
The Journal of Systems & Software 195 (2023) 111510

L
a

b

c

d

p
p
a
i
t
i
(
m
d
c
e

o
H
B
f

r
m

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Variabilitymodules✩

Ferruccio Damiani a,∗, Reiner Hähnle b, Eduard Kamburjan c,∗, Michael Lienhardt d,
uca Paolini a
Dipartimento di Informatica, University of Turin, Turin, Italy
Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
Department of Informatics, University of Oslo, Oslo, Norway
ONERA, Palaiseau, France

a r t i c l e i n f o

Article history:
Received 21 February 2022
Received in revised form 18 July 2022
Accepted 8 September 2022
Available online 24 September 2022

Keywords:
Delta-oriented programming
Family-based analysis
Language design
Modules
Multi product line
Variant generation

a b s t r a c t

A Software Product Line (SPL) is a family of similar programs, called variants, generated from a
common artifact base. A Multi SPL (MPL) is a set of interdependent SPLs: each variant can depend
on variants from other SPLs. MPLs are challenging to model and to implement efficiently, especially
when different variants of the same SPL must coexist and interoperate. We address this challenge by
introducing the concept of a variability module (VM), a new language construct. A VM constitutes at
the same time a module and an SPL of standard (variability-free), possibly interdependent, modules.
Generating a variant of a VM triggers the generation of all variants required to satisfy its dependencies.
Consequentially, a set of interdependent VMs represents an MPL that can be compiled into a set of
standard modules. We illustrate the VM concept with an example from an industrial modeling scenario
and formalize it in a core calculus. We define family-based analyses to check that a VM satisfies
certain well-formedness conditions and whether all variants can be generated. Finally, we provide
an implementation of VM for the Java-like modeling language ABS, and evaluate it with case studies.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modeling variability aspects of complex software systems
oses challenges currently not adequately met by standard ap-
roaches to software product line engineering (SPLE) (Clements
nd Northrop, 2001; Pohl et al., 2005). A first modeling challenge
s the situation when more than one product line is involved and
hese product lines depend on each other. Such sets of related and
nterdependent product lines are known as a multi product line
MPL) (Holl et al., 2012; Trujillo-Tzanahua et al., 2018). A second
odeling challenge, orthogonal to MPLs, is the situation when
ifferent product variants from the same product line need to
o-exist in the same context and must be interoperable (Damiani
t al., 2018a).
In Section 2 we exemplify these two challenges in the context

f an industrial case study from the literature (Kamburjan and
ähnle, 2016; Kamburjan et al., 2018), performed for Deutsche
ahn Netz AG, where: (i) several interdependent product lines
or networks, signals, switches, etc., occur; and (ii) mechanic and

✩ Editor: Raffaela Mirandola.
∗ Corresponding author.

E-mail addresses: ferruccio.damiani@unito.it (F. Damiani),
einer.haehnle@tu-darmstadt.de (R. Hähnle), eduard@ifi.uio.no (E. Kamburjan),
ichael.lienhardt@onera.fr (M. Lienhardt), luca.paolini@unito.it (L. Paolini).
https://doi.org/10.1016/j.jss.2022.111510
0164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
electric rail switches are different variants of the same product
line, and some train stations include both. Overall, MPLs give rise
to the quest for mechanisms for hiding implementation details,
reducing dependencies, controlling access to elements, etc. (Holl
et al., 2012).

We take the standard concept of a module (Wirth, 1980),
used to structure large software systems since the 1970s, as a
baseline. Software modules are supported in many programming
and modeling languages, including ABS, Ada, Haskell, Java, Scala,
to name just a few. Because modules are intended to facilitate
interoperability and encapsulation, no further ad hoc concepts are
needed for this purpose. We merely add variability to modules,
rendering each module a product line of standard, variability-
free modules. We call the resulting language concept variability
module (VM).

The main advantage of VMs is their conceptual simplicity: as
a straightforward extension of standard software modules, they
are intuitive to use for anyone familiar with modules and with
software product lines. Each VM is both a module and a product line
of modules. This reduction of concepts not only drastically simpli-
fies syntax, but reduces the cognitive burden on the modeler. To
substantiate this claim, in Section 2 we illustrate the railways MPL
case study in terms of VMs without the need to introduce any for-
mal concepts. Nevertheless, there are a number of fundamental
design decisions to take in the VM design concept. In Section 3 we
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111510
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111510&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ferruccio.damiani@unito.it
mailto:reiner.haehnle@tu-darmstadt.de
mailto:eduard@ifi.uio.no
mailto:michael.lienhardt@onera.fr
mailto:luca.paolini@unito.it
https://doi.org/10.1016/j.jss.2022.111510
http://creativecommons.org/licenses/by/4.0/

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

p
i

c
a
p
a
(
s
o
J

o
f
2
t
r
a
a
t
a

5
s
V
t
a
a
v
a
n
b
m
g
d
t
t
g
p
t
t

t
p
t
t
S
i
o

e

2

a

rovide background on code reuse in SPL implementation, then,
n Section 4, we motivate and discuss the VM design decisions.

We formulate the VM concept as an extension of the standard
oncept of module for Java-like (i.e., object-oriented, class-based
nd strongly typed) languages. To support variability, VMs em-
loy delta-oriented programming (DOP) – see Schaefer et al. (2010)
nd (Apel et al., 2013, Sect. 6.6.1). Specifically, we contribute
i) a theoretical foundation of VMs, including formal syntax and
emantics, in terms of a core calculus; and (ii) an implementation
f VMs as an extension of the ABS language (Hähnle, 2013;
ohnsen et al., 2010).

We choose ABS because it features native implementations
f DOP and it was successfully used in industrial case studies
or variability modeling (Kamburjan et al., 2018; Mauliadi et al.,
017; Wong et al., 2012). We stress that VMs can be added on
op of any Java-like language. For instance, a proof-of-concept
ealization of VM for the Java programming language, based on
rchitectural patterns, is (informally) described by Setyautami
nd Hähnle (2021). That paper demonstrates the usefulness of
he VM concept, but lacks several VM features introduced here,
s well as a formal foundation.
The formal underpinnings of VMs are covered in Sections

–9. In Section 5 we declare their syntax and spell out con-
istency requirements of ABS-VM, a core calculus for ABS with
Ms. Section 6 formalizes a statically checkable property of VMs:
he principle of encapsulated variability (PEV), which ensures that
ny dependency among VMs can be reduced to dependencies
mong standard, variability-free modules. In Section 7 we define
ariant generation in terms of a ‘‘flattening’’ semantics: the vari-
nts requested from an SPL represented by a VM, together with
ecessary variants of other VMs it depends upon, are generated
y translating each VM into a set of variability-free, standard
odules (one per variant). This results in a variability-free pro-
ram with suitably disambiguated identifiers and is sufficient to
efine the semantics of VMs precisely, to compile and to run
hem. In Section 8 we define type-safety for ABS-VM programs:
he guarantee that all variants of all VMs of a program can be
enerated and together form a well-typed variability-free ABS
rogram. In Section 9 we define family-based analyses that par-
ially check whether an ABS-VM program is type-safe, including
he property that all variants of all VMs can be generated.

Section 10 describes how the VM concept is integrated into
he existing ABS tool chain. As long as one has control over the
arser and abstract syntax tree, it is relatively straightforward
o realize the family-based checks (of Section 9) and the flat-
ening algorithm (of Section 7) within any compiler tool chain.
ection 11 evaluates VMs by means of case studies. Related work
s discussed in Section 12. We conclude in Section 13 by outlining
ngoing work.
The present article is based on an SPLC 2021 paper (Damiani

t al., 2021), with the following extensions:

1. We define type-uniformity, pre-typing, and applicability
consistency analyses for ABS-VM programs.

2. We implement sanity condition checks, a PEV compliance
check, maximal unique annotation inference, as well as the
analyses listed in item 1

3. The VM language features so-called open product defini-
tions (Section 5.1), however, these were neither imple-
mented nor used in a case study, which is now done.

4. We extend the evaluation.

. Introducing variability modules

We illustrate variability modules and how they support vari-
nt interoperability by way of an example based on the industrial
 m

2

Fig. 1. Features of signals and switches.

FormbaR case study from railway engineering (Kamburjan et al.,
2018).1 We look at the full FormbaR case study during VM
evaluation in Section 11.

Our scenario contains signals, switches, interlocking systems,
that use multiple variants of signals and switches, and a railway
station that uses multiple variants of interlocking systems. Fig. 1
shows the feature models for switches and signals. Feature mod-
els (Czarnecki and Eisenecker, 2000) specify software variants
in terms of features. A feature is a name representing some
functionality, a set of features is called a configuration, and each
variant is identified by a valid configuration (called a product, for
short). Equivalent representations of feature models have been
proposed in the literature, e.g., by Batory (2005) nad Apel et al.
(2013), like feature diagrams (Fig. 1) and propositional formulas
(lines beginning with the keywords features in Figs. 2–3).

A signal is either a light signal, using bulbs and colors to
indicate the signal aspect or a form signal that uses mechan-
ically moved shapes. All variants of a signal share the same
interface to the interlocking system and basic functionality, such
as aspect change (for example, signals have always the aspects
‘‘Halt’’ and ‘‘Go’’). In case of multiple outgoing tracks, a signal
may also indicate the direction a train is taking — so there are
four signal variants. Variability occurs, for example, in a class
Bulb, only present in the light signals variant and in the fact that
method setToHalt (which changes the shown aspect to ‘‘Halt’’)
is implemented differently for form and light signals (the latter
communicate with their Bulb instances).

Signals are modeled by the VM Signals in Fig. 2. It starts
with the module header, comprising: the keyword module, the
module name, the list of exportedmodule elements, the feature list
constrained with a propositional formula describing the products.
This is followed by a list of configuration definitions (here just
one), where each definition gives a name to a set of features.
Finally, a list of product definitions (here just one), where each
definition gives a name to a product of the SPL.

Next is the module core part, comprising declarations of in-
terface ISig and of class CSig that implements ISig. By default,
classes and interfaces can be modified/removed by deltas to
obtain different product variants, however, class/interface dec-
larations annotated by the keyword unique must be the same in
all product variants. Unique declarations enable interoperability
between different product variants of the same VM.

Finally there is the delta part, comprising the deltas that de-
scribe the implementation of different variants and their appli-
cation conditions. Classes and interfaces added by deltas can be
modified or removed again by other deltas. The delta LDelta,
triggered by feature Light, adds a class Bulb and modifies the
class CSig to reference the class Bulb. Deltas FDelta and DDelta
implement features Form and Dir, respectively.

1 For presentation purposes some aspects are modeled in a slightly different
anner as in Kamburjan et al. (2018).

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

s
t
l
C
i
a

i
t
i
T
t
n
p
t
s
s

Fig. 2. An SPL of signals as a VM.
Fig. 3. An SPL of tracks and switches as a VM.
i
S
i
w
c
t

Switches and tracks are modeled by the VM in Fig. 3. It is
tructurally similar to Signals. A switch is either electric (con-
rolled from the interlocking system) or mechanic (controlled
ocally by a lever). Class CTrack contains a reference to class
Switch, which is not declared unique. So, even though class CTrack
s not modified/removed by any delta, its declaration cannot be
nnotated with unique.
Interlocking systems are modeled by the VM in Fig. 4. An

nterlocking system manages switches and signals that lie on
racks, it imports all the exported elements (feature names are
mplicitly exported/imported) of the VMs Signals and Switches.
he VM InterlockingSys has four variants, modeled by two op-
ional features. Line 7 contains a product definition that gives
ame PSwitch to a product of the VM Switch. It is called an open
roduct definition, because it depends on the selected product of
he VM InterlockingSys itself: if feature Modern is selected PSwitch
pecifies an electric switch, otherwise it specifies a mechanic

witch (product clauses are evaluated in order until a valid one

3

s found). Line 9 contains an open product definition for the VM
ignal. It is worth observing that open product definitions enable
mplementing different variants of the VM InterlockingSys even
ithout using deltas. Method testSig of class CILS instantiates
lasses from two different product variants of Switches and from
wo different product variants of Signals. All references to non-
unique imported classes/interfaces specify a product, by using a
with clause. In a with clause, the product can be specified by
explicitly listing its features, by using one of the defined prod-
uct names, or (more generally) by a set-theoretic expression.
For example, track is taken from product {Mechanic} of module
Switches, while sigNormal uses the product name LSig imported
from Signals. In line 19 a switch is added to a track element:
since track contains a reference to an instance of the mechanic
variant of class CTrack, appendSwitch() will add a mechanic switch.
All signal variants of the VM Signals share the same definition
of the unique ISig interface, thus making it accessible to anyone

that imports it from Signals. On the other hand, the CBulb class

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

i
f

m

R
(
t

3

i
a
V
l
i

f

Fig. 4. An SPL of interlocking systems as a VM.
p
h
a

c
c
l
b
a
b
a
i
m
h

a
2

Fig. 5. A railway station as a main module.

s only used inside the VM Signals. Different product variants are
ully interoperable, as witnessed by the expression in line 22.

We conclude this brief overview of VMs by defining the ter-
inology of unique and main module.

• A unique module (UM) is a VM that does not contain a feature
model. Therefore, it contains no configuration definitions,
no open product definitions, and no deltas, however, it
may contain with clauses and closed product definitions.
All classes and interfaces of a UM are implicitly considered
unique, so the unique keyword can be omitted.

• Amain module is a UM containing an implicit class providing
an initialization method declared by the keyword init. Each
program has at most one main module. Programs without
a main module cannot be executed (like Java programs
without a class containing a main method).

The whole railway station is modeled by the main module
ailwayStation (Fig. 5) as well as VMs Signals (Fig. 2), Switches
Fig. 3), and InterlockingSys (Fig. 4). They represent an MPL called
he railway station MPL henceforth.

. Code reuse in SPL implementation

The example in Section 2 illustrates how DOP supports SPL
mplementation, and how VMs support both interoperable vari-
nts and MPLs. Before we continue with the formalization of
Ms, let us briefly recall the bigger picture in software product
ine engineering as far as code reuse in feature-oriented SPL
mplementation is concerned.

In software product line engineering one aims to develop a
amily of similar programs, called variants, by managed reuse
 b

4

(Clements and Northrop, 2001; Pohl et al., 2005). In feature-
oriented SPLs (Apel et al., 2013) this amounts to: (i) From the
problem space perspective, each variant of an SPL is identified
by a set of features, called a product; (ii) from the solution space
erspective, code reuse mechanisms for variant implementations
ave to be flexible enough to capture commonalities in the vari-
nts and to realize the desired variants (Schaefer et al., 2012).
Consider, for instance, the SPL for signals in Section 2: (i) Con-

erning the problem space, it has n features and m products; (ii)
oncerning the solution space, it has programs written in a Java-
ike language as variants, where each variant represents a signal
y means of an interface ISig, which is the same for all variants,
nd a class, which is different in each variant. A straightforward,
ut naive, approach to SPL implementation provides the code of
ll m variants within the same program. Then the SPL for signals
s implemented as a program comprising the interface ISig and
classes CSig1,. . . , CSigm (one for each product). This approach,

owever, has several issues:

1. The code reuse mechanism of a Java-like implementation
language might not be flexible enough to capture com-
monalities in the variants, so some code might be dupli-
cated. In particular, the rigidity of class-based inheritance
(code reuse can be realized only within a class hierar-
chy Mikhajlov and Sekerinski, 1998; Ducasse et al., 2006)
puts limitations on the reuse of code across variants.

2. Java-like languages possess no construct to explicitly cap-
ture the relation between the problem and the solution
spaces. To document the relation between features and
variants, and to support automatic variant generation, ad
hoc external tool support must be added.

3. The approach does not scale: recall that an SPL with n
features can have up to m = 2n products, thus up to 2n

classes CSigi must be defined.

Using a Java-like language featuring flexible code reuse mech-
nisms (for example, traits (Schärli et al., 2003; Ducasse et al.,
006)2 or the constructs of the JIGSAW framework (Bracha,

2 Traits were first proposed in the dynamically typed, object-oriented, class-
ased Smalltalk/Squeak language (Schärli et al., 2003; Ducasse et al., 2006) and

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

1
T
s

v
m
n

e
c
s
e
a
o
a
d
f
T
n
a

a
n
h
i
2

R
i
2
n
o
d
o
t
e
a
m
o
v
o
i

f
v
c
A
l
t

i
t
v
I
s

P

D

I

F

I
i

992)3) addresses the first issue, but not the remaining ones.
o address the second and third issue, programming constructs
pecifically designed for inter-product (i.e., across different vari-
ants) code reuse have been developed.

Following Schaefer et al. (2012), we classify programming
constructs dedicated to inter-product code reuse into three ap-
proaches. First, the annotative approach expresses negative
ariability: code is marked with those features of an SPL it imple-
ents and a variant is obtained by excluding code associated with
on-selected features. An example of the annotative approach is

CIDE (Kästner et al., 2012a). Second, the compositional approach
xpresses positive variability: variants are built by composing
ode fragments that implement specific features. A prominent in-
tance is feature-oriented programming (FOP), for example Batory
t al. (2004) or (Apel et al., 2013, Sect. 6.1). FOP can be viewed
s a restriction of DOP with the following constraints: there is a
ne-to-one mapping between deltas and features (each delta is
ctivated if and only if the corresponding feature is selected), the
elta application order is total, and there are no class/interface/-
ield/method removal operations (Schaefer and Damiani, 2010).
hird, the transformational approach expresses both positive and
egative variability. DOP is an instance of the transformational
pproach.
In the context of annotative/compositional/transformational

pproaches to inter-product code reuse, the code reuse mecha-
ism provided by the language in which each variant is written
as the role of an intra-product code reuse mechanism (that is,
t expresses code reuse within the same variant) (Damiani et al.,
014a).

emark 1 (Inter- and Intra-Product Code Reuse in ABS). The orig-
nal version of the ABS language (Hähnle, 2013; Johnsen et al.,
010) has deltas as a construct for inter-product code reuse and
o construct for intra-product code reuse: we refer to this version
f ABS as Delta-ABS. Hence, in some Delta-ABS case studies code
uplication within the same variant was present. A notable case
f a Delta-ABS model with duplicated code is the first version of
he FormbaR case study (Kamburjan and Hähnle, 2016), where
ach infrastructure element (for example, a signal) is modeled by
class and (since different variants of the same infrastructure ele-
ent need to coexist) a separate class is declared for each variant
f an infrastructure element. Certain code is duplicated across all
ariants, for example, the code for a method that models the end
f a train passing through an infrastructure element is duplicated
n three out of five classes present.

A more recent ABS version (Damiani et al., 2017a) added traits
or intra-product code reuse to Delta-ABS: we refer to that ABS
ersion with Delta-Trait-ABS. The second version of the FormbaR
ase study (Kamburjan et al., 2018), implemented in Delta-Trait-
BS, saves duplicated code by using traits, resulting in 40% fewer
ines of code on the named infrastructure alone. The second and
hird issue noted above, however, are not addressed with traits.

To the best of our knowledge, no programming construct for
mplementing interoperable variants overcomes the second and
hird issue discussed above. VMs address all three issues and pro-
ide proper support for MPLs as well as variant interoperability.
n Section 11 we present a refactored version of the FormbaR case
tudy based on VMs.

subsequently formulated in a Java-like setting by various authors (Smith and
Drossopoulou, 2005; Nierstrasz et al., 2006; Reppy and Turon, 2007; Bono et al.,
2008; Liquori and Spiwack, 2008; Bettini et al., 2013b; Bettini and Damiani,
2017).
3 The constructs of the JIGSAW framework (Bracha, 1992) were formalized

in a Java-like setting by means of the FGig calculus (Lagorio et al., 2009, 2012).
 n

5

4. Design decisions

We briefly illustrate the rationale behind the major VM design
decisions.

