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Abstract 

The morbidity and mortality from cardiovascular diseases (CVD) remain high. 

Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-

alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as 

well as hypertension are the most common comorbidities in patients with CVD. These 

comorbidities result in increased myocardial oxidative stress, mainly from increased 

activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled 

endothelial nitric oxide synthase, mitochondria as well as downregulation of 

antioxidant defense systems. Oxidative and nitrosative stress play an important role in 

ischemia/reperfusion injury and may account for increased susceptibility of the 

myocardium to infarction with one or several of the above comorbidities. On the other 

hand, controlled release of reactive oxygen  species is also important for 

cardioprotective signaling. In this review we summarize the current data on the effect 

of hypertension and major cardiometabolic comorbidities such as obesity, 

hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on 

ischemia/reperfusion injury and cardioprotection. We also review and discuss the 

therapeutic interventions that may restore the redox imbalance in the diseased 

myocardium in the presence of these comorbidities.  

Keywords: cardiovascular comorbidities; oxidative stress; myocardial infarction; 

redox therapeutic strategies. 
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AMPK  AMP-activated protein kinase 

Apo  apoprotein 

BH4  tetrahydrobiopterin 
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1. Introduction 

Cardiovascular diseases (CVD) are the leading causes of disease burden and the 

primary causes of death worldwide [1]. CVD are systemic diseases, rarely occurring 

alone so it is common to find multiple comorbid conditions in the setting of CVD, 

particularly in the elderly population. Comorbidities, the presence of one or more 

chronic diseases among patients with CVD, are increasing due to reduced case fatality 

of ischemic heart disease (IHD) and prolonged life expectancy [2, 3]. However, the 

rising prevalence of diabetes mellitus (DM) worldwide, linked to the almost ubiquitous 

increase of obesity and non-alcoholic fatty liver disease and steatohepatitis (NAFLD 

and NASH) globally, is mitigating reductions in the burden of CVD by effective 

cardiological interventions (cholesterol and blood pressure lowering, coronary 

interventions, etc.). Metabolic diseases such as obesity, hyperlipidemia, DM, NAFLD 

and NASH as well as hypertension are common comorbidities in patients with IHD and 

heart failure (HF) and affect the clinical outcomes profoundly [4]. 

Obesity and DM synergistically cause myocardial dysfunction independent of 

coronary artery disease and hypertension since both conditions share similar 

pathophysiological mechanisms [5, 6]. Similarly, hyperlipidemia per se is able to 

negatively affect myocardial function. These metabolic heart diseases (myocardial 

dysfunction caused by obesity, hyperlipidemia, and DM) are characterized by altered 

myocardial energetics with mitochondrial dysfunction, nitro-oxidative stress, abnormal 

cellular metabolism leading to lipotoxicity in the myocytes, cardiac autonomic 

neuropathy, as well as increased inflammation and interstitial collagen deposition [7-

9]. These pathological changes 1. are further aggravated by the parallel development of 

coronary atherosclerosis; 2. result in subclinical myocardial dysfunction (initially 

diastolic) and eventually the development of overt HF with preserved ejection fraction 

that may over time progress into HF with reduced ejection fraction [10]; and 3. exert 

numerous biochemical effects on the heart that negatively affect the development of 

ischemia/reperfusion injury (IRI) and interfere with cardioprotective interventions, 

notably ischemic conditioning. However, the exact mechanism by which the 

remarkable cardioprotective effect of ischemic conditioning is attenuated or abolished 

in the presence of major cardiovascular risk factors and comorbidities is not fully 

understood [11]. Accentuated myocardial oxidative stress has been reported in the 
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presence of major comorbidities (Figure 1); therefore, it is plausible that redox 

signaling-dependent changes profoundly contribute to the pathological phenotypes.  

In this review we summarize the current data on the effect of major cardiovascular 

comorbidities on cardiac redox homeostasis, focusing on metabolic diseases such as 

obesity, hyperlipidemia, DM, hypertension and NAFLD/NASH. We will also review 

the therapeutic interventions that may restore the redox imbalance in the diseased 

myocardium in presence of these comorbidities. 

 

2. Obesity 

According to WHO data for 2014, 11% of men and 15% of women (>18 years old) 

were obese (body mass index [BMI] > 30 kg/m2) [12]. More than 42 million children 

under the age of 5 years were reported to be overweight in 2013. Obesity increases the 

risk of myocardial infarction (MI) by 20-40% (odds ratio 1.2-1.4 in different studies). 

High BMI is ranked fifth among the leading risk factors for disability-adjusted life years 

(years lived with severe illness) based on the global burden of disease data for 2019 

[13]. Obesity is strongly associated with the development of atherosclerosis, but it may 

also have direct effects on the heart [14]. Results from the Framingham Heart Study 

indicated that increased BMI correlates well with greater risk for developing HF both 

in men and women [10]. Data from patients and animal models clearly indicate that the 

heart undergoes structural and functional changes in obesity [14]. Hearts from obese 

subjects have increased left and right ventricular wall thickness, increased left atrium 

dimensions, fibrosis and accumulation of intracellular triglycerides [14]. Subclinical 

contractile alterations have been detected in obese patients, along with diastolic 

dysfunction [14, 15]. Similar results have been observed in experimental models of 

obesity, suggesting that obesity alone does not cause impairment in systolic function, 

although it does affect cardiac relaxation properties [16-18].  

Increased circulating free fatty acids trigger a vicious cycle harming the antioxidant 

response in overweight and obese individuals [19, 20]. This is particularly true for the 

myocardium under stress conditions;  glucose, compared with fatty acids, is the more 

efficient substrate to boost high energy products with respect to oxygen consumption 
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[21]. Despite these evident repercussions on cardiac structure and function in obesity, 

it is challenging to distinguish between the effects deriving directly from obesity and 

the effects of other comorbidities strongly associated with obesity, such as 

atherosclerosis, hypertension, hyperlipidemia and DM.  

2.1.  Obesity and Redox signaling in myocardial infarction 

A number of studies have highlighted an increased myocardial susceptibility to IRI in 

experimental models of obesity and in patients [22-26]. However, other studies report 

conflicting results, such as normal or even enhanced functional recovery following 

ischemia/reperfusion in obese animals [27-29]. The reason for this discrepancy is not 

clear. One possibility is that changes in hemodynamics (i.e. preload and afterload) may 

confound contractile defects in vivo [14]. In addition, obesity is associated with elevated 

circulating concentrations of insulin and fatty acids that might affect the extent of 

myocardial damage after IRI [30-32]. Indeed, one study found that obesity led to 

increased infarct size and reduced functional recovery after ischemia/reperfusion 

performed ex vivo with the classic Krebs-Henseleit perfusion buffer, but the presence 

of insulin and fatty acids in the buffer completely abolished these differences between 

obese and non-obese hearts [22]. An additional factor that may affect the outcome is 

age, since aged obese hearts show reduced functional recovery when subjected to 

preconditioning [33]. 

From a molecular standpoint, changes in substrate utilization, mitochondrial 

function, redox signaling and inflammation occur much earlier and precede measurable 

changes in cardiac function in obese hearts. The functional recovery of the heart after 

ischemia/reperfusion can be improved by increasing glucose oxidation during 

reperfusion [32]. Unsurprisingly, increased delivery of fatty acids in obese hearts and 

activation of related pathways, such as peroxisome proliferator-activated receptor alpha 

(PPAR ), contribute to myocardial degeneration [14]. A common denominator in these 

metabolic alterations is oxidative stress. BMI was directly correlated with several 

oxidative stress parameters, positively with p47phox expression and hydroethidium 

oxidation, but negatively correlated with endothelial nitric oxide synthase (eNOS) 

phosphorylation and dihydrofolate reductase expression in patients undergoing 

coronary artery bypass graft surgery [34]. In patients with IHD, BMI also correlated 

with leptin levels and oxidative stress markers, with an impact on cardiovascular and 
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operative risk profiles [35]. The coexistence of hypercholesterolemia and obesity in 

children caused additive increase of 8-isoprostanes and soluble nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX) 2-derived peptide (sNox2-dp, a 

marker of NOX2 activation) and additive impairment of endothelial function measured 

by flow-mediated dilation (FMD) [36]. Obesity is associated with alterations in 

mitochondrial function, number and turnover [37-40]; thus, impairment in 

mitochondrial oxidative capacity observed in ob/ob mice inevitably results in increased 

superoxide formation [14]. Indeed, the mitochondrial respiratory chain (i.e. complexes 

I and III) is considered the most relevant source of reactive oxygen species (ROS) in 

obese or diabetic hearts [41]. An additional mechanism for mitochondrial ROS 

formation is represented by p66Shc that, upon phosphorylation by protein kinase C 

(PKC), translocates to mitochondria to induce hydrogen peroxide (H2O2) formation 

[42]. p66Shc is critical for insulin signaling and glucose uptake and its phosphorylation 

is increased in obesity and DM [43, 44]. Moreover, its deletion reduces oxidative stress 

and atherogenesis in mice fed with high-fat diet [45].  

Besides mitochondria, other enzymes within the cell contribute to the alteration 

of redox equilibrium and there may be crosstalk between them. For instance, p66Shc 

inhibits forkhead-box-protein O (FOXO) transcription factors in the nucleus thereby 

affecting the expression of antioxidant enzymes [46]. Importantly, p66Shc can also 

activate ras-related C3 botulinum toxin substrate 1 (rac1) and trigger NOX mediated 

ROS formation [46]. Indeed, NOX activity is enhanced in obese animals and its 

inhibition prevents oxidative stress and impairment in cardiac function in these hearts 

[47, 48]. Both mitochondrial and NOX-dependent ROS formation play a major role in 

lipotoxicity. Obese patients have higher circulating levels of saturated fatty acid 

palmitate that can trigger mitochondrial ROS formation. This can in turn be amplified 

by NOX2 causing mitochondrial dysfunction and further amplifying oxidative stress in 

a vicious cycle [49]. Furthermore, the inability of cardiomyocytes to respond to an 

increased fatty acid load results in the generation of toxic lipid intermediates, such as 

ceramide, that promote mitochondrial dysfunction and cell death [48, 50]. Lipotoxicity 

further aggravates cardiac IRI and mitochondrial ROS play a major role in this 

mechanism [51, 52]. Indeed, it has been demonstrated that ROS produced by the 

mitochondrial flavoenzyme monoamine oxidase A (MAO-A) inhibit sphingosine 

kinase-1 (SphK1) and are associated with generation of proapoptotic ceramide. It is 
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noteworthy that SphK1 inhibition, ceramide accumulation, infarct size and 

cardiomyocyte apoptosis were significantly decreased in MAO-A deficient animals 

subjected to IRI [52]. MAO plays a major role in the oxidative stress in diabetic 

cardiomyopathy [53] and it remains to be elucidated whether these mechanisms also 

apply to changes observed in obese hearts. Interestingly, the selective MAO-B 

inhibitor, selegiline, was able to reduce adiposity and improve metabolic parameters in 

a rat model of diet-induced obesity [54].  

Among other sources of ROS in the heart, xanthine oxidase (XO) has been shown 

to promote oxidative stress, inflammation and alterations in cardiac structure and 

function in mice fed a Western diet [55]. On the other hand, antioxidant enzymes also 

play a major role in obese hearts. For instance, expression and/or activity of many 

antioxidant enzymes is reduced in cardiac tissue or in the circulation of obese animals 

[48]. Moreover, mitochondrial peroxidases involved in ROS removal use NADPH 

provided mostly by nicotinamide nucleotide transhydrogenase (NNT). A recent study 

showed that, in conditions of high nutrient availability and low energy demand, NNT 

activity maintains low ROS levels through a fine modulation of mitochondrial oxygen 

utilization [56]. In failing hearts, NNT activity can be reversed resulting in the depletion 

of mitochondrial antioxidant capacity and oxidative stress [57]. Yet, whether alterations 

in NNT activity may be responsible for altered redox equilibrium in obese and ischemic 

hearts has not been investigated to date. 

2.2. Pharmacological redox modulation in obesity and cardioprotection 

Lifestyle intervention, caloric restriction (CR), exercise training and different 

pharmaceutics/nutraceuticals have been proposed to limit the inflammatory response 

and ROS generation and to improve the antioxidant machinery in obesity. -3-

polyunsaturated fatty acids (PUFAs) are broadly used as a secondary interventional 

approach in CVD and have been extensively investigated in the setting of obesity. In 

vitro studies have shown that PUFAs interfere with eicosanoid generation [58] and 

decrease NOX activity [59]. Eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA) administration increased the expression of heme oxygenase-1 by a mechanism 

dependent on nuclear factor erythroid 2-related factor 2 (Nrf-2) [60]. Moreover, PUFA 

supplementation in humans resulted in increased expression of antioxidants such as 

catalase (CAT), heme oxygenase-2, glutathione transferases (GST) and glutathione 
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reductase (GR) and in the down regulation of pro-oxidant genes such as the glutathione 

peroxidases [61]. In addition to PUFAs, polyphenols were found to boost nitric oxide 

(NO) bioavailability by inducing eNOS activity, while reducing NOX1 in obese 

animals [62]. Long term resveratrol administration, besides increasing the expression 

of eNOS in white adipose tissues, reduces the systemic inflammatory response by 

increasing the circulating levels of adiponectin and lowering the release of tumor 

necrosis factor-alpha  [63]. Mechanistically, these compounds were found to 

exert their anti-inflammatory and cardioprotective effects by activating the adenosine 

monophosphate (AMP)-activated protein kinase (AMPK), peroxisome proliferator-

activated receptor gamma coactivator (PGC)- - -mediated pathways in 

Zucker Diabetic Fatty (ZDF) rats [63]-[64].  

