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Parametrizing TMD parton densities and fragmentation functions in ways that consistently match their
large transverse-momentum behavior in standard collinear factorization has remained notoriously difficult.
We show how the problem is solved in a recently introduced set of steps for combining perturbative and
nonperturbative transverse momentum in TMD factorization. Called a “bottom-up” approach in a previous
article, here we call it a “hadron structure oriented” (HSO) approach to emphasize its focus on preserving a
connection to the TMD parton model interpretation. We show that the associated consistency constraints
improve considerably the agreement between parametrizations of TMD functions and their large-kT
behavior, as calculated in collinear factorization. The procedure discussed herein will be important for
guiding future extractions of TMD parton densities and fragmentation functions and for testing TMD
factorization and universality. We illustrate the procedure with an application to semi-inclusive deep
inelastic scattering (SIDIS) structure functions at an input scale Q0, and we show that there is improved
consistency between different methods of calculating at moderate transverse momentum. We end with a
discussion of plans for future phenomenological applications.
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I. INTRODUCTION

Transverse-momentum dependent (TMD) parton
distribution functions (pdfs) and/or fragmentation functions
(ffs), together with the TMD factorization theorems [1–3],
have acquired a wide range of applications in hadronic,
nuclear and high-energy phenomenology [4,5] over the past
three decades. They are useful both for studying the role
of intrinsic or nonperturbative effects in hadrons [6,7] and
for predicting transverse-momentum distributions in cross
sections after evolution to high energies. In the former case,
they play an important role in testing, and thus refining,
the partonic constituent interpretation of hadron structure.
However, separating truly nonperturbative or intrinsic

transverse-momentum effects from the perturbatively gen-
erated transverse momentum that is calculable with col-
linear factorization has remained a difficult challenge. It is a
problem that limits the predictive power of TMD factori-
zation and creates ambiguity about the interpretation of
phenomenologically extracted nonperturbative objects.
This is especially the case with lower invariant energies,
near the boundary between what may be considered an
appropriate hard scale.
To see the issues clearly, recall that one normally

categorizes contributions to a TMD cross section, such
as semi-inclusive deep-inelastic scattering (SIDIS), accord-
ing its transverse-momentum regions. On one hand, the
small transverse-momentum regions are associated with
nonperturbative effects in hadronic bound states. There,
purely nonpertubative parton model descriptions are often
quite successful phenomenologically, especially for mod-
erate Q. On the other hand, in the regions of large qT
perturbative tails where qT ≈Q, calculations can be per-
formed in fixed-order perturbation theory with collinear
factorization with Q as a hard scale. One example of this
way of cataloging physically distinct regions can be seen in
the treatment of SIDIS in Ref. [8], following the theoretical
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work in Ref. [9], where Fig. 17 shows two separate fits
for the small transverse-momentum nonperturbative
peak and the large transverse-momentum perturbative tail.
Reference [8] attributes the behavior in each region to a
different underlying physical mechanism, namely a
nonperturbative peak and a perturbative tail at small and
large transverse momentum, respectively. There one reads
that “the two exponential functions in our parametrization
F1 can be attributed to two completely different under-
lying physics mechanisms that overlap in the region
PhT ≃ 1.0 ðGeV=cÞ2.”
Individual TMD pdfs and ffs can be viewed in an

analogous way. When the transverse momentum in an
individual TMD pdf is comparable to the renormalization
scale μ, kT ≈ μ ≈

ffiffiffi
ζ

p
, it is straightforward to calculate the

TMD pdf directly from its operator definition at a fixed,
low order in collinear factorization. This provides a very
useful consistency check in phenomenological implemen-
tations. Namely, the parametrizations of TMD pdfs and ffs
that are used in phenomenology must, within perturbative
or power-suppressed errors, match their expressions as
obtained from fixed-order collinear factorization in the
large transverse-momentum (kT ≈ μ) limit as μ → ∞.
However, most implementations of TMD phenomenol-

ogy from the past decade find tension between the extracted
TMD functions and their large transverse-momentum
limits as calculated in fixed-order collinear factorization.
Consider, for instance, the far right panel in Fig. 6 of [10].
The pale blue dot-dashed curve is the cross section
calculation performed with TMD pdfs and ffs (the so-
called “W term” or “TMD term”). This is to be compared
with the dashed green curve (the “asymptotic” term), which
represents the large transverse-momentum asymptote of the
cross section, calculated theoretically in collinear factori-
zation. In principle, consistency demands that the TMD
term and the asymptotic term approximately overlap in a
range of ΛQCD ≪ qT ≪ Q. As the figure illustrates, this is
not the case, at least for calculations done with standard
parametrizations of collinear and TMD functions. It is only
at the extremely high energies, shown in the far left plot,
that a region starts to emerge where the asymptotic and
TMD terms (very roughly) begin to overlap at intermediate
transverse momentum. While the exact details of the
mismatch depend on the specifics of the implementation,
the trend appears to be quite general [11–14], and it applies
to other processes where TMD factorization is often used.1

The overall picture suggests that elements are still missing
from the standard way that TMD factorization gets imple-
mented at a practical level.
A separate issue is that, for transverse momentum

comparable to the hard scale (qT≈Q), the small qT ≪ Q
approximation fails and a so-called “Y term” is needed in

order to get an accurate cross section calculation. However,
the consistency problems alluded to above appear already
at the level of the qT ≪ Q contribution. In past papers,
this small-qT contribution has sometimes been called the
“W term,” and it is the contribution that involves TMD
correlation functions. It, and the TMD correlation functions
from which it is composed, is the main focus of this paper.
Throughout this paper, we will call it the “TMD term” to
emphasize its connection to TMD pdfs and ffs.
In this paper, we will show how to recover consistency

between the TMD term and the large-qT asymptote by
using an approach recently introduced by two of the
authors [16]. In the process, we will diagnose some of
the complications that, in the past, have been responsible
for a mismatch. One problem arises from the way one
imposes constraints of the form

fi=pðxÞ ≈
Z

d2kTfi=pðx; kTÞ; ð1Þ

where here there is an “≈” rather than a strict equality
because such integrals are generally ultraviolet divergent
and are only satisfied literally in a strict parton-model
interpretation where the pdf is a literal probability density.
To maintain a partonic interpretation, one hopes to preserve
an approximate version of Eq. (1) as accurately as possible.
For a given parametrization of fi=pðxÞ, the parameters in a
model of the nonperturbative transverse momentum in
fi=pðx; kTÞ are constrained by Eq. (1). Now, in standard
procedures for implementing the Collins-Soper-Sterman
(CSS) formalism and similar approaches to TMD factori-
zation, the nonperturbative transverse-momentum depend-
ence is contained within transverse-coordinate space
functions that are usually labeled gi=pðx; bTÞ [and gKðbTÞ
for the Collins-Soper (CS) kernel]. To our knowledge,
however, constraints corresponding to Eq. (1) are never
directly imposed upon the gi=pðx; bTÞ functions in phe-
nomenological applications that use the g-function
approach. As explained in Ref. [16], this will in general
produce mismatches between the models of nonperturba-
tive transverse momentum and the collinear functions
fi=pðxÞ that are used to describe the perturbative tails.
We will see with explicit examples in this paper that the
effects of the mismatch can propagate in transverse-
momentum space and spoil the matching at intermediate
regions of transverse momentum. Although we will mainly
use standard MS collinear pdfs and ffs for the parts of
calculations that require collinear factorization, we will
sometimes find it convenient in intermediate steps to work
with collinear pdfs and ffs defined as the transverse-
momentum integrals of TMD pdfs and ffs with UV cutoffs,

fcðx; μÞ≡ π

Z
μ2

0

dk2Tfi=pðx; kT; μ; ζÞ; ð2Þ1A successful implementation of the matching, that predates
modern TMD factorization theorems, was presented in [15].

GONZALEZ-HERNANDEZ, RAINALDI, and ROGERS PHYS. REV. D 107, 094029 (2023)

094029-2



where μ is the usual auxiliary mass parameter associated
with MS renormalization and ζ is the CS scale. The “c”
superscript on the left-hand side stands for “cutoff scheme.”
As will be explained in the text, the cutoff defined and MS
pdfs and ffs can be translated into one another at large μ via
relatively simple perturbative correction terms, so the
choice of which one to use is ultimately largely a matter
of convenience. However, the explicit expressions for
Eq. (2) do have the advantage of a natural and direct
connection to a TMD parton model interpretation.
A coherent treatment of the issues discussed above will

be necessary in order for a meaningful analysis of future
SIDIS data in terms of TMD parton correlation functions to
be possible, and for the interpretability of, for example,
forthcoming results from the CEBAF 12 GeV program or a
24 GeV upgrade [17], as well as for a future electron-ion
collider (EIC). In Ref. [16] we called the treatment a
“bottom-up” approach to distinguish it from more conven-
tional treatments whose starting points were tailored to
very high energies. In this paper we will instead call it the
“hadron structure oriented” (HSO) approach to emphasize
the central role of the nonperturbative input and the focus
on preserving a partonic interpretation.
In this paper, we will set up the calculation of the TMD

term for SIDIS using the HSO approach of [16], and we
will analyze in detail the transition to the large qT
asymptotic term. We will show how imposing the integral
relation in Eq. (2), ensuring a smooth transition between
nonperturbative TMD behavior at small transverse momen-
tum and the large transverse-momentum tails, and several
other adjustments to the conventional treatment fixes the
problems outlined above. Specifically, we will show how to
ensure that nonperturbative TMD pdf and ff parametriza-
tions remain reasonably consistent with their expected large
transverse-momentum behavior, especially near the input
scale. This work complements other efforts to address
similar problems, for example [18,19] imposes continuity
and smoothness conditions on g-functions directly in
coordinate space.
The structure of the paper is as follows: In Sec. II, we

summarize the basic setup of SIDIS following the HSO
organization of TMD factorization from [16]. We also
explain the notation to be used throughout the paper. In
Sec. III, we write down the general parametrizations of the
TMD pdfs and ffs that we will use for calculations, and in
Sec. IV we show how to specialize to specific models of
the very small transverse-momentum behavior, using
Gaussian and spectator-motivated models for illustration.
In Sec. V, we explain the calculation of the large transverse-
momentum asymptotic term in the HSO approach. In
Sec. VI, we present sample calculations of the TMD term
in SIDIS, with both the Gaussian and spectator inspired
models for illustration. After analyzing how the conven-
tional approach to TMD phenomenology leads to the
complications discussed above, we show how they are

solved in the HSO approach. We end in Sec. VII by
discussing future plans for implementing phenomenologi-
cal treatments in the HSO approach.

