the sonication of explants for 1 min resulted in an optimized con-
dition for callus induction and growth. Moreover, WPM and MS basal 
salts allowed the highest accumulation of baccatin III (147.98 and 
147.85 mg/L, respectively), while the highest paclitaxel content (44.89 
mg/L) was obtained in WPM medium. 

4.3. Hairy roots culture 

Hairy roots technique is one of the most appreciated for the bio-
accumulation of molecules because it consists in the transformation of 
the plant matrix with A. rhizogenes that, thanks to Ri plasmid, leads to a 
neoplastic production of adventitious roots without using hormones and 
with the possibility to scale-up to bioreactor scale (Pistelli et al., 2010; 
Wawrosch and Zotchev, 2021). Hazelnut hairy root induction was firstly 
investigated by Jalalipour Parizi et al. (2020), testing three different 
A. rhizogenes strains and six culture media, using hazelnut seedlings as 
starting material. Hazelnut leafstalk inoculated with c58c1pRiA4 strain 
in quarter-strength WPM medium resulted to be the most suitable me-
dium for hairy roots induction, while half-strength SH (Schenk and 
Hildebrandt, 1972) was the best culture medium for their growth in 
liquid medium. These hairy roots contained 3.2 μg/g dry weight of 
paclitaxel. Similar results were obtained by Vaedi et al. (2020), who 
suggested quarter-strength WPM medium supplemented with B5 vita-
mins (Gamborg et al., 1968) for the induction phase and a 
quarter-strength SH medium supplemented with B5 vitamins for the 
development in liquid media. Ascorbic acid was also tested with positive 
results to reduce the browning effect. Paclitaxel content was assessed at 
4.02 μg/g dry weight, very close to what other authors have previously 
reported (Jalalipour Parizi et al., 2020; Vaedi et al., 2020). 

5. A hazelnut ideotype: which are the most important traits? 

According to the most relevant hazelnut breeding program carried 
out in Corvallis (Oregon – United States of America) at the OSU (Botta 
et al., 2019), and to some other minor breeding activities such as those 
carried out in Turkey at the Hazelnut Research Institute of Giresun, in 
Spain at the IRTA, in Chile at the INIA and at other few Italian research 
centres, as also detailed by Silvestri et al. (2021), the European hazelnut 
ideotype can be set as follow.  

- develop new cultivars for the blanched kernel market, according to 
the high request of the confectionery industry (Romero-Aroca et al., 
2021), for which the round-shaped nut Italian cultivars ‘Tonda 
Gentile delle Langhe’ and ‘Tonda di Giffoni’ set the standard for 
quality;  

- spread the resistance to EFB, which remains the main concern for the 
Oregon’s hazelnut growers, as well as the resistance to the most 
relevant diseases in other countries, such as nut rot caused by 
Fusarium spp. (Turco et al., 2021), Diaporthe spp. (Arciuolo et al., 
2022), Gnomoniopsis castaneae (Lione et al., 2019), the emerging 
powdery mildew by Erisiphe corylacearum (Mazzaglia et al., 2021; 
Sezer et al., 2017), and the anthracnose by Piggotia cor-
yli/Cryptosporiopsis tarraconensis (Altin and Gulcu, 2023; Drais et al., 
2023) and pests, such as the marmorated stink bug, Halyomorpha 
halys (Bosco et al., 2018) and the bud mites, primarily Phytoptus 
avellanae (Contarini et al., 2022);  

- shortcomings and undesirable traits in the new releases include long 
nut shape, thick shells, low nut yield per tree, poor pellicle removal 
after roasting, and a high frequency of nut and kernel defects. 

The minimum standard of the main OSU breeding program objec-
tives is summarized below as a reference, since it targets the main out-
puts expected from breeding programs. Seedlings and selections must 
meet or exceed all the following minimum standards for each objective 
to be further evaluated for a possible release as new cultivars; the 
minimum standard for bud mite resistance is cultivar ‘Clark’ that has an 
intermediate susceptibility; ‘Tonda Gentile delle Langhe’ is the reference 
for round-shaped nut; the minimum percent kernel (kernel/nut ratio) is 
fixed at 48%; precocity of fruit-set is also highly desired trait (at least 35 
nuts in 5th leaf on ground). High yield, easy pellicle removal, few defects 
and early maturity are other requested traits, and for all these traits the 
minimum standard is referred to cultivar ‘Barcelona’. Finally, a high 
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free-falling ripening nuts from the husks is requested, at least of 85%, to 
promote the mechanical harvesting. 

Furthermore, European hazelnut is self-incompatibility species of the 
sporophytic type under the control of a single locus with multiple alleles 
(Mehlenbacher, 1997), where the stigmatic surface is the site of the 
incompatibility reaction (Hampson et al., 1993). In incompatible polli-
nations, pollen germination is delayed, and pollen tubes are distorted 
and fail to penetrate the stigma. Its allelic variants are grouped ac-
cording to a dominance hierarchy of S-alleles in hazelnut pollen, 
structured in eight different levels. Alleles are dominant to alleles below 
them in the hierarchy, and codominant with those at the same level. 
Thus, according to its floral biology European hazelnut in commercial 
orchards requires to be mixed with compatible pollinizers for the allele 
expressions and characterized by male blooming overlapping with the 
female blooming of the main cultivar. To this effect, universal hazelnut 
pollinizers are researched and specifically through controlled crosses, 
attempts are made to fix rare allele expressions for the S-locus, favouring 
seedlings characterized by alleles located in lower dominance hierar-
chical levels, and with abundant release of viable pollen (Ascari et al., 
2020). 

6. Future and perspectives 

The rapid increase registered in the last years for hazelnut cultivated 
area has posed the need for the development of new varieties which 
show adaptability to a wide range of environments, providing high 
quality yields. Molecular markers developed for MAS and the data 
retrieved from omics studies represent a solid base for leading genetic 
improvement programs relying on advanced biotechnological ap-
proaches. Genetic engineering could represent an effective way to speed 
up the process of new European hazelnut varieties development, 
allowing the rapid introduction of desired traits. Despite the application 
of these techniques on hazelnut is feasible, their employment must rely 
on effective protocols for in vitro tissue culture. Although hazelnut 
response to in vitro conditions has been reported to be genotype specific, 
many effective protocols have been published for hazelnut micro-
propagation and research is still ongoing for the development of media 
suitable for many cultivars. On the contrary, few works dealt with 
hazelnut plantlet regeneration, none of which reported satisfactory re-
sults when mature tissues were used. Major efforts should be also made 
to define the best culture conditions for the induction and regeneration 
of individuals which show different levels of ploidy, as those could 
enlarge the genetic pool of this species and be useful for genomic studies. 
Regeneration through protoplasts isolation and cultivation is also rele-
vant as they represent the eligible type of explant to obtain transgene- 
free edited plants. In vitro tissue culture also provides the opportunity 
to produce valuable secondary metabolites such as paclitaxel, one of the 
most important anticancer compounds, which is naturally produced by 
hazelnut. Anyway, tissue culture conditions need to be optimized to 
scale up the process from laboratory bench to industrial scale. Bio-
technologies applied to plant sciences could represent a sustainable way 
to increase the production level of a species in a suboptimal environ-
ment, with less inputs with respect to traditional agriculture. 
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Frary, Amy, Öztürk, S.C., Balık, H.I., Balık, S.K., Kızılcı, G., Doğanlar, S., Frary, Anne, 
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