A number of primary and secondary interventional studies have reported the 

benefit of CR, indicating that CR is effective in reducing the anti-inflammatory 

response and in improving the antioxidant response in obese individuals [65]. In 

particular, CR-mediated protection relies on the decrease of oxidative stress markers 

via sirtuins (SIRT), NAD+-dependent deacetylases [66]-[67], FOXO [68] and PGC-1 -

mediated mitochondrial bioenergetics [69]. CR can additionally exert cardioprotection 

by induction of antioxidant adaptive genes associated to the increased expression of 

adiponectin and the activation of the AMPK [70]. It was also noticed that CR-mediated 

cardioprotection occurs via SIRT1 and PGC-1  in obese animals [71]. Polyphenols and 

exercise training were reported to induce stress response genes and mitochondrial 

biogenesis via AMPK and SIRT mediated reduction of FOXO activity [72]-[73]. Of 

note, prebiotics, probiotics, and synbiotics were found to induce cardioprotection by 

restoring mitochondrial dysfunction via the improvement of the electromechanical 

proton gradient in obese animals [74]. 

An improvement of mitochondrial biogenesis and myocardial function in obese 

transgenic mice overexpressing mitochondrial-CAT has been demonstrated, an effect 

relying on the decrease of ROS generation in the heart [75]. Lowell et al. first 

demonstrated the role of mitochondrial uncoupling in driving obesity [76]. Partial 

mitochondrial uncoupling improving post-ischemic functional recovery via a ROS-

dependent pathway has been observed [77]. SIRT1 [78] and PPAR  pathways were 

recently found to drive white-to-brown adipose tissue remodelling via uncoupling 

proteins (UCP) such as UCP1 [79]. Mild uncoupling of oxidative phosphorylation is 
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one of the mechanisms suggested to be cardioprotective as chemical uncoupling mimics 

ischemic preconditioning and of note, chemical uncouplers acting on mitochondrial 

H2O2 production in the heart, share common cardioprotective mechanisms with low 

concentrations of dietary polyphenols [80]. Mechanistically the UCP3-mediated 

cardio-protection against IRI may involve the inhibition of the mitochondrial 

permeability transition pore (mPTP) opening, mitochondrial calcium overload and ROS 

generation [81].  

Obesity abolishes pharmacological preconditioning-induced cardioprotection 

due to impairment of the ROS-mediated AMPK pathway, a consequence of increased 

basal myocardial oxidative stress. Exercise training can prevent the attenuation of 

anesthetic cardioprotection in obesity by a mechanism including reduced basal 

oxidative stress and normalized ROS-mediated AMPK pathway [82].  

In preclinical models of obesity, cardioprotection was also reported with several 

currently used antidiabetic drugs. Vildagliptin was found to be protective against IRI in 

obese-insulin resistant rats by improving mitochondrial function, oxidative stress and 

apoptosis in the ischemic myocardium [83]. The sodium-glucose cotransporter-2 

(SGLT2) inhibitor dapagliflozin was also found to exert cardioprotection in high-fat 

diet-induced obese/insulin-resistant rats by decreasing the cleaved caspase 3 as well as 

mitochondrial anti-dynamin related protein-1, suggesting a role of dapagliflozin in the 

control of mitochondrial fission [84]. Empagliflozin reduced body weight, infarct size 

and improved redox regulation by decreasing inducible NOS (iNOS) expression and 

subsequently lipid peroxidation in mice fed a Western diet [85].  

Adiponectin has been reported to play a protective role in the development of 

obesity-linked disorders. It has been shown that adiponectin protects against IRI in a 

pig model through its ability to suppress inflammation, apoptosis and oxidative stress 

[86]. Treatment with AC261066, a synthetic selective agonist for the retinoic acid 2- 

receptor exerted protective effects in obese (high fat diet-fed) wild-type mice when their 

hearts were subjected to ischemia/reperfusion ex vivo. This cardioprotection was 

associated with decreased formation of ROS and toxic aldehydes [87]. Melatonin, a 

potent free radical scavenger and antioxidant reduced infarct size in a rat model of diet-

induced obesity and prevented the metabolic abnormalities induced by diet-induced 

obesity [88]. MitoTEMPO, a mitochondria-targeted ROS scavenger, prevented cardiac 
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fibrosis and oxidative stress and ameliorated weight gain in a high fat diet rodent model 

[89]. Similar protective effects were observed with mitoQ, a synthetic mitochondrial 

antioxidant [90-92]. 

In summary, although it is difficult to separate the effects originating only 

from obesity from the effects induced by other comorbidities strongly associated 

with obesity, such as hyperlipidemia and diabetes, redox signaling triggers 

changes in cardiac function in obese hearts. Lowering oxidative stress to prevent 

metabolic disorders related to obesity constitutes to be an interesting therapeutic 

target. However, further studies are needed to clearly understand ROS 

generation, typology, and distribution in obesity. 

 

3. Hyperlipidemia 

According to WHO data, the global prevalence of hyperlipidemia 

(hypercholesterolemia) could be up to 40% [93]. Hyperlipidemia increases the risk of 

MI more than 8-fold (odds ratio 8.39) [94]. Low density lipoprotein (LDL) cholesterol 

is ranked eighth among the leading risk factors for disability-adjusted life years (years 

lived with severe illness) based on the global burden of disease data of the year 2019 

[13]. Multiple experimental studies have shown that hyperlipidemia enhances infarct 

size and favors cardiolipotoxicity. Oxidative stress and NO play an important role in 

LDL accumulation in the vascular wall [95]. Hypercholesterolemia facilitates the 

reaction between ROS and NO inducing the generation of reactive nitrogen species 

(RNS) such as dinitrogen trioxide (N2O3) and peroxynitrite [96]. Nitrosation of protein 

thiols by peroxynitrite may also exert detrimental effects on protein synthesis 

contributing to the promotion of ROS and inflammation [97]. Both native LDL and 

oxidized LDL (oxLDL) stimulate superoxide/peroxynitrite production and uncouple 

eNOS [98] thereby reducing endothelial NO production by inhibiting eNOS activity 

[99]. Furthermore, hypercholesterolemia upregulates caveolin and promotes eNOS 

interaction with caveolin [100] and decreases the association of eNOS with heat shock 

protein (HSP) 90 [101] resulting in a further inhibition of eNOS activity. Finally, 

oxLDL decreases eNOS activity either by inhibiting phosphorylation of eNOS at serine 

1177 [102] or by increased proteasomal degradation of eNOS [103]. Consistent with 
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experimental evidence, reduced bioavailability of NO has been demonstrated in 

hypercholesterolemic patients [97] and these patients also displayed impaired 

endothelial function (measured by venous occlusion plethysmography) [104]. Apart 

from the direct effects of lipids on ROS/NO formation, disturbed flow pattern with the 

development of atherosclerosis reduces endothelial NO production [105] and enhances 

ROS production in endothelial cells and in vascular smooth muscle cells (VSMC) 

[106]. Oxidative stress and ROS play opposite roles in the regulation of adhesion 

molecule expression and endothelial leukocyte interaction. Endothelial NO inhibits 

cytokine-induced nuclear factor- B (NFkB) activation and upregulation of vascular cell 

and intercellular adhesion molecules [107, 108], whereas inhibition of NO production 

increases leukocyte adherence [109]. On the contrary, ROS are implicated in 

upregulation of adhesion molecules induced by cytokines [107].   

OxLDL exhibits a wide array of proatherogenic properties and many of these 

effects are mediated by oxidized phospholipids within the LDL molecules. Lipid 

peroxidation can occur through enzymatic mechanisms (e.g., by ROS derived from 

NOX, uncoupled eNOS) [110], myeloperoxidases, lipoxygenases, cyclooxygenases, 

and cytochrome P450). In some cases, ROS formation is based on the original enzyme 

activity, whereas in other cases ROS originate from undesired side reactions. The lipid 

peroxidation products, such as malondialdehyde, 4-hydroxynonenal etc. are highly 

reactive and can lead to the generation of structural neoepitopes termed oxidation-

specific epitopes (OSEs) [111], which play an important role in the development of 

atherosclerosis. OxLDL leads to upregulation of proprotein convertase subtilisin/kexin 

type 9 (PCSK9) expression and release from extrahepatic tissues thereby contributing 

to an increase in the overall circulating PCSK9 concentration, which then impacts on 

LDL levels, but also aggravates atherosclerosis development per se and impairs cardiac 

function [112]-[113]. 

In addition to the direct effects of LDL on endothelial ROS production, 

hypercholesterolemia may indirectly enhance oxidative stress by potentiating the 

effects of angiotensin II via upregulation of angiotensin II type 1 receptor [114]. ROS 

are also produced as byproducts of mitochondrial respiration and can become 

pathologically elevated during metabolic perturbations such as those seen in 

hyperlipidemia [115]. OxLDL inhibits the normal function of mitochondria and thus 
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promotes mitochondrial ROS generation which is in turn involved in LDL oxidation 

creating a vicious cycle. Additionally, ROS may inhibit specific mitochondrial enzymes 

affecting cellular antioxidant and energetic capacities [116].  

3.1.Hyperlipidemia and redox signaling in myocardial infarction 

Hypercholesterolemia increased myocardial necrosis by 45% compared to normal 

animals and this contributed to increased oxidative stress in the ischemic myocardium 

such as protein oxidation, lipid peroxidation, and tyrosine nitration during IRI in the 

setting of hypercholesterolemia [117, 118]. Tyrosine nitration was also increased in 

Watanabe heritable hyperlipidemic rabbits [119]. Accumulating evidence indicates that 

the major enzymatic sources of ROS in the cardiovascular system are NOX, uncoupled 

eNOS, mitochondria and XO [120]. NOX and XO have been proposed to be the major 

sources of superoxide anion in the coronary artery of hypercholesterolemic patients 

with CAD [121] as well as cholesterol-fed rabbits [122]. NOX-derived oxidative stress 

has been shown to be a major mediator of atherosclerosis [123], since LDL oxidation 

can be induced by NOX-derived ROS [124]. As already mentioned above, obesity and 

hypercholesterolemia had additive effects on NOX2 activation (measured by sNox2-

dp) [36] and higher sNox2-dp as well as oxLDL levels were even observed in in 

hypercholesterolemic children [125]. However, the different NOX isoforms seem to 

have different roles in development and progression of atherosclerosis. NOX1 and 

NOX2 are required for the development of atherosclerosis [126]. Deletion of Nox1 in 

apoprotein (Apo)E knockout (KO) mice reduced aortic superoxide production, 

macrophage infiltration and lesion formation [127]. In contrast, several studies have 

shown a protective role of NOX4 in atherosclerosis [128]. Global Nox4 knockout or 

induced deletion of Nox4 increased atherosclerosis in ApoE-KO mice. The results of 

the above-mentioned study demonstrated that H2O2 production was reduced, however, 

increased inflammation, macrophage accumulation and fibrosis were observed in the 

aortae of Nox4/ApoE double KO mice. These data suggest that NOX4-derived H2O2 

might mediate beneficial effects in atherosclerosis via inhibition of inflammation, 

which is contrary to the deleterious effects of ROS produced by NOX1 and NOX2 

[129]. NOX5 is localized in both endothelial and VSMCs and it has been found in the 

coronary arteries from patients with CAD undergoing cardiac transplantation [130]. 

Moreover, NOX5 increases the proliferation of VSMCs [131], but so far, there is no 
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direct evidence available on the role of NOX5 in atherogenesis from animal models 

because rodents do not express NOX5.  

Uncoupling of eNOS is likely to be a subsequent event secondary to oxidative 

stress mediated by NOXs and XO because of oxidation-induced tetrahydrobiopterin 

(BH4) deficiency [132]. Besides BH4 deficiency, L-arginine deficiency also represents 

an underlying cause of eNOS uncoupling in hypercholesterolemia. The latter has been 

supported by studies in ApoE-KO mice and in hyperlipidemic rabbits where 

upregulation of arginase expression and activity caused a decrease in L-arginine levels 

thereby affecting substrate availability for eNOS [133, 134]. ROS derived from 

uncoupled eNOS has been detected in LDL-treated endothelial cells, in 

hypercholesterolemic ApoE-KO mice and in hypercholesterolemic patients as well 

[135]. ROS derived from NOXs and uncoupled eNOS are also involved in the 

generation of OSEs. OSEs, including oxidized phospholipids and malondialdehyde-

modified amino groups, have been documented on the surface of apoptotic cells and 

oxLDL molecules [136]. Peroxidation of phospholipids moieties promotes a change in 

the conformation  of the apoB-100 molecule leading to enhanced nonreceptor-mediated 

capture of oxLDL by vascular cells [136]. Oxidized phospholipids induce the 

expression of chemoattractants and trigger monocyte binding to endothelial cells via 

toll-like receptor 4 [110]. Therefore, OSE sensing by endothelial cells is a key response 

in the development of atherosclerosis [111].  