II. SEMI-INCLUSIVE DEEP-INELASTIC
SCATTERING

We will adopt standard conventions for expressing
SIDIS cross sections in the current fragmentation region,
and our labels for the kinematical variables are mostly
consistent with those of [20]. A lepton with momentum l
scatters off a hadron target with momentum p, and the
momentum of the recoiling lepton is l0. The final state
contains a measured hadron with momentum PB and is
inclusive in all other final states X,

lþ p → l0 þ PB þ X: ð3Þ

Throughout this paper, we will use the usual Lorentz
invariant kinematical variables,

q2 ¼ −Q2; xbj ¼
Q2

2p · q
; zh ¼

PB · p
p · q

; ð4Þ

where q≡ ðl − l0Þ is the momentum of the exchanged
photon. Except where specified, we will work in the Breit
frame, with the proton moving in the plus light-cone
direction (see Fig. 1). We will drop all power-suppressed
target and final-state kinematical mass corrections so that
Breit frame momentum fractions are

xN ≡ −
pþ

qþ
≈ xbj; ð5Þ

where the “≈” is a reminder that this identification only
holds up to target power-suppressed target-mass corrections.
For characterizing regions of transverse momentum,

we will use the variable

qT ≡ −
PBT

zN
: ð6Þ

FIG. 1. Schematic of a SIDIS event as observed in the Breit
frame. The dashed green lines represent the unobserved particles
after the collision.
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Here, qT is the transverse momentum of the virtual photon
in a frame, which we call the “hadron frame,” where the
target and final state hadrons are exactly back-to-back, and

zN ≡ P−
B

q−
: ð7Þ

More details concerning the basic kinematical setup that
we use may be found in [20]. In this paper, we will work in
a strictly leading power approach, where xbj ≈ xN and
zN ≈ zh. To simplify notation, therefore, we will drop the
subscripts on x and z from here forward.

Describing the cross section accurately over the full
range of qT requires that one merge the treatment tailored to
the qT=Q ≪ 1 region (the TMD term) with the collinear
factorization treatment appropriate to the qT ≈Q region.
Both calculations must agree approximately in the inter-
mediate ΛQCD ≪ qT ≪ Q region. It is the treatment of the
qT ≪ Q region that involves TMD pdfs and ffs, and it is
this contribution that we will focus on in this paper. In the
small qT limit, and neglecting kinematical hadron mass
corrections, zN ≈ z.
The usual TMD-factorization expression for the had-

ronic tensor is

Wμνðx;Q; z;PBTÞ ¼
X
j

Hμν
j

Z
d2k1Td2k2Tfj=pðx; k1T; μQ;Q2ÞDh=jðz; zk2T; μQ;Q2Þδð2ÞðqT þ k1T − k2TÞ

¼
X
j

Hμν
j

Z
d2bT
ð2πÞ2 e

−iqT·bT f̃j=pðx; bT; μQ;Q2ÞD̃h=jðz; bT; μQ;Q2Þ

¼
X
j

Hμν
j ½fj=p; Dh=j�; ð8Þ

where the sum is over all quark and antiquark flavors, and
each line is a differentway that SIDIS routinely gets presented
in the literature. The functions fj=pðx; k1T; μQ;Q2Þ and
Dh=jðz; zk2T; μQ;Q2Þ are the TMD pdfs and ffs respectively,
with their usual operator definitions [3]. Within the
approximations that define TMD factorization in the
current region, the longitudinal momentum fractions of
the incoming and struck partons are fixed to x and z. The
momentum variables k1T and k2T are the transverse
momenta of the struck and final state partons in the hadron
frame, andwe have fixed the auxiliary renormalization and
light cone scales μ and

ffiffiffi
ζ

p
in Eq. (2) equal to μQ and Q

respectively. (Ultimately, we will set μQ ¼ Q, but for
organizational purposes wewill keep the symbols separate
for now.) Hμν

j is a known hard coefficient. In transverse
coordinate space, the TMD pdfs and ffs are

f̃j=pðx;bT;μ; ζÞ ¼
Z

d2k1Te−ik1T·bTfj=pðx;k1T;μ;ζÞ;

D̃q=jðz;bT;μ; ζÞ ¼
Z

d2k2Teik2T·bTDq=jðz; zk2T;μ; ζÞ; ð9Þ

and we have used these in the transverse coordinate space
representation ofWμν on the third line of Eq. (8), which is
the standard form for implementing evolution. On the
last line of Eq. (8), we have used the common bracket
notation for abbreviating the transverse convolution in-
tegrals. The hard factor is

Hμν
j ¼ z

2
Tr½γνγþγμγ−�jHj2j ; ð10Þ

where the last factor (see, for instance [21]) reads

jHj2j ¼ e2j

�
1þ CFαsðμÞ

4π

�
−16þ π2

3
þ 6 ln

�
Q2

μ2

�

− 2ln2
�
Q2

μ2

��
þOðα2sðμÞÞ

�
: ð11Þ

Projection tensors applied to Eq. (8) give the usual
unpolarized quark structure functions of SIDIS,

F1;2ðx;Q; z;PBTÞ ¼ Pμν1;2Wμνðp; q; z;PBTÞ; ð12Þ

where, still dropping kinematical hadron-mass corrections,

Pμν1 ¼ −
1

2

�
gμν − 4x2

pμpν

Q2

�
; ð13aÞ

Pμν2 ¼ −x
�
gμν − 12x2

pμpν

Q2

�
; ð13bÞ

and

Pμν1 Hj;μν ¼ H1 ¼ 2zjHj2j ;
Pμν2 Hj;μν ¼ H2 ¼ 4zxjHj2j : ð14Þ

Reference [16] substantially reorganized the more stan-
dard ways of expressing the TMD factorization expression
forWμν, as summarized by the sequence of steps in Sec. VI
of that paper. Doing so required a high degree of specificity
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about exactly which versions of pdfs and ffs and their
parametrizations were being discussed in a given context,
and this led us to introduce a rather elaborate system of
notation. For conciseness, we will drop most of that
notation in this paper and instead indicate in the text which
version of a symbol is being used whenever such dis-
tinctions become necessary. When we calculate Eq. (8), we
will mostly be interested in using the final underlined f̃j=p,
D̃h=j in Eq. (61) of [16], although for the input scale
calculations in this paper the difference between the
underlined and “input” distributions is negligible. Any

perturbatively calculable quantities will be maintained
through order αs, so results are all OðαsÞ. Any collinear
pdfs or ffs should be assumed to be defined in the MS
renormalization scheme unless otherwise specified.
Power-suppressed errors will be expressed as Oðm2=Q2Þ
where m symbolizes any small mass scale like ΛQCD or a
hadron mass.
To implement evolution, we rewrite Eq. (8) in a form

where each TMD function is expressed in terms of
evolution from an input scale Q0. Thus, we use the
SIDIS version of Eq. (65) from [16],

Wμνðx;Q; z;PBTÞ ¼
X
j

Hμν
j

Z
dbT
ð2πÞ2 e

−iqT·bT f̃j=pðx; bT; μQ0
; Q2

0ÞD̃h=jðz; bT; μQ0
; Q2

0Þ

× exp

�
K̃ðbT; μQ0

Þ ln
�
Q2

Q2
0

�
þ
Z

μQ

μQ0

dμ0

μ0

�
2γðαsðμ0Þ; 1Þ − ln

Q2

μ02
γKðαsðμ0ÞÞ

��
: ð15Þ

Q0 should be understood to be the lowest value of Q for
which factorization techniques are considered reasonable,
which in practice is usually between around 1 GeV and
4 GeV for SIDIS. An important observation underlying the
HSO approach of Ref. [16] is that individual correlation
functions, fj=pðx; kT; μQ0

; Q2
0Þ or D̃h=jðz; bT; μQ0

; Q2
0Þ, have

unambiguous transverse-momentum dependence for all kT,
including all kT > Q0, which follows from their operator
definitions. Once these input functions have been deter-
mined, evolving them to larger Q is only a matter of
substituting them into Eq. (15) (after transforming into
coordinate space). This can be used to simplify the
organization of phenomenological implementations be-
cause one may focus attention on the nonperturbative
momentum-space treatment of hadron structure at Q near
the initial input scale Q0. The only input that is then
necessary to obtain the TMDs at any other higher scale is
the evolution kernel.
In this paper, we will be mostly interested in the behavior

of the input TMD pdfs and ffs, in which case the evolution
factor does not enter. In places where we do need the
evolution factor, we will use the same parametrization for
the CS kernel from Sec. VII A from Ref. [16] since it
reproduces the correct OðαsÞ perturbative behavior while
also capturing minimal basic expectations for the non-
perturbative behavior. Thus, the input scale parametrization
of the kernel that we will use is

K̃inptðbT; μQ0
Þ ¼ 2αsðμQ0

ÞCF

π

�
K0ðbTmKÞ þ ln

�
mK

μQ0

��

ð16Þ

so the full (underlined, in the notation of Ref. [16]) kernel is

K̃ðbT; μQ0
Þ ¼ 2αsðμQ̄0

ÞCF

π

�
K0ðbTmKÞ þ ln

�
mK

μQ̄0

��

−
Z

μQ0

μQ̄0

dμ0

μ0
γKðαsðμ0ÞÞ: ð17Þ

The nonperturbative model parameter in K̃ðbT; μQ0
Þ is mK .

The bar on top of Q̄0 and μQ̄0
is the symbol introduced

in [16] to indicate that this is a scale that is fixed to Q0 at
large bT, but which transitions to ∼1=bT behavior as
bT → 0. The role of the “scale transformation function,”
Q̄0, is analogous to that of b� in the usual CSS treatment,
and its exact choice is, in principle, arbitrary. We will
continue to use the choice for Q̄0 from Ref. [16]. We
provide the expression in Appendix A of this paper. We
remark that it is possible to consider other types of
nonperturbative behavior for the CS kernel within the
approach of Ref. [16], including recent calculations in
lattice QCD (see for instance Refs. [22–25]).

III. TMD PARTON DENSITY AND
FRAGMENTATION FUNCTIONS

For constructing parametrizations of the quark and
antiquark TMD pdfs and ffs, we repeat the steps in
Sec. VI of Ref. [16]. We continue to use the additive
structure from the examples in Ref. [16] to interpolate
between a nonperturbative core and the perturbative tail.
The first terms transition into the fixed OðαsðμÞÞ tail
calculation of the TMD at large kT, while the last term
is a nonperturbative “core” that describes the peak at very
small kT. The core term is further constrained by an integral
relation analogous to Eq. (2), which determines its overall
normalization factor Ch=j.
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Thus, for the input quark ff

Dinpt;h=jðz; zkT; μQ0
; Q2

0Þ ¼
1

2πz2
1

k2T þm2
Dh;j

�
AD
h=jðz; μQ0

Þ þ BD
h=jðz; μQ0

Þ ln Q2
0

k2T þm2
Dh;j

�

þ 1

2πz2
1

k2T þm2
Dh;g

AD;g
h=jðz; μQ0

Þ þ CD
h=jDcore;h=jðz; zkT;Q2

0Þ; ð18Þ

where Dcore;h=jðz; zkT;Q2
0Þ is a parametrization of the peak of the TMD ff to be specified later. To compactify notation, we

have dropped the ðn; drÞ superscripts that were used in [16], but we have included a hadron label h and j ∈ u; d; s; c;…
labels for parton flavors and antiflavors. AD, BD, and CD are abbreviations for the following expressions,

AD
h=jðz; μQ0

Þ≡X
jj0

δj0j
αsðμQ0

Þ
π

�
½ðPjj0 ⊗ dh=j0 Þðz; μQ0

Þ� − 3CF

2
dh=j0 ðz; μQ0

Þ
�
; ð19Þ

BD
h=jðz; μQ0

Þ≡X
jj0

δj0j
αsðμQ0

ÞCF

π
dh=j0 ðz; μQ0

Þ; ð20Þ

AD;g
h=jðz; μQ0

Þ≡ αsðμQ0
Þ

π
½ðPgj ⊗ dh=gÞðz; μQ0

Þ�; ð21Þ

CD
h=j ≡ 1

ND
h=j

�
dh=jðz; μQ0

Þ − AD
h=jðz; μQ0

Þ ln
�

μQ0

mDh;j

�
− BD

h=jðz; μQ0
Þ ln

�
μQ0

mDh;j

�
ln

�
Q2

0

μQ0
mDh;j

�
;