Unique Annotation. As illustrated in Section 2, unique class/in-
terface declarations in a VM M are shared by all variants
of M. Without the unique keyword, unique class/interface
declarations need to be inferred (via Definition 4), creating
the danger of unintended changes of the set of classes/in-
terfaces in a program considered to be unique. Obviously,
a tool that points out all class/interface declarations that
could be annotated unique is useful.

rinciple of Encapsulated Variability (PEV). The PEV prescribes
that each VM can depend on other VMs only by using
classes or interfaces that are either unique or that belong
to a specific variant. If a VM program adheres to the PEV,
then flattening (defined in Section 7) – which removes
variability and generates those variants required by the
dependencies – can resolve all dependencies among VMs to
dependencies among UMs. The main reasons for adopting
the PEV are simplicity and usability: it suffices to work with
a standard module concept (no need for composition or
disambiguation operators as, for example, Kästner et al.
(2012b)) and it is easy for the modeler to find out to which
implementation any object reference in a VM refers to.

isjoint Feature Models. Each VM has its own feature model,
disjoint from those of other VMs: each feature name be-
longs to the VM where it is declared (like class interface
names). There are no export/import clauses for features:
each VM can refer to a feature f of another VM M only
within a scope where the name M is specified: each occur-
rence of a feature name f is understood as M.f for a VM
name M that is clear from the context. Feature names can
be defined, with a different meaning, in different VMs. Fea-
ture names are implicitly exported/imported. It might be
useful to add support for expressing constraints connecting
the different feature models (e.g., to specify that certain
variants must not co-exist in the same application).

mplicit Export/Import Flattening. Each VM M must declare any
export/ import that may occur in one of its variants. The
flattening generates more specific export/import clauses
for each variant by dropping the export clauses for class-
es/interfaces not present in that variant, and by creat-
ing import clauses for the required variants of the VMs
mentioned in the import clauses of M. This design choice
avoids the need to define delta operations on export/im-
port clauses in the language that then would be supplied by
the modeler.4 Altogether, it reduces the cognitive burden
to understand VM code and the effort to write it.

amily-based Checking. VMs are designed to facilitate family-
based analyses (Thüm et al., 2014). The implementation
of VMs as part of the ABS compiler tool chain (Section 10)
supports family-based analysis to check – before flattening

4 To extend VMs with delta operations on export clauses is straightforward.
t would sometimes allow to shorten export clauses. On the other hand, since
mplicit flattening drops all unused imports, deltas on import clauses provide
o advantage.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

p
d

Fig. 6. ABS-VM abridged syntax — the fragment of the grammar describing the syntax of Vf-ABS is highlighted in gray .
i

– whether a program Prg satisfies the PEV and whether all
variants of all VMs in Prg can be generated and would form
(as a whole) a variability free ABS program that satisfies
certain well-formedness conditions (Section 9).

5. Syntax of variability modules

Fig. 6 defines the syntax of ABS with VMs (ABS-VM, for short)
as an extension of variability-free ABS (Vf-ABS, for short). Vf-ABS is
the sequential, OO fragment of ABS (Johnsen et al., 2010; Hähnle,
2013) and ABS-VM extends it with VM concepts.5

5 Even though ABS supports variability management based on deltas, for
resentational purposes, we singled out Vf-ABS. We stress that the syntax of
elta definitions in ABS-VM is essentially identical to ABS syntax.
6

We write M to denote module names, C for class names, I

for interface names, K for feature configuration names, P for
product names, D for delta names, m for method names, and f

for field names. A named element is either a (variability) module,
an interface/class definition, a method header, a field/method
definition, a method formal parameter declaration, a delta, a
class/attribute/interface/header operation, or a delta activation
condition. Given a named element X , we write name(X) to denote
ts name. Following Igarashi et al. (2001), X denotes a possibly
empty finite sequence of elements X . If the elements in X are
named, we assume their names are pairwise distinct.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

5

(
c
V

a
d
e
∗

A
f
d
c
d
p
c

b
a
e
E
a
n
e
d
i
w
t

R
S
p

t
s
c

i

o
d
T
t
W
o

5

e
t
g
n

.1. ABS-VMsyntax

A program is a sequence of VMs. A VM consists of a header
MdlH), a core part (MdlC), and a delta part (MdlD). A VM header
omprises the keyword module followed by the name of the
M, by some (possibly none) import and export clauses (list-

ing the class/interface/configuration/product names, respectively,
that are exported or imported by the VM), by the optional def-
inition of a feature model (where F are the features and Φ is
propositional formula over features), by a list of configuration
efinitions, and by a list of product definitions. A configuration
xpression KE is a set-theoretic expression over feature sets (+,
and − denote union, intersection and difference, respectively).
product definition PD is closed if it is of the form product P [[[

or M]]] = KE, otherwise it is open. The clauses in an open product
efinition are examined in sequence until the first applicable
lause is found.6 The right-hand sides of configuration definitions
o not contain product names, and the right-hand sides of closed
roduct definitions do not contain open product names. Recursive
onfiguration/product definitions are forbidden.
Both the module core part and the module delta part may

e empty. A module core part comprises a sequence of class
nd interface definitions Defn. As an extension to ABS syntax,
ach of these definitions may be prefixed by the keyword unique.
ach use of a class, interface or product name imported from
nother module may be prefixed by the name of the module—the
ame of the module must be used if there are ambiguities (for
xample, when an interface with name I is imported from two
ifferent modules). Moreover, each use of a non-unique class or
nterface imported from another module must be followed by a
ith-clause, specifying (by means of a configuration expression)
he variant of the VM it is taken from.

emark 2 (On UMs and Vf-ABS Modules). A UM, as defined in
ection 2, is a Vf-ABS module if and only if it does not contain
roduct definitions or occurrences of the with keyword.

The module delta part comprises a sequence of delta defini-
ions Dlt followed by configuration knowledge CK. Each delta
pecifies a number of changes to the module core part. A delta
omprises the keyword delta followed by the name of the delta,
by a sequence of class operations CO and by a sequence of
nterface operations IO. An interface operation can add or re-
move an interface definition, or modify it by adding/removing
names to the list of the extended interfaces or by adding/re-
moving method headers. A class operation can add or remove
a class definition, or modify it by adding/removing names to
the list of the implemented interfaces, by adding/removing fields
or by adding/removing/modifying methods. Modifying a method
means to replace its body with a new body. The new body
may call its previous incarnation via the reserved method name
original.

Configuration knowledge CK provides a mapping from prod-
ucts to variants by describing the connection between deltas and
features: it specifies an activation condition Φ (a propositional
formula over features) for each delta D by means of a DAC clause;
and it specifies an application ordering between deltas by means
of a sequence of DAO clauses. Each DAO clause specifies a par-
tial order over the set of deltas in terms of a total order on
disjoint subsets of delta names—a DAO clause allows developers
to express (as a partial order) dependencies between the deltas
(which are usually semantic ‘‘requires’’ relations Bettini et al.,
2013a). The overall delta application order is the union of these
partial orders—the compiler checks that the resulting relation R

6 The sanity conditions (see Section 5.2) guarantee that such a clause exists.
7

represents a specification that is consistent (i.e., R is a partial
rder) and unambiguous (i.e., all the total delta application or-
ers that respect R generate the same variant for each product).
echniques for checking that R is unambiguous are described in
he literature (Bettini et al., 2013a; Lienhardt and Clarke, 2012).
ithout loss of generality, for each VM, we assume that the total
rder in which delta definitions are listed is compatible with R.

.2. ABS-VM sanity conditions

In the rest of the paper, without loss of generality, we assume
ach ABS-VM program Prg to satisfy a number of sanity conditions
hat enforce minimal consistency requirements for ABS-VM pro-
rams. These sanity conditions, listed below, apply to each VM
ame M occurring anywhere in Prg.

1. Prg contains a definition of the VM M.
2. If M is a main module (see end of Section 2) then any other

VM of Prg does not contain the keyword init (i.e., Prg
contains at most one main module).

3. If M contains a clause import tC from M’ then M’̸=M and all
traded names in tC occur in the export clause of M’.

4. All class references CR and interface references IR occurring
in M are qualified, that is of the form M’.N [with ...] for
some module name M’ and class/interface name N such that
if M’̸=M then M contains the import clause import tC from M’
where either tC = * or N occurs in tC.

5. All traded names occurring in the export clause of M are
defined in M: each configuration/product name is defined in
the module header and each class/interface name is defined
in the module core part or added by some delta in the
module delta part.

6. If M is a UM (see end of Section 2) then all its class/interface
definitions have the qualifier unique.

7. No open product names are exported and no product
names with a declaration of the form product P for M’= · · ·

are exported.
8. The following properties hold for different definitions in M:

(a) configuration K = KE: (i) all feature names occurring
in KE are features of M and all configuration names
occurring in KE have been already defined in M; (ii)
no product name occurs in KE.

(b) product P = KE: (i) condition (8a). (i) above holds; (ii)
all product names occurring in KE have been already
defined in M and are closed; (iii) KE denotes a product
of M.

(c) product P for M’= KE: (i) M ̸= M’; (ii) all feature names
occurring in KE are features of M’ and all configu-
ration/product names occurring in KE are imported
from M’; (iii) KE denotes a product of M’.

(d) product P for M’= {Φ1=> KE1,...,Φn=> KEn} (n ≥ 1): (i)
M ̸= M’; (ii) for all 1 ≤ j ≤ n, all configuration/product
names occurring in KEj are imported from M’; (iii) for
all 1 ≤ j ≤ n, all feature names occurring in Φj are
features of M and all feature names occurring in KEj

are features of M’; (iv) for all 1 ≤ j ≤ n, at least one
product of M satisfies (

⋀
1≤i<j ¬Φi) ∧ Φj, and KEj denotes

a product of M’; (v) all products of M satisfy ⋁1≤i≤n Φi.
(e) product P = {Φ1=> KE1,...,Φn=> KEn} (n ≥ 1): (i) for

all 1 ≤ j ≤ n, all configuration/product names oc-
curring in KEj have been already defined in M; (ii) the
condition obtained from condition (8d). (iii) above by
replacing M’ with M holds; (iii) the condition obtained
from condition (8d). (iv) above by replacing M’ with
M holds; (iv) condition (8d). (v) above holds.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

s

w
V

6

a
t
c
u

6

i
f

D
c
A
d
o
w

t
u
n

f

D
i

w
t

E
i
v
o
D

h
B
a
t
d
̸

a

V

V

6

V
o
d

9. If M contains an occurrence of new M’.C() with KE or
M’.I with KE: (i) all feature names occurring in KE are fea-
tures of M’; (ii) if M’=M then all configuration/product names
occurring in KE are defined in M; (iii) if M’̸=M then all
configuration/product names occurring in KE are either
imported from M’ or defined in M by a declaration of the
form product P for M’ = . . .; (iv) either KE does not contain
occurrences of open product names or it is an open product
name; (v) KE denotes a product of M’.

To check whether a program satisfies the sanity conditions is
traightforward: for each VM M:

• Conditions (1), (2) can be checked by inspection of Prg.
• Condition (3) can be checked by inspection of M and of the

header of the modules M’ listed in the import clauses of M.
• Conditions (4)–(7), (8a), (8b), (8c)(i), (8d)(i), (8e)(i)–(ii),

(9)(i)–(ii) can be checked by inspection of M, where con-
dition (8b)(iii) also requires to evaluate a propositional
formula.

• Conditions (8c)(ii)–(iii), (8d)(ii)–(iii), and (9)(iii)–(iv) can be
checked by inspection of M and of the header of M’, where
conditions (8c)(iii) and (9)(v) also requires to evaluate a
propositional formula.

• Conditions (8d)(iv)–(v), (8e)(iii)–(iv) can be checked with a
SAT solver (Alouneh et al., 2019). We call them SAT sanity
conditions.

It is worth observing that sanity conditions (1)–(5) apply as
ell to Vf-ABS programs. When they are satisfied for a given
f-ABS program we say it is sane.

. Encapsulated variability

In Section 6.1 we formalize the principle of encapsulated vari-
bility (PEV) that was informally introduced in Section 4. In Sec-
ion 6.2, we address the issue of inferring the maximal set of
lass/interface declarations that can soundly be annotated with
nique.

.1. PEV-compliance

To formalize PEV-compliance, we first introduce some aux-
liary definitions. Namely, the notion of dependency, and the
unctions CORE, UNIQUE and BASE.

efinition 1 (Dependency). A VM M’ depends on a VM M if M’
ontains an occurrence of M.N, where N is a class/interface name.
n occurrence of M.I with KE or new M.C() with KE is called with-
ependency (on M.I or M.C, respectively), while an occurrence
f M.I or new M.C(...) (i.e. not followed by a with) is called
ith-free-dependency (on M.I or M.C, respectively).

• A dependency of the form ... with KE is called with-open-
dependency if KE contains an occurrence of an open product
name P, it is called with-closed-dependency otherwise.

• A dependency is called ground if it is: either with-free or of
the form ... with π , where π is a set of features {F1,. . .,Fn}
(n ≥ 0).

Given the notion of dependency, we now define the CORE
function, which returns the set of class and interfaces defined in
the core part of a VM, the UNIQUE function returning the subset
of the core that is annotated as unique, and the BASE function

returning the subset of the core that is modified by some delta.

8

Definition 2 (Functions CORE, UNIQUE, BASE). Given a program
Prg, then for all VMs M of Prg: CORE(Prg, M) is the set of quali-
fied names M.N of all interfaces/classes N whose definition occurs
in the core part of M; UNIQUE(Prg, M) ⊆ CORE(Prg, M) contains
hose class/interface names whose declaration is annotated with
nique; BASE(Prg, M) ⊆ CORE(Prg, M) contains those class/interface
ames that are modified, removed or added by some delta of M.

We can now formalize PEV-compliance in terms of the above
unctions as follows.

efinition 3 (PEV-Compliance). A program Prg is PEV-compliant
ff for all VMs M of Prg:

1. UNIQUE(Prg, M) ∩ BASE(Prg, M) = ∅.
2. For all M.N ∈ UNIQUE(Prg, M) the definition Defn of N

(in the core part MdlC of M) does not contain with-open-
dependencies and, for all with-free-dependencies on M.N′

occurring in Defn, it holds that M.N′
∈ UNIQUE(Prg, M).

3. For all with-free-dependencies on M′.N occurring in M: if
M′

̸= M then M′.N ∈ UNIQUE(Prg, M′).

To check whether a program is PEV-compliant is straightfor-
ard and programs that are not PEV-compliant are rejected by
he compiler. The code in Section 2 is PEV-compliant.

xample 1 (Lack of PEV-Compliance). Consider the three programs
n Fig. 7. None of them is PEV-compliant. The first program Prg1
iolates the first condition: I is part of UNIQUE(Prg1,M) (because
f its annotation) and of BASE(Prg1,M) (because it is modified by
).
The second program Prg2 violates the second condition: M.I

as a dependency on M.J that is not unique: M.J ̸∈ UNIQUE(Prg2,M).
ecause of this, it is not determined which interface is extended,
s there may be multiple variants even for dependencies within
he same module. The third program Prg3 is analogous for depen-
encies to other modules and violates the third condition, as M′.I

∈ UNIQUE(Prg3,M′)

According to the PEV, VMs support two types of interaction
mong variants:

ariant interoperability. Different variants of the same VM can
co-exist and cooperate via unique classes/interfaces. For in-
stance, in the railway station MPL of Section 2, all interfaces
are unique and all classes are not unique (which is a common
pattern). Then, in line 22 of Fig. 4, an instance of class CSig
in the variant of VM Signal for product {Light} receives an
invocation of method eqAspect that declares an argument of
type Signal takes as parameter an instance of CSig in the
variant of Signal for product {Form}.

ariant interdependence. The code of a variant of a VM M1 can
depend on the code of a variant of a VM M2 (and possibly vice
versa). I.e., the code of M1 refers to unique classes/interfaces
of M2 (via with-free-dependencies) or to classes/interfaces of a
specific variant of M2 (via with-dependencies). A special case
of variant interdependence is when M1 = M2, i.e., M1 has a
with-dependency on a class/interface of M1 itself. Then in the
flattened program a variant of M1 will contain an occurrence
of a class/interface name that is declared in a different variant
of M1.

.2. Maximal set of unique annotations

The following definition and theorem show that, given an ABS-
M program that satisfies the sanity conditions (see Section 5.2)
ne can automatically infer the maximal set of class/interface
eclarations that can soundly be annotated with unique.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

T
S
f

M
a
V
t
f
a
a

T
F
U
t
U

P
m
T
e
U
t
i
a

Fig. 7. Not PEV-compliant programs.
t
t
r
g

7

D

D

c

p
c

Definition 4 (Function MaxUNIQUE). For every ABS-VM program
Prg, for all VM M of Prg, let SM = CORE(Prg, M) \BASE(Prg, M) and FM :

(2SM , ⊆) → (2SM , ⊆) is defined as the non-increasing monotone
function such that: FM(X) is the subset of X obtained by removing
simultaneously all classes/interfaces M.N such that the definition
of N (in the core part of M) contains a with-free-dependency on
a class/interface M.N’ ̸∈ X or contains a with-open-dependency.
hen MaxUNIQUE(Prg,M) is the set computed by iterating FM(X) on
M until a fixpoint is reached, i.e. U = F n

M (SM) such that U = FM(U)
or some n ≥ 0.

Function MaxUNIQUE(Prg, M) is computed locally on the VM
and always terminates (since FM is non-increasing monotone
nd SM is finite). Unfortunately, a program Prg such that, for all
M M of Prg, UNIQUE(Prg,M) = MaxUNIQUE(Prg,M) may not adhere
o the PEV, because of item (3) in Definition 3. However, by the
ollowing theorem, if such a Prg does not adhere to the PEV then
ny program obtained from Prg by adding or removing unique
nnotations does not adhere to the PEV.

heorem 1 (Maximal Set of Unique Annotations Admitting PEV).
or all programs Prg adhering to the PEV: (i) for all VM of Prg M,
NIQUE(Prg,M) ⊆ MaxUNIQUE(Prg,M); (ii) the program Prg’ ob-
ained by adding unique annotations to Prg until, for all VM M,
NIQUE(Prg’,M) = MaxUNIQUE(Prg’,M), adheres to PEV.

roof. By Definition 4 FM is a set-theoretic inclusion-preserving
ap and the powerset 2SM is a complete lattice. By the Knaster–
arski theorem (Roman, 2008) there exist smallest and great-
st fixpoints of FM. Moreover, the PEV (Definition 3.(2)) requires
NIQUE(Prg, M) to be a fixpoint of FM. Now item (i) holds, because
he set MaxUNIQUE(Prg, M) is the greatest fixpoint of FM—the proof
s as follows: let G be the greatest fixpoint of FM; clearly G ⊆ SM
nd (since FM is non-increasing monotone) G = F n

M (G) ⊆ F n
M (SM)

for all n ∈ N; but MaxUNIQUE(Prg, M) is the fixpoint obtained
by iterating FM on SM. Item (ii) holds, because Prg’ satisfies Def-
inition 3—in particular: item (1) holds by definition of SM and
non-increasing monotonicity of FM; item (2) is satisfied by any
fixpoint of FM; since Prg satisfies item (3), so does Prg’. □

7. Flattening semantics of variability modules

In this section, we consider (without loss of generality) sane
ABS-VM programs that are in normal form, according to the
following definition.