In addition to the role of ROS in hyperlipidemia, the effects of antioxidant 

defense systems are significant. The expression and activity of antioxidants and 

antioxidant enzymes (especially reduced glutathione, SOD and CAT) in the vascular 

system is reduced in hypercholesterolemia [97]. The effects of SOD on atherogenesis 

are dose-dependent. Moderate SOD1 upregulation reduces ROS burden, whereas 

SOD1 overexpression generates high amount of hydrogen peroxide, which can lead to 

the formation of hydroxyl radicals thereby exacerbating oxidative stress [137]. SOD2 

is one of the first line defense enzymes against superoxide production of the 

mitochondrial electron transport chain (ETC). SOD2 deficiency leads to mitochondrial 

dysfunction and accelerated atherosclerosis in ApoE-KO mice [138]. SOD3 is 

abundantly expressed in the vascular wall and its role in atherogenesis is still unclear. 

Genetic deletion of SOD3 in ApoE-KO mice leads to a slight reduction in 
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atherosclerosis after one-month atherogenic diet, whereas no effect is observed after 

three months [139].  

Glutathione peroxidase (GPx)-1 deficiency increases LDL oxidation, foam cell 

formation, and macrophage proliferation [140]. The protective role of GPx1 against 

atherogenesis has been shown in experimental studies where deficiency of GPx1 

enhanced atherosclerosis in ApoE-KO mice [141, 142]. GPx4 reduces the level of 

hydrogen peroxide and other lipid hydroperoxides, including oxidized phospholipids 

and cholesterol hydroperoxides, and likely explaining why GPx4 overexpression 

reduces atherosclerosis in ApoE-KO mice [143].  

The paraoxonase family proteins (Pon1, Pon2, and Pon3) reduce oxidative 

stress, decrease lipid peroxidation, and diminish atherosclerosis. Pon1 is primarily 

synthesized by the liver and associates with high density lipoprotein (HDL) particles. 

HDL-associated Pon1 inhibits the formation of oxidized phospholipids and therefore 

LDL oxidation [132]. Pon2 is expressed in the vascular wall and in intracellular 

structures, such as the membranes of the endoplasmic reticulum or mitochondria and 

can translocate to the plasma membrane in response to oxidative stress where it 

suppresses lipid peroxidation [144]. Pon2 prevents LDL peroxidation, reduces 

oxidative stress in vascular cells, and protects against atherosclerosis in mouse models 

[145]. Pon2 knockout mice display increased ROS formation and endothelial 

dysfunction as well as higher tissue factor levels and a procoagulant phenotype [146]. 

Pon3 is found both in serum and cells and prevents LDL oxidation like Pon1 [147]. 

Pon2/3 antioxidant effects result from the prevention of mitochondrial superoxide 

formation through an interaction with coenzyme Q10 (ubiquinone) [148]. Pon3 

expression is reduced in vascular cells of atherosclerotic patients [149].  

In contrast to the regulated production of NO by neuronal NOS and eNOS, 

iNOS may generate large amounts of NO over long periods of time and iNOS induction 

in the vasculature facilitates the generation of peroxynitrite [150], a key  

proatherosclerotic  oxidant [151]. Importantly, the expression of iNOS in human 

atherosclerotic plaques is associated with nitrotyrosine staining, a marker of 

peroxynitrite formation [150, 152]. XO also plays a critical role in cholesterol crystal-

induced ROS formation and subsequent inflammatory cytokine release by 
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macrophages. XO inhibition reduces vascular ROS levels, leading to improvement in 

endothelial function, and suppressing plaque formation in ApoE-KO mice [153].  

ROS and RNS production, which may continue for hours after the beginning of 

reperfusion, play an important role in the genesis of reperfusion injury and in the 

recruitment of inflammatory cells [154]. Supplementary to increased ROS/RNS 

production, ischemia/reperfusion also reduces the levels of antioxidant enzymes such 

as glutathione peroxidase, and SOD [155], which are also influenced by the presence 

of hypercholesterolemia as mentioned above. Therefore, in the presence of 

hypercholesterolemia and atherosclerosis ROS/RNS production is unbalanced by cell 

defenses, inducing deleterious effects in a large number of pathways involved in cell 

cycle and survival pathways.  

3.2 Pharmacological redox modulation in hyperlipidemia and cardioprotection 

The increase in ROS generation induced by hypercholesterolemia may interfere with 

endogenous cardioprotective mechanisms such as cardiac preconditioning and 

postconditioning and may have a detrimental role in determining the severity of IRI 

[97]. Therefore, there is an urgent need to better understand the biology and the damage 

caused by ischemia/reperfusion and redox stress in hyperlipidemia before considering 

an appropriate treatment [156].  

The attenuation of nitro-oxidative stress in hyperlipidemic animals has been 

proposed as a cardioprotective mechanism of statins in the setting of myocardial IRI. 

Three-week simvastatin treatment reduced infarct size and reversed the loss of 

postconditioning in hypercholesterolemic rabbits subjected to ischemia/reperfusion by 

attenuation of nitro-oxidative stress in the ischemic myocardium [157]. Short-term 

administration of pravastatin reduced infarction in cholesterol-fed rabbits 

independently of any lipid lowering effect, potentially through eNOS activation and 

attenuation of nitro-oxidative stress [158].  The reduction in infarct size by a natural 

constituent of olives and olive oil, oleuropein, was achieved by attenuation of 

reperfusion injury and reduced oxidative stress in hyperlipidemic rabbits [159].  

Many studies have revealed that HSP70 is induced during myocardial 

ischemia/reperfusion and contributes to cardioprotection by suppression of ROS 
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generation, inhibition of cell apoptosis, attenuation of calcium overload; HSP70 is 

involved in the cardioprotection obtained by preconditioning and postconditioning 

[160]. HSP70 is upregulated in cardiomyocytes during IRI [161] and this may be 

attributed at least in part, to excessive oxidative stress [162], since the accumulated 

ROS may enhance the activity of heat shock factor 1 and facilitate its translocation into 

the nucleus, which contributes to the induction of HSP70 in ischemia/reperfusion [162]. 

Several studies have suggested that hyperlipidemia can impair the cardioprotective 

effects of HSP70 against IRI. Indeed, HSP70 downregulation was observed in 

cholesterol-fed rats subjected to myocardial ischemia/reperfusion [163], potentially due 

to activation of glycogen synthase kinase (GSK)3  [164]-[165] as well as accumulation 

of cholesterol in the membrane of cardiomyocytes, which might prevent accumulation 

of HSP70 during IRI [163]. 

The hypoxia-inducible factors (HIFs) and downstream genes are important 

factors in the protection of tissues from IRI. Redox signaling during IRI contributes to 

protective or adaptive responses and HIF-1  is one of the first response elements to R  

at the molecular level [166], and plays a pivotal role in the endogenous protective 

mechanism against ischemia [167]. HIF-1  expression was maintained at a very low 

level in hyperlipidemic rats and HIF activation using pharmacological prolyl 

hydroxylase inhibitors results in a level of cardioprotection similar to that obtained with 

ischemic postconditioning [168].  

Nrf2 regulates antioxidant gene expression in vascular cells after exposure to 

modified LDL [169] and oxidized phospholipids in vivo [170]. Nrf2 deficiency in a 

more human-like hypercholesterolemia LDL receptor (LDLR)-KO/ApoB100/100 

female mouse model, promoted plaque inflammation and oxidative stress leading to 

increased plaque instability, which is considered as a risk factor of MI in humans [169]. 

Crocus sativus L. aqueous extract induced cardioprotection in ApoE-KO mice 

undergoing myocardial IRI through activation of Nrf2 and its downstream targets 

SOD2 and heme oxygenase 1, with the subsequent regulation of nitro-oxidative stress 

indicating that the activation of Nrf-2 might be a central mechanism of the 

cardioprotective effect of Crocus sativus L  [171]. 

In summary, hypercholesterolemia results in increased myocardial oxidative 

stress, mainly from NOXs, uncoupled eNOS, mitochondria, XO and 
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downregulation of antioxidant defense systems all of which play important role in 

IRI and may account for increased susceptibility of the myocardium to infarction. 

Increased LDL and oxLDL stimulate the production of ROS and reduce NO 

bioavailability predisposing the endothelial cells of large arteries to an 

inflammatory phenotype. Inflammation is associated with further increased ROS 

production that may overcome cellular defense mechanisms leading to 

atherogenesis, and eventually to loss of contractile function and vascular 

dysfunction [172]. As a result the infarct size is aggravated in a model of high fat 

diet and the protective effects of post-conditioning are lost (Figure 2) [173]. Statins, 

and pharmacological agents that modulate NO bioavailability, possess antioxidant 

properties and interfere with antioxidant defense systems may provide beneficial 

effect in the myocardium in hypercholesterolemic conditions.  

 

4. Diabetes 

According to WHO data, the global prevalence of diabetes mellitus (DM) in 2014 was 

estimated to be 9% [12]. DM increases the risk of MI almost 2-fold (odds ratio 1.89) 

[94]. High fasting blood glucose ranks third among the leading risk factors for 

disability-adjusted life years (years lived with severe illness) based on the global burden 

of disease data for 2019 [13]. Approximately 60% of preclinical studies examining type 

2 diabetes mellitus (T2DM) in in vivo models of regional ischemia/reperfusion, 

demonstrated increased infarct size with T2DM when compared to non-diabetic 

controls; 20% of these studies showed that T2DM was without effect on infarct size 

[174]. However, in these preclinical in vivo models the T2DM animals were almost all 

untreated for the presence of diabetes, causing large differences in plasma glucose 

levels between diabetic and control animals (e.g. blood glucose values of 450-550 

mg/dl in ZDF rats). This contrasts with T2DM in humans, where known diabetes is 

almost always treated by antidiabetic drugs or insulin to normalize plasma glucose 

levels. Therefore, preclinical studies possibly overestimate the effects of T2DM on 

infarct size by allowing these differences in glucose levels. 

Indeed, when only the isolated hearts of T2DM animals were studied, which is 

commonly performed using similar perfusate glucose levels between groups, the 
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proportion of studies reporting a detrimental or neutral effect of T2DM on infarct size 

was equal [174]. Thus, it seems that elevated plasma glucose levels are a main 

determinant of infarct size. This is also in agreement with clinical studies examining 

infarct size during e.g. by-pass surgery or percutaneous coronary interventions (PCI) 

for diabetic and non-diabetic patients. Myocardial infarct size strongly correlated with 

plasma glucose levels and less so with T2DM, with even larger infarct size reported for 

non-diabetic than for diabetic patients presenting with similar glucose levels [175]. 

Thus, whereas it is clear that DM does in general increase CVD by 40-250% in DM 

patients receiving standard of care [176, 177], e.g. for incidence of cardiovascular 

death, HF or MI, the DM effects on sensitivity towards an ischemic event are less 

pronounced and are not always observed; this is also in accordance with the rather 

moderate odds ratio of MI associated with diabetes mentioned above. 

4.1 Diabetes and redox signaling in myocardial infarction 

Increased ischemic sensitivity of the heart is present with DM and can be ascribed to 

elevated plasma glucose and fatty acid levels and disturbed insulin, and/or to numerous 

molecular changes within the diabetic heart. Dysregulated redox signaling emerges 

prominently as one of the important T2DM-induced molecular changes and is mostly 

reflected by increased oxidative stress [178, 179]. Although increased reductive stress 

can also be detrimental to cardiac function [180], the diabetic heart commonly displays 

a depressed reductive stress response, as reflected by a diminished Nrf2-related gene 

response (e.g. depressed antioxidant enzyme complexes) [181]. The reduced reductive 

stress response will contribute to the net increase of oxidative stress within the diabetic 

heart. The cardiac oxidative stress is largely a result of metabolic overload by elevated 

plasma glucose and fatty acid levels. Both acute and chronic plasma glucose and fatty 

acid elevations cause oxidative stress in tissues and organs [182, 183] contributing to 

the increased ischemic sensitivity of diabetic heart [174]. There are many different 

cellular ROS sources in the heart that have been shown to be activated in the diabetic 

state [179, 184]. In addition, hyperglycemia is associated with a low-grade 

inflammatory phenotype, partly triggered by advanced glycation end-product 

(AGE)/receptor of AGE (RAGE) signaling [185, 186]. 

The three major sources in the cytosolic compartment are NOX2, uncoupled 

eNOS and XO in diabetic animals [187]. Other reports have proven that each of these 
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cytosolic ROS components may be activated with diabetes and can contribute to 

ischemia-reperfusion [188-192]. Genetic Nox2 deficiency prevented the major diabetic 

complications in streptozotocin (STZ)-treated mice [193] and insulin resistance-

triggered endothelial cell dysfunction largely relies on NOX2 activity [194]. NOX1-

derived ROS contribute to immune cell activation and vascular infiltration in diabetic 

ApoE-KO mice [195]. In contrast, NOX-4-derived H2O2 seems to be protective in 

diabetic mice [196]. 