− AD;g
h=jðz; μQ0

Þ ln
�

μQ0

mDh;g

�
þ αsðμQ0

Þ
2π

�X
jj0

δj0j½Cj
0=j
Δ ⊗ dh=j0 �ðz; μQ0

Þ þ ½Cg=jΔ ⊗ dh=g�ðz; μQ0
Þ
��

; ð22Þ

where

PqqðzÞ ¼ Pq̄ q̄ðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
; ð23Þ

PgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
; ð24Þ

Cq=qΔ ðzÞ¼2PqqðzÞ lnzþCFð1−zÞ−CF
π2

12
δð1−zÞ; ð25Þ

Cg=qΔ ðzÞ ¼ 2PgqðzÞ ln zþ CFz; ð26Þ

ND
h=j ≡ 2πz2

Z
∞

0

dkTkTDcore;h=jðz; zkT;Q2
0Þ: ð27Þ

For the TMD pdfs, the expressions are similar,

finpt;i=pðx; kT; μQ0
; Q2

0Þ ¼
1

2π

1

k2T þm2
fi;p

�
Af
i=pðx; μQ0

Þ þ Bf
i=pðx; μQ0

Þ ln Q2
0

k2T þm2
fi;p

�
þ 1

2π

1

k2T þm2
fg;p

Af;g
i=pðx; μQ0

Þ

þ Cf
i=pfcore;i=pðx; kT;Q2

0Þ; ð28Þ

with the corresponding abbreviations

Af
i=pðx; μQ0

Þ≡X
ii0

δi0i
αsðμQ0

Þ
π

�
½ðPi0i ⊗ fi0=pÞðx; μQ0

Þ� − 3CF

2
fi0=pðx; μQ0

Þ
�
; ð29Þ

Bf
i=pðx; μQ0

Þ≡X
i0i

δi0i
αsðμQ0

ÞCF

π
fi0=pðx; μQ0

Þ; ð30Þ
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Af;g
i=pðx; μQ0

Þ≡ αsðμQ0
Þ

π
½ðPig ⊗ fg=pÞðx; μQ0

Þ�; ð31Þ

Cf
i=p ≡ 1

Nf
i=p

�
fi=pðx; μQ0

Þ − Af
i=pðx; μQ0

Þ ln
�
μQ0

mfi;p

�
− Bf

i=pðx; μQ0
Þ ln

�
μQ0

mfi;p

�
ln

�
Q2

0

μQ0
mfi;p

�
;

− Af;g
i=pðx; μQ0

Þ ln
�
μQ0

mfg;p

�
þ αsðμQ0

Þ
2π

�X
ii0

δi0i½Ci=i
0

Δ ⊗ fi0=p�ðx; μQ0
Þ þ ½Ci=gΔ ⊗ fg=p�ðx; μQ0

Þ
��

; ð32Þ

where

PigðxÞ ¼ TF½x2 þ ð1 − xÞ2�; ð33Þ

Ci=iΔ ðxÞ ¼ CFð1 − xÞ − CF
π2

12
δð1 − xÞ; ð34Þ

Cg=pΔ ðxÞ ¼ 2TFxð1 − xÞ; ð35Þ

Nf
i=p ≡ 2π

Z
∞

0

dkTkTfcore;i=pðx; kT;Q2
0Þ: ð36Þ

In Eq. (28), fcore;i=pðx; kT;Q2
0Þ parametrizes the core peak

of the TMD pdf. (We remind the reader that it is to be

understood that all explicit perturbative parts in this paper
are calculated to lowest order in αs.)
To extend the TMD pdf and ff parametrizations above to

account for the bT ≪ 1=Q0 region, we transform to trans-
verse coordinate space and use Eq. (92) of [16] and its
analog for the TMD pdf,

D̃h=jðz; bT; μQ0
; Q2

0Þ
¼ D̃inpt;h=jðz; bT; μQ̄0

; Q̄2
0ÞEðQ̄0=Q0; bTÞ; ð37Þ

f̃i=pðx; bT; μQ0
; Q2

0Þ
¼ f̃inpt;i=pðx; bT; μQ̄0

; Q̄2
0ÞEðQ̄0=Q0; bTÞ; ð38Þ

with an evolution factor

EðQ̄0=Q0; bTÞ≡ exp

�Z
μQ0

μQ̄0

dμ0

μ0

�
γðαsðμ0Þ; 1Þ − ln

Q0

μ0
γKðαsðμ0ÞÞ

�
þ ln

Q0

Q̄0

K̃inptðbT; μQ̄0
Þ
�
: ð39Þ

Once the numerical values of parameters in
D̃h=jðz; bT; μQ0

; Q2
0Þ and f̃i=pðx; bT; μQ0

; Q2
0Þ are deter-

mined and fixed as above, the TMD term at any other
larger scale Q is found straightforwardly by substituting
these into Eq. (15).
The scale Q̄0 is designed to be approximately Q0 for

Q≈Q0, where the only important range of bT is bT≳1=Q0,
and the left-hand and right-hand sides of Eqs. (37) and (38)
are nearly equal. For largeQ (Q ≫ Q0), the UV bT≪1=Q0

region starts to become important and cannot be ignored.
There, Q̄0 smoothly transitions into a ∼1=bT behavior such
that RG improvement is implemented in the bT → 0T limit.
The left-hand sides of Eqs. (37) and (38) are the para-
metrizations that we labeled with underlines in Eq. (60) of
Ref. [16], while the “input” functions on the left-hand sides
are to be used for phenomenological fitting for Q ≈Q0. By
construction, the left-hand and right-hand sides of Eqs. (37)
and (38), as well Q0 and Q̄0, differ negligibly in the range

of bT relevant to Q ≈Q0 phenomenology—recall the
discussion in Sec. V of [16].
For the examples implementations we will perform in

Sec. VI D, we will use the approximation

EðQ̄0=Q0; bTÞ ≈ 1; ð40Þ

and set Q̄0 → Q0, since for this paper our main focus
is on the Q ≈Q0 region and the construction of
satisfactory parametrizations for D̃inpt;h=jðz; bT; μQ0

; Q2
0Þ

and f̃inpt;i=pðx; bT; μQ0
; Q2

0Þ. At the end of Sec. VI D, we
will restore the Q̄0 treatment and confirm that its effect is
negligible at Q ≈Q0.
It can be seen by inspection that the input parametriza-

tions defined in Eqs. (18) and (28) are constrained to match
the perturbative large-kT collinear factorization approxi-
mations for the TMD pdfs and ffs,

Dpert
inpt;h=jðz; zkT; μQ0

; Q2
0Þ ¼

1

2πz2
1

k2T

�
AD
h=jðz; μQ0

Þ þ BD
h=jðz; μQ0

Þ lnQ
2
0

k2T

�
þ 1

2πz2
1

k2T
AD;g
h=jðz; μQ0

Þ; ð41Þ
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fpertinpt;i=pðx; kT; μQ0
; Q2

0Þ ¼
1

2π

1

k2T

�
Af
i=pðx; μQ0

Þ þ Bf
i=pðx; μQ0

Þ lnQ
2
0

k2T

�
þ 1

2π

1

k2T
Af;g
i=pðx; μQ0

Þ; ð42Þ

which are good approximations to the true TMD correlation
functions when kT ≈Q0 and Q0 ≫ m. Equations (41)
and (42) are calculable entirely within leading power
collinear factorization. The same expressions apply at
any value of Q, but for this paper we are especially
interested in Q near the input scale.

IV. GAUSSIAN VERSUS SCALAR
DIQUARK MODELS

The model parametrizations of the last section are still
quite general. The only choices that have been made so far
are to use an additive structure to interpolate to the order-αs
perturbative tail at kT ≈Q0 and the choice of the para-
metrization of the CS kernel in Eq. (17). Further assump-
tions are necessary before these parametrizations can
become useful.
Most of the effort in nonperturbative modeling enters in

the choices for the functional forms forDcore;h=jðz; zkT;Q2
0Þ

and fcore;i=pðx; kT;Q2
0Þ that describe the very small kT ≈ 0T

behavior. However, many approaches to modeling or
parametrizing this region of nonperturbative TMDs
already exist [26–47], and one may defer to them at this
stage in the parametrization construction. The only way
these previously existing models need to be modified is
by including the interpolation to the order αs large-kT
behavior, and by imposing integral relations analogous to
Eq. (2). All that remains is to adjustDcore;h=jðz; zkT;Q2

0Þ and
fcore;i=pðx; kT;Q2

0Þ so as to recover (at least approximately)
existing model parametrizations in the kT ≈ 0 region. The
parameters mDj;h

; mDg;h
; mfi;p ; mfg;p control the transition

between the kT model and the large kT perturbative tail.
For the purposes of this article, we will focus on two of

the most commonly used models in phenomenology that
are simple to implement. The first is the Gaussian model of
TMDs (see, for example, Refs. [48–50]), which is often
found to successfully describe data at lowerQ. It prescribes
the functions forms

fGausscore;i=pðx; kT;Q2
0Þ ¼

e−k
2
T=M

2
F

πM2
F

;

DGauss
core;h=jðz; zkT;Q2

0Þ ¼
e−z

2k2T=M
2
D

πM2
D

: ð43Þ

The second model that we will consider is inspired by the
popular spectator diquark model [28,51]. For it, we adopt
the functional forms

fSpectcore;i=pðx; kT;Q2
0Þ ¼

6M6
0F

πð2M2
F þM2

0FÞ
M2

F þ k2T
ðM2

0F þ k2TÞ4
; ð44Þ

DSpect
core;h=jðz;zkT;Q2

0Þ¼
2M4

0D

πðM2
DþM2

0DÞ
M2

Dþk2Tz
2

ðM2
0Dþk2Tz

2Þ3 ; ð45Þ

The overall factors in Eqs. (43)–(45) are chosen so that
ND

h=j ¼ Nf
i=p ¼ 1 in both models [recall Eqs. (27) and (36)].