Definition 5 (ABS-VM Normal Form). An ABS-VM program Prg is
in normal form if: (i) Prg is PEV-compliant; (ii) all configuration

definitions and closed product definitions are resolved in Prg, i.e.:

9

• All corresponding declarations are removed from Prg.
• All occurrences of names of such definitions are removed

from export/import clauses of Prg.7
• All occurrences of such definitions in Prg are replaced with

their value (a set of features)8 and all the occurrences of
with KE such that KE is not an open product name are re-
placed with with π , where π is the value of KE (a product).9

In Section 7.1 we introduce auxiliary functions for the ex-
raction of relevant information from ABS-VM programs. In Sec-
ion 7.2 we give the semantics of ABS-VM in terms of rewrite
ules for transforming an ABS-VM program into a Vf-ABS pro-
ram.

.1. Auxiliary functions

efinition 6 (Lookup Functions). Given a VM M of Prg we define
the sets:

• mdlUnique(Prg, M) for all interface/class definitions in the
Module Core Part of M annotated with unique.

• mdlNotUnique(Prg, M) for all interface/class definitions not
contained in mdlUnique(Prg, M).

• mdlInit(Prg, M) for the init block of M, if it exists, or the
empty sequence otherwise; also mdlInit(Prg) for the name
M of the single VM such that mdlInit(Prg, M) is not the empty
sequence.

• mdlDelta(Prg, M, π), where π is a product of M, for any or-
dered sequence Dlt containing exactly those deltas of M
activated by π , respecting the order among deltas specified
in the configuration knowledge of M.

For technical reasons we extend the set of products of each
VM M with a dedicated auxiliary product, denoted ⊥, identifying
the unique part of M.

efinition 7 (Extended Product). An extended product xc of a VM M
is either a product π of M or the symbol ⊥ not used for any other
product.

We define notation for extracting the meaning of ground
(Definition 1) dependencies in the Module Core Part of a given
VM of a given program. In the following, we use δ to range over
dependencies.

7 Therefore, because of sanity condition (7), export/import clauses no longer
ontain product names.
8 This is always possible, because configuration definitions and closed
roduct definitions cannot depend on open product definitions by sanity
onditions (8a)(ii), (8b)(ii), and (8c)(ii).
9 Because of sanity condition (9)(v).

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

D
a
a

⇓

⇓

o
n
r
P
n
m
i
m

D
a
π
i
o
u
g

⇑

⇑

7

d

M
e

D
t
t
t

c
b
e
c
o
m

s
a

o
M
L
a
i
x
p
i
t

p
u

efinition 8 (Ground Dependency Meaning). Given a program Prg,
VM M of Prg, a ground dependency δ on M’.N occurring in M, and
n extended product xc of M.

(Prg, M, δ, xc)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(M’, ⊥) when M’.N ∈ UNIQUE(Prg, M’)
(M’, xc) when M’ = M, δ is with-free

and M’.N ̸∈ UNIQUE(Prg, M)
(M’, π) when δ is M’.N with π

and M’.N ̸∈ UNIQUE(Prg, M’)

If all dependencies in the core part MdlC of M are ground define
(Prg, M, MdlC, xc) = {⇓ (Prg, M, δ, xc) |δ is a dependency in MdlC}.

Flattening a program Prg may require to generate more than
ne variant for each of its VMs. The flattening process generates
ew names for the generated Vf-ABS modules implementing the
equired variants and translates the dependencies occurring in
rg into uses of (i.e., with-free dependencies on) the generated
ames. Next we define notation for the names of the generated
odules and the translation of with- and with-free-dependencies

nto the corresponding dependencies among non-variable ABS
odules.

efinition 9 (New Module Name, Dependency Translation). Given
program Prg, a VM M of Prg, let xc be either ⊥ or a product
of M. We denote with ⇑ (M, xc) the name of the module that

mplements the unique part of the variants of M when xc = ⊥,
therwise, the name of the module that implements the non-
nique part of the variant of M for product xc. Moreover, for any
round dependency δ on M’.N:

(Prg, M, δ, xc)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⇑(M’, ⊥).N when M’.N ∈ UNIQUE(Prg, M’)
⇑(M’, xc).N when M’=M, δ is with-free

and M’.N ̸∈ UNIQUE(Prg, M)
⇑(M’, π).N when δ is M’.N with π

and M’.N ̸∈ UNIQUE(Prg, M’)

If all dependencies in the core part MdlC of M are ground define
(Prg, M, MdlC, xc) as the VM core MdlC’ obtained from MdlC by

replacing each dependency δ occurring in it with ⇑ (Prg, M, δ, xc).

.2. Flattening

The following definition formalizes the application of an or-
ered delta sequence Dlt (the deltas activated by a product π of

a VM M) to a sequence Defn of interface/class definitions (the non-
unique class/interface definitions in the module core part MdlC of
). This is the standard semantics of delta application (Schaefer
t al., 2010).

efinition 10 (Delta Application). Given a sequence of declara-
ions Defn and an ordered sequence of deltas Dlt, we denote with
he relation (Dlt, Defn) →

∗ Defn’ that Defn’ is the outcome of
he procedure described in Appendix A.

According to the definition above, application of a delta suc-
eeds under the following conditions: (i) each class/interface to
e removed or modified is present in the module in focus; (ii)
ach attribute to be removed or modified is present (with identi-
al header) in the class/interface in focus; (iii) each class, method
r field to be added is not present already; (iv) when adding/re-
oving interface references from IR in class C implements IR

. . . and interface I extends IR . . . , the sequence IR is treated as
a set: first interface references are added to IR (this operation
ucceeds even if some of the added interface references are
lready present in IR) yielding IR ′—only then interface references

are removed (this operation succeeds even when some of the
removed interface references are not present in IR ′).

Let π be a product of M. We define a mapping
σ = genP(Prg, M, π) from open product names defined by M
10
to their corresponding set of features. Given a sequence of in-
terface/class definitions Defn and such a mapping σ , we denote
with σ (Defn) the definitions obtained from Defn by replacing each
occurrence of a open product name with its associated set of
features.10

We are ready to define the rules that flatten a VM to produce
either a Vf-ABS module containing its unique class/interfaces,
or a Vf-ABS module containing the non-unique class/interfaces
generated for a given product:

Definition 11 (Local Flattening of VM Relative to an Extended
Product). Let M be the name of a VM of Prg, xc an extended product
f M. The local flattening of M relative to xc is the Vf-ABS module
dl such that the judgment M

Prg,xc
−−−→ D, Mdl (defined by rules

F:VM⊥ and LF:VM̸⊥ below) holds, where: (i) Mdl is the code of
Vf-ABS module named ⇑ (M, xc), which, for the case xc = ⊥

mplements the unique part of the variants of M, for the case
c = π implements the non-unique part of the variant of M for
roduct π ; (ii) D is the set of pairs (module, extended product)
dentifying the set of variants from which ⇑ (M, xc) depends on
he rules given in Box I.

Rule LF:VM⊥ generates a module implementing the unique
art of the variants of a given VM M. To do so, it extracts the
nique part Defn of the VM, its optional init block, and the

dependencies D occurring in these parts. The rule returns the set
of dependencies D (which identifies Vf-ABS modules that need to
be generated) and a new Vf-ABS module named ⇑(M, ⊥) that: (i)
exports everything; (ii) imports from all Vf-ABS modules identi-
fied in D; (iii) contains the unique classes/interfaces of the original
VM, where all syntactic dependencies are translated according to
⇑.

Rule LF:VM̸⊥ generates a Vf-ABS module implementing the
non-unique part of the variant of the VM M for a product π . It is
similar to the first rule, except for two elements: (i) the optional
init block is not considered (it cannot be present); (ii) the ex-
tracted (non-unique classes/interfaces) part of the VM is modified
by applying the activated deltas as described in Definition 10
before being integrated in the resulting module.

Example 2 (Local Flattening). Consider the following VM M, which
declares two interfaces, only one of which is unique.

module M;
export J;
features F with true;
unique interface I {}
interface J extends I {}
delta D; modifies interface J { adds Unit m(); }
delta D when F;

Rule LF:VM⊥ generates the module implementing the unique part
of the VM with added import and export clauses.

module M;
export *;
import * from MF ;
interface I {}

Rule LF:VM̸⊥ for π = {F} generates the following module:

module MF ;
export J;
import * from M;
interface J { Unit m(); }

10 Since we are considering programs that satisfy the sanity conditions and
are in normal form, this set of features is a product.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

e
x

LF:VM⊥

mdlUnique(Prg,M) = Defn Defn mdlInit(Prg,M) = MdlC
⇓ (Prg,M,MdlC, ⊥) = D = {(Mi, xci) | i ∈ I}

M
Prg,⊥
−−−−→ D,module ⇑(M, ⊥); export *; import * from ⇑(Mi, xci); ⇑ (Prg,M,MdlC, ⊥)

LF:VM̸⊥

mdlNotUnique(Prg,M) = Defn mdlDelta(Prg,M, π) = Dlt
(Dlt, Defn) →

∗ Defn′ σ = genP(Prg,M, π)
σ (Defn′) = Defn′′

⇓ (Prg,M, Defn′′, ⊥) = D = {(Mi, xci) | i ∈ I}

M
Prg,π
−−−−→ D,module ⇑(M,π); export *; import * from ⇑(Mi, xci); ⇑ (Prg,M, Defn′′, π)

Box I.
CF:VM1

xc is an extended product of M M
Prg,xc
−−−−−→ D,Mdl A = {(M, xc)}

ε, ∅, {(M, xc)}
Prg
−−−→ Mdl, A, (D \ A)

CF:VM2

Prg′
̸= ε (M, xc) ∈ D1 M

Prg,xc
−−−−−→ D,Mdl A2 = A1 ∪ {(M, xc)} D2 = (D1 ∪ D) \ A2

Prg′, A1,D1
Prg
−−−→ Prg′ Mdl, A2,D2

Box II.
g

Next we define rewrite rules that, given a VM M of Prg and an
xtended product xc of M, generate the variant of M identified by
c as well as all variants of the VMs in Prg needed to resolve the
dependencies of all the variants that arise during the rewriting.

Definition 12 (Complete Flattening of VM Relative to an Extended
Product). Let ε denote the empty program, representing the initial
partial result of a complete flattening of a VM M of an ABS-VM
program Prg relative to an extended product xc.

The two rules below define a judgment of the form
Prg′,A1,D1

Prg
−−→Prg′′,A2,D2, where: Prg′ (either ε or a Vf-ABS program)

is a partial result of complete flattening, the set A1 identifies the
already generated Vf-ABS modules, the set D1 identifies the Vf-ABS
modules that must be generated to resolve the dependencies in
Prg′, the Vf-ABS program Prg′′ is obtained by adding to Prg′ the
code of one of the Vf-ABS modules identified by D1, and the sets
A2, D2 are obtained by suitably updating A1, D1, respectively (see
rules given in Box II).
Let

Prg
−−→

∗ be the transitive closure of
Prg
−−→. The complete flattening

of VM M of Prg relative to its extended product xc is the Vf-ABS
program Prg′ such that ε,∅,{(M,xc)}

Prg
−−→∗Prg′, A, ∅ holds.

The sets A, D, A1, D1, A2 and D2 in the two rules above refer to
dependencies in the original program Prg. Rule CF:VM1 starts with
the empty ABS program, the empty set of resolved dependencies,
and the singleton set {(M, xc)} of dependencies to be resolved.
It adds the ABS module implementing the extended product xc
of M and updates the dependency sets. Rule CF:VM2 extends
Prg′ by adding the ABS module required by one of the dangling
dependencies in D1, and replaces the dependency sets A1, D1 by
their updated versions A2, D2, respectively.

Finally, we can formalize flattening of a whole ABS-VM pro-
gram.

Definition 13 (Flattening of ABS-VM Program). The flattening of an
ABS-VM program Prg is the complete flattening of its main module
relative to ⊥: the Vf-ABS program Prg′ such that
ε,∅,{mdlInit(Prg),⊥)}

Prg
−−→∗Prg′, A, ∅ holds.
11
Fig. 8. Complete flattening of VM M0 from Example 2.

Example 3 (Complete Flattening). Let us continue with Example 2.
Consider the program Prg that consists of M and the module M0
iven below

module M0;
import * from M;
init { J with {F} j = null; }

The complete flattening of M0 is given in Fig. 8.

8. Type-safety for ABS-VM programs

In this section, as in Section 7, we consider ABS-VM programs
in normal form (Definition 5). We first define well-typed Vf-
ABS programs (Section 8.1), then type-safe ABS-VM programs
(Section 8.2).

8.1. Well-typed Vf-ABSprograms

We assume Vf-ABS programs to be sane (Section 5.2). First we
set up terminology for what we call the basic types related to
Vf-ABS programs.

Definition 14 (Basic Type). A basic type BT of a Vf-ABS program is
one of the following:

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

o

E
i

Fig. 9. A program and its signature.
D
T
b

f
s

D

1. A variable basic type VBT: a primitive type PT or a qualified
interface name of the shape M.I (so VBT is a strict subset of
variable types VT, see Fig. 6).

2. An expression basic type EBT: a variable basic type or a
qualified class name of the form M.C.

3. A method basic type MBT of the form (VBT) → VBT, where
VBT = VBT1,. . . ,VBTn (n ≥ 0) are the types of the formal
parameters and VBT is the return type.

4. A reference basic type RBT: a qualified class/interface name
of the form M.N.

The next definition provides signatures to represent the
structure of classes, interfaces, modules, and programs without
method implementations. The subsequent definitions introduce
the subtyping relation induced by a program signature and the
notion of a well-formed program signature, respectively.

Definition 15 (Class/interface/module/program signature).

1. A class signature consists of the class name, a mapping from
the keyword super to the set of qualified names of the
implemented interfaces, a mapping from each field name
to its variable basic type, and a mapping from each method
name to its method basic type. Class signatures are ranged
over by CS. We write sig(CD) to denote the signature of class
declaration CD.

2. An interface signature consists of the interface name, a
mapping from the keyword super to the set of qualified
names of the extended interfaces and a mapping from each
method name to its method basic type. Interface signatures
are ranged over by IS. We write sig(ID) to denote the
signature of the interface declaration ID.

3. A module signature consists of the module name M, a map-
ping from the keyword export to its trade clause, a mapping
from the keyword import to the set of all imported pairs
(tCi,Mi) with n ≥ 0 and Mi ̸= M (1 ≤ i ≤ n), and a mapping
from each class/interface name to its class/interface signa-
ture. Module signatures are ranged over by MdlS. We write
sig(Mdl) to denote the signature of the module Mdl.

4. A program signature maps each module name to its module
signature. Program signatures are ranged over by PrgS. We
write sig(Prg) to denote the signature of the program Prg.

A program signature sig(Prg) can be computed by inspection
f Prg, specifically, ID and sig(ID) are isomorphic.

xample 4 (Program Signature). Fig. 9 shows a program Prg and
ts signature sig(Prg) = PrgS.
12
efinition 16 (Subtyping Relation Induced by Program Signature).
he subtyping relation induced by program signature PrgS, denoted
y <:PrgS, is the transitive closure of the union of: (i) the identity

relation on primitive types and qualified class/interface names
defined in Prg, (ii) the implements-relation (defined by class
implements clauses), (iii) the immediate extends-relation (defined
by the interface extends clauses). When PrgS is clear from the
context we write simply <:.

Definition 17 (Well-Formed Program Signature). A program signa-
ture PrgS is well-formed iff:

1. for every module name M appearing anywhere in PrgS we
have M ∈ dom(PrgS);

2. for every qualified class/interface name M.N appearing any-
where in PrgS we have N ∈ dom(PrgS(M));

3. every traded name appearing in PrgS(M)(export) occurs in
dom(PrgS(M));

4. if PrgS(M)(import) contains a pair (tC,M ′) then M ′
̸=M and

all traded names in tC occur in PrgS(M ′)(export);
5. the transitive closure of the immediate extends-relation is

acyclic;
6. for all modules M, Mi ∈ dom(PrgS), classes/interfaces N, Ni ∈

dom(PrgS(M)), if M.N<: M1.N1 and M.N<: M2.N2, then for each
field a ∈ dom(PrgS(M1)(N1))∩ dom(PrgS(M2)(N2)), it holds
that PrgS(M1)(N1)(a)=PrgS(M2)(N2)(a).

The signature in Example 4 is well-formed. The typing rules
or Vf-ABS are straightforward and follow a standard pattern for
imple OO programs with modules.

efinition 18 (Well-Typed Vf-ABS Module and Program).

1. Let PrgS be the well-formed signature of a Vf-ABS program.
A module Mdl such that PrgS(name(Mdl)) = sig(Mdl) is well-
typed iff the judgment PrgS ⊢ Mdl can be derived by the
rules given in Appendix B.

2. A Vf-ABS program Prg is well-typed iff it is sane and the
judgment ⊢ Prg can be derived by the following rule:

T:Prg
sig(Prg) is well-formed sig(Prg) ⊢ Mdl, for all Mdl ∈ Prg

⊢ Prg

8.2. Type-safety

We begin with an auxiliary definition based on local flattening
(Definition 11).

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

D

c
o
s

f
o
I
t

9

c
a
n
f
D

p
f
2

d
d
o
f
i
t
h
f
s
t
a
s
i

t
g
i

9

e
r
t
h

a
t
t
d

D

efinition 19 (Overall Flattening of VM and Program). Let Prg be
an ABS-VM program and M be a VM of Prg.

1. The overall flattening of M is the Vf-ABS program consisting
of all Vf-ABS modules Mdl, where Mdl is the local flattening
of M relative to one of its extended products.

2. The overall flattening of Prg is the Vf-ABS program con-
sisting of all Vf-ABS modules Mdl occurring in the overall
flattening of some VM of Prg.

Because of sanity conditions 1, 8, and 9 (Section 5.2) we can
observe that if the overall flattening of Prg succeeds then for all
its VMs Mdl, the complete flattening of Mdl relative to each of
its extended products succeeds (and its modules are a subset of
the modules of the overall flattening of Prg). In contrast, if the
flattening of Prg succeeds this does not imply that the overall
flattening of Prg succeeds (the local flattening of some VM relative
to one of its products not required by the main module may fail).

We can now define type-safe ABS-VM programs in terms of
well-typed Vf-ABS programs (Definition 18).

Definition 20 (Type-Safe ABS-VM Program). The ABS-VM pro-
gram Prg is type-safe iff its overall flattening (i) succeeds and (ii)
produces a well-typed Vf-ABS program.

We observe that when Prg is type-safe, for all its VMs Mdl, the
complete flattening of Mdl relative to each of its extended prod-
ucts generates a well-typed Vf-ABS program. Moreover, when a
type-safe ABS-VM Program Prg1 is modified by only changing its
main module, then type-safety of the modified program Prg2 can
be checked simply by typing the local flattening Mdl′ relative to ⊥

(of the modified main module) in the context of the program sig-
nature of the flattening Prg′

2 of Prg2. This corresponds to proving
the judgment sig(Prg′

2) ⊢ Mdl’ (Definition 18). Likewise, adding a
product π to a VM Mdl1 of a type-safe program Prg, type-safety of
the modified program Prg2 can be checked simply by typing the
local flattening Mdl′

2 of the modified VM Mdl2 relative to π in the
ontext of the program signature of the compete flattening Prg′

2
f Mdl2 relative to π . This corresponds to proving the judgment
ig(Prg′

2) ⊢ Mdl′

2 (Definition 18).
Checking type-safety of a program Prg by generating its overall

lattening is generally unfeasible due to the number of products
f each VM that may be exponential in the number of features.
n the next section we provide means for partially checking
ype-safety in a feasible manner.