The major sources in the mitochondrial compartment entail the ETC, MAO and 

p66Shc [179]. In a seminal report it was demonstrated that high glucose resulted in 

increased ETC-produced ROS in endothelial cells through increases in the 

mitochondrial membrane potential, affecting four different pathological biochemical 

pathways contributing to hyperglycemia-associated oxidative stress and damage [197, 

198]. In these studies, it was suggested that high glucose resulted in increases of 

mitochondrial potential through increased delivery of oxidation-prone substrates and 

reducing factors (NADH, NADPH) to the ETC. Additionally, it is also possible that 

part of the increased mitochondrial potential is due to hyperglycemia-induced 

dislodgement of hexokinase II (HKII) binding to mitochondria [199, 200]. Decreasing 

the amount of mitochondria-bound HKII is known to increase ROS production in the 

heart [200-202], and diabetic hearts have been reported to have less HKII bound to 

mitochondria [203, 204]. Less HKII bound to mitochondria was also recently suggested 

as a possible explanation for increased oxidative stress with aging [205], providing at 

least one explanation for why sensitivity to an ischemic insult may be particularly 

exaggerated in the aging diabetic patients. The cytosolic adaptor protein p66Shc can 

translocate to the mitochondrial matrix upon high glucose-induced PKC activation. 

Once in the mitochondrial matrix the protein catalyzes electrons going from 

cytochrome C directly to oxygen, thereby contributing to H2O2 production [206]. 

Finally, MAOs at the outer mitochondrial membrane breakdown catecholamines and 

neurotransmitters with concomitant generation of H2O2 [207]. Both p66Shc and MAO 

related ROS production can contribute to increased cardiac ischemic sensitivity [42]. 

Genetic deficiency of mitochondrial aldehyde dehydrogenase resulted in increased 

immunohistochemical staining of cardiac 4-hydroxynonenal and diastolic dysfunction 

in diabetic mice [208]. 
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Although many different cellular sources of ROS exist in the diabetic heart, it 

is important to recognize that these sources are not independent entities, because of the 

now well-accepted ROS-induced ROS production [209, 210], which is also well 

documented in the setting of diabetes [186]. Thus, although ROS production could start 

with one source, this can quickly result in the activation of other ROS sources, making 

it difficult to discern the primary cause of ROS production. ROS can contribute to 

cardiac infarct development by facilitating the opening of the mPTP during early 

reperfusion, resulting in mitochondrial dysfunction and activating necrotic pathways 

[211]. In addition, mitochondrial dysfunction and ROS generation will activate the 

innate immune receptor nucleotide-binding oligomerization domain, leucine rich repeat 

and pyrin domain containing NLRP 3, an immune receptor whose presence is already 

increased in diabetes, thereby contributing to cardiac infarct development through 

pyroptosis [212]. Finally, ROS can also induce the endoplasmic reticulum stress 

response, thereby contributing to infarct size through necroptosis [53, 213]. 

4.2 Pharmacological redox modulation in diabetes and cardioprotection 

As discussed above, an excess of ROS induced by hyperglycemia contributes to the 

enhanced basal oxidative stress and is likely to aggravate myocardial IRI in diabetic 

patients. As such, therapeutic interventions to decrease oxidative stress could, in 

principle, protect against hyperglycemia-induced myocardial tissue damage. However, 

although increasing evidence favors protection by antioxidants and ROS scavengers, 

the potential of reducing oxidative stress to treat the diabetic heart is still controversial 

and equivocal in human studies. Antioxidants such as ascorbic acid and N-

acetylcysteine prevent NOS uncoupling in the diabetic heart resulting in increased 

bioavailability of NO and increased tolerance to IRI in diabetic rat heart [214].   

Diabetic heart mitochondria demonstrate an enhanced susceptibility to injury, 

mediated by redox-dependent shifts in mPTP opening [215]. In this context, diabetic 

mice treated with a mitochondria-targeted antioxidant (MitoTEMPO) displayed 

preserved heart rates and better survival after MI by suppression of calmodulin-

dependent protein kinase-II (CAMK-II) oxidation [216] and mitochondrial ROS/RNS 

generation, apoptosis and myocardial hypertrophy [217]. The latter observations were 

also confirmed ex vivo in cultured cardiomyocytes subjected to hyperglycemia. 

Compounds other than direct antioxidants, that attenuate mPTP opening, such as a 
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newly developed cyclophilin D inhibitor (NIM811), were reported to reduce infarct size 

when administrated at reperfusion in STZ diabetic rats [218].Pharmacological 

inhibition of histone deacetylase 6, which confers redox regulation and suppresses 

cellular stress responses, showed highly beneficial effects in STZ-induced and 

ischemia/reperfusion-subjected diabetic hearts, potentially based on modulation of 

acetylation of peroxiredoxin 1 (Prdx1) and thereby decreasing ROS levels [219]. As 

another mitochondria-targeted approach, inhibition of MAO attenuated diabetic 

cardiomyopathy [53, 179]. 

Stabilization of HIF-1  has been reported to promote tolerance against acute 

myocardial IRI by decreasing mitochondrial oxidative stress and inhibiting mPTP 

opening [220], while the HIF-1 signaling pathway is compromised in the diabetic 

setting [221]. When diabetic rats were treated with N-acetylcysteine or the XO inhibitor 

allopurinol, HIF-1 /heme oxygenase-1-dependent signaling was stabilized and 

consequently myocardial IRI was attenuated [222]. Further studies have revealed that 

cobalt (II) chloride (CoCl2) can activate the impaired HIF-1  pathway under diabetic 

conditions [223]. CoCl2 or deferoxamime-activated HIF-1  signaling pathway restored 

the sevoflurane postconditioning-dependent myocardial protection in diabetic rats by 

improving myocardial mitochondrial respiratory function and mitophagy and reducing 

ROS generation [224-226]. 

Phosphodiesterase-5 (PDE5) inhibitors have been described to protect the heart 

against IRI through several mechanisms involved in increased expression of NOS, 

activation of protein kinase G (PKG)-dependent hydrogen sulfide (H2S) generation, and 

phosphorylation of GSK-3   which modulates mPTP directly [227]. PDE5 inhibition 

improves endothelial function and promotes antioxidant activity in the diabetic heart 

through increasing NO bioavailability [228]. In this context, tadalafil therapy attenuates 

oxidative stress and improves mitochondrial integrity while reduces myocardial infarct 

size following IRI in db/db mice [229]. 

Melatonin, a cellular antioxidant and direct ROS scavenger, exerts protection 

against myocardial IRI in T2DM rats by limiting reperfusion-induced ROS formation 

and endoplasmic reticulum stress in a SIRT1-dependent manner [230]. In acute 

hyperglycemia, melatonin rescued the thioredoxin (Trx) system in the heart by reducing 

Trx-interacting protein expression via neurogenic locus notch homolog protein 
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(Notch)1/ enhancer of split 1 (Hes1)/ Akt signaling [230, 231]. Furthermore, melatonin 

prevented myocardial IRI in STZ-induced diabetic rats by normalizing mitochondrial 

function and oxidative stress as well as stimulation of mitochondrial biogenesis via 

AMPK-PGC1 -SIRT3 signaling [232]. 

Resveratrol has been shown to have pleiotropic and beneficial effects on 

cardiovascular complications in DM, including amelioration of mitochondrial function 

and oxidative stress as well as amelioration of endothelial function mainly through 

mechanisms involving NO and SIRT pathways [233-236]. In addition, pterostilbene, a 

naturally-occurring dimethylated analogue of resveratrol with antidiabetic effects, 

significantly reduced post-ischemic cardiac infarct size, oxidative stress, and apoptosis 

in diabetic rats. Pterostilbene enhanced the viability of cardiomyocytes exposed to 

hypoxia-reoxygenation under high glucose conditions and decreased ROS formation 

[237]. Other bioflavonoids (e.g. quercetin, rutin or benzenetriol), also displayed 

cardioprotective effects in IRI in diabetic rats, which partially rely on the attenuation of 

oxidative stress and improvement of antioxidant reserves [238, 239]. On the other hand, 

quercetin was not effective in preventing myocardial IRI in ZDF rats implying that 

other confounding factors may abolish the cardioprotective effect [240]. 

Other polyphenolic compounds such as luteolin, butin, and berberine may 

inhibit oxidative stress and protect against IRI in diabetic mice via eNOS/ Kelch-like 

ECH-associated protein (Keap1)/Nrf2 or AMPK/Akt/GSK-3 /Nrf2 dependent 

pathways [241-244]. (-)-Epigallocatechin-3-gallate, a green tea polyphenol with potent 

antioxidant properties, decreased myocardial infarct size and apoptosis as well as 

oxidative stress via SIRT1-dependent pathways in STZ-diabetic rats with myocardial 

IRI [245]. Furthermore, attenuation of myocardial IRI in diabetic rats was observed by 

the dietary flavonoid kaempferol by suppression of AGE-RAGE/mitogen activated 

protein kinase (MAPK)-dependent inflammation and oxidative stress [246].  

Increasing evidence documents the beneficial effects of SLGT2 inhibitors in the 

heart, directly or indirectly, in animal and human studies, including decreasing 

oxidative stress and preventing IRI [247, 248]. Long term, but not short term, SGLT2 

inhibition by empagliflozin, attenuated myocardial IRI in vivo in diabetic and non-

diabetic mice through regulation of oxidative stress [85, 249]. Treatment with 

empagliflozin significantly attenuated the DM-induced increase in acute mortality after 
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MI in a model of T2DM through preservation of myocardial antioxidant defense and 

normalization of the size and number of mitochondria [247, 250, 251]. Studies on the 

effects of a diverse range of antioxidants on cardiac effects in cardiometabolic 

comorbidities are presented in Table 1.  

In conclusion, the diabetic comorbidity is associated in general with 

exacerbated ROS generation within the heart, originating from both cytosolic and 

mitochondrial sources, and most often driven by metabolic overload of glucose 

and fatty acids as well as an inflammatory phenotype. Increased oxidative stress 

s or increases the 

sensitivity of the heart to ischemia, which, at least in preclinical studies, can be 

prevented by antioxidant strategies. As a result of this impaired redox balance, 

infarct size is aggravated in a model of diabetes and further exacerbated by genetic 

heme oxygenase-1 deficiency (Figure 2) [252]. Strategies to combat this oxidative 

stress therefore seem warranted. 

 

5. Hypertension/hypertrophy 

According to WHO data, the global prevalence of hypertension was estimated to be 

approximately 30% in the adult population [253]. Hypertension increases the risk of 

MI almost 3-fold (odds ratio 3.11) [94] and ranks first among the leading risk factors 

for disability-adjusted life years (years lived with severe illness) based on the global 

burden of disease data of the year 2019 [13].

be applied broadly to describe the composite result of the morphological, metabolic, 

microvascular and electrophysiological perturbations that predispose to greater CVD 

risk in patients with hypertension. A key feature of hypertensive heart disease is 

concentric left ventricular hypertrophy (LVH) [254]. Increased left ventricular muscle 

mass initially helps to pump more efficiently against an increased ventricular afterload. 

Estimates vary but more than 20% of hypertensive patients may develop 

echocardiographic evidence of LVH [255-257] and it is well established that 

hypertensive patients with LVH have a worse prognosis than those without detectable 

LVH. While hypertension is a major risk factor for the development of IHD, 

hypertensive LVH presents an additive risk for all forms of cardiac rhythm 
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disturbances, sudden cardiac death, HF and, most pertinent in the context of the current 

review, atherothrombotic events including MI [258-260]. 

 

5.1 Hypertension/LVH and redox signaling in myocardial infarction  

Widespread disturbance of cellular redox balance throughout the circulatory system is 

recognized as a general feature of arterial hypertension, whether of primary or 

secondary etiology. In experimental models of hypertension or other forms of pressure 

overload, LVH is accompanied by many biochemical, metabolic and signaling 

disturbances that have been associated with cardiomyocyte hypertrophy, altered 

myofibrillar contractility, interstitial fibrosis and gradual progression to 

decompensation and HF. Many studies show that increased ROS-generating capacity, 

reduced endogenous anti-oxidant defense and impaired NO generation are general 

features of hypertrophic myocardium and are related to altered sensitivity of 

hypertrophied tissue to stressful stimuli such as ischemia-reperfusion [261-264]. 

The major sources of ROS in cardiomyocytes and the key antioxidant systems 

have been reviewed extensively before [265, 266]. Redox signaling is a critical factor 

in physiological myocyte hypertrophy in post-natal growth and in response to stressful 

stimuli. In arterial hypertension, the progression from a state of adaptive cardiac 

hypertrophy to a maladaptive state, when myocyte contractility is impaired and HF 

develops, is clearly associated with oxidative stress. The nature and causes of the 

imbalance between ROS generation and antioxidant defense mechanisms in 

hypertension are unclear although they are likely to be complex, multifactorial and 

dependent on the etiology of hypertension in humans or the nature of the experimental 

model in in vivo and in vitro models.  