In later sections, it will often be convenient to work with
collinear pdfs and ffs defined as the cutoff transverse-
momentum integrals of TMD pdfs and ffs. Hence, we
define

fci=pðx; μQÞ≡ 2π

Z
μQ

0

dkTkTfi=pðx; kT; μQ;Q2Þ; ð46Þ

dch=jðz; μQÞ≡ 2πz2
Z

μQ

0

dkTkTDh=jðz; zkT; μQ;Q2Þ; ð47Þ

where the c superscript stands for “cutoff.” The cutoff
definitions could be defined more generally with an upper
limit μf different from μQ, but we will keep these scales
equal for the present paper. The cutoff andMS-renormalized
definitions are equal up to a scheme change and m2=μ2Q-
suppressed corrections.
With our parametrizations of TMD pdfs and ffs in the

previous section, the integrals are

fcinpt;i=pðx; μQ0
Þ ¼ 2π

Z
μQ0

0

dkTkTfinpt;i=pðx; kT; μQ0
; Q2

0Þ

¼ Cf
i=pf

c
core;i=pðx; μQ0

Þ þ 1

2
Af;g
i=pðx; μQ0

Þ ln
�
1þ μ2Q0

m2
fg;p

�
þ 1

2
Af
i=pðx; μQ0

Þ ln
�
1þ μ2Q0

m2
fi;p

�

þ 1

4
Bf
i=pðx; μQ0

Þ
�
ln2

�m2
fi;p

Q2
0

�
− ln2

�μ2Q0
þm2

fi;p

Q2
0

��

¼ fi=pðx; μQ0
Þ þO

�
αsðμQ0

Þ; m
2

Q2
0

�
; ð48Þ
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and

dcinpt;h=jðz; μQ0
Þ ¼ 2πz2

Z
μQ0

0

dkTkTDinpt;h=jðz; zkT; μQ0
; Q2

0Þ

¼ CD
h=jd

c
core;h=jðz; μQ0

Þ þ 1

2
AD;g
h=jðz; μQ0

Þ ln
�
1þ μ2Q0

m2
Dh;g

�

þ 1

2
AD
h=jðz; μQ0

Þ ln
�
1þ μ2Q0

m2
Dh;j

�
þ 1

4
BD
h=jðz; μQ0

Þ
�
ln2

�m2
Dh;j

Q2
0

�
− ln2

�μ2Q0
þm2

Dh;j

Q2
0

��

¼ dh=jðz; μQ0
Þ þO

�
αsðμQ0

Þ; m
2

Q2
0

�
; ð49Þ

with

fc;Gausscore;i=pðx; μQ0
; Q2

0Þ ¼ 1 − e−μ
2
Q0

=M2
F ;

dc;Gausscore;h=jðz; μQ0
; Q2

0Þ ¼ 1 − e−z
2μ2Q0

=M2
D ; ð50Þ

in the case of the Gaussian model, and

fc;Spectcore;i=pðx; μQ0
; Q2

0Þ ¼ 1 −
M6

0Fð2M2
F þM2

0F þ 3μ2Q0
Þ

ð2M2
F þM2

0FÞðM2
0F þ μ2Q0

Þ3 ;

ð51Þ

dc;Spectcore;h=jðz; μQ0
; Q2

0Þ ¼ 1 −
M4

0DðM2
D þM2

0D þ 2μ2Q0
z2Þ

ðM2
D þM2

0DÞðM2
0D þ μ2Q0

z2Þ2 ;

ð52Þ
in the case of the spectator model. Note that Eqs. (50)–(52)
are all 1 up to (at most) m2=μ2Q0

-suppressed errors.
The expressions in Eqs. (48) and (49) follow directly by

substituting Eqs. (18) and (28) into Eqs. (46) and (47). By
substituting the expressions in Eqs. (22) and (32) for CD

h=j

and Cf
i=p, it is straightforward to verify that the collinear

pdfs and ffs of Eqs. (48) and (49) are equal to the standard
MS fðx; μQ0

Þ and dðz; μQ0
Þ respectively in the limit that

Oðm2=Q2
0Þ and OðαsðμQ0

ÞÞ errors are negligible.
To further simplify later numerical examples and reduce

the number of free parameters, in the spectatorlike models
we will fixM0F ¼ M0D=z ¼ 0.2 GeV. We will also assume
that model masses have no parton-flavor dependence, and
that the MF;D of the core distributions is the same as the
mf;D in the tail terms. That is, for both models we will
assume for now

mfi;p ¼ mfg;p ¼ MF; ð53Þ

mDh;j
¼ mDh;g

¼ MD: ð54Þ

In general, the parameters in Eqs. (53) and (54) could
have different numerical values in the Gaussian and the

spectatorlike models, but we will keep the same labels in
both to simplify notation.
It should be emphasized that nothing in the setup of

Sec. III relies on the use of any particular nonperturbative
model. Indeed, one of the motivating advantages of the
HSO approach is that the momentum space nonperturbative
model of the kT ≈ 0 region becomes easily interchangeable,
as demonstrated by our switching between the Gaussian
and spectator diquark models above.

V. THE LARGE TRANSVERSE-MOMENTUM
ASYMPTOTE

In this section, we will enumerate the steps for extracting
the large-qT asymptote of Eq. (15). These steps will be
particularly relevant to phenomenological treatments of the
Q ≈Q0 region. Our path here differs from that of more
standard presentations in that we start with the small
transverse-momentum part of the TMD term and extract
the large qT ≈Q behavior, in contrast to the more usual
steps that start with large-qT calculations of the cross
section in collinear perturbation theory and extract the
qT → 0 asymptote. Both approaches must give the same
result up to Oðm2=Q2Þ and OðαsðQÞnþ1Þ corrections.
In all steps below, we will assume we are analyzing the

TMD term in a regime where qT is comparable to Q and Q
approaches infinity. To be specific, we take qT ¼ ηQwhere
η is a fixed, order-unity constant and we let m2=Q2 → 0.
It will be convenient to first express the transverse-
momentum convolution integral on the second line of
Eq. (8) in the following way,

½f;D� ¼
Z

d2kTfðx; kT − qT=2; μQ;Q2Þ

×Dðz; zðkT þ qT=2Þ; μQ;Q2Þ; ð55Þ

where flavor subscripts are dropped. If we first consider the
region of the integrand where

kT ¼ qT=2þOðmÞ; ð56Þ
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then

fðx; kT − qT=2; μQ;Q2ÞDðz; zðkT þ qT=2Þ; μQ;Q2Þ ¼ fðx; kT − qT=2; μQ;Q2ÞDpertðz; zqT; μQ;Q2Þ þO

�
m2

q2T

�
: ð57Þ

If we specialize to the order-αs case, then the collinear perturbative expression from Eq. (41), appropriate to the kT ≈Q
region, may be used for Dpertðz; zqT; μQ;Q2Þ. At order-αns , higher-order versions may be used. Likewise, if we consider the
region where

kT ¼ −qT=2þOðmÞ; ð58Þ

then

fðx; kT − qT=2; μQ;Q2ÞDðz; zðkT þ qT=2Þ; μQ;Q2Þ ¼ fpertðx;−qT; μQ;Q2ÞDðz; zðkT þ qT=2Þ; μQ;Q2Þ þO

�
m2

q2T

�
; ð59Þ

where fpertðx;−qT; μQ;Q2Þ is the nth-order perturbative expression appropriate to kT ≈Q. Again, when we specialize to the
order-αs treatment, the perturbative expression in Eq. (42) can be used, and at order-αns , the higher-order versions of these
expressions may be used.
Having the expansions in Eqs. (57) and (59) on hand motivates us to rewrite Eq. (55) in the form

½f;D� ¼ Dðz; zqT; μQ;Q2Þ
�
2π

Z
μQ

0

dkTkTfðx; kT; μQ;Q2Þ
�
þ fðx;−qT; μQ;Q2Þ

�
2π

Z
μQ

0

dkTkTDðz; zkT; μQ;Q2Þ
�

þ
Z

d2kTffðx; kT − qT=2; μQ;Q2ÞDðz; zðkT þ qT=2Þ; μQ;Q2Þ

−Dðz; zqT; μQ;Q2Þfðx; kT − qT=2; μQ;Q2ÞΘðμQ − jkT − qT=2jÞ
−Dðz; zðkT þ qT=2Þ; μQ;Q2Þfðx;−qT; μQ;Q2ÞΘðμQ − jkT þ qT=2jÞg; ð60Þ

where we have simply added and subtracted the first two
lines from the exact Eq. (55) to get the integral on the last
three lines. On the first two lines of Eq. (60), we may
replace fðx; qT; μQ;Q2Þ and Dðz; zqT; μQ;Q2Þ by their
perturbative collinear approximations from Eqs. (57)
and (59). Since they are evaluated at qT ≈Q, this only
introduces power-suppressed errors. We may also identify
the cutoff integrals on the first two lines with the cutoff
definitions of the collinear pdfs and ffs in Eqs. (46)
and (47). The integrand of the last three lines is suppressed
by Oðm2=q2TÞ in regions where kT ¼ �qT=2þOðmÞ.

Therefore, we may restrict our consideration of its behavior
to regions where

jk1Tj ¼ jkT − qT=2j ∼ qT; ð61Þ
jk2Tj ¼ jkT þ qT=2j ∼ qT; ð62Þ

i.e., where both k1T and k2T are an order-unity fraction of
qT. Then, all TMD pdfs and ffs in the integrand of the last
three lines of Eq. (60) can be expanded in powers ofm2=q2T
and replaced by their perturbative approximations, with
only power-suppressed corrections. We thus have

½f;D� ¼ Dpertðz; zqT; μQ;Q2Þfcðx; μQÞ þ
1

z2
fpertðx;−qT; μQ;Q2Þdcðz; μQÞ

þ
Z

d2kTffpertðx; kT − qT=2; μQ;Q2ÞDpertðz; zðkT þ qT=2Þ; μQ;Q2Þ

−Dpertðz; zqT; μQ;Q2Þfpertðx; kT − qT=2; μQ;Q2ÞΘðμQ − jkT − qT=2jÞ

−Dpertðz; zðkT þ qT=2Þ; μQ;Q2Þfpertðx;−qT; μQ;Q2ÞΘðμQ − jkT þ qT=2jÞg þO

�
m2

q2T

�

¼ ½f;D�ASY þO

�
m2

q2T

�
: ð63Þ
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Dropping the Oðm2=q2TÞ errors gives the asymptotic term
that we sought. We will denote this “asymptotic” approxi-
mation by ½f;D�ASY, as indicated on the last line. It is
calculable entirely within collinear perturbation theory, and
it is an increasingly accurate approximate of the full cross
section as qT ∝ Q and Q → ∞. The derivation above of
Eq. (63) applies at any order of αs, although for this paper
we will be mostly interested in OðαsÞ expressions.
Notice that it is the cutoff definitions, Eqs. (46) and (47),

for the collinear functions, and not the usual MS defini-
tions, that appear on the first line of Eq. (63). One recovers
the full asymptotic term for the cross section by substituting
this into Eq. (8).
To specialize to theOðαsÞ case at an input scaleQ ¼ Q0,

with the parametrizations in Eqs. (18)–(28), one substitutes
the expressions from Eqs. (41) and (42). Equations (48)
and (49) are to be used for the fcðx; μQÞ and dcðz; μQÞ on
the first line of Eq. (63). If we drop Oðα2sÞ and Oðm2=Q2Þ
errors, the first line then exactly matches the more standard
form of the OðαsÞ asymptotic term (see, e.g., Ref. [11]).
The integral that starts on the second line of Eq. (63) is

only nonzero at Oðα2sÞ or higher, so it may be dropped in a
strictly OðαsÞ treatment. However, there are several advan-
tages to retaining it. One is simply that it guarantees that,
for Q ¼ Q0, we recover the exact asymptotic kT → Q0,
m=Q0 → 0 limit of the order-αns TMD term. Another is that
it ensures cutoff invariance through the lowest nontrivial
order. Recall that the cutoff-defined pdfs and ffs can in
general use a cutoff μf that differs from μQ. In Eq. (63), μf
dependence would appear in fc, dc, and the Θ functions in
the integral of the last three lines. Dependence on μf enters
the standard asymptotic term at order α2s, but keeping the
third term in Eq. (63) ensures that μf dependence enters
½f;D�ASY only at order α3s.