. Family-based checking for ABS-VM programs

ABS-VM program sanity-conditions (Section 5.2), PEV-
ompliance (Definition 3), inference of the maximal set of unique
nnotations (Section 6.2), and adherence to normal form (Defi-
ition 5) are checkable in a family-based way. We present three
amily-based analyses for ABS-VM programs in normal form (see
efinition 5):

• Type uniformity (Section 9.1) checks whether type decla-
rations are uniform across the different variants of each
VM.

• Pre-typing (Section 9.2) checks whether the module core
part and the deltas are consistent with the uniform typing
information.

• Applicability consistency (Section 9.3) checks whether over-
all flattening succeeds.

Type uniformity helps developing and maintaining ABS-VM
rograms, as in any part of a program all occurrences of a given
ield/method always have the same type (Damiani and Lienhardt,

016).

13
Pre-typing assumes type-uniformity. Like type uniformity, it
oes not use any knowledge about valid feature combinations (it
oes not use module headers). So it does not guarantee that the
verall flattening of a program is well-typed (some class/inter-
ace/method/field declared in some VM may not be present in
ts local flattening relative to one of its products). However, pre-
yping guarantees that if each module in the overall flattening
as its dependencies fulfilled (i.e., each used module/class/inter-
ace/attribute is present and, for each required subtyping relation,
uitable extends/implements clauses that define it are present),
hen the overall flattening is well-typed. Therefore, to ensure that
pre-typed ABS-VM program is type-safe (Definition 20) it is

ufficient that: (i) its overall flattening succeeds and (ii) it has all
ts dependencies satisfied.

Applicability consistency checks condition (i). Therefore, the
hree family-based analyses presented in this section are able to
uarantee type-safety modulo the fact that all the dependencies
n the overall flattening are satisfied.11

.1. Type uniformity

Intuitively, an ABS-VM program is type uniform when its
xtends-relation is acyclic and field/method types and subtyping
elations are consistent across program declarations: all declara-
ions of the same field/method in the same class/interface must
ave the same type.
To formalize the notion of type uniformity we introduce three

uxiliary definitions that introduce types (a superset of the basic
ypes of Definition 14), a more liberal version of program signa-
ures (Definition 15), and a generalization of the subtype relation
escribed by a program signature (Definition 16).

efinition 21 (Types and Type Stripping). A type T is one of:

1. An expression type ET: a variable type VT (i.e., an interface
reference or a basic type, see Fig. 6), a qualified class name
of the form M.C, or M.C with KE.

2. A method type MT: it has the form (VT) → VT, where VT =
VT1, . . . ,VTn (n ≥ 0) are the types of the formal parameters,
and VT is the return type.

3. A reference type RT: an interface reference IR, a qualified
class name of the form M.C, or M.C with KE.

The stripping of a type T, denoted by strip(T), is the basic type
(Definition 14) obtained from T by dropping the with-clauses
occurring it.

Definition 22 (Family class/interface/module/program signature).

1. A family class signature, ranged over by FCS, aggregates the
information of all signatures of a class in all variants.

• It contains the class name.
• It associates the keyword super with the set R of the

interface references that may be supertypes of the
class. Let M be the VM of the class. Then the set R
contains all interface references

– that are listed in the implements-clause of any
declaration of the class in the core part of M or
in a delta of M,

– that are added to the implements-clause of the
class by a modifies-operation on the class in a
delta of M.

11 We are working on a family-based analysis for performing this latter check
as well (Section 12).

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

n
n
u

W
o

b

D
i

A
u

T
f

E
T
F

F

c
T
w

9

t
o
b
d

D

• It associates each field/method name a, which may be
an attribute of the class, with the non-empty set of
the variable/method types of a. Let M be the VM of the
class. Then the domain of the mapping contains the
names of the fields/methods

– that are defined in a class declaration occurring
in the core part of M or in a delta of M,

– that are subject of an attribute operation in a
modifies-operation on the class in a delta of M.

2. A family interface signature, ranged over by FIS, aggre-
gates the information of all signatures of an interface in all
variants.

• It contains the interface name.
• It associates the keyword super with the set R of

interface references that may be supertypes of the
interface. Let M be the VM of the interface. Then the
set R contains all the interface references

– that are listed in the extends-clause of any defi-
nition of the interface in the core part of M or in
a delta of M,

– that are added to the extends-clause of the inter-
face by a modifies-operation on the interface in
a delta of M.

• It associates each method name m, which may be a
method of the interface, with the non-empty set of
the method types of m. Let M be the VM of the interface.
Then the domain of the mapping contains the names
of the methods

– that are defined in an interface declaration oc-
curring in the core part of M or in a delta of
M,

– that are subject of a header operation in a
modifies-operation on the interface in a delta of
M.

3. A family module signature, ranged over by FMdlS, aggregates
the information of all signatures of a module in all variants.

• It contains the module name M.
• It associates the keyword export with its exported

trade clause tC.
• It associates the keyword import with the set of all

imported pairs (tCi,Mi), where n ≥ 0 and Mi ̸= M
(1 ≤ i ≤ n).

• It associates each class/interface name (defined in
the core part of M and/or subject of a class/interface
operation in a delta of M) with its family class/interface
signature.

• It associates the name of each open product (defined
in M) with its definition.

• It optionally contains a feature model, denoted with
FMdlS.FM.

We write fsig(Mdl) to denote the family signature of Mdl.
4. A family program signature, ranged over by FPrgS, aggre-

gates the information of all signatures of a program in all
variants. It associates each module name M with its family
module signature. We write fsig(Prg) to denote the family
signature of program Prg.

It is obvious that fsig(Prg) can be computed by inspection of

Prg.

14
Definition 23 (Subtyping Relation Induced by Family Program Sig-
ature). The subtyping relation induced by a family program sig-
ature FPrgS, denoted by <:FPrgS, is the transitive closure of the
nion of the following two relations:

1. The identity relation on primitive types and on the quali-
fied class/interface names in dom(FPrgS);

2. {(M.N, strip(IR)) | M ∈ dom(FPrgS), N ∈ dom(FPrgS(M)), IR ∈

FPrgS(M)(N)(super)}.

hen FPrgS is clear from the context, we simply write <: instead
f <:FPrgS.

It is worth observing that the relation in Definition 23. 2 might
e cyclic.
We can now formalize type uniformity as follows.

efinition 24 (Type Uniformity). A family program signature FPrgS
s type uniform if the following conditions hold:

1. For every VM name M appearing anywhere in FPrgS, we
have M ∈ dom(FPrgS).

2. For every qualified class/interface name M.N appearing any-
where in FPrgS, we have N ∈ dom(FPrgS(M));

3. For every VM name M ∈ dom(FPrgS), every class/interface
name N ∈ dom(FPrgS(M)(N)), and every attribute name a ∈

dom(FPrgS(M)) the set FPrgS(M)(a) is a singleton.
4. For every traded name tN appearing in FPrgS(M)(export)

that occurs in dom(FPrgS(M)), we have N ∈ dom(FPrgS(M)).
5. If PrgS(M)(import) contains a pair (tC,M’) then M’̸=M and all

traded names in tC occur in PrgS(M’)(export).
6. The relation given in item 2 of Definition 23 is acyclic.
7. For all VMs M, M1, M2 ∈ dom(FPrgS), classes/interfaces N

∈ dom(FPrgS(M)), interfaces Ii ∈ dom(FPrgS(Mi)) (i ∈

{1, 2}): if M.N<: M1.I1 and M.N<: M2.I2 then for each attribute
a ∈ dom(FPrgS(M1)(I1)) ∩ dom(FPrgS(M2)(I2)) we have
FPrgS(M1)(I1)(a)=FPrgS(M2)(I2)(a).

n ABS-VM program PrgS is type uniform iff fsig(PrgS) is type
niform.

ype uniformity of a program can be checked by inspecting its
amily signature.

xample 5 (Type Uniformity). Consider the program Prg in Fig. 10.
he code is type uniform and the program signature fsig(Prg) =

PrgS is such that:

PrgS(M)(export) = ∅ FPrgS(M)(import) = ∅

FPrgS(I)(super) = ∅ FPrgS(J)(super) = {M.I}

FPrgS(J)(m) = {() → Unit}

The program looses type uniformity, for example, if one adds the
ode below to module M.
his would imply FPrgS(J)(m) = {() → Unit, (Int) → Unit},
hich breaks type uniformity (third condition).

.2. Pre-typing

We say an ABS-VM program Prg is pre-typed to mean that it is
ype uniform and all method declarations in the core/delta parts
f VMs type check with respect to fsig(Prg). This is formalized
y the following by a quite straightforward adaptation of the
efinition well-typed Vf-ABS program (Definition 18).

efinition 25 (Pre-Typed ABS-VM Program).

1. Let FPrgS be the program signature of a type uniform
Vf-ABS program. A VM Mdl such that FPrgS(name(M)) =
fsig(Mdl) is pre-typed iff the judgment FPrgS ⊩ Mdl can be

derived by the rules given in Appendix C.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

t
P
n

g
g

I
t

f

delta D3; modifies interface J { adds Unit m(Int i); }
delta D3 when F2;
Fig. 10. A type uniform program.
T⋃
a
a
t

I

D
A
w
b
m
o
c

c
(

t
p
S
b
C
o
p
t
t
a
p
a
p

T
t
Θ

2. An ABS-VM program Prg is pre-typed iff the judgment ⊩ Prg
can be derived by the following rule:

PT:Prg
fsig(Prg) is type uniform fsig(Prg) ⊩ Mdl, for all Mdl ∈ Prg

⊩ Prg

Remark 3 (Early Error Detection). PEV-compliance (Definition 3),
normal form adherence (Definition 5), type uniformity (Defi-
nition 24), and pre-typing (Definition 25) can be relaxed by
extending them to ABS-VM programs that do not satisfy the SAT
sanity conditions (final bullet in Section 5.2). These relaxed prop-
erties, called SAT-free X (where X ∈ {PEV-compliance, normal
form, type uniformity, pre-typing}) can be checked by inspection
without a SAT solver. It is also obvious that, if an ABS-VM program
satisfies property SAT-free X plus the SAT sanity conditions, then
it satisfies property X. Therefore, ABS-VM program developers
may frequently trigger an inexpensive check of the SAT-free X
properties (an IDE can perform them in the background, provid-
ing immediate detection of the associated errors), while being
more careful in triggering the (potentially more time consuming)
checks involving a SAT solver.

9.3. Applicability consistency for normal form ABS-vm programs

In this section we assume each feature f is qualified by the
name of the VM M, where its feature model is defined (denoted
M.f) and each delta name D is qualified by the name of its VM
(denoted M.D).

Let getFm(Prg, M) denote the feature model formula of VM M
(given in its module header), let getFm(Prg) denote the conjunc-
tion of all feature model formulas

⋀
M∈dom(PrgS) getFm(Prg, M), and

let getAct(Prg, M.D) denote the activation condition formula of the
delta with name D defined in VM M (given in its configuration
knowledge).

Let I be an assignment from feature variables occurring in
the feature models of Prg to Boolean values such that all feature
formulas of Prg are satisfied. Then, for each M and such I, this
defines the product πI

M = {M.f | f is a feature of M and I(M.f) =

rue}. We define the function getFmAct mapping each program
rg to a formula over qualified feature names and qualified delta
ames (of Prg).

etFmAct(Prg) =
⋀

M∈
dom(PrgS)getFmAct(Prg, M)

etFmAct(Prg, M) = getFm(Prg, M)∧
(
⋀

D is a delta of M M.D ⇔ getAct(Prg, M.D)
)

We note that by construction for each assignment I: formula
getFmAct(Prg) is satisfied by I iff getFm(Prg) is satisfied by I and
(M.D) = I(getAct(Prg, M.D)). Hence, I(M.D) = true if and only if
he delta M.D is activated by the product πI

M .
Let Q range over fully qualified class/interface names M.N and

ully qualified attribute names M.N.a. Let FMdlS(M.N) be short for
15
FMdlS(M)(N) and let FMdlS(M.N.a) be short for FMdlS(M)(N)(a). The
deep domain of a module M such that fsig(M)=FMdlS is

ddom(M) = {M.N | FMdlS(M.N) is defined}

∪ {M.N.a | FMdlS(M.N.a) is defined} .

he deep domain of a program Prg is ddom(Prg) =

M∈dom(PrgS) ddom(M).
Let Φ denote a Boolean formula over qualified feature names

nd qualified delta names of a given VM M of Prg and let KE be
product of M. Then eval(KE,Φ,Prg) denotes the Boolean value of
he formula Φ under the assignment I such that:

(x) =

{ true if x is a feature in KE
false if x is a feature not in KE
I(getAct(Prg, x)) if x is a delta name

efinition 26 (Applicability Consistency). Let Prg be a normal form
BS-VM program and let the judgment ⊢ Prg : Θ, Φ be derivable
ith the rules given in Appendix D, where: Φ (called applica-
ility constraint) is as above, and Θ (called declaration presence
apping) is a mapping from ddom(Prg) to propositional formulas
ver features and delta names. We say that Prg is applicability
onsistent to mean that the formula getFmAct(Prg) ⇒ Φ is valid.

During product generation the selected deltas must be appli-
able in the given order, otherwise generation would not succeed
see explanation immediately after Definition 10).

The rules in Appendix D build the applicability constraint and
he declaration presence mapping of the normal form ABS-VM
rogram Prg by parsing it from the left to right. Consistent with
ection 5.1, for each VM we assume the list of deltas in Prg
eing a total order compatible with the configuration knowledge
K: hence, this analysis assumes deltas are applied in the order
f their occurrence in Prg. At any stage t during the parsing
rocess, the applicability constraint collects the information on
he applicability of deltas until t . This constraint is defined simul-
aneously with the declaration presence mapping that collects for
ll possible subjects of delta operations the information on their
resence at stage t . The applicability check succeeds for deltas
pplied until t , whenever the applicability constraint holds for all
roducts.

heorem 2 (Soundness and Completeness of Applicability Consis-
ency). Let Prg be a normal form ABS-VM program such that ⊢ Prg :

, Φ holds.

1. The overall flattening of Prg succeeds iff Prg is applicability
consistent.

2. Let Prg be applicability consistent. For every product π of M:

(a) eval(π,Θ(M.N),Prg) = true iff the declaration of
class/interface N occurs in the flattening of M (relative
to π if M.N is not unique, relative to ⊥ otherwise).

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

P
i

t
c

1

t
r
c
t
d

f
i
c
c
e
A
c

e
m
u
a
m
t
p
t
s

h
i
a
(
c
m
f

o
p
a
p
A
l
p
s
c

b
o

v
4

R

1

1

V
s
f

(b) For all M.N.a ∈ dom(Θ) it holds that:
eval(π,Θ(M.N.a),Prg) = true iff the declaration of
N occurs in the flattening of M (relative to π if M.N is
not unique, relative to ⊥ otherwise) and contains the
declaration of the field/method a.

roof. The proof is by rule [A:Prg] in Appendix D and Lemma 9
n Appendix E. □

It is easy to see that using Definition 3. 1 we can strengthen the
heorem to state that for all unique classes/interfaces the formulas
ollected in Θ are always true.

0. Integration into the ABS tool chain

We implemented the VM concept as part of the ABS compiler
ool chain with the exception of open product definitions, cur-
ently under development. The implementation, together with all
ase studies and test cases, is available as an open source ex-
ension of the ABS compiler.12 The README file in the repository
escribes how to access the case studies.
To integrate VMs into the ABS compiler tool chain, only the

rontend (parser and preprocessor) needed to be changed. This
s, because flattening (Section 7.2) produces variability-free ABS
ode, keeping ABS code generation and semantic analysis (type
hecking of single variants) as is. The ABS parser’s grammar is
xtended with the constructs described in Section 5. As expected,
BS’s existing delta application mechanism, including original
alls, could be fully reused.
Several sanity conditions, specifically those concerned with

xport and import clauses, boil down to simple checks once nor-
al form is established. The SAT sanity conditions are solved
sing the Choco13 solver, which is included in the ABS tool chain
nd used there already for the µTVL (Clarke et al., 2010) feature
odeling language of the global product line system of ABS. Pre-

yping requires to have a version of the type checker that uses the
re-computed signatures, instead of resolving type names with
he class table. The error reporting mechanism is reused from the
tandard type checker.
The VM tool chain implementation has two aspects, several

elper classes, and consists of the following components: (i) San-
ty condition checking (Section 5.2) with error reporting in case
condition is violated (current implementation has limitations);
ii) PEV-compliance checking (Section 6) with error reporting in
ase the PEV is violated; (iii) flattening (Section 7.2); (iv) adjust-
ent of the feature model (needed, because VMs use a simpler

eature modeling language than ABS’s µTVL Clarke et al., 2010).
SAT-free PEV-compliance and flattening are performed as part

f the standard workflow of the compiler. For backwards com-
atibility, pre-typing and the applicability check are implemented
s optional commands rather than mandatory steps during com-
ilation, analogous to other static analyses for product lines in
BS such as Damiani et al. (2017b). There are two command
ine instructions to initiate compilation: ‘‘absc varcheck <files>’’
erforms all checks, while ‘‘absc varcheck−nosat <files>’’ skips all
teps requiring SAT solving: it only checks the SAT-free sanity
onditions and performs pre-typing.
Delta operations on extends and implements are not supported

y ABS yet, and thus, consequently, neither by our VM extension
f ABS.

12 The code is available under https://github.com/Edkamb/abstools/tree/
ariable_mod. A runnable VM is available under https://doi.org/10.5281/zenodo.
926115.
13 https://choco-solver.org.
16
11. Evaluation

11.1. Research questions

Qualitative and quantitative aspects of VMs are evaluated
along the following research questions:

RQ 1 Does using ABS-VM provide advantages in terms of re-
duced implementation effort and code readability for existing
models, where variant interoperability is implemented by re-
lying on duplicating code (possibly based on programming
constructs for intra-code reuse to reduce code duplication, see
Section 3) or on external tools?

RQ 2 Does using ABS-VM provide advantages in terms of reduced
model size compared to Delta-ABS and Delta-Trait-ABS?

RQ 3 Does performing the family-based static normal form, type
uniformity, applicability and pre-typing checks14 (described in
Section 9) require less time than overall flattening15 (accord-
ing to Definition 19) on an ABS-VM program?

Q 4 Does performing the family-based static normal form, type
uniformity, applicability and pre-typing checks require less
time than flattening (according to Definition 13) on an ABS-
VM program?

1.2. Experiment design

1.2.1. Experiment design and subject for RQ 1 and RQ 2
To investigate the first two research questions, we use ABS-

M to refactor (possibly extended versions of) legacy models. The
ource code of the case studies is available at the URL given in
ootnote 12. The legacy models are as follows:

• The industrial FormbaR model of railway operations, avail-
able in two versions, see Remark 1. The first version, Form-
baR-1 (Kamburjan and Hähnle, 2016), is implemented in
Delta-ABS. The second version, FormbaR-2 (Kamburjan et al.,
2018), is implemented in Delta-Trait-ABS. Both versions use
one class per infrastructure element and, to achieve variant
interoperability, different variants of the same infrastructure
element are explicitly defined as separate classes without
using DOP for implementing infrastructure elements.