Many of the kinase cascades and their target proteins that regulate transcription, 

protein synthesis and myocyte growth, for example members of the MAPK family 

extracellular signal-regulated kinases (ERK)1/2, Akt, GSK3  and the nuclear factor of 

activated T-cells (NFAT) family of transcription factors, are ROS-activated or redox-

sensitive [267-270]. In evolving or compensated hypertrophy, ROS may be from 

mitochondrial or non-mitochondrial sources. The major neurohormonal mediators of 

myocyte hypertrophy in hypertension, namely catecholamines and angiotensin II, 

stimulate hypertrophy in vivo or in vitro through mitochondrial ROS generation via the 

ETC complexes [271-273]. MAO-associated ROS generation may also contribute 

beyond ROS generated by the ETC complexes. MAO-A and MAO-B activities were 
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shown to be enhanced in cardiomyocytes from spontaneously hypertensive rats at a 

stage before detectable hypertrophy was established [274-276] [277]. However, 

cytosolic (non-mitochondrial) ROS-generating enzymes also appear to play important 

roles in physiological myocyte hypertrophy. These include XO [266]. In Dahl salt-

sensitive rats, high salt diet increased myocardial XO activity, was accompanied by 

increases in blood pressure, LV mass index and interstitial fibrosis during the initial 8-

week period of hypertension and LVH development. Febuxostat, a selective XO 

inhibitor attenuated these increases as well as markers of oxidative stress, suggesting 

that in this model of hypertension, XO-derived ROS are mediators of cardiomyocyte 

hypertrophy and interstitial fibrosis [278].  

Evolving experimental evidence suggests that other non-mitochondrial sources 

of ROS may be relevant to both physiological cardiac hypertrophy and pathological 

decompensation leading to HF. Most prominent are the NOX isoforms of non-

phagocytic origin of which NOX2 and NOX4 have received most attention [279-282]. 

Calcium/calmodulin-dependent NOX5 may also be implicated [283]. The extent to 

which these various pathways of ROS production are co-regulated or exhibit cross-talk 

is unclear. However, it is of interest that selective XO inhibition in the Dahl salt-

sensitive rat also reduced total NOX activity [278] and the angiotensin II type 1 receptor 

antagonist, candesartan, decreased both XO and NOX activities in parallel [284].  

Progression of LVH from an adapted (compensated) state to decompensation 

and HF appears to be associated with multiple biochemical and metabolic alterations 

that shift redox balance towards a state of oxidant stress. Although the functional 

decline is often difficult to define clinically and even more difficult to model 

experimentally, many studies show that enhanced oxidant stress is a feature of the 

progression. Alterations in substrate metabolism [285] and the ETC complexes [286], 

increased expression and activity of MAO [275, 287-290], upregulation of XO [261] 

and increased activity of NOX isoforms [291] have been implicated in mediating 

excessive ROS production associated with LVH progression and decompensation.  

There is also evidence that many endogenous antioxidant systems are depleted 

or become inactivated during the progression of LVH, either as a cause or a 

consequence of decompensation. For example, reduced total (cytosolic and 

mitochondrial) SOD activity [261] is a feature even in the compensated state and 

accompanied by reduction in the ratio of reduced glutathione (GSH)/oxidized 

glutathione (GSSG) [292] in the transition to HF. Trx1 inhibits cardiac hypertrophy 
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through a number of redox-controlled downstream mechanisms [293]. Depletion or 

inhibition of Trx increases hypertrophy and may predispose to decompensation. A 

growing body of evidence suggests that the gaseous thiol H2S, generated through 

regulated enzymatic pathways in myocardium and the coronary vasculature, may also 

represent an important antioxidant in myocardium although the mechanisms are as yet 

unclear. While direct chemical interaction and scavenging of ROS would seem to be a 

simple mechanism, evidence is emerging of more complex redox regulation by H2S, 

especially in the mitochondria (reviewed in [294]). Recent evidence indicates that 

deletion of the most abundant H2S-generating enzyme in the heart, 3-mercaptopyruvate 

sulfurtransferase (3-MST), had no effects on blood pressure or LV mass in young 

animals but was associated with hypertension and LVH in aged mice [295]. There is 

limited evidence of mechanisms by which H2S might modify physiological and 

pathological processes in hypertrophy. SIRT3 is a mitochondrial histone deacetylase 

controlling protein deacetylation and thereby influences substrate metabolism and 

mitochondrial redox status. In human LV tissue, SIRT3 expression correlated inversely 

with the severity of pathological changes [296]. In experimental LVH, elevation of H2S 

availability through exogenous administration increased the expression of SIRT-3, 

improved several measures of mitochondrial function and attenuated the hypertrophic 

response to pressure overload in a SIRT3-dependent manner [297].  

Enhanced oxidative stress through increased ROS generation and/or depletion of 

intracellular antioxidant systems may predispose the hypertrophied myocardium to 

altered responses to acute ischemia/reperfusion and modify the response to protective 

interventions, notably preconditioning and postconditioning treatments. Responses to 

ischemia/reperfusion in experimental LVH have been comprehensively reviewed 

elsewhere [11, 156]. Briefly, many experimental studies confirm that the severity of 

arrhythmias during both coronary occlusion and reperfusion is increased in 

compensated LVH, mirroring extensive clinical observations of enhanced susceptibility 

to malignant arrhythmias and sudden death in patients with LVH. There is also 

experimental evidence that myocardial stunning (delayed recovery of contractile 

function during reperfusion following ischemia) is exaggerated in LVH [261, 263, 298]. 

Augmented irreversible tissue injury, measured as infarct size, has been observed in 

short-term experimental models of myocardial infarction in hypertensive LVH [299-

301] although not consistently [302, 303]. However, it is conceivable that long-term 

responses to MI could be modified in LVH due to the combination of decreased 
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microvascular density, interstitial/perivascular fibrosis and persistent oxidant stress. 

Although experimental evidence is lacking, one could predict an exaggerated post-

infarct inflammatory response in the hypertrophied heart leading to less favorable tissue 

remodeling and worse outcome [304]. 

5.2 Pharmacological redox modulation in hypertension/hypertrophy and 

cardioprotection 

Protection of the hypertrophied myocardium from the consequences of 

ischemia/reperfusion has arguably received less attention than it deserves. Long-term 

treatment with antihypertensive drugs can lead to regression of LVH. Although blood 

pressure lowering and control of LV afterload is clearly an important goal, some 

antihypertensive drug classes are associated with better LVH regression and their 

effects on LV mass go beyond blood pressure control. For example, angiotensin 

converting enzyme inhibitors, -adrenoceptor antagonists and L-type calcium channel 

blockers induce LVH regression which is not observed with thiazide diuretics or older 

vasodilators such as hydralazine and minoxidil. However, it remains unclear if LVH 

regression induced by antihypertensive drug therapy is truly associated with reduced 

risk of major events and improved prognosis [305, 306]. Given this uncertainty, 

cardioprotection of the hypertrophied myocardium against ischemia-reperfusion injury 

remains an important therapeutic goal.  

Several studies suggest that the endogenous cardioprotective mechanism, 

ischemic preconditioning, is applicable and effective in young animals with 

experimental LVH, at least during the early stage of hemodynamic compensation [302, 

303, 307-311]. However, in long-standing or progressive LVH, even without evidence 

of decompensation, preconditioning protection (ischemic or pharmacological) may be 

attenuated or require a higher intensity preconditioning stimulus to be effective 

compared to age-matched control animals [312, 313]. Observations of postconditioning 

in hypertrophied myocardium are limited but the bulk of evidence to date suggests that 

the postconditioning mechanism is abrogated even in young animals with short-term 

hypertension [314-317].  

Excessive ROS accumulation, particularly from mitochondrial sources, is 

known to trigger mPTP opening during early reperfusion [318] and it has been 
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suggested that the greater susceptibility of hypertrophied myocardium to IRI is, at least 

in part, related to enhanced opening of mPTP [301, 319]. There is some evidence that 

oxidative stress and the impairment of mitochondrial homeostasis and redox signaling 

mechanisms that is seen in advanced or decompensated LVH may be related to 

attenuation of the preconditioning response. For example, isoflurane preconditioning 

increased SOD2 activity in normotensive rats and limited infarct size but these 

responses were lost in hypertensive animals with established LVH [299]. Fantinelli and 

colleagues [320] have demonstrated a change in ischemic preconditioning threshold 

required to confer protection in hypertrophied hearts but protection was associated with 

preservation of GSH (an indicator of reduced oxidant stress) and decreased cytosolic 

accumulation of SOD2 (a surrogate indicator of mPTP opening).  

Although there is clear evidence that oxidant stress is a mediator of pathological 

hypertrophy development/decompensation and of enhanced IRI in LVH models, the 

potential of exogenous antioxidants as clinical cardioprotective agents has so far met 

with limited success. Key issues, common to many experimental ischemia-reperfusion 

studies, have been the right antioxidant, in the appropriate biological compartment 

(extracellular/cytosolic/mitochondrial), at the right concentration, at the right time. The 

experimental literature is extensive and extends over several decades. It includes 

antioxidant enzymes (CAT, SOD); inhibitors of ROS-generating enzymes (e.g. 

allopurinol); phytochemical ROS-scavenging agents such as purified derivatives or 

galenical plant extracts containing polyphenolic secondary metabolites (e.g. flavonoids 

such as quercetin, curcuminoids, anthocyanins and stilbenoids like resveratrol); 

vitamins, notably ascorbate/vitamin C and tocopherol derivatives/vitamin E; and 

synthetic agents such as N-acetylcysteine and 4-hydoxy-TEMPO (Tempol). Some of 

these agents have been applied as tools for investigation of the role of oxidant stress 

both in the mediation of experimental hypertrophy and ischemia-reperfusion injury (see 

Table 2). It is important to note that action may not be specific and the difficulties of 

dose standardization, particularly in the case of the complex phytochemical 

preparations.  

Despite clear evidence of oxidative stress in the pathophysiology of 

hypertensive LVH and ischemia/reperfusion injury, and promising beneficial effects in 

some laboratory models, no antioxidants so far have been established in large 

randomized control trials to exert benefit in hypertension, either through attenuation of 

hypertrophy progression towards decompensation/HF, or cardioprotection against 
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ischemia/reperfusion injury (see [321] for extensive review). Smaller clinical studies 

that have investigated allopurinol as adjunct to standard treatment for hypertension or 

heart failure have shown marginal benefit or even a detrimental effect [322, 323].  

The reasons for this divergence between experimental and clinical experience 

are likely to be wide-ranging. Reasons may include the vast number of biological 

targets for antioxidant action some of which may be essential redox pathways 

controlling normal homeostasis; the huge diversity of chemical structure and 

mechanisms of action of antioxidants; lack of specificity of antioxidant compounds; 

and the complexities of multiple-morbidity and co-existing drug treatments (some of 

which may have inherent antioxidant activity [324, 325]. These difficulties render the 

demonstration of antioxidant benefits in human hypertension a challenging and high-

risk endeavor.  

In conclusion, redox signaling is a critical molecular mechanism controlling 

cardiomyocyte hypertrophy in pressure overload conditions like hypertension.  

Although LVH is initially an essential adaptive phenomenon that maintains 

cardiac output in the face of increased afterload, chronic pressure overload and 

neurohormonal influences contribute to increasing oxidative stress, characterized 

by excessive ROS production and reduced antioxidant capacity. These factors 

predispose the hypertrophied myocardium to exaggerated IRI and development 

of HF. Under experimental conditions, in vivo and in vitro, a wide variety of 

antioxidants have been shown to modify the hypertrophic response to pressure 

overload or pro-hypertrophic neurohormonal stimuli and mitigate against the 

deterioration to HF. However, clinical application of antioxidant approaches for 

hypertensive heart disease has so far been limited in scope and requires further 

exploration as a possible approach to management of this insidious condition. 

 

6. Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic 
steatohepatitis (NASH) 

 NAFLD accounts for an appreciable part of chronic liver disease with a prevalence of 

~30% of the US population [326]. Approximately 10-15% of the patients with NAFLD 

develop NASH , which is characterized by hepatic apoptosis, inflammation, steatosis, 

and fibrosis, with a substantially higher risk of cirrhosis and primary liver cancer [327]. 

Of note, there is a clear association of cardiovascular risk and mortality with the severity 



Andreadou et al.  comorbidities and cardioprotection  34 

of NASH [328], as supported by increased carotid intima-media thickness as well as 

aggravated coronary calcification and endothelial dysfunction in patients with NASH 

[328, 329]. NASH increases the risk of MI by 50% (odds ratio 1.5) [94] and fatty liver 

disease also contributes significantly to the global burden of disease in terms of 

disability-adjusted life years [330]. Previous reports provided indirect proof for a role 

of oxidative stress in hepatic endothelial dysfunction [331], which was also supported 

by improved hepatic endothelial function upon infusion of high dose vitamin C in 

patients with liver cirrhosis [332]. NAFLD is connected with DM, which represents 

another metabolic disease with a clear association with oxidative stress and higher 

cardiovascular risk [333, 334], thereby supporting the notion of liver disease as a 

cardiovascular comorbidity [335]. 