VI. EXAMPLE INPUT SCALE TREATMENT

Now we turn to demonstrating how the HSO treatment
described in Secs. II–IV works in practice with explicit
numerical implementations. Our purpose here is to
compare the HSO treatment described thus far with the
conventional steps for constructing phenomenological
parametrizations, and to illustrate the improvements that
are gained from using the former.
In Sec. VI A below, we will summarize the basic

formulas and in Sec. VI B we will review the usual
decomposition of a transverse-momentum dependent cross
section into a TMD term, an asymptotic term, and a Y term.
In Sec. VI C, we will review the conventional style of
implementing TMD factorization and show examples of the
complications that can arise, some of which were already
mentioned in the introduction, and in Sec. VI D we show
how these are solved within the HSO approach.
In our calculations, we focus on the TMD pdfs and ffs

parametrized at an initial scale Q ¼ Q0, a scenario

previously addressed in [10]. Estimating the lowest Q0

for which TMD factorization remains valid is rather non-
trivial [16], and we leave it as an open question. For
purposes of illustration, wewill try two values in Secs. VI C
and VI D below, from the relatively low (and reasonable)
Q0¼4.0GeV, to the (far too conservative) Q0¼20.0GeV,
to demonstrate how the procedure works for both a small
and a large choices of Q0.

A. Basic setup

The standard expression for the SIDIS differential cross
section in terms of the structure functions F1 and F2 is

dσ
dx dy dz dq2T

¼ π2α2emz
Q2xy

½F1xy2 þ F2ð1 − yÞ�; ð64Þ

where the F structure functions are the usual ones obtained
by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure func-
tions are expressed in terms of TMD pdfs and ffs,

F ¼ FTMD þOðm=Q; qT=QÞ; ð65Þ

FTMD
1 ≡ 2z

X
j

jHj2j ½fj=p; Dh=j�;

FTMD
2 ≡ 4zx

X
j

jHj2j ½fj=p; Dh=j�; ð66Þ

where the “TMD” superscript denotes the small-qT
approximation. Compare Eq. (66) with Eq. (8) for the
hadronic tensor. We will use the OðαsÞ hard factor jHj2j
from Eq. (11) in any calculations below. Calculating
Eq. (66) in a specific phenomenological implementation
involves making choices about how to parametrize the
TMD functions fi=p and Dh=j, including choices about
nonperturbative models and/or calculations at the input
scale, the order of precision in perturbative parts, and any
other approximations or assumptions used in the construc-
tion of a specific set of parametrizations.

B. Combining large FFO and small FTMD

transverse-momentum calculations

Before we contrast the FTMD calculations in the conven-
tional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear
factorization calculations designed for the qT ≈Q region.
In the regionwhereqT ≈Q, the approximations in Eq. (66)

fail. However, this is the region where fixed-order collinear
factorization calculations, which use ordinary collinear pdfs
and ffs, aremost reliable.We express the large-qT fixed-order
collinear approximation to the structure functions as

F¼FFOþOðm=qTÞ; FFO¼
X
i;j

dB=i⊗ F̂ij⊗fj=p; ð67Þ
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where the indices i, j run over parton flavors, and the FO
superscript stands for “fixed order.” A choice must be
made for the UV scheme that defines the collinear
functions fi=p and Dh=j. The most common is renormal-
ization in theMS scheme. The F̂ij are the partonic versions
of the structure functions, and they have been calculated
up to at least Oðα2sÞ [52–54]. In our calculations, we will
use OðαsÞ results [9,11,55].
Following standard conventions, we will use the phrase

“fixed-order cross section” as a short hand for Eq. (64)
calculated with the large-qT approximation in Eq. (67).2

While FTMD gives an accurate treatment of the qT ≈m
region, and FFO provides an accurate treatment of the
qT ≈Q region, what is ultimately needed is a factorized
expression with only Oðm2=Q2Þ-suppressed errors point-
by-point in qT. To construct it systematically, one starts
by writing the structure functions in the TMD (low-qT)
approximation with the error term made explicit,

F ¼ FTMD þ ½F − FTMD�: ð68Þ
The error term in braces is only unsuppressed when qT is
large relative to m. Thus, it can be calculated in collinear
factorization with only m2=q2T-suppressed errors. Since the
error term itself is Oðq2T=Q2Þ, the result is that the overall
error is m2=Q2-suppressed point-by-point in qT. Thus,
we define

lim
m=qT→0

FTMD ¼ FASY ð69Þ

to be the qT ∼Q, Q → ∞ asymptote of the TMD approxi-
mation, as it is calculated in fixed-order collinear factori-
zation. The “∼” means the ratio q2T=Q

2 is to be held fixed
as Q → ∞. Applied to Eq. (68), the structure function
becomes

F ¼ FTMD þ ½FFO − FASY� þOðm2=Q2Þ: ð70Þ
The asymptotic term is consctructed to accurately describe
the m ≪ qT ≪ Q region—both qT ≪ Q and m ≪ qT
approximations have been applied simultaneously. For this
paper, this is simply Eq. (63) applied to structure functions.
A minor subtlety is that the exact form of the asymptotic

term FASY depends on the details of how collinear pdfs
and ffs are defined and on how higher-order corrections
in the perturbative expansion are truncated. If, in an
OðαnsÞ calculation, for example, the cutoff-defined pdfs
and ffs of Eq. (63) are replaced by their corresponding
MS definitions, then the resulting asymptotic terms
will generally differ by Oðm2=Q2Þ-suppressed and

Oðαnþ1
s Þ-suppressed amounts. Furthermore, while FASY

is in principle equal to the low-qT limit of FFO as Q → ∞,
generally this is only exactly true in calculations at the
working order of perturbation theory. In calculations at a
fixed Q, the two asymptotic terms will typically differ
by higher-order αs and power-suppressed terms. In other
words, if FASY is calculated to Oðαns Þ with the cutoff
scheme for pdfs and ffs, and FFO;r is calculated to the same
order in some other scheme r, then one will generally find

h
lim

qT=Q→0
FFO;r

i
Oðαns Þ − ½FASY�Oðαns Þ ¼ Oðαnþ1

s ; m2=Q2Þ:

ð71Þ

That is, there is a family of valid schemes for defining the
exact asymptotic term at a given order, though some
schemes can be preferable to others in the context of
minimizing errors. Indeed, it is the first term in Eq. (71),
with r ¼ MS, that represents the most common approach
used in the past for calculating the asymptotic term. Wewill
call the asymptotic term calculated using Eq. (63) FASY

HSO.
Together, the second two terms in Eq. (70) are often

called the “Y term,” and the structure function is written as

F ¼ FTMD þ Y þOðm=QÞ; ð72Þ

to emphasize the role of Y as a large-qT correction to
calculations done with TMD pdfs and ffs. Of course, the
precise value of the Y-term contribution depends on the
specific version of the asymptotic term.
In conventional treatments, the fixed-order term is

calculated with collinear functions in the MS scheme.
The specific version of the asymptotic structure functions
used is the first term in Eq. (71), so that

FFO
ST ¼ FFO;MS; FASY

ST ¼ lim
qT=Q→0

FFO;MS; ð73Þ

with “ST” subscripts to indicate “standard.” We will call a
calculation of the asymptotic term done in the style of
Sec. V FASY

HSO to distinguish it from Eq. (73). Since FASY
HSO is

calculated with cutoff definitions for the collinear pdfs
and ffs, this suggests that the cutoff definitions might be
preferred as well for calculating FFO. However, switching
between the MS and cutoff schemes in FFO only produces
power-suppressed and perturbative errors beyond the work-
ing order in αs. Therefore, one may consistently inter-
change cutoff and MS definitions, and we will use FFO

ST for
our calculation of the fixed-order structure function. We
will see in later sections that the effect of switching between
the two is small relative to the overall improvements from
using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by
switching to a cutoff scheme for the collinear functions, but
we leave this to future work.

2Note that the asymptotic term of Sec. V is also calculated in
fixed-order perturbation theory. However, in the terminology of
this section “fixed-order term” applies specifically to calculations
done using the nonasymptotic Eq. (67).
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C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we will not
repeat the details here. Readers are referred to, for example, Refs. [3,56,57] and references therein. The standard expression
used in calculations follow from making the following replacement in Eq. (66):

½fj=p; Dh=j� →
Z

dbT
ð2πÞ2 e

−iqT·bT f̃OPEj=p ðx; b�; μb� ; μ2b� ÞD̃OPE
h=j ðz; b�; μb� ; μ2b� Þ

× exp

�
2

Z
μQ

μb�

dμ0

μ0

�
γðαsðμ0Þ; 1Þ − ln

Q
μ0
γKðαsðμ0ÞÞ

�
þ ln

Q2

μ2b�
K̃ðb�; μb� Þ

�

× exp
�
−gj=pðx; bTÞ − gh=jðz; bTÞ − gKðbTÞ ln

�
Q2

Q2
0

��
: ð74Þ

The f̃OPEj=p and D̃OPE
h=j on the first line are the TMD pdfs and

ffs in bT-space, expanded and truncated in an operator
product expansion. The γ, γK , and K̃ are the usual evolution
kernels. The “b�” method has been used to regulate f̃OPEj=p ,

D̃OPE
h=j , and K̃ at large bT. (See reviews of the b� method in

Sec. IX A of [16] and in Sec. VIII of [58].) The most
common choice for a functional form for b� is

b�ðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

p ; ð75Þ

where bmax is a transverse-size scale that demarcates a
separation between large and small transverse size regions.
In principle, both the functional form of Eq. (75) and the
value of bmax are completely arbitrary, but a small bmax
justifies the use of the OPE on the first line of Eq. (74); the
error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse-
momentum dependence is contained in the bT-space
functions gj=p, gh=j, and gK , whose definitions in terms
of the more fundamental correlation functions are

−gj=pðx; bTÞ≡ ln

�
f̃j=pðx; bT; μQ0

; Q2
0Þ

f̃j=pðx; b�; μQ0
; Q2

0Þ

�
;

−gh=jðz; bTÞ≡ ln

�
D̃h=jðz; bT; μQ0

; Q2
0Þ

D̃h=jðz; b�; μQ0
; Q2

0Þ
�
; ð76Þ

and

gKðbTÞ≡ K̃ðb�; μÞ − K̃ðbT; μÞ: ð77Þ

Conventional methods replace each of the g-functions,
gj=p, gh=j, and gK , by an ansatz, with parameters to be fitted
from measurements. The simplest and most common
choices (e.g., [59–61]) are based on simple power laws like

gj=pðx;bTÞ¼
1

4
M2

Fb
2
T; gh=jðz;bTÞ¼

1

4z2
M2

Db
2
T; ð78Þ

for the input nonperturbative functions, where MF andMD
are fit parameters. For the CS kernel, common paramet-
rizations are

gKðbTÞ¼
1

2
M2

Kb
2
T or gKðbTÞ¼

g2
2M2

K
lnð1þM2

Kb
2
TÞ; ð79Þ

where MK and g2 are fit parameters. The first of these
functional forms is common in typical applications, but it
conflicts with the expectation that evolution is slow at
moderate Q [62,63]. As a result, it was suggested in
Ref. [56] that gKðbTÞ should exhibit very nearly constant
behavior at large bT, a behavior closely modeled by a
logarithmic function. More complex fit parametrization
ansatzes for all the g-functions have been introduced more
recently (see for instance Refs. [64,65]), but the general
approach of taking combinations of simple functional
forms that reduce to power law behavior at small bT is
similar to the above.
Note that, in the b� approach, before any truncation

approximations are made, the product of TMD correlation
functions must satisfy

d
dbmax

½fj=p; Dh=j� ¼ OðmbmaxÞ: ð80Þ

That is, dependence on bmax or on the form of b�ðbTÞ must
be a negligible power correction for reasonably small bmax.

3

In calculations at a specific order in αs, violations of
Eq. (80) may enter only through neglected higher orders in
αs. A significant violation of Eq. (80) in a TMD para-
metrization may indicate either that higher orders need to
be included, or that bmax has been chosen to be too large.
A failure to find a negligible right side of Eq. (80) is thus a
useful diagnostic tool.