• The second version of the Weak Memory Model Family, re-
ferred to as WMMF-2 and implemented in Delta-ABS. It is
the extension of an ABS model of weak memory (Kambur-
jan and Hähnle, 2018), referred to as WMMF-1 and imple-
mented in Delta-ABS.
In sequentially consistent memory models all read- and
write-accesses in a piece of code are processed in the stated
order. Weakly consistent (for short: weak) memory models
permit partial or complete re-ordering of memory access to
increase efficiency. WMMF-1 formalizes different relaxation
strategies and hardware models to enable simulation and
analysis of their effects. A weak memory model in WMMF-
1 is implemented as a class managing a list of memory
accesses on a device. Variability, including different types
of reordering (read before write, etc.), is implemented by
DOP. WMMF-2 extends WMMF-1 to include two co-existing
hardware devices with two different memory systems each:
any of the four combinations of memory model can be

14 Recall that checking normal form and applicability consistency is a way to
ensure that all variants of all VMs can be generated, without actually generating
them.
15 The brute force approach to check whether all variants of all VMs can be
generated: by producing them.

https://github.com/Edkamb/abstools/tree/variable_mod
https://github.com/Edkamb/abstools/tree/variable_mod
https://doi.org/10.5281/zenodo.4926115
https://doi.org/10.5281/zenodo.4926115
https://choco-solver.org

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

d

V

V

V

E
t
c
V
o

1

i
m
t
p
f

d
a
w
E
a

r
R

c
a
o
p

e
(

1

1

t
V

different. To this end, one needs four variants of the class
(and module) modeling the memory model. This is achieved
(in Delta-ABS) by manually copying the class Memory to four
modules MemoryInternaln, and creating two copies of the
class DevicePair in two modules DeviceInternaln.

• AISCO (Adaptive Information System for Charity Organi-
zations) is a modular web portal supporting the business
processes (information, reporting, spending, expenditure) of
charity organizations.
There are two versions of AISCO. The first, referred to as
AISCO-1 (Setyautami et al., 2019), consists of an SPL is
implemented in Delta-ABS. Its variability reflects differing
legal and operational requirements of the supported orga-
nizations. Interoperability is not supported, hence variability
is encoded using multiple copies of classes.
The second version, referred to as AISCO-2 (Setyautami and
Hähnle, 2021), is implemented in Java. It supports some of
the functionalities of VMs by relying on an external tool, also
written in Java: Different variants of a module are generated
by the runtime structure, using the external tool on top of
the Java implementation, see Section 12.4 for details. The
code is used in production at https://amanah.cs.ui.ac.id/.

By refactoring the above models to ABS-VM, we illustrate
ifferent aspects in using VMs to model interoperable variants:

Ms vs. Traits. In FormbaR-2, implemented in Delta-Trait-ABS,
traits16 are used to reduce code duplication across class
definitions implementing variants of the same infrastructure
element. In the refactoring of FormbaR-2, written in Delta-
Trait-ABS, to ABS-VM we show how the relevant parts of
FormbaR are re-modeled using VMs.

Ms vs. Delta-oriented SPLs. In the refactoring of WMMF-2,
written in Delta-ABS, to ABS-VM we show that in the latter
there is no need to manually duplicate modules.

Ms vs. External tool chain. We compare AISCO-2, which uses
an external mechanism implemented in Java to provide VM
functionality,17 with our re-implementation in ABS-VM.

xperiment design. RQ 1 is addressed by manually refactoring
he FormbaR-2, WMMF-2, and AISCO-2 model to ABS-VM and
omparing conceptually the legacy implementation with the ABS-
M implementation. RQ 2 is addressed by comparing the number
f lines of code (LoC) before and after refactoring.

1.2.2. Experiment design and subject for RQ 3 and RQ 4
For the remaining two research questions we perform exper-

ments on the three models introduced in RQ 1, RQ 2. For each
odel we compare the times needed to complete the following

asks: checking normal form and type uniformity, checking ap-
licability consistency, checking pre-typing, performing overall
lattening, and performing flattening.

Additionally, for RQ 3, we run two experiments on synthetic
ata sets: We generate programs with random feature models
nd compare the time needed to check applicability consistency
ith the time needed to perform overall flattening (Synthetic
xperiment 1 below) and we measure the time needed to check
pplicability consistency (Synthetic Experiment 2).
All experiments are performed on an Ubuntu 20.04 system

unning on a quadcore i7-8565U CPU @ 1.80 GHz with 32 GB
AM.

16 Traits (Schärli et al., 2003; Ducasse et al., 2006) are sets of methods that
an be added to a class. The ABS-VM implementation supports traits. Since traits
re orthogonal to the notion of VM we have not included them in the fragment
f ABS-VM formalized in this paper. We refer to Damiani et al. (2017a) for a
resentation of the notion of traits supported by ABS.
17 The VM concept was first developed and implemented for ABS (Damiani
t al., 2021), then partially adapted and implemented in the Java runtime library
Setyautami and Hähnle, 2021).
17
Synthetic Experiment 1. We generate for n ∈ [1 . . . 12] a module
with n features, each feature associated with one delta adding one
method mn to the sole interface of the module. The module then
declares one variable for each of the 2n variants.

Synthetic Experiment 2. To evaluate applicability checking on
non-trivial feature models we modify the above scenario: We
generate random feature models and application conditions using
the random formula generator by Roffe and Calderon (2021).
Additionally, each delta now either adds, removes or modifies
a method from the interface. We run this experiment for n ∈

[1 . . . 50].

1.3. Results for RQ1

1.3.1. Formbar
The partial refactoring of FormbaR-2 to ABS-VM, referred to

as FormbaR-3, has one VM with five features: PoV for points of
visibility (of signals, etc.), Speed for signals that announce a speed
restriction, Signal for general signals, Main for signals placed at
the point, where the signaled aspect holds, and Pre for signals
hat announce a point where the signaled aspect holds. Hence, the
M contains features (Main, Pre, Speed, Signal, PoV) plus deltas

for the five re-modeled kinds of signal.18
FormbaR-2 uses traits to reduce code duplication in the im-

plementation of the different kinds of signals. FormbaR-3 has
no need for traits: a set of operations is encapsulated in a delta
and applied to a base TrackElement class. The feature model con-
nects these operations explicitly with products corresponding to
relevant infrastructure elements.

Results. The drawbacks of using an intra-product code reuse
mechanism (like traits) to implement variants are discussed in
Section 3. In consequence, FormbaR-3 is (i) shorter than Form-
baR-2 (in terms of LoC), because in the latter there is a separate
class for each kind of signal (see Section 11.4 for details). (ii)
FormbaR-3 is also more comprehensible. For once, its feature
model makes constraints explicit that were only implicit in Form-
baR-2 (for example, that certain traits should not be used in a
class at the same time). In addition, it declaratively connects code
variability to the domain model. For example, in FormbaR-3 the
feature model expresses that a pre-signal has features Pre and
Signal in a semantic manner in terms of a general Signal that
announces its aspect Pre.

11.3.2. WMMF
In WMMF-2 we need potentially four different memory mod-

els. The Delta-ABS implementation requires to copy the memory
model module including all deltas four times. Furthermore, the
device module had to be copied twice. Essentially, we perform
manually part of the VM flattening until we can rely on standard
module operations.

Instead, the ABS-VM model, referred to as WMMF-3, contains
one VM for Memory and one for DevicePair (i.e., pairs of memory
models). While WMMF-3 has six features for Memory and eight for
DevicePair, WMMF-2 has 40.

Results. VMs permit concise modeling of interoperable variants,
as compared to modeling them explicitly with one product line
and manual copying. In particular, the possibility to directly use
products as type references removes the necessity to declare all
possible products in advance and to decide upfront on the num-
ber of variants to be generated: ABS-VM does not require a known
bound on the number of copies and can handle encapsulation
using the VM mechanism.

18 Main signal, pre-signal, speed limiter, pre-speed limiters, and point of
visibility (Kamburjan et al., 2018).

https://amanah.cs.ui.ac.id/

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

1

t
p
D

m
i
r
p
r
t
c
i
t
p
a
c

t

c
A
t

1

t
(
a
m
t
n
b

r
o
p
a
u

1

1

W

F
r
e
n

1.3.3. AISCO
The requirements stipulate co-existence of multiple variants of

he same feature, for example, different formats for financial re-
orts. This is not supported in current SPL approaches, including
elta-ABS.
In AISCO-1, implemented in Delta-ABS, interoperability of

ultiple variants is not supported and this kind of variability
s encoded using multiple copies of classes whose inclusion is
egulated by the variability model. For example, financial re-
orts may be for expense purposes, for income, or for general
eporting. The distinction among these variants is embodied in
hree different, all classes implementing interface Entity. The
reation of the classes is managed using deltas. This hampers
nter-product code reuse. In the words of the AISCO developers,
he disadvantages are that ‘‘[...], it cannot be modeled that different
roduct variants from the same product line co-exist and interoper-
te within one and the same application. This leads to suboptimal
ode reuse.’’ (Setyautami and Hähnle, 2021, referring to AISCO-1).
In AISCO-2, implemented in Java with the help of an exter-

nal tool and supporting some aspects of VMs, different report
variants are implemented by a VM containing a class Report. The
variants of this VM correspond to the different classes defined
explicitly in AISCO-1. The auxiliary concept of an Entity is not
needed any longer.

For the ABS-VM model, referenced to as AISCO-3, the main
aspects of AISCO-1/AISCO-2 were re-implemented in ABS-VM in
160 LoC: One VM with four features and five deltas for financial
reporting. All variants can interoperate within one and the same
program generated from the ABS-VM code, instead of relying on
an external framework, as in AISCO-2, that is intertwined with
the generated program.19

Results. The AISCO-2 implementation is distributed between Java
and external tools that weave interoperable variants together in
the desired manner. This approach has two major drawbacks:
first, in contrast to AISCO-3, the various sanity, compliance, and
type checks discussed in Section 9 cannot be easily realized. Even
for a concrete generated program type-safety cannot be fully
statically checked, because the VM implementation mechanism
of Setyautami and Hähnle (2021) relies on reflection. Second,
the distribution of configuration knowledge to different places in
the implementation makes maintenance harder and more error-
prone than in AISCO-3.

A Java-specific limitation also present in AISCO-2 is the im-
possibility to remove the implementation (method, class) of a
functionality, one can only override it. As the VM concept is based
on DOP, this is not an issue for AISCO-3.

The AISCO case study reinforces the experimental evidence
that VMs are a suitable concept to simplify heterogeneous applica-
tions by modeling variability and co-existence of variants within
a single, coherent language.

11.4. Results for RQ 2

We discuss the quantitative aspects of the VM refactorings to
address RQ 2. The AISCO-1 and AISCO-2 models are unsuitable for
a quantitative comparison, as AISCO-2 is not written in ABS and
AISCO-1 contains external aspects (like frontend routing).

19 For example, routing of the frontend of the web application is located in
he external tool.
18
11.4.1. FormbaR
Compared to FormbaR-2, the FormbaR-3 VM version reduces

the total number of LoC needed for the signal products from
241 to 180 (−25%). Excluding code required only for variability
modeling (configuration knowledge and delta headers), the re-
modeled part has 163 LoC (−33%). There are various effects that
lead to a reduced number of LoC:

• FormbaR-2 declares one interface and one class per infras-
tructure kind20 In contrast, FormbaR-3 declares a single
interface Specific, which is then transformed by deltas
concurrently with its corresponding class. This reduces the
header for interface declarations, in particular, when the
interface needs not be changed (for example, the inter-
face for PoV contains no methods and is only declared to
provide a type). This means that one uses, for example,
Specific with [PoV] instead of IPoV.

• By using deltas, in FormbaR-3 we can share not merely
methods (through traits), but also fields. Additionally, using
a core class, we can share the init block of classes which is
common to most classes.

• In FormbaR-3, instead of using trait expressions inside class
definitions (with the uses declaration Damiani et al., 2017a),
we rely on selection of the infrastructure type at the type
reference, which is external to the class.

It is worth observing that all these improvements allow more
oncise modeling without changing the underlying class model of
BS, which is specifically designed to simplify deductive verifica-
ion and static analysis (Hähnle, 2013).

1.4.2. WMMF
The WMMF-3 model has 485 LoC, of which 440 LoC are

he two variable modules. The WMMF-2 model has 1322 LoC
+272%), of which 620 LoC are concerned with deltas and vari-
bility and 582 are the core product of the modules for memory
odels and devices. We refrained from reducing code duplication

hrough traits to illustrate that product line systems without
ative support of interoperable variants can only replicate this
ehavior through massive code duplication.
If a module has p products, then in ABS-VM only p configu-

ations are declared, for any number of used variants. Another
bservation is that to connect n variants, one needs to declare
n products: one for each combination. Hence, in addition to the
dditional delta declarations, this blows up the feature model
nreasonably.

1.5. Results for RQ 3 and RQ 4

1.5.1. Experiments on the FormbaR, WMMF, and AISCO case study
To answer RQ 3 and RQ 4, for each of the models Formbar-3,
MMF-3, and AISCO-3 (listed in Table 1), we compare:

• The time needed to perform the family-based static normal
form, type uniformity,21 applicability and pre-typing checks,

• the time needed to perform overall flattening and flatten-
ing.22

amily-based static checking succeeds for all three models. The
esults are shown in Table 2 (all times are in seconds). These
xperiments show for all considered case studies that checking
ormal form, type uniformity, and applicability is faster than

20 One cannot remove the interfaces, because classes are not types in ABS.
21 The time for checking type uniformity includes the time for building the
family signature of the program (Definition 22).
22 Without checking whether the generated program is well typed.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

p
(
t
o
i

c
l
t
f

p
f

s
m

t
u
t

1

t
i
f
(
S
o

1

t
o
p
o
g
o
o
a
t
r
i
w
e
u
b
e
m
l
t
f

t
a
d

o
s
i
t
(
e
v
t
p
t
m
f
A
m
a

Table 1
Number of features and variants for each VM in the case studies.
Model VM # of features # of products

FormbaR-3 TrackElements 5 5

WMMF-3 Mem 6 64
Devices 8 255

AISCO-3 FinancialReport 4 12

Fig. 11. Results for Synthetic Experiment 2.

erforming overall flattening (answering RQ 3) and flattening
answering RQ 4). Just the time for checking pre-typing is nearly
he same as the time for overall flattening in WMMF-3, while it is
ne other of magnitude higher than the time for overall flattening
n FormbaR-3 and AISCO-3, and one order of magnitude higher
than the time for flattening in all the three case studies.

11.5.2. Experiments on synthetic data sets
To answer RQ 3 we perform two additional experiments

on synthetic data sets (Synthetic Experiment 1 and 2, see Sec-
tion 11.2.2). The results of Synthetic Experiment 1 are shown
in Table 3 (all times are in seconds). Family-based static checks
are run on programs with an empty main block, to subtract
artifacts from the exponentially growing main block. In Synthetic
Experiment 1 overall flattening shows exponential growth and
from n = 8 onward it is faster to perform the static checks.

Fig. 11 shows the timings for Synthetic Experiment 2: they
are nearly constant at, on average, 0.7 s. In both, Synthetic Ex-
periment 1 and 2, the time for applicability checking is nearly
constant. We refrain from increasing n further in Synthetic Ex-
periment 1, because overall flattening becomes infeasible.

Our synthetic experiments show that applicability checking
scales compared to either flattening or overall flattening. In fact,
the timings are near constant for our experiments. We conjecture
that (i) SAT solving is efficient enough to handle formulas with
the resulting number of variables and that (ii) the formulas have
a structure that is easy to solve.

11.6. Threats to validity

External validity. A threat to generalization of our results is that
all code used in the case studies has been re-modeled by the au-
thors themselves and consists of only 840 LoC. It should be noted
that in two of the three case studies, the non-variable context
was not considered (for example, in FormbaR less than 10% of the
ode was re-modeled). On the other hand, any reasonable product
ine is bound to have a substantial degree of commonality and
here is no point to look at the invariant aspects of an application
or the present evaluation.

Another threat is that, while VMs are a general concept for
roduct lines, we only investigated its use for DOP, and only
or the ABS language. We consider this to be unproblematic,
19
because (i) DOP is a fairly general SPL approach that encompasses
FOP (Schaefer and Damiani, 2010) and (ii) the ABS implementa-
tion of DOP follows general DOP principles (Schaefer and Dami-
ani, 2010) and closely resembles other implementations, such as
DOP in Java (Koscielny et al., 2014).

Internal validity. A threat concerning our conclusions is that, due
to our aim of reusing code from the existing flattening and type
checker implementation, we rely on pre-existing code and design
choices for both flattening and applicability: we reuse the Choco
olver part of the ABS compiler and do not optimize the flattening
echanisms.
Another threat is that the applicability checks take constant

ime due to the design of our examples. We mitigated this by
sing random feature models to exclude artifacts stemming from
he structure of the feature model.

2. Related work

We focus on the approaches most relevant and closest to
he VM concept. We refer to Apel et al. (2013) for a systematic
ntroduction to feature-oriented SPLs, to Schaefer et al. (2012)
or an overview of diverse system developments, to Thüm et al.
2014) for a classification and survey of analysis strategies for
PLs, and to Holl et al. (2012) for a systematic and expert survey
n capabilities supporting MPLs.

2.1. Programming constructs for MPLs and variant interoperability

Schröter et al. (2013a) advocate the use of suitable interfaces
o support compositional analysis of MPLs, consisting of FOP SPLs
f Java programs, during different stages of the development
rocess. Damiani et al. (2014b) informally outlined an extension
f DOP to implement MPLs of Java programs by proposing lin-
uistic constructs for defining an MPL as an SPL that imports
ther SPLs. In their proposal the feature model and artifact base
f the importing SPL is entwined with the feature models and
rtifact bases of the imported SPLs. Therefore, in contrast to VM,
he proposal does not support encapsulation at SPL level. More
ecently, Damiani et al. (2019) formalized an extension of DOP to
mplement MPLs in terms of a core calculus where products are
ritten in an imperative version of Featherweight Java (Igarashi
t al., 1999, 2001). Their idea is to lift to the SPL level the
se of dependent feature models to capture MPLs, as advocated
y Schröter et al. (2016, 2013b). Like the earlier paper (Damiani
t al., 2014b), the SPL construct proposed by Damiani et al. (2019)
odels dependencies among different SPLs at the feature model

evel: to use two (or more) SPLs together, one must compose
heir feature models. In contrast, the VM concept does not require
eature model composition.

None of the proposals mentioned above support variant in-
eroperability (Damiani et al., 2018b). Setyautami et al. (2018)
ddress variant interoperability at the level of static UML class
iagrams. In this paper we consider executable Java-like code.
Variant interoperability in terms of ABS code is addressed in

ur previous work (Damiani et al., 2018b), where we consider a
et of product lines, each comprising a set of modules. However,
n that proposal, encapsulation is not realized by mechanisms at
he module level (as in VMs): unique declarations are supported
unsatisfactorily) by common modules (which is not fine-grained
nough), and the concepts of modularity (through modules) and
ariability (through product lines) are intertwined. In contrast,
he VM concept proposed in this paper unifies modules and
roduct lines by adding the capability to model variability directly
o modules: each module is a product line, each product line is a
odule. This drastically simplifies the language, yet allows more

ar-reaching reuse of the DOP mechanism natively supported by
BS. Furthermore, VMs ease the cognitive burden of variability
odeling, extending a common module framework, instead of
dding another layer on top.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

o
a
o

Table 2
Results for the experiments in the case studies.
Model Family-based static checking Overall flattening Flattening

Normal form + type uniformity Applicability Pre-typing

FormbaR-3 <0.01 <0.01 0.2 0.03 0.02
WMMF-3 <0.01 <0.01 0.9 1.1 0.05
AISCO-3 <0.01 <0.01 0.3 0.08 0.03
Table 3
Results for synthetic Experiment 1. Comparison of family-based static checking with overall flattening (times in seconds). Relative
change is computed as total time for static checking

time for overall flattening .

of Family-based static checking Overall Relative

features Normal form + type uniformity Applicability Pre-typing flattening change

7 <0.01 0.05 0.07 0.07 41%
8 <0.01 0.05 0.08 0.20 −54%
9 <0.01 0.05 0.10 0.49 −227%
10 <0.01 0.06 0.08 1.63 −1 064%
11 <0.01 0.09 0.09 5.44 −2 922%
12 <0.01 0.08 0.11 27.27 −14 252%
12.2. Family-based checking for SPLs of java-like programs

According to Thüm et al. (2014), the approaches to the analysis
f SPLs can be classified into three main categories: product-based
nalyses, which operate only on generated variants (or models
f variants); family-based analyses, which operate only on the

artifact base by exploiting the feature model and configuration
knowledge to obtain results about all variants; and feature-based
analyses, which operate on the building blocks of the different
variants (feature modules in FOP and deltas in DOP) in isolation
(without using the feature model and configuration knowledge)
to derive results on all variants. We refer to Thüm et al. (2014)
for a survey on SPL type checking. Here we review type checking
approaches for FOP and DOP that are close to our proposal.