So far, there are only a limited number of studies that have investigated the 

correlation of liver damage progression with oxidative stress or cardiovascular risk. 

Studies that explored the benefit of combined pharmacological targeting of liver and 

cardiovascular inflammation are rare. Whereas macrophages, freshly recruited or 

resident ones, may represent a common pathophysiological feature, their detailed role 

in NASH as well as their pharmacological modulation remain insufficiently studied 

[336, 337]. In line with this notion, hepatic levels of TNF- , interleukin (IL)-6, IL-1 , 

and cyclooxygenase-2 were found to be increased in NASH animal models [338-340]. 

As a consequence, hepatic ROS levels are higher in NASH and have been  proposed 

for therapeutic targeting [341]. Therefore, inflammation provides a clear link between 

NAFLD/NASH and CVD  since the progression of atherosclerosis in humans [342, 

343] and arterial hypertension in animals [344, 345] is largely dependent on the 

recruitment and activation of immune cells. The inflammation-triggered oxidative 

stress impairs endothelial function and represents a prognostic marker for higher 

cardiovascular risk [346, 347] and, vice versa, oxidative stress can activate 

inflammatory pathways by different mechanisms leading to a vicious cycle [348, 349]. 

In conclusion, NASH represents an inflammatory liver disease with important 

features of atherosclerosis [350]. Macrophages and dendritic cells derived from blood 

monocytes as well as liver resident macrophages/Kupffer cells drive local immune 

responses in NASH [351] leading to higher levels of hepatic and cardiovascular ROS 

[341, 352]. In analogy to NASH, these cells also play an essential role for the 

progression of atherosclerosis [342, 343] and arterial hypertension [344, 353]. 
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Therefore, CVD may significantly contribute to overall mortality in patients with 

NAFLD/NASH [329]. 

 

6.1 NAFLD/NASH and Redox Signaling in Myocardial infarction  

Oxidative stress has adverse effects on endothelial function and CVD prognosis 

[346]. Oxidative stress plays a central role for NASH and NAFLD disease progression 

(including cardiovascular complications) [354, 355] and NOX-derived ROS represent 

key players in liver fibrosis [356]. Patients with NASH have higher levels of 8-

isoprostanes and sNox2-dp correlating with the histological grading of steatosis as well 

as liver inflammation, ballooning and fibrosis [357]. Patients with NAFLD displayed 

higher sNox2-dp and 8-isoprostane levels that correlated with higher steatosis and 

portal inflammation  [358] or with markers of infection [359]. NOX1 isoform was 

found to be upregulated in livers of NASH patients [360]. As shown by animal studies, 

genetic Nox1 or Nox2 deficiency attenuated the major biochemical and functional 

markers of NASH in high fat diet fed mice [360, 361]. A cell culture study demonstrated 

that advanced glycation end products may play a role for inflammatory activation of 

hepatic stellate cells by a NOX2-dependent pathway [362].  

Apart from NOX isoforms, mitochondrial ROS formation has been identified as a 

major source of oxidative stress in the setting of NAFLD/NASH, which is a 

consequence of altered mitochondrial morphology and function as well as inhibition of 

the ETC [363-365]. Enhanced p66shc signaling, increased opening probability of the 

mPTP and higher levels of mitochondrial damage-associated molecular patterns 

(DAMPs) were reported for rodent models of NASH [366-368] that may explain the 

increased mitochondrial ROS formation. XO inhibition could efficiently prevent the 

major pathophysiological changes in rodent models of NASH [369, 370]. Finally, 

neuroinflammatory processes through the liver-brain-axis may come into play, again 

involving ROS formation (e.g. via NOX2) [371], which may affect neuronal stress 

hormone signaling and thereby affect cardiovascular function [372]. Of note, the above-

mentioned ROS sources can activate each other in a crosstalk fashion and are 

recognized mediators of ischemia/reperfusion damage during myocardial infarction 

[373, 374]. 
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Endothelial function measured by FMD, a prognostic parameter was reduced and 

carotid artery intima-media thickness was increased, indicating higher CVD risk in 

patients with NAFLD or NASH [375, 376]. Importantly, sNox2-dp and isoprostane 

levels in patients with NASH also correlated with peripheral endothelial dysfunction 

measured by FMD, all of which was corrected by administration of polyphenol-rich 

dark chocolate [377]. These data were in line with observations in a NASH model 

(methionine/choline-deficient diet) linking liver steatosis, inflammation, fibrosis and 

oxidative stress with an adverse vascular phenotype characterized by endothelial 

dysfunction, ROS formation from mitochondria, NOX1 and NOX2 as well as vascular 

inflammation in peripheral vessels [352]. Taken together, these data support and 

explain the higher risk of MI associated with NASH [94] and the higher CVD risk of 

patients with NAFLD [378, 379]. 

 

6.2 Pharmacological redox modulation in NAFLD/NASH and 

cardioprotection 

Therapy with vitamin E and PPAR  agonists (e.g. pioglitazone) was recommended 

as combination therapy for NASH patients and confers potent antioxidant and anti-

inflammatory protection; this  provides further support for oxidative stress as a central 

pathophysiological mechanism in NASH [335]. These lines of evidence are supported 

by meta-analysis showing that vitamin E supplementation improves major disease 

parameters in NAFLD patients, endorsing the oxidative stress concept in fatty liver 

disease [380]. The synthetic ROS scavenger mito-TEMPO prevented NAFLD 

associated liver inflammation and steatosis [381] and the related compound mitoQ will 

most likely show similar beneficial effects [382]. The natural antioxidant flavonoid 

silibinin improved adverse effects of NASH on the liver and heart in a mouse model 

(methionine/choline-deficient diet) [383]. Similarly, resveratrol ameliorated all adverse 

features of NAFLD [384]. Treatment of NASH mice with nanoformulated SOD1 

prevented the NASH phenotype [385]. Pharmacological activation of retinoic acid-

with an improved NASH phenotype in mice [386]. Vice versa, genetic deletion of 

SOD1 and the senescence marker protein-30 was associated with oxidative stress and 

hepatic steatosis [387]. 
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Animal studies demonstrated a beneficial effect of incretin-based therapies 

(glucagon-like peptide-1 [GLP-1] mimetics and dipeptidyl peptidase-4 [DPP-4] 

inhibitors) on the vascular system, including inhibition of atherosclerosis, myocardial 

and kidney fibrosis [388-391]. A limited number of studies using NAFLD and NASH 

models demonstrated anti-inflammatory and antioxidant effects [392-394], although 

these studies focused mainly on aspects of hepatocyte damage and steatosis. Also, 

synergistic effects of GLP-1 administration on liver inflammation and systemic 

atherosclerosis were reported [395]. Effects of DPP-4 inhibitor (gliptin) therapy on 

NAFLD/NASH associated oxidative and inflammatory complications in the liver and 

vascular tissue were demonstrated using a NASH mouse model (methionine/choline-

deficient diet) [352]. Gliptins increased GLP-1 levels and thereby suppressed NOX and 

mitochondria-derived ROS formation and markers of inflammation in the aorta. This 

may be explained by GLP-1-dependent inhibition of PKC and NF B-mediated NOX 

activation and upregulation [396, 397]. Alternatively, higher GLP-1 levels may 

contribute to AMPK activation that controls macrophage polarization and antioxidant 

defense [350, 391]. The indirect antioxidant effects of incretin-based therapies are 

further supported by reports of reduced oxidative stress markers in models of DM [396-

399], atherosclerosis [388, 400], sepsis [389, 391], cardiac IRI [401] and chronic MI. 

 Another novel antidiabetic drug class, SGLT2 inhibitors, are currently under 

consideration for the therapy of NAFLD/NASH [402]. Empagliflozin improved 

markers of liver fibrosis and steatosis in NAFLD patients with and without T2DM [403, 

404]. The drug also ameliorates the phenotype of NASH (fibrosis and steatosis) in mice 

[405]. Importantly, empagliflozin was shown to possess highly beneficial 

cardioprotective effects by decreasing the cardiovascular mortality in larger scale 

studies in T2DM patients [406], which was mechanistically supported by potent 

antioxidant and anti-inflammatory effects of the drug in rodent models of type 1 and 

type 2 DM [334, 407]. These mechanistic considerations on the cardio-metabolic-renal 

benefits of SGLT2 inhibition have been reviewed in detail [408]. 

In conclusion, NAFLD and NASH are associated with a higher burden of 

oxidative stress within the liver and heart, based on activation of cytosolic and 

mitochondrial sources. NAFLD and NASH share similarities in their 

pathomechanisms with DM and the metabolic syndrome, including dysregulated 

lipid metabolism and an inflammatory phenotype (in part also mild 
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hyperglycemia) as well as progression of atherosclerosis. These adverse features 

of NAFLD and NASH explain the aggravated susceptibility to 

ischemia/reperfusion injury of the heart and higher risk of MI for patients with 

NAFLD and NASH. As oxidative stress plays a central role in NAFLD and NASH 

pathophysiology and disease progression as well as associated ischemic heart 

disease, several antioxidant treatment regimens were reported to display highly 

beneficial therapeutic effects in preclinical models of or patients with NAFLD and 

NASH.

7. Conclusions/Future Perspectives 

In order to provide an impression of the increase in CVD risk by the different 

comorbidities discussed above, we summarize the odds ratios for the association of 

each of them with MI using data from a large scale population-based national study 

(55,099,280 patients) [94]. Hyperlipidemia showed the strongest association with MI 

with an odds ratio of 8.39 (95% CI: 8.21-8.58), followed by hypertension with an odds 

ratio of 3.11 (95% CI: 3.05-3.17). DM and NASH showed a comparable odds ratio of 

1.89 (95%CI: 1.86-1.91) and 1.5 [95% CI: 1.40-1.62], respectively. Association of 

other risk factors with MI were smoking with an odds ratio of 2.83 (95% CI: 2.79-2.87), 

age above 65 years with an odds ratio of 1.47 (95% CI: 1.45-1.49) and male gender 

with an odds ratio of 1.53 (95% CI: 1.51-1.55). 

The nature, source, location and rate of production of ROS generated in 

myocardium under physiological or pathological conditions, together with the 

availability of cellular antioxidant defense systems, will determine the balance between 

redox signaling (physiological) and oxidative stress (pathological). The primary major 

sources of ROS in ischemia/reperfusion damage (e.g. during MI) are the mitochondria 

and NOXs, whereas secondary sources are XO and uncoupled NOS [374]. The 

contribution of NOXs was supported by protective effects of the inhibitor apocynin 

[409], which also displayed protection in all discussed comorbidities. Mitochondrial 

ROS play a dual role and can be detrimental but also protective as blockade of the 

mitochondrial ATP-sensitive potassium channel by glibenclamide or 5-

hydroxydecanoate increased infarct size and prevented the protective effects of 
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ischemic preconditioning [410, 411]. Also the inhibition of PKC can induce adverse or 

protective effects by suppression of preconditioning [412], whereas the PKC inhibitors 

chelerythrine or calphostin C conferred protection against most of the discussed 

comorbidities at the preclinical level or in isolated blood cells and platelets of patients. 

Previously, the concept of redox crosstalk between different sources of ROS 

was proposed [413-416], which may help to explain the impact of the above described 

comorbidity factors on MI or cardiovascular death (Figure 3). Based on this concept, 

comorbidities such as arterial hypertension, DM, hypercholesterolemia or 

NAFLD/NASH would activate primary ROS sources such as NOX (e.g. via the renin-

angiotensin-aldosterone or AGE). These ROS from primary sources may increase 

ischemia/reperfusion damage by aggravating mitochondrial ROS formation in a bonfire 

fashion, which will ultimately lead to potentiation of mitochondrial dysfunction 

(impaired ATP-based energy supply), mitochondrial DNA damage, cell death by 

apoptosis and necrosis. The amplification of mitochondrial ROS release will lead to 

damage of vascular signaling and activation of secondary ROS sources such as 

uncoupled eNOS. Aggravated inflammation by ROS-triggered pathways (e.g. redox 

activation of the NLRP3 inflammasome or the central hub of inflammation, HMGB1) 

as well as the increase in circulating levels of DAMPs may further contribute to 

comorbidity-induced ischemia/reperfusion injury [417].  

Oxidative stress is an attractive target for novel therapies, as it represents the 

common pathway through which different CVD comorbidities exert their deleterious 

cardiovascular effects. Although sources such as NOX are common for all the 

comorbidities, other redox signaling alterations may be specific for each comorbidity. 

Therefore, there is an urgent need to better understand the biology of such comorbidities 

and their consequences on the redox system as well as subsequent events such as 

ischemia/reperfusion injury. More mechanistic studies are necessary to characterize the 

sequences of events and to potentially recognize components that may specifically be 

pharmacologically targeted by available drugs or by novel molecules. Figure 3 presents 

novel/unexplored (mostly preclinical) redox therapeutic approaches to interfere with 

these comorbidity-induced adverse redox signaling pathways. 
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Figure 1. Proposed concept of comorbidities in myocardial infarction (MI) with 

oxidative stress and inflammation as central pathomechanisms. (A) Comorbidities 

aggravate adverse health outcomes of MI. (B) Overall burden of the major 

comorbidities in ST-segment elevation and non-ST-segment elevation MI (STEMI and 

NSTEMI) by a population-based study in Beijing (77,943 patients). Adapted from 

[418] with permission. Copyright © 2016, Wolters Kluwer Health. 
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Figure 2. Experimental myocardial infarction in models of diabetes and 

hyperlipidemia (high fat diet). (A) All groups underwent induction of MI (I/R). 