3The power-suppressed errors on the right side of Eq. (80) will
typically be m2b2max, but the precise power of the suppression is
not important for our present discussion.
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We will label structure functions calculated in the
conventional approach by FTMD

ST , with “ST” for “standard,”
and we will use this notation regardless of whichever
specific model is used for the g-functions. What makes an
approach “conventional” in the sense that we mean in this
paper is that it imposes no extra, additional constraints
on the g-functions to ensure consistent matching with
collinear factorization. Specifically, the Ansätze of tradi-
tional approaches do not explicitly enforce the integral
connection between collinear and TMD pdfs and ffs in
Eq. (2), or guarantee a smooth interpolation to the large-kT
collinear-factorization region.
In the following numerical examples, we will use

CTEQ6.6 pdfs [66] (central values) and MAPFF1.0 ffs
for πþ [67] (average over replicas), implemented in
LHAPDF6 [68]. We postpone a more detailed analysis that
includes the uncertainty associated with the chosen
LHAPDF6 sets for a later publication. For the purpose of
this paper, we effectively assume “complete knowledge” of
the collinear pdfs and ffs in the MS scheme stressing that
our main points, and the logic behind the HSO approach,
are not affected by such choices. The left-hand panels
of Fig. 2 show the differential SIDIS cross section for
Q0 ¼ 4.0 GeV within the various different approximations
discussed in Secs. VI A and VI B, including the FTMD

ST (the
TMD approximation), the FFO

ST (qT ≈Q approximation),
and the FASY

ST (asymptotic term) calculations. We use
x ¼ 0.1, z ¼ 0.3 and y ¼ 0.5, which are kinematics acces-
sible to both the COMPASS experiment [8] and the
EIC [69]. To emphasize alternately the large-qT and
small-qT regions, we have plotted the curves on a loga-
rithmic scale in the upper-left panel and a linear scale in the
lower-left panel. We take the g-functions to be parametrized
as in Eq. (78), and the RG scale is μQ0

¼ Q0. The curves
are the TMD (solid red line), fixed-order (dot-dashed
black line) and asymptotic (dashed blue line) terms.
Despite the small values used for the mass parameters,
MF ¼ MD=z ¼ 0.1 GeV, the asymptotic term is nowhere
close to overlapping with either the TMD or the fixed-order
terms anywhere in the range of qT between 0 GeV and
4 GeV. This is a violation of the consistency requirement
that, with a sufficiently large input scaleQ0, there must be a
region ΛQCD ≪ qT ≪ Q0 where the asymptotic term is
simultaneously a good approximation of both the TMD and
the qT ≈Q0 fixed-order cross sections. This is a compli-
cation that arises frequently in the conventional method-
ology, and it is one that we alluded to in Sec. I. Among the
reasons for the mismatch is a failure to impose the integral
relation in Eq. (2) directly upon the g-functions in Eq. (78).
One might suspect that the mismatch is a consequence of

the input scale Q0 being too small. To test this, we also
consider the same computation, using the same nonper-
turbative mass scales, but now with an unreasonably large
input scale of Q0 ¼ 20 GeV. The result is shown in the
right-hand panels of Fig. 2. Again, the upper panel is on a

logarithmic scale, while the lower panel uses the linear
scale to emphasize the region of smaller qT. The agreement
between the asymptotic and TMD terms improves, but even
here there is a startlingly large mismatch between the three
calculations in the region where qT is small but comparable
to Q0. Even for Q0 ≈ 20 GeV, there is no region of qT
where the three curves overlap simultaneously to a sat-
isfactory degree. This point is made especially clear in the
linear scale plots.
Note that this complication is independent of evolution

or the question about how many orders of logarithms of
Q=qT should be resummed. If the connection to collinear
factorization is to be consistent, there must be a region
where qT is a fixed fraction of Q and all three calculations
merge in the limit as Q → ∞. Moreover, for any Q where
we expect TMD factorization to be valid, the TMD and
asymptotic terms should at least approximately match one
another when qT is comparable to Q. It is a contradiction,
then, if this fails at the input scale. Note that the mis-
matches, both quantitative and qualitative, between the
TMD terms and their expected asymptotic behavior is
especially visible in the lower panels where the curves are
plotted with linear axes.
For generating the plots in Fig. 2, it was necessary to fix

the mass scales MF and MD in Eq. (78). The observed
trends are quite general, however, and to demonstrate this
we show the same Q0 ¼ 4.0 GeV calculation in the left-
hand panel of Fig. 3, but now with bands representing
ranges of typically-sized nonperturbative mass scales,

0.1 GeV ≤ MF ≤ 0.4 GeV; ð81Þ

0.1 GeV ≤ MD=z ≤ 0.3 GeV: ð82Þ

The value of bmax for this plot remains fixed at 1.0 GeV−1.
Even with the freedom to adjust these nonperturbative
parameters, it is clear that it is not possible to achieve
reasonable agreement between the TMD term and the
asymptotic term, even in regions where qT is comparable
to Q0. The TMD bands do touch the asymptotic curve at
around qT ≈ 0.5 GeV, but the two curves have very different
qualitative shapes for allMD andMF. For largerqT, there is no
approximate agreement between the asymptotic and TMD
terms, regardless of MF and MD. Indeed, the TMD band
departs from the asymptotic term at around qT ≈ 1.2 GeV.
Another way to see the problems with the conventional

treatment here is to observe that the approximate
bmax-independence of Eq. (80) is very badly violated
with typical values of bmax, as shown by the right-hand
panel in Fig. 3, which displays the TMD term with bands
for bmax variations from the very small value of 0.1 GeV−1

up to a maximum typical value of bmax ¼ 1.5 GeV−1

used in phenomenological applications. The bands are
with fixed-mass scales of MF ¼ MD=z ¼ 0.25 GeV.
The orders-of-magnitude variation badly contradicts the
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original bmax independence that exists before the OPE
approximations. It implies that the MF and MD parameters
must be given their own bmax-dependence to (at least
approximately) cancel the explicit bmax-dependence seen
in the figure. However, the far more modest MF and MD
dependence seen in the left-hand panel shows that this
cannot be made to work with typical model parametriza-
tions of the g-functions and reasonable nonperturbative
values for MF and MD.

As a consequence of the strong bmax sensitivity,
practical phenomenological applications will often effec-
tively promote bmax to the status of an extra nonperturba-
tive parameter as opposed to treating it as an entirely
arbitrary cutoff. That is, attempts to approximately pre-
serve Eq. (80) are effectively abandoned. But the result
is that the large transverse-momentum behavior
becomes sensitive to parameters that are in principle to
be restricted to describing only the nonperturbative small

FIG. 2. SIDIS differential cross section (absolute value) in the standard approach, within different approximations for the structure
functions: FTMD

ST (solid red line), FASY
ST (dashed blue line) and FFO

ST (dot-dashed black line). The chosen kinematics roughly correspond to
regions accessible by the COMPASS experiment and the EIC. The TMD term is calculated with the quadratic model for the g-functions
of Eq. (78), at fixed values for the small-mass parameters MF ¼ MD=z ¼ 0.1 GeV, and we have used the b� prescription of Eq. (75)
with bmax ¼ 1.0 GeV−1. We consider the cross section at two values of the input scale Q0, and no TMD evolution is performed. Left:
The cross section is shown for Q0 ¼ 4.0 GeV. Right: The cross section is shown for Q0 ¼ 20.0 GeV. For visibility, the bottom panels
show the same curves as the top, but with a vertical linear scale and a reduced range of qT. Note that, despite the small values of the mass
parameters, the three approximations never overlap in the intermediate region of transverse momentum, m ≪ qT ≪ Q.
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transverse-momentum region. The predictive power that is
gained from collinear factorization and the OPE is then
compromised. This is a problem that has been well-known
for some time [18].
The above observations illustrate that nonpertubative

transverse-momentum dependence in the conventional
methodology has an unacceptably large impact on the
large transverse-momentum region, in a way that violates
consistency with collinear factorization.

D. In a hadron structure oriented approach

Next, we contrast the conventional approach of the
preceding subsection with the HSO steps from Ref. [16]
and Secs. II–V of this paper.
It should be emphasized that the two “approaches” being

contrasted here refers only to specific phenomenological
implementations and not to the basic theoretical setup. The
fundamental TMD factorization theorem and the evolution
equations are always the standard ones, and they are never
modified. What distinguishes the HSO approach to phe-
nomenological implementations from the conventional one
is that the former imposes constraints on the input TMD
parametrizations that guarantee consistency with collinear
factorization in the appropriate limits. To seewhat this means
more clearly, it may be helpful to recall that it is straightfor-
ward (though unnecessary) to use the b� method to rewrite

the HSO expression in Eq. (15) in terms of the g-functions
defined in Eq. (76), but with the explicit HSO parametriza-
tions for f̃j=pðx; bT; μQ0

; Q2
0Þ and D̃h=jðz; bT; μQ0

; Q2
0Þ. The

final form of the evolved TMD pdfs and ffs are exactly the
same. The full set of steps for translating the HSO approach
into the conventional one may be found in Sec. IX of [16].
Cast in this way, the HSO approach is identical to the
conventional one except that it imposes additional and
important consistency conditions directly on the g-functions.
In the treatment in this paper, this amounts to using
Eqs. (17), (18), and (28) (or, more generally, any other
set of parametrizations that arise from the steps in Ref. [16])
inside Eqs. (37) and (38) instead of the conventionally
unconstrained Ansätze like Eqs. (78) and (79).
We have focused on the kinematics of the Q ≈Q0

region, since the lowest acceptable values of Q are where
one typically expects nonperturbative hadron structure
effects to be most pronounced, and thus it is where
nonperturbative versions of relations like Eqs. (1) and (2)
become especially important.
The steps for calculating the TMD term in the HSO

approach were reviewed in Secs. II–IV. If we specialize to
the additive structure in Sec. III for the TMD parametriza-
tions, then the HSO approach amounts to simply calculat-
ing Eq. (15) with the parametrizations in Eqs. (18) and (28).
That is, we use

FIG. 3. Variation of the TMD cross section (absolute value), in the standard approach, with respect to the small-mass parameters of
Eq. (78) (left), and bmax (right). In both cases, we have chosen the same kinematics as in the left panel of Fig. 2, and we have set
Q ¼ Q0 ¼ 4.0 GeV, and no TMD evolution is performed. Left: the red band shows the envelope for the TMD term obtained by varying
the model masses MF and MD. Note the large variation of the band in the region where the asymptotic term (dashed blue line) and the
fixed-order term (dot-dashed black line) start to overlap, which results from the unconstrained behavior of the TMD term at large qT. At
very large values of qT, the TMD and asymptotic terms are not consistent. Right: Envelope showing the variation of the TMD term (blue
band) with respect to the value of bmax, at fixed values of the model masses. (Note that the edges of the envelope are not necessarily the
curves associated with the extrema of the chosen range for bmax). The strong bmax dependence results from the lack of constraints on the
models for the g-functions in our example. This dependence persists even in the region qT ∼Q, where the OPE should in principle
determine the behavior of the TMD cross section.