Thaker et al. (2007) informally illustrate the implementation
of a family-based type checking for the AHEAD system (Batory
et al., 2004). It comprises: (i) A family-feature-based step that
computes for each class a stub (according to the terminology used
in Section 9.1, these stubs represent a type uniform signature for
the SPL) and compiles each feature module in the context of all
stubs (thus performing checks corresponding to type uniformity
and partial typing in our terminology) and (ii) a family-based
step that infers a set of constraints that are combined with the
feature model to generate a formula (modeling applicability and
dependency) whose satisfiability should imply that all variants
can be generated and successfully compile.

Delaware et al. (2009) formalize feature-family-based type
checking for the Lightweight Feature Java (LFJ) calculus, which
models FOP for the Lightweight Java (LJ) calculus by Strniša
et al. (2007). It comprises: (i) A feature-based step that uses
a constraint-based type system for LFJ to analyze each feature
module in isolation and infer a set of constraints for each feature
module and (ii) a family-based step where the feature model and
the inferred constraints are used to generate a formula whose
satisfiability implies that all variants can be generated and type
check.

Bettini et al. (2013a) proposed a type checking approach
for DOP. It comprises: (i) A feature-based analysis that uses a
constraint-based type system for IFJ (a core calculus formalizing
DOP for SPLs of Featherweight Java programs) to infer a type
abstraction for each delta and (ii) a product-based step that
uses these type abstractions to generate, for each product of
the SPL, a type abstraction (of the associated variant) that is
checked to establish whether the associated variant type checks.
This approach has been enhanced by introducing a family-based
step that builds a product family generation tree which is then
20
traversed in order to perform optimized generation and check
of type abstractions of all variants (Damiani and Schaefer, 2012),
and has been partially implemented in a branch of the ABS tool
chain (Damiani et al., 2017b).

Damiani and Lienhardt (2016) formalize, by means of IFJ, a
feature-family-based type checking approach for DOP inspired by
the approach for FOP by Thaker et al. (2007) and Delaware et al.
(2009). It enforces type uniformity and comprises partial typing,
applicability analysis and dependency analysis. Being feature-
family-based, it represents an improvement over the previous
type checking approaches for DOP, because it does not require
to iterate over the set of all products. The family-based checks
presented in this paper extend to ABS-VM the corresponding
family-based type checks for IFJ (Damiani and Lienhardt, 2016).

12.3. Variability-aware module systems

Kästner et al. (2012b) propose a variability-aware module sys-
tem (called VAMS in the following). Like in our proposal, each
VAMS module is an SPL, however, VAMS and the VM concept
differ fundamentally:

• VAMS is defined on top of the procedural system program-
ming language C and the annotative approach (see Sec-
tion 3) to SPL implementation (C, through its preprocessor
directives #define and #ifdef, has built-in support for
annotative SPLs).

• VMs are defined on top of the object-oriented modeling
language ABS and the transformational (specifically, delta-
oriented) approach to SPL implementation (ABS has built-in
support for delta-oriented SPLs).

Due to this difference, also the design of VAMS and VM programs
differs fundamentally. Therefore, it is not meaningful to compare
both approaches directly in terms of examples and concrete case
studies. Instead, we present a detailed comparison, where we
focus on the four most important conceptual differences between
the two approaches.

(i) VAMS does not encapsulate variability (Section 6): Modules
import function declarations without specifying the mod-
ules from which they should be imported. To generate a
variant VAMS requires the user to write a composition ex-
pression, which lists all modules to be composed and resolves
dependencies and ambiguities (such as when a module im-
ports a function that is defined in two different modules)
by specifying how functions are renamed or hidden (and
how features are renamed, selected or deselected). Hence,

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

(

(

1

c
e
f
c
s
c
a
i
l
s
I
t
b
n
H
f

1

t
w
S

s

VAMS is not concerned with explicit dependencies between
modules, which are crucial to usability and central to the
PEV introduced in this work. By exploiting PEV, the VM con-
cept achieves simplicity: configuring a single VM M triggers
automatic generation of all required variants of M and other
VMs.

(ii) The design of VAMS does not target variant interoperability
(Kästner et al. (2012b) do not mention this issue). Making
two variants of the same module co-exist, requires to create
a copy of the module and to rename (possibly by using
the module composition language provided in VAMS) all its
features and all its exported functions. In contrast, providing
usable support to variant interoperability is a central design
goal of VM.

iii) Variability in VAMS is achieved explicitly by using an
annotative approach: code elements (import/export decla-
rations and function declarations) are annotated with pres-
ence conditions (propositional formulas over features). In VM
variability is achieved explicitly by DOP for class/interface
declarations and implicitly for export/import declarations.

iv) VAMS is formalized by building on a calculus in the spirit
of Cardelli’s module system formalization (Cardelli, 1997) for
procedural programming languages, where a module consists
of a set of imported typed function declarations and a list of
typed function definitions, and is implemented as a module
system for C code. Therefore, VAMS is tailored to procedural
languages, where the interface of each module describes
names and types of imported and exported functions, and
there is a global function name space. Moreover, even though
each module has its own feature model, there is a global fea-
ture name space. In contrast, the VM concept targets Java-like
languages, it is based on the module system of ABS (Hähnle,
2013; Johnsen et al., 2010) (a fairly standard module system
close to Java and Haskell), and implemented as an extension
of the ABS module system. Each VM has a local name space
(which reduces overhead), also features are local to VMs.

2.4. Variability modules in java

Setyautami and Hähnle (2021) suggest that the VM concept
an be implemented on top of any Java-like language with modest
ffort. The solution presented there takes a different approach
rom the present account: it dispenses with explicit language
onstructs to model variability, but uses only standard Java con-
tructs. This is achieved with an architectural pattern: delta appli-
ation is realized by decorators, the name space is managed with
bstract factories, and each product is a module declaration in
tself. The sole reliance on standard Java constructs comes with
imitations: unique class/interface declarations are not directly
upported (but can be achieved by suitable final annotations).
n consequence, the PEV is not enforced. Open product declara-
ions are not supported. Unsoundness of a product might only
e detected at runtime, because reflection is used for module
ame resolution instead of flattening. Therefore, Setyautami and
ähnle (2021) does not feature a formal semantics of VM and
amily-based checking.

3. Conclusion and future work

This article introduced variability modules, a novel approach
o implement MPLs consisting of DOP SPLs of Java-like programs,
here different, possibly interdependent, variants of the same
PL can co-exist and interoperate.
Central to the design of VM are simplicity and usability,

pecifically the PEV that makes dependencies on variants explicit,
21
so that a simple Java- or Haskell-like module concept is sufficient.
We formalized the syntax and semantics of variability mod-

ules as an extension of the ABS language called ABS-VM. The
semantics is given in terms of flattening rules that transform an
ABS-VM program into a set of ABS modules. This made it possible
to implement an ABS-VM compiler as a front-end to the ABS tool
chain.

In addition to compilation, we defined and implemented PEV-
compliance, type uniformity, pre-typing and applicability consis-
tency as family-based checks for ABS-VM programs.

We evaluated the VM concept and our implementation of it
quantitatively and qualitatively by case studies that were partly
taken from industrial code used in production.

We are currently formalizing and implementing an extended
analysis called dependence consistency checking: it aims to fully
support family-based checking of type-safety (see the discussion
at the beginning of Section 9). The extended tool chain will be
subjected to validation by novel and even larger case studies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Code linked from article.

Acknowledgments

We thank the anonymous SPLC 2021 and the JSS reviewers for
insightful comments and suggestions that helped to improve this
paper. This work was partially supported by the Research Council
of Norway via SIRIUS (237898) and PeTWIN (294600).

Appendix A. Rules for delta application

We present the rules describing the application of an ordered
sequence of deltas Dlt to a sequence of interface/class defini-
tions Defn. The rules, given in Fig. A.12, fall into the following
categories:

• Rules for a Sequence of Deltas describe how to apply each of
the deltas in a sequence. D:Empty removes the delta if no
operations are left to execute. Rules D:Inter and D:Class
extract the first interface/class operation from the delta
and apply it to the list of definitions. D:End concludes the
application process when the sequence of the deltas to be
applied is empty.

• Rules for a Delta describe how to apply the actions specified
by a delta to a whole class or interface definition. Rule
D:AddsI adds an interface by adding its definition to the
list of definitions. Rule D:RemsI removes an interface by
looking up its definition using the name from the delta
modifier. The rules for classes, D:AddsC and D:RemsC are
analogous. Rules D:ModI and D:ModC modify an interface
or class by applying the rules for interface modifiers (or class
modifiers).

• Rules for Extends/Implements Clauses modify the extends
clauses of interfaces and implements clauses of classes by
removing (D:EM:Rems) or adding (D:EM:Adds) an interface
name. Rule D:EM:Empty is triggered when all modifications

of the clause were applied.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510
Fig. A.12. Delta application rules.
• Rules for Interfaces modify interfaces. Rule D:I:Empty is ap-
plicable when no further modification is requested on the
given interface, so that the result is the interface itself. Rule
D:I:Adds adds the specified method header to the interface
(provided no header with this name is already present).
Rule D:I:Rems removes an existing method header from the
interface.

• Rules for Classes modify classes. They are very similar to the
ones for interfaces, with two exceptions: first, manipulation
22
of method headers is replaced by manipulation of fields
(rules D:C:AddsF and D:C:RemsF) and method implementa-
tions (rules D:C:AddsM and D:C:RemsM). Second, methods
may be modified using rule D:C:Mods. This rule replaces the
method implementation, but keeps the old implementation
with a fresh name. If the new implementation contains an
original statement, then this statement is replaced by a call
to the old implementation.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

A

A
l
t
e

a

s
e
t

Fig. B.13. Variability-free ABS module typing rules.
ppendix B. Rules for Vf-ABS module typing

We present the rules of the type system for variability-free
BS modules. The rules, given in Fig. B.13, use the following
ookup function for retrieving the type of an attribute M.N.a in
he program signature table PrgS (recall that an attribute can be
ither a method or a field):

Type(M.N.a)=

{
PrgS(M)(N)(a) if a ∈ dom(PrgS(M)(N))
aType(M’.I.a) if a ̸∈ dom(PrgS(M)(N)),

M’.I∈ PrgS(M)(N)(super)

For sake of simplicity, in the rule premises we use typing a
equence of elements as a shorthand for the implicit list of typing
ach element (in T:Module, T:Class, T:Invk). The rules fall into
he following categories.
23
• Variability-free ABS module typing Rule T:Module is fairly
standard: each class/interface declaration in the module is
typed relative to the signature of the program and the name
of the module. The sequence of statements in the (optional)
init-block is typed relative to the signature of the program,
the name of the module and the empty typing environment
(environment Γ is discarded). No checks on the import- and
export-clauses are performed, because these are subsumed
by the assumption that the signature PrgS is well-formed.

• Class definition typing Rule T:Class is fairly standard. No
checks on the field declarations and on the implements-
clause are performed, because these are subsumed by the
assumption that the signature PrgS is well-formed.

• Method definition typing Rule T:Meth is fairly standard. First,
it types the statements and the returned expression e in the

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510
Fig. C.14. VM pre-typing rule.
body of the method with respect to the appropriate typing
environments. Then it checks that the type of e is a subtype
of return type of the method.

• Statement sequence typing Rule T:Seq is fairly standard: a
sequence of n ≥ 0 statements is typed relative to the
signature of the program, the name of the module, and a
typing environment Γ0. The ith (i ≥ 1) statement of the
sequence is typed relative to Γi and produces Γi+1. The
rule produces a typing environment Γn that is augmented
by the type assumptions for the variables declared by the
statements in the sequence.

• Statement typing These rules are fairly standard: a statement
is typed relative to the signature of the program, the name
of the module, a typing environment. Each rule produces a
typing environment that is either augmented by the type
assumption for the variable declared by the statement (if
the statement is a local variable declaration) or unchanged
(otherwise).

• Expression typing These rules are fairly standard: each ex-
pression is typed relative to the signature of the program,
the name of the module, and a typing environment Γ that
assigns a variable basic type to each variable that may occur
in the expression and, whenever the expression occurs in
the body of a method of a class C, assigns type C to this.
We just point out that: fields can only be accessed through
this (see rule T:Field), and methods cannot be invoked in
new-expressions (rules T:New and T:Invk).

• Interface definition typing The assumption that the signature
PrgS (of the program which contains the module M where
the interface declaration ID occurs) is well-formed (Defi-
nition 18) entails that the interface declaration ID is well
typed. Therefore, rule T:Interface performs no checks.

Appendix C. Rules for VM pre-typing

We present the pre-typing rules for VMs. The rules, given in
Figs. C.14–C.16 use the following lookup function for retrieving
the type of an attribute M.N.a in the family program signature
table FPrgS:

aType(M.N.a)

=

{
FPrgS(M)(N)(a) if a ∈ dom(FPrgS(M)(N))
aType(M’.I.a) if a ̸∈ dom(FPrgS(M)(N)) and
M’.I [with . . .]∈ FPrgS(M)(N)(super)

24
Rule PT:VM in Fig. C.14 first checks three consistency con-
ditions, then it pre-types each interface/class definition in the
module core part (Fig. C.15), the sequence of statements in the
(optional) init-block, and each delta in the module delta part
(Fig. C.16). No checks on configuration knowledge are performed,
because these are subsumed by the assumption that the family
program signature FPrgS is type uniform.

The rules in Fig. C.15 are a straightforward adaptation of
the typing rules for variability-free ABS classes an interfaces
(Fig. B.13) and fall into corresponding categories: Interface def-
inition pre-typing, Expression pre-typing (Rule PT:Original is for
pre-tying the original method invocation, which may occur in
a method addition operation), Statement pre-typing, Statement
sequence pre-typing, Method definition pre-typing, Class definition
pre-typing.

The rules in Fig. C.16 fall into the following categories:

• Delta pre-typing Rule PT:Delta simply pre-types each class
operation. No checks are performed on interface operations,
because these are subsumed by the assumption that the
family program signature FPrgS is type uniform.

• Class operation pre-typing Rule PT:Adds-Class simply pre-
types the added class definition relying on rule PT:Class of
Fig. C.15. Similar as before, rule PT:Removes-Class performs
no checks, because these are subsumed by the assumption
that the family program signature FPrgS is type uniform.
Rule PT:Modifies-Class pre-types each attribute operation.

• Attribute operation pre-typing Rule PT:Adds-Meth simply
pre-types the added method definition relying on rule
PT:Meth of Fig. C.15. Rules PT:Adds-Field, PT:Removes-
Attr perform no checks, because these are subsumed by
the assumption that the family program signature FPrgS
is type uniform. Rule PT:Modifies-Meth is similar to rule
PT:Adds-Meth, however, it pre-types the body of the mod-
ified method relative to an environment that assigns to
original the type of the method being modified. This makes
it possible to use rule PT:Original of Fig. C.15 during pre-
typing of S.

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510
Fig. C.15. Class/interface pre-typing rules.

Fig. C.16. Delta pre-typing rules.
25

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

A

P

M
t

i

l

ppendix D. Rules for applicability constraint inference

We present the rules for computing the applicability constraint of an ABS program. The rules parse a normal form ABS-VM program
rg from left to right. They assume the list of deltas in Prg is in an order compatible with the configuration knowledge CK.
All statements in the focus of the rules have the form C ⊢ G : Θ, Φ , where (i) G is the syntax element being parsed according to Fig. 6,

(ii) C stores relevant context information (the currently parsed module’s name, the currently parsed delta’s activation condition or true
when parsing the module core part, the input declaration presence mapping), (iii) Θ is the output declaration presence mapping (from
the analysis of G), (iv) Φ is the output applicability constraint (from the analysis of G). Elements Φ and Θ are defined simultaneously.
At each stage Φ contains information about current applicability of deltas in products, while Θ collects information about the presence
of G in products.

The first applicability rule is for programs:

A:Prg
Prg = Mdl1 · · · Mdln ⊢ Mdli : Θi, Φi

⊢ Prg :

⋃
1≤i≤n

Θi,
⋀

1≤i≤n

Φi

The rule runs through each module declaration Mdli, collecting presence and applicability information. According to Fig. 6, each
class/interface operation CO/IO declares the unqualified class/interface name C/I on which it intends to act. If the operation is in module
then, in accordance with the flattening rules, it is (implicitly) qualified by M. Therefore, deltas cannot declare operations outside of
he scope of their module, so no module can modify presence conditions in other modules.

The next rule is for modules. The initial domain of the presence mapping Θ0 is set to false. This domain includes the names of all
nterfaces, classes, and attributes extracted from the module by fsig.

A:Module
Θ0 = [Q ↦→ false]Q∈ddom(M) M, Θi−1, true ⊢ Defni : Θi, Φi (1 ≤ i ≤ n)

M, Θi−1 ⊢ Dlti : Θi, Φi (n + 1 ≤ i ≤ m)

⊢

(
module M;
[[[export tC;]]] import tC from M; [[[features F with Φ;]]] KD PD
Defn1 · · · Defnn [[[init { S}]]] Dltn+1 · · · Dltm CK

)
: Θm,

⋀
1≤i≤m

Φi

The judgments for class and interface declarations have an additional constraint true on the left-hand side: it allows to reuse the rules
for deltas adding declarations where we set true as activation condition. The applicability constraint of the module is the conjunction
of all Φi, while the presence mapping is updated sequentially.

The next two rules handle class/interface declarations uniformly, whether they come from the core part or from deltas (see rule
[A:AddC] below).

A:Class
M.C, Θi−1, Φ ⊢ FDi : Θi, Φi (1 ≤ i ≤ n) M.C, Θi−1, Φ ⊢ MDi : Θi, Φi (n + 1 ≤ i ≤ m)

Θ ′
= Θm[M.C ↦→ Θm(M.C) ∨ Φ] Φ ′

= (
⋀

1≤i≤m Φi) ∧ (Φ → ¬Θm(M.C))
M, Θ0, Φ ⊢ [[[unique]]] class C implements IR1 · · · IRr { FD1· · ·FDn MDn+1· · ·MDm} : Θ ′, Φ ′

A:Interface
M.I, Θi−1, Φ ⊢ MHi : Θi, Φi (1 ≤ i ≤ m)

Θ ′
= Θm[M.I ↦→ Θm(M.I) ∨ Φ] Φ ′

= (
⋀

1≤i≤m Φi) ∧ (Φ → ¬Θm(M.I))
M, Θ0, Φ ⊢ [[[unique]]] interface I extends IR1 · · · IRr { MH1· · ·, MHm} : Θ ′, Φ ′

We do not collect information about the presence of implements/extends, because these clauses can be always added/removed, so
they do not influence delta applicability and flattening.