Infarct size was aggravated by hyperlipidemia in high fat diet fed mice. The 

cardioprotective effects of post-conditioning (PostC) were abolished in the high fat diet 

group. The white color in the stainings shows infarcted, necrotic tissue. Reused from 

[173] with permission. Copyright © 2018, Springer Science Business Media, LLC, part 

of Springer Nature. (B) All groups underwent induction of MI. Infarct size was 

aggravated by diabetes in STZ-treated mice. Genetic heme oxygenase-1 deficiency 

further exacerbated the ischemic heart damage. The white color in the stainings shows 

infarcted, necrotic tissue. Reused from [252] with permission. Copyright © 2005, 

American Diabetes Association. 
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Figure 3. Proposed mechanism of the redox crosstalk between different ROS 

sources explaining the aggravation of ischemia/reperfusion damage by 

comorbidity factors. The green and brown boxes represent novel/unexplored genetic 

or pharmacological redox approaches to interfere with the vicious cycle between 

comorbidities and IRI (as observed during MI). Abbreviations: AT1R, angiotensin-II 

receptor (type 1); cy, cytosolic; CsA, cyclosporine A; CypD, cyclophilin D; DAG, 

diacylglycerol; gp91phox, NOX2; MnSOD, manganese superoxide dismutase (SOD2); 

mtKATP, mitochondrial ATP-sensitive potassium channel; p47phox and p67phox, 

regulatory cytosolic subunits of NOX2; PYK, protein tyrosine kinase; RAAS, renin-

angiotensin-aldosterone system; 

membrane potential; mt

updated from [413, 415, 416]. Note to reviewers: This figure will be drawn by a 

graphical artist during revision of the MS. 
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Table 1.  Studies on the effects of a diverse range of antioxidants on cardiac effects in cardiometabolic comorbidities  

Study Antioxidant Dose and 
administration  

Experimental in 
vivo model 

Major reported 
outcomes/effects 
 

Mechanistic insights 

Sivasinprasasn, S 
(2017) [83] 

 

 
Vildagliptin 

 

intragastric gavage for 
12 weeks 

 
Ovariectomized rats 
received high-fat 
diet (HFO) for 12 
weeks. In vivo 
cardiac IRI, 30-min 
ischemia and 120-
min reperfusion 

 
Reduction in the infarct 
size  

Reduction of oxidative 
stress and apoptosis in 
the ischemic 
myocardium 
 

 

Tanajak, P (2018) 
[84] 

 

 
Dapagliflozin  

 
1 mg/kg/day for 28 
days 

High-fat (HF) diet-
induced obese 
insulin-resistant 
rats.  
In vivo cardiac IRI, 
30-min ischemia 
and 120-min 
reperfusion 

 
Reduction of infarct 
size, left ventricular 
(LV) function 
improvement 

Markedly decreased 
mitochondrial fission and 
cardiac oxidative stress 

 

Andreadou I (2017) 
[85] 

 

 
Empagliflozin 

 
10 mg/kg daily by 
gavage for 6 weeks 

 
Mice fed with 
western diet for 14 
weeks. 
In vivo cardiac IRI, 
30-min ischemia 
and 120-min 
reperfusion  

 
Improvement of left 
ventricular fractional 
shortening; reduction of 
infarct size  

 
Improvement of redox 
regulation by decreasing 
iNOS expression and 
subsequently decreased 
of lipid peroxidation  
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Kondo K (2010) 
[86] 

 
 

Adiponectin Recombinant 
adiponectin protein 
was given as a bolus 
intracoronary injection 
during ischemia 

Left anterior 
descending 
coronary artery was 
occluded in pigs for 
45 minutes and then 
reperfused for 24 
hours 

Reduction in 
myocardial infarct size 
and improvement of left 
ventricular function in 
pigs after IRI 

Suppression of 
inflammation, apoptosis, 
and oxidative stress 

 

Marino A (2018) 
[87] 

 

 
AC261066, a 
synthetic 
selective agonist 
for the retinoic 
acid 2-receptor 

 
Drinking water 
containing 3.0 
mg AC261066/100 ml 
in 0.1% 
dimethylsulfoxide/H2O 
for 6 weeks 

 

Obese (HFD-fed) 
wild-type mice  

IRI in ex Vivo 
Mouse Hearts 

 

 
Attenuation of infarct 
size, and alleviation of 
reperfusion 
arrhythmias. 

 
Decreased formation of 
oxygen radicals and toxic 
aldehydes  

Nduhirabandi, F 
(2011) [88] 

 

Melatonin 4 mg/kg/day was 
administered in the 
drinking water for 16 
weeks 

A rat model of diet-
induced obesity 

IRI in ex Vivo Rat 
Hearts 

 

Reduction of infarct 
size and increased 
percentage recovery of 
functional performance 
of diet-induced obesity 
hearts. 

Increased activation of 
Akt, ERK42/44 and 
reduced p38 MAPK 
activation 

Iliodromitis EK 
(2010) [157] 

 

 

Simvastatin 3 mg/kg, orally for 3 
weeks 

Cholesterol fed 
rabbits received for 
6 weeks a diet 
enriched with 2 g of 
cholesterol.  

Reduction of infarct 
size 

Attenuation of oxidative 
and nitrosative stress 
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IRI in vivo 30 min 
ischemia and 180 
min reperfusion 

Andreadou I (2012) 
[158] 

 

Pravastatin 3 mg/kg orally for 3 
days 

Cholesterol fed 
rabbits received for 
6 weeks a diet 
enriched with 2 g of 
cholesterol. 
IRI in vivo 30 min 
ischemia and 180 
min reperfusion 

Reduction of infarct 
size 

Activation of eNOS and 
attenuation of nitro-
oxidative stress 

Andreadou I (2007) 
[159] 

 

Oleuropein  20 mg/kg daily, orally 
for 6 weeks and for 3 
weeks  

Cholesterol fed 
rabbits received for 
6 weeks a diet 
enriched with 2 g of 
cholesterol. 
IRI in vivo 30 min 
ischemia and 180 
min reperfusion 

Reduction of infarct 
size 

Protection against 
oxidative damage during 
ischemia-reperfusion, 
reduction of the protein 
carbonyl content and 
enhancement of SOD 
activity 

Yadav, H.N (2012) 
[165] 

GSK-
inhibitors, SB 
216763 and 
indirubin-3 
monoxime (IND)  

SB, 0.6 mg/kg, i.p., 
IND, 0.4 mg/kg, i.p., 
administered 24 h 
before the isolation of 
heart 

Rat by feeding 
high-fat diet for 6 
weeks  

IRI in Ex Vivo Rat 
Hearts 

 

Decrease of myocardial 
infarct size  

HSP acts on pathway of 
GSK-
significant role in 
cardioprotection 

Sloan (2012) [218] NIM811- 
(cyclosporin A 
analogue) 

reperfusion 
STZ-induced 
diabetic rats 

Reduction in infarct 
size 

Inhibition of mPTP 



Andreadou et al.  comorbidities and cardioprotection  80 

IRI in Ex Vivo Rat 
Hearts 

 
Leng (2018) [219] Tubastatin A  

(HDAC6 
inhibitor) 

10 mg/kg, i.p., for 
7days 

STZ-induced 
diabetic rats 
 
In vivo IRI; 45min 
ischemia and 180 
min reperfusion 

Improved cardiac 
function; reduced 
infarct size and release 
of LDH and CK-MB 

Attenuation of ROS 
generation, lipid 
peroxidation and 
apoptosis; increased 
acetylated-Prdx1 levels 

Koka (2013) [229] Tadalafil (PDE5 
inhibitor) 

1mg/kg/day, i.p., for 
28days 

Type 2 diabetes 
(db/db mice) 
 
Ex vivo global IRI 

Reduction in infarct 
size  

Attenuation of ROS 
generation and 
myocardial lipid 
peroxidation; attenuation 
of NADPH oxidase 
activity and expression 
of subunits pRac1 and 
gp91phox 
 

Yu (2017) [232] Melatonin 10 mg/kg orally for 5 
days and i.p once 
before reperfusion 

STZ-induced 
diabetic rats 
 
In vivo IRI; 30min 
ischemia and 180 
min reperfusion  

Improved cardiac 
function; reduced 
infarct size; reduced 
apoptosis 

Reduced mitochondrial 
oxidative stress and 
enhanced biogenesis; 
activated AMPK/PGC-

-SIRT3 signaling and 
increased expression of 
SOD2, NRF1 
and TFAM 

Yu (2016) [231] Melatonin 10 mg/kg/d i.p. for 5 
days 

Acute 
hyperglycemia (500 

Improved cardiac 
function; reduced 

Reduced oxidative stress; 
activated Notch1 
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g/L HG, 4 ml/kg/h, 
i.v.) 
 
In vivo IRI; 30min 
ischemia/4h-72h 
reperfusion 
 

infarct size; reduced 
apoptosis 

signaling by increasing 
Trx activity while 
decreasing Txnip 
 

Yu (2015) [230] Melatonin 20 mg/kg/day orally T2D (HFD-STZ) rat 
model 
 
In vivo IRI; 30min 
ischemia/4h-72h 
reperfusion 
 
 

Improved cardiac 
function; reduced 
infarct size; reduced 
apoptosis 

Attenuation of oxidative 
stress and ER stress via 
activation of SIRT1 
signaling 

 Yu (2018) [419] Melatonin 10 mg/kg/d i.p. for 5 
days 

STZ-induced 
diabetic rats 
 
In vivo IRI; 30min 
ischemia/4h 
reperfusion 
 

Improved cardiac 
function; reduced 
infarct size; reduced 
apoptosis 

Activation of cGMP-
-2-HO-1 

signaling  

Mao (2013) [222] Antioxidants 
(NAC and 
Allopurinol)   
 

Combination of NAC 
(1.5 g/kg/day) and 
ALP (100 mg/kg/day) 
for 4 weeks 
 

STZ-induced 
diabetic rats 
 
In vivo IRI; 30min 
ischemia/ 2h 
reperfsuion 

Improved cardiac 
function; reduced 
infarct size and release 
of CK-MB 

Enhanced GSH/GSSG; 
Increased expression of 
HO-1 and HIF-  
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Nayak (2019) [239] Phloroglucinol 
(benzenetriol) 

100 mg/kg/day or 
200mg/kg/day 
administered orally for 
28 days 

STZ-induced 
diabetic rats 
 
Ex vivo IRI; 15 min 
ischemia/30 min 
reperfsuion 
 

Improved 
hemodynamic 
parameters before I/R; 
reduced infarct size and 
release of CK-MB 

Increased GSH levels; 
decreased lipid 
peroxidation  

Xiao (2019) [243] Luteolin 
(polyphenol) 

100 mg/kg/day, i.g., 
for 2 weeks 

STZ-induced 
diabetic rats 
 
Ex vivo global IRI, 
30 min 
ischemia/120min 
reperfusion 
 

Improved cardiac 
function and myocardial 
viability 

Decreased oxidative 
stress and lipid 
peroxidation; enhanced 
eNOS/Keap1/Nrf2 
signaling and 
upregulation of 
antioxidant enzymes  

Yang (2015) [244] Luteolin 
(polyphenol) 

100 mg/kg/day, i.g fot 
2 weeks 

STZ-induced 
diabetic rats 
 
Ex vivo global IRI, 
30 min 
ischemia/120 min 
reperfusion 
 

Improved cardiac 
function and decreased 
LDH release 

Upregulation of eNOS 
and MnSOD; inhibition 
of mPTP 

Duan (2017) [242] Butin (plant 
flavonoid) 

10, 20 and 40 mg/kg 
i.g for 15 days 

STZ-induced 
diabetic mice 
 
In vivo IRI, 20 min 
ischemia/6h 
reperfusion 

Improved cardiac 
functional recovery; 
reduced infarct size; 
decreased apoptosis 

Upregulation of Nrf2 and 
HO-1 via activation of 
AMPK/Akt/GSK3  
signaling pathway 
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Suchal (2017) [246] Kaempferol 
(plant flavonoid) 

20 mg/kg; i.p. daily for 
28 days 

STZ-induced 
diabetic rats 
 
In vivo IRI, 45 min 
ischemia/60min 
reperfusion 

Improved 
hemodynamic 
parameters and cardiac 
function; decreased 
apoptosis 

Inhibition of the MAPK 
and AGE-RAGE 
pathways; attenuation of 
oxidative stress and 
inflammation 

Thirunavukkarasu 
(2007) [236] 