GONZALEZ-HERNANDEZ, RAINALDI, and ROGERS PHYS. REV. D 107, 094029 (2023)

094029-16



½fj=p; Dh=j� →
Z

dbT
ð2πÞ2 e

−iqT·bT f̃j=pðx; bT; μQ0
; μ2Q0

ÞD̃h=jðz; bT; μQ0
; μ2Q0

Þ

× exp

�
K̃ðbT; μQ0

Þ ln
�
Q2

Q2
0

�
þ
Z

μQ

μQ0

dμ0

μ0

�
2γðαsðμ0Þ; 1Þ − ln

Q2

μ02
γKðαsðμ0ÞÞ

��
; ð83Þ

FIG. 4. SIDIS differential cross section (absolute value) in the HSO approach, comparing different approximations for the structure
functions: FTMD

HSO (solid red line), FASY
HSO (dashed blue line) and FFO as in Eq. (86) (dot-dashed black line). For comparison, the same

kinematics have been used as in Fig. 2. The TMD term is calculated with the Gaussian models of Eqs. (43)–(50), with appropriate
constraints as in Eqs. (18) and (28). These models essentially determine the g-functions, similar to Eq. (78) in the standard approach, but
with the correct treatment of the large-kT behavior and the implementation of integral relations. To allow for a meaningful comparison,
we use the same values for the small-mass parametersMF ¼ MD=z ¼ 0.1 GeV as in Fig. 2. The masses appearing in Eq. (18) are set to
mDh;j

¼ mDh;g
¼ MD, and those in Eq. (28) to mfi;p ¼ mfg;p ¼ MF. We compute the cross section at the same two values for the input

scale Q0 considered in Fig. 2. Left: The cross section for Q0 ¼ 4.0 GeV. Right: The cross section for Q0 ¼ 20.0 GeV. Note the
improvement in the consistency of the three terms, even at Q ¼ Q0 ¼ 4.0 GeV in the left panels, with respect to the standard approach
shown in Fig. 2. As larger Q0 are considered (e.g., with the larger scale Q0 ¼ 20 GeV above) the three curves begin to converge in the
m ≪ qT ≪ Q0 region.
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with Eq. (66). In the replacement, the D̃h=j and f̃j=p are now
to be understood to be the bT-space version of the para-
metrizations from Eqs. (18) and (28) substituted into
Eqs. (37)–(39). Explicit expressions for the input bT-space
TMD functions are listed in Appendix B. We denote the
resulting structure functions by FTMD

HSO . These are the
underlined correlation functions from [16],4 or, if we
restrict Q ≈Q0 and use the approximation in Eq. (40),
they are just the bT-space input functions themselves. With
OðαsÞ perturbative coefficients, their structure is

FTMD
HSO ∼ ðjHj2jÞOðαsÞ½fj=p; Dh=j�; ð84Þ

where ðjHj2jÞOðαsÞ is the hard coefficient in Eq. (11), with
kinematic factors and sums over flavors.
For the asymptotic term, we start from FTMD

HSO and use the
m ≪ qT ≪ Q approximation in Eq. (63) in place of ½f;D�,
so that the asymptotic structure functions are

FASY
HSO ∼ ðjHj2jÞOðαsÞ½fj=p; Dh=j�ASY: ð85Þ

For calculating the OðαsÞ fixed-order structure function
in qT ≈Q0 collinear factorization (see, for example,
Ref. [54]), we use

ðjHj2jÞOðαsÞ

e2j
FFO
ST ¼ FFO

ST þOðαsðμQ0
Þ2Þ; ð86Þ

where FFO
ST are the MS structure functions of Eq. (67).

Keeping the overall factor in FFO
ST does not formally change

the treatment at the OðαsÞ level, but retaining it improves
the agreement with the asymptotic term of Sec. V in the
m ≪ qT ≪ Q0 limit.
We show numerical examples of FTMD

HSO , F
ASY
HSO, and FFO

in Fig. 4, calculated using the Gaussian models of Eq. (43)
in Eqs. (18) and (28). The kinematics are the same as in
Fig. 2, and the nonperturbative parameters take the values

MF ¼ MD=z ¼ 0.1 GeV; ð87Þ

so that our treatment of the nonperturbative contribution is
comparable to the conventional treatment in Fig. 2. Aside
from the transition to a tail region, the Gaussian model
mimics the power-law behavior of g-functions in Eq. (76)
with Eq. (78) for the conventional approach. As in Fig. 2,

we show the case of a lower input Q0 ¼ 4.0 GeV in the
left panels of Fig. 4, and a large Q0 ¼ 20.0 GeV in the
right panels. The upper two panels show the plots on a
logarithmic scale to magnify the improvements at large
transverse momentum. To magnify the effect of the
improvement on the small transverse-momentum region,
we have replotted the same graphs on linear vertical axes
and over a smaller qT range in the lower two panels.
The qualitative and quantitative improvements of the
HSO over the conventional approach are especially
visible on the linear axes. For these calculations we have
used the approximation Q̄0 → Q0 in Eqs. (37) and (38)
because this allows us to utilize the analytic expressions
for the TMD pdf and ff parametrizations. We confirm in
Fig. 5, however, that the effect of the evolution factor
is negligible at the input scale. This is by design; the
evolution factor is only relevant for evolving to Q well
above the input scale.
Comparing Fig. 4 with Fig. 2 confirms that, in terms

of maintaining consistency with the collinear factorization
region, there is a very substantial improvement with the
HSO approach as compared with the conventional
approach. For Q0 ¼ 4.0 GeV, the TMD and asymptotic

FIG. 5. Comparison of the two versions of the HSO approach
discussed in the text, at the two values of the input scale
considered, Q0 ¼ 4.0 GeV and Q0 ¼ 20.0 GeV. The red solid
lines show the TMD term calculated directly with the input
functions of Eqs. (18) and (28), as it was done in our examples in
Figs. 2 and 6. The blue-dashed lines show the TMD term in the
HSO approach but with renormalization group (RG) improve-
ment (the underline version of functions from Ref. [16]) applied
at very small bT, implemented in Eqs. (37)–(39), with the
transition function Q̄0 of Appendix A. In the HSO approach,
for Q ≈Q0, these RG improvements affect only the large qT
region of the cross section. For our examples in this article, even
for qT=Q0 ≈ 1.5, differences are not significant.

4Actually, these symbols refer to a class of models for the
TMD pdfs and ffs since at this stage we still need to specify the
exact form of the nonperturbative transverse-momentum depend-
ence in fcore;i=p andDcore;h=j. We will use the same notation for all
calculations that use this general approach.
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terms match nearly exactly for all qT ≳ 0.5 GeV up toQ0.
There is also a region around qT ≈ 0.5 GeV where all
three calculations smoothly overlap. Notice also that the
region of overlap becomes better defined when going
from the left panel (low input scale) to the right panel
(high-input scale) of Fig. 4. And, with the larger Q0, the
agreement between the TMD and asymptotic terms is
nearly exact over the whole visible range of qT. Thus, the
HSO plots exhibit the expected trends when choosing
larger or smaller values of Q0. Of course, the calculations
with Q0 as large as 20 GeV are not physically sensible,
but they confirm that the two ways of computing the mid-
qT behavior (with asymptotic and TMD terms) are
compatible and consistent in the limit of a fixed qT=Q0

ratio and large Q0.
From Fig. 3, it is clear that in order to correct the

large-qT behavior of the TMD-term in the conventional
methodology to recover the asymptotic term, one would
need to make further adjustments to the nonperturbative,
nontail part of the parametrization. But it would have to be
done in a way that allows nonperturbative transverse-
momentum parameter dependence to propagate to unac-
ceptably large qT. That could be through both explicit
nonperturbative parameters like MF and MD and through
the residual dependence on bmax. In order to reduce the bmax
dependence at large qT to acceptable levels while forcing
the TMD and asymptotic terms to converge in Fig. 3, one

would have to allow dramatic dependence on nonpertuba-
tive parameters that affects the behavior at unacceptably
large transverse momentum. To illustrate that the HSO
approach addresses this problem, we plot the HSO structure
functions, again at the input scale,Q ¼ Q0 ¼ 4.0 GeV, but
now with both the Gaussian models of Eq. (43) and the
spectator diquark models of Eq. (44), and with the same
ranges of values of the nonperturbative mass parameters as
were used in the connventional treatment. In the HSO
approach, there is no b� or bmax, and the TMD and
asymptotic terms converge toward one another automati-
cally. The results are shown in Fig. 6, with red bands
showing the effect of adjusting the nonperturbative mass
parameters in the range of Eqs. (81) and (82), and with the
Gaussian model in the left-hand panel and the spectator
diquark model in the right-hand panel. In each case, we also
display the HSO asymptotic (dashed blue line) and fixed-
order terms (dot-dashed black line).5 To see the improve-
ment brought about by the HSO approach, these plots

FIG. 6. Variation of the TMD cross section (absolute value), in the HSO approach, with respect to small-mass parameters (red bands).
The same kinematics as in the left panel of Fig. 3 have been used, so that Q ¼ Q0 ¼ 4.0 GeV and no TMD evolution is performed. For
visibility, we display only the central lines of the corresponding cross sections with the FASY

HSO (dashed blue line) and FFO as in Eq. (86)
(dot-dashed black line) approximations, since their variation with the small masses is very mild. Left: calculation with the Gaussian
ansatz of Eq. (43), obtained by varying the model massesMF and MD; this is the constrained version of the quadratic models for the g-
functions of Eq. (78), in the standard approach. Right: implementation of the spectator model Eqs. (44) and (45) in the HSO approach. In
each case, the HSO approach ensures the consistency of the initial models for TMDs and collinear factorization calculations. Note that
our prescription can be readily applied to any other model.

5Since FASY
HSO is calculated with cutoff collinear functions, they

also depend on the values of the mass parameters and should
in principle be also displayed as bands in Fig. 6. However,
the variations are negligibly small for the ranges of the mass
parameters considered here, so for visibility we show only central
lines instead.
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should be compared with the analogous plot in Fig. 3 of the
conventional treatment.
The small-qT regions in both of the cases shown in Fig. 6

exhibit the behavior of their respective nonpertubative
models. As qT grows, the red bands around the TMD
curves converge around the asymptotic term, until the TMD
and asymptotic curves are indistinguishable, independently
of the nonperturbative model or the values used forMD and
MF. This illustrates how the HSO approach enforces a
smooth transition to a region that is insensitive to the value
of nonperturbative transverse-momentum dependence
parameters. Even with the spectator model on the right,
where the TMD curves come with visible bands close to the
zero node, the curves still match the general shape of the
asymptotic term down to qT ≈ 0.5 GeV. The HSO
approach ensures this type of behavior.
With the Gaussian model in the left-hand panel Fig. 6,

the bands show that agreement between the TMD term and

the asymptotic term in the region of qT ≈ 0.5 to ≈1.0 GeV
requires that the mass parameters be kept rather small. For
spectator model, the right-hand plot shows that there is
more flexibility to adjust the nonperturbative parameters
without spoiling approximate agreement with the asymp-
totic term at mid qT.
In Figs. 4 and 6, we also plotted the qT ≈Q fixed-order

curves to show its approximate overlap with the asymp-
totic and TMD terms in a region of mid qT. In these
calculations, we used MS pdfs and ffs. As mentioned in
the discussion after Eq. (73), it may turn out to be
preferable to use the cutoff definitions for the collinear
functions to match what is done with the asymptotic term.
For the purposes of this paper, however, the difference
between the two is small enough to ignore, as can be seen
in Fig. 7 where we plot the ratios of the collinear pdfs and
ffs defined with the cuttoff scheme and the MS scheme.
For the ranges of x and z that we have consider in this
paper, the difference between the schemes is ≲10%,
which is comparable to the spread between the asymptotic
and fixed-order curves in Fig. 4. It is perhaps interesting
that the switch from the MS to the cutoff pdfs tends to
move the fixed-order curve closer to the asymptotic curve.
However, we leave the question of whether switching
to all cutoff definitions can improve the treatment to
future work.
The above style of analysis can be applied directly to

the individual TMD correlation functions instead of the
full structure functions, and this may be a preferred way to
organize the discussion in contexts where understanding
the role of hadron structure is the primary goal. In
particular, given a nonperturbative treatment of the small
kT region of a TMD pdf or ff, we may confirm that the
TMD function matches its order αns tail at kT ≈Q0. An
example is shown in Fig. 8 for the Gaussian core model.
The bands show the effect of varying the mass parameters
as in the left panel of Fig. 6, calculated as in Eqs. (18)
and (28). The correlation functions are the TMD pdf of
up-quarks in a proton (left panel), and the TMD ff of
up-quarks into πþ (right panel). (These are exactly the
functions used in the cross section of Fig. 6.) The dot-
dashed lines are the corresponding perturbative calcula-
tions in Eqs. (41) and (42). These are the “asymptotic
terms,” analogous to the dashed curves in Fig. 4, but
corresponding to the separate TMD correlation functions.
The plots show that, regardless of the nonperturbative
treatment of small kT, the TMD correlation functions
treated in this way are always consistent with their
kT ≈Q0 behavior, found in collinear factorization, starting
at around qT ¼ 1.0 GeV. The analogous plots for other
flavors exhibit similar trends.