The rules for fields, methods, and method headers collect the expected information.

A:Field
M.C, Θ, Φ ⊢ T x; : Θ[M.C.x ↦→ Θ(M.C.x) ∨ Φ], Φ ⇒ (¬Θ(M.C.x))

A:Meth
M.C, Θ, Φ ⊢ MH : Θ ′, Φ ′

M.C, Θ, Φ ⊢ MH { S return E; } : Θ ′, Φ ′

A:MHeader
M.N, Θ, Φ ⊢ T m(T x) : Θ[M.N.m ↦→ Θ(M.N.m) ∨ Φ], Φ ⇒ (¬Θ(M.N.m))

The next rule parses deltas. It traverses the class/interface operations, using information about the application condition M.D on the
eft-hand side.

A:Delta
M, Θi−1, M.D ⊢ COi : Θi, Φi (1 ≤ i ≤ n) M, Θi−1, M.D ⊢ IOi : Θi, Φi (n + 1 ≤ i ≤ m)

M, Θ0 ⊢ delta M.D; CO1 · · · COn IOn+1 · · · IOm : Θm,
⋀

1≤i≤m Φi

The rule for adding a class simply forwards to the class declaration rule:
26

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

m

o
t

c

A:AddC
M, Θ, Φ ⊢ CD : Θ ′, Φ

M, Θ, Φ ⊢ adds CD : Θ ′, Φ

The rule for removing a class first states, in the constraint Φ ′, that for this operation to be valid the class M.C must be already be
declared. It then updates the mapping Θ into Θ ′, stating that M.C, its fields, methods and subtype declarations are only present when
that remove operation (triggered by the constraint in Φ) is not activated.

A:RemC
Φ ′

= (Φ ⇒ Θ(M.C)) Θ ′
= Θ[M.C ↦→ Θ(M.C) ∧ (¬Φ)][M.C.a ↦→ Θ(M.C.a) ∧ (¬Φ)]M.C.a∈dom(Θ)

M, Θ, Φ ⊢ removes class C : Θ ′, Φ ′

The rule for class modification ignores added/removed interfaces to implement, because this is always allowed. It generates the
applicability constraint Φ ′ by accumulating the constraints Φi (all added elements must not be present before and all removed element
ust be present), and adding the constraint that the class M.C must be present.

A:ModC
M.C, Θi−1, Φ ⊢ AOi : Θi, Φi (1 ≤ i ≤ n) Φ ′

= (
⋀

1≤i≤n Φi) ∧ (Φ ⇒ Θ(M.C))
M, Θ0, Φ ⊢ modifies class C adds IR1 · · · IRq removes IR′

1 . . . IR′

r { AO1 · · · AOn } : Θn, Φ ′

The rule for adding attributes forwards to the rule for attribute definition:

A:AddA
M.C, Θ, Φ ⊢ AD : Θ ′, Φ ′

M.C, Θ, Φ ⊢ adds AD : Θ ′, Φ ′

The two following rules, for removing a field or a method, build a constraint Φ ′ ensuring that, whenever the activation condition Φ

f the delta containing the operation becomes true, then the attribute is present (Θ(M.C.x) holds). Moreover, they update Θ ′ to store
he information that the attribute is no longer available after the operation is applied.

A:RemFD
Φ ′

= (Φ ⇒ Θ(M.N.x)) Θ ′
= Θ[M.N.x ↦→ Θ(M.N.x) ∧ (¬Φ)]

M.N, Θ, Φ ⊢ removes VT x; : Θ ′, Φ ′

A:RemMH
Φ ′

= (Φ ⇒ Θ(M.C.m)) Θ ′
= Θ[M.C.m ↦→ Θ(M.C.m) ∧ (¬Φ)]

M.C, Θ, Φ ⊢ removes VT m(VT x) : Θ ′, Φ ′

The rule for modifying a method requires in the applicability constraint Φ ′ that the method must already be present (when activation
ondition Φ holds), but leaves the presence mapping unchanged:

A:ModM
Φ ′

= (Φ ⇒ Θ(M.C.m))
M.C, Θ, Φ ⊢ modifies VT m(VT x) { S return E; } : Θ, Φ ′

The rules for delta operations on interfaces are similar to those for class operations:

A:AddI
M, Θ, Φ ⊢ ID : Θ ′, Φ

M, Θ, Φ ⊢ adds ID : Θ ′, Φ

A:RemI
Φ ′

= (Φ ⇒ Θ(M.I)) Θ ′
= Θ[M.I ↦→ Θ(M.I) ∧ (¬Φ)][M.I.a ↦→ Θ(M.I.a) ∧ (¬Φ)]M.I.a∈dom(Θ)

M, Θ, Φ ⊢ removes interface I : Θ ′, Φ ′

A:ModI
M.I, Θi−1, Φ ⊢ HOi : Θi, Φi Φ ′

= (
⋀

1≤i≤n Φi) ∧ (Φ ⇒ Θ(M.I))
M, Θ0, Φ ⊢

modifies interface I adds IR1 . . . IRq removes IR′

1 · · · IR′

r { HO1 · · · HOn } : Θn, Φ ′

A:AddMH
M.I, Θ, Φ ⊢ MH : Θ ′, Φ ′

M.I, Θ, Φ ⊢ adds MH : Θ ′, Φ ′
27

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

A

r

E

L

d
G
F
o

o

P
c
a

L
a
Θ

w
c
T

P
c
a

L
n
d

M

s
i

P
u
[

E

L
f
d

ppendix E. Proof of Theorem 2

The following lemmas analyze the applicability consistency
ules. Rules are grouped according to the properties they ensure.

.1. Attributes

emma 3 (Adding Attributes to Classes/interfaces). Let Prg be a nor-
mal form ABS-VM program, let M be a module of Prg, and let Θ have
omain ddom(M). Let M.N be a class/interface such that M.N, Θ, Φ ⊢

: Θ ′, Φ ′ holds, where G ∈ {FD, MD, MH, adds AD, adds MH} (see
ig. 6). Let a be the attribute G is adding to M.N and let π be a product
f M. Then, the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,Φ,Prg) = true implies eval(π,Θ(M.N.a),Prg) = false.

2. eval(π,Θ ′(M.N.a),Prg) = true if and only if
either eval(π,Θ(M.N.a),Prg) = true or eval(π,Φ,Prg) =

true.
Moreover, Θ ′(x) = Θ(x), for all x ∈ ddom(M) such that
x ̸= M.N.a.

Proof. In these rules Φ is an activation condition (true for adding
to the core), while Φ ′ is an applicability constraint. The proof is
by verifying the statements for rules [A:Field], [A:Meth], [A:MHeader],
[A:AddA], [A:AddMH]. □

Lemma 4 (Removing Attributes from Classes/interfaces). Let Prg be
a normal form ABS-VM program, let M be a module of Prg, and
let Θ have domain ddom(M). Let M.N be a class/interface such that
M.N, Θ, Φ ⊢ G : Θ ′, Φ ′ holds, where G ∈ {removes HD, removes MH}
(see Fig. 6). Let a be the attribute that G removes from M.N and let π

be a product of M. Then, the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,Φ,Prg) = true implies eval(π,Θ(M.N.a),Prg) = true.

2. eval(π,Θ ′(M.N.a),Prg) = true if and only if
both eval(π,Θ(M.N.a),Prg) = true and eval(π,Φ,Prg) =

false.
Moreover, Θ ′(x) = Θ(x) for all x ∈ ddom(M) such that
x ̸= M.N.a.

Proof. As before Φ is an activation condition (removing is never
done in the core), while Φ ′ is an applicability constraint. The
proof is by verifying the statements for the rules [A:RemFD] and
[A:RemMH]. □

Lemma 5 (Modifying Methods in Classes). Let Prg be a nor-
mal form ABS-VM program, let M be a module of Prg, and let Θ

have domain ddom(M). Let M.C be a class such that M.C, Θ, Φ ⊢

modifies VT m(VT x) { S return E; } : Θ ′, Φ ′ holds. If π is a product
f M then the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,Φ,Prg) = true implies eval(π,Θ(M.N.m),Prg) = true.

2. Θ ′
= Θ .

Proof. Here Φ is the activation condition of a delta. The proof is
by verifying the statements for rule [A:ModM]. □

E.2. Classes/interfaces

Lemma 6 (Adding Classes/interfaces to Modules). Let Prg be a
normal form ABS-VM program, let M be a module of Prg, and let Θ

have domain ddom(M). Assume M, Θ, Φ ⊢ G : Θ ′, Φ ′ holds, where
G ∈ {CD, ID, adds CD, adds ID} (see Fig. 6). Let N be the class/interface
that G is adding to M and let π be a product of M.
28
Consider {Z1, . . . , Zm}, where Zi ∈ {FD, MD, MH} is the body of N,
such that in the derivation of G above there are sub-derivations of
M.I, Θi−1, Φ ⊢ Zi : Θi, Φi for 1 ≤ i ≤ m. Then, the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,⋀1≤i≤m Φi,Prg) = true and eval(π,Φ,Prg) = true both
imply that eval(π,Θ(M.N),Prg) = false.

2. eval(π,Θ ′(M.N),Prg) = true if and only if
either eval(π,Θ(M.N),Prg) = true or eval(π,Φ,Prg) = true.
Moreover, Θ ′(x) = Θm(x) for all x ∈ ddom(M) such that
x ̸= M.N.

roof. As before, Φ is an activation condition (and true in the
ore). The proof uses Lemma 3 on the derivation ending by rule
pplications [A:Class], [A:Interface], [A:AddC], [A:AddI]. □

emma 7 (Removing Classes/interfaces from Modules). Let Prg be
normal form ABS-VM program, let M be a module of Prg, and let
have domain ddom(M). Assume M, Θ, Φ ⊢ G : Θ ′, Φ ′ holds,

here G ∈ {removes class N, removes interface N}. Let N be the
lass/interface that G removes from M and let π be a product of M.
hen, the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,Φ,Prg) = true implies eval(π,Θ(M.N),Prg) = true.

2. eval(π,Θ ′(M.N),Prg) = true if and only if
both eval(π,Θ(M.N),Prg) = true and eval(π,Φ,Prg) = false.

3. For all M.N.q ∈ dom(Θ):
eval(π,Θ ′(M.N.q),Prg) = true if and only if
both eval(π,Θ(M.N.q),Prg) = true and eval(π,Φ,Prg) =

false.
Moreover, for all x ∈ ddom(M) with x ̸∈ M.N ∪ {M.N.q |

M.N.q ∈ dom(Θ)} we have Θ ′(x) = Θm(x).

roof. As before, Φ is an activation condition (no removal in the
ore). The proof is by verifying the statements for rules [A:RemC]
nd [A:RemI]. □

emma 8 (Modifying Classes/interfaces in Modules). Let Prg be a
ormal form ABS-VM program, M a module of Prg, and let Θ have
omain ddom(M). Assume

, Θ, Φ ⊢ modifies
class N

interface N
[[[adds . . .]]] [[[removes . . .]]]

× {Op1 · · ·Opn} : Θ ′, Φ ′

holds, where Opi ∈ {AO, SO}. In the premise of this derivation are
ub-derivations of M.I, Θi−1, Φ ⊢ Opi : Θi, Φi for 1 ≤ i ≤ m. If π
s a product of M then the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,⋀1≤i≤n Φi,Prg) = true and eval(π,Φ,Prg) = true both
imply that eval(π,Θ(M.N),Prg) = true.

2. Θ ′
= Θn.

roof. Here Φ is the activation condition of a delta. The proof
ses Lemmas 3–5 on the derivation ending in applications of rules
A:ModC] and [A:ModI]. □

.3. Deltas and modules

emma 9 (Applying Deltas, Building Modules). Let Prg be a normal
orm ABS-VM program, let M be a module of Prg, and let Θ0 have
omain ddom(M). Assume one of the following cases applies:

• M, Θ0 ⊢ delta M.D; CO1 · · · COn IOn+1 · · · IOm : Θ ′, Φ ′ holds.
Therefore, in the premises of this derivation we have
M, Θi−1, M.D ⊢ COi : Θi, Φi for 1 ≤ i ≤ n and M, Θi−1, M.D ⊢

IO : Θ , Φ for n + 1 ≤ i ≤ m.
i i i

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

I

t
e

• ⊢ module M; · · · Defn1 · · · Defnn [[[init{ S}]]] Dltn+1 · · ·

Dltm CK : Θ ′, Φ ′ holds. Therefore, in the premises of this
derivation we find:

1. Θ0 = [Q ↦→ false]Q∈ddom(M)
2. M, Θi−1, true ⊢ Defni : Θi, Φi for 1 ≤ i ≤ n
3. M, Θi−1 ⊢ Dlti : Θi, Φi for n + 1 ≤ i ≤ m

f π is a product of M then the following holds:

1. eval(π,Φ ′,Prg) = true if and only if
eval(π,Φi,Prg) = true for all i such that 1 ≤ i ≤ m.

2. Θ ′
= Θm.

Proof. The proof of the first case uses Lemmas 6–8 on the
derivation ending with application of rule [A:Delta]. The proof of
he second case uses the first case and Lemma 6 on the derivation
nding with application of rule [A:Module]. □

References

Alouneh, S., Abed, S., Shayeji, M.H.A., Mesleh, R., 2019. A comprehensive study
and analysis on SAT-solvers: advances, usages and achievements. Artif. Intell.
Rev. 52, 2575–2601.

Apel, S., Batory, D.S., Kästner, C., Saake, G., 2013. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer.

Batory, D., 2005. Feature models, grammars, and propositional formulas. In:
Proceedings of International Software Product Line Conference. SPLC, In:
LNCS, vol. 3714, Springer, pp. 7–20. http://dx.doi.org/10.1007/11554844_3.

Batory, D., Sarvela, J.N., Rauschmayer, A., 2004. Scaling step-wise refinement.
IEEE Trans. Softw. Eng. 30, 355–371. http://dx.doi.org/10.1109/TSE.2004.23.

Bettini, L., Damiani, F., 2017. Xtraitj: Traits for the Java platform. J. Syst. Softw.
131, 419–441. http://dx.doi.org/10.1016/j.jss.2016.07.035.

Bettini, L., Damiani, F., Schaefer, I., 2013a. Compositional type checking of delta-
oriented software product lines. Acta Inform. 50 (2), 77–122. http://dx.doi.
org/10.1007/s00236-012-0173-z.

Bettini, L., Damiani, F., Schaefer, I., Strocco, F., 2013b. TraitRecordJ: A pro-
gramming language with traits and records. Sci. Comput. Program. 78 (5),
521–541. http://dx.doi.org/10.1016/j.scico.2011.06.007.

Bono, V., Damiani, F., Giachino, E., 2008. On traits and types in a java-like
setting. In: Fifth IFIP International Conference on Theoretical Computer
Science - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations
of Computer Science, September 7-10, 2008, Milano, Italy. pp. 367–382.
http://dx.doi.org/10.1007/978-0-387-09680-3_25.

Bracha, G., 1992. The Programming Language JIGSAW: Mixins, Modularity and
Multiple Inheritance (Ph.D. thesis). Department of Comp. Sci., Univ. of Utah.

Cardelli, L., 1997. Program fragments, linking, and modularization. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’97, ACM, New York, NY, USA, pp. 266–
277. http://dx.doi.org/10.1145/263699.263735, URL: http://doi.acm.org/10.
1145/263699.263735.

Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R., 2010. Variability
modelling in the ABS language. In: FMCO. In: LNCS, vol. 6957, Springer, pp.
204–224. http://dx.doi.org/10.1007/978-3-642-25271-6_11.

Clements, P., Northrop, L., 2001. Software Product Lines: Practices & Patterns.
Addison Wesley Longman.

Czarnecki, K., Eisenecker, U.W., 2000. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley.

Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., 2017a. A unified and formal
programming model for deltas and traits. In: FASE. In: LNCS, vol. 10202,
Springer, pp. 424–441. http://dx.doi.org/10.1007/978-3-662-54494-5_25.

Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., 2018a. Interoperability of
software product line variants. In: SPLC. ACM, pp. 264–268. http://dx.doi.org/
10.1145/3233027.3236401.

Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., 2018b. Same same but
different: Interoperability of software product line variants. In: Principled
Software Development. Springer, pp. 99–117. http://dx.doi.org/10.1007/978-
3-319-98047-8_7.

Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., Paolini, L., 2021. Variability
modules for Java-like languages. In: Mousavi, M., Schobbens, P. (Eds.), Proc.
25th ACM Intl. Systems and Software Product Line Conf., Volume A. ACM,
New York, NY, USA, pp. 1—12. http://dx.doi.org/10.1145/3461001.3471143.

Damiani, F., Lienhardt, M., 2016. On type checking delta-oriented product lines.
In: Integrated Formal Methods - 12th International Conference, IFM 2016,
Reykjavik, Iceland, June 1-5, 2016, Proceedings. In: LNCS, vol. 9681, Springer,
pp. 47–62. http://dx.doi.org/10.1007/978-3-319-33693-0_4.
29
Damiani, F., Lienhardt, M., Muschevici, R., Schaefer, I., 2017b. An extension of
the ABS toolchain with a mechanism for type checking SPLs. In: Integrated
Formal Methods, 13th Intl. Conf., IFM, Turin, Italy. In: LNCS, vol. 10510,
Springer, pp. 111–126. http://dx.doi.org/10.1007/978-3-319-66845-1_8.

Damiani, F., Lienhardt, M., Paolini, L., 2019. A formal model for multi software
product lines. Sci. Comput. Program. 172, 203–231. http://dx.doi.org/10.1016/
j.scico.2018.11.005.

Damiani, F., Schaefer, I., 2012. Family-based analysis of type safety for delta-
oriented software product lines. In: Margaria, T., Steffen, B. (Eds.), Leveraging
Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change. In: LNCS, vol. 7609, Springer Berlin Heidelberg, pp.
193–207. http://dx.doi.org/10.1007/978-3-642-34026-0_15.

Damiani, F., Schaefer, I., Schuster, S., Winkelmann, T., 2014a. Delta-trait
programming of software product lines. In: Margaria, T., Steffen, B.
(Eds.), Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 289–303. http://dx.doi.org/10.1007/978-3-662-
45234-9_21.

Damiani, F., Schaefer, I., Winkelmann, T., 2014b. Delta-oriented multi software
product lines. In: Proceedings of the 18th International Software Product
Line Conference - Volume 1. SPLC ’14, ACM, pp. 232–236. http://dx.doi.org/
10.1145/2648511.2648536.

Delaware, B., Cook, W.R., Batory, D., 2009. Fitting the pieces together: A machine-
checked model of safe composition. In: ESEC/FSE. ACM, pp. 243–252. http:
//dx.doi.org/10.1145/1595696.1595733.

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P., 2006. Traits: A
mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28 (2),
331–388. http://dx.doi.org/10.1145/1119479.1119483.

Hähnle, R., 2013. The abstract behavioral specification language: A tutorial
introduction. In: Bonsangue, M., de Boer, F., Giachino, E., Hähnle, R. (Eds.),
Intl. School on Formal Models for Components and Objects: Post Proceedings.
In: LNCS, vol. 7866, Springer, pp. 1–37. http://dx.doi.org/10.1007/978-3-642-
40615-7_1.