Resveratrol 2.5mg/kg orally for 2 
weeks 

STZ-induced 
diabetic rats 
 
Ex vivo IRI, 30 min 
ischemia/2h 
reperfusion 

Improved cardiac 
functional recovery; 
reduction in infarct size 
and apoptosis 

NO mediated induction 
of Trx-1, HO-1 and 
VEGF; activation of Mn-
SOD 

Fourny (2019) [234] Resveratrol 1 mg/kg/day orally for 
8 weeks 

Type 2 diabetic 
female Goto-
Kakizaki rats 
 
Ex vivo IRI 
 

Improved cardiac 
function 

Improved mitochondrial 
function; increased 
expression of eNOS/ 
SIRT1 

Wu (2017) [245] Epigallocatechin-
3-gallate 
(EGCG) 

100mg/kg/day i.p. for 
14 days 

STZ-induced 
diabetic rats 
 
In vivo IRI; 30 min 
ischemia /2h 
reperfusion 

Improvement of cardiac 
functional recovery; 
reduction of I/R-
induced myocardial 
infarct size 

Decreased oxidative 
stress and fibrosis; 
increased expression of 
SIRT1and MnSOD 

 

The selection in this table is restricted to studies on ischemia/reperfusion injury (IRI) in metabolic comorbidities where antioxidants were 
administered exogenously.  Studies were excluded if full-text was not readily available or if experimental details and/or data were incompletely 
reported.  
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Abbreviations used in this Table: AGE, advanced glycation end-products; AMPK, AMP-activated protein kinase; eNOS, endothelial nitric oxide 
synthase; ERK,42/44 extracellular (signal) regulated kinase; GSK-3 , glycogen synthase kinase-3 ; HO-1, heme oxygenase-1; HSP, heat shock 
protein;   Keap1, Kelch-like ECH-associated protein1;  LDH,  lactate-dehydrogenase; MAPK, mitogen-activated protein kinase; MnSOD 
manganese-dependent superoxide dismutase; Nrf2, nuclear factor erythroid 2-related factor; RAGE, receptor of advanced glycation end-products 
(AGE); SIRT1, sirtuin1; STZ, streptozotocin; Trx-1, thioredoxin-1; VEGF, Vascular endothelial growth factor.  

 
 

 

 

  



Andreadou et al.  comorbidities and cardioprotection  85 

Table 2. Recent studies of a diverse range of antioxidants in pressure-overload hypertrophy models in vivo 

 

Study Antioxidant Dose and 
administration  

Experimental in 
vivo model 

Major reported 
outcomes/effects 
 

Mechanistic insights 

 
Matsuoka H 
(2019) [420] 

 
Molecular 
Hydrogen (H2) 

 
2% H2 in air for 6 
weeks 

 
Dahl salt-sensitive 
rat 

 
Slight attenuation of 
hypertension development; 
reduced LV mass index; 
reduced myocyte cross 
sectional area  

 
H2 scavenges .OH and 
ONOO-. No specific 
molecular mechanism 
identified 

 
Fan Z (2018) 
[421] 

 
Molecular 
Hydrogen (H2) 

 
>0.6 mM H2 in 
saline by i.p. 
injection daily for 
6 weeks 
 

 
Transverse 
abdominal aortic 
constriction, rat 

 
Dose-dependent attenuation of 
LV mass index; reduced 
collagen fraction; reduced LV 
natriuretic peptide expression 

 
Effects associated with 
reduced LV protein level of 
JAK and STAT3 and 
phospho-STAT3 

 
Xu X (2020) 
[422] 

 
Pyrolloquinoline 
quinone 

 
0.4, 2 or 10 
mg/kg daily by 
gavage for 6 
weeks 

 
Transverse 
abdominal aortic 
constriction, rat 
 
 

 
Prevention of cardiac 
hypertrophy; preservation of 
EF by echocardiography; 
reduced collagen fraction  

 
Reduced ROS production and 
preservation of mitochondrial 
membrane potential in 
isolated cardiac myocytes 
treated with Ang II 
 

 
Liao HH 
(2019) [423] 
 

 
Myricetin (plant 
polyphenol) 

 
200 mg/kg daily 
by gavage for 6 
weeks 

 
Thoracic aortic 
constriction, mouse 

 
Attenuation of LV mass index; 
preservation of EF and other 
echocardiographic indices. 

 
Effects associated with 
reduced activation of TAK1, 
p38 MAPK and JNK1/2 
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Zhang Y 
(2019) [424] 

 
Isorhyncophylline 
(plant tetracyclic 
oxindole 
alkaloid) 
 

 
0.2% in feed for 6 
weeks 

 
Thoracic aortic 
constriction, mouse 

 
Attenuation of LV mass index; 
reduced LV echocardiographic 
dimensions; reduced LV 
natriuretic peptide expression; 
reduced collagen fraction  

 
Increased activity of SOD and 
catalase. In vitro, 
antihypertrophic effects of 
isorhyncophylline are Nrf2 
dependent.  

 
Liu C (2019) 
[425] 

 
Zingerone (plant 
methoxyphenol) 

 
10 or 20 mg/kg 
daily by gastric 
gavage for 25 
days  

 
Thoracic aortic 
constriction, mouse 

 
Attenuation of cardiac index; 
reduced LV natriuretic peptide 
expression; reduced collagen 
fraction; improved 
echocardiographic indices 

 
In vitro, suppression of 
phenylephrine induced 
cardiac myocyte hypertrophy 
and reduced ROS generation, 
abolished by Nrf2 
knockdown. Enhanced eNOS 
activity and NO generation 
 

 
Xu M (2019) 
[426] 

 
Oridonin (plant 
diterpenoid 
flavonoid) 

 
40 mg/kg daily by 
gavage 

 
Thoracic aortic 
constriction, mouse 

 
Attenuation of cardiac 
hypertrophy; reduced 
natriuretic peptide expression; 
preserved EF; improved 
echocardiographic indices; 
reduced collagen fraction; 
enhanced autophagy markers 
 

 
In vitro, suppression of Ang 
II-induced myocyte 
hypertrophy; autophagy 
effects of oridonin P21-
dependent 

 
Ba L (2019) 
[427] 

 
Allicin (plant 
organosulfur 

 
5, 10 or 20 mg/kg 
daily by i.p. 

 
Abdominal aortic 
constriction, rat 

 
Attenuation of cardiac 
hypertrophy at 10 or 20 mg/kg; 
reduced myocyte cross 

 
In vitro, suppression of Ang 
II-induced myocyte 
hypertrophy; inhibition of 
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compound 
[thiosulfinate]) 

injection for 4 
weeks 

sectional area; reduced 
natriuretic peptide expression; 
reduced expression of 
autophagy markers 
 

autophagy was via activation 
of PI3k/Akt/mTOR and 
MAPK/mTOR pathways 

 
Bradic J 
(2019) [428] 

 
Galium verum (L) 
extract 
(containing 
flavonoids) 

 
Dried 1:5 
methanolic 
extract in 
drinking water, 
~500mg/kg daily 
for 4 weeks 

 
Spontaneously 
hypertensive rat 

 
Attenuation of hypertrophy; 
improved echocardiographic 
indices 
 

 
Improved recovery of 
contractile function after 20 
min global ischemia ex vivo; 
reduced plasma superoxide 
and lipid peroxides 

 
Zeng J 
(2019) [429] 

 
Lycopene (plant 
carotenoid 
terpene) 

 
50 mg/kg daily by 
gavage for 1 
week before and 
4 weeks after 
surgery 

 
Thoracic aortic 
constriction, mouse 

 
Marked attenuation of LV 
hypertrophy; attenuation of 
echocardiographic changes; 
reduced LV ROS detection; 
increased SOD gene 
expression  
 

 
In vitro, phenylephrine-
induced myocyte hypertrophy 
attenuated; preservation of 
mitochondrial membrane 
potential and inhibition of 
mPTP opening 
 

 
Liu Y (2018) 
[430] 

 
Saikosaponin A 
(plant terpenoid) 

 
5 mg/kg or 40 
mg/kg daily by 
i.p injection for 4 
weeks, starting 2 
weeks after 
surgery 

 
Aortic constriction, 
mouse (not stated 
if thoracic or 
abdominal) 

 
No attenuation of LV 
hypertrophy; attenuation of 
natriuretic peptide expression; 
dose-dependent reduction of 
LV collagen fraction; 
attenuation of 
echocardiographic changes 

 
Specific effect on fibrosis; in 
vitro, no attenuation of Ang 
II-induced myocyte 
hypertrophy; attenuation of 
TGF-beta1 stimulated cardiac 
fibroblast proliferation; 
inhibition of Smad signalling 
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including improved ejection 
fraction 
 

 
Dong B 
(2018) [431] 

 
Fisetin (plant 
flavonoid) 

 
20 mg/kg daily by 
i.p. injection, 
from 1 week 
before to 4 weeks 
after surgery 

 
Aortic constriction, 
mouse (not stated 
if thoracic or 
abdominal) 

 
Attenuation of LV 
hypertrophy; improved 
ejection fraction and 
attenuation of other 
echocardiographic changes; 
attenuation of LV natriuretic 
peptide expression; reduced 
LV ROS production; increased 
LV expression of SOD1 and 
catalase mRNA 
 

 
In vitro, attenuation of 
phenylephrine-induced 
myocyte hypertrophy; 
reduction in ERK1/2, p38 
MAPK, JNK1/2 and mTOR 
phosphorylation in vivo and 
in vitro. No additive effect in 
vitro of N-acetylcysteine.  

 
Chen K 
(2018) [432] 

 
Quercetin (plant 
flavonoid) 

 
5, 10 or 20 mg/kg 
daily by gavage 
for 8 weeks 

 
Abdominal aortic 
constriction, rat 

 
Prevention of cardiac 
hypertrophy; improved 
echocardiographic indices; 
inhibition/normalisation of 
proteasome activities; 
attenuation of interstitial 
fibrosis 
 

 
Antihypertrophic action 
related to GSK-3 activation as 
a result of proteasome 
activation in vivo (and in Ang 
II -stimulated myocytes in 
vitro) 

 
Meng G 
(2018) [297] 

 
NaHS (H2S 
donor) 

 
50 umol/kg daily 
for 2 weeks 

 
Thoracic aortic 
constriction, mouse 

 
Attenuation of blood pressure 
increase and LV hypertrophy 
in wild type but not SIRT3 
knockout mice; reduced 

 
In vitro, attenuation of Ang II 
induced myocyte hypertrophy 
and natriuretic peptide 
expression plus improved 
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myocardial ROS production in 
wild type but not SIRT3 
knockout mice 
 

mitochondrial function in 
SIRT-3 dependent manner 

 
Zhang Q 
(2015) [433] 
 

 
Polydatin (plant 
polyphenol) 

 
50 mg/kg daily by 
gavage starting 7 
days before Ang 
II treatment 

 
Ang II infusion by 
minipump for 28 
days, rat 

 
Non-significant attenuation of 
blood pressure rises; 
attenuation of cardiac 
hypertrophy, myocyte cross-
section area and collagen 
fraction;  

 
Decreased cardiac NADPH 
oxidase activity and Nox 2 
and Nox 4 expression; 
concentration-dependent 
antihypertrophic effect in 
cardiac myocytes in vitro 
 

 
Dolinsky 
VW (2015) 
[434] 

 
Resveratrol (plant 
polyphenol) 

 
Orally in diet 4 
g/kg, equivalent 
to 146 mg/kg 
daily (rat) or 320 
mg/kg daily 
(mouse) 

 
Spontaneously 
hypertensive rat, 5 
weeks 
 
 
Ang II infusion by 
minipump for 14 
days, mouse 

 
Rat: attenuation of cardiac 
hypertrophy; increased 
phospho-AMPK, decreased 
phospho-P70S6K 
 
Mouse: attenuation of cardiac 
hypertrophy; increased 
phospho-AMPK, decreased 
phospho-Akt and phospho-
P70S6K 
 

 
In vitro activation of AMPK; 
inhibition of p70S6K and 
NFAT; no effect on SIRT1 
expression. In vivo, no effects 
of resveratrol on 
physiological hypertrophy 
induced by exercise training 
(rat)  

 

Articles specifically examining the effects of antioxidants on pressure overload hypertrophy and published in the date range 01 January 2015 to 
07 November 2020 were retrieved from the PubMed database. The selection in this table is restricted to studies of pressure-overload models in 
vivo where antioxidants were administered exogenously.  Studies were excluded if full-text was not readily available or if experimental details 
and/or data were incompletely reported.  
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Abbreviations used in this Table: AMPK, AMP-activated protein kinase; Ang II, angiotensin II; EF, LV ejection fraction; ERK, extracellular 
(signal) regulated kinase; GSK, glycogen synthase kinase; JAK, Janus kinase;  JNK, c-Jun N-terminal kinase; MAPK, mitogen activated protein 
kinase; mPTP, mitochondrial permeability transition pore; mTOR, mammalian target of rapamycin; NFAT, nuclear factor of activated T-cells; 
Nox, NADPH oxidase; Nrf2, nuclear factor erythroid 2-related factor; SIRT, sirtuin; STAT, signal transducer and activator of transcription; 
TAK1, transforming growth factor beta-activated kinase; TGF, transforming growth factor.  

 