FIG. 7. Ratio of the cutoff definitions of both collinear
pdfs (dashed) and ffs (dot-dashed) and their MS counterparts.
The results are shown for two values of the hard scale
Q ∈ f4; 20g GeV. Only the flavors that contribute most to the
cross section under consideration have been shown to facilitate
the readability of the plot. The cutoff has been chosen to match
the hard scale, i.e., kc ¼ Q with the choice of the Gaussian model
for TMDs for the “core” parametrization of both pdfs and ffs.
Notice that any other choices for the “core” model or the
nonperturbative mass parameters would only affect the result
with power-suppressed contributions which, if neglected, make
the difference between the two schemes perturbatively calculable
as in the last term in Eqs. (22) (ff) and (32) (pdf). The dashed
black lines correspond to the choices of x ¼ 0.1 and z ¼ 0.3
made in our computations throughout the paper. Replacing the
two definitions thus accounts for a difference of order ∼3%
(Q ¼ 4 GeV) to ∼2% (Q ¼ 20 GeV) for the pdf case and ∼10%
(Q ¼ 4 GeV) to ∼5% (Q ¼ 20 GeV) for the ff case.
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VII. CONCLUSION

Let us conclude by summarizing the primary results of
the last section: We have shown how to implement TMD
factorization to calculate unpolarized SIDIS cross sections
at an input scale Q0 in a way that centers the role of
nonperturbative calculations of hadron structure, and we
have shown how this leads to a dramatic improvement in
the consistency between TMD and collinear factorization,
particularly near the input scale Q0. Our approach, which
we have called a “hadron structure oriented” approach in
this paper, and which is based upon the setup in [16],
imposes additional constraints beyond what is standard in
the more conventional style of implementing TMD fac-
torization, reviewed above in Sec. VI C. These extra
constraints are designed especially to preserve a TMD
parton model interpretation [in the sense of preserving
Eq. (1)] for small transverse-momentum behavior while
ensuring a consistent transition to collinear factorization at
qT ≈Q0 andQ0 ≫ ΛQCD. We have emphasized throughout
that it is straightforward to swap the parametrization of the
nonperturbative core of a TMD pdf or ff in the HSO
approach, so that any preferred model or nonperturbative
technique for describing the small transverse-momentum
region may easily be incorporated into future implementa-
tions. We highlighted this modular feature of the HSO
approach by exchanging a Gaussian model for a spectator
diquark model in Fig. 6; replacing one description of the
nonperturbative core by another leaves the qT ≈Q0 region

of the TMD term unaffected and consistent with large-qT
collinear factorization.
Of course, there are still other open questions with regard

to the domain of applicability of TMD factorization to
processes like SIDIS. For example, a definitive lowest
value for Q (for each x and z) in SIDIS below which TMD
factorization techniques absolutely cease to be useful
remains to be determined. It is likely that a sharp transition
does not exist. A related question is that of how high qT
may become before the TMD term alone is no longer
sufficient, and the description must transitions into a
qT ≈Q region where TMD factorization fails and one
must rely entirely on fixed-order collinear factorization.
(This is the issue of the “Y term” alluded to in the
introduction.) Below some numerical value of Q, it is no
longer meaningful to separate a cross section into
distinct large (qT ≈Q) and small (qT ≈ ΛQCD) trans-
verse-momentum regions. These should probably be
viewed as open empirical questions, to be confronted by
future experimental tests. But posing them in a clear
way requires unambiguous and internally consistent
steps like those we have described here and in [16] with
the HSO approach.
A separate phenomenological issue is that one generally

finds tension between data for large transverse-momentum
in processes like SIDIS and Drell-Yan scattering and
calculations performed with existing collinear pdf and ff
fits [14,53,54,70]. This suggests that it will be important for

FIG. 8. Comparison of the TMD functions in the HSO approach and their large-kT behavior predicted by pQCD. The bands
show the variation of the TMD pdf of Eq. (28) (left) and the TMD ff Eq. (18) (right), with respect to mass parameters, using the
Gaussian ansatzes of Eq. (43). The range of masses indicated in the labels are the same as those used to obtained the red band in
the left panel of Fig. 6. The dot-dashed lines show the pQCD calculation of Eq. (42) for the TMD pdf (left), and that of Eq. (41)
for the TMD ff (right). The correct behavior for the models, has been imposed from the onset in Eqs. (41) and (42), through the A
and B coefficients. This is indeed a necessary condition for the agreement of the TMD cross section and the asymptotic term in the
left panel of Fig. 6.
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future phenomenological efforts to fit TMD and collinear
functions simultaneously in a full TMD factorization
context. Of course, for this to be meaningful the non-
perturbative parts need to be combined with collinear
factorization in a consistent procedure, and this is what
the HSO approach is meant to provide.
Extending the treatment in this paper of SIDIS to other

processes like Drell-Yan scattering is straightforward.
Moreover, order α2s and even α3s versions of the para-
metrizations are obtainable from straightforward, albeit
somewhat cumbersome, translations of existing results. It
will ultimately be necessary as well to formulate the spin
and azimuthal dependent observables in TMD factorization
in a manner analogous to what we have done here for the
unpolarized case. There, interesting subtleties arise from
matches and mismatches between small and large trans-
verse regions of the TMD pdfs and ffs [71–73]. In addition,
there exist other QCD formalisms that invoke the notion of
a TMD or unintegrated parton density and find complica-
tions with preserving relationships like Eq. (1), see for
example Refs. [74,75] and the discussion in Refs. [76–78].
We hope that our work might provide some input in
resolving these problems. Finally, it bears mentioning that
the HSO approach that we advocate here is entirely
compatible with other frameworks for setting up TMD
factorization and/or transverse-momentum resummation
methods, including soft-collinear effective-theory based
approaches [79–84].
For our next steps, we plan to perform explicit phenom-

enological extractions within the HSO approach discussed
here. It has the advantage of placing us in a position to
systematically analyze the contributions from any non-
perturbative models (e.g., the spectator model) for the small
transverse-momentum region separately from the large
transverse-momentum perturbative tails. Such analyses
can then be related directly to specific regions of observable
transverse momentum in experimental data, in the spirit of,
for example, the discussion of Fig. 17 in [8]. Ultimately,
one hopes to infer, from the extracted correlation functions,
information about the underlying nonperturbative physics.
To see an example of where this will be useful, consider
Ref. [85], which describes a treatment of intrinsic trans-
verse momentum in a field theoretic chiral constituent
quark model where the chiral symmetry breaking scale is
large relative to the constituent quark mass. The HSO
approach discussed in this paper is ideally suited for

connecting this and similar descriptions to SIDIS data in
the context of a complete TMD factorization treatment.
Notice in particular that the additive model we constructed
in Secs. III and IV aligns naturally with the Gaussian-plus-
tail type of description in Ref. [85]. More generally,
adopting an HSO approach enables us to begin to ask
more specific and detailed phenomenological questions
about the adequacy of specific theories of nonperturbative
small transverse-momentum behavior.
The elements necessary for these and other studies

designed to identify separate perturbative and nonpertur-
bative structures are in place now, and extensions to higher
orders in αs are straightforward, given existing results in the
literature.
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APPENDIX A: SCALE TRANSFORMATION
FUNCTION

The scale-transition function in Eq. (39) is in principle
entirely arbitrary, see the discussion in Sec. V of [16],
provided it has the general feature that it transitions from
∼1=bT behavior to Q0 at a bT slightly below 1=Q0. This
ensures, by construction, that we avoid modifying the input
scale treatment of Eq. (15) in the Q ≈Q0 region. In this
paper, namely in Fig. 5, we have adopted the same choice
as in Appendix C of [16],

Q̄0ðbT; aÞ ¼ Q0

�
1 −

�
1 −

C1

Q0bT

�
e−b

2
Ta

2

�
: ðA1Þ

The constant C1 has the usual numerical value of
C1 ¼ 2e−γE ≈ 1.123. The specific value of a used in
Fig. 5 is a ¼ Q0.

APPENDIX B: TMD PARAMETRIZATION IN bT SPACE AT THE INPUT SCALE

Here we list the bT-space versions of Eqs. (18) and (28)

z2D̃inpt;h=jðz; bT; μQ0
; Q2

0Þ ¼ K0ðbTmDh;j
Þ
�
AD
h=jðz; μQ0

Þ þ BD
h=jðz; μQ0

Þ ln
�
bTQ2

0e
γE

2mDh;j

��

þ K0ðbTmDh;g
ÞAD;g

h=jðz; μQ0
Þ þ CD

h=jz
2D̃core;h=jðz; bT;Q2

0Þ; ðB1Þ
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f̃inpt;i=pðx; bT; μQ0
; Q2

0Þ ¼ K0ðbTmfi;pÞ
�
Af
i=pðx; μQ0

Þ þ Bf
i=pðx; μQ0

Þ ln
�
bTQ2

0e
γE

2mfi;p

��

þ K0ðbTmfg;pÞAf
g=pðx; μQ0

Þ þ Cf
i=pf̃core;i=pðx; bT;Q2

0Þ; ðB2Þ

where

f̃core;i=pðx; bT;Q2
0Þ ¼

Z
d2kTe−ikT·bTfcore;i=pðx; kT;Q2

0Þ; ðB3Þ

D̃core;h=jðx; bT;Q2
0Þ ¼

Z
d2kTeikT·bTDcore;h=jðx; zkT;Q2

0Þ; ðB4Þ

which for the Gaussian and spectator model that we use read

f̃Gausscore;i=pðx; bT;Q2
0Þ ¼ e−

b2
T
M2
F

4 ; ðB5Þ

z2D̃Gauss
core;h=jðz; bT;Q2

0Þ ¼ e−
b2
T
M2
D

4z2 ; ðB6Þ

f̃Spectcore;i=pðx; bT;Q2
0Þ ¼

M2
0FðbTM0FÞ2

4ð2M2
F þM2
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�
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