Holl, G., Grünbacher, P., Rabiser, R., 2012. A systematic review and an expert
survey on capabilities supporting multi product lines. Inf. Softw. Technol.
54 (8), 828–852. http://dx.doi.org/10.1016/j.infsof.2012.02.002, URL: http:
//www.sciencedirect.com/science/article/pii/S095058491200033X.

Igarashi, A., Pierce, B.C., Wadler, P., 1999. Featherweight Java: A minimal core
calculus for Java and GJ. In: Hailpern, B., Northrop, L.M., Berman, A.M. (Eds.),
Proc. ACM SIGPLAN Conf. on Object-Oriented Programming Systems, Lan-
guages & Applications (OOPSLA), Denver, Colorado, USA. ACM, pp. 132–146.
http://dx.doi.org/10.1145/320384.320395.

Igarashi, A., Pierce, B., Wadler, P., 2001. Featherweight Java: A minimal core
calculus for Java and GJ. ACM TOPLAS 23 (3), 396–450. http://dx.doi.org/10.
1145/503502.503505.

Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M., 2010. ABS: A
core language for abstract behavioral specification. In: Formal Methods for
Components and Objects - 9th International Symposium, FMCO 2010, Graz,
Austria, November 29 - December 1, 2010. Revised Papers. pp. 142–164.
http://dx.doi.org/10.1007/978-3-642-25271-6_8.

Kamburjan, E., Hähnle, R., 2016. Uniform modeling of railway operations. In:
FTSCS. In: Communications in Computer and Information Science, vol. 694,
pp. 55–71. http://dx.doi.org/10.1007/978-3-319-53946-1_4.

Kamburjan, E., Hähnle, R., 2018. Prototyping formal system models with active
objects. In: Bartoletti, M., Knight, S. (Eds.), Proceedings 11th Interaction
and Concurrency Experience, ICE 2018, Madrid, Spain, June 20-21, 2018. In:
EPTCS, vol. 279, pp. 52–67. http://dx.doi.org/10.4204/EPTCS.279.7.

Kamburjan, E., Hähnle, R., Schön, S., 2018. Formal modeling and analysis of
railway operations with active objects. Sci. Comput. Program. 166, 167–193.
http://dx.doi.org/10.1016/j.scico.2018.07.001.

Kästner, C., Apel, S., Thüm, T., Saake, G., 2012a. Type checking annotation-based
product lines. ACM Trans. Softw. Eng. Methodol. 21 (3), http://dx.doi.org/10.
1145/2211616.2211617.

Kästner, C., Ostermann, K., Erdweg, S., 2012b. A variability-aware module system.
In: Leavens, G.T., Dwyer, M.B. (Eds.), Proc. ACM International Conference on
Object Oriented Programming Systems Languages and Applications. OOP-
SLA ’12, ACM, New York, NY, USA, pp. 773–792. http://dx.doi.org/10.1145/
2384616.2384673.

Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.,
2014. DeltaJ 1.5: delta-oriented programming for Java 1.5. In: Kolodziej, J.,
Childers, B.R. (Eds.), Intl. Conf. on Principles and Practices of Programming
on the Java Platform Virtual Machines, Languages and Tools, PPPJ, Cracow,
Poland. ACM, pp. 63–74. http://dx.doi.org/10.1145/2647508.

Lagorio, G., Servetto, M., Zucca, E., 2009. Featherweight Jigsaw: A minimal
core calculus for modular composition of classes. In: Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented Programming.
Springer-Verlag, Berlin, Heidelberg, pp. 244–268. http://dx.doi.org/10.1007/
978-3-642-03013-0_12.

Lagorio, G., Servetto, M., Zucca, E., 2012. Featherweight Jigsaw - Replacing
inheritance by composition in Java-like languages. Inform. and Comput. 214,
86–111. http://dx.doi.org/10.1016/j.ic.2012.02.004.

http://refhub.elsevier.com/S0164-1212(22)00186-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb2
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1016/j.jss.2016.07.035
http://dx.doi.org/10.1007/s00236-012-0173-z
http://dx.doi.org/10.1007/s00236-012-0173-z
http://dx.doi.org/10.1007/s00236-012-0173-z
http://dx.doi.org/10.1016/j.scico.2011.06.007
http://dx.doi.org/10.1007/978-0-387-09680-3_25
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb9
http://dx.doi.org/10.1145/263699.263735
http://doi.acm.org/10.1145/263699.263735
http://doi.acm.org/10.1145/263699.263735
http://doi.acm.org/10.1145/263699.263735
http://dx.doi.org/10.1007/978-3-642-25271-6_11
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb13
http://dx.doi.org/10.1007/978-3-662-54494-5_25
http://dx.doi.org/10.1145/3233027.3236401
http://dx.doi.org/10.1145/3233027.3236401
http://dx.doi.org/10.1145/3233027.3236401
http://dx.doi.org/10.1007/978-3-319-98047-8_7
http://dx.doi.org/10.1007/978-3-319-98047-8_7
http://dx.doi.org/10.1007/978-3-319-98047-8_7
http://dx.doi.org/10.1145/3461001.3471143
http://dx.doi.org/10.1007/978-3-319-33693-0_4
http://dx.doi.org/10.1007/978-3-319-66845-1_8
http://dx.doi.org/10.1016/j.scico.2018.11.005
http://dx.doi.org/10.1016/j.scico.2018.11.005
http://dx.doi.org/10.1016/j.scico.2018.11.005
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://dx.doi.org/10.1007/978-3-662-45234-9_21
http://dx.doi.org/10.1007/978-3-662-45234-9_21
http://dx.doi.org/10.1007/978-3-662-45234-9_21
http://dx.doi.org/10.1145/2648511.2648536
http://dx.doi.org/10.1145/2648511.2648536
http://dx.doi.org/10.1145/2648511.2648536
http://dx.doi.org/10.1145/1595696.1595733
http://dx.doi.org/10.1145/1595696.1595733
http://dx.doi.org/10.1145/1595696.1595733
http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1016/j.infsof.2012.02.002
http://www.sciencedirect.com/science/article/pii/S095058491200033X
http://www.sciencedirect.com/science/article/pii/S095058491200033X
http://www.sciencedirect.com/science/article/pii/S095058491200033X
http://dx.doi.org/10.1145/320384.320395
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-319-53946-1_4
http://dx.doi.org/10.4204/EPTCS.279.7
http://dx.doi.org/10.1016/j.scico.2018.07.001
http://dx.doi.org/10.1145/2211616.2211617
http://dx.doi.org/10.1145/2211616.2211617
http://dx.doi.org/10.1145/2211616.2211617
http://dx.doi.org/10.1145/2384616.2384673
http://dx.doi.org/10.1145/2384616.2384673
http://dx.doi.org/10.1145/2384616.2384673
http://dx.doi.org/10.1145/2647508
http://dx.doi.org/10.1007/978-3-642-03013-0_12
http://dx.doi.org/10.1007/978-3-642-03013-0_12
http://dx.doi.org/10.1007/978-3-642-03013-0_12
http://dx.doi.org/10.1016/j.ic.2012.02.004

F. Damiani, R. Hähnle, E. Kamburjan et al. The Journal of Systems & Software 195 (2023) 111510

L

L

M

M

N

P

R

R

R

S

S

S

S

S

S

ienhardt, M., Clarke, D., 2012. Conflict detection in delta-oriented programming.
In: ISoLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceedings,
Part I. In: LNCS, vol. 7609, Springer, pp. 178–192. http://dx.doi.org/10.1007/
978-3-642-34026-0_14.

iquori, L., Spiwack, A., 2008. Feathertrait: A modest extension of featherweight
java. ACM Trans. Program. Lang. Syst. 30 (2), 11:1–11:32. http://dx.doi.org/
10.1145/1330017.1330022.

auliadi, R., Setyautami, M.R.A., Afriyanti, I., Azurat, A., 2017. A platform for
charities system generation with SPL approach. In: Proc. Intl. Conf. on
Information Technology Systems and Innovation. ICITSI, IEEE, New York, NY,
USA, pp. 108–113. http://dx.doi.org/10.1109/ICITSI.2017.8267927.

ikhajlov, L., Sekerinski, E., 1998. A study of the fragile base class problem. In:
ECOOP’98. In: LNCS, vol. 1445, pp. 355–383, cited By 1.

ierstrasz, O., Ducasse, S., Schärli, N., 2006. Flattening traits. J. Object Technol.
5 (4), 129–148. http://dx.doi.org/10.5381/jot.2006.5.4.a4.

ohl, K., Böckle, G., van der Linden, F., 2005. Software Product Line Engineering
- Foundations, Principles, and Techniques. Springer, Berlin, Germany.

eppy, J.H., Turon, A., 2007. Metaprogramming with traits. In: Ernst, E. (Ed.),
ECOOP 2007 - Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 - August 3, 2007, Proceedings. In: Lecture Notes
in Computer Science, vol. 4609, Springer, pp. 373–398. http://dx.doi.org/10.
1007/978-3-540-73589-2_18.

offe, A.J., Calderon, J.S.T., 2021. Random formula generators. CoRR abs/2110.
09228. URL: https://arxiv.org/abs/2110.09228. arXiv:2110.09228.

oman, S., 2008. Lattices and Ordered Sets. Springer New York, URL: https:
//books.google.it/books?id=NZN8aum26LgC.

chaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N., 2010. Delta-oriented
programming of software product lines. In: Software Product Lines: Going
beyond (SPLC 2010). In: LNCS, vol. 6287, pp. 77–91. http://dx.doi.org/10.
1007/978-3-642-15579-6_6.

chaefer, I., Damiani, F., 2010. Pure delta-oriented programming. In: Proceed-
ings of the 2nd International Workshop on Feature-Oriented Software
Development. FOSD ’10, ACM, pp. 49–56. http://dx.doi.org/10.1145/1868688.
1868696.

chaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K., 2012. Software diversity. Int. J. Softw.
Tools Technol. Transf. 14 (5), 477–495. http://dx.doi.org/10.1007/s10009-
012-0253-y.

chärli, N., Ducasse, S., Nierstrasz, O., Black, A.P., 2003. Traits: Composable
units of behaviour. In: Cardelli, L. (Ed.), ECOOP 2003 - Object-Oriented
Programming, 17th European Conference, Darmstadt, Germany, July 21-25,
2003, Proceedings. In: LNCS, vol. 2743, Springer, pp. 248–274. http://dx.doi.
org/10.1007/978-3-540-45070-2_12.

chröter, R., Krieter, S., Thüm, T., Benduhn, F., Saake, G., 2016. Feature-model
interfaces: The highway to compositional analyses of highly-configurable
systems. In: Proceedings of the 38th International Conference on Software
Engineering. ICSE ’16, ACM, pp. 667–678. http://dx.doi.org/10.1145/2884781.
2884823.

chröter, R., Siegmund, N., Thüm, T., 2013a. Towards modular analysis of multi
product lines. In: Proceedings of the 17th International Software Product
Line Conference Co-Located Workshops. SPLC ’13, ACM, pp. 96–99. http:
//dx.doi.org/10.1145/2499777.2500719.
30
Schröter, R., Thüm, T., Siegmund, N., Saake, G., 2013b. Automated analysis
of dependent feature models. In: The Seventh International Workshop
on Variability Modelling of Software-Intensive Systems, VaMoS ’13, Pisa ,
Italy, January 23 - 25, 2013. pp. 9:1–9:5. http://dx.doi.org/10.1145/2430502.
2430515.

Setyautami, M.R.A., Adianto, D., Azurat, A., 2018. Modeling multi software
product lines using UML. In: Proc. 22nd Intl. Systems and Software Product
Line Conference, Vol. 1. ACM, New York, NY, USA, pp. 274–278. http://dx.
doi.org/10.1145/3233027.3236400.

Setyautami, M.R.A., Hähnle, R., 2021. An architectural pattern to realize multi
software product lines in Java. In: Grünbacher, P., Seidl, C., Dhungana, D.,
Lovasz-Bukvova, H. (Eds.), Proc. 15th Intl. Working Conf. on Variabil-
ity Modelling of Software-Intensive Systems, Krems, Austria. ACM Press,
pp. 9:1–9:9. http://dx.doi.org/10.1145/3442391.3442401.

Setyautami, M.R.A., Rubiantoro, R.R., Azurat, A., 2019. Model-driven engineering
for delta-oriented software product lines. In: 26th Asia-Pacific Software
Engineering Conf., APSEC, Putrajaya, Malaysia. IEEE, pp. 371–377. http://dx.
doi.org/10.1109/APSEC48747.2019.00057.

Smith, C., Drossopoulou, S., 2005. Chai: Traits for java-like languages. In:
Black, A.P. (Ed.), ECOOP 2005 - Object-Oriented Programming. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 453–478. http://dx.doi.org/10.1007/
11531142_20.

Strniša, R., Sewell, P., Parkinson, M., 2007. The Java module system: Core
design and semantic definition. In: Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications. OOPSLA ’07, Association for Computing Machinery, New
York, NY, USA, pp. 499–514. http://dx.doi.org/10.1145/1297027.1297064.

Thaker, S., Batory, D., Kitchin, D., Cook, W., 2007. Safe composition of product
lines. In: Proceedings of the 6th International Conference on Generative
Programming and Component Engineering. GPCE ’07, ACM, New York, NY,
USA, pp. 95–104. http://dx.doi.org/10.1145/1289971.1289989.

Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G., 2014. A classification and
survey of analysis strategies for software product lines. ACM Comput. Surv.
47 (1), 6:1–6:45. http://dx.doi.org/10.1145/2580950.

Trujillo-Tzanahua, G.I., Juárez-Martínez, U., Aguilar-Lasserre, A.A., Cortés-
Verdín, M.K., 2018. Multiple software product lines: applications and
challenges. In: Mejia, J., Muñoz, M., Rocha, A., Quiñonez, Y., Calvo-Manzano, J.
(Eds.), Trends and Applications in Software Engineering. Springer Interna-
tional Publishing, Cham, pp. 117–126. http://dx.doi.org/10.1007/978-3-319-
69341-5_11.

Wirth, N., 1980. The module: A system structuring facility in high-level program-
ming languages. In: Tobias, J.M. (Ed.), Language Design and Programming
Methodology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–24. http:
//dx.doi.org/10.1007/3-540-09745-7_1.

Wong, P.Y.H., Diakov, N., Schaefer, I., 2012. Modelling distributed adaptable
object oriented systems using HATS approach: A fredhopper case study
(invited paper). In: Beckert, B., Damiani, F., Gurov, D. (Eds.), 2nd Intl. Conf. on
Formal Verification of Object-Oriented Software, Torino, Italy. In: LNCS, vol.
7421, Springer, pp. 49–66. http://dx.doi.org/10.1007/978-3-642-31762-0_5.

http://dx.doi.org/10.1007/978-3-642-34026-0_14
http://dx.doi.org/10.1007/978-3-642-34026-0_14
http://dx.doi.org/10.1007/978-3-642-34026-0_14
http://dx.doi.org/10.1145/1330017.1330022
http://dx.doi.org/10.1145/1330017.1330022
http://dx.doi.org/10.1145/1330017.1330022
http://dx.doi.org/10.1109/ICITSI.2017.8267927
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb42
http://dx.doi.org/10.5381/jot.2006.5.4.a4
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb44
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb44
http://refhub.elsevier.com/S0164-1212(22)00186-8/sb44
http://dx.doi.org/10.1007/978-3-540-73589-2_18
http://dx.doi.org/10.1007/978-3-540-73589-2_18
http://dx.doi.org/10.1007/978-3-540-73589-2_18
http://arxiv.org/abs/2110.09228
http://arxiv.org/abs/2110.09228
http://arxiv.org/abs/2110.09228
https://arxiv.org/abs/2110.09228
http://arxiv.org/abs/2110.09228
https://books.google.it/books?id=NZN8aum26LgC
https://books.google.it/books?id=NZN8aum26LgC
https://books.google.it/books?id=NZN8aum26LgC
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1145/1868688.1868696
http://dx.doi.org/10.1145/1868688.1868696
http://dx.doi.org/10.1145/1868688.1868696
http://dx.doi.org/10.1007/s10009-012-0253-y
http://dx.doi.org/10.1007/s10009-012-0253-y
http://dx.doi.org/10.1007/s10009-012-0253-y
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1145/2884781.2884823
http://dx.doi.org/10.1145/2884781.2884823
http://dx.doi.org/10.1145/2884781.2884823
http://dx.doi.org/10.1145/2499777.2500719
http://dx.doi.org/10.1145/2499777.2500719
http://dx.doi.org/10.1145/2499777.2500719
http://dx.doi.org/10.1145/2430502.2430515
http://dx.doi.org/10.1145/2430502.2430515
http://dx.doi.org/10.1145/2430502.2430515
http://dx.doi.org/10.1145/3233027.3236400
http://dx.doi.org/10.1145/3233027.3236400
http://dx.doi.org/10.1145/3233027.3236400
http://dx.doi.org/10.1145/3442391.3442401
http://dx.doi.org/10.1109/APSEC48747.2019.00057
http://dx.doi.org/10.1109/APSEC48747.2019.00057
http://dx.doi.org/10.1109/APSEC48747.2019.00057
http://dx.doi.org/10.1007/11531142_20
http://dx.doi.org/10.1007/11531142_20
http://dx.doi.org/10.1007/11531142_20
http://dx.doi.org/10.1145/1297027.1297064
http://dx.doi.org/10.1145/1289971.1289989
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1007/978-3-319-69341-5_11
http://dx.doi.org/10.1007/978-3-319-69341-5_11
http://dx.doi.org/10.1007/978-3-319-69341-5_11
http://dx.doi.org/10.1007/3-540-09745-7_1
http://dx.doi.org/10.1007/3-540-09745-7_1
http://dx.doi.org/10.1007/3-540-09745-7_1
http://dx.doi.org/10.1007/978-3-642-31762-0_5

	Variability modules
	Introduction
	Introducing Variability Modules
	Code Reuse in SPL Implementation
	Design Decisions
	Syntax of Variability Modules
	ABS-VM Syntax
	ABS-VM sanity conditions

	Encapsulated Variability
	PEV-compliance
	Maximal set of [language=ABS,mathescape=true]!unique! annotations

	Flattening Semantics of Variability Modules
	Auxiliary Functions
	Flattening

	Type-safety for ABS-VM Programs
	Well-typed Vf-ABS Programs
	Type-safety

	Family-based Checking for ABS-VM Programs
	Type Uniformity
	Pre-Typing
	Applicability Consistency for Normal Form ABS-VM Programs

	Integration into the ABS Tool Chain
	Evaluation
	Research Questions
	Experiment Design
	Experiment Design and Subject for RQ 1 and RQ 2
	Experiment Design and Subject for RQ 3 and RQ 4

	Results for RQ1
	FormbaR
	WMMF
	AISCO

	Results for RQ 2
	FormbaR
	WMMF

	Results for RQ 3 and RQ 4
	Experiments on the FormbaR, WMMF, and AISCO Case Study
	Experiments on Synthetic Data Sets

	Threats to Validity

	Related Work
	Programming Constructs for MPLs and Variant Interoperability
	Family-based Checking for SPLs of Java-like Programs
	Variability-aware Module Systems
	Variability Modules in Java

	Conclusion and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Rules for Delta Application
	Appendix B. Rules for Vf-ABS module typing
	Appendix C. Rules for VM Pre-typing
	Appendix D. Rules for Applicability Constraint Inference
	Appendix E. Proof of Theorem 2
	Attributes
	Classes/Interfaces
	Deltas and Modules

	